
Deformable Skinning on Bones

Bent Dalgaard Larsen Kim Steen Petersen
Bjarke Jakobsen

17th December 2001

Abstract

Applying skin to a model is a relatively simple task to implement.
Nonetheless it seems that no good resource exists that describes both
the concepts and math necessary to understand and implement skin-
ning. The intention of this article is an attempt to give a thoroughly
description of the theoretical and mathematical background of skin-
ning.

1 Introduction

A real-time character created using a hierarchy of bones can have geom-
etry attached in several ways. An easy method is to attach cylinders or
other primitives to each of the bones, but this is a very rough and not vi-
sually very pleasing solution. A more sophisticated method is to use a
polygon mesh for skinning. But as the bones a rotated and translated the
skin need to be deformed. The first solution would be to make a pointer
from each vertex to a bone a let it be fixed relative to this bone. This solu-
tion works but problems arise near joints. A better solution is to make each
of the vertices be affect by several bones by a certain percentage. The rest
of this article will describe this particular solution and the math covering
this method.

2 Theory

Initially we have the position of the vertex v(0), the position and rotation
of the i’th bone b

(0)
i and R

(0)
i . Jointly b

(0)
i and R

(0)
i could also be written as a

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13700935?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


name description
bi current position of bone i
Ri current rotation of bone i
Ti current transformation of bone i as matrix
n′i offset normal for v in bone i coordinate system
v′i offset vector for v in bone i coordinate system
v current vertex position

v(0) initial vertex position
b
(0)
i initial position of bone i

R
(0)
i initial rotation of bone i

T
(0)
i initial transformation of bone i as matrix

Table 1: Description of variables

4×4 matrix, but for the purpose of simplicity and since R
(0)
i could be either

a quaternion or a 3×3 matrix we will write them separately. We also know
the weight wi with which the bone affects the vertex v. We denote the total
number of bones n. It is noted that the weights of all bones affecting a
vertices is summed to 1 i.e.

∑n
i wi = 1. Our purpose is now to find v

when the bone position bi and rotation Ri changes for each bone. For that
purpose we use an intermediate vector v′i that we calculate initially. v′i is
the position of v in bone i coordinate system. Disregarding the weights,
the position of v in any bone coordinate system will always be fixed. v′i
can now be found in the following way.

v(0) = b
(0)
i + R

(0)
i v′i ⇒ v′i = R

(0)
i

−1
(v(0) − b

(0)
i ) (1)

Now it is possible to express v as a function of the current bone position
bi and rotation Ri and the calculated offset value v′i.

v = bi + Riv
′
i (2)

But since v is affected by n bones with weights wi the position is calcu-
lated as

v =
n∑
i

wi(bi + Riv
′
i) (3)

In some situations it is desirable to express this as a function of v(0) and
a matrix multiplication. We will now express the position and rotation as
a 4× 4 matrix T

(0)
i . Rewriting (1) we get

2



v(0) = T
(0)
i v′i ⇒ v′i = T

(0)
i

−1
v(0)

Rewriting (3) we get

v =
n∑
i

wiTiv
′
i =

n∑
i

wiTiT
(0)
i

−1
v(0) =

n∑
i

wiMiv
(0) (4)

where
Mi = TiT

(0)
i

−1
(5)

Often it is necessary to calculate the normal in order to get correct light-
ing. Using (1) and (3) the normal will be calculated by just removing the
translation part bi yielding

n(0) = Ri
in
′
i ⇒ n′i = R

(0)
i

−1
n(0) (6)

and

n =
n∑
i

wiRin
′
i (7)

Again rewriting this as a function of the initial normal and a matrix
multiplication yields

n =
n∑
i

wiRiR
(0)
i

−1
n(0) (8)

The rotation RiR
(0)
i

−1
can also be expressed using the inverse transpose

of the same transformation matrix as used in (5). A thorough explanation
of this relation can be found in [2]. Rewriting (8) yields

n =
n∑
i

wiM
−1
i

T
n(0) (9)

3 Implementation issues

It is well known that a rotation can be described both as a quaternion and
using a rotation matrix. Quaternions have several advantages compared
to rotation matrices [3]. When implementing skinning in software it will
therefore be advantageous to implement calculation of vertices and nor-
mals using equation (3) and (7) and using quaternions.

3



b1 

b2 

o1 o2 

 v

Figure 1: Illustration of vectors

As the model that need to be skinned grow in size the amount of math
operations necessary grow rapidly. All calculations need to be calculated
each frame and usually it will not be possible to use any frame-to-frame
coherence. Furthermore the calculations are trivial and it is therefore ev-
ident that these calculations are suited for implementation in hardware.
Modern low-end graphics card supporting Vertex Programs1 are capable
of calculating all matrix transformations directly in the graphics processor
using a simple but limited assembly language. Graphics processors only
support matrix transformations and it is thus necessary to use equation
(4) and (9) when implementing skinning in hardware. Furthermore equa-
tion (9) is advantageous since it uses the same matrix as (4) because the
graphics cards have limited space for storing matrices [5].

4 References

[1] Lander, Jeff : ”Skin Them Bones”, GameDevelopers Magazine,
pp. 11–16, 1998
http://www.darwin3d.com/gamedev/articles/col0598.pdf

[2] Turkowski, Ken : ”Properties of Surface-Normal Transformations”, in
Andrew Glassner (editor), Graphics Gems I, Academic Press, Inc.,
pp. 539–547, 1990.
http://www.worldserver.com/turk/computergraphics/NormalTransformations.pdf

1Vertex Programs are sometimes refered to as Vertex Shaders.

4



[3] Möller, Thomas and Haines, Eric : ”Real-Time Rendering”, pp. 23–52,
1999

[4] Eberly, David H. : ”3D Game Engine Design”, pp. 356–358, 2000

[5] Dominé, Sébastien : ”Mesh Skinning”, 2001, http://www.nvidia.com

5


