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Abstract

We express the alignment of 2D shapes as the minimization
of the norm of a linear vector function. The minimization
is done in the /1, Is and the I norms using well known
standard numerical methods. In particular, the I; and the
I norm alignments are formulated as linear programming
problems. The linear vector function formulation along
with the different norms results in alignment methods that
are both resistant from influence from outliers, robust wrt.
errors in the annotation and capable of handling missing
datapoints. Another reason for using other norms than the
I norm is to minimize the effect of the choice of landmarks.
Examples that illustrate the properties of the different norms
are given on simulated as well as real datasets.

1. Introduction

The study of the geometry of classes of biological objects
represented by sets of (corresponding) landmark points is
usually concerned with the variation up to a given transfor-
mation. The most common set of transformations applied
are the Euclidean similarity transformations, i.e. translation,
rotation, and isotropical scale. Following [1] we will de-
note the geometrical information up to a Euclidean similar-
ity transformation the shape of an object. Analysis of the
shape variablity across a set of examples requires the align-
ment of the shapes to a common frame of reference. This is
usually obtained by means of a generalized Procrustes anal-
ysis (GPA) [2, 3]. The GPA consists of minimizing the sum
of squared distances between corresponding landmarks on
all examples and a reference shape with respect to the ref-
erence shape and similarity transformations of all example
shapes, i.e. GPA is a least squares estimator.

Several problems may occur when aligning a set of
shapes. Methods for extracting landmarks - be they manual,
semi-automated, or fully automated - may result in missing
points on some shapes, landmark outliers, and even errors in
the correspondence between landmarks. Furthermore, ob-
ject outliers may also occur.

Least squares methods are not particularly good at han-
dling these situations. Other alignment procedures that han-
dle these problems are therefore necessary. The insensitiv-
ity to outliers - landmark or object - is usually referred to as
resistance, and insensitivity to correspondence errors, i.e.
model breakdown, is called robustness [1].

Other work on robust and resistant alignment has been
done. Siegel [4, 5] used double repeated medians to achieve
robust alignment in order to study the differences in shapes.
Dryden and Walker [6] used S-estimators.

Here we present algorithms to align shapes based on well
understood and efficiently implemented numerical meth-
ods. They align shapes in the sense of I, I and [, norms.
The formulation presented allows for dealing with missing
observations and some of the norms are robust when deal-
ing with errors. The real power of the methods comes from
using standard well understood algorithms.

2 Data — Profiles of crania

A common source of images for medical diagnostics is ra-
diographs. Biological objects seen in radiographs are also
an important and interesting class of objects in medical im-
age analysis.

Fine details are difficult to discern in radiographs. Im-
ages from radiographs usually have low contrast so it is of-
ten difficult do precisely mark the boundaries of objects.
Another source of ambiguity for radiographs stems from
projecting three dimensional structures down onto a two di-
mensional image. This can result in an overlap of objects
in the radiograph. All this leads to annotation errors. It
is important to minimize the annotation errors as much as
possible so that they do not obscure the real variations in
the shapes.

A dataset consisting of annotated radiographs showing
the crania of 2 month old children with cleft lip and palate
was supplied by M.Sc. Tron Darvann and Dr. Nuno Vibe
Hermann of the 3D Laboratory, School of Dentistry, Uni-
versity of Copenhagen. It contains 138 landmarks taken
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Figure 1: (a) An illustration of where the points were an-
notated on the crania data set (see page 31 in [7]). (b) Five
typical profiles of a cranium superimposed. .

from profile radiographs of the heads of 2 months old chil-
dren. The radiographs were obtained in a clinical context
for patient treatment purposes. The landmarks were placed
as part of a study on craniofacial morphology and growth
in children with cleft lip and palate [7]. In Figure 1 the lo-
cation of landmarks and a few typical example shapes are
shown. The subset of the dataset considered here contains
48 shapes.

3 The alignment task

Let there be given L training examples for a given shape
class, and let each example be represented by a set of £ 2D
landmark points (z;;,y:;),¢ =1,...,Landj = 1,...,k.
Then each example is given by a 2n vector
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The alignment problem in 2D consists of estimating an av-
erage shape, o = (p1,..., Mk, v1,.-.,v) "%, and a set of
Euclidean similarity parameters parameters for each shape.
Let these parameters be
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Then using a multiple linear regression formulation as de-
scribed in [3] the alignment problem consists of the minimi-
sation of a vector function
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An obvious choice of parameters that minimizes any norm
of F is to choose ¢ = 0, that is, collapse everything to
a point. The minimization needs to be constrained to not
allow such degenerate solutions. One way of doing that is to
specify that the meanshape should be aligned to an arbitrary
shape (say the last) from the set of shapes. This enters the
alignment vector function linearly
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The main advantage of using the linear vector function
formulation is that it is easy to deal with missing observa-
tions, that is, missing points in shapes. This is done just by
leaving out the rows from the coefficient matrix that corre-
spond to the missing points.

3.1 Aligning in different norms

The three most common norms used in numerical analysis
are the I, I; and [, horms. The I norm is the generaliza-
tion of the Euclidian size and is the sum of squares of the
elements of a vector.

(4)
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Besides being the generalization of what is commonly un-
derstood as size and length calculating with it is generally
easy (compared to other norms). It is also known as the
least squares norm.



The I; norm is the sum of the absolute values of the ele-
ments of the vector.

N
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It is insensitive to errors and outliers and is often the norm
of choice if a data set is believed to be corrupted by errors
or contain outliers.

The [ norm is the value of the largest absolute value of
the vector.
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It is the opposite of the I; norm as it is very sensitive to
the individual elements. It is often used when the size of
the individual elements of a vector must be uniform in size.
The I, norm is also known as the minimax norm because
minimizing in it corresponds to minimizing the maximum
of the vector.

All these norms can be used to align a set of shapes using
the linear vector function formulation from eq. (2) and (3).

3.1.1 Thels norm

As has been stated earlier, the [5 norm alignment is the well
known Procrustes alignment. It is usually performed by ei-
ther using an iterative algorithm proposed in [8] or by cal-
culating the mean shape by solving an eigenvector problem
and then aligning each shape to the mean shape using sin-
gular value decomposition [1].

It can of course also be done by minimizing the I, norm
of the function F in eq. (3). Call the coefficient matrix C,
the vector with the parameters ¢ and the vector with the last
shape d, that is

F(¢) = Cé +d. @)

The I3 norm of F can be minimized using QR-Factorization
of the coefficient matrix C and then using back-substitution
with the R matrix to get the desired least squares solution.
Missing points are handled by leaving out the correspond-
ing rows of the coeeficient matrix, C, and vector, d.

3.1.2 Thely, norm

Here we wish to make the deviation of the shapes from the
mean shape uniform by minimizing the maximum devia-
tion, that is

mtgnHF(qb)Hoo = rrgn max [F(¢)| = m(gn max |C¢ + d|
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By casting this minimization task into the framework
of linear programming [9], see App. A, it can be eas-
ily solved. The task is now to find the smallest num-
ber o that bounds all of the elements in F(¢) =

[Fi(6) Fa(6) - Fa(z1)(6)]” such that
0> |Fm(¢)|,m=1...2N(L + 1). 9)
or equivalently
—0< Fn(¢)<oom=1...2N(L+1). (10)

This can be seen as the linear constraints to the linear pro-
gramming task of minimizing o, that is finding the smallest
number that bounds all the elements in F(¢).

The coefficient matrix is very sparse and has only 4 en-
tries at most in each row, most of the rows have only 3 en-
tries.

For each point we get four constraints

—0 < x5 (Bi cos ;) — yij (B sin ;) + Yai — pj < 0
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where 4 is the humber of a shape (corresponds to a block
in C) and j is the number of the point within the shape.
Because one shape (say the last one) is used to lock the pose
a few extra constraints are needed

—o<wp;—pj <o (13)
—o<yrj—vij<o (14)

The constraints are linear in the parameters (3; cosv;,
ﬁi Siani, Vi Vyis Kj and vj.

If a point (or points) on a shape are missing then the con-
straints are just not included in the linear program.

3.1.3 Thel; norm

If there are reasons to believe that the annotations of the
shapes being aligned contain errors (e.g. errors in corre-
spondence between points in different shapes) or outliers
the [; norm should be used.

The task can again be formulated as a linear program-
ming task. The task is to find a vector o = [01 02 ... 0anL]
whose elements bound the values of the alignment function,
that is

om > |Fm(¢9),m=1...2NL. (15)
or equivalently

—om < Fp(¢) <0m,m=1...2NL. (16)



This can be stated as linear constraints

—0zij < x4 (Bi cos i) — yij (Bi sinhi) + Voi — pj < 0zij
(17)

—0yij < Yij(Bicos ;) + mi; (Bisin ;) + vyi + v < 0yij.

(18)

The objective function of the linear programming task is
to find a vector o that contains bounds for each element of
F(¢) such that

> o (19)

is minimized. The values of o; take on the role of the abso-
lute values of the residuals in each coordinate.

If there are many shapes being aligned there is still a
possibility for degenerate solutions, even though a shape is
included to lock the pose. This is because the [; alignment
uses as an object function the accumulated size of the resid-
uals from the shapes to the estimated mean shape. If the
shapes are many it might be “cheaper” to collapse all the
shapes to a point and estimate the mean shape as the same
point. That way the residual is O from all the shapes except
one. The only contribution to the /; norm then comes from
the difference from the mean shape (that is now a point)
and the shape used to lock the pose of the alignment. Other
constraints are needed. One possibility is to constrain the
average rotation and position, that is
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where K; and K, are arbitrary constants. e.g. K» = L and
K> = 0. This has the advantage of allowing the specifica-
tion of overall scale, orientation and position. This should
of course be used together with Eq. (2).

The reason for the possibility of a collapsed solution is
the linear relation between the size of the residuals and the
size of the [; norm. In the I5 norm this does not happen as
many small residuals are favored over few larger because
of the quadratic relation. If the accumulated contribution to
the I> norm from the residuals suggests that it would be ben-
eficial to collapse to a point in the I5 norm it is sufficient to
scale the shapes a bit (done automatically by the algorithm)

to change the ratio between the residuals when collapsing
and when estimating a proper shape. This ratio stays con-
stant in the I; norm when the overall scale is changed.

If a point (or points) on a shape are missing then the con-
straints are just not included in the linear program as in the
Il alignment.

4 Repeated medians alignment

For comparison the repeated medians alignment algorithm
is described here. It was described by Siegel and Ben-
son [4]. Its main use is to detect localized differences in
shapes. The least squares methods allows large, but local,
differences in shapes to have big influence and thereby ob-
scure it, that is, least squares is not resistant to outliers.

The algorithm estimates the similarity transformation
parameters successively. It starts by estimating the scale
(3 for each shape, then finds the rotation ¢ and finally finds
the translation v, and ~,.

The algorithm aligns two shapes, say z and z™. For each
pair of homologous points (point 4 and j for example) on
the shapes a scale can be estimated

V(g —2i)? + (y; — vi)? .
V@t = + @ — v

Taking the double repeated median of the 3;; values gives
an estimate for scale

Bij = (24)

~

B = median(megi_anﬂi]-). (25)
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The rotation between the shapes can be estimated in a
similar manner. The value of v;; expresses the rotation
needed to cause the ray from point ¢ to j in shape z to point
in the same direction as the corresponding ray in z+. The
rotation estimate is then

~

Y= median(megi'ambij). (26)
1 1#]

Translation can be defined for a point, pairs of points are
not needed. Therefore the translation parameters v, and -y,
are estimated using simple (nonrepeted) medians

¥, = median[z; — B(z, cosp — ylsind)]  (27)
%y = median[y; — A(yj costp + zisin))]  (28)

A set of shapes can be aligned using the iterative al-
gorithm shown in [8] where the above repeated median
method is used to align the set to the current guess at the
mean shape. A 3D variant of the algorithm is demonstrated
in [10, p179]
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Figure 2: (a) 10 triangles. (b-d) alignment based on the 3
corner points using the I, Iy and I, norms, respectively.
(e-g) aligned as (b-d) but with an addtional 18 landmarks
distributed equidistantly on the lower side included.

5 Examples

5.1 Triangles and squares

The choice of landmarks can have high influence on the re-
sult of the alignment of a set of shapes. This is illustrated
in Figure 2 where the alignment of triangles with different
number of landmarks is compared. The triangles were gen-
erated by creating a reference triangle and then adding i.i.d.
Gaussian noise to each corner. They were then aligned in
the three norms. Then between the bottom two points of
the triangles additional 18 points were added by linear in-
terpolation. The triangles were then realigned. The extra
18 points are added to illustrate and study the influence of
different annotations of the same shapes.

We see that the I; norm alignment is sensitive to the cho-
sen representation, whereas the [, alignment is insensitive.
Th I, alignment regards the top corner point as an outlier
and disregards thereby achieving perfect alignment of the
the lower sides.

(8 unaligned (b) 11 (c) repeated
medians

—

—
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Figure 3: A simulated dataset consisting of four squares. To
one of the squares a large error has been added (shown in
a)). The shapes were then aligned using different alignment
methods to compare how visible the outlier was. As can
be seen, the [; alignment and repeated medians method are
least sensitive to the outlier and show it quite well. The I,
and [, try its best to smooth out the difference.

In some applications of shape alignment it is important
that the real shape variations are not obscured [4]. An out-
lier point in the dataset can have big influence on the align-
ment and the estimation of the mean shape. To illustrate
this, four squares were created in the same way the trian-
gles were. A large deviation was then added to the bottom
left corner of one of the squares to create an outlier shape.
See Figure 3 for the unaligned set and the different align-
ment results.

The I, and repeated medians perform best when trying
to find the real shape variations and both estimate a mean
shape that is quite close to the true mean shape (the refer-
ence shape the squares were created from), see Figure 4.

5.2 Profiles of crania

Figure 1 shows a few profiles of the crania of 2 months old
infants. The landmarks were annotated from radiographs in
order to study the morphology and growth of infants with
cleft lip and palate [7]. All the points have an anatomical
meaning. The whole set contains 48 shapes. The shapes
are fairly regular (no obvious outliers) but some of them
have missing points. Two ways of dealing with the missing
points using the different norms are demonstrated.

The missing points in the dataset have been given the
value (0,0). A much better and educated guesses about the
true value of the missing points can be done but the purpose
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Figure 4: Comparison of the estimated mean shapes (solid)
to the original reference shape (dashed). The repeated me-
dians and I; alignment methods estimate the best mean
shapes. Notice the influence on the commonly used I, align-
ment method.

is to show the influence of having some points with wrong
values when aligning. (0,0) is just as good error as any
other. This is the first way to deal with the missing point.
The other way is to just leave out the rows corresponding
to those missing coordinates in the coefficient matrix of the
alignment function. The results of aligning in the different
norms are shown in Figure 5

6 Conclusion

The alignment of shapes into a common reference frame is
a fundamental task in shape modelling. A natural extension
to the general Procrustes alignment usually employed is to
use other norms than the I, norm. Here the /; norm and the
I, norm have been explored.

One of the main attractions of the formulation of the
alignment problem as set forth here is the capability to work
in the presence of missing observations, no matter which
norm is used.

The different norms also have some nice properties. The
1 norm is robust when dealing with point outliers and er-
rors. Such errors might stem from wrong correspondence
or a severe error in annotation of a landmark. It also shows
resistance against outlier shapes, though in a different man-
ner than the repeated median method. The main property of
the I, norm is how insensitive it is to different annotations
of the same shapes.
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Figure 5: (a-c) alignment of shapes with errors (that is miss-
ing points set to (0,0). (d-f) alignment when the missing
points are left out of the minimization. The influence of
the error is greatest in the [, case and least in the I; case.
Notice how stable the I; alignment is in the presence of er-
rors and the hypersensitivity of the I, alignment to errors.
Obviously the I, norm is not resistant to the errors.

The alignment task has been formulated as a linear func-
tion. This allows the usage of standard, well understood
numerical methods such as linear programming. Lots of
research has been done in the field of linear programming
and the properties of the algorithms used to solve linear
programming tasks, such as convergence, are well under-
stood. The coefficient matrix is very structured and sparse.
That can be exploited when implementing the algorithms to
speed up the alignment process.

7 Discussion

When solving linear programming problems with the Sim-
plex algorithm the algorithm does not only yield the solu-
tion but also a sensitivity analysis. For each constraint the
Simplex algorithm returns its so called marginal value (or
shadow price). It expresses how much the value of the ob-
jective function would change if that constraint was moved.
If the marginal value for a constraint is 0 it expresses that the
constraint is not active (i.e. it does not limit the solution).
This gives rise to an interesting interpretation for the min-
imax alignment. The constraints with non-zero marginal
values tell which points in which shape are dominating the
alignment. This might be used for outlier detection.

The mean shape p estimated simultaneously with the



alignment is the shape that all the shapes in a given shape set
deviate the least from. In the [, case this equals the mean of
the point distribution for each point. This is also the case in
the I, case unless there are some outliers, they do not affect
the estimate of the mean shape p (which is a good thing!).
For the [, alignment the estimated shape g is not necessar-
ily the shape that is the mean of the point distribution for
each point. It is just the shape that minimizes the maximum
deviation from it in each point.

A Linear programming

Linear programming [9] — programming should be un-
derstood here as planning — is an optimization technique
mainly studied in operations research. It is a way of formu-
lating and solving optimization problems where the goal is
to minimize or maximize a function that is a linear combi-
nation of the unknown variables subject to constraints that
also are linear. One way of formulating such problems in
terms of matrices and vectors is

Solve Ax > v, (29)
with v'x minimal. (30)
Note that a constraint on the form C' > D can always be
converted into one on the form E < F oreven G = H by

adding an extra variable. All the following constraints are
equivalent in linear programming

2>y 31)
—z <~y (32)
z+s=y. (33)

In the last case the extra variable s (called slack variable)
has been added. It is what must be added or subtracted from
2 to convert a constraint like the first two to a constraint of
the last type.

A good way to illustrate linear programming is to look
at a problem in two dimensions (see figure 6). Consider a
problem where a and b are two real numbers that need to
be determined such that an objective is minimized. Linear
constraints are placed on a and b. Each constraintin 2D can
be interpreted as a line. On one side of the line are values of
a and b that fulfill the constraint. All the constraints together
then define an area in a, b-space that contains values that
fulfill all the constraints. This area is called the feasible
region. The task is then to find the value in the feasible
region that minimizes the objective. As the objective is a
linear combination o = csa + ¢1b+ ¢ of the variables it too
can be interpreted as a line in a, b-space. By changing the
value of o the line can be moved along its normal vector.
Moving it to the intersection of constraint lines where the
value of o is smallest is the solution.

Objective: 0=ca+gh+¢
Feasible region

Figure 6: A linear programming problem in 2D. The un-
knowns are a and b. The objective function corresponds to
the thick line and the constraints correspond to the thinner
lines. The constraints define the feasible region in a, b-space
that contains values that fulfill all constraints.

In higher dimension there exists good algorithms for
solving linear programming problems. The best know of
them is the Simplex algorithm. Various implementations
of linear programming are available ranging from self con-
tained packages with modelling languages for describing
linear programming problems to add on tools for spread-
sheets. The author has used the GAMS — General algebraic
modelling system [11] package with good success.
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