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Abstract

We propose and discuss a complete sequent calculus formulation for
Signed Interval Logic (SIL) with the chief purpose of improving proof
support for SIL in practice.

The main theoretical result is a simple characterization of the limit
between decidability and undecidability of quantifier-free SIL.

We present a mechanization of SIL in the generic proof assistant
Isabelle and consider techniques for automated reasoning.

Many of the results and ideas of this report are also applicable to
traditional (non-signed) interval logic and, hence, to Duration Calculus.



1 Introduction

Interval logics (e.g. [13, 24, 3, 23, 17]) are modal logics of temporal
intervals: One can express properties such as “if property φ holds on
this interval then property ψ must hold on all subintervals” or “prop-
erty ϕ must hold on some interval eventually”. Interval logics have
proven very useful in the specification and verification of real-time and
safety-critical systems. This has in particular been the case since the
introduction of Duration Calculus (DC) [24] — an extension of interval
logic with notions for reasoning of accumulated durations. A substan-
tial amount of work on various interval logics and extensions, and, not
least, many examples and case-studies have been carried out over the
last decade.

Thus, interval logics have clearly demonstrated their raison d’être by
now. Despite this, no thorough investigation of both theoretical and
practical matters of relevance for (automated) proof support exists.
Almost all case-studies have been carried out on a “pen and paper”
basis. There have been some attempts with respect to proof support,
e.g. [20, 9], but the emphasis there is (mainly) on getting a system “up
and running” such as to be able to conduct case studies. This means
that (parts of) the theoretical foundations are left ad hoc.

The present report is an initial attempt to try to remedy this dis-
parity. We try to provide a good theoretical basis for automated proof
support (viz. a sequent calculus). This turns out somewhat difficult
from a strictly theoretical viewpoint. But because of the great need for
automated proof support for interval logics we do not give up: We try
to see how far we can push our framework such as to make it useful for
actually conducting proofs.

The rest of this report is organized as follows: In Section 2 we intro-
duce interval logic with emphasis on Signed Interval Logic (SIL). We
motivate SIL and informally sketch syntax and semantics. In Section 3
we give a theoretical foundation for automated proof support for SIL,
namely a complete sequent calculus. We consider pros and cons of this
formulation. Then, in Section 4, we consider an interesting theoretical
result: The limit between decidability and undecidability of quantifier-
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free SIL is the cut rule of the sequent calculus system. This result is
utilized in Section 5 where we consider an implementation of the se-
quent calculus for SIL in Isabelle. A substantial amount of automation
support has been developed. Finally, we give conclusions in Section 6.

2 Signed Interval Logic

Signed Interval Logic (SIL) was proposed in [17], with the introduction
of the notion of a direction of an interval. The proof system of SIL turns
out to be not more complicated than that of Interval Temporal Logic
(ITL) [3] but SIL is (contrary to ITL) capable of specifying liveness
properties. Other interval logics capable of this (such as Neighbour-
hood Logic (NL) [23]) have more complicated proof systems. We will
in this section give an introduction to ITL and SIL (with emphasis on
the latter). For space reasons and clarity we choose to give an infor-
mal description of the semantics at the expense of a formal treatment.
(Full formal developments for ITL and SIL are given in [3] and [17],
respectively.)

2.1 Interval Temporal Logic

The syntax of ITL is that of First Order Logic (FOL) with equality,
with the addition of formulas built from the binary interval modality
chop: _. We let x, y, z, . . . denote variables, s, t, u, . . . denote terms
and φ, ψ, ϕ, . . . denote formulas. Thus, we have formulas of the form
φ_ψ beside the usual FOL formulas. A function/predicate symbol is
either rigid or flexible. The meaning of a flexible symbol is dependent
on the current interval whereas a rigid symbol is not. ITL includes the
special function symbols +, 0 (which are rigid) and ` (which is flexible).
Furthermore, = and all variables are assumed rigid. A formula is flexible
if it contains a flexible symbol; otherwise it is rigid. A formula is chop-
free if it does not contain the symbol _.

Semantically, formulas of ITL are interpreted with respect to a given
interval, which is represented by a pair [b, e] (where b ≤ e) of elements
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b φ_ψ e

b φ m ψ e

Figure 1: φ_ψ holds on [b, e] iff there is m ∈ [b, e] such that φ holds on
[b,m] and ψ on [m, e]

from an ordered temporal domain of time points. The meaning of
the usual operators of FOL is independent of this interval whereas the
meaning of _ is not; the semantics of _ is indicated in Fig. 1. We
will refer to m of Fig. 1 as the chopping point of _. The chopping
point will always lie inside the current interval on which we interpret
a given formula. In general, modalities with this property are called
contracting. With contracting modalities it is only possible to specify
safety properties of a system. This is because once we have chosen the
interval we want to observe we are restricted to specifying properties
of this interval and its subintervals.

To specify liveness properties, we need to reach intervals outside
the current interval. In general, modalities which can do this are called
expanding. Neighbourhood Logic (NL) [23] is an example of an interval
logic with expanding modalities. Both ITL and NL include a special
symbol ` which represents the length of an interval. This property is
not common for all interval logics.

2.2 Signed Interval Logic

The syntax of SIL is similar to that of ITL with the addition of the
unary function symbol −. Semantically, SIL is an extension of ITL
with the introduction of the notion of a direction (which can be either
forward or backward) of an interval. The idea for SIL originates in [4].
where an interval logic with such a notion of a direction of an interval
was informally developed.

An interval with a direction is in SIL represented by a signed in-
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b φ_ψ e-

b φ m-

e ψ m�

Figure 2: φ_ψ holds on (b, e) iff there is m such that φ holds on (b,m)
and ψ on (m, e)

terval (b, e). Both the pair (b, e) and the pair (e, b) represent the same
interval but (e, b) has the opposite direction of (b, e). SIL inherits the
special symbol ` from ITL. ` now gives the signed length of an inter-
val. Intuitively, the absolute value of ` gives the length of the interval
and the sign of ` determines the direction. Because of the directions of
intervals, the meaning of _ in SIL is altered: See Fig. 2. On the figure
the direction of an interval is marked with a small arrowhead in either
end of the interval. The chopping point can now lie anywhere and not
just inside the current interval. This means that _ of SIL has become
an expanding modality, hence SIL can specify liveness properties.

SIL is a modal logic. Formally, the semantics sketched above is
given in terms of a Kripke structure where the possible worlds are
signed intervals. As _ is a binary modality the accessibility relations is
ternary and not binary as is the case for, e.g., the classical modal logic
S4. What is non-orthodox about SIL is the inclusion of the flexible
symbol `, which is interpreted by a certain measure such that it is
possible to perform simple arithmetic reasoning on signed lengths. For
this to work we must require the domain of individuals (the duration
domain) of the logic to have a certain structure, namely that of a group.
SIL can be seen as extending S4 if we define the modalities 2 and 3 by
3φ =̂ true_φ_true and 2φ =̂ ¬3¬φ. In this setting, 3 can be read
as “for some signed interval” and 2 as “for all signed intervals”.

For a more formal treatment of the semantics of SIL we refer to
[17]. In [17] a Hilbert-style proof system for SIL is also considered.
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This system is an extension of that of FOL with equality. Any ax-
iomatic basis for FOL can be chosen but one has to be careful when
instantiating universally quantified formulas. To retain soundness we
have to add extra side conditions requiring either the formula being
instantiated to be chop-free or the term used in the instantiation to
be rigid. (See [17] for details.) Furthermore, SIL contains axioms and
inference rules defining the properties of _ and `. (Again, see [17] for
details.) Finally, SIL contains axioms expressing the properties of the
domain, i.e. axioms defining a group. Provability in the Hilbert system
is defined the standard way. We write `SIL φ to denote theoremhood
of φ in SIL. In [17] it is proved that the Hilbert proof system is sound
and complete with respect to the semantics.

For the completeness result to go through, the duration domain (D)
must at least have the structure of a group. But it is fairly easy to add
further structure to D and still have completeness by reflecting this in
the proof system. If we e.g. require D to be an Abelian group, the
soundness and completeness result holds if we add a commutiativity
axiom (for +) to the proof system. This commutiativity property is
quite natural, hence we assume it from now on when referring to SIL.
It will become crucial in Section 4 where we consider a decidability
result.

To justify the name “interval logic” one could argue that it would
be natural to require a total ordering on D. Again, by adding suit-
able (order) axioms to the proof system the completeness result will
go through [18]. In this report we will not assume any ordering unless
explicitly mentioned.

3 Sequent Calculus

In this section we discuss a sequent calculus proof system for SIL. After
presenting the rules making up the system, we consider the structure
of these rules from both a pragmatic and “aesthetic” viewpoint.

We assume the reader to be familiar with the basic notions of se-
quent calculi (cf., e.g., [21, 5]). For our presentation we use sequents
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Γ ` ∆ where Γ,∆ are multisets. A basic sequent is a sequent where
Γ ∩∆ 6= ∅.

Our presentation is inspired by [21]. Instead of multisets one can
also consider sets [16, app. A] or sequences [6]. The latter will be
relevant in Section 5.

3.1 The Sequent Rules

We will consider sequent calculi made up of combinations of the follow-
ing sets of sequent rules:1 (L) Rules for propositional logic (viz. a left
and a right rule for each of the operators ∧, ∨,→ and ¬). The rules are
of a form such that if they are used in a backwards search they act as
a decision procedure for propositional logic. (Cf., e.g., [5, p. 63].) (P)
Rules for quantified formulas (viz. a left and right rule for each quan-
tifier ∀ and ∃). (Cf., e.g., [5, p. 188].) If we add extra side conditions
concerning rigidity and chop-freeness (as for the Hilbert proof system,
cf. the discussion in the previous section) to the usual side conditions
for the quantifier rules, we denote the rules P’. (E) Rules for equality.
The form of these rules is inspired by [5, pp. 236–237]; they are slightly
modified such as to make the proofs of Section 4 simpler (f and G are
arbitrary function/predicate symbols of the logic):

Γ, t = t ` ∆

Γ ` ∆
(E1)

Γ ` si = ti,∆ Γ, f(s1, . . . , sn) = f(t1, . . . , tn) ` ∆

Γ ` ∆
(E2)

Γ ` si = ti,∆ Γ ` G(s1, . . . , sn),∆ Γ, G(t1, . . . , tn) ` ∆

Γ ` ∆
(E3)

If the only predicate symbol is = and the only non-nullary function
symbols are +,− we denote the equality rules E’. (4) Rules for modal
logic S4. We choose rules with weakening built-in (cf. [21, p. 229]):2

1All rules we consider in this report will be of the additive type.
22Γ =̂ {2φ | φ ∈ Γ}.
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Γ, φ ` ∆

Γ,2φ ` ∆
(L2)

2Γ ` φ,3∆

Γ′,2Γ ` 2φ,3∆,∆′
(R2)

2Γ, φ ` 3∆

Γ′,2Γ,3φ ` 3∆,∆′
(L3)

Γ ` φ,∆

Γ ` 3φ,∆
(R3)

If we include the rules below (where φ must be rigid) we denote the
rules 4’:

Γ, φ ` ∆

Γ,3φ ` ∆
(LR)

Γ ` φ,∆

Γ ` 2φ,∆
(RR)

(I) Rules for chop. In (LL1), (RL1), (LL2) and (RL2), s (and t) must
be rigid:

Γ, (` = s+ t) ` ∆

Γ, (` = s)_(` = t) ` ∆
(LL2)

Γ ` (` = s+ t),∆

Γ ` (` = s)_(` = t),∆
(RL2)

Γ, φ ` ∆

Γ, φ_(` = 0) ` ∆
(LL3)

Γ ` φ,∆

Γ ` φ_(` = 0),∆
(RL3)

Γ, φ_ϕ ` ∆ Γ, ψ_ϕ ` ∆

Γ, (φ ∨ ψ)_ϕ ` ∆
(LT1)

Γ ` φ_ϕ, ψ_ϕ,∆

Γ ` (φ ∨ ψ)_ϕ,∆
(RT1)

Γ ` (` = s)_φ,∆

Γ, (` = s)_¬φ ` ∆
(LL1)

Γ, (` = s)_φ ` ∆

Γ ` (` = s)_¬φ,∆
(RL1)

2Γ, φ ` ψ,3∆

Γ′,2Γ, φ_ϕ ` ψ_ϕ,3∆,∆′
(LRM)

(A) Rules for associativity of chop:

Γ, φ_(ϕ_ψ) ` ∆

Γ, (φ_ϕ)_ψ ` ∆
(LA2)

Γ ` φ_(ϕ_ψ),∆

Γ ` (φ_ϕ)_ψ,∆
(RA2)

(Q) Rules for quantifiers and chop. With side conditions similar to
those of P’:

Γ, φ_ψ ` ∆

Γ, ((∃x)φ)_ψ ` ∆
(LBl)

Γ ` φ[x/t]_ψ,∆

Γ ` ((∃x)φ)_ψ∆
(RBl)

(G) Four axioms (i.e. rules with no premises) expressing the properties
of an Abelian group.
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Γ ` (s+ t) + u = s+ (t+ u),∆
(SD1)

Γ ` s+ 0 = s,∆
(SD2)

Γ ` s+ (−s) = 0,∆
(SD3)

Γ ` s+ t = t+ s,∆
(SD4)

We have actually left out some rules in I and Q, namely symmetric
rules with respect to _. This is the case for all rules of I and Q except
(LL2) and (RL2). In the case of, say, (LL3) we have the following rule
as well:

Γ, φ ` ∆

Γ, (` = 0)_φ ` ∆
(LL3′)

Of structural rules, only the standard (additive) cut rule is included.
The exchange rules are superfluous when we consider sequents of mul-
tisets. The weakening rules are built-in in the other rules (cf. (R2),
(L3) and (LRM)). Finally, the contraction rules are derivable from cut,
hence not included explicitly. It is not possible to eliminate cut from
the system. This is a corollary of the undecidability/decidability result
of Section 4 as we shall see.

The sequent calculus induced by the set of rules R1, R2, . . . , Rn will
be denoted by G[R1R2 · · ·Rn]. We can now be precise:

Definition 3.1 The sequent calculus for SIL is G[LP′E4′IAQG{cut}].

A proof of a sequent Γ ` ∆ in a sequent calculus G[R] is a finite
tree of sequents with Γ ` ∆ as root. The leaves are either basic
sequents or instances of axioms of R. The inner sequents of the tree
are connected iff they match an instance of a (non-axiom) sequent rule
of R.

The proof that theoremhood in the Hilbert system is equivalent to
theoremhood in the sequent calculus system is an extension of similar
proofs for FOL (e.g. [21]).

Theorem 3.2

`SIL φ iff there is a proof of {} ` φ in G[LP′E4′IAQG{cut}]
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3.2 Structure of the Rules

The rules of LP4’ are all well-known, thus the sequent calculus for
SIL can be seen as an extension of a version of a sequent calculus for
first-order modal logic S4 [21]. Notice that all these rules satisfy a
subformula property which make them well-suited for backwards proof
search.

The rules (LL2), (RL2), (LL3) and (RL4) express how interval
lengths are additive and that an interval of length zero is a neutral
element with respect to _. (LL3) and (RL4) satisfy the subformula
property, and as the formulas in the premises of (LL2) and (RL2) are
atomic they are all suited for backwards proof search. The rules (LT1),
(RT1), (LL1), (RL1), (LBl) and (RBl) all have a particular form: They
can be seen as introduction rules for ∨, ¬ and ∃ “under the chop”. In
other words, these rules resemble the corresponding rules for propo-
sitional logic but now the affected formulas are chopped formulas. It
is possible to derive similar rules for ∧, → and ∀. Note, that these
rules do not satisfy the usual subformula property. But because of the
above mentioned particular form it is possible to define a so-called chop-
subformula property which gives rise to a decreasing measure in a back-
wards search. (An example: φ_ϕ is a chop-subformula of (φ∨ψ)_ϕ.)
Finally, we have a monotonicity rule for _ (LRM) (satisfying the usual
subformula property) and the associativity rules of A. The latter do
not have the chop-subformula property but we can easily define a mea-
sure which makes the premise strictly less than the conclusion in these
associativity rules as well.

We will not give more formal definitions of the above discussed
properties but it should be clear that they imply that if starting with
an arbitrary sequent, a backwards proof search using only the rules of
L4’IA will always terminate in a finite number of steps.

3.3 Sequent Calculi for Modal Logics

From a more “aesthetic” viewpoint, one can ask what a sequent cal-
culus looks like in general. In [22] some general principles for each
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connective/modality ◦ of a logic is suggested:

• Separation. The sequent rules for ◦ should not exhibit any con-
nective other than ◦.

• Weakly symmetric. The rules for ◦ should either be left or right
introduction rules.

• Symmetric. Both left and right introduction rules for ◦.

• Weakly explicit. The rules for ◦ exhibit ◦ only in the conclusion
sequents.

• Explicit. Only one occurrence of ◦ in the conclusion.

If we are to relate these principles to SIL, we see that the problem
is the chop modality. Both separation and explicitness fail whereas
we almost achieve symmetry; only the monotonicity rule breaks the
symmetry.

The problem of not satisfying these principles is not that of SIL
alone but stems from more fundamental difficulties with giving sequent
calculus formulations to modal logics. Indeed, in [2] it is argued that
only some very simple modal logics can be given “nice and natural”
sequent calculus formulations.

The standard formulation for S4 is that used in e.g. [21]. This is
also the formulation we have used in our sequent calculus for SIL, cf.
the rules of 4. Other proposals for sequent calculus systems for some of
the simple modal logics (K,T,S4,S5) are surveyed in the introduction
of [22]. It is interesting to note that none of these systems satisfy all of
the above principles and properties.

In [7] cut-free systems for S4.3, S4.3.1, and S4.14 are given. It
is still within the standard sequent calculus framework but now the
rules themselves get more complicated, such that, e.g., the subformula
property does not hold any more. The rules are still analytic in the
sense that if the conclusion is known then the premise(s) are completely
determined.
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There have been various proposals for generalized systems based on
extended formalisms of the standard sequent calculus formulation. One
example of this is [22] which also contains a survey of other proposals
in this direction.

4 Decidability Modulo Cut

SIL is an extension of FOL; SIL is thus undecidable because FOL is.
In this section we consider Quantifier Free SIL (SILQF) with = being
the only predicate symbol and +,− being the only non-nullary function
symbols. We show that the limit between decidability and undecidabil-
ity of SILQF is the cut rule.

4.1 Undecidability

First we show that SILQF is undecidable in general, i.e. we show that
it is undecidable whether `SIL φ for arbitrary φ of SILQF. For this we
need some results concerning logics L with a binary modality [10].

The syntax of L is that of propositional logic with the addition
of formulas of the form α_β. Furthermore, for L to be a logic with
a binary modality it must contain the following axioms and inference
rules: 1) All propositional tautologies, the substitution rule and modus
ponens. 2) Axiom saying that _ distributes over ∨. 3) A monotonicity
rule for _. The minimal logic with a binary modality is the logic
with a binary modality consisting only of these axioms and rules. If
L contains an associativity axiom for _ it is called associative. If it
contains a necessitation rule it is called normal. We can thus speak of
the minimal [associative] [normal] logic with a binary modality.

We give a standard Kripke-style semantics for L with models based
on frames (W,R) where W is a set of possible worlds and R is a ternary
accessibility relation on W . Satisfiability and validity is defined the
standard way.

Consider the minimal normal logic (LAF) with a binary modality.
It is easy to check that all axioms of LAF are valid and that all inference
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rules of LAF preserve validity in the class of all frames. In fact, we have
a much stronger result: LAF is characterized exactly by the class of all
frames.

Given a set U we define a square frame (W,R) as follows: W =
U ×U and R = {((a, c), (c, b), (a, b)) | a, b, c ∈ U}. We are interested in
validity of a formula α in the class of all square frames, written SQ α.
A logic is called a square extension of the minimal logic with a binary
modality if it is valid in the class of all square frames. It is easy to check
that the associativity axiom is valid in the class of all square frames.
We can thus speak of a square extension of the minimal associative
logic with a binary modality.

We now consider the logic LSQ with a binary modality characterized
by the class of all square frames. By this we mean the logic whose theo-
rems are exactly those valid in all square frames. This logic is a square
extension of the minimal associative logic by the above definitions.3

We now cite a central result of [10].

Theorem 4.1 Any square extension of the minimal associative logic
with a binary modality is undecidable.

Hence, it is undecidable whether SQ α
A formula of L will also be a formula of SILQF. This means that

we have shown undecidability of SILQF if we can show that it is unde-
cidable whether `SIL α for arbitrary α of L. But by the completeness
theorem for SIL this is equivalent to the decidability question of |=SIL α.
We are thus done by the following proposition which is proved by simple
structural induction on the definitions of |= and .

Proposition 4.2 |=SIL α iff SQ α .

4.2 A Decidable Fragment

We now show that SILQF without cut is decidable. To be more pre-
cise, we show that it is decidable whether a sequent is provable in
G[LP′E′4′IAQG].

3It would be nice if LSQ was simply the minimal associative [normal] logic with
a binary modality. Unfortunately, LSQ is not even finitely axiomatizable [12].
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We say that a formula is atomic iff it is of the form s = t. Clearly,
an atomic formula is quantifier-free. An atomic basic sequent Γ ` ∆
is a basic sequent where all formulas of Γ∩∆ are atomic. A proof in an
atomic sequent calculus G[R] is a proof in G[R] where basic sequents
are atomic. Let Γ =̂ {φ ∈ Γ | φ is atomic}. As formulas are quantifier-
free, variables can never be instantiated and can thus be regarded as
constants. Such formulas with no (instantiable) variables are called
ground. If a sequent Γ ` ∆ is an instance of the conclusion of a
sequent rule R, we say that R is applicable to Γ ` ∆.

The following lemma states that after using the terminating proof
search described in the previous section, what is left, is to use equality
reasoning on Abelian groups.

Lemma 4.3 Given a non-basic sequent of SILQF, if none of the se-
quent rules of L4′IA are applicable then the following propositions are
equivalent

1. There is a proof of Γ ` ∆ in G[LP′E′4′IAQG].

2. There is a proof of Γ ` ∆ in G[E′G]

Proof Trivially, 2. implies 1. For the other direction, notice that as we
only consider quantifier-free formulas the sequent rules of P′ and Q will
never be applicable. We can therefore restrict attention to provability
in G[LE4′IAG]. By assumption, none of the sequent rules of L4′IA are
applicable. Of the remaining rules, only those of E′ can generate new
sequents; but the additional formulas of those will always be atomic,
hence the rules of L4′IA will continue being non-applicable. Thus, we
only have to consider provability in G[E′G].

Assume Γ ` ∆ is provable in G[E′G] because Γ ` ∆ is an instance
of an axiom of G. Then clearly Γ ` ∆ will be an instance of the same
axiom of G and we have a proof in G[E′G]. The only possibility left
is that Γ ` ∆ is provable in G[E′G] because one of the rules of E′ is
applied to Γ ` ∆. In this case there are three possibilities for each
of the new sequents Γ′ ` ∆′: 1) Γ′ ` ∆′ is an instance of an axiom
of G. Then we are done as above. 2) Γ′ ` ∆′ is a basic sequent. As
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Γ ` ∆ was not a basic sequent Γ′ ` ∆′ must be an atomic basic
sequent (because of the structure of the rules of E′). Thus, we have
a proof of Γ′ ` ∆′ in G[E′G]. 3) Γ′ ` ∆′ is provable in G[E′G]
because one of the rules of E′ is applied to Γ ` ∆. Then we are done
by induction. �

An equational system E is a set of equations s = t where s, t are
terms build from function symbols and variables. A structure M con-
sists of a domain D and a function assigning a meaning (in D) to each
function symbol and variable. The meaning of terms is defined the
usual way. We say that M satisfies the equation s = t iff s and t are
given the same meaning by M . We write E |=equ s = t if all struc-
tures that satisfy all equations in E also satisfy s = t. Now, the relation
E `equ s = t is defined as the least relation satisfying E `equ s = t
if (s = t) ∈ E and E `equ t = t, and closed under symmetry, transi-
tivity, substitution and congruence. The following classic result relate
|=equ and `equ .

Theorem 4.4 (Birkhoff) E |=equ s = t iff E `equ s = t .

Proposition 4.5 Let Γ and ∆ be multisets of atomic ground formulas.
Then the following two propositions are equivalent:

1. Γ ` ∆ is provable in G[E′G]

2. Γ ∪ Grp |=equ s = t for some s = t ∈ ∆

where Grp =̂ {(x+y)+z = x+(y+z), x+0 = x, x+(−x) = 0, x+y =
y + x}.

Proof Theorem 4.4 is used implicitly several times in the proof. Let
E =̂ Γ∪Grp. To show that 2. implies 1. we assume that E |=equ s = t
for some s = t ∈ ∆ and proceed by structural induction over the proof
of E `equ s = t. For the other direction we proceed by induction over
the proof of Γ ` ∆ in G[E′G]. �
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In the case of ∆ being singleton, 2. above is a formulation of the de-
cision problem known as the word problem for finitely presented Abelian
groups. But this problem is known to be decidable [8].

Theorem 4.6 Let Γ ` ∆ be a sequent of SILQF. It is decidable
whether there is a proof of Γ ` ∆ in G[LP′E′4′IAQG].

Proof Perform a non-deterministic backwards proof search using only
the rules of L4’IA. By the results of Section 3 this search will terminate
in a finite number of steps. Now apply Lemma 4.3 and Proposition 4.5
and the theorem follows. �

As provability is undecidable in G[LP′E′4′IAQG{cut}] we thus have:

Corollary 4.7 It is not possible to eliminate cut from the sequent cal-
culus for SIL, G[LP′E′4′IAQG{cut}].

The results of this section tell us that any (quantifier-free) theorem
can be proved by splitting it in a number of lemmas (using cut) and then
solve these lemmas automatically by the decision procedure sketched
in the proofs above.

5 Mechanization

In this section we give an overview of our mechanization in Isabelle of
our sequent calculus for SIL. We will not go into details but instead
sketch some of the overall decisions we have made.

Isabelle is a generic proof assistant [14]. Various object logics have
been (and can be) formalized by extending Isabelle’s meta-logic, which
is intuitionistic higher order logic. One of these object logics is first
order sequent calculus LK. We can almost build on LK as it is, but we
have to make some adjustments to accommodate the rigidity and chop-
freeness side conditions (cf. the discussion in Section 2). Formally, we
have to embed these side conditions within the logic itself by defining
a set of appropriate rules. How this can be done is discussed in [19].
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Because of the simple structure of these rules, the side conditions can
be handled (almost) fully automatic.

5.1 Encoding SIL

The encoding of the SIL extension as such is fairly straightforward.
We base the modal logic part of SIL on the principles of the (undoc-
umented) modal object logics distributed with Isabelle. In particular,
this means that we handle the special side conditions of the rules (R2),
(L3) and (LRM) by means of a certain set of Horn clauses as for the
object logic S4.

5.2 Simplification on Abelian Groups

The basic structure of terms is that of an Abelian group. We would
like the simplifier to automate most of the reasoning with these terms.
The simplifier of Isabelle is based on the theory of Ordered Rewriting
[11]. A complete set of reductions for Abelian groups exists within
this theory [11]; we hence prove and add these to the simplifier. The
standard lexicographic ordering on terms used in Isabelle does not work
in this case though, and we thus have to redefine the term ordering.
We keep Isabelle’s strict ordering for nullary terms a1 < a2 < . . . and
extend it to + < − < a1 < a2 < . . .. We define the order on terms
as the lexicographic path ordering [1] induced by this order and the
simplifier can now reduce any term to its unique normal form.

5.3 The SIL Reasoner

Isabelle provides a classical reasoner for LK consisting of tactics per-
forming e.g. depth-first search using the rules of LK. We rewrite this
reasoner for SIL as it has to accommodate the side conditions concern-
ing rigidity, chop-freeness and those of the modal logic part in a trans-
parent way. The use of the SIL reasoner is in the spirit of [15]: When
new notions (say, 2) are introduced, corresponding rules are added to
the reasoner. Reasoning is thus done on a higher level as definitions
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are not expanded. When other (suitable) rules are later derived they
are added to the reasoner as soon as possible to keep the search space
small. This in particular means that all (derived) rules satisfying the
chop-subformula property (this ensures termination) are added to the
reasoner, e.g. the derived rules for ∧ mentioned in Section 3.

5.4 Experience

We have proved several lemmas and theorems, and derived many use-
ful rules of SIL, utilizing the automated proof support developed in
Isabelle. The result of the previous section is reflected fairly well: The
proofs are essentially all split in smaller or bigger parts all of which can
then be solved automatically by the simplifier and/or the (rewritten)
classical reasoner. These parts are often non-trivial with respect to
doing the proof by hand.

6 Conclusion

Our main goal of this work was to improve proof support for inter-
val logics. We developed a sequent calculus which, despite not being
completely satisfactory, turned out to be useful for actual conducting
proofs, not least because of the decidability result of Section 4.

The emphasis of this report has been on SIL. Due to the similarity
(in many respects) of ITL and SIL, most of the results are (in slightly
modified form) applicable to ITL and, hence, DC as well.
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