
Asynchronous Circuit Design
A Tutorial

Jens Sparsø

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Online Research Database In Technology

https://core.ac.uk/display/13700921?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

Asynchronous circuit design
A Tutorial

Jens Sparsø
Technical University of Denmark

Copyright c© 2006 Jens Sparsø, Technical University of Denmark.

All rights reserved.

The material protected by this copyright notice may be used unmodified and
in its entirety for non-commercial educational purposes only. For such use
permission is granted to distribute printed or electronic copies.

All other use requires the written permission of the author.

Copies may be downloaded from the following url:
http://www.imm.dtu.dk/pubdb/views/publication details.php?id=855

or http://www.imm.dtu.dk/~jsp/ and follow link to download.

ii ASYNCHRONOUS CIRCUIT DESIGN

iii

Foreword

This material in this booklet originally appeared as:
J. Sparsø. Asynchronous circuit design - a tutorial. Chaptes 1-8 in
J. Sparsø and S. Furber (eds.), Principles of asynchronous cir-
cuit design - A systems perspective. Kluwer Academic Publishers,
2001. 337 pages.

The writing of this textbook was initiated as a dissemination effort within the
European Low-Power Initiative for Electronic System Design (ESD-LPD) as
explained in the acknowledgements. As this author was neither involved in
nor funded by any of the projects under the ESD-LPD cluster, and hence not
contractually obliged to contribute to the book, copyright for chapters 1-8 was
transferred to Kluwer Academic Publishers for a limited period. For this reason
it is now possible for me to make the material available in the public domain
(for non-commercial educational use). By doing this it is my hope that many
more can benefit from it.

Apart from a few bug fixes everything (including page numbering) is the
same. I have included the original preface and epilogue sections as they com-
municate the aim and perspective of the text. I have also included the original
acknowledgements as they still apply.

Since its publication in 2001 the material has been used in courses taught
at a number of universities including: The University of Manchester (UK),
Technion (Israel), FORTH (Greece). It has also been used at a summer school
in Grenoble in 2003 and a winter school at Cambridge University in 2005; both
organized by the ACiD-WG network of excellence. At the Technical University
of Denmark the author is teaching a 5 ECTS credit point one semester course
using the material supplemented a couple of articles and by manuals and tutorials
on the Balsa and Petrify synthesis tools. For laboratory exercises and design
projects we have used Petrify, Balsa, and VHDL.

If you use the material for regular class teaching, I would be grateful if you
drop me an email. Any comments, suggestions for improvements or extensions,
bug reports etc. are also welcomed. When citing the material please refer to
the original book mentioned above.

Jens Sparsø
Technical University of Denmark
April 2006

Email: jsp@imm.dtu.dk

iv ASYNCHRONOUS CIRCUIT DESIGN

Contents

Foreword iii
Preface vii
Acknowledgements xi

Part I Asynchronous circuit design – A tutorial
Author: Jens Sparsø

1
Introduction 3

1.1 Why consider asynchronous circuits? 3
1.2 Aims and background 4
1.3 Clocking versus handshaking 5
1.4 Outline of Part I 8

2
Fundamentals 9

2.1 Handshake protocols 9
2.1.1 Bundled-data protocols 9
2.1.2 The 4-phase dual-rail protocol 11
2.1.3 The 2-phase dual-rail protocol 13
2.1.4 Other protocols 13

2.2 The Muller C-element and the indication principle 14
2.3 The Muller pipeline 16
2.4 Circuit implementation styles 17

2.4.1 4-phase bundled-data 18
2.4.2 2-phase bundled data (Micropipelines) 19
2.4.3 4-phase dual-rail 20

2.5 Theory 23
2.5.1 The basics of speed-independence 23
2.5.2 Classification of asynchronous circuits 25
2.5.3 Isochronic forks 26
2.5.4 Relation to circuits 26

2.6 Test 27
2.7 Summary 28

3
Static data-flow structures 29

3.1 Introduction 29
3.2 Pipelines and rings 30

v

vi ASYNCHRONOUS CIRCUIT DESIGN

3.3 Building blocks 31
3.4 A simple example 33
3.5 Simple applications of rings 35

3.5.1 Sequential circuits 35
3.5.2 Iterative computations 35

3.6 FOR, IF, and WHILE constructs 36
3.7 A more complex example: GCD 38
3.8 Pointers to additional examples 39

3.8.1 A low-power filter bank 39
3.8.2 An asynchronous microprocessor 39
3.8.3 A fine-grain pipelined vector multiplier 40

3.9 Summary 40

4
Performance 41

4.1 Introduction 41
4.2 A qualitative view of performance 42

4.2.1 Example 1: A FIFO used as a shift register 42
4.2.2 Example 2: A shift register with parallel load 44

4.3 Quantifying performance 47
4.3.1 Latency, throughput and wavelength 47
4.3.2 Cycle time of a ring 49
4.3.3 Example 3: Performance of a 3-stage ring 51
4.3.4 Final remarks 52

4.4 Dependency graph analysis 52
4.4.1 Example 4: Dependency graph for a pipeline 52
4.4.2 Example 5: Dependency graph for a 3-stage ring 54

4.5 Summary 56

5
Handshake circuit implementations 57

5.1 The latch 57
5.2 Fork, join, and merge 58
5.3 Function blocks – The basics 60

5.3.1 Introduction 60
5.3.2 Transparency to handshaking 61
5.3.3 Review of ripple-carry addition 64

5.4 Bundled-data function blocks 65
5.4.1 Using matched delays 65
5.4.2 Delay selection 66

5.5 Dual-rail function blocks 67
5.5.1 Delay insensitive minterm synthesis (DIMS) 67
5.5.2 Null Convention Logic 69
5.5.3 Transistor-level CMOS implementations 70
5.5.4 Martin’s adder 71

5.6 Hybrid function blocks 73
5.7 MUX and DEMUX 75
5.8 Mutual exclusion, arbitration and metastability 77

5.8.1 Mutual exclusion 77
5.8.2 Arbitration 79
5.8.3 Probability of metastability 79

5.9 Summary 80

Contents vii
6
Speed-independent control circuits 81

6.1 Introduction 81
6.1.1 Asynchronous sequential circuits 81
6.1.2 Hazards 82
6.1.3 Delay models 83
6.1.4 Fundamental mode and input-output mode 83
6.1.5 Synthesis of fundamental mode circuits 84

6.2 Signal transition graphs 86
6.2.1 Petri nets and STGs 86
6.2.2 Some frequently used STG fragments 88

6.3 The basic synthesis procedure 91
6.3.1 Example 1: a C-element 92
6.3.2 Example 2: a circuit with choice 92
6.3.3 Example 2: Hazards in the simple gate implementation 94

6.4 Implementations using state-holding gates 96
6.4.1 Introduction 96
6.4.2 Excitation regions and quiescent regions 97
6.4.3 Example 2: Using state-holding elements 98
6.4.4 The monotonic cover constraint 98
6.4.5 Circuit topologies using state-holding elements 99

6.5 Initialization 101
6.6 Summary of the synthesis process 101
6.7 Petrify: A tool for synthesizing SI circuits from STGs 102
6.8 Design examples using Petrify 104

6.8.1 Example 2 revisited 104
6.8.2 Control circuit for a 4-phase bundled-data latch 106
6.8.3 Control circuit for a 4-phase bundled-data MUX 109

6.9 Summary 113

7
Advanced 4-phase bundled-data

protocols and circuits
115

7.1 Channels and protocols 115
7.1.1 Channel types 115
7.1.2 Data-validity schemes 116
7.1.3 Discussion 116

7.2 Static type checking 118
7.3 More advanced latch control circuits 119
7.4 Summary 121

8
High-level languages and tools 123

8.1 Introduction 123
8.2 Concurrency and message passing in CSP 124
8.3 Tangram: program examples 126

8.3.1 A 2-place shift register 126
8.3.2 A 2-place (ripple) FIFO 126
8.3.3 GCD using while and if statements 127
8.3.4 GCD using guarded commands 128

8.4 Tangram: syntax-directed compilation 128
8.4.1 The 2-place shift register 129
8.4.2 The 2-place FIFO 130
8.4.3 GCD using guarded repetition 131

viii ASYNCHRONOUS CIRCUIT DESIGN

8.5 Martin’s translation process 133
8.6 Using VHDL for asynchronous design 134

8.6.1 Introduction 134
8.6.2 VHDL versus CSP-type languages 135
8.6.3 Channel communication and design flow 136
8.6.4 The abstract channel package 138
8.6.5 The real channel package 142
8.6.6 Partitioning into control and data 144

8.7 Summary 146
Appendix: The VHDL channel packages 148
A.1 The abstract channel package 148
A.2 The real channel package 150

Epilogue 153

References 155

Index 165

Preface

This book was compiled to address a perceived need for an introductory text
on asynchronous design. There are several highly technical books on aspects of
the subject, but no obvious starting point for a designer who wishes to become
acquainted for the first time with asynchronous technology. We hope this book
will serve as that starting point.

The reader is assumed to have some background in digital design. We assume
that concepts such as logic gates, flip-flops and Boolean logic are familiar. Some
of the latter sections also assume familiarity with the higher levels of digital
design such as microprocessor architectures and systems-on-chip, but readers
unfamiliar with these topics should still find the majority of the book accessible.

The intended audience for the book comprises the following groups:

Industrial designers with a background in conventional (clocked) digital
design who wish to gain an understanding of asynchronous design in
order, for example, to establish whether or not it may be advantageous to
use asynchronous techniques in their next design task.

Students in Electronic and/or Computer Engineering who are taking a
course that includes aspects of asynchronous design.

The book is structured in three parts. Part I is a tutorial in asynchronous
design. It addresses the most important issue for the beginner, which is how
to think about asynchronous systems. The first big hurdle to be cleared is
that of mindset – asynchronous design requires a different mental approach
from that normally employed in clocked design. Attempts to take an existing
clocked system, strip out the clock and simply replace it with asynchronous
handshakes are doomed to disappoint. Another hurdle is that of circuit design
methodology – the existing body of literature presents an apparent plethora
of disparate approaches. The aim of the tutorial is to get behind this and to
present a single unified and coherent perspective which emphasizes the common
ground. In this way the tutorial should enable the reader to begin to understand
the characteristics of asynchronous systems in a way that will enable them to

ix

x ASYNCHRONOUS CIRCUIT DESIGN

‘think outside the box’ of conventional clocked design and to create radical new
design solutions that fully exploit the potential of clockless systems.

Once the asynchronous design mindset has been mastered, the second hur-
dle is designer productivity. VLSI designers are used to working in a highly
productive environment supported by powerful automatic tools. Asynchronous
design lags in its tools environment, but things are improving. Part II of the
book gives an introduction to Balsa, a high-level synthesis system for asyn-
chronous circuits. It is written by Doug Edwards (who has managed the Balsa
development at the University of Manchester since its inception) and Andrew
Bardsley (who has written most of the software). Balsa is not the solution to all
asynchronous design problems, but it is capable of synthesizing very complex
systems (for example, the 32-channel DMA controller used on the DRACO
chip described in Chapter 15) and it is a good way to develop an understanding
of asynchronous design ‘in the large’.

Knowing how to think about asynchronous design and having access to
suitable tools leaves one question: what can be built in this way? In Part III we
offer a number of examples of complex asynchronous systems as illustrations of
the answer to this question. In each of these examples the designers have been
asked to provide descriptions that will provide the reader with insights into the
design process. The examples include a commercial smart card chip designed
at Philips and a Viterbi decoder designed at the University of Manchester. Part
III closes with a discussion of the issues that come up in the design of advanced
asynchronous microprocessors, focusing on the Amulet processor series, again
developed at the University of Manchester.

Although the book is a compilation of contributions from different authors,
each of these has been specifically written with the goals of the book in mind –
to provide answers to the sorts of questions that a newcomer to asynchronous
design is likely to ask. In order to keep the book accessible and to avoid it
becoming an intimidating size, much valuable work has had to be omitted. Our
objective in introducing you to asynchronous design is that you might become
acquainted with it. If your relationship develops further, perhaps even into the
full-blown affair that has smitten a few, included among whose number are the
contributors to this book, you will, of course, want to know more. The book
includes an extensive bibliography that will provide food enough for even the
most insatiable of appetites.

JENS SPARSØ AND STEVE FURBER, SEPTEMBER 2001

xi

Acknowledgments
Many people have helped significantly in the creation of this book. In addi-

tion to writing their respective chapters, several of the authors have also read
and commented on drafts of other parts of the book, and the quality of the work
as a whole has been enhanced as a result.

The editors are also grateful to Alan Williams, Russell Hobson and Steve
Temple, for their careful reading of drafts of this book and their constructive
suggestions for improvement.

Part I of the book has been used as a course text and the quality and con-
sistency of the content improved by feedback from the students on the spring
2001 course “49425 Design of Asynchronous Circuits” at DTU.

Any remaining errors or omissions are the responsibility of the editors.

The writing of this book was initiated as a dissemination effort within the
European Low-Power Initiative for Electronic System Design (ESD-LPD), and
this book is part of the book series from this initiative. As will become clear,
the book goes far beyond the dissemination of results from projects within
in the ESD-LPD cluster, and the editors would like to acknowledge the sup-
port of the working group on asynchronous circuit design, ACiD-WG, that has
provided a fruitful forum for interaction and the exchange of ideas. The ACiD-
WG has been funded by the European Commission since 1992 under several
Framework Programmes: FP3 Basic Research (EP7225), FP4 Technologies
for Components and Subsystems (EP21949), and FP5 Microelectronics (IST-
1999-29119).

I

ASYNCHRONOUS CIRCUIT DESIGN
– A TUTORIAL

Author: Jens Sparsø
Technical University of Denmark
jsp@imm.dtu.dk

Abstract Asynchronous circuits have characteristics that differ significantly from those
of synchronous circuits and, as will be clear from some of the later chapters
in this book, it is possible exploit these characteristics to design circuits with
very interesting performance parameters in terms of their power, performance,
electromagnetic emissions (EMI), etc.
Asynchronous design is not yet a well-established and widely-used design meth-
odology. There are textbooks that provide comprehensive coverage of the under-
lying theories, but the field has not yet matured to a point where there is an estab-
lished currriculum and university tradition for teaching courses on asynchronous
circuit design to electrical engineering and computer engineering students.
As this author sees the situation there is a gap between understanding the funda-
mentals and being able to design useful circuits of some complexity. The aim of
Part I of this book is to provide a tutorial on asynchronous circuit design that fills
this gap.
More specifically the aims are: (i) to introduce readers with background in syn-
chronous digital circuit design to the fundamentals of asynchronous circuit design
such that they are able to read and understand the literature, and (ii) to provide
readers with an understanding of the “nature” of asynchronous circuits such that
they are to design non-trivial circuits with interesting performance parameters.
The material is based on experience from the design of several asynchronous
chips, and it has evolved over the last decade from tutorials given at a number of
European conferences and from a number of special topics courses taught at the
Technical University of Denmark and elsewhere. In May 1999 I gave a one-week
intensive course at Delft University of Technology and it was when preparing for
this course I felt that the material was shaping up, and I set out to write the
following text. Most of the material has recently been used and debugged in a
course at the Technical University of Denmark in the spring 2001. Supplemented
by a few journal articles and a small design project, the text may be used for a
one semester course on asynchronous design.

Keywords: asynchronous circuits, tutorial

Chapter 1

INTRODUCTION

1.1. Why consider asynchronous circuits?
Most digital circuits designed and fabricated today are “synchronous”. In

essence, they are based on two fundamental assumptions that greatly simplify
their design: (1) all signals are binary, and (2) all components share a common
and discrete notion of time, as defined by a clock signal distributed throughout
the circuit.

Asynchronous circuits are fundamentally different; they also assume bi-
nary signals, but there is no common and discrete time. Instead the circuits
use handshaking between their components in order to perform the necessary
synchronization, communication, and sequencing of operations. Expressed in
‘synchronous terms’ this results in a behaviour that is similar to systematic
fine-grain clock gating and local clocks that are not in phase and whose period
is determined by actual circuit delays – registers are only clocked where and
when needed.

This difference gives asynchronous circuits inherent properties that can be
(and have been) exploited to advantage in the areas listed and motivated below.
The interested reader may find further introduction to the mechanisms behind
the advantages mentioned below in [106].

Low power consumption, [102, 104, 32, 35, 73, 76]
. . . due to fine-grain clock gating and zero standby power consumption.

High operating speed, [119, 120, 63]
. . . operating speed is determined by actual local latencies rather than
global worst-case latency.

Less emission of electro-magnetic noise, [102, 83]
. . . the local clocks tend to tick at random points in time.

Robustness towards variations in supply voltage, temperature, and fabri-
cation process parameters, [62, 72, 74]
. . . timing is based on matched delays (and can even be insensitive to
circuit and wire delays).

3

4 Part I: Asynchronous circuit design – A tutorial

Better composability and modularity, [67, 57, 108, 97, 94]
. . . because of the simple handshake interfaces and the local timing.

No clock distribution and clock skew problems,
. . . there is no global signal that needs to be distributed with minimal
phase skew across the circuit.

On the other hand there are also some drawbacks. The asynchronous control
logic that implements the handshaking normally represents an overhead in terms
of silicon area, circuit speed, and power consumption. It is therefore pertinent to
ask whether or not the investment pays off, i.e. whether the use of asynchronous
techniques results in a substantial improvement in one or more of the above
areas. Other obstacles are a lack of CAD tools and strategies and a lack of tools
for testing and test vector generation.

Research in asynchronous design goes back to the mid 1950s [68, 67], but
it was not until the late 1990s that projects in academia and industry demon-
strated that it is possible to design asynchronous circuits which exhibit signifi-
cant benefits in nontrivial real-life examples, and that commercialization of the
technology began to take place. Recent examples are presented in [80] and in
Part III of this book.

1.2. Aims and background
There are already several excellent articles and book chapters that introduce

asynchronous design [40, 24, 25, 26, 106, 49, 94] as well as several monographs
and textbooks devoted to asynchronous design including [80, 7, 17, 10, 70] –
why then write yet another introduction to asynchronous design? There are
several reasons:

My experience from designing several asynchronous chips [93, 77], and
from teaching asynchronous design to students and engineers over the
past 10 years, is that it takes more than knowledge of the basic principles
and theories to design efficient asynchronous circuits. In my experience
there is a large gap between the introductory articles and book chapters
mentioned above explaining the design methods and theories on the one
side, and the papers describing actual designs and current research on
the other side. It takes more than knowing the rules of a game to play
and win the game. Bridging this gap involves experience and a good
understanding of the nature of asynchronous circuits. An experience that
I share with many other researchers is that “just going asynchronous”
results in larger, slower and more power consuming circuits. The crux is
to use asynchronous techniques to exploit characteristics in the algorithm
and architecture of the application in question. This further implies that

Chapter 1: Introduction 5

asynchronous techniques may not always be the right solution to the
problem.

Another issue is that asynchronous design is a rather young discipline.
Different researchers have proposed different circuit structures and design
methods. At a first glance they may seem different – an observation that
is supported by different terminologies; but a closer look often reveals
that the underlying principles and the resulting circuits are rather similar.

Finally, most of the above-mentioned introductory articles and book chap-
ters are comprehensive in nature. While being appreciated by those al-
ready working in the field, the multitude of different theories and ap-
proaches in existence represents an obstacle for the newcomer wishing
to get started designing asynchronous circuits.

Compared to the introductory texts mentioned above, the aims of this tutorial
are: (1) to provide an introduction to asynchronous design that is more selective,
(2) to stress basic principles and similarities between the different approaches,
and (3) to take the introduction further towards designing practical and useful
circuits.

1.3. Clocking versus handshaking
Figure 1.1(a) shows a synchronous circuit. For simplicity the figure shows a

pipeline, but it is intended to represent any synchronous circuit. When designing
ASICs using hardware description languages and synthesis tools, designers
focus mostly on the data processing and assume the existence of a global clock.
For example, a designer would express the fact that data clocked into register
R3 is a function CL3 of the data clocked into R2 at the previous clock as the
following assignment of variables: R3 := CL3(R2). Figure 1.1(a) represents
this high-level view with a universal clock.

When it comes to physical design, reality is different. Todays ASICs use a
structure of clock buffers resulting in a large number of (possibly gated) clock
signals as shown in figure 1.1(b). It is well known that it takes CAD tools
and engineering effort to design the clock gating circuitry and to minimize
and control the skew between the many different clock signals. Guaranteeing
the two-sided timing constraints – the setup to hold time window around the
clock edge – in a world that is dominated by wire delays is not an easy task.
The buffer-insertion-and-resynthesis process that is used in current commercial
CAD tools may not converge and, even if it does, it relies on delay models that
are often of questionable accuracy.

Asynchronous design represents an alternative to this. In an asynchronous
circuit the clock signal is replaced by some form of handshaking between neigh-
bouring registers; for example the simple request-acknowledge based hand-

6 Part I: Asynchronous circuit design – A tutorial

CL4

CL4

"Channel" or "Link"

R2 R3 R4R1 CL4CL3

(d)

Ack

R2 R3 R4R1 Data CL3 CL4

Req
CTL CTL CTL CTL

Req

Ack

Data

R2 R3R1 CL3

CLK

(b)

CLK

R2 R3 R4R1 CL3

(a)

(c)

R4

clock gate signal

Figure 1.1. (a) A synchronous circuit, (b) a synchronous circuit with clock drivers and clock
gating, (c) an equivalent asynchronous circuit, and (d) an abstract data-flow view of the asyn-
chronous circuit. (The figure shows a pipeline, but it is intended to represent any circuit topology).

Chapter 1: Introduction 7

shake protocol shown in figure 1.1(c). In the following chapter we look at
alternative handshake protocols and data encodings, but before departing into
these implementation details it is useful to take a more abstract view as illus-
trated in figure 1.1(d):

think of the data and handshake signals connecting one register to the
next in figure 1.1(c) as a “handshake channel” or “link,”

think of the data stored in the registers as tokens tagged with data values
(that may be changed along the way as tokens flow through combinational
circuits), and

think of the combinational circuits as being transparent to the handshaking
between registers; a combinatorial circuit simply absorbs a token on each
of its input links, performs its computation, and then emits a token on each
of its output links (much like a transition in a Petri net, c.f. section 6.2.1).

Viewed this way, an asynchronous circuit is simply a static data-flow structure
[27]. Intuitively, correct operation requires that data tokens flowing in the circuit
do not disappear, that one token does not overtake another, and that new tokens
do not appear out of nowhere. A simple rule that can ensure this is the following:

A register may input and store a new data token from its predecessor if its
successor has input and stored the data token that the register was previ-
ously holding. [The states of the predecessor and successor registers are
signaled by the incoming request and acknowledge signals respectively.]

Following this rule data is copied from one register to the next along the
path through the circuit. In this process subsequent registers will often be
holding copies of the same data value but the old duplicate data values will
later be overwritten by new data values in a carefully ordered manner, and a
handshake cycle on a link will always enclose the transfer of exactly one data-
token. Understanding this “token flow game” is crucial to the design of efficient
circuits, and we will address these issues later, extending the token-flow view to
cover structures other than pipelines. Our aim here is just to give the reader an
intuitive feel for the fundamentally different nature of asynchronous circuits.

An important message is that the “handshake-channel and data-token view”
represents a very useful abstraction that is equivalent to the register transfer level
(RTL) used in the design of synchronous circuits. This data-flow abstraction,
as we will call it, separates the structure and function of the circuit from the
implementation details of its components.

Another important message is that it is the handshaking between the registers
that controls the flow of tokens, whereas the combinational circuit blocks must
be fully transparent to this handshaking. Ensuring this transparency is not
always trivial; it takes more than a traditional combinational circuit, so we will

8 Part I: Asynchronous circuit design – A tutorial

use the term ’function block’ to denote a combinational circuit whose input and
output ports are handshake-channels or links.

Finally, some more down-to-earth engineering comments may also be rele-
vant. The synchronous circuit in figure 1.1(b) is “controlled” by clock pulses
that are in phase with a periodic clock signal, whereas the asynchronous circuit
in figure 1.1(c) is controlled by locally derived clock pulses that can occur at
any time; the local handshaking ensures that clock pulses are generated where
and when needed. This tends to randomize the clock pulses over time, and is
likely to result in less electromagnetic emission and a smoother supply current
without the large di/dt spikes that characterize a synchronous circuit.

1.4. Outline of Part I
Chapter 2 presents a number of fundamental concepts and circuits that are

important for the understanding of the following material. Read through it but
don’t get stuck; you may want to revisit relevant parts later.

Chapters 3 and 4 address asynchronous design at the data-flow level: chap-
ter 3 explains the operation of pipelines and rings, introduces a set of handshake
components and explains how to design (larger) computing structures, and chap-
ter 4 addresses performance analysis and optimization of such structures, both
qualitatively and quantitatively.

Chapter 5 addresses the circuit level implementation of the handshake com-
ponents introduced in chapter 3, and chapter 6 addresses the design of hazard-
free sequential (control) circuits. The latter includes a general introduction to
the topics and in-depth coverage of one specific method: the design of speed-
independent control circuits from signal transition graph specifications. These
techniques are illustrated by control circuits used in the implementation of some
of the handshake components introduced in chapter 3.

All of the above chapters 2–6 aim to explain the basic techniques and methods
in some depth. The last two chapters are briefer. Chapter 7 introduces more
advanced topics related to the implementation of circuits using the 4-phase
bundled-data protocol, and chapter 8 addresses hardware description languages
and synthesis tools for asynchronous design. Chapter 8 is by no means com-
prehensive; it focuses on CSP-like languages and syntax-directed compilation,
but also describes how asynchronous design can be supported by a standard
language, VHDL.

Chapter 2

FUNDAMENTALS

This chapter provides explanations of a number of topics and concepts that
are of fundamental importance for understanding the following chapters and for
appreciating the similarities between the different asynchronous design styles.
The presentation style will be somewhat informal and the aim is to provide the
reader with intuition and insight.

2.1. Handshake protocols
The previous chapter showed one particular handshake protocol known as a

return-to-zero handshake protocol, figure 1.1(c). In the asynchronous commu-
nity it is given a more informative name: the 4-phase bundled-data protocol.

2.1.1 Bundled-data protocols
The term bundled-data refers to a situation where the data signals use nor-

mal Boolean levels to encode information, and where separate request and
acknowledge wires are bundled with the data signals, figure 2.1(a). In the 4-
phase protocol illustrated in figure 2.1(b) the request and acknowledge wires
also use normal Boolean levels to encode information, and the term 4-phase
refers to the number of communication actions: (1) the sender issues data and
sets request high, (2) the receiver absorbs the data and sets acknowledge high,
(3) the sender responds by taking request low (at which point data is no longer
guaranteed to be valid) and (4) the receiver acknowledges this by taking ac-
knowledge low. At this point the sender may initiate the next communication
cycle.

The 4-phase bundled data protocol is familiar to most digital designers, but
it has a disadvantage in the superfluous return-to-zero transitions that cost un-
necessary time and energy. The 2-phase bundled-data protocol shown in fig-
ure 2.1(c) avoids this. The information on the request and acknowledge wires is
now encoded as signal transitions on the wires and there is no difference between
a 0 → 1 and a 1 → 0 transition, they both represent a “signal event”. Ideally
the 2-phase bundled-data protocol should lead to faster circuits than the 4-phase

9

10 Part I: Asynchronous circuit design – A tutorial

(push) channel

(a)

(b) 4-phase protocol (c) 2-phase protocol

Data

Req

Ack

Req

Ack

Data

n

Bundled data

Data

Ack

Req

Figure 2.1. (a) A bundled-data channel. (b) A 4-phase bundled-data protocol. (c) A 2-phase
bundled-data protocol.

bundled-data protocol, but often the implementation of circuits responding to
events is complex and there is no general answer as to which protocol is best.

At this point some discussion of terminology is appropriate. Instead of the
term bundled-data that is used throughout this text, some texts use the term
single-rail. The term ‘bundled-data’ hints at the timing relationship between
the data signals and the handshake signals, whereas the term ‘single-rail’ hints
at the use of one wire to carry one bit of data. Also, the term single-rail may be
considered consistent with the dual-rail data representation discussed in the next
section. Instead of the term 4-phase handshaking (or signaling) some texts use
the terms return-to-zero (RTZ) signaling or level signaling, and instead of the
term 2-phase handshaking (or signaling) some texts use the terms non-return-
to-zero (NRZ) signaling or transition signaling. Consequently a return-to-zero
single-track prococol is the same as a 4-phase bundled-data protocol, etc.

The protocols introduced above all assume that the sender is the active party
that initiates the data transfer over the channel. This is known as a push channel.
The opposite, the receiver asking for new data, is also possible and is called a
pull channel. In this case the directions of the request and acknowledge signals
are reversed, and the validity of data is indicated in the acknowledge signal
going from the sender to the receiver. In abstract circuit diagrams showing
links/channels as one symbol we will often mark the active end of a channel
with a dot, as illustrated in figure 2.1(a).

To complete the picture we mention a number of variations: (1) a channel
without data that can be used for synchronization, and (2) a channel where
data is transmitted in both directions and where req and ack indicate validity
of the data that is exchanged. The latter could be used to interface a read-

Chapter 2: Fundamentals 11

only memory: the address would be bundled with req and the data would be
bundled with ack. These alternatives are explained later in section 7.1.1. In the
following sections we will restrict the discussion to push channels.

All the bundled-data protocols rely on delay matching, such that the order
of signal events at the sender’s end is preserved at the receiver’s end. On a
push channel, data is valid before request is set high, expressed formally as
V alid(Data) ≺ Req. This ordering should also be valid at the receiver’s end,
and it requires some care when physically implementing such circuits. Possible
solutions are:

To control the placement and routing of the wires, possibly by routing all
signals in a channel as a bundle. This is trivial in a tile-based datapath
structure.

To have a safety margin at the sender’s end.

To insert and/or resize buffers after layout (much as is done in today’s
synthesis and layout CAD tools).

An alternative is to use a more sophisticated protocol that is robust to wire
delays. In the following sections we introduce a number of such protocols that
are completely insensitive to delays.

2.1.2 The 4-phase dual-rail protocol
The 4-phase dual-rail protocol encodes the request signal into the data signals

using two wires per bit of information that has to be communicated, figure 2.2.
In essence it is a 4-phase protocol using two request wires per bit of information
d; one wire d .t is used for signaling a logic 1 (or true), and another wire d .f
is used for signaling logic 0 (or false). When observing a 1-bit channel one
will see a sequence of 4-phase handshakes where the participating “request”
signal in any handshake cycle can be either d .t or d .f . This protocol is very

"1""0" "E"

dual-rail
(push) channel

0

0
1
1

d.t d.f

0

1
0
1

Valid "0"
Valid "1"
Not used

Empty ("E")
2n

Ack

Data, Req4-phase

Data {d.t, d.f} Empty Valid Empty Valid

Ack

Figure 2.2. A delay-insensitive channel using the 4-phase dual-rail protocol.

12 Part I: Asynchronous circuit design – A tutorial

robust; two parties can communicate reliably regardless of delays in the wires
connecting the two parties – the protocol is delay-insensitive.

Viewed together the {x .f , x .t} wire pair is a codeword; {x .f , x .t} = {1, 0}
and {x .f , x .t} = {0, 1} represent “valid data” (logic 0 and logic 1 respectively)
and {x .f , x .t} = {0, 0} represents “no data” (or “spacer” or “empty value” or
“NULL”). The codeword {x .f , x .t} = {1, 1} is not used, and a transition from
one valid codeword to another valid codeword is not allowed, as illustrated in
figure 2.2.

This leads to a more abstract view of 4-phase handshaking: (1) the sender
issues a valid codeword, (2) the receiver absorbs the codeword and sets ac-
knowledge high, (3) the sender responds by issuing the empty codeword, and
(4) the receiver acknowledges this by taking acknowledge low. At this point
the sender may initiate the next communication cycle. An even more abstract
view of what is seen on a channel is a data stream of valid codewords separated
by empty codewords.

Let’s now extend this approach to bit-parallel channels. An N -bit data chan-
nel is formed simply by concatenating N wire pairs, each using the encoding
described above. A receiver is always able to detect when all bits are valid (to
which it responds by taking acknowledge high), and when all bits are empty
(to which it responds by taking acknowledge low). This is intuitive, but there is
also some mathematical background – the dual-rail code is a particularly simple
member of the family of delay-insensitive codes [112], and it has some nice
properties:

any concatenation of dual-rail codewords is itself a dual-rail codeword.

for a given N (the number of bits to be communicated), the set of all
possible codewords can be disjointly divided into 3 sets:

– the empty codeword where all N wire pairs are {0,0}.

– the intermediate codewords where some wire-pairs assume the
empty state and some wire pairs assume valid data.

– the 2N different valid codewords.

Figure 2.3 illustrates the handshaking on an N -bit channel: a receiver will
see the empty codeword, a sequence of intermediate codewords (as more and
more bits/wire-pairs become valid) and eventually a valid codeword. After
receiving and acknowledging the codeword, the receiver will see a sequence of
intermediate codewords (as more and more bits become empty), and eventually
the empty codeword to which the receiver responds by driving acknowledge
low again.

Chapter 2: Fundamentals 13

All
valid

All
empty

Acknowledge

Data

Time

1

0

Time

Figure 2.3. Illustration of the handshaking on a 4-phase dual-rail channel.

2.1.3 The 2-phase dual-rail protocol
The 2-phase dual-rail protocol also uses 2 wires {d .t , d .f } per bit, but the

information is encoded as transitions (events) as explained previously. On an
N -bit channel a new codeword is received when exactly one wire in each of
the N wire pairs has made a transition. There is no empty value; a valid mes-
sage is acknowledged and followed by another message that is acknowledged.
Figure 2.4 shows the signal waveforms on a 2-bit channel using the 2-phase
dual-rail protocol.

Ack

(d1.t, d1.f)

(d0.t, d0.f)

d1.t

d1.f

Ack

d0.f

d0.t

00 01 00 11

Figure 2.4. Illustration of the handshaking on a 2-phase dual-rail channel.

2.1.4 Other protocols
The previous sections introduced the four most common channel protocols:

the 4-phase bundled-data push channel, the 2-phase bundled-data push channel,
the 4-phase dual-rail push channel and the 2-phase dual-rail push channel; but
there are many other possibilities. The two wires per bit used in the dual-rail
protocol can be seen as a one-hot encoding of that bit and often it is useful to
extend to 1-of-n encodings in control logic and higher-radix data encodings.

14 Part I: Asynchronous circuit design – A tutorial

If the focus is on communication rather than computation, m-of-n encodings
may be of relevance. The solution space can be expressed as the cross product
of a number of options including:

{2-phase, 4-phase} × {bundled-data, dual-rail, 1-of-n, . . .} × {push, pull}

The choice of protocol affects the circuit implementation characteristics
(area, speed, power, robustness, etc.). Before continuing with these imple-
mentation issues it is necessary to introduce the concept of indication or ac-
knowledgement, as well as a new component, the Muller C-element.

2.2. The Muller C-element and the indication principle
In a synchronous circuit the role of the clock is to define points in time

where signals are stable and valid. In between the clock-ticks, the signals may
exhibit hazards and may make multiple transitions as the combinational circuits
stabilize. This does not matter from a functional point of view. In asynchronous
(control) circuits the situation is different. The absence of a clock means that,
in many circumstances, signals are required to be valid all the time, that every
signal transition has a meaning and, consequently, that hazards and races must
be avoided.

Intuitively a circuit is a collection of gates (normally including some feedback
loops), and when the output of a gate changes it is seen by other gates that in
turn may decide to change their outputs accordingly. As an example figure 2.5
shows one possible implementation of the CTL circuit in figure 1.1(c). The
intention here is not to explain its function, just to give an impression of the
type of circuit we are discussing. It is obvious that hazards on the Ro, Ai, and Lt
signals would be disastrous if the circuit is used in the pipeline of figure 1.1(c).

+

& &

+

Ao

Ri

Ai

Ro

CTL

Lt

Figure 2.5. An example of an asynchronous control circuit. Lt is a “local” clock that is intended
to control a latch.

Chapter 2: Fundamentals 15

0
0
1
1

0

a b y

1

0
1
0
1

a

b

y
+ 1

1

Figure 2.6. A normal OR gate

a

b
y

a
yC

b

Some specifications:

1: if a = b then y := a

2: a = b 7→ y := a

3: y = ab + y(a + b)

4: a b y
0 0 0
0 1 no change
1 0 no change
1 1 1

Figure 2.7. The Muller C-element: symbol, possible implementation, and some alternative
specifications.

The concept of indication or acknowledgement plays an important role in the
design of such circuits. Consider the simple 2-input OR gate in figure 2.6. An
observer seeing the output change from 1 to 0 may conclude that both inputs
are now at 0. However, when seeing the output change from 0 to 1 the observer
is not able to make conclusions about both inputs. The observer only knows
that at least one input is 1, but it does not know which. We say that the OR
gate only indicates or acknowledges when both inputs are 0. Through similar
arguments it can be seen that an AND gate only indicates when both inputs are
1.

Signal transitions that are not indicated or acknowledged in other signal
transitions are the source of hazards and should be avoided. We will address
this issue in greater detail later in section 2.5.1 and in chapter 6.

A circuit that is better in this respect is the Muller C-element shown in
figure 2.7. It is a state-holding element much like an asynchronous set-reset
latch. When both inputs are 0 the output is set to 0, and when both inputs
are 1 the output is set to 1. For other input combinations the output does not
change. Consequently, an observer seeing the output change from 0 to 1 may
conclude that both inputs are now at 1; and similarly, an observer seeing the
output change from 1 to 0 may conclude that both inputs are now 0.

16 Part I: Asynchronous circuit design – A tutorial

Combining this with the observation that all asynchronous circuits rely on
handshaking that involves cyclic transitions between 0 and 1, it should be clear
that the Muller C-element is indeed a fundamental component that is extensively
used in asynchronous circuits.

2.3. The Muller pipeline
Figure 2.8 shows a circuit that is built from C-elements and inverters. The

circuit is known as a Muller pipeline or a Muller distributor. Variations and
extensions of this circuit form the (control) backbone of almost all asynchronous
circuits. It may not always be obvious at a first glance, but if one strips off the
cluttering details, the Muller pipeline is always there as the crux of the matter.
The circuit has a beautiful and symmetric behaviour, and once you understand
its behaviour, you have a very good basis for understanding most asynchronous
circuits.

The Muller pipeline in figure 2.8 is a mechanism that relays handshakes.
After all of the C-elements have been initialized to 0 the left environment may
start handshaking. To understand what happens let’s consider the ith C-element,
C[i]: It will propagate (i.e. input and store) a 1 from its predecessor, C[i− 1],
only if its successor, C[i+1], is 0. In a similar way it will propagate (i.e. input
and store) a 0 from its predecessor if its successor is 1. It is often useful to think
of the signals propagating in an asynchronous circuit as a sequence of waves, as
illustrated at the bottom of figure 2.8. Viewed this way, the role of a C-element
stage in the pipeline is to propagate crests and troughs of waves in a carefully
controlled way that maintains the integrity of each wave.

On any interface between C-element pipeline stages an observer will see cor-
rect handshaking, but the timing may differ from the timing of the handshaking
on the left hand environment; once a wave has been injected into the Muller
pipeline it will propagate with a speed that is determined by actual delays in
the circuit.

Eventually the first handshake (request) injected by the left hand environment
will reach the right hand environment. If the right hand environment does not
respond to the handshake, the pipeline will eventually fill. If this happens the
pipeline will stop handshaking with the left hand environment – the Muller
pipeline behaves like a ripple through FIFO!

In addition to this elegant behaviour, the pipeline has a number of beautiful
symmetries. Firstly, it does not matter if you use 2-phase or 4-phase handshak-
ing. It is the same circuit. The difference is in how you interpret the signals
and use the circuit. Secondly, the circuit operates equally well from right to
left. You may reverse the definition of signal polarities, reverse the role of the
request and acknowledge signals, and operate the circuit from right to left. It
is analogous to electrons and holes in a semiconductor; when current flows in

Chapter 2: Fundamentals 17

Req

Ack

Req

Ack

Req

Ack

ReqReq

Ack AckAck

Req Req

Ack

C CC C

if C[i-1] C[i+1] then C[i] := C[i-1]

C[i+1]C[i-1]

Right

C[i]

Left

Figure 2.8. The Muller pipeline or Muller distributor.

one direction it may be carried by electrons flowing in one direction or by holes
flowing in the opposite direction.

Finally, the circuit has the interesting property that it works correctly regard-
less of delays in gates and wires – the Muller-pipeline is delay-insensitive.

2.4. Circuit implementation styles
As mentioned previously, the choice of handshake protocol affects the circuit

implementation (area, speed, power, robustness, etc.). Most practical circuits
use one of the following protocols introduced in section 2.1:

4-phase bundled-data – which most closely resembles the design of syn-
chronous circuits and which normally leads to the most efficient circuits,
due to the extensive use of timing assumptions.

2-phase bundled-data – introduced under the name Micropipelines by Ivan
Sutherland in his 1988 Turing Award lecture.

4-phase dual-rail – the classic approach rooted in David Muller’s pioneering
work in the 1950s.

Common to all protocols is the fact that the corresponding circuit implemen-
tations all use variations of the Muller pipeline for controlling the storage ele-
ments. Below we explain the basics of pipelines built using simple transparent

18 Part I: Asynchronous circuit design – A tutorial

C C C

CC C

Latch

EN
Comb.

F
Latch

EN

Latch

EN

Req

Ack

Data

Req

Ack

Data

Latch

EN

Latch

EN

Req

Ack

Latch

EN

Req

Ack

Req

Ack

Data

Req

Ack

Data

Req

Ack

Comb.

F

Req

Ack

(a)

(b)

Figure 2.9. A simple 4-phase bundled-data pipeline.

latches as storage elements. More optimized and elaborate circuit implemen-
tations and more complex circuit structures are the topics of later chapters.

2.4.1 4-phase bundled-data
A 4-phase bundled-data pipeline is particularly simple. A Muller pipeline

is used to generate local clock pulses. The clock pulse generated in one stage
overlaps with the pulses generated in the neighbouring stages in a carefully
controlled interlocked manner. Figure 2.9(a) shows a FIFO, i.e. a pipeline
without data processing, and figure 2.9(b) shows how combinational circuits
(also called function blocks) can be added between the latches. To maintain
correct behaviour matching delays have to be inserted in the request signal
paths.

You may view this circuit as a traditional “synchronous” data-path, con-
sisting of latches and combinational circuits that are clocked by a distributed
gated-clock driver, or you may view it as an asynchronous data-flow structure
composed of two types of handshake components: latches and function blocks,
as indicated by the dashed boxes.

The pipeline implementation shown in figure 2.9 is particularly simple but it
has some drawbacks: when it fills the state of the C-elements is (0, 1, 0, 1, etc.),
and as a consequence only every other latch is storing data. This is no worse

Chapter 2: Fundamentals 19

C CC

C P

Latch

C P

Latch

C P

Latch

Req ReqReq

Ack
Ack

Ack

Req

Ack

DataData

Figure 2.10. A simple 2-phase bundled-data pipeline.

than in a synchronous circuit using master-slave flip-flops, but it is possible to
design asynchronous pipelines and FIFOs that are better in this respect. Another
disadvantage is speed. The throughput of a pipeline or FIFO depends on the time
it takes to complete a handshake cycle and for the above implementation this
involves communication with both neighbours. Chapter 7 addresses alternative
implementations that are both faster and have better occupancy when full.

2.4.2 2-phase bundled data (Micropipelines)
A 2-phase bundled-data pipeline also uses a Muller pipeline as the backbone

control circuit, but the control signals are interpreted as events or transitions,
figure 2.10. For this reason special capture-pass latches are needed: events on
the C and P inputs alternate, causing the latch to alternate between capture mode
and pass mode. This calls for a special latch design as shown in figure 2.11 and
explained below. The switch symbol in figure 2.11 is a multiplexer, and the
event controlled latch can be understood as two ordinary level sensitive latches
(operating in an alternating fashion) followed by a multiplexer and a buffer.

Figure 2.10 shows a pipeline without data processing. Combinational circuits
with matching delay elements can be inserted between latches in a similar way
to the 4-phase bundled-data approach in figure 2.9.

The 2-phase bundled-data approach was pioneered by Ivan Sutherland in
the late 1980s and an excellent introduction is given in his 1988 Turing Award
Lecture [97]. The title Micropipelines is often used synonymously with the use
of the 2-phase bundled-data protocol, but it also refers to the use of a particular
set of components that are based on event signalling. In addition to the latch in
figure 2.11 these are: AND, OR, Select, Toggle, Call and Arbiter. The above
figures 2.10 and 2.11 are similar to figures 15 and 12 in [97], but they emphasise
stronger the fact that the control structure is a Muller-pipeline. Some alternative
latch designs that are (significantly) smaller and (significantly) slower are also
presented in [97].

20 Part I: Asynchronous circuit design – A tutorial

pass

pass

C P

In Out

C P

C=0 P=0 C=1 P=0

C=1 P=1 C=0 P=1

capture

t0: t1:

capture

t2: t3:

Latch

Figure 2.11. Implementation and operation of a capture-pass event controlled latch. At time
t0 the latch is transparent (i.e. in pass mode) and signals C and P are both low. An event on the
C input turns the latch into capture mode, etc.

At the conceptual level the 2-phase bundled-data approach is elegant and
efficient; compared to the 4-phase bundled-data approach it avoids the power
and performance loss that is incurred by the return-to-zero part of the hand-
shaking. However, as illustrated by the latch design, the implementation of
components that respond to signal transitions is often more complex than the
implementation of components that respond to normal level signals. In addition
to the storage elements explained above, conditional control logic that responds
to signal transitions tends to be complex as well. This has been experienced by
this author [93], by the University of Manchester [32, 35] and by many others.

Having said this, the 2-phase bundled-data approach may be the preferred
solution in systems with unconditional data-flows and very high speed require-
ments. But as just mentioned, the higher speed comes at a price: larger silicon
area and higher power consumption. In this respect asynchronous design is no
different from synchronous design.

2.4.3 4-phase dual-rail
A 4-phase dual-rail pipeline is also based on the Muller pipeline, but in a

more elaborate way that has to do with the combined encoding of data and
request. Figure 2.12 shows the implementation of a 1-bit wide and three stage
deep pipeline without data processing. It can be understood as two Muller
pipelines connected in parallel, using a common acknowledge signal per stage
to synchronize operation. The pair of C-elements in a pipeline stage can store

Chapter 2: Fundamentals 21

C

C

+

C

C

+

C

C

+

d.f

d.t

Ack

d.f

d.t

Ack

Figure 2.12. A simple 3-stage 1-bit wide 4-phase dual-rail pipeline.

C

C

C

C

+ + +

C

C

C

di[0].f

di[0].t

di[1].f

di[1].t

di[2].f

di[2].t

+ ++

"All empty"

ack_i
ack_o

do[0].f

do[0].t

do[1].f

do[1].t

do[2].f

do[2].t

Alternative completion detector

C

"All valid"

& &

Figure 2.13. An N-bit latch with completion detection.

the empty codeword {d .t , d .f } = {0, 0}, causing the acknowledge signal out
of that stage to be 0, or it can store one of the two valid codewords {0, 1} and
{1, 0}, causing the acknowledge signal out of that stage to be logic 1. At this
point, and referring back to section 2.2, the reader should notice that because the
codeword {1, 1} is illegal and does not occur, the acknowledge signal generated
by the OR gate safely indicates the state of the pipeline stage as being “valid”
or “empty.”

An N -bit wide pipeline can be implemented by using a number of 1-bit
pipelines in parallel. This does not guarantee to a receiver that all bits in a word
arrive at the same time, but often the necessary synchronization is done in the
function blocks. In [94, 95] we describe a design of this style using the DIMS
combinational circuits explained below.

22 Part I: Asynchronous circuit design – A tutorial

b
y

E E 0 0

F F
TF

T F
TT

1
1
0 1

0
0

NO CHANGE

y.f y.t

01

a b

AND

a

+ y.f

C

C

C

C y.t

a.f
00

01

10

11

a.t

b.t

b.f

Figure 2.14. A 4-phase dual-rail AND gate: symbol, truth table, and implementation.

If bit-parallel synchronization is needed, the individual acknowledge signals
can be combined into one global acknowledge using a C-element. Figure 2.13
shows an N-bit wide latch. The OR gates and the C-element in the dashed box
form a completion detector that indicates whether the N-bit dual-rail codeword
stored in the latch is empty or valid. The figure also shows an implementation
of a completion detector using only a 2-input C-element.

Let us now look at how combinational circuits for 4-phase dual-rail circuits
are implemented. As mentioned in chapter 1 combinational circuits must be
transparent to the handshaking between latches. Therefore, all outputs of a
combinational circuit must not become valid until after all inputs have become
valid. Otherwise the receiving latch may prematurely set acknowledge high (be-
fore all signals from the sending latch have become valid). In a similar way all
outputs of a combinational circuit must not become empty until after all inputs
have become empty. Otherwise the receiving latch may prematurely set ac-
knowledge low (before all signals from the sending latch have become empty).
Consequently a combinational circuit for the 4-phase dual-rail approach in-
volves state holding elements and it exhibits a hysteresis-like behaviour in the
empty-to-valid and valid-to-empty transitions.

A particularly simple approach, using only C-elements and OR gates, is
illustrated in figure 2.14, which shows the implementation of a dual-rail AND
gate.The circuit can be understood as a direct mapping from sum-of-minterms
expressions for each of the two output wires into hardware. The circuit waits
for all its inputs to become valid. When this happens exactly one of the four
C-elements goes high. This again causes the relevant output wire to go high
corresponding to the gate producing the desired valid output. When all inputs
become empty the C-elements are all set low, and the output of the dual-rail
AND gate becomes empty again. Note that the C-elements provide both the
necessary ’and’ operator and the hysteresis in the empty-to-valid and valid-to-

Chapter 2: Fundamentals 23

empty transitions that is required for transparent handshaking. Note also that
(again) the OR gate is never exposed to more than one input signal being high.

Other dual-rail gates such as OR and EXOR can be implemented in a similar
fashion, and a dual-rail inverter involves just a swap of the true and false wires.
The transistor count in these basic dual-rail gates is obviously rather high, and in
chapter 5 we explore more efficient circuit implementations. Here our interest
is in the fundamental principles.

Given a set of basic dual-rail gates one can construct dual-rail combinational
circuits for arbitrary Boolean expressions using normal combinational circuit
synthesis techniques. The transparency to handshaking that is a property of
the basic gates is preserved when composing gates into larger combinational
circuits.

The fundamental ideas explained above all go back to David Muller’s work in
the late 1950s and early 1960s [68, 67]. While [68] develops the fundamental
theory for the design of speed-independent circuits, [67] is a more practical
introduction including a design example: a bit-serial multiplier using latches
and gates as explained above.

2.5. Theory
Asynchronous circuits can be classified, as we will see below, as being self-

timed, speed-independent or delay-insensitive depending on the delay assump-
tions that are made. In this section we introduce some important theoretical
concepts that relate to this classification. The goal is to communicate the basic
ideas and provide some intuition on the problems and solutions, and a reader
who wishes to dig deeper into the theory is referred to the literature. Some
recent starting points are [70, 40, 49, 26, 10].

2.5.1 The basics of speed-independence
We will start by reviewing the basics of David Muller’s model of a circuit and

the conditions for it being speed-independent [68]. A circuit is modeled along
with its (dummy) environment as a closed network of gates, closed meaning
that all inputs are connected to outputs and vice versa. Gates are modeled as
Boolean operators with arbitrary non-zero delays, and wires are assumed to be
ideal. In this context the circuit can be described as a set of concurrent Boolean
functions, one for each gate output. The state of the circuit is the set of all gate
outputs. Figure 2.15 illustrates this for a stage of a Muller pipeline with an
inverter and a buffer mimicing the handshaking behaviour of the left and right
hand environments.

A gate whose output is consistent with its inputs is said to be stable; its “next
output” is the same as its “current output”, zi′ = zi. A gate whose inputs have

24 Part I: Asynchronous circuit design – A tutorial

r i a i+1

c ia i r i+1

iy

C

ri′ = not(ci)
ci′ = riyi + (ri + yi)ci

yi′ = not(ai+1)
ai+1′ = ci

Figure 2.15. Muller model of a Muller pipeline stage with “dummy” gates modeling the envi-
ronment behaviour.

changed in such a way that an output change is called for is said to be excited;
its “next output” is different from its “current output”, i.e. zi′ 6= zi. After an
arbitrary delay an excited gate may spontaneously change its output and become
stable. We say that the gate fires, and as excited gates fire and become stable
with new output values, other gates in turn become excited, etc.

To illustrate this, suppose that the circuit in figure 2.15 is in state (ri, yi, ci,
ai+1) = (0, 1, 0, 0). In this state (the inverter) ri is excited corresponding
to the left environment being about to take request high. After the firing of
ri ↑ the circuit reaches state (ri, yi, ci, ai+1) = (1, 1, 0, 0) and ci now becomes
excited. For synthesis and analysis purposes one can construct the complete
state graph representing all possible sequences of gate firings. This is addressed
in detail in chapter 6. Here we will restrict the discussion to an explanation of
the fundamental ideas.

In the general case it is possible that several gates are excited at the same
time (i.e. in a given state). If one of these gates, say zi, fires the interesting
thing is what happens to the other excited gates which may have zi as one
of their inputs: they may remain excited, or they may find themselves with a
different set of input signals that no longer calls for an output change. A circuit
is speed-independent if the latter never happens. The practical implication of an
excited gate becoming stable without firing is a potential hazard. Since delays
are unknown the gate may or may not have changed its output, or it may be
in the middle of doing so when the ‘counter-order’ comes calling for the gate
output to remain unchanged.

Since the model involves a Boolean state variable for each gate (and for each
wire segment in the case of delay-insensitive circuits) the state space becomes
very large even for very simple circuits. In chapter 6 we introduce signal
transition graphs as a more abstract representation from which circuits can be
synthesized.

Now that we have a model for describing and reasoning about the behaviour
of gate-level circuits let’s address the classification of asynchronous circuits.

Chapter 2: Fundamentals 25

d

d

dA

2

3

d1
A

B
dB

C
dC

Figure 2.16. A circuit fragment with gate and wire delays. The output of gate A forks to inputs
of gates B and C.

2.5.2 Classification of asynchronous circuits
At the gate level, asynchronous circuits can be classified as being self-timed,

speed-independent or delay-insensitive depending on the delay assumptions
that are made. Figure 2.16 serves to illustrate the following discussion. The
figure shows three gates: A, B, and C, where the output signal from gate A is
connected to inputs on gates B and C.

A speed-independent (SI) circuit as introduced above is a circuit that operates
“correctly” assuming positive, bounded but unknown delays in gates and ideal
zero-delay wires. Referring to figure 2.16 this means arbitrary dA, dB , and dC ,
but d1 = d2 = d3 = 0. Assuming ideal zero-delay wires is not very realistic
in today’s semiconductor processes. By allowing arbitrary d1 and d2 and by
requiring d2 = d3 the wire delays can be lumped into the gates, and from a
theoretical point of view the circuit is still speed-independent.

A circuit that operates “correctly” with positive, bounded but unknown delays
in wires as well as in gates is delay-insensitive (DI). Referring to figure 2.16
this means arbitrary dA, dB , dC , d1, d2, and d3. Such circuits are obviously
extremely robust. One way to show that a circuit is delay-insensitive is to use
a Muller model of the circuit where wire segments (after forks) are modeled as
buffer components. If this equivalent circuit model is speed-independent, then
the circuit is delay-insensitive.

Unfortunately the class of delay-insensitive circuits is rather small. Only
circuits composed of C-elements and inverters can be delay-insensitive [59],
and the Muller pipeline in figures 2.5, 2.8, and 2.15 is one important example.
Circuits that are delay-insensitive with the exception of some carefully identified
wire forks where d2 = d3 are called quasi-delay-insensitive (QDI). Such wire
forks, where signal transitions occur at the same time at all end-points, are
called isochronic (and discussed in more detail in the next section). Typically
these isochronic forks are found in gate-level implementations of basic building
blocks where the designer can control the wire delays. At the higher levels
of abstraction the composition of building blocks would typically be delay-
insensitive. After these comments it is obvious that a distinction between DI,
QDI and SI makes good sense.

26 Part I: Asynchronous circuit design – A tutorial

Because the class of delay-insensitive circuits is so small, basically excluding
all circuits that compute, most circuits that are referred to in the literature as
delay-insensitive are only quasi-delay-insensitive.

Finally a word about self-timed circuits: speed-independence and delay-
insensitivity as introduced above are (mathematically) well defined properties
under the unbounded gate and wire delay model. Circuits whose correct opera-
tion relies on more elaborate and/or engineering timing assumptions are simply
called self-timed.

2.5.3 Isochronic forks
From the above it is clear that the distinction between speed-independent

circuits and delay-insensitive circuits relates to wire forks and, more specifically,
to whether the delays to all end-points of a forking wire are identical or not. If
the delays are identical, the wire-fork is called isochronic.

The need for isochronic forks is related to the concept of indication introduced
in section 2.2. Consider a situation in figure 2.16 where gate A has changed its
output. Eventually this change is observed on the inputs of gates B and C, and
after some time gates B and C may respond to the new input by producing a
new output. If this happens we say that the output change on gate A is indicated
by output changes on gates B and C. If, on the other hand, only gate B responds
to the new input, it is not possible to establish whether gate C has seen the
input change as well. In this case it is necessary to strengthen the assumptions
to d2 = d3 (i.e. that the fork is isochronic) and conclude that since the input
signal change was indicated by the output of B, gate C has also seen the change.

2.5.4 Relation to circuits
In the 2-phase and 4-phase bundled-data approaches the control circuits are

normally speed-independent (or in some cases even delay-insensitive), but the
data-path circuits with their matched delays are self-timed. Circuits designed
following the 4-phase dual-rail approach are generally quasi-delay-insensitive.
In the circuits shown in figures 2.12 and 2.14 the forks that connect to the inputs
of several C-elements must be isochronic, whereas the forks that connect to the
inputs of several OR gates are delay-insensitive.

The different circuit classes, DI, QDI, SI and self-timed, are not mutually-
exclusive ways to build complete systems, but useful abstractions that can be
used at different levels of design. In most practical designs they are mixed.
For example, in the Amulet processors [34, 33, 37] SI design is used for lo-
cal asynchronous controllers, bundled-data for local data processing, and DI
is used for high-level composition. Another example is the hearing-aid filter
bank design presented in [77]. It uses the DI dual-rail 4-phase protocol inside
RAM-modules and arithmetic circuits to provide robust completion indication,

Chapter 2: Fundamentals 27

and 4-phase bundled-data with SI control at the top levels of design, i.e. some-
what different from the Amulet designs. This emphasizes that the choice of
handshake protocol and circuit implementation style is among the factors to
consider when optimizing an asynchronous digital system.

It is important to stress that speed-independence and delay-insensitivity are
mathematical properties that can be verified for a given implementation. If an
abstract component – such as a C-element or a complex And-Or-Invert gate –
is replaced by its implementation using simple gates and possibly some wire-
forks, then the circuit may no longer be speed-independent or delay-insensitive.
As an illustrative example we mention that the simple Muller pipeline stage in
figures 2.8 and 2.15 is no longer delay-insensitive if the C-element is replaced
by the gate-level implementation shown in figure 2.5 that uses simple AND
and OR gates. Furthermore, even simple gates are abstractions; in CMOS the
primitives are N and P transistors, and even the simplest gates include forks.

In chapter 6 we will explore the design of SI control circuits in great detail
(because theory and synthesis tools are well developed). As SI circuits ignore
wire delays completely some care is needed when physically implementing
these circuits. In general one might think that the zero wire-delay assumption
is trivially satisfied in small circuits involving 10-20 gates, but this need not
be the case: a normal place and route CAD tool might spread the gates of a
small controller all over the chip. Even if the gates are placed next to each other
they may have different logic thresholds on their inputs which in combination
with slowly rising or falling signals can cause (and have caused!) circuits
to malfunction. For static CMOS and for circuits operating with low supply
voltages (e.g. VDD ∼ V tN + |V tP |) this is less of a problem, but for dynamic
circuits using a larger VDD (e.g. 3.3 V or 5.0 V) the logic thresholds can be
very different. This often overlooked problem is addressed in detail in [100].

2.6. Test
When it comes to the commercial exploitation of asynchronous circuits the

problem of test comes to the fore. Test is a major topic in its own right, and
it is beyond the scope of this tutorial to do anything more than mention a few
issues and challenges. Although the following text is brief it assumes some
knowledge of testing. The material does not constitute a foundation for the
following chapters and it may be skipped.

The previous discussion about Muller circuits (excited gates and the firing of
gates), the principle of indication, and the discussion of isochronoic forks ties in
nicely with a discussion of testing for stuck at faults. In the stuck-at fault model
defects are modeled at the gate level as (individual) inputs and outputs being
stuck-at-1 or stuck-at-0. The principle of indication says that all input signal
transitions on a gate must be indicated by an output signal transition on the gate.
Furthermore, asynchronous circuits make extensive use of handshaking and this

28 Part I: Asynchronous circuit design – A tutorial

causes signals to exhibit cyclic transitions between 0 and 1. In this scenario, the
presence of a stuck-at fault is likely to cause the circuit to halt; if one component
stops handshaking the stall tends to “propagate” to neighbouring components,
and eventually the entire circuit halts. Consequently, the development of a set
of test patterns that exhaustively tests for all stuck-at faults is simply a matter
of developing a set of test patterns that toggle all nodes, and this is generally a
comparatively simple task.

Since isochronic forks are forks where a signal transition in one or more
branches is not indicated in the gates that take these signals as inputs, it follows
that isochronic forks imply untestable stuck-at faults.

Testing asynchronous circuits incurs additional problems. As we will see
in the following chapters, asynchronous circuits tend to implement registers
using latches rather than flip-flops. In combination with the absence of a global
clock, this makes it less straightforward to connect registers into scan-paths.
Another consequence of the distributed self-timed control (i.e. the lack of a
global clock) is that it is less straightforward to single-step the circuit through a
sequence of well-defined states. This makes it less straightforward to steer the
circuit into particular quiescent states, which is necessary for IDDQ testing, –
the technique that is used to test for shorts and opens which are faults that are
typical in today’s CMOS processes.

The extensive use of state-holding elements (such as the Muller C-element),
together with the self-timed behaviour, makes it difficult to test the feed-back
circuitry that implements the state holding behaviour. Delay-fault testing rep-
resents yet another challenge.

The above discussion may leave the impression that the problem of testing
asynchronous circuits is largely unsolved. This is not correct. The truth is rather
that the techniques for testing synchronous circuits are not directly applicable.
The situation is quite similar to the design of asynchronous circuits that we will
address in detail in the following chapters. Here a mix of new and well-known
techniques are also needed. A good starting point for reading about the testing
of asynchronous circuits is [90]. Finally, we mention that testing is also touched
upon in chapters 13 and 15.

2.7. Summary
This chapter introduced a number of fundamental concepts. We will now

return to the main track of designing circuits. The reader will probably want
to revisit some of the material in this chapter again while reading the following
chapters.

Chapter 3

STATIC DATA-FLOW STRUCTURES

In this chapter we will develop a high-level view of asynchronous design
that is equivalent to RTL (register transfer level) in synchronous design. At this
level the circuits may be viewed as static data-flow structures. The aim is to
focus on the behaviour of the circuits, and to abstract away the details of the
handshake signaling which can be considered an orthogonal implementation
issue.

3.1. Introduction
The various handshake protocols and the associated circuit implementation

styles presented in the previous chapters are rather different. However, when
looking at the circuits at a more abstract level – the data-flow handshake-channel
level introduced in chapter 1 – these differences diminish, and it makes good
sense to view the choice of handshake protocol and circuit implementation style
as low level implementation decisions that can be made largely independently
from the more abstract design decisions that establish the overall structure and
operation of the circuit.

Throughout this chapter we will assume a 4-phase protocol since this is most
common. From a data-flow point of view this means that the we will be dealing
with data streams composed of alternating valid and empty values – in a two-
phase protocol we would see only a sequence of valid values, but apart from
that everything else would be the same. Furthermore we will be dealing with
simple latches as storage elements. The latches are controlled according to the
simple rule stated in chapter 1:

A latch may input and store a new token (valid or empty) from its pre-
decessor if its successor latch has input and stored the token that it was
previously holding.

Latches are the only components that initiate and take an active part in hand-
shaking; all other components are “transparent” to the handshaking. To ease
the distinction between latches and combinational circuits and to emphasize the
token flow in circuit diagrams, we will use a box symbol with double vertical
lines to represent latches throughout the rest of this tutorial (see figure 3.1).

29

30 Part I: Asynchronous circuit design – A tutorial

L0 L1 L2 L3 L4

E V V E E

Bubble BubbleToken Token Token

Figure 3.1. A possible state of a five stage pipeline.

V

V E V

E E

EVV

E V E
t3:

t2:

t1:

t0: Token Token Bubble

Figure 3.2. Ring: (a) a possible state; and (b) a sequence of data transfers.

3.2. Pipelines and rings
Figure 3.1 shows a snapshot of a pipeline composed of five latches. The “box

arrows” represent channels or links consisting of request, acknowledge and data
signals (as explained on page 5). The valid value in L1 has just been copied into
L2 and the empty value in L3 has just been copied into L4. This means that L1
and L3 are now holding old duplicates of the values now stored in L2 and L4.
Such old duplicates are called “bubbles”, and the newest/rightmost valid and
empty values are called “tokens”. To distinguish tokens from bubbles, tokens
are represented with a circle around the value. In this way a latch may hold a
valid token, an empty token or a bubble. Bubbles can be viewed as catalysts: a
bubble allows a token to move forward, and in supporting this the bubble moves
backwards one step.

Any circuit should have one or more bubbles, otherwise it will be in a dead-
lock state. This is a matter of initializing the circuit properly, and we will
elaborate on this shortly. Furthermore, as we will see later, the number of
bubbles also has a significant impact on performance.

In a pipeline with at least three latches, it is possible to connect the output
of the last stage to the input of the first, forming a ring in which data tokens
can circulate autonomously. Assuming the ring is initialized as shown in fig-
ure 3.2(a) at time t0 with a valid token, an empty token and a bubble, the first
steps of the circulation process are shown in figure 3.2(b), at times t1, t2 and

Chapter 3: Static data-flow structures 31

t3. Rings are the backbone structures of circuits that perform iterative com-
putations. The cycle time of the ring in figure 3.2 is 6 “steps” (the state at t6
will be identical to the state at t0). Both the valid token and the empty token
have to make one round trip. A round trip involves 3 “steps” and as there is
only one bubble to support this the cycle time is 6 “steps”. It is interesting to
note that a 4-stage ring initialized to hold a valid token, an empty token and two
bubbles can iterate in 4 “steps”. It is also interesting to note that the addition
of one more latch does not re-time the circuit or alter its function (as would be
the case in a synchronous circuit); it is still a ring in which a single data token
is circulating.

3.3. Building blocks
Figure 3.3 shows a minimum set of components that is sufficient to implement

asynchronous circuits (static data-flow structures with deterministic behaviour,
i.e. without arbiters). The components can be grouped in four categories as
explained below. In the next section we will see examples of the token-flow
behaviour in structures composed of these components. Components for mutual
exclusion and arbitration are covered in section 5.8.

Latches provide storage for variables and implement the handshaking that
supports the token flow. In addition to the normal latch a number of
degenerate latches are often needed: a latch with only an output channel
is a source that produces tokens (with the same constant value), and a
latch with only an input channel is a sink that consumes tokens. Fig-
ure 2.9 shows the implementation of a 4-phase bundled-data latch, fig-
ure 2.11 shows the implementation of a 2-phase bundled-data latch, and
figures 2.12 – 2.13 show the implementation of a 4-phase dual-rail latch.

Function blocks are the asynchronous equivalent of combinatorial circuits.
They are transparent/passive from a handshaking point of view. A func-
tion block will: (1) wait for tokens on its inputs (an implicit join), (2)
perform the required combinatorial function, and (3) issue tokens on its
outputs. Both empty and valid tokens are handled in this way. Some
implementations assume that the inputs have been synchronized. In this
case it may be necessary to use an explicit join component. The imple-
mentation of function blocks is addressed in detail in chapter 5.

Unconditional flow control: Fork and join components are used to handle
parallel threads of computation. In engineering terms, forks are used
when the output from one component is input to more components, and
joins are used when data from several independent channels needs to
be synchronized – typically because they are (independent) inputs to a
circuit. In the following we will often omit joins and forks from circuit

32 Part I: Asynchronous circuit design – A tutorial

Merge

Latch Source Sink

0

1

MUX DEMUX

0

1

Function block

Join

... behaves like:

Fork

 - Fork
(carried out in sequence)

 - Join;
 - Comb. logic;

(Alternative symbols)

Figure 3.3. A minimum and, for most cases, sufficient set of asynchronous components.

diagrams: the fan-out of a channel implies a fork, and the fan-in of several
channels implies a join.

A merge component has two or more input channels and one output
channel. Handshakes on the input channels are assumed to be mutually
exclusive and the merge relays input tokens/handshakes to the output.

Conditional flow control: MUX and DEMUX components perform the usual
functions of selecting among several inputs or steering the input to one of
several outputs. The control input is a channel just like the data inputs and
outputs. A MUX will synchronize the control channel and the relevant
input channel and send the input data to the data output. The other input
channel is ignored. Similarly a DEMUX will synchronize the control and
data input channels and steer the input to the selected output channel.

As mentioned before the latches implement the handshaking and thereby the
token flow in a circuit. All other components must be transparent to the hand-

Chapter 3: Static data-flow structures 33

shaking. This has significant implications for the implementation of these
components!

3.4. A simple example
Figure 3.4 shows an example of a circuit composed of latches, forks and joins

that we will use to illustrate the token-flow behaviour of an asynchronous circuit.
The structure can be described as pipeline segments and a ring connected into
a larger structure using fork and join components.

Figure 3.4. An example asynchronous circuit composed of latches, forks and joins.

Assume that the circuit is initialized as shown in figure 3.5 at time t0: all
latches are initialized to the empty value except for the bottom two latches in
the ring that are initialized to contain a valid value and an empty value. Values
enclosed in circles are tokens and the rest are bubbles. Assume further that
the left and right hand environments (not shown) take part in the handshakes
that the circuit is prepared to perform. Under these conditions the operation
of the circuit (i.e. the flow of tokens) is as illustrated in the snapshots labeled
t0 − t11. The left hand environment performs one handshake cycle inputting a
valid value followed by an empty value. In a similar way the right environment
takes part in one handshake cycle and consumes a valid value and an empty
value.

Because the flow of tokens is controlled by local handshaking the circuit
could exhibit many other behaviours. For example, at time t5 the circuit is
ready to accept a new valid value from its left environment. Notice also that
if the initial state had no tokens in the ring, then the circuit would deadlock
after a few steps. It is highly recommended that the reader tries to play the
token-bubble data-flow game; perhaps using the same circuit but with different
initial states.

34 Part I: Asynchronous circuit design – A tutorial

V

V

V

V

V

V

V

E

V

E

E

E

E

V

E

E

V

VE

E

V

E

E V

V

VE

E

V

E

V

E

V

E

V

E

EV

E

E

V E

V E

E

V E

V E

E

E

E

E

EE

E

V

E

E

E E

E

E

E

E

E

E

V

V

E

E

V

V

E

E

E

E

E

t0:

t1:

t2:

t3:

E E

V

t5:

t4:

E

E

V

V

V

V

V

E

E

t6:

E E

t7:

E

t8:

E

EE

E

E

V

E

E

E

E

E

E

E

t9:

E

E

E E

E

E

E

E

E

E E

E

E

E

t10:

t10:

V Bubble E

Valid token Empty token

Bubble

Legend:

Figure 3.5. A possible operation sequence of the example circuit from figure 3.4.

Chapter 3: Static data-flow structures 35

3.5. Simple applications of rings
This section presents a few simple and obvious circuits based on a single

ring.

3.5.1 Sequential circuits
Figure 3.6 shows a straightforward implementation of a finite state machine.

Its structure is similar to a synchronous finite state machine; it consists of a
function block and a ring that holds the current state. The machine accepts an
“input token” that is joined with the “current state token”. Then the function
block computes the output and the next state, and finally the fork splits these
into an “output token” and a “next state token.”

state
Current Next

state

F
Input Output

V E E

Figure 3.6. Implementation of an asynchronous finite state machine using a ring.

3.5.2 Iterative computations
A ring can also be used to build circuits that implement iterative computa-

tions. Figure 3.7 shows a template circuit. The idea is that the circuit will:
(1) accept an operand, (2) sequence through the same operation a number of
times until the computation terminates and (3) output the result. The necessary
control is not shown. The figure shows one particular implementation. Possi-

FE E

1

0 0

1

Operand(s) Result

E

Figure 3.7. Implementation of an iterative computation using a ring.

36 Part I: Asynchronous circuit design – A tutorial

ble variations involve locating the latches and the function block differently in
the ring as well as decomposing the function block and putting these (simpler)
function blocks between more latches. In [119] Ted Williams presents a circuit
that performs division using a self-timed 5-stage ring. This design was later
used in a floating point coprocessor in a commercial microprocessor [120].

3.6. FOR, IF, and WHILE constructs
Very often the desired function of a circuit is expressed using a program-

ming language (C, C++, VHDL, Verilog, etc.). In this section we will show
implementation templates for a number of typical conditional structures and
loop structures. A reader who is familiar with control-data-flow graphs, per-
haps from high-level synthesis, will recognize the great similarities between
asynchronous circuits and control-data-flow graphs [27, 96].

if <cond> then <body1> else <body2> An asynchronous circuit template
for implementing an if statement is shown in figure 3.8(a). The data-type of
the input and output channels to the if circuit is a record containing all vari-
ables in the <cond> expression and the variables manipulated by <body1> and
<body2>. The data-type of the output channel from the cond block is a Boolean
that controls the DEMUX and MUX components. The FORK associated with
this channel is not shown.

Since the execution of <body1> and <body2> is mutually exclusive it is
possible to replace the controlled MUX in the bottom of the circuit with a
simpler MERGE as shown in figure 3.8(b). The circuit in figure 3.8 contains
no feedback loops and no latches – it can be considered a large function block.
The circuit can be pipelined for improved performance by inserting latches.

body1 body2

10

10

{variables}

cond

{variables}

body1 body2

10

{variables}

cond

{variables}

merge

(b)(a)

Figure 3.8. A template for implementing if statements.

Chapter 3: Static data-flow structures 37

for <count> do <body> An asynchronous circuit template for implementing
a for statement is shown in figure 3.9. The data-type of the input channel to
the for circuit is a record containing all variables manipulated in the <body>
and the loop count, <count>, that is assumed to be a non-negative integer. The
data-type of the output channel is a record containing all variables manipulated
in the <body>.

0

count

E
body

1 0

{variables}

{variables}

{variables}, count

1 0

Initial tokens

Figure 3.9. A template for implementing for statements.

The data-type of the output channel from the count block is a Boolean,
and one handshake on the input channel of the count block encloses <count>
handshakes on the output channel: <count> - 1 handshakes providing the
Boolean value “1” and one (final) handshake providing the Boolean value “0”.
Notice the two latches on the control input to the MUX. They must be initialized
to contain a data token with the value “0” and an empty token in order to enable
the for circuit to read the variables into the loop.

After executing the for statement once, the last handshake of the count block
will steer the variables in the loop onto the output channel and put a “0” token
and an empty token into the two latches, thereby preparing the for circuit for
a subsequent activation. The FORK in the input and the FORK on the output
of the count block are not shown. Similarly a number of latches are omitted.
Remember: (1) all rings must contain at least 3 latches and (2) for each latch
initialized to hold a data token there must also be a latch initialized to hold an
empty token (when using 4-phase handshaking).

38 Part I: Asynchronous circuit design – A tutorial

while <cond> do <body> An asynchronous circuit template for implement-
ing a while statement is shown in figure 3.10. Inputs to (and outputs from) the
circuit are the variables in the <cond> expression and the variables manipu-
lated by <body>. As before in the for circuit, it is necessary to put two latches
initialized to contain a data token with the value “0” and an empty token on the
control input of the MUX. And as before a number of latches are omitted in the
two rings that constitute the while circuit. When the while circuit terminates
(after zero or more iterations) data is steered out of the loop and this also causes
the latches on the MUX control input to become initialized properly for the
subsequent activation of the circuit.

0

cond

{variables}

body

{variables}

{variables}

1 0

1 0

E

Initial tokens

Figure 3.10. A template for implementing while statements.

3.7. A more complex example: GCD
Using the templates just introduced we will now design a small example

circuit, GCD, that computes the greatest common divisor of two integers. GCD
is often used as an introductory example, and figure 3.11 shows a programming
language specification of the algorithm.

In addition to its role as a design example in the current context, GCD can
also serve to illustrate the similarities and differences between different design
techniques. In chapter 8 we will use the same example to illustrate the Tangram
language and the associated syntax-directed compilation process (section 8.3.3
on pages 127–128).

The implementation of GCD is shown in figure 3.12. It consists of a while
template whose body is an if template. Figure 3.12 shows the circuit includ-
ing all the necessary latches (with their initial states). The implementation
makes no attempt at sharing resources – it is a direct mapping following the
implementation templates presented in the previous section.

Chapter 3: Static data-flow structures 39

input (a,b);
while a 6= b do

if a > b then a ← a− b;
else b ← b− a;

output (a);

Figure 3.11. A programming language specification of GCD.

0

1

0

A>B

1

0

1

0

A-B

B-A

0

1

E

E

E E

A==B

A,B GCD(A,B)

A,B

A,B

1

1

Figure 3.12. An asynchronous circuit implementation of GCD.

3.8. Pointers to additional examples
3.8.1 A low-power filter bank

In [77] we reported on the design of a low-power IFIR filter bank for a digital
hearing aid. It is a circuit that was designed following the approach presented
in this chapter. The paper also provides some insight into the design of low
power circuits as well as the circuit level implementation of memory structures
and datapath units.

3.8.2 An asynchronous microprocessor
In [15] we reported on the design of a MIPS microprocessor, called ARISC.

Although there are many details to be understood in a large-scale design like a
microprocessor, the basic architecture shown in figure 3.13 can be understood
as a simple data-flow structure. The solid-black rectangles represent latches, the
box-arrows represent channels, and the text-boxes represents function blocks
(combinatorial circuits).

The processor is a simple pipelined design with instructions retiring in pro-
gram order. It consists of a fetch-decode-issue ring with a fixed number of

40 Part I: Asynchronous circuit design – A tutorial

REG

Read

PC

Read

PC

ALU

REG

Write
Data

Mem.

Inst.

Mem.

On
Bolt

Is
su

e

D
ec

od
e

F
lu

sh

Arith.

Logic

Shift

CP0

Lock

UnLock

Figure 3.13. Architecture of the ARISC microprocessor.

tokens. This ensures a fixed instruction prefetch depth. The issue stage forks
decoded instructions into the execute pipeline and initiates the fetch of one more
instruction. Register forwarding is avoided by a locking mechanism: when an
instruction is issued for execution the destination register is locked until the
write-back has taken place. If a subsequent instruction has a read-after-write
data hazard this instruction is stalled until the register is unlocked. The tokens
flowing in the design contain all operands and control signals related to the
execution of an instruction, i.e. similar to what is stored in a pipeline stage in a
synchronous processor. For further information the interested reader is referred
to [15]. Other asynchronous microprocessors are based on similar principles.

3.8.3 A fine-grain pipelined vector multiplier
The GCD circuit and the ARISC presented in the preceding sections use bit-

parallel communication channels. An example of a static data-flow structure
that uses 1-bit channels and fine grain pipelining is the serial-parallel vector
multiplier design reported in [94, 95]. Here all necessary word-level synchro-
nization is performed implicitly by the function blocks. The large number of
interacting rings and pipeline segments in the static data-flow representation of
the design makes it rather complex. After reading the next chapter on perfor-
mance analysis the interested reader may want to look at this design; it contains
several interesting optimizations.

3.9. Summary
This chapter developed a high-level view of asynchronous design that is

equivalent to RTL (register transfer level) in synchronous design – static data
flow structures. The next chapter address performance analysis at this level of
abstraction.

Chapter 4

PERFORMANCE

In this chapter we will address the performance analysis and optimization
of asynchronous circuits. The material extends and builds upon the “static
data-flow structures view” introduced in the previous chapter.

4.1. Introduction
In a synchronous circuit, performance analysis and optimization is a matter

of finding the longest latency signal path between two registers; this determines
the period of the clock signal. The global clock partitions the circuit into many
combinatorial circuits that can be analyzed individually. This is known as static
timing analysis and it is a rather simple task, even for a large circuit.

For an asynchronous circuit, performance analysis and optimization is a
global and therefore much more complex problem. The use of handshaking
makes the timing in one component dependent on the timing of its neighbours,
which again depends on the timing of their neighbours, etc. Furthermore, the
performance of a circuit does not depend only on its structure, but also on how it
is initialized and used by its environment. The performance of an asynchronous
circuit can even exhibit transients and oscillations.

We will first develop a qualitative understanding of the dynamics of the
token flow in asynchronous circuits. A good understanding of this is essential
for designing circuits with good performance. We will then introduce some
quantitative performance parameters that characterize individual pipeline stages
and pipelines and rings composed of identical pipeline stages. Using these
parameters one can make first-level design decisions. Finally we will address
how more complex and irregular structures can be analyzed.

The following text represents a major revision of material from [94] and
it is based on original work by Ted Williams [116, 117, 118]. If consulting
these references the reader should be aware of the exact definition of a token.
Throughout this book a token is defined as a valid data value or an empty
data value, whereas in the cited references (that deal exclusively with 4-phase
handshaking) a token is a valid-empty data pair. The definition used here
accentuates the similarity between a token in an asynchronous circuit and the

41

42 Part I: Asynchronous circuit design – A tutorial

token in a Petri net. Furthermore it provides some unification between 4-phase
handshaking and 2-phase handshaking – 2-phase handshaking is the same game,
but without empty-tokens.

In the following we will assume 4-phase handshaking, and the examples we
provide all use bundled-data circuits. It is left as an exercise for the reader
to make the simple adaptations that are necessary for dealing with 2-phase
handshaking.

4.2. A qualitative view of performance
4.2.1 Example 1: A FIFO used as a shift register

The fundamental concepts can be illustrated by a simple example: a FIFO
composed of a number of latches in which there are N valid tokens separated
by N empty tokens, and whose environment alternates between reading a token
from the FIFO and writing a token into the FIFO (see figure 4.1(a)). In this way
the nomber of tokens in the FIFO is invariant. This example is relevant because
many designs use FIFOs in this way, and because it models the behaviour of
shift registers as well as rings – structures in which the number of tokens is also
invariant.

A relevant performance figure is the throughput, which is the rate at which
tokens are input to or output from the shift register. This figure is proportional
to the time it takes to shift the contents of the chain of latches one position to
the right.

Figure 4.1(b) illustrates the behaviour of an implementation in which there
are 2N latches per valid token and figure 4.1(c) illustrates the behaviour of
an implementation in which there are 3N latches per valid token. In both
examples the number of valid tokens in the FIFO is N = 3, and the only
difference between the two situations in figure 4.1(b) and 4.1(c) is the number
of bubbles.

In figure 4.1(b) at time t1 the environment reads the valid token, D1, as
indicated by the solid channel symbol. This introduces a bubble that enables
data transfers to take place one at a time (t2 − t5). At time t6 the environment
inputs a valid token, D4, and at this point all elements have been shifted one
position to the right. Hence, the time used to move all elements one place to the
right is proportional to the number of tokens, in this case 2N = 6 time steps.

Adding more latches increases the number of bubbles, which again increases
the number of data transfers that can take place simultaneously, thereby im-
proving the performance. In figure 4.1(c) the shift register has 3N stages and
therefore one bubble per valid-empty token-pair. The effect of this is that N
data transfers can occur simultaneously and the time used to move all elements
one place to the right is constant; 2 time steps.

Chapter 4: Performance 43

E D1EE D2

(c) N data tokens and N empty tokens in 3N stages:

(b) N data tokens and N empty tokens in 2N stages:

(a) A FIFO and its environment:

bubble bubble bubble

D3

E EE D2

E E D2

E E

E

D1

E

E

E

D2

D2 E

E

E

D2

D2

E

ED4

D3

D3E

D2ED3D4 E

E D1ED2D3E

EE D1ED2D3D4

ED2ED3ED4

D4

D4 D3 D2

bubblebubblebubble

EEE

bubble bubble bubble

D2D3D4 EEEE

E ED2ED3ED4

E

D4

E

D4

E

Environment

ED2ED3E

E

E Et4:

bubble bubble bubble

D1D3 D2

E E

bubble bubble bubble

t3:

t2:

t1:

t0:

E

bubble

bubble

bubble

bubble

bubble

bubble

bubble

t5:

t4:

t3:

t2:

t1:

t0:

t8:

t7:

t6:

D4

E

D3

E

D2

E E

D1

D3

D3

D3

D3

Figure 4.1. A FIFO and its environment. The environment alternates between reading a token
from the FIFO and writing at token into the FIFO.

44 Part I: Asynchronous circuit design – A tutorial

If the number of latches was increased to 4N there would be one token per
bubble, and the time to move all tokens one step to the right would be only 1 time
step. In this situation the pipeline is half full and the latches holding bubbles act
as slave latches (relative to the latches holding tokens). Increasing the number
of bubbles further would not increase the performance further. Finally, it is
interesting to notice that the addition of just one more latch holding a bubble to
figure 4.1(b) would double the performance. The asynchronous designer has
great freedom in trading more latches for performance.

As the number of bubbles in a design depends on the number of latches per
token, the above analysis illustrates that performance optimization of a given
circuit is primarily a task of structural modification – circuit level optimization
like transistor sizing is of secondary importance.

4.2.2 Example 2: A shift register with parallel load
In order to illustrate another point – that the distribution of tokens and bub-

bles in a circuit can vary over time, depending on the dynamics of the circuit
and its environment – we offer another example: a shift register with parallel
load. Figure 4.2 shows an initial design of a 4-bit shift register. The circuit has
a bit-parallel input channel, din[3:0], connecting it to a data producing envi-
ronment. It also has a 1-bit data channel, do, and a 1-bit control channel, ctl,
connecting it to a data consuming environment. Operation is controlled by the
data consuming environment which may request the circuit to: (ctl = 0) per-
form a parallel load and to provide the least significant bit from the bit-parallel
channel on the do channel, or (ctl = 1) to perform a right shift and provide
the next bit on the do channel. In this way the data consuming environment
always inputs a control token (valid or empty) to which the circuit always re-
sponds by outputting a data token (valid or empty). During a parallel load, the
previous content of the shift register is steered into the “dead end” sink-latches.
During a right shift the constant 0 is shifted into the most significant position
– corresponding to a logical right shift. The data consuming environment is
not required to read all the input data bits, and it may continue reading zeros
beyond the most significant input data bit.

The initial design shown in figure 4.2 suffers from two performance lim-
iting inexpediencies: firstly, it has the same problem as the shift register in
figure 4.1(b) – there are too few bubbles, and the peak data rate on the bit-
serial output reduces linearly with the length of the shift register. Secondly,
the control signal is forked to all of the MUXes and DEMUXes in the design.
This implies a high fan-out of the request and data signals (which requires a
couple of buffers) and synchronization of all the individual acknowledge sig-
nals (which requires a C-element with many inputs, possibly implemented as
a tree of C-elements). The first problem can be avoided by adding a 3rd latch

Chapter 4: Performance 45

0 1

0 1

0 1

0 1

0 1

0 1
10

di
n[

1]
di

n[
2]

di
n[

0]

di
n[

1]
di

n[
0]

di
n[

3]
di

n[
2]

di
n[

3:
0]pr
od

uc
in

g
en

vi
ro

nm
en

t

D
at

a

en
vi

ro
nm

en
t

co
ns

um
in

g

D
at

a

ct
l

do
E

d3
E

d2

di
n[

3]

E
d1

0

Figure 4.2. Initial design of the shift register with parallel load.

46 Part I: Asynchronous circuit design – A tutorial

0 0 0

10
0 1

0 1

0 1

0 1

0 1

0 1

ct
l

10
0 1

0 1

0 1

0 1

0 1

0 1

ct
l

10
0 1

0 1

0 1

0 1

0 1

0 1

ct
l

di
n[

0]
di

n[
2]

di
n[

3]

di
n[

3]
di

n[
2]

di
n[

1]
di

n[
0]

do
ut

do
ut

do
ut

di
n[

0]
di

n[
1]

di
n[

2]
di

n[
3]

E
0

E
0

E
0

d2
d1

d3
d0

di
n[

1]

E
E

E

E

d3
d2

0
E

0 E
E

E0
E

d1
d0

d0 0 d1
E

d0

E
1E

E

E

d2 E

d2

E

E

d3

0

E

(c
)

(b
)

(a
)

Figure 4.3. Improved design of the shift register with parallel load.

Chapter 4: Performance 47

to the datapath in each stage of the circuit corresponding to the situation in
figure 4.1(c), but if the extra latches are added to the control path instead, as
shown in figure 4.3(a) on page 46, they will solve both problems.

This improved design exhibits an interesting and illustrative dynamic be-
haviour: initially, the data latches are densely packed with tokens and all the
control latches contain bubbles, figure 4.3(a). The first step of the parallel load
cycle is shown in figure 4.3(b), and figure 4.3(c) shows a possible state after the
data consuming environment has read a couple of bits. The most-significant
stage is just about to perform its “parallel load” and the bubbles are now in the
chain of data latches. If at this point the data consuming environment paused,
the tokens in the control path would gradually disappear while tokens in the
datapath would pack again. Note that at any time the total number of tokens in
the circuit is constant!

4.3. Quantifying performance
4.3.1 Latency, throughput and wavelength

When the overall structure of a design is being decided, it is important to
determine the optimal number of latches or pipeline stages in the rings and
pipeline fragments from which the design is composed. In order to establish a
basis for first order design decisions, this section will introduce some quantita-
tive performance parameters. We will restrict the discussion to 4-phase hand-
shaking and bundled-data circuit implementations and we will consider rings
with only a single valid token. Subsection 4.3.4, which concludes this section
on performance parameters, will comment on adapting to other protocols and
implementation styles.

The performance of a pipeline is usually characterized by two parameters:
latency and throughput (or its inverse called period or cycle time). For an
asynchronous pipeline a third parameter, the dynamic wavelength, is impor-
tant as well. With reference to figure 4.4 and following [116, 117, 118] these
parameters are defined as follows:

Latency: The latency is the delay from the input of a data item until the corre-
sponding output data item is produced. When data flows in the forward
direction, acknowledge signals propagate in the reverse direction. Con-
sequently two parameters are defined:

The forward latency,Lf , is the delay from new data on the input of
a stage (Data[i− 1] or Req[i− 1]) to the production of the corre-
sponding output (Data[i] or Req[i]) provided that the acknowledge
signals are in place when data arrives. Lf.V and Lf.E denote the
latencies for propagating a valid token and an empty token respec-
tively. It is assumed that these latencies are constants, i.e. that they

48 Part I: Asynchronous circuit design – A tutorial

Data[i-1]

Req[i-1]

Ack[i] Ack[i+1]

Data[i]

Ack[i]

Data[i-1]

Ack[i+1]

Data[i]

d

Dual-rail pipeline:

Req[i]

Bundled-data pipeline:

L[i]F[i]

L[i]F[i]

Figure 4.4. Generic pipelines for definition of performance parameters.

are independent of the value of the data. [As forward propagation of
an empty token does not “compute” it may be desirable to minimize
Lf.E . In the 4-phase bundled-data approach this can be achieved
through the use of an asymmetric delay element.]

The reverse latency, Lr, is the delay from receiving an acknowledge
from the succeeding stage (Ack[i+1]) until the corresponding ac-
knowledge is produced to the preceding stage (Ack[i]) provided that
the request is in place when the acknowledge arrives. Lr↓ and Lr↑
denote the latencies of propagating Ack↓ and Ack↑ respectively.

Period: The period, P , is the delay between the input of a valid token (followed
by its succeeding empty token) and the input of the next valid token,
i.e. a complete handshake cycle. For a 4-phase protocol this involves:
(1) forward propagation of a valid data value, (2) reverse propagation
of acknowledge, (3) forward propagation of the empty data value, and
(4) reverse propagation of acknowledge. Therefore a lower bound on the
period is:

P = Lf.V + Lr↑+ Lf.E + Lr↓ (4.1)

Many of the circuits we consider in this book are symmetric, i.e. Lf.V =
Lf.E and Lr↑ = Lr↓, and for these circuits the period is simply:

P = 2Lf + 2Lr (4.2)

We will also consider circuits where Lf.V > Lf.E and, as we will see
in section 4.4.1 and again in section 7.3, the actual implementation of

Chapter 4: Performance 49

the latches may lead to a period that is larger than the minimum possible
given by equation 4.1. In section 4.4.1 we analyze a pipeline whose
period is:

P = 2Lr + 2Lf.V (4.3)

Throughput: The throughput, T , is the number of valid tokens that flow
through a pipeline stage per unit time: T = 1/P

Dynamic wavelength: The dynamic wavelength, Wd, of a pipeline is the num-
ber of pipeline stages that a forward-propagating token passes through
during P :

Wd =
P

Lf
(4.4)

Explained differently: Wd is the distance – measured in pipeline stages
– between successive valid or empty tokens, when they flow unimpeded
down a pipeline. Think of a valid token as the crest of a wave and its
associated empty token as the trough of the wave. If Lf.V 6= Lf.E the
average forward latency Lf = 1

2(Lf.V + Lf.E) should be used in the
above equation.

Static spread: The static spread, S, is the distance – measured in pipeline
stages – between successive valid (or empty) tokens in a pipeline that is
full (i.e. contains no bubbles). Sometimes the term occupancy is used;
this is the inverse of S.

4.3.2 Cycle time of a ring
The parameters defined above are local performance parameters that char-

acterize the implementation of individual pipeline stages. When a number of
pipeline stages are connected to form a ring, the following parameter is relevant:

Cycle time: The cycle time of a ring, TCycle, is the time it takes for a token
(valid or empty) to make one round trip through all of the pipeline stages in
the ring. To achieve maximum performance (i.e. minimum cycle time),
the number of pipeline stages per valid token must match the dynamic
wavelength, in which case TCycle = P . If the number of pipeline stages is
smaller, the cycle time will be limited by the lack of bubbles, and if there
are more pipeline stages the cycle time will be limited by the forward
latency through the pipeline stages. In [116, 117, 118] these two modes
of operation are called bubble limited and data limited, respectively.

50 Part I: Asynchronous circuit design – A tutorial

Wd

cycleT

N < W :d

Tcycle =
2 N

L
N - 2 r

(Bubble limited)

N > W :d

Tcycle = N Lf

(Data limited)

N

P

Figure 4.5. Cycle time of a ring as a function of the number of pipeline stages in it.

The cycle time of an N -stage ring in which there is one valid token,
one empty token and N − 2 bubbles can be computed from one of the
following two equations (illustrated in figure 4.5):

When N ≥ Wd the cycle time is limited by the forward latency
through the N stages:

TCycle(DataLimited) = N × Lf (4.5)

If Lf.V 6= Lf.E use Lf = max{Lf.V ; Lf.E}.
When N ≤ Wd the cycle time is limited by the reverse latency. With
N pipeline stages, one valid token and one empty token, the ring
contains N − 2 bubbles, and as a cycle involves 2N data transfers
(N valid and N empty), the cycle time becomes:

TCycle(BubbleLimited) =
2N

N − 2
Lr (4.6)

If Lr↑ 6= Lr↓ use Lr = 1
2(Lr↑+ Lr↓)

For the sake of completeness it should be mentioned that a third possible
mode of operation called control limited exists for some circuit config-
urations [116, 117, 118]. This is, however, not relevant to the circuit
implementation configurations presented in this book.

The topic of performance analysis and optimization has been addressed in
some more recent papers [22, 65, 66, 28] and in some of these the term “slack
matching” is used (referring to the process of balancing the timing of forward
flowing tokens and backward flowing bubbles).

Chapter 4: Performance 51

4.3.3 Example 3: Performance of a 3-stage ring

Pipeline stage [i]

Req[i-1]

Data[i-1] Data[i]

Req[i]

Ack[i+1]Ack[i]

CL L

ti = 1

Lf

Lr
Ack[i]

Req[i-1] Req[i]

Ack[i+1]

Data[i]Data[i-1] CL L

ti = 1

td = 3 td = 3

tc = 2tc = 2

C C

Figure 4.6. A simple 4-phase bundled-data pipeline stage, and an illustration of its forward
and reverse latency signal paths.

Let us illustrate the above by a small example: a 3-stage ring composed of
identical 4-phase bundled-data pipeline stages that are implemented as illus-
trated in figure 4.6(a). The data path is composed of a latch and a combinatorial
circuit, CL. The control part is composed of a C-element and an inverter that
controls the latch and a delay element that matches the delay in the combinato-
rial circuit. Without the combinatorial circuit and the delay element we have a
simple FIFO stage. For illustrative purposes the components in the control part
are assigned the following latencies: C-element: tc = 2 ns, inverter: ti = 1 ns,
and delay element: td = 3 ns.

Figure 4.6(b) shows the signal paths corresponding to the forward and reverse
latencies, and table 4.1 lists the expressions and the values of these parameters.
From these figures the period and the dynamic wavelength for the two circuit
configurations are calculated. For the FIFO, Wd = 5.0 stages, and for the
pipeline, Wd = 3.2. A ring can only contain an integer number of stages and
if Wd is not integer it is necessary to analyze rings with bWdc and dWde stages

Table 4.1. Performance of different simple ring configurations.

FIFO Pipeline
Parameter Expression Value Expression Value
Lr tc + ti 3 ns tc + ti 3 ns
Lf tc 2 ns tc + td 5 ns
P = 2Lf + 2Lr 4tc + 2ti 10 ns 4tc + 2ti + 2td 16 ns
Wd 5 stages 3.2 stages
TCycle (3 stages) 6 Lr 18 ns 6 Lr 18 ns
TCycle (4 stages) 4 Lr 12 ns 4 Lf 20 ns
TCycle (5 stages) 3.3 Lr = 5 Lf 10 ns 5 Lf 25 ns
TCycle (6 stages) 6 Lf 12 ns 6 Lf 30 ns

52 Part I: Asynchronous circuit design – A tutorial

and determine which yields the smallest cycle time. Table 4.1 shows the results
of the analysis including cycle times for rings with 3 to 6 stages.

4.3.4 Final remarks
The above presentation made a number of simplifying assumptions: (1) only

rings and pipelines composed of identical pipeline stages were considered, (2)
it assumed function blocks with symmetric delays (i.e. circuits where Lf.V =
Lf.E), (3) it assumed function blocks with constant latencies (i.e. ignoring the
important issue of data-dependent latencies and average-case performance), (4)
it considered rings with only a single valid token, and (5) the analysis considered
only 4-phase handshaking and bundled-data circuits.

For 4-phase dual-rail implementations (where request is embedded in the
data encoding) the performance parameter equations defined in the previous
section apply without modification. For designs using a 2-phase protocol, some
straightforward modifications are necessary: there are no empty tokens and
hence there is only one value for the forward latency Lf and one value for the
reverse latency Lr. It is also a simple matter to state expressions for the cycle
time of rings with more tokens.

It is more difficult to deal with data-dependent latencies in the function blocks
and to deal with non-identical pipeline stages. Despite these deficiencies the
performance parameters introduced in the previous sections are very useful as
a basis for first-order design decisions.

4.4. Dependency graph analysis
When the pipeline stages incorporate different function blocks, or function

blocks with asymmetric delays, it is a more complex task to determine the
critical path. It is necessary to construct a graph that represents the dependencies
between signal transitions in the circuit, and to analyze this graph and identify
the critical path cycle [11, 116, 117, 118]. This can be done in a systematic or
even mechanical way but the amount of detail makes it a complex task.

The nodes in such a dependency graph represent rising or falling signal
transitions, and the edges represent dependencies between the signal transitions.
Formally, a dependency is a marked graph [20]. Let us look at a couple of
examples.

4.4.1 Example 4: Dependency graph for a pipeline
As a first example let us consider a (very long) pipeline composed of identical

stages using a function block with asymmetric delays causing Lf.E < Lf.V .
Figure 4.7(a) shows a 3-stage section of this pipeline. Each pipeline stage has

Chapter 4: Performance 53

the following latency parameters:

Lf.V = td(0→1) + tc = 5 ns + 2 ns = 7 ns
Lf.E = td(1→0) + tc = 1 ns + 2 ns = 3 ns

Lr↑ = Lr↓ = ti + tc = 3 ns

There is a close relationship between the circuit diagram and the dependency
graph. As signals alternate between rising transitions (↑) and falling transitions
(↓) – or between valid and empty data values – the graph has two nodes per
circuit element. Similarly the graph has two edges per wire in the circuit.
Figure 4.7(b) shows the two graph fragments that correspond to a pipeline
stage, and figure 4.7(c) shows the dependency graph that corresponds to the 3
pipeline stages in figure 4.7(a).

A label outside a node denotes the circuit delay associated with the signal
transition. We use a particular style for the graphs that we find illustrative: the
nodes corresponding to the forward flow of valid and empty data values are
organized as two horizontal rows, and nodes representing the reverse flowing
acknowledge signals appear as diagonal segments connecting the rows.

The cycle time or period of the pipeline is the time from a signal transition
until the same signal transition occurs again. The cycle time can therefore be
determined by finding the longest simple cycle in the graph, i.e. the cycle with
the largest accumulated circuit delay which does not contain a sub-cycle. The
dotted cycle in figure 4.7(c) is the longest simple cycle. Starting at point A the
corresponding period is:

P = tD(0→1) + tC︸ ︷︷ ︸
Lf.V

+ tI + tC︸ ︷︷ ︸
Lr↓

+ tD(0→1) + tC︸ ︷︷ ︸
Lf.V

+ tI + tC︸ ︷︷ ︸
Lr↑

= 2Lr + 2Lf.V = 20 ns

Note that this is the period given by equation 4.3 on page 49. An alternative
cycle time candidate is the following:

R[i]↑;Req[i]↑︸ ︷︷ ︸
Lf.V

; A[i−1]↓; Req[i−1]↓︸ ︷︷ ︸
Lr↓

;R[i]↓; Req[i]↓︸ ︷︷ ︸
Lf.E

;A[i−1]↑; Req[i−1]↑︸ ︷︷ ︸
Lr↑

;

and the corresponding period is:

P = 2Lr + Lf.V + Lf.E = 16 ns

Note that this is the minimum possible period given by equation 4.1 on page 48.
The period is determined by the longest cycle which is 20 ns. Thus, this
example illustrates that for some (simple) latch implementations it may not
be possible to reduce the cycle time by using function blocks with asymmetric
delays (Lf.E < Lf.V).

54 Part I: Asynchronous circuit design – A tutorial

L

CLL

CLL

CL

ti = 1

Ack[i-1] Ack[i]

Stage[i-1] Stage[i] Stage[i+1]

Data[i-1]

td(0->1) = 5 td(0->1) = 5

Req[i-1]

td(0->1) = 5

Req[i]

ti = 1

Req[i-2]

Data[i-2]

Ack[i+2]

Req[i+1]

Data[i+1]

Ack[i+1]

Data[i]

ti = 1

td(1->0) = 1 td(1->0) = 1 td(1->0) = 1
tc = 2 tc = 2 tc = 2

(a)

CCC

Req[i]

Ack[i]Req[i-1]
tc

ti

Ack[i+1]

R[i]

A[i]

td[i](1->0)

tc

ti

R[i]

A[i]

Ack[i+1]

td[i](0->1)
Req[i]

Ack[i]

0->1 transition of Req[i]: 1->0 transition of Req[i]:

ti = 1 ns ti = 1 ns

ti = 1 ns ti = 1 ns

tc = 2 ns

tc = 2 ns

tc = 2 ns

tc = 2 ns

tc = 2 ns

ti = 1 ns

tc = 2 ns

R[i-1] R[i]

td(0->1) = 5 nstd(0->1) = 5 ns td(0->1) = 5 ns

Ack[i]
R[i+1]

Ack[i+1]
Req[i] Req[i+1]Req[i-1]

A[i-1] A[i] A[i+1]

A[i-1] A[i] A[i+1]

R[i-1] Ack[i-1]
Req[i-1]

td(1->0) = 1 ns td(1->0) = 1 ns

R[i] Ack[i]
Req[i]

td(1->0) = 1 ns

R[i+1]
Req[i+1]
Ack[i+1]

ti = 1 ns

Stage [i]Stage [i-1] Stage [i+1]

Ack[i-1]

A

C

C
Req[i-1]

(b)

(c)

Figure 4.7. Data dependency graph for a 3-stage section of a pipeline: (a) the circuit di-
agram, (b) the two graph fragments corresponding to a pipeline stage, and (c) the resulting
data-dependency graph.

4.4.2 Example 5: Dependency graph for a 3-stage ring
As another example of dependency graph analysis let us consider a three stage

4-phase bundled-data ring composed of different pipeline stages, figure 4.8(a):
stage 1 with a combinatorial circuit that is matched by a symmetric delay el-

Chapter 4: Performance 55

L

CLL

(a)

L

Ack1

Req3

Data3 CL
Data1

Ack2

Req1

Ack3

Data2

Stage 2Stage 1

Ack1

Req3

Data3

Stage 3

tc = 2 ns

ti = 1 ns ti = 1 ns

Req2

td3(0->1) = 6 ns
td3(1->0) = 1 ns tc = 2 ns

ti = 1 ns

td2 = 2 ns

tc = 2 ns

CCC

B

A

B

A

R1

A1

Req1
Ack1

ti = 1 ns

ti = 1 ns ti = 1 ns

R1

A1

Req1
Ack1 R2

A2

Req2
Ack2

ti = 1 ns ti = 1 ns

R3 Req3
Ack3

A3

td1(0->1) = 2 ns tc = 2 ns

R2

A2

Req2
Ack2

tc = 2 ns

tc = 2 ns

tc = 2 nstd1(1->0) = 2 ns

td3(0->1) = 6 ns tc = 2 ns

Req3
Ack3

A3

R3

ti = 1 ns

tc = 2 ns

Stage 1 Stage 2 Stage 3

td3(1->0) = 1 ns

(b)

Figure 4.8. Data dependency graph for an example 3-stage ring: (a) the circuit diagram for the
ring and (b) the resulting data-dependency graph.

ement, stage 2 without combinatorial logic, and stage 3 with a combinatorial
circuit that is matched by an asymmetric delay element.

The dependency graph is similar to the dependency graph for the 3-stage
pipeline from the previous section. The only difference is that the output port
of stage 3 is connected to the input port of stage 1, forming a closed graph.
There are several “longest simple cycle” candidates:

1 A cycle corresponding to the forward flow of valid-tokens:

(R1↑; Req1↑; R2↑; Req2↑; R3↑; Req3↑)

For this cycle, the cycle time is TCycle = 14 ns.

2 A cycle corresponding to the forward flow of empty-tokens:

(R1↓; Req1↓; R2↓; Req2↓; R3↓; Req3 ↓)

For this cycle, the cycle time is TCycle = 9 ns.

56 Part I: Asynchronous circuit design – A tutorial

3 A cycle corresponding to the backward flowing bubble:

(A1↑; Req1↑; A3↓; Req3↓; A2↑; Req2↑; A1↓; Req1↓; A3↑; Req3↑;
A2↓; Req2↓)

For this cycle, the cycle time is TCycle = 6Lr = 18 ns.

The 3-stage ring contains one valid-token, one empty-token and one bub-
ble, and it is interesting to note that the single bubble is involved in six data
transfers, and therefore makes two reverse round trips for each forward
round trip of the valid-token.

4 There is, however, another cycle with a slightly longer cycle time, as
illustrated in figure 4.8(b). It is the cycle corresponding to the backward-
flowing bubble where the sequence:

(A1↓; Req1↓; A3↑) is replaced by (R3↑)

For this cycle the cycle time is TCycle = 6Lr = 20 ns.

A dependency graph analysis of a 4-stage ring is very similar. The only
difference is that there are two bubbles in the ring. In the dependency graph
this corresponds to the existence of two “bubble cycles” that do not interfere
with each other.

The dependency graph approach presented above assumes a closed circuit
that results in a closed dependency graph. If a component such as a pipeline
fragment is to be analyzed it is necessary to include a (dummy) model of its
environment as well – typically in the form of independent and eager token
producers and token consumers, i.e. dummy circuits that simply respond to
handshakes. Figure 2.15 on page 24 illustrated this for a single pipeline stage
control circuit.

Note that a dependency graph as introduced above is similar to a signal
transition graph (STG) which we will introduce more carefully in chapter 6.

4.5. Summary
This chapter addressed the performance analysis of asynchronous circuits at

several levels: firstly, by providing a qualitative understanding of performance
based on the dynamics of tokens flowing in a circuit; secondly, by introduc-
ing quantitative performance parameters that characterize pipelines and rings
composed of identical pipeline stages and, thirdly, by introducing dependency
graphs that enable the analysis of pipelines and rings composed of non-identical
stages.

At this point we have covered the design and performance analysis of asyn-
chronous circuits at the “static data-flow structures” level, and it is time to
address low-level circuit design principles and techniques. This will be the
topic of the next two chapters.

Chapter 5

HANDSHAKE CIRCUIT IMPLEMENTATIONS

In this chapter we will address the implementation of handshake components.
First, we will consider the basic set of components introduced in section 3.3
on page 32: (1) the latch, (2) the unconditional data-flow control elements
join, fork and merge, (3) function blocks, and (4) the conditional flow control
elements MUX and DEMUX. In addition to these basic components we will
also consider the implementation of mutual exclusion elements and arbiters
and touch upon the (unavoidable) problem of metastability. The major part
of the chapter (sections 5.3–5.6) is devoted to the implementation of function
blocks and the material includes a number of fundamental concepts and circuit
implementation styles.

5.1. The latch
As mentioned previously, the role of latches is: (1) to provide storage for valid

and empty tokens, and (2) to support the flow of tokens via handshaking with
neighbouring latches. Possible implementations of the handshake latch were
shown in chapter 2: Figure 2.9 on page 18 shows how a 4-phase bundled-data
handshake latch can be implemented using a conventional latch and a control
circuit (the figure shows several such examples assembled into pipelines). In
a similar way figure 2.11 on page 20 shows the implementation of a 2-phase
bundled-data latch, and figures 2.12-2.13 on page 21 show the implementation
of a 4-phase dual-rail latch.

A handshake latch can be characterized in terms of the throughput, the dy-
namic wavelength and the static spread of a FIFO that is composed of identical
latches. Common to the two 4-phase latch designs mentioned above is that a
FIFO will fill with every other latch holding a valid token and every other latch
holding an empty token (as illustrated in figure 4.1(b) on page 43). Thus, the
static spread for these FIFOs is S = 2.

A 2-phase implementation does not involve empty tokens and consequently
it may be possible to design a latch whose static spread is S = 1. Note,
however, that the implementation of the 2-phase bundled-data handshake latch

57

58 Part I: Asynchronous circuit design – A tutorial

in figure 2.11 on page 20 involves several level-sensitive latches; the utilization
of the level sensitive latches is no better.

Ideally, one would want to pack a valid token into every level-sensitive latch,
and in chapter 7 we will address the design of 4-phase bundled-data handshake
latches that have a smaller static spread.

5.2. Fork, join, and merge
Possible 4-phase bundled-data and 4-phase dual-rail implementations of the

fork, join, and merge components are shown in figure 5.1. For simplicity the
figure shows a fork with two output channels only, and join and merge compo-
nents with two input channels only. Furthermore, all channels are assumed to
be 1-bit channels. It is, of course, possible to generalize to three or more inputs
and outputs respectively, and to extend to n-bit channels. Based on the expla-
nation given below this should be straightforward, and it is left as an exercise
for the reader.

4-phase fork and join A fork involves a C-element to combine the acknowl-
edge signals on the output channels into a single acknowledge signal on the
input channel. Similarly a 4-phase bundled-data join involves a C-element to
combine the request signals on the input channels into a single request signal
on the output channel. The 4-phase dual-rail join does not involve any active
components as the request signal is encoded into the data.

The particular fork in figure 5.1 duplicates the input data, and the join con-
catenates the input data. This happens to be the way joins and forks are mostly
used in our static data-flow structures, but there are many alternatives: for ex-
ample, the fork could split the input data which would make it more symmetric
to the join in figure 5.1. In any case the difference is only in how the input
data is transferred to the output. From a control point of view the different
alternatives are identical: a join synchronizes several input channels and a fork
synchronizes several output channels.

4-phase merge The implementation of the merge is a little more elaborate.
Handshakes on the input channels are mutually exclusive, and the merge simply
relays the active input handshake to the output channel.

Let us consider the implementation of the 4-phase bundled-data merge first.
It consists of an asynchronous control circuit and a multiplexer that is controlled
by the input request. The control circuit is explained below.

The request signals on the input channels are mutually exclusive and may
simply be ORed together to produce the request signal on the output channel.

For each input channel, a C-element produces an acknowledge signal in re-
sponse to an acknowledge on the output channel provided that the input channel
has valid data. For example, the C-element driving the xack signal is set high

Chapter 5: Handshake circuit implementations 59

C

1)

y

1)

y

x.f
z.f

y

Merge

Join

C

C

y−req

y−ack
z−ack

x−req

y

z

z−req

x−ack

x

y.f

M
U

X

x−ack

x−req

z.t

y.t

x−ack

x

x.t

x−ack

y

z−ack
y−ack

z0.f

z−ack

z−req

Fork

y−ack

x
y z1

z0

z0.t
y−ack

x−ack

x.t
x.f

z1.t
z1.f

z

y−ack

y−req

z−req

Component 4−phase bundled−data 4−phase dual−rail

x−ack z−ack

x−req
y−req

z.f

x−ack

y−ack

z−ack

z−ack

z.t x.t
x.f

y.t
y.f

y.t
y.f

C

CC

+

+
+

+

C
z

+

x

x

z

z

x

Figure 5.1. 4-phase bundled-data and 4-phase dual-rail implementations of the fork, join and
merge components.

when xreq and zack have both gone high, and it is reset when both signals have
gone low again. As zack goes low in response to xreq going low, it will suffice to
reset the C-element in response to zack going low. This optimization is possible
if asymmetric C-elements are available, figure 5.2. Similar arguments applies
for the C-element that drives the yack signal. A more detailed introduction to
generalized C-elements and related state-holding devices is given in chapter 6,
sections 6.4.1 and 6.4.5.

+

Cx-ack z-ack

x-req

z-ack
x-ack

reset

x-req

set

Figure 5.2. A possible implementation of the upper asymmetric C-element in the 4-phase
bundled-data merge in figure 5.1.

60 Part I: Asynchronous circuit design – A tutorial

The implementation of the 4-phase dual-rail merge is fairly similar. As
request is encoded into the data signals an OR gate is used for each of the
two output signals z .t and z .f . Acknowledge on an input channel is produced
in response to an acknowledge on the output channel provided that the input
channel has valid data. Since the example assumes 1-bit wide channels, the
latter is established using an OR gate (marked “1”), but for N -bit wide channels
a completion detector (as shown in figure 2.13 on page 21) would be required.

2-phase fork, join and merge Finally a word about 2-phase bundled-data
implementations of the fork, join and merge components: the implementation
of 2-phase bundled-data fork and join components is identical to the implemen-
tation of the corresponding 4-phase bundled-data components (assuming that
all signals are initially low).

The implementation of a 2-phase bundled-data merge, on the other hand,
is complex and rather different, and it provides a good illustration of why the
implementation of some 2-phase bundled-data components is complex. When
observing an individual request or acknowledge signal the transitions will obvi-
ously alternate between rising and falling, but since nothing is known about the
sequence of handshakes on the input channels there is no relationship between
the polarity of a request signal transition on an input channel and the polarity
of the corresponding request signal transition on the output channel. Similarly
there is no relationship between the polarity of an acknowledge signal transition
on the output channel and the polarity of the corresponding acknowledge signal
transition on the input channel channel. This calls for some kind of storage
element on each request and acknowledge signal produced by the circuit. This
brings complexity, as does the associated control logic.

5.3. Function blocks – The basics
This section will introduce the fundamental principles of function block

design, and subsequent sections will illustrate function block implementations
for different handshake protocols. The running example will be an N -bit ripple
carry adder.

5.3.1 Introduction
A function block is the asynchronous equivalent of a combinatorial circuit:

it computes one or more output signals from a set of input signals. The term
“function block” is used to stress the fact that we are dealing with circuits with
a purely functional behaviour.

However, in addition to computing the desired function(s) of the input sig-
nals, a function block must also be transparent to the handshaking that is imple-
mented by its neighbouring latches. This transparency to handshaking is what

Chapter 5: Handshake circuit implementations 61

block
Function

A

B
SUM

ADD

cin
cout

Join
Fork

Figure 5.3. A function block whose operands and results are provided on separate channels
requires a join of the inputs and a fork on the output.

makes function blocks different from combinatorial circuits and, as we will see,
there are greater depths to this than is indicated by the word “transparent” – in
particular for function blocks that implicitly indicate completion (which is the
case for circuits using dual-rail signals).

The most general scenario is where a function block receives its operands
on separate channels and produces its results on separate channels, figure 5.3.
The use of several independent input and output channels implies a join on the
input side and a fork on the output side, as illustrated in the figure. These can
be implemented separately, as explained in the previous section, or they can be
integrated into the function block circuitry. In what follows we will restrict the
discussion to a scenario where all operands are provided on a single channel
and where all results are provided on a single channel.

We will first address the issue of handshake transparency and then review
the fundamentals of ripple carry addition, in order to provide the necessary
background for discussing the different implementation examples that follow.
A good paper on the design of function blocks is [71].

5.3.2 Transparency to handshaking
The general concepts are best illustrated by considering a 4-phase dual-rail

scenario – function blocks for bundled data protocols can be understood as a
special case. Figure 5.4(a) shows two handshake latches connected directly
and figure 5.4(b) shows the same situation with a function block added between
the two latches. The function block must be transparent to the handshaking.
Informally this means that if observing the signals on the ports of the latches,
one should see the same sequence of handshake signal transitions; the only
difference should be some slow-down caused by the latency of the function
block.

A function block is obviously not allowed to produce a request on its output
before receiving a request on its input; put the other way round, a request on the
output of the function block should indicate that all of the inputs are valid and
that all (relevant) internal signals and all output signals have been computed.

62 Part I: Asynchronous circuit design – A tutorial

Ack

Data

Ack

F

Input
data

Output
data

(b)(a)

LA
T

C
H

LA
T

C
H

LA
T

C
H

LA
T

C
H

Figure 5.4. (a) Two latches connected directly by a handshake channel and (b) the same situation
with a function block added between the latches. The handshaking as seen by the latches in the
two situations should be the same, i.e. the function block must be designed such that it is
transparent to the handshaking.

(Here we are touching upon the principle of indication once again.) In 4-phase
protocols a symmetric set of requirements apply for the return-to-zero part of
the handshaking.

Function blocks can be characterized as either strongly indicating or weakly
indicating depending on how they behave with respect to this handshake trans-
parency. The signalling that can be observed on the channel between the two

All
valid

All
empty

All
valid

All
empty

Acknowledge
1

0

Time

Input data

Output data

(1)

(2a)

(2b)

(3) (4a)

(4b)(4b)

(1) “All inputs become defined” ¹ “Some outputs become defined”
(2) “All outputs become defined” ¹ “Some inputs become undefined”
(3) “All inputs become undefined” ¹ “Some outputs become undefined”
(4) “All outputs become undefined” ¹ “Some inputs become defined”

Figure 5.5. Signal traces and event orderings for a strongly indicating function block.

Chapter 5: Handshake circuit implementations 63

All
valid

All
empty

All
valid

All
empty

Acknowledge
1

0

Time

Input data

Output data

(6b)

(3b)

(6a)

(6b)

(2)

(1) (3a)

(4)
(5)

(1) “Some inputs become defined” ¹ “Some outputs become defined”
(2) “All inputs become defined” ¹ “All outputs become defined”
(3) “All outputs become defined” ¹ “Some inputs become undefined”
(4) “Some inputs become undefined” ¹ “Some outputs become undefined”
(5) “All inputs become undefined” ¹ “All outputs become undefined”
(6) “All outputs become undefined” ¹ “Some inputs become defined”

Figure 5.6. Signal traces and event orderings for a weakly indicating function block.

latches in figure 5.4(a) was illustrated in figure 2.3 on page 13. We can illustrate
the handshaking for the situation in figure 5.4(b) in a similar way.

A function block is strongly indicating, as illustrated in figure 5.5, if (1)
it waits for all of its inputs to become valid before it starts to compute and
produce valid outputs, and if (2) it waits for all of its inputs to become
empty before it starts to produce empty outputs.

A function block is weakly indicating, as illustrated in figure 5.6, if (1)
it starts to compute and produce valid outputs as soon as possible, i.e.
when some but not all input signals have become valid, and if (2) it starts
to produce empty outputs as soon as possible, i.e. when some but not all
input signals have become empty.

For a weakly indication function block to behave correctly, it is necessary to
require that it never produces all valid outputs until after all inputs have become
valid, and that it never produces all empty outputs until after all inputs have be-
come empty. This behaviour is identical to Seitz’s weak conditions in [91]. In
[91] Seitz further explains that it can be proved that if the individual components
satisfy the weak conditions then any “valid combinatorial circuit structure” of

64 Part I: Asynchronous circuit design – A tutorial

function blocks also satisfies the weak conditions, i.e. that function blocks may
be combined to form larger function blocks. By “valid combinatorial circuit
structure” we mean a structure where no components have inputs or outputs
left unconnected and where there are no feed-back signal paths. Strongly indi-
cating function blocks have the same property – a “valid combinatorial circuit
structure” of strongly indicating function blocks is itself a strongly indicating
function block.

Notice that both weakly and strongly indicating function blocks exhibit a
hysteresis-like behaviour in the valid-to-empty and empty-to-valid transitions:
(1) some/all outputs must remain valid until after some/all inputs have become
empty, and (2) some/all outputs must remain empty until after some/all inputs
have become valid. It is this hysteresis that ensures handshake transparency,
and the implementation consequence is that one or more state holding circuits
(normally in the form of C-elements) are needed.

Finally, a word about the 4-phase bundled-data protocol. Since Req↑ is
equivalent to “all data signals are valid” and since Req↓ is equivalent to “all data
signals are empty,” a 4-phase bundled-data function block can be categorized
as strongly indicating.

As we will see in the following, strongly indicating function blocks have
worst-case latency. To obtain actual case latency weakly indicating function
blocks must be used. Before addressing possible function block implementation
styles for the different handshake protocols it is useful to review the basics of
binary ripple-carry addition, the running example in the following sections.

5.3.3 Review of ripple-carry addition
Figure 5.7 illustrates the implementation principle of a ripple-carry adder.
A 1-bit full adder stage implements:

s = a⊕ b⊕ c (5.1)
d = ab + ac + bc (5.2)

ai bi a1 b1an bn

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����di d1cicn

sn si s1

cout cin

Figure 5.7. A ripple-carry adder. The carry output of one stage di is connected to the carry
input of the next stage ci+1.

Chapter 5: Handshake circuit implementations 65

In many implementations inputs a and b are recoded as:

p = a⊕ b (“propagate” carry) (5.3)
g = ab (“generate” carry) (5.4)
k = ab (“kill” carry) (5.5)

. . . and the output signals are computed as follows:

s = p⊕ c (5.6)
d = g + pc or alternatively (5.7a)
d = k + pc (5.7b)

For a ripple-carry adder, the worst case critical path is a carry rippling across
the entire adder. If the latency of a 1-bit full adder is tadd the worst case latency of
an N -bit adder is N ·tadd. This is a very rare situation and in general the longest
carry ripple during a computation is much shorter. Assuming random and
uncorrelated operands the average latency is log(N) · tadd and, if numerically
small operands occur more frequently, the average latency is even less. Using
normal Boolean signals (as in the bundled-data protocols) there is no way to
know when the computation has finished and the resulting performance is thus
worst-case.

By using dual-rail carry signals (d .t , d .f) it is possible to design circuits
that indicate completion as part of the computation and thus achieve actual case
latency. The crux is that a dual-rail carry signal, d, conveys one of the following
3 messages:

(d .t , d .f) = (0,0) = Empty “The carry has not been computed yet”
(possibly because it depends on c)

(d .t , d .f) = (1,0) = True “The carry is 1”
(d .t , d .f) = (0,1) = False “The carry is 0”

Consequently it is possible for a 1-bit adder to output a valid carry without
waiting for the incoming carry if its inputs make this possible (a = b = 0 or
a = b = 1). This idea was first put forward in 1955 in a paper by Gilchrist
[38]. The same idea is explained in [46, pp. 75-78] and in [91].

5.4. Bundled-data function blocks
5.4.1 Using matched delays

A bundled-data implementation of the adder in figure 5.7 is shown in fig-
ure 5.8. It is composed of a traditional combinatorial circuit adder and a match-
ing delay element. The delay element provides a constant delay that matches
the worst case latency of the combinatorial adder. This includes the worst case

66 Part I: Asynchronous circuit design – A tutorial

comb.
circuit

s[n:1]

d

a[n:1]

b[n:1]
c

matched
delay

Req-in Req-out

Ack-in Ack-out

Figure 5.8. A 4-phase bundled data implementation of the N−bit handshake adder from fig-
ure 5.7.

critical path in the circuit – a carry rippling across the entire adder – as well as
the worst case operating conditions. For reliable operation some safety margin
is needed.

In addition to the combinatorial circuit itself, the delay element represents a
design challenge for the following reasons: to a first order the delay element
will track delay variations that are due to the fabrication process spread as well
as variations in temperature and supply voltage. On the other hand, wire delays
can be significant and they are often beyond the designer’s control. Some
design policy for matched delays is obviously needed. In a full custom design
environment one may use a dummy circuit with identical layout but with weaker
transistors. In a standard cell automatic place and route environment one will
have to accept a fairly large safety margin or do post-layout timing analysis
and trimming of the delays. The latter sounds tedious but it is similar to the
procedure used in synchronous design where setup and hold times are checked
and delays trimmed after layout.

In a 4-phase bundled-data design an asymmetric delay element may be prefer-
able from a performance point of view, in order to perform the return-to-zero
part of the handshaking as quickly as possible. Another issue is the power
consumption of the delay element. In the ARISC processor design reported in
[15] the delay elements consumed 10 % of the total power.

5.4.2 Delay selection
In [79] Nowick proposed a scheme called “speculative completion”. The

basic principle is illustrated in figure 5.9. In addition to the desired function
some additional circuitry is added that selects among several matched delays.
The estimate must be conservative, i.e. on the safe side. The estimation can
be based on the input signals and/or on some internal signals in the circuit that
implements the desired function.

For an N-bit ripple-carry adder the propagate signals (c.f. equation 5.3)
that form the individual 1-bit full adders (c.f. figure 5.7) may be used for the
estimation. As an example of the idea consider a 16-bit adder. If p8 = 0 the

Chapter 5: Handshake circuit implementations 67

large

small

medium

Estimate

Funct.

Req_in Req_out

Inputs Outputs
M

U
X

Figure 5.9. The basic idea of “speculative completion”.

longest carry ripple can be no longer than 8 stages, and if p12 ∧ p8 ∧ p4 = 0
the longest carry ripple can be no longer than 4 stages. Based on such simple
estimates a sufficiently large matched delay is selected. Again, if a 4-phase
protocol is used, asymmetric delay elements are preferable from a performance
point of view.

To the designer the trade-off is between an aggressive estimate with a large
circuit overhead (area and power) or a less aggressive estimate with less over-
head. For more details on the implementation and the attainable performance
gains the reader is is referred to [79, 81].

5.5. Dual-rail function blocks
5.5.1 Delay insensitive minterm synthesis (DIMS)

In chapter 2 (page 22 and figure 2.14) we explained the implementation of
an AND gate for dual-rail signals. Using the same basic topology it is possible
to implement other simple gates such as OR, EXOR, etc. An inverter involves
no active circuitry as it is just a swap of the two wires.

Arbitrary functions can be implemented by combining gates in exactly the
same way as when one designs combinatorial circuits for a synchronous cir-
cuit. The handshaking is implicitly taken care of and can be ignored when
composing gates and implementing Boolean functions. This has the important
implication that existing logic synthesis techniques and tools may be used, the
only difference is that the basic gates are implemented differently.

The dual-rail AND gate in figure 2.14 is obviously rather inefficient: 4
C-elements and 1 OR gate totaling approximately 30 transistors – a factor
five greater than a normal AND gate whose implementation requires only 6
transistors. By implementing larger functions the overhead can be reduced. To
illustrate this figure 5.10(b)-(c) shows the implementation of a 1-bit full adder.
We will discuss the circuit in figure 5.10(d) shortly.

68 Part I: Asynchronous circuit design – A tutorial

b.f b.t

c.f c.t

s.f s.t

d.f d.t

Generate

Kill

E E E 0 0 0 0

cba

F F F
TFF

F T F
TTF

T F F
TFT

T T F
TTT

010
1
1
0
1
0
0
1 0

1
1
0
1

0
0

0
0

0

1
1

1

1

1

1
0
1

0
0

0

NO CHANGE

Kill

Generate

s.t s.f d.t d.f

(b)

(d)(c)

(a)

C

C

C

C

C

C

C

C

b.f

c.f

b.t

c.t

a.f
a.t +

+

+

+

s.t

s.f

d.t

d.f

ADD

a.f a.t

C

C

C

C

C

C

C

C

b.f

c.f

b.t

c.t

a.f
a.t

C

C

+

+

+

+

s.t

s.f

d.t

d.f

1

Figure 5.10. A 4-phase dual-rail full-adder: (a) Symbol, (b) truth table, (c) DIMS implemen-
tation and (d) an optimization that makes the full adder weakly indicating.

The PLA-like structure of the circuit in figure 5.10(c) illustrates a general
principle for implementing arbitrary Boolean functions. In [94] we called this
approach DIMS – Delay-Insensitive Minterm Synthesis – because the circuits
are delay-insensitive and because the C-elements in the circuits generate all
minterms of the input variables. The truth tables have 3 groups of rows speci-
fying the output when the input is: (1) the empty codeword to which the circuit
responds by setting the output empty, (2) an intermediate codeword which does
not affect the output, or (3) a valid codeword to which the circuit responds by
setting the output to the proper valid value.

The fundamental ideas explained above all go back to David Muller’s work
in the late 1950s and early 1960s [68, 67]. While [68] develops the fundamental
theorem for the design of speed-independent circuits, [67] is a more practical
introduction including a design example: a bit-serial multiplier using latches
and gates as explained above.

Referring to section 5.3.2, the DIMS circuits as explained here can be cat-
egorized as strongly indicating, and hence they exhibit worst case latency. In

Chapter 5: Handshake circuit implementations 69

an N -bit ripple-carry adder the empty-to-valid and valid-to-empty transitions
will ripple in strict sequence from the least significant full adder to the most
significant one.

If we change the full-adder design slightly as illustrated in figure 5.10(d) a
valid d may be produced before the c input is valid (“kill” or “generate”), and
an N -bit ripple-carry adder built from such full adders will exhibit actual-case
latency – the circuits are weakly indicating function blocks.

The designs in figure 5.10(c) and 5.10(d), and ripple-carry adders built from
these full adders, are all symmetric in the sense that the latency of propagating
an empty value is the same as the latency of propagating the preceding valid
value. This may be undesirable. Later in section 5.5.4 we will introduce an
elegant design that propagates empty values in constant time (with the latency
of 2 full adder cells).

5.5.2 Null Convention Logic
The C-elements and OR gates from the previous sections can be seen as n-

of-n and 1-of-n threshold gates with hysteresis, figure 5.11. By using arbitrary
m-of-n threshold gates with hysteresis – an idea proposed by Theseus Logic,
Inc., [29] – it is possible to reduce the implementation complexity. An m-of-
n threshold gate with hysteresis will set its output high when any m inputs
have gone high and it will set its output low when all its inputs are low. This
elegant circuit implementation idea is the key element in Theseus Logic’s Null
Convention Logic. At the higher levels of design NCL is no different from
the data-flow view presented in chapter 3 and NCL has great similarities to the
circuit design styles presented in [67, 92, 94, 71]. Figure 5.11 shows that OR

1 1

2 2

3

5

1 1 1

2 2

33

4 4

C-elements

Inverter

OR-gates

Figure 5.11. NCL gates: m−of−n threshold gates with hysteresis (1 ≤ m ≤ n).

70 Part I: Asynchronous circuit design – A tutorial

d.t

2

2

3

3

b.f
b.t

c.t

c.f

a.t
a.f

s.t

s.f

d.f

Figure 5.12. A full adder using NCL gates.

gates and C-elements can be seen as special cases in the world of threshold
gates. The digit inside a gate symbol is the threshold of the gate. Figure 5.12
shows the implementation of a dual-rail full adder using NCL threshold gates.
The circuit is weakly indicating.

5.5.3 Transistor-level CMOS implementations
The last two adder designs we will introduce are based on CMOS transistor-

level implementations using dual-rail signals. Dual-rail signals are essentially
what are produced by precharged differential logic circuits that are used in
memory structures and in logic families like DCVSL, figure 5.13 [115, 41].

In a bundled-data design the precharge signal can be the request signal on the
input channel to the function block. In a dual-rail design the precharge p-type
transistors may be replaced by transistor networks that detect when all inputs

A

B B

Precharge

N transistor

network

Out.t

Inputs

Precharge

Out.f

Figure 5.13. A precharged differential CMOS combinatorial circuit. By adding the cross-
coupled p-type transistors labeled “A” or the (weak) feedback-inverters labeled “B” the circuit
becomes (pseudo)static.

Chapter 5: Handshake circuit implementations 71

c.f

c.t

b.t

a.f

b.f

c.f

c.t

b.t

a.f

b.f

b.t

c.f

b.f

c.t

d.f

b.f

c.f

b.f

c.f

d.t

b.t

c.f

b.t

c.t

b.f

c.t

b.t

c.t

a.t a.t

a.ta.f a.f a.f a.ta.f a.t a.t

Figure 5.14. Transistor-level implementation of the carry signal for the strongly indicating full
adder from figure 5.10(c).

are empty. Similarly the pull down n-type transistor signal paths should only
conduct when the required input signals are valid.

Transistor implementations of the DIMS and NCL gates introduced above
are thus straightforward. Figure 5.14 shows a transistor-level implementation of
a carry circuit for a strongly-indicating full adder. In the pull-down circuit each
column of transistors corresponds to a minterm. In general when implementing
DCVSL gates it is possible to share transistors in the two pull-down networks,
but in this particular case it has not been done in order to illustrate better the
relationship between the transistor implementation and the gate implementation
in figure 5.10(c).

The high stacks of p-type transistors are obviously undesirable. They may
be replaced by a single transistor controlled by an “all empty” signal generated
elsewhere. Finally, we mention that the weakly-indicating full adder design
presented in the next section includes optimizations that minimize the p-type
transistor stacks.

5.5.4 Martin’s adder
In [61] Martin addresses the design of dual-rail function blocks in general

and he illustrates the ideas using a very elegant dual-rail ripple-carry adder.
The adder has a small transistor count, it exhibits actual case latency when
adding valid data, and it propagates empty values in constant time – the adder
represents the ultimate in the design of weakly indicating function blocks.

Looking at the weakly-indicating transistor-level carry circuit in figure 5.14
we see that d remains valid until a, b, and c are all empty. If we designed a
similar sum circuit its output s would also remain valid until a, b, and c are all
empty. The weak conditions in figure 5.6 only require that one output remains

72 Part I: Asynchronous circuit design – A tutorial

s1

a1 b1

d1 c1c2

b2a2

d2

s2

b3a3

d3

s3

c3

c3

d2 d1

c2

d3

s3 s2 s1

c1

a3, b3 a1,b1

c3

d2 d1

c2

d3

s3 s2 s1

c1

a3, b3 a2, b2 a1, b1

a2, b2

(b)

(c)

(a)

Ripple-carry adder:

Validity indication:

Empty indication:

Kill /Generate Propagate

Figure 5.15. (a) A 3-stage ripple-carry adder and graphs illustrating how valid data (b) and
empty data (c) propagate through the circuit (Martin [61]).

valid until all inputs have become invalid. Hence it is allowed to split the
indication of a, b and c being empty among the carry and the sum circuits.

In [61] Martin uses some very illustrative directed graphs to express how
the output signals indicate when input signals and internal signals are valid or
empty. The nodes in the graphs are the signals in the circuit and the directed
edges represent indication dependencies. Solid edges represent guaranteed de-
pendencies and dashed edges represent possible dependencies. Figure 5.15(a)
shows three full adder stages of a ripple-carry adder, and figures 5.15(b) and
5.15(c) show how valid and empty inputs respectively propagate through the
circuit.

The propagation and indication of valid values is similar to what we discussed
above in the other adder designs, but the propagation and indication of empty
values is different and exhibits constant latency. When the outputs d3, s3, s2,
and s1 are all valid this indicates that all input signals and all internal carry
signals are valid. Similarly when the outputs d3, s3, s2, and s1 are all empty
this indicates that all input signals and all internal carry signals are empty – the
ripple-carry adder satisfies the weak conditions.

Chapter 5: Handshake circuit implementations 73

a.t

c.t

c.f

c.t

c.f

c.t

b.t

c.f

b.f

a.f

c.t

b.f

a.t

c.f

a.f

b.t

s.f

s.t

a.f

b.t

a.t

a.f

b.f

c.f

a.f b.f

d.f

b.f

a.f

b.t

a.t

a.t

b.t a.t b.t

c.t

d.t

b.f

Figure 5.16. The CMOS transistor implementation of Martin’s adder [61, Fig. 3].

The corresponding transistor implementation of a full adder is shown in
figure 5.16. It uses 34 transistors, which is comparable to a traditional combi-
natorial circuit implementation.

The principles explained above apply to the design of function blocks in
general. “Valid/empty indication (or acknowledgement), dependency graphs”
as shown in figure 5.15 are a very useful technique for understanding and
designing circuits with low latency and the weakest possible indication.

5.6. Hybrid function blocks
The final adder we will present has 4-phase bundled-data input and output

channels and a dual-rail carry chain. The design exhibits characteristics similar
to Martin’s dual-rail adder presented in the previous section: actual case latency
when propagating valid data, constant latency when propagating empty data,
and a moderate transistor count. The basic structure of this hybrid adder is
shown in figure 5.17. Each full adder is composed of a carry circuit and a sum
circuit. Figure 5.18(a)-(b) shows precharged CMOS implementations of the
two circuits. The idea is that the circuits precharge when Reqin = 0, evaluate
when Reqin = 1, detect when all carry signals are valid and use this information
to indicate completion, i.e. Reqout↑. If the latency of the completion detector
does not exceed the latency in the sum circuit in a full adder then a matched
delay element is needed as indicated in figure 5.17.

The size and latency of the completion detector in figure 5.17 grows with the
size of the adder, and in wide adders the latency of the completion detector may
significantly exceed the latency of the sum circuit. An interesting optimization
that reduces the completion detector overhead – possibly at the expense of
a small increase in overall latency (Reqin↑ to Reqout↑) – is to use a mix of
strongly and weakly indicating function blocks [75]. Following the naming
convention established in figure 5.7 on page 64 we could make, for example,

74 Part I: Asynchronous circuit design – A tutorial

C

Completion
detector

Precharge/Evaluate
all cy and sum circuits

++ +

sumsum

sn si

sum

s1 Req_out

c1.t

d1.fci.f

ci.t d1.tdi.t

di.fdn.f

dn.t

c1.f

cin

cout

carry carry carry

bn bi b1a1aian

cn.f

cn.t

Req_in

Figure 5.17. Block diagram of a hybrid adder with 4-phase bundled-data input and output
channels and with an internal dual-rail carry chain.

Req_inReq_in

Req_in

c.t

a baa

bb c.f

a b

d.t

d.f

Req_in

Req_in

a a

b b b b

c.t c.f

s

Req_in

d.t

d.f

(c)
Req_in

c.f

a

Req_in

a

c.t

a

bb

a

(a) (b)

Figure 5.18. The CMOS transistor implementation of a full adder for the hybrid adder in
figure 5.17: (a) a weakly indicating carry circuit, (b) the sum circuit and (c) a strongly indicating
carry circuit.

Chapter 5: Handshake circuit implementations 75

adders 1, 4, 7, . . . weakly indicating and all other adders strongly indicating. In
this case only the carry signals out of stages 3, 6, 9, . . . need to be checked to
detect completion. For i = 3, 6, 9, . . . di indicates the completion of di−1 and
di−2 as well. Many other schemes for mixing strongly and weakly indicating
full adders are possible. The particular scheme presented in [75] exploited the
fact that typical-case operands (sampled audio) are numerically small values,
and the design detects completion from a single carry signal.

Summary – function block design
The previous sections have explained the basics of how to implement function

blocks and have illustrated this using a variety of ripple-carry adders. The main
points were “transparency to handshaking” and “actual case latency” through
the use of weakly-indicating components.

Finally, a word of warning to put things into the right perspective: to some
extent the ripple-carry adders explained above over-sell the advantages of aver-
age-case performance. It is easy to get carried away with elegant circuit designs
but it may not be particularly relevant at the system level:

In many systems the worst-case latency of a ripple-carry adder may sim-
ply not be acceptable.

In a system with many concurrently active components that synchronize
and exchange data at high rates, the slowest component at any given time
tends to dominate system performance; the average-case performance of
a system may not be nearly as good as the average-case latency of its
individual components.

In many cases addition is only one part of a more complex compound
arithmetic operation. For example, the final design of the asynchronous
filter bank presented in [77] did not use the ideas presented above. In-
stead we used entirely strongly-indicating full adders because this al-
lowed an efficient two-dimensional precharged compound add-multiply-
accumulate unit to be implemented.

5.7. MUX and DEMUX
Now that the principles of function block design have been covered we are

ready to address the implementation of the MUX and DEMUX components, c.f.
figure 3.3 on page 32. Let’s recapitulate their function: a MUX will synchronize
the control channel and relay the data and the handshaking of the selected input
channel to the output data channel. The other input channel is ignored (and may
have a request pending). Similarly a DEMUX will synchronize the control and
the data input channels and steer the input to the selected output channel. The
other output channel is passive and in the idle state.

76 Part I: Asynchronous circuit design – A tutorial

If we consider only the “active” channels then the MUX and the DEMUX
can be understood and designed as function blocks – they must be transparent
to the handshaking in the same way as function blocks. The control channel
and the (selected) input data channel are first joined and then an output is
produced. Since no data transfer can take place without the control channel
and the (selected) input data channel both being active, the implementations
become strongly indicating function blocks.

Let’s consider implementations using 4-phase protocols. The simplest and
most intuitive designs use a dual-rail control channel. Figure 5.19 shows the
implementation of the MUX and the DEMUX using the 4-phase bundled-data

n

n

"Join"

"Join"

1

MUX

0

"Join"

1

z−ack

"Join"

y

DEMUX

y

z

ctl_ack

x

x−ack

Component 4−phase bundled−data

y−ack

y−ack
0

y

y−req

z

ctl_ack

x−req

z−req

y−req

ctl.f ctl.t

n

ctl.f ctl.t

n
n

M
U

X

x

y

z−ack

z−req

Cx−ack

x−req

n
ctl

z

C

x

z

+

ctl

C

+

C

C

x
C

Figure 5.19. Implementation of MUX and DEMUX. The input and output data channels x,
y, and z use the 4-phase bundled-data protocol and the control channel ctl uses the 4-phase
dual-rail protocol (in order to simplify the design).

Chapter 5: Handshake circuit implementations 77

protocol on the input and output data channels and the 4-phase dual-rail protocol
on the control channel. In both circuits ctl .t and ctl .f can be understood as
two mutually exclusive requests that select between the two alternative input-
to-output data transfers, and in both cases ctl .t and ctl .f are joined with the
relevant input requests (at the C-elements marked “Join”). The rest of the MUX
implementation is then similar to the 4-phase bundled-data MERGE in figure 5.1
on page 59. The rest of the DEMUX should be self explanatory; the handshaking
on the two output ports are mutually exclusive and the acknowledge signals yack

and zack are ORed to form xack = ctlack.
All 4-phase dual-rail implementations of the MUX and DEMUX compo-

nents are rather similar, and all 4-phase bundled-data implementations may be
obtained by adding 4-phase bundled-data to 4-phase dual-rail protocol con-
version circuits on the control input. At the end of chapter 6, an all 4-phase
bundled-data MUX will be one of the examples we use to illustrate the design
of speed-independent control circuits.

5.8. Mutual exclusion, arbitration and metastability
5.8.1 Mutual exclusion

Some handshake components (including MERGE) require that the commu-
nication along several (input) channels is mutually exclusive. For the simple
static data-flow circuit structures we have considered so far this has been the
case, but in general one may encounter situations where a resource is shared
between several independent parties/processes.

The basic circuit needed to deal with such situations is a mutual exclusion el-
ement (MUTEX), figure 5.20 (we will explain the implementation shortly). The
input signals R1 and R2 are two requests that originate from two independent
sources, and the task of the MUTEX is to pass these inputs to the corresponding
outputs G1 and G2 in such a way that at most one output is active at any given
time. If only one input request arrives the operation is trivial. If one input
request arrives well before the other, the latter request is blocked until the first
request is de-asserted. The problem arises when both input signals are asserted

R1

R2

R1

R2

Bistable

&

&

G2

G1

G1

G2M
U

T
E

X

Metastability filter

x2

x1

Figure 5.20. The mutual exclusion element: symbol and possible implementation.

78 Part I: Asynchronous circuit design – A tutorial

at the same time. Then the MUTEX is required to make an arbitrary decision,
and this is where metastability enters the picture.

The problem is exactly the same as when a synchronous circuit is exposed to
an asynchronous input signal (one that does not satisfy set-up and hold time re-
quirements). For a clocked flip-flop that is used to synchronize an asynchronous
input signal, the question is whether the data signal made its transition before
or after the active edge of the clock. As with the MUTEX the question is again
which signal transition occured first, and as with the MUTEX a random deci-
sion is needed if the transition of the data signal coincides with the active edge
of the clock signal.

The fundamental problem in a MUTEX and in a synchronizer flip-flop is that
we are dealing with a bi-stable circuit that receives requests to enter each of its
two stable states at the same time. This will cause the circuit to enter a metastable
state in which it may stay for an unbounded length of time before randomly
settling in one of its stable states. The problem of synchronization is covered
in most textbooks on digital design and VLSI, and the analysis of metastability
that is presented in these textbooks applies to our MUTEX component as well.
A selection of references is: [70, sect. 9.4] [39, sect. 5.4 and 6.5] [115, sect.
5.5.7] [88, sect. 6.2.2 and 9.4-5] [114, sect. 8.9].

For the synchronous designer the problem is that metastability may per-
sist beyond the time interval that has been allocated to recover from potential
metastability. It is simply not possible to obtain a decision within a bounded
length of time. The asynchronous designer, on the other hand, will eventually
obtain a decision, but there is no upper limit on the time he will have to wait
for the answer. In [14] the terms “time safe” and “value safe” are introduced to
denote and classify these two situations.

A possible implementation of the MUTEX, as shown in figure 5.20, involves
a pair of cross coupled NAND gates and a metastability filter. The cross coupled
NAND gates enable one input to block the other. If both inputs are asserted
at the same time, the circuit becomes metastable with both signals x1 and x2
halfway between supply and ground. The metastability filter prevents these
undefined values from propagating to the outputs; G1 and G2 are both kept low
until signals x1 and x2 differ by more than a transistor threshold voltage.

The metastability filter in figure 5.20 is a CMOS transistor-level implemen-
tation from [60]. An NMOS predecessor of this circuit appeared in [91]. Gate-
level implementations are also possible: the metastability filter can be imple-
mented using two buffers whose logic thresholds have been made particularly
high (or low) by “trimming” the strengths of the pull-up and pull-down transis-
tor paths ([115, section 2.3]). For example, a 4-input NAND gate with all its
inputs tied together implements a buffer with a particularly high logic thresh-
old. The use of this idea in the implementation of mutual exclusion elements
is described in [2, 105].

Chapter 5: Handshake circuit implementations 79

5.8.2 Arbitration
The MUTEX can be used to build a handshake arbiter that can be used to con-

trol access to a resource that is shared between several autonomous independent
parties. One possible implementation is shown in figure 5.21.

&

&

C

C

R0
A0

R1

A1

R2

A2

A
R

B
IT

E
R

+ R0

A0

y1

y2

G1

M
U

T
E

X

R2 G2

G1R1

A1

R1

R2

A2

G2

A1

A2

a’

aa’

b’

bb’

Figure 5.21. The handshake arbiter: symbol and possible implementation.

The MUTEX ensures that signals G1 and G2 at the a’–aa’ interface are
mutually exclusive. Following the MUTEX are two AND gates whose purpose
it is to ensure that handshakes on the (y1, A1) and (y2, A2) channels at the
b’–bb’ interface are mutually exclusive: y2 can only go high if A1 is low and
y1 can only go high if signal A2 is low. In this way, if handshaking is in
progress along one channel, it blocks handshaking on the other channel. As
handshaking along channels (y1, A1) and (y2, A2) are mutually exclusive the
rest of the arbiter is simply a MERGE, c.f., figure 5.1 on page 59. If data needs
to be passed to the shared resource a multiplexer is needed in exactly the same
way as in the MERGE. The multiplexer may be controlled by signals y1 and/or
y2.

5.8.3 Probability of metastability
Let us finally take a quantitative look at metastability: if P (mett) denotes

the probability of the MUTEX being metastable for a period of time of t or
longer (within an observation interval of one second), and if this situation is
considered a failure, then we may calculate the mean time between failure as:

MTBF =
1

P (mett)
(5.8)

The probability P (mett) may be calculated as:

P (mett) = P (mett|mett=0) · P (mett=0) (5.9)

80 Part I: Asynchronous circuit design – A tutorial

where:

P (mett|mett=0) is the probability that the MUTEX is still metastable at
time t given that it was metastable at time t = 0.

P (mett=0) is the probability that the MUTEX will enter metastability
within a given observation interval.

The probability P (mett=0) can be calculated as follows: the MUTEX will
go metastable if its inputs R1 and R2 are exposed to transitions that occur
almost simultaneously, i.e. within some small time window ∆. If we assume
that the two input signals are uncorrelated and that they have average switching
frequencies fR1 and fR2 respectively, then:

P (mett=0) =
1

∆ · fR1 · fR2
(5.10)

which can be understood as follows: within an observation interval of one
second the input signal R2 makes 1/fR2 attempts at hitting one of the 1/fR1

time intervals of duration ∆ where the MUTEX is vulnerable to metastability.
The probability P (mett|mett=0) is determined as:

P (mett|mett=0) = e−t/τ (5.11)

where τ expresses the ability of the MUTEX to exit the metastable state sponta-
neously. This equation can be explained in two different ways and experimental
results have confirmed its correctness. One explanation is that the cross coupled
NAND gates have no memory of how long they have been metastable, and that
the only probability distribution that is “memoryless” is an exponential distri-
bution. Another explanation is that a small-signal model of the cross-coupled
NAND gates at the metastable point has a single dominating pole.

Combining equations 5.8–5.11 we obtain:

MTBF =
e t/τ

∆ · fR1 · fR2
(5.12)

Experiments and simulations have shown that this equation is reasonably
accurate provided that t is not very small, and experiments or simulations may
be used to determine the two parameters ∆ and τ . Representative values for
good circuit designs implemented in a 0.25 µm CMOS process are ∆ = 30ps
and τ = 25ps.

5.9. Summary
This chapter addressed the implementation of the various handshake com-

ponents: latch, fork, join, merge, function blocks, mux, demux, mutex and
arbiter). A significant part of the material addressed principles and techniques
for implementing function blocks.

Chapter 6

SPEED-INDEPENDENT CONTROL CIRCUITS

This chapter provides an introduction to the design of asynchronous sequen-
tial circuits and explains in detail one well-developed specification and syn-
thesis method: the synthesis of speed-independent control circuits from signal
transition graph specifications.

6.1. Introduction
Over time many different formalisms and theories have been proposed for

the design of asynchronous control circuits (e.g. sequential circuits or state
machines). The multitude of approaches arises from the combination of: (a)
different specification formalisms, (b) different assumptions about delay models
for gates and wires, and (c) different assumptions about the interaction between
the circuit and its environment. Full coverage of the topic is far beyond the
scope of this book. Instead we will first present some of the basic assumptions
and characteristics of the various design methods and give pointers to relevant
literature and then we will explain in detail one method: the design of speed-
independent circuits from signal transition graphs – a method that is supported
by a well-developed public domain tool, Petrify.

A good starting point for further reading is a book by Myers [70]. It provides
in-depth coverage of the various formalisms, methods, and theories for the
design of asynchronous sequential circuits and it provides a comprehensive list
of references.

6.1.1 Asynchronous sequential circuits
To start the discussion figure 6.1 shows a generic synchronous sequential

circuit and two alternative asynchronous control circuits: a Huffman style fun-
damental mode circuit with buffers (delay elements) in the feedback signals,
and a Muller style input-output mode circuit with wires in the feedback path.

The synchronous circuit is composed of a set of registers holding the current
state and a combinational logic circuit that computes the output signals and the
next state signals. When the clock ticks the next state signals are copied into the
registers thus becoming the current state. Reliable operation only requires that

81

82 Part I: Asynchronous circuit design – A tutorial

Synchronous:

Clock

Current state Next state

Asynchronous

Huffman style

fundamental mode:

Muller style

Asynchronous

input-output mode:

Logic LogicLogic

Inputs Outputs

Figure 6.1. (a) A synchronous sequential circuit. (b) A Huffman style asynchronous sequential
circuit with buffers in the feedback path, and (c) a Muller style asynchronous sequential circuit
with wires in the feedback path.

the next state output signals from the combinational logic circuit are stable in a
time window around the rising edge of the clock, an interval that is defined by
the setup and hold time parameters of the register. Between two clock ticks the
combinational logic circuit is allowed to produce signals that exhibit hazards.
The only thing that matters is that the signals are ready and stable when the
clock ticks.

In an asynchronous circuit there is no clock and all signals have to be valid
at all times. This implies that at least the output signals that are seen by the
environment must be free from all hazards. To achieve this, it is sometimes nec-
essary to avoid hazards on internal signals as well. This is why the synthesis of
asynchronous sequential circuits is difficult. Because it is difficult researchers
have proposed different methods that are based on different (simplifying) as-
sumptions.

6.1.2 Hazards
For the circuit designer a hazard is an unwanted glitch on a signal. Figure 6.2

shows four possible hazards that may be observed. A circuit that is in a stable
state does not spontaneously produce a hazard – hazards are related to the
dynamic operation of a circuit. This again relates to the dynamics of the input
signals as well as the delays in the gates and wires in the circuit. A discussion
of hazards is therefore not possible without stating precisely which delay model
is being used and what assumptions are made about the interaction between the
circuit and its environment. There are greater theoretical depths in this area
than one might think at a first glance.

Gates are normally assumed to have delays. In section 2.5.3 we also discussed
wire delays, and in particular the implications of having different delays in
different branches of a forking wire. In addition to gate and wire delays it is
also necessary to specify which delay model is being used.

Chapter 6: Speed-independent control circuits 83

Static-1 hazard:

Static-0 hazard:

1

00

1

1 0 11 0

0 1 1 00

1

0

0

1

1

0

Desired signal Actual signal

Dynamic-10 hazard:

Dynamic-01 hazard:

Figure 6.2. Possible hazards that may be observed on a signal.

6.1.3 Delay models
A pure delay that simply shifts any signal waveform later in time is perhaps

what first comes to mind. In the hardware description language VHDL this is
called a transport delay. It is, however, not a very realistic model as it implies
that the gates and wires have infinitely high bandwidth. A more realistic delay
model is the inertial delay model. In addition to the time shifting of a signal
waveform, an inertial delay suppresses short pulses. In the inertial delay model
used in VHDL two parameters are specified, the delay time and the reject time,
and pulses shorter than the reject time are filtered out. The inertial delay model
is the default delay model used in VHDL.

These two fundamental delay models come in several flavours depending on
how the delay time parameter is specified. The simplest is a fixed delay where
the delay is a constant. An alternative is a min-max delay where the delay is
unknown but within a lower and upper bound: tmin ≤ tdelay ≤ tmax. A more
pessimistic model is the unbounded delay where delays are positive (i.e. not
zero), unknown and unbounded from above: 0 < tdelay < ∞. This is the delay
model that is used for gates in speed-independent circuits.

It is intuitive that the inertial delay model and the min-max delay model both
have properties that help filter out some potential hazards.

6.1.4 Fundamental mode and input-output mode
In addition to the delays in the gates and wires, it is also necessary to formalize

the interaction between the circuit being designed and its environment. Again,
strong assumptions may simplify the design of the circuit. The design methods
that have been proposed over time all have their roots in one of the following
assumptions:

Fundamental mode: The circuit is assumed to be in a state where all input
signals, internal signals, and output signals are stable. In such a stable
state the environment is allowed to change one input signal. After that,

84 Part I: Asynchronous circuit design – A tutorial

the environment is not allowed to change the input signals again until the
entire circuit has stabilized. Since internal signals such as state variables
are unknown to the environment, this implies that the longest delay in
the circuit must be calculated and the environment is required to keep
the input signals stable for at least this amount of time. For this to make
sense, the delays in gates and wires in the circuit have to be bounded from
above. The limitation on the environment is formulated as an absolute
time requirement.

The design of asynchronous sequential circuits based on fundamental
mode operation was pioneered by David Huffman in the 1950s [44, 45].

Input-output mode: Again the circuit is assumed to be in a stable state. Here
the environment is allowed to change the inputs. When the circuit has
produced the corresponding output (and it is allowable that there are no
output changes), the environment is allowed to change the inputs again.
There are no assumptions about the internal signals and it is therefore
possible that the next input change occurs before the circuit has stabilized
in response to the previous input signal change.

The restrictions on the environment are formulated as causal relations
between input signal transitions and output signal transitions. For this
reason the circuits are often specified using trace based methods where
the designer specifies all possible sequences of input and output signal
transitions that can be observed on the interface of the circuit. Signal
transition graphs, introduced later, are such a trace-based specification
technique.

The design of asynchronous sequential circuits based on the input-output
mode of operation was pioneered by David Muller in the 1950s [68, 67].
As mentioned in section 2.5.1, these circuits are speed-independent.

6.1.5 Synthesis of fundamental mode circuits
In the classic work by Huffman the environment was only allowed to change

one input signal at a time. In response to such an input signal change, the
combinational logic will produce new outputs, of which some are fed back,
figure 6.1(b). In the original work it was further required that only one feedback
signal changes (at a time) and that the delay in the feedback buffer is large
enough to ensure that the entire combinational circuit has stabilized before
it sees the change of the feedback signal. This change may, in turn, cause
the combinational logic to produce new outputs, etc. Eventually through a
sequence of single signal transitions the circuit will reach a stable state where
the environment is again allowed to make a single input change. Another way
of expressing this behaviour is to say that the circuit starts out in a stable state

Chapter 6: Speed-independent control circuits 85

s0 00 01 11 c10
Inputs a,b Output

s0 s1s2 - 0

s1s3--

s2 s3 --

s3 s5s4-

s4s0

s5s0 - -

0

0

1

1

1

- -

s1 s2

s3

s4 s5

00/0

00/0

11/1
10/0

11/1

10/0 01/0

01/0

Primitive flow tableMealy type state diagram

ab/c

01/1 10/1

01/1 10/1

00/0

11/1

Burst mode specification

s0

a+b+/c+

a-b-/c-

s3

Figure 6.3. Some alternative specifications of a Muller C-element: a Mealy state diagram, a
primitive flow table, and a burst-mode state diagram.

(which is defined to be a state that will persist until an input signal changes). In
response to an input signal change the circuit will step through a sequence of
transient, unstable states, until it eventually settles in a new stable state. This
sequence of states is such that from one state to the next only one variable
changes.

The interested reader is encouraged to consult [52], [99] or [70] and to specify
and synthesize a C-element. The following gives a flavour of the design process
and the steps involved:

The design may start with a state graph specification that is very similar
to the specification of a synchronous sequential circuit. This is optional.
Figure 6.3 shows a Mealy type state graph specification of the C-element.

The classic design process involves the following steps:

The intended sequential circuit is specified in the form of a primitive flow
table (a state table with one row per stable state). Figure 6.3 shows the
primitive flow table specification of a C-element.

A minimum-row reduced flow table is obtained by merging compatible
states in the primitive flow table.

The states are encoded.

Boolean equations for output variables and state variables are derived.

Later work has generalized the fundamental mode approach by allowing a
restricted form of multiple-input and multiple-output changes. This approach
is called burst mode [23, 19]. When in a stable state, a burst-mode circuit
will wait for a set of input signals to change (in arbitrary order). After such

86 Part I: Asynchronous circuit design – A tutorial

an input burst has completed the machine computes a burst of output signals
and new values of the internal variables. The environment is not allowed to
produce a new input burst until the circuit has completely reacted to the previous
burst – fundamental mode is still assumed, but only between bursts of input
changes. For comparison, figure 6.3 also shows a burst-mode specification of
a C-element. Burst-mode circuits are specified using state graphs that are very
similar to those used in the design of synchronous circuits. Several mature
tools for synthesizing burst-mode controllers have been developed in academia
[30, 122]. These tools are available in the public domain.

6.2. Signal transition graphs
The rest of this chapter will be devoted to the specification and synthesis

of speed-independent control circuits. These circuits operate in input-output
mode and they are naturally specified using signal transition graphs, (STGs).
An STG is a petri net and it can be seen as a formalization of a timing diagram.
The synthesis procedure that we will explain in the following consists of: (1)
Capturing the behaviour of the intended circuit and its environment in an STG.
(2) Generating the corresponding state graph, and adding state variables if
needed. (3) Deriving Boolean equations for the state variables and outputs.

6.2.1 Petri nets and STGs
Briefly, a Petri net [1, 87, 69] is a graph composed of directed arcs and

two types of nodes: transitions and places. Depending on the interpretation
that is assigned to places, transitions and arcs, Petri nets can be used to model
and analyze many different (concurrent) systems. Some places can be marked
with tokens and the Petri net model can be “executed” by firing transitions. A
transition is enabled to fire if there are tokens on all of its input places, and
an enabled transition must eventually fire. When a transition fires, a token is
removed from each input place and a token is added to each output place. We
will show an example shortly. Petri nets offer a convenient way of expressing
choice and concurrency.

It is important to stress that there are many variations of and extensions to
Petri nets – Petri nets are a family of related models and not a single, unique
and well defined model. Often certain restrictions are imposed in order to make
the analysis for certain properties practical. The STGs we will consider in the
following belong to such a restricted subclass: an STG is a 1-bounded Petri net
in which only simple forms of input choice are allowed. The exact meaning of
“1-bounded” and “simple forms of input choice” will be defined at the end of
this section.

In an STG the transitions are interpreted as signal transitions and the places
and arcs capture the causal relations between the signal transitions. Figure 6.4

Chapter 6: Speed-independent control circuits 87

Timing diagramC-element and dummy environment

a

b

c
etc.

a
c

b

b+

b-

a+

a-

c-

c+

STG

b+

c+

b-

c-

a+

a-

Petri net

Figure 6.4. A C-element and its ‘well behaved’ dummy environment, its specification in the
form of a timing diagram, a Petri net, and an STG formalization of the timing diagram.

shows a C-element and a ‘well behaved’ dummy environment that maintains
the input signals until the C-element has changed its outputs. The intended
behaviour of the C-element could be expressed in the form of a timing diagram
as shown in the figure. Figure 6.4 also shows the corresponding Petri net
specification. The Petri net is marked with tokens on the input places to the a+
and b+ transitions, corresponding to state (a, b, c) = (0, 0, 0). The a+ and b+
transitions may fire in any order, and when they have both fired the c+ transition
becomes enabled to fire, etc. Often STGs are drawn in a simpler form where
most places have been omitted. Every arc that connects two transitions is then
thought of as containing a place. Figure 6.4 shows the STG specification of the
C-element.

A given marking of a Petri net corresponds to a possible state of the sys-
tem being modeled, and by executing the Petri net and identifying all possible
markings it is possible to derive the corresponding state graph of the system.
The state graph is generally much more complex than the corresponding Petri
net.

88 Part I: Asynchronous circuit design – A tutorial

An STG describing a meaningful circuit enjoys certain properties, and for
the synthesis algorithms used in tools like Petrify to work, additional properties
and restrictions may be required. An STG is a Petri net with the following
characteristics:

1 Input free choice: The selection among alternatives must only be con-
trolled by mutually exclusive inputs.

2 1-bounded: There must never be more than one token in a place.

3 Liveness: The STG must be free from deadlocks.

An STG describing a meaningful speed-independent circuit has the following
characteristics:

4 Consistent state assignment: The transitions of a signal must strictly
alternate between + and − in any execution of the STG.

5 Persistency: If a signal transition is enabled it must take place, i.e. it must
not be disabled by another signal transition. The STG specification of
the circuit must guarantee persistency of internal signals (state variables)
and output signals, whereas it is up to the environment to guarantee
persistency of the input signals.

In order to be able to synthesize a circuit implementation the following charac-
teristic is required:

6 Complete state coding (CSC): Two or more different markings of the
STG must not have the same signal values (i.e. correspond to the same
state). If this is not the case, it is necessary to introduce extra state
variables such that different markings correspond to different states. The
synthesis tool Petrify will do this automatically.

6.2.2 Some frequently used STG fragments
For the newcomer it may take a little practice to become familiar with spec-

ifying and designing circuits using STGs. This section explains some of the
most frequently used templates from which one can construct complete speci-
fications.

The basic constructs are: fork, join, choice and merge, see figure 6.5. The
choice is restricted to what is called input free choice: the transitions follow-
ing the choice place must represent mutually exclusive input signal transitions.
This requirement is quite natural; we will only specify and design deterministic
circuits. Figure 6.6 shows an example Petri net that illustrates the use of fork,
join, free choice and merge. The example system will either perform transitions

Chapter 6: Speed-independent control circuits 89

Fork

Join

Choice

Merge

Figure 6.5. Petri net fragments for fork, join, free choice and merge constructs.

P9

T7

P8

P7

P2

P6P5

P4P3

P1

T3T2

T8

T6

T5

T1
Fork

Join

Merge

Choice

T4

Figure 6.6. An example Petri net that illustrates the use of fork, join, free choice and merge.

T6 and T7 in sequence, or it will perform T1 followed by the concurrent exe-
cution of transitions T2, T3 and T4 (which may occur in any order), followed
by T5.

Towards the end of this chapter we will design a 4-phase bundled-data version
of the MUX component from figure 3.3 on page 32. For this we will need some
additional constructs: a controlled choice and a Petri net fragment for the input
end of a bundled-data channel.

Figure 6.7 shows a Petri net fragment where place P1 and transitions T3
and T4 represent a controlled choice: a token in place P1 will engage in either
transition T3 or transition T4. The choice is controlled by the presence of a
token in either P2 or P3. It is crucial that there can never be a token in both
these places at the same time, and in the example this is ensured by the mutually
exclusive input signal transitions T1 and T2.

90 Part I: Asynchronous circuit design – A tutorial

T2

T5

P1

T0

T1

P2 P1: Controlled Choice

Mutually exclusive "paths"

T3 T4

P3

P0
P0: Free Choice

Figure 6.7. A Petri net fragment including a controlled choice.

Figure 6.8 shows a Petri net fragment for a component with a one-bit input
channel using a 4-phase bundled-data protocol. It could be the control channel
used in the MUX and DEMUX components introduced in figure 3.3 on page 32.
The two transitions dummy1 and dummy2 do not represent transitions on the
three signals in the channel, they are dummy transitions that facilitate expressing
the specification. These dummy transitions represent an extension to the basic
class of STGs.

Note also that the four arcs connecting:
place P5 and transition Ctl+
place P5 and transition Ctl−
place P6 and transition dummy2
place P7 and transition dummy1

have arrows at both ends. This is a shorthand notation for an arc in each
direction. Note also that there are several instances where a place is both an
input place and a output place for a transition. Place P5 and transition Ctl+ is
an example of this.

The overall structure of the Petri net fragment can be understood as follows:
at the top is a sequence of transitions and places that capture the handshaking on
the Req and Ack signals. At the bottom is a loop composed of places P6 and
P7 and transitions Ctl+ and Ctl− that captures the control signal changing
between high and low. The absence of a token in place P5 when Req is high
expresses the fact that Ctl is stable in this period. When Req is low and a
token is present in place P5, Ctl is allowed to make as many transitions as it
desires. When Req+ fires, a token is put in place P4 (which is a controlled
choice place). The Ctl signal is now stable, and depending on its value one of
the two transitions dummy1 or dummy2 will become enabled and eventually

Chapter 6: Speed-independent control circuits 91

Req

Ack

Ctl

Bundled data interface

Ctl Req/Ack

Ctl−

Ctl+

Ack+

Req−

Ack−

Do the "Ctl=0" action Do the "Ctl=1" action

dummy1dummy2

P1

P2

P6 P7

Req+

P3

P4

P5

P0

Figure 6.8. A Petri net fragment for a component with a one-bit input channel using a 4-phase
bundled-data protocol.

fire. At this point the intended input-to-output operation that is not included in
this example may take place, and finally the handshaking on the control port
finishes (Ack+; Req−; Ack−).

6.3. The basic synthesis procedure
The starting point for the synthesis process is an STG that satisfies the re-

quirements listed on page 88. From this STG the corresponding state graph is
derived by identifying all of the possible markings of the STG that are reach-
able given its initial marking. The last step of the synthesis process is to derive
Boolean equations for the state variables and output variables.

We will go through a number of examples by hand in order to illustrate the
techniques used. Since the state of a circuit includes the values of all of the
signals in the circuit, the computational complexity of the synthesis process can
be large, even for small circuits. In practice one would always use one of the
CAD tools that has been developed – for example Petrify that we will introduce
later.

92 Part I: Asynchronous circuit design – A tutorial

6.3.1 Example 1: a C-element

c
ab

00 01 10

0

1

0 0

11

0* 0

1* 1 1 1

c = ab + ac + bc

C element and its environment State Graph

Karnaugh map for C

0*0*0

10*0 0*10

110*

01*1 1*01

001*

1*1*1

a
c

b

Figure 6.9. State graph and Boolean equation for the C-element STG from figure 6.4.

Figure 6.9 shows the state graph corresponding to the STG specification in
figure 6.4 on page 87. Variables that are excited in a given state are marked with
an asterisk. Also shown in figure 6.9 is the Karnaugh map for output signal
c. The Boolean expression for c must cover states in which c = 1 and states
where it is excited, c = 0∗ (changing to 1). In order to better distinguish excited
variables from stable ones in the Karnaugh maps, we will use R (rising) instead
of 0∗ and F (falling) instead of 1∗ throughout the rest of this book.

It is comforting to see that we can successfully derive the implementation of
a known circuit, but the C-element is really too simple to illustrate all aspects
of the design process.

6.3.2 Example 2: a circuit with choice
The following example provides a better illustration of the synthesis proce-

dure, and in a subsequent section we will come back to this example and explain
more efficient implementations. The example is simple – the circuit has only 2
inputs and 2 outputs – and yet it brings forward all relevant issues. The example
is due to Chris Myers of the University of Utah who presented it in his 1996
course EE 587 “Asynchronous VLSI System Design.” The example has roots
in the papers [5, 6].

Figure 6.10 shows a specification of the circuit. The circuit has two inputs a
and b and two outputs c and d, and the circuit has two alternative behaviours as
illustrated in the timing diagram. The corresponding STG specification is shown
in figure 6.11 along with the state graph for the circuit. The STG includes only

Chapter 6: Speed-independent control circuits 93

Environment

a

b

c

d

a

b

c

d

Figure 6.10. The example circuit from [5, 6].

001*0

10*00

1100*

110*1

1111*

0*0*00

1*110

01*10

010*0

14

6

4

0

8

12

2

15

13

a+

b+

d+

c+d-

c-

b-

b+

c+

a-

b+ a+

c+ b+

d+

c+
a-

b-

c-

d-

P1

P0

Figure 6.11. The STG specification and the corresponding state graph.

x3

x2

2

6

14

10

3

7

15

118 9

12 13

54

0 1

10

11

01

10110100

00

c d

a b

0

0 x x x

x x

x x 1

0 1 1

R

R

F

+

&

&

c = d + a b + b c

d
a

b
c

&

&

&

+

b

a
d

c

Karnaugh map:

Boolean equation for c:

An atomic complex gate:

Using simple gates:

x1

Figure 6.12. The Karnaugh map, the Boolean equation, and two alternative gate-level imple-
mentations of output signal c.

94 Part I: Asynchronous circuit design – A tutorial

the free choice place P0 and the merge place P1. All arcs that directly connect
two transitions are assumed to include a place. The states in the state diagram
have been labeled with decimal numbers to ease filling out the Karnaugh maps.

The STG satisfies all of the properties 1-6 listed on page 88 and it is thus
possible to proceed and derive Boolean equations for output signals c and d.
[Note: In state 0 both inputs are marked to be excited, (a, b) = (0∗, 0∗), and in
states 4 and 8 one of the signals is still 0 but no longer excited. This is a problem
of notation only. In reality only one of the two variables is excited in state 0,
but we don’t know which one. Furthermore, the STG is only required to be
persistent with respect to the internal signals and the output signals. Persistency
of the input signals must be guaranteed by the environment].

For output c, figure 6.12 shows the Karnaugh map, the Boolean equation and
two alternative gate implementations: one using a single atomic And-Or-Invert
gate, and one using simple AND and OR gates. Note that there are states that
are not reachable by the circuit. In the Karnaugh map these states correspond
to don’t cares. The implementation of output signal d is left as an exercise for
the reader (d = abc).

6.3.3 Example 2: Hazards in the simple gate
implementation

The STG in figure 6.10 satisfies all of the implementation conditions 1-6
(including persistency), and consequently an implementation where each output
signal is implemented by a single atomic complex gate is hazard free. In the
case of c we need a complex And-Or gate with inversion of input signal a. In
general such an atomic implementation is not feasible and it is necessary to
decompose the implementation into a structure of simpler gates. Unfortunately
this will introduce extra variables, and these extra variables may not satisfy
the persistency requirement that an excited signal transition must eventually
fire. Speed-independence preserving logic decomposition is therefore a very
interesting and relevant topic [12, 53].

The implementation of c using simple gates that is shown in figure 6.12 is
not speed-independent; it may exhibit both static and dynamic hazards, and it
provides a good illustration of the mechanisms behind hazards. The problem
is that the signals x1, x2 and x3 are not included in the original STG and
state graph. A detailed analysis that includes these signals would not satisfy the
persistency requirement. Below we explain possible failure sequences that may
cause a static-1 hazard and a dynamic-10 hazard on output signal c. Figure 6.13
illustrates the discussion.

A static-1 hazard may occur when the circuit goes through the following se-
quence of states: 12, 13, 15, 14. The transition from state 12 to state 13
corresponds to d going high and the transition from state 15 to state 14

Chapter 6: Speed-independent control circuits 95

Potential dynamic-10 hazard.Potential static-1 hazard.

2

6

14

10

3

7

15

118 9

12 13

54

0 1

10

11

01

10110100

00

c d

a b

0

0 x x x

x x

x x 1

0 1 1

R

R

F

a b

2

6

14

10

3

7

15

118 9

12 13

54

0 1

10

11

01

10110100

00

c d

a b

0

0 x x x

x x

x x 1

0 1 1

R

R

F

a b

d

b c

d

b c

Figure 6.13. The Karnaugh maps for output signal c showing state sequences that may lead to
hazards.

corresponds to d going low again. In state 13 c is excited (R) and it is
supposed to remain high throughout states 13, 15, 14, and 6. States 13
and 15 are covered by the cube d, and state 14 is covered by cube bc that
is supposed to “take over” and maintain c = 1 after d has gone low. If
the AND gate with output signal x2 that corresponds to cube bc is slow
we have the problem - the static-1 hazard.

A dynamic-10 hazard may occur when the circuit goes through the following
sequence of states: 4, 6, 2, 0. This situation corresponds to the upper
AND gate (with output signal x1) and the OR gate relaying b+ into c+
and b− into c−. However, after the c+ transition the lower AND gate,
x2, becomes excited (R) as well, but the firing of this gate is not indicated
by any other signal transition – the OR gate already has one input high.
If the lower AND gate (x2) fires, it will later become excited (F) in
response to c−. The net effect of this is that the lower AND gate (x2)
may superimpose a 0-1-0 pulse onto the c output after the intended c−
transition has occured.

In the above we did not consider the inverter with input signal a and output
signal x3. Since a is not an input to any other gate, this decomposition is SI.

In summary both types of hazard are related to the circuit going through a
sequence of states that are covered by several cubes that are supposed to maintain
the signal at the same (stable) level. The cube that “takes over” represents a
signal that may not be indicated by any other signal. In essence it is the same
problem that we touched upon in section 2.2 on page 14 and in section 2.4.3 on
page 20 – an OR gate can only indicate when the first input goes high.

96 Part I: Asynchronous circuit design – A tutorial

6.4. Implementations using state-holding gates
6.4.1 Introduction

During operation each variable in the circuit will go through a sequence of
states where it is (stable) 0, followed by one or more states where it is excited
(R), followed by a sequence of states where it is (stable) 1, followed by one or
more states where it is excited (F), etc. In the above implementation we were
covering all states where a variable, z, was high or excited to go high (z = 1
and z = R = 0∗).

An alternative is to use a state-holding device such as a set-reset latch. The
Boolean equations for the set and reset signals need only cover the z = R = 0∗
states and the z = F = 1∗ states respectively. This will lead to simpler equa-
tions and potentially simpler decompositions. Figure 6.14 shows the implemen-
tation template using a standard set-reset latch and an alternative solution based
on a standard C-element. In the latter case the reset signal must be inverted.
Later, in section 6.4.5, we will discuss alternative and more elaborate imple-
mentations, but for the following discussion the basic topologies in figure 6.14
will suffice.

logic

Set
logic

Reset
zCz

SR

Reset
logic

Set
logic

latch

Standard C-element implementation:SR flip-flop implementation:

Figure 6.14. Possible implementation templates using (simple) state holding elements.

At this point it is relevant to mention that the equations for when to set and
reset the state-holding element for signal z can be found by rewriting the original
equation (that covers states in which z = R and z = 1) into the following form:

z = “Set” + z · “Reset” (6.1)

For signal c in the above example (figure 6.12 on page 93) we would get the
following set and reset functions: cset = d + ab and creset = b (which is
identical to the result in figure 6.15 in section 6.4.3). Furthermore it is obvious
that for all reachable states (only) the set and reset functions for a signal z must
never be active at the same time:

“Set” ∧ “Reset” ≡ 0

The following sections will develop the idea of using state-holding elements
and we will illustrate the techniques by re-implementing example 2 from the
previous section.

Chapter 6: Speed-independent control circuits 97

6.4.2 Excitation regions and quiescent regions
The above idea of using a state-holding device for each variable can be formal-
ized as follows:

An excitation region, ER, for a variable z is a maximally-connected set of
states in which the variable is excited:

ER(z+) denotes a region of states where z = R = 0*

ER(z−) denotes a region of states where z = F = 1*

A quiescent region, QR, for a variable z is a maximally-connected set of states
in which the variable is not excited:

QR(z+) denotes a region of states where z = 1

QR(z−) denotes a region of states where z = 0

For a given circuit the state space can be disjointly divided into one or more
regions of each type.

The set function (cover) for a variable z:

must contain all states in the ER(z+) regions

may contain states from the QR(z+) regions

may contain states not reachable by the circuit

The reset function (cover) for a variable z:

must contain all states in the ER(z−) regions

may contain states from the QR(z−) regions

may contain states not reachable by the circuit

In section 6.4.4 below we will add what is known as the monotonic cover
constraint or the unique entry constraint in order to avoid hazards:

A cube (product term) in the set or reset function of a variable must only
be entered through a state where the variable is excited.

Having mentioned this last constraint, we have above a complete recipe
for the design of speed-independent circuits where each non-input signal is
implemented by a state holding device. Let us continue with example 2.

98 Part I: Asynchronous circuit design – A tutorial

6.4.3 Example 2: Using state-holding elements
Figure 6.15 illustrates the above procedure for example 2 from sections 6.3.2

and 6.3.3. As before, the Boolean equations (for the set and reset functions)
may need to be implemented using atomic complex gates in order to ensure that
the resulting circuit is speed-independent.

ER2(c-)

QR1(c+)

QR1(c-)

ER1(c+)

ER2(c+)
a+

b+

d+

c+d-

c-

b-

b+

c+

a-

001*0

10*00

1100*

110*1

1111*

0*0*00

1*110

01*10

010*0

14

6

4

0

8

12

2

15

13

2

6

14

10

3

7

15

118 9

12 13

54

0 1

10

11

01

10110100

00

c d

a b

0

0 x x x

x x

x x 1

0 1 1

R

R

F

c-reset = b

c-set = d + a b

Figure 6.15. Excitation and quiescent regions in the state diagram for signal c in the example
circuit from figure 6.10, and the corresponding derivation of equations for the set and reset
functions.

Cx1

c-set

c-reset

2

6

14

10

3

7

15

118 9

12 13

54

0 1

10

11

01

10110100

00

c d

a b

0

0 x x x

x x

x x 1

0 1 1

R

R

F c-reset = b

c-set = d + a b

& +a
d

b

b
c

Figure 6.16. Implementation of c using a standard C-element and simple gates, along with the
Karnaugh map from which the set and reset functions were derived.

6.4.4 The monotonic cover constraint
A standard C-element based implementation of signal c from above, with the

set and reset functions implemented using simple gates, is shown in figure 6.16
along with the Karnaugh map from which the set and reset functions are derived.
The set function involves two cubes d and ab that are input signals to an OR
gate. This implementation may exhibit a dynamic-10 hazard on the cset-signal

Chapter 6: Speed-independent control circuits 99

in a similar way to that discussed previously. The Karnaugh map in figure 6.16
shows the sequence of states that may lead to a malfunction: (8, 12, 13, 15, 14,
6, 0). Signal d is low in state 12, high in states 13 and 15, and low again in state
14. This sequence of states corresponds to a pulse on d. Through the OR gate
this will create a pulse on the cset signal that will cause c to go high. Later in
state 2, c will go low again. This is the desired behaviour. The problem is that
the internal signal x1 that corresponds to the other cube in the expression for
cset becomes excited (x1 = R) in state 6. If this AND gate is slow this may
produce an unintended pulse on the cset signal after c has been reset again.

If the cube ab (that covers states 4, 5, 7, and 6) is reduced to include only
states 4 and 5 corresponding to cset = d + abc we would avoid the problem.
The effect of this modification is that the OR gate is never exposed to more
than one input signal being high, and when this is the case we do not have
problems with the principle of indication (c.f. the discussion of indication and
dual-rail circuits in chapter 2). Another way of expressing this is that a cover
cube must only be entered through states belonging to an excitation region.
This requirement is known as:

the monotonic cover constraint: only one product term in a sum-of-
products implementation is allowed to be high at any given time. Obvi-
ously the requirement need only be satisfied in the states that are reachable
by the circuit, or alternatively

the unique entry constraint: cover cubes may only be entered through
excitation region states.

6.4.5 Circuit topologies using state-holding elements
In addition to the set-reset flip-flop and the standard C-element based tem-

plates presented above, there are a number of alternative solutions for imple-
menting variables using a state-holding device.

A popular approach is the generalized C-element that is available to the
CMOS transistor-level designer. Here the state-holding mechanism and the
set and reset functions are implemented in one (atomic) compound structure
of n- and p-type transistors. Figure 6.17 shows a gate-level symbol for a cir-
cuit where zset = ab and zreset = bc along with dynamic and static CMOS
implementations.

An alternative implementation that may be attractive to a designer using a
standard cell library that includes (complex) And-Or-Invert gates is shown in
figure 6.18. The circuit has the interesting property that it produces both the
desired signal z and its complement z and during transitions it never produces
(z, z) = (1, 1). Again, the example is a circuit where zset = ab and zreset = bc.

100 Part I: Asynchronous circuit design – A tutorial

P

N
"Set"

"Reset"

P
"Reset"

N
"Set" "Reset"

"Set"

N

P

zz

z-set = a b

z-reset = b c

Dynamic (and pseudostatic) CMOS implementation:

Gate level symbol:

Static CMOS implementation:

+

-

a

b
c

zC

b

c b

c

a

b
b

a

a

b

c

z

Figure 6.17. A generalized C-element: gate-level symbol, and some CMOS transistor imple-
mentations.

&

&

&

&

+

+

Set

Reset

z

z

a
b

b

c

Figure 6.18. An SR implementation based on two complex And-Or-Invert gates.

Chapter 6: Speed-independent control circuits 101

6.5. Initialization
Initialization is an important aspect of practical circuit design, and unfortu-

nately it has not been addressed in the above. The synthesis process assumes
an initial state that corresponds to the initial marking of the STG, and the re-
sulting synthesized circuit is a correct speed-independent implementation of
the specification provided that the circuit starts out in the same initial state.
Since the synthesized circuits generally use state-holding elements or circuitry
with feedback loops it is necessary to actively force the circuit into the intended
initial state.

Consequently, the designer has to do a manual post-synthesis hack and ex-
tend the circuit with an extra signal which, when active, sets all state-holding
constructs into the desired state. Normally the circuits will not be speed-
independent with respect to this initialization signal; it is assumed to be asserted
for long enough to cause the desired actions before it is de-asserted.

For circuit implementations using state-holding elements such as set-reset
latches and standard C-elements, initialization is trivial provided that these
components have special clear/preset signals in addition to their normal inputs.
In all other cases the designer has to add an initialization signal to the relevant
Boolean equations explicitly. If the synthesis process is targeting a given cell
library, the modified logic equations may need further logic decomposition, and
as we have seen this may compromise speed-independence.

The fact that initialization is not included in the synthesis process is obviously
a drawback, but normally one would implement a library of control circuits and
use these as building blocks when designing circuits at the more abstract “static
data-flow structures” level as introduced in chapter 3.

Initializing all control circuits as outlined above is a simple and robust ap-
proach. However, initialization of asynchronous circuits based on handshake
components may also be achieved by an implicit approach that that exploits the
function of the circuit to “propagate” initial signal values into the circuit. In Tan-
gram (section 8.3, and chapter 13 in part III) this this is called self-initialization,
[101].

6.6. Summary of the synthesis process
The previous sections have covered the basic theory for synthesizing SI con-

trol circuits from STG specifications. The style of presentation has deliberately
been chosen to be an informal one with emphasis on examples and the intuition
behind the theory and the synthesis procedure.

The theory has roots in work done by the following Universities and groups:
University of Illinois [68], MIT [18, 16], Stanford [6], IMEC [110, 121], St.
Petersburg Electrical Engineering Institute [111], and the multinational group
of researchers who have developed the Petrify tool [21] that we will introduce

102 Part I: Asynchronous circuit design – A tutorial

in the next section. This author has attended several discussions from which
it is clear that in some cases the concepts and theories have been developed
independently by several groups, and I will refrain from attempting a precise
history of the evolution. The reader who is interested in digging deeper into the
subject is encouraged to consult the literature; in particular the book by Myers
[70].

In summary the synthesis process outlined in the previous sections involves
the following steps:

1 Specify the desired behaviour of the circuit and its (dummy) environment
using an STG.

2 Check that the STG satisfies properties 1-5 on page 88: 1-bounded, con-
sistent state assignment, liveness, only input free choice and controlled
choice and persistency. An STG satisfying these conditions is a valid
specification of an SI circuit.

3 Check that the specification satisfies property 6 on page 88: complete
state coding (CSC). If the specification does not satisfy CSC it is nec-
essary to add one or more state variables or to change the specification
(which is often possible in 4-phase control circuits where the down-going
signal transitions can be shuffled around). Some tools (including Petrify)
can insert state variables automatically, whereas re-shuffling of signals
– which represents a modification of the specification – is a task for the
designer.

4 Select an implementation template and derive the Boolean equations for
the variables themselves, or for the set and reset functions when state
holding devices are used. Also decide if these equations can be imple-
mented in atomic gates (typically complex AOI-gates) or if they are to
be implemented by structures of simpler gates. These decisions may be
set by switches in the synthesis tools.

5 Derive the Boolean equations for the desired implementation template.

6 Manually modify the implementation such that the circuit can be forced
into the desired initial state by an explicit reset or initialization signal.

7 Enter the design into a CAD tool and perform simulation and layout of
the circuit (or the system in which the circuit is used as a component).

6.7. Petrify: A tool for synthesizing SI circuits from STGs
Petrify is a public domain tool for manipulating Petri nets and for syn-

thesizing SI control circuits from STG specifications. It is available from
http://www.lsi.upc.es/~jordic/petrify/petrify.html.

Chapter 6: Speed-independent control circuits 103

Petrify is a typical UNIX program with many options and switches. As a
circuit designer one would probably prefer a push-button synthesis tool that
accepts a specification and produces a circuit. Petrify can be used this way but
it is more than this. If you know how to play the game it is an interactive tool
for specifying, checking, and manipulating Petri nets, STGs and state graphs.
In the following section we will show some examples of how to design speed-
independent control circuits.

Input to Petrify is an STG described in a simple textual format. Using the
program draw astg that is part of the Petrify distribution (and that is based
on the graph visualization package ‘dot’ developed at AT&T) it is possible to
produce a drawing of the STGs and state graphs. The graphs are “nice” but the
topological organization may be very different from how the designer thinks
about the problem. Even the simple task of checking that an STG entered in
textual form is indeed the intended STG may be difficult.

To help ease this situation a graphical STG entry and simulation tool called
VSTGL (Visual STG Lab) has been developed at the Technical University of
Denmark. To help the designer obtain a correct specification VSTGL includes
an interactive simulator that allows the designer to add tokens and to fire tran-
sitions. It also carries out certain simple checks on the STG.

VSTGL is available from http://vstgl.sourceforge.net/ and it is the
result of a small student project done by two 4th year students. VSTGL is stable
and reliable, though naming of signal transitions may seem a bit awkward.

Petrify can solve CSC violations by inserting state variables, and it can be
controlled to target the implementation templates introduced in section 6.4:

The -cg option will produce a complex-gate circuit (one where each non-
input signal is implemented in a single complex gate).

The -gc option will produce a generalized C-element circuit. The outputs
from Petrify are the Boolean equations for the set and reset functions for
each non-input signal.

The -gcm option will produce a generalized C-element solution where the
set and reset functions satisfy the monotonic cover requirement. Con-
sequently the solution can also be mapped onto a standard C-element
implementation where the set and reset functions are implemented us-
ing simple AND and OR gates.

The -tm option will cause Petrify to perform technology mapping onto a
gate library that can be specified by the user. Technology mapping can
obviously not be combined with the -cg and -gc options.

Petrify comes with a manual and some examples. In the following section
we will go through some examples drawn from the previous chapters of the
book.

104 Part I: Asynchronous circuit design – A tutorial

6.8. Design examples using Petrify
In the following we will illustrate the use of Petrify by specifying and syn-

thesizing: (a) example 2 – the circuit with choice, (b) a control circuit for the
4-phase bundled-data implementation of the latch from figure 3.3 on page 32
and (c) a control circuit for the 4-phase bundled-data implementation of the
MUX from figure 3.3 on page 32. For all of the examples we will assume push
channels only.

6.8.1 Example 2 revisited
As a first example, we will synthesize the different versions of example 2

that we have already designed manually. Figure 6.19 shows the STG as it is
entered into VSTGL. The corresponding textual input to Petrify (the ex2.g file)
and the STG as it may be visualized by Petrify are shown in figure 6.20. Note
in figure 6.20 that an index is added when a signal transition appears more than
once in order to facilitate the textual input.

P0

c+

b+

P1

c-

b-

a-

d-

c+

a+

b+

d+d+d+d+d+d+d+d+

Figure 6.19. The STG of example 2 as it is entered into VSTGL.

Using complex gates
> petrify ex2.g -cg -eqn ex2-cg.eqn

The STG has CSC.
File generated by petrify 4.0 (compiled 22-Dec-98 at 6:58 PM)
from <ex2.g> on 6-Mar-01 at 8:30 AM

....

Chapter 6: Speed-independent control circuits 105

.model ex2

.inputs a b

.outputs c d

.graph
P0 a+ b+
c+ P1
b+ c+
P1 b-
c- P0
b- c-
a- P1
d- a-
c+/1 d-
a+ b+/1
b+/1 d+
d+ c+/1
.marking { P0 }
.end

INPUTS: a,b
OUTPUTS: c,d

P0

a+ b+

b+/1 c+

c-

P1

b-

d+

c+/1 a-

d-

Figure 6.20. The textual description of the STG for example 2 and the drawing of the STG that
is produced by Petrify.

The original TS had (before/after minimization) 9/9 states
Original STG: 2 places, 10 transitions, 13 arcs ...
Current STG: 4 places, 9 transitions, 18 arcs ...
It is a Petri net with 1 self-loop places

...

> more ex2-cg.eqn

EQN file for model ex2
Generated by petrify 4.0 (compiled 22-Dec-98 at 6:58 PM)
Outputs between brackets "[out]" indicate a feedback to input "out"
Estimated area = 7.00

INORDER = a b c d;
OUTORDER = [c] [d];
[c] = b (c + a’) + d;
[d] = a b c’;

Using generalized C-elements:
> petrify ex2.g -gc -eqn ex2-gc.eqn

...
> more ex2-gc.eqn

EQN file for model ex2
Generated by petrify 4.0 (compiled 22-Dec-98 at 6:58 PM)
Outputs between brackets "[out]" indicate a feedback to input "out"
Estimated area = 12.00

106 Part I: Asynchronous circuit design – A tutorial

INORDER = a b c d;
OUTORDER = [c] [d];
[0] = a’ b + d;
[1] = a b c’;
[d] = d c’ + [1]; # mappable onto gC
[c] = c b + [0]; # mappable onto gC

The equations for the generalized C-elements should be “interpreted”
according to equation 6.1 on page 96

Using standard C-elements and set/reset functions that satisfy the monotonic
cover constraint:

> petrify ex2.g -gcm -eqn ex2-gcm.eqn

...
> more ex2-gcm.eqn

EQN file for model ex2
Generated by petrify 4.0 (compiled 22-Dec-98 at 6:58 PM)
Outputs between brackets "[out]" indicate a feedback to input "out"
Estimated area = 10.00

INORDER = a b c d;
OUTORDER = [c] [d];
[0] = a’ b c’ + d;
[d] = a b c’;
[c] = c b + [0]; # mappable onto gC

Again, the equations for the generalized C-element should be “interpreted”
according to equation 6.1 on page 96.

6.8.2 Control circuit for a 4-phase bundled-data latch
Figure 6.21 shows an asynchronous handshake latch with a dummy environ-

ment on its left and right side. The latch can be implemented using a normal
N-bit wide transparent latch and the control circuit we are about to design. A
driver may be needed for the latch control signal Lt. In order to make the latch
controller robust and independent of the delay in this driver, we may feed the
buffered signal (Lt) back such that the controller knows when the signal has
been presented to the latch. Figure 6.21 also shows fragments of the STG spec-
ification – the handshaking of the left and right hand environments and ideas
about the behaviour of the latch controller. Initially Lt is low and the latch is
transparent, and when new input data arrives they will flow through the latch.
In response to Rin+, and provided that the right hand environment is ready for
another handshake (Aout = 0), the controller may generate Rout+ right away.

Chapter 6: Speed-independent control circuits 107

Latch controller Right hand environment

Lt-Lt+

Rin+

Ain+

Rin-

Ain-

Rin+ Aout-

Rout+

Ain+

Rin- Aout+

Rout-

Ain-

Rout+

Aout+

Rout-

Aout-

Left hand environment

EN
EN

EN = 0: Latch is transparant

EN = 1: Latch holds data

The control circuit

A handshake latch

La
tc

h

Lt

Rin

Ain

Rout

Aout

Lt

Rin

Ain

Rout

Aout

Figure 6.21. A 4-phase bundled-data handshake latch and some STG fragments that capture
ideas about its behaviour.

Rout+

Rin+

Lt+

Ain+

Rin-

Rout-

Lt-

Ain-

Aout-

Aout+Aout+Aout+Aout+Aout+Aout+Aout+Aout+Aout+Aout+Aout+Aout+Aout+Aout+Aout+

Figure 6.22. The resulting STG for the latch controller (as input to VSTGL).

108 Part I: Asynchronous circuit design – A tutorial

Furthermore the data should be latched, Lt+, and an acknowledge sent to the
left hand environment, Ain+. A symmetric scenario is possible in response to
Rin− when the latch is switched back into the transparent mode. Combining
these STG fragments results in the STG shown in figure 6.22.
Running Petrify yields the following:

> petrify lctl.g -cg -eqn lctl-cg.eqn

The STG has CSC.
File generated by petrify 4.0 (compiled 22-Dec-98 at 6:58 PM)
from <lctl.g> on 6-Mar-01 at 11:18 AM
...
The original TS had (before/after minimization) 16/16 states
Original STG: 0 places, 10 transitions, 14 arcs (0 pt + ...
Current STG: 0 places, 10 transitions, 12 arcs (0 pt + ...
It is a Marked Graph
.model lctl
.inputs Aout Rin
.outputs Lt Rout Ain
.graph
Rout+ Aout+ Lt+
Lt+ Ain+
Aout+ Rout-
Rin+ Rout+
Ain+ Rin-
Rin- Rout-
Ain- Rin+
Rout- Lt- Aout-
Aout- Rout+
Lt- Ain-
.marking { <Aout-,Rout+> <Ain-,Rin+> }
.end

> more lctl-cg.eqn

EQN file for model lctl
Generated by petrify 4.0 (compiled 22-Dec-98 at 6:58 PM)
Outputs between brackets "[out]" indicate a feedback to input "out"
Estimated area = 7.00

INORDER = Aout Rin Lt Rout Ain;
OUTORDER = [Lt] [Rout] [Ain];
[Lt] = Rout;
[Rout] = Rin (Rout + Aout’) + Aout’ Rout;
[Ain] = Lt;

The equation for [Rout] may be rewritten as:

[Rout] = Rin Aout’ + Rout (Rin + Aout’)

which can be recognized to be a C-element with inputs Rin and Aout’.

Chapter 6: Speed-independent control circuits 109

6.8.3 Control circuit for a 4-phase bundled-data MUX
After the above two examples, where we have worked out already well-

known circuit implementations, let us now consider a more complex example
that cannot (easily) be done by hand. Figure 6.23 shows the handshake multi-
plexer from figure 3.3 on page 32. It also shows how the handshake MUX can
be implemented by a “regular” combinational circuit multiplexer and a control
circuit. Below we will design a speed-independent control circuit for a 4-phase
bundled-data MUX.

CtlReqCtl CtlAck

Handshake MUX

0

1

In0

In1
Out

Ctl

0

1

In1Req
In1Ack

In0Ack
In0Req

In1Data

In0data

OutAck
OutReq

OutData

Figure 6.23. The handshake MUX and the structure of a 4-phase bundled-data implementation.

The MUX has three input channels and we must assume they are connected to
three independent dummy environments. The dots remind us that the channels
are push channels. When specifying the behaviour of the MUX control circuit
and its (dummy) environment it is important to keep this in mind. A typical
error when drawing STGs is to specify an environment with a more limited
behaviour than the real environment. For each of the three input channels the
STG has cycles involving (Req+;Ack+;Req−;Ack−; etc.), and each of these
cycles is initialized to contain a token.

As mentioned previously, it is sometimes easier to deal with control channels
using dual-rail (or in general1−of−N) data encodings since this implies dealing
with one-hot (decoded) control signals. As a first step towards the STG for a
MUX using entirely 4-phase bundled-data channels, figure 6.24 shows an STG
for a MUX where the control channel uses dual-rail signals (Ctl .t , Ctl .f and
CtlAck). This STG can then be combined with the STG-fragment for a 4-
phase bundled-data channel from figure 6.8 on page 91, resulting in the STG
in figure 6.25. The “intermediate” STG in figure 6.24 emphasizes the fact that
the MUX can be seen as a controlled join – the two mutually exclusive and
structurally identical halves are basically the STGs of a join.

110 Part I: Asynchronous circuit design – A tutorial

Ctl.t+

CtlAck+

OutReq+

OutAck+

In1Ack+

In1Req-

OutReq-

OutAck-

In1Ack-

OutAck+

In0Req+

In0Ack+

In0Req-

OutReq-

OutAck-

In0Ack-

In1Req+ Ctl.f+

CtlAck+

OutReq+

P2P1 P0

Ctl.t- Ctl.f-

CtlAck- CtlAck-

Figure 6.24. The STG specification of the control circuit for a 4-phase bundled-data MUX
using a 4-phase dual-rail control channel. Combined with the STG fragment for a bundled-data
(control) channel the resulting STG for an all 4-phase dual-rail MUX is obtained (figure 6.25).

Ctl-

Ctl+

CtlReq+

P5

P2

P3

P4

OutReq+

CtlAck+

CtlAck-

CtlReq-

OutReq+

OutAck+

In1Ack+

In1Req-

OutReq-

OutAck-

In1Ack-

OutAck+

In0Req+

In0Ack+

In0Req-

OutReq-

OutAck-

In0Ack-

In1Req+

P1

P0

P6

CtlReq-

CtlAck+

CtlAck-

Figure 6.25. The final STG specification of the control circuit for the 4-phase bundled-data
MUX. All channels, including the control channel, are 4-phase bundled-data.

Chapter 6: Speed-independent control circuits 111

Below is the result of running Petrify, this time with the -o option that writes
the resulting STG (possibly with state signals added) in a file rather than to
stdout.

>petrify MUX4p.g -o MUX4p-csc.g -gcm -eqn MUX4p-gcm.eqn

State coding conflicts for signal In1Ack
State coding conflicts for signal In0Ack
State coding conflicts for signal OutReq

The STG has no CSC.
Adding state signal: csc0
The STG has CSC.

> more MUX4p-gcm.eqn

EQN file for model MUX4p
Generated by petrify 4.0 (compiled 22-Dec-98 at 6:58 PM)
Outputs between brackets "[out]" indicate a feedback to input "out"
Estimated area = 29.00

INORDER = In0Req OutAck In1Req Ctl CtlReq In1Ack In0Ack OutReq
CtlAck csc0;

OUTORDER = [In1Ack] [In0Ack] [OutReq] [CtlAck] [csc0];
[In1Ack] = OutAck csc0’;
[In0Ack] = OutAck csc0;
[2] = CtlReq (In1Req csc0’ + In0Req Ctl’);
[3] = CtlReq’ (In1Req’ csc0’ + In0Req’ csc0);
[OutReq] = OutReq [3]’ + [2]; # mappable onto gC
[5] = OutAck’ csc0;
[CtlAck] = CtlAck [5]’ + OutAck; # mappable onto gC
[7] = OutAck’ CtlReq’;
[8] = CtlReq Ctl;
[csc0] = csc0 [8]’ + [7]; # mappable onto gC

As can be seen, the STG does not satisfy CSC (complete state coding) as
several markings correspond to the same state vector, so Petrify adds an internal
state-signal csc0. The intuition is that after CtlReq− the Boolean signal Ctl
is no longer valid but the MUX control circuit has not yet finished its job. If
the circuit can’t see what to continue doing from its input signals it needs an
internal state variable in which to keep this information. The signal csc0 is an
active-low signal: it is set low if Ctl = 0 when CtlReq+ and it is set back to
high when OutAck and CtlReq are both low. The fact that the signal csc0 is
high when all channels are idle (all handshake signals are low) should be kept
in mind when dealing with reset, c.f. section 6.5.

The exact details of how the state variable is added can be seen from the STG
that includes csc0 which is produced by Petrify before it synthesizes the logic
expressions for the circuit.

112 Part I: Asynchronous circuit design – A tutorial

It is sometimes possible to avoid adding a state variable by re-shuffling signal
transitions. It is not always obvious what yields the best solution. In principle
more concurrency should improve performance, but it also results in a larger
state-space for the circuit and this often tends to result in larger and slower
circuits. A discussion of performance also involves the interaction with the
environment. There is plenty of room for exploring alternative solutions.

Ctl-

Ctl+

CtlReq+

P5

P2

P3

P4

OutReq+

CtlAck+

CtlAck-

CtlReq-

OutReq+

OutAck+

In1Ack+

In1Req-

OutReq-

OutAck-

In1Ack-

OutAck+

In0Req+

In0Ack+

In0Req-

OutReq-

OutAck-

In0Ack-

In1Req+

P1

P0

P6

CtlReq-

CtlAck+

CtlAck-

Figure 6.26. The modified STG specification of the 4-phase bundled-data MUX control circuit.

In figure 6.26 we have removed some concurrency from the MUX STG
by ordering the transitions on In0Ack/In1Ack and CtlAck (In0Ack+ ≺
CtlAck+, In1Ack+ ≺ CtlAck+ etc.). This STG satisfies CSC and the
resulting circuit is marginally smaller:

> more MUX4p-gcm.eqn

EQN file for model MUX4pB
Generated by petrify 4.0 (compiled 22-Dec-98 at 6:58 PM)
Outputs between brackets "[out]" indicate a feedback to input "out"
Estimated area = 27.00

Chapter 6: Speed-independent control circuits 113

INORDER = In0Req OutAck In1Req Ctl CtlReq In1Ack In0Ack OutReq CtlAck;
OUTORDER = [In1Ack] [In0Ack] [OutReq] [CtlAck];
[0] = Ctl CtlReq OutAck;
[1] = Ctl’ CtlReq OutAck;
[2] = CtlReq (Ctl’ In0Req + Ctl In1Req);
[3] = CtlReq’ (In0Ack’ In1Req’ + In0Req’ In0Ack);
[OutReq] = OutReq [3]’ + [2]; # mappable onto gC
[CtlAck] = In1Ack + In0Ack;
[In1Ack] = In1Ack OutAck + [0]; # mappable onto gC
[In0Ack] = In0Ack OutAck + [1]; # mappable onto gC

6.9. Summary
This chapter has provided an introduction to the design of asynchronous

sequential (control) circuits with the main focus on speed-independent circuits
and specifications using STGs. The material was presented from a practical
view in order to enable the reader to go ahead and design his or her own speed-
independent control circuits. This, rather than comprehensiveness, has been our
goal, and as mentioned in the introduction we have largely ignored important
alternative approaches including burst-mode and fundamental-mode circuits.

Chapter 7

ADVANCED 4-PHASE BUNDLED-DATA
PROTOCOLS AND CIRCUITS

The previous chapters have explained the basics of asynchronous circuit de-
sign. In this chapter we will address 4-phase bundled-data protocols and circuits
in more detail. This will include: (1) a variety of channel types, (2) protocols
with different data-validity schemes, and (3) a number of more sophisticated
latch control circuits. These latch controllers are interesting for two reasons:
they are very useful in optimizing the circuits for area, power and speed, and
they are nice examples of the types of control circuits that can be specified and
synthesized using the STG-based techniques from the previous chapter.

7.1. Channels and protocols
7.1.1 Channel types

So far we have considered only push channels where the sender is the active
party that initiates the communication of data, and where the receiver is the
passive party. The opposite situation, where the receiver is the active party that
initiates the communication of data, is also possible, and such a channel is called
a pull channel. A channel that carries no data is called a nonput channel and is
used for synchronization purposes. Finally, it is also possible to communicate
data from a receiver to a sender along with the acknowledge signal. Such a
channel is called a biput channel. In a 4-phase bundled-data implementation
data from the receiver is bundled with the acknowledge, and in a 4-phase dual-
rail protocol the passive party will acknowledge the reception of a codeword
by returning a codeword rather than just an an acknowledge signal. Figure 7.1
illustrates these four channel types (nonput, push, pull, and biput) assuming
a bundled-data protocol. Each channel type may, of course, use any of the
handshake protocols (2-phase or 4-phase) and data encodings (bundled-data,
dual-rail, m−of−n, etc.) introduced previously.

115

116 Part I: Asynchronous circuit design – A tutorial

7.1.2 Data-validity schemes
For the bundled-data protocols it is also relevant to define the time interval

in which data is valid, and figure 7.2 illustrates the different possibilities.
For a push channel the request signal carries the message “here is new data

for you” and the acknowledge signal carries the information “thank you, I have
absorbed the data, and you may release the data wires.” Similarly, for a pull
channel the request signal carries the message “please send new data” and the
acknowledge signal carries the message “here is the data that you requested.” It
is the signal transitions on the request and acknowledge wires that are interpreted
in this way. A 4-phase handshake involves two transitions on each wire and,
depending on whether it is the rising or the falling transitions on the request
and acknowledge signals that are interpreted in this way, several data-validity
schemes emerge: early, broad, late and extended early.

Since 2-phase handshaking does not involve any redundant signal transitions
there is only one data-validity scheme for each channel type (push or pull), as
illustrated in figure 7.2.

It is common to all of the data-validity schemes that the data is valid some
time before the event that indicates the start of the interval, and that it remains
stable until some time after the event that indicates the end of the interval.
Furthermore, all of the data-validity schemes express the requirements of the
party that receives the data. The fact that a receiver signals “thank you, I have
absorbed the data, and you may go ahead and release the data wires,” does
not mean that this actually happens – the sender may prolong the data-validity
interval, and the receiver may even rely on this.

A typical example of this is the extended-early data-validity schemes in
figure 7.2. On a push channel the data-validity interval begins some time before
Req ↑ and ends some time after Req ↓.

7.1.3 Discussion
The above classification of channel types and handshake protocols stems

mostly from Peeters’ Ph.D. thesis [86]. The choice of channel type, handshake
protocol and data-validity scheme obviously affects the implementation of the
handshake components in terms of area, speed, and power. Just as a design
may use a mix of different bundled-data and dual-rail protocols, it may also use
a mix of channel types and data-validity schemes.

For example, a 4-phase bundled-data push channel using a broad or an
extended-early data-validity scheme is a very convenient input to a function
block that is implemented using precharged CMOS circuitry: the request sig-
nal may directly control the precharge and evaluate transistors because the broad
and the extended-early data-validity schemes guarantee that the input data is
stable during the evaluate phase.

Chapter 7: Advanced 4-phase bundled-data protocols and circuits 117

n

Data

Ack

Req

n

Ack

Req

Req

Data

Data

Ack

Nonput channel

Data

Ack

Req

Biput channel (bundled data)

Push channel (bundled data)

Pull channel (bundled data)

Figure 7.1. The four fundamental channel types: nonput, push, biput, and pull.

Data (early)

4-phase protocol:
(push channel)

Ack

Req

Data (broad)

Data (late)

Data (extended early)

Data (early)

Ack

Req

Data (broad)

Data (late)

Data (extended early)

4-phase protocol:
(pull channel)

Ack

Req

Data (pull channel)

2-phase protocols:

Data (push channel)

Figure 7.2. Data-validity schemes for 2-phase and 4-phase bundled data.

118 Part I: Asynchronous circuit design – A tutorial

Another interesting option in a 4-phase bundled-data design is to use func-
tion blocks that assume a broad data validity scheme on the input channel and
that produce a late data validity scheme on the output channel. Under these
assumptions it is possible to use a symmetric delay element that matches only
half of the latency of the combinatorial circuit. The idea is that the sum of the
delay of Req ↑ and Req ↓matches the latency of the combinatorial circuit, and
that Req ↓ indicates valid output data. In [86, p.46] this is referred to as true
single phase because the return-to-zero part of the handshaking is no longer
redundant. This approach also has implications for the implementation of the
components that connect to the function block.

It is beyond the scope of this text to enter into a discussion of where and
when to use the different options. The interested reader is referred to [86, 54]
for more details.

7.2. Static type checking
When designing circuits it is useful to think of the combination of channel

type and data-validity scheme as being similar to a data type in a programming
language, and to do some static type checking of the circuit being designed
by asking questions like: “what types are allowed on the input ports of this
handshake component?” and “what types are produced on the output ports
of this handshake component?”. The latter may depend on the type that was
provided on the input port. A similar form of type checking for synchronous
circuits using two-phase non-overlapping clocks has been proposed in [78] and
used in the Genesil silicon compiler [47].

"broad"

"extended early"

"late""early"

Figure 7.3. Hierarchical ordering of the four data-validity schemes for the 4-phase bundled-data
protocol.

Figure 7.3 shows a hierarchical ordering of the four possible types (data
validity schemes) for a 4-phase bundled-data push channel: “broad” is the
strongest type and it can be used as input to circuits that require any of the
weaker types. Similarly “extended early” may be used where only “early” is
required. Circuits that are transparent to handshaking (function blocks, join,
fork, merge, mux, demux) produce outputs whose type is at most as strong as
their (weakest) input type. In general the input and output types are the same
but there are examples where this is not the case. The only circuit that can

Chapter 7: Advanced 4-phase bundled-data protocols and circuits 119

produce outputs whose type is stronger than the input type is a latch. Let us
look at some examples:

A join that concatenates two inputs of type “extended early” produces
outputs that are only “early.’

From the STG fragments in figure 6.21 on page 107 it may be seen that
the simple 4-phase bundled-data latch controller from the previous chap-
ters (figure 2.9 on page 18) assumes “early” inputs and that it produces
“extended-early” outputs.

The 4-phase bundled-data MUX design in section 6.8.3 assumes “ex-
tended early” on its control input (the STG in figure 6.25 on page 110
specifies stable input from CtlReq+ to CtlReq−).

The reader is encouraged to continue this exercise and perhaps draw the
associated timing diagrams from which the types of the outputs may be deduced.
The type checking explained here is a very useful technique for debugging
circuits that exhibit erronous behaviour.

7.3. More advanced latch control circuits
In previous chapters we have only considered 4-phase bundled-data hand-

shake latches using a latch controller consisting of a C-element and an inverter
(figure 2.9 on page 18). In [31] this circuit is called a simple latch controller,
and in [54] it is called an un-decoupled latch controller.

When a pipeline or FIFO that uses the simple latch controller fills, every
second handshake latch will be holding a valid token and every other handshake

EN

L

EN

L

EN

L

EN

L

EN

L

E D3 E E D1D2

Ack

Req

Data

Ack

Req

EN

L Data

(b)

(a)

C C C C C C

Figure 7.4. (a) A FIFO based on handshake latches, and (b) its implementation using simple
latch controllers and level-sensitive latches. The FIFO fills with valid data in every other latch.
A latch is transparent when EN = 0 and it is opaque (holding data) when EN = 1.

120 Part I: Asynchronous circuit design – A tutorial

Ack
Req

Data

Ack
Req

DataD3 D2 D1

EN EN EN

Latch Latch Latch
control control control

Figure 7.5. A FIFO where every level-sensitive latch holds valid data when the FIFO is full.
The semi-decoupled and fully-decoupled latch controllers from [31] allow this behaviour.

latch will be holding an empty token as illustrated in figure 7.4(a) – the static
spread of the pipeline is S = 2.

This token picture is a bit misleading. The empty tokens correspond to the
return-to-zero part of the handshaking and in reality the latches are not “holding
empty tokens” – they are transparent, and this represents a waste of hardware
resource.

Ideally one would want to store a valid token in every level-sensitive latch
as illustrated in figure 7.5 and just “add” the empty tokens to the data stream
on the interfaces as part of the handshaking. In [31] Furber and Day explain
the design of two such improved 4-phase bundled-data latch control circuits:
a semi-decoupled and a fully-decoupled latch controller. In addition to these
specific circuits the paper also provides a nice illustration of the use of STGs
for designing control circuits following the approach explained in chapter 6.
The three latch controllers have the following characteristics:

The simple or un-decoupled latch controller has the problem that new
input data can only be latched when the previous handshake on the output
channel has completed, i.e., after Aout↓. Furthermore, the handshakes
on the input and output channels interact tightly: Rout↑ ¹ Ain↑ and
Rout↓ ¹ Ain↓.

The semi-decoupled latch controller relaxes these requirements some-
what: new inputs may be latched after Rout↓, and the controller may
produce Ain↑ independently of the handshaking on the output channel –
the interaction between the input and output channels has been relaxed
to: Aout↑ ¹ Ain↑.

The fully-decoupled latch controller further relaxes these requirements:
new inputs may be latched after Aout↑ (i.e. as soon as the downstream
latch has indicated that it has latched the current data), and the handshak-
ing on the input channel may complete without any interaction with the
output channel.

Another potential drawback of the simple latch controller is that it is unable
to take advantage of function blocks with asymmetric delays as explained in

Chapter 7: Advanced 4-phase bundled-data protocols and circuits 121

Latch controller Static spread, S Period, P

“Simple” 2 2Lr + 2Lf.V

“Semi-decoupled” 1 2Lr + 2Lf.V

“Fully-decoupled” 1 2Lr + Lf.V + Lf.E

Table 7.1. Summary of the characteristics of the latch controllers in [31].

section 4.4.1 on page 52. The fully-decoupled latch controller presented in
[31] does not have this problem. Due to the decoupling of the input and output
channels the dependency graph critical cycle that determines the period, P , only
visits nodes related to two neighbouring pipeline stages and the period becomes
minimum (c.f. section 4.4.1). Table 7.1 summarizes the characteristics of the
simple, semi-decoupled and fully-decoupled latch controllers.

All of the above-mentioned latch controllers are “normally transparent” and
this may lead to excessive power consumption because inputs that make multiple
transitions before settling will propagate through several consecutive pipeline
stages. By using “normally opaque” latch controllers every latch will act as a
barrier. If a handshake latch that is holding a bubble is exposed to a token on
its input, the latch controller switches the latch into the transparent mode, and
when the input data have propagated safely into the latch, it will switch the latch
back into the opaque mode in which it will hold the data. In the design of the
asynchronous MIPS processor reported in [15] we experienced approximately
a 50 % power reduction when using normally opaque latch controllers instead
of normally transparent latch controllers.

Figure 7.6 shows the STG specification and the circuit implementation of the
normally opaque latch controller used in [15]. As seen from the STG there is
quite a strong interaction between the input and output channels, but the depen-
dency graph critical cycle that determines the period only visits nodes related
to two neighbouring pipeline stages and the period is minimum. It may be
necessary to add some delay into the Lt+ to Rout+ path in order to ensure that
input signals have propagated through the latch before Rout+. Furthermore
the duration of the Lt = 0 pulse that causes the latch to be transparent is deter-
mined by gate delays in the latch controller itself, and the pulse must be long
enough to ensure safe latching of the data. The latch controller assumes a broad
data-validity scheme on its input channel and it provides a broad data-validity
scheme on its output channel.

7.4. Summary
This chapter introduced a selection of channel types, data-validity schemes

and a selection of latch controllers. The presentation was rather brief; the aim
was just to present the basics and to introduce some of the many options and

122 Part I: Asynchronous circuit design – A tutorial

Lt = 0: Latch is transparant

Lt = 1: Latch is opaque (holding data)

C

CC

C

++
++

B

EN

Rin+ Rout+

Ain+

Rin-

Ain- Aout-

Rout-

Aout+

Lt-

B+

B-

Lt+

Lt

Rout

AoutRin

Ain

La
tc

h

Lt

Rin

Ain

Rout

Aout

Din Dout

Figure 7.6. The STG specification and the circuit implementation of the normally opaque
fully-decoupled latch controller from [15].

possibilities for optimizing the circuits. The interested reader is referred to the
literature for more details.

Finally a warning: the static data-flow view of asynchronous circuits pre-
sented in chapter 3 (i.e. that valid and empty tokens are copied forward con-
trolled by the handshaking between latch controllers) and the performance anal-
ysis presented in chapter 4 assume that all handshake latches use the simple
normally transparent latch controller. When using semi-decoupled or fully-
decoupled latch controllers, it is necessary to modify the token flow view, and
to rework the performance analysis. To a first order one might substitute each
semi-decoupled or fully-decoupled latch controller with a pair of simple latch
controllers. Furthermore a ring need only include two handshake latches if
semi-decoupled or fully-decoupled latch controllers are used.

Chapter 8

HIGH-LEVEL LANGUAGES AND TOOLS

This chapter addresses languages and CAD tools for the high-level modeling
and synthesis of asynchronous circuits. The aim is briefly to introduce some
basic concepts and a few representative and influential design methods. The
interested reader will find more details elsewhere in this book (in Part II and
chapter 13) as well as in the original papers that are cited in the text. In the last
section we address the use of VHDL for the design of asynchronous circuits.

8.1. Introduction
Almost all work on the high-level modeling and synthesis of asynchronous

circuits is based on the use of a language that belongs to the CSP family of
languages, rather than one of the two industry-standard hardware description
languages, VHDL and Verilog. Asynchronous circuits are highly concurrent
and communication between modules is based on handshake channels. Conse-
quently a hardware description language for asynchronous circuit design should
provide efficient primitives supporting these two characteristics. The CSP lan-
guage proposed by Hoare [42, 43] meets these requirements. CSP stands for
“Communicating Sequential Processes” and its key characteristics are:

Concurrent processes.

Sequential and concurrent composition of statements within a process.

Synchronous message passing over point-to-point channels (supported
by the primitives send, receive and – possibly – probe).

CSP is a member of a large family of languages for programming concurrent
systems in general: OCCAM [48], LOTOS [82, 8], and CCS [64], as well as
languages defined specifically for designing asynchronous circuits: Tangram
[108, 101], CHP [58], and Balsa [3, 4]. Further details are presented elsewhere
in this book on Tangram (in Part III, chapter 13) and Balsa (in Part II).

In this chapter we first take a closer look at the CSP language constructs
supporting communication and concurrency. This will include a few sample
programs to give a flavour of this type of language. Following this we briefly

123

124 Part I: Asynchronous circuit design – A tutorial

explain two rather different design methods that both take a CSP-like program
as the starting point for the design:

At Philips Research Laboratories, van Berkel, Peeters, Kessels et al.
have developed a proprietary language, Tangram, and an associated sili-
con compiler [108, 107, 101, 86]. Using a process called syntax-directed
compilation, the synthesis tool maps a Tangram program into a structure
of handshake components. Using these tools several significant asyn-
chronous chips have been designed within Philips [103, 104, 109, 50, 51].
The last of these is a smart-card circuit that is described in chapter 13 on
page 221.

At Caltech Martin has developed a language CHP – Communicating
Hardware Processes – and a set of tools that supports a partly manual,
partly automated design flow that targets highly optimized transistor-level
implementations of QDI 4-phase dual-rail circuits [57, 60].

CHP has a syntax that is similar to CSP (using various special symbols)
whereas Tangram has a syntax that is more like a traditional programming
language (using keywords); but in essence they are both very similar to CSP.

In the last section of this chapter we will introduce a VHDL-package that
provides CSP-like message passing and explain an associated VHDL-based
design flow that supports a manual step-wise refinement design process.

8.2. Concurrency and message passing in CSP
The “sequential processes” part of the CSP acronym denotes that each process

is described by a program whose statements are executed in sequence one by
one. A semicolon is used to separate statements (as in many other programming
languages). The semicolon can be seen as an operator that combines statements
into programs. In this respect a process in CSP is very similar to a process
in VHDL. However, CSP also allows the parallel composition of statements
within a process. The symbol “‖” denotes parallel composition. This feature
is not found in VHDL, whereas the fork-join construct in Verilog does allow
statement-level concurrency within a process.

The “communicating” part of the CSP acronym refers to synchronous mes-
sage passing using point-to-point channels as illustrated in figure 8.1, where
two processes P1 and P2 are connected by a channel named C. Using a send
statement, C!x, process P1 sends (denoted by the ‘!’ symbol) the value of
its variable x on channel C, and using a receive statement, C?y, process P2
receives (denoted by the ‘?’ symbol) from channel C a value that is assigned
to its variable y. The channel is memoryless and the transfer of the value of
variable x in P1 into variable y in P2 is an atomic action. This has the effect
of synchronizing processes P1 and P2. Whichever comes first will wait for

Chapter 8: High-level languages and tools 125

P2:

C

....
C!x;
....
x:= 17;
var x ...

P1:
var y,z ...
....

C?y;
z:= y -17;
....

Figure 8.1. Two processes P1 and P2 connected by a channel C. Process P1 sends the value
of its variable x to the channel C, and process P2 receives the value and assigns it to its variable y.

the other party, and the send and receive statements complete at the same time.
The term rendezvous is sometimes used for this type of synchronization.

When a process executes a send (or receive) statement, it commits to the
communication and suspends until the process at the other end of the channel
performs its receive (or send) statement. This may not always be desirable, and
Martin has extended CSP with a probe construct [56] which allows the process
at the passive end of a channel to probe whether or not a communication is
pending on the channel, without committing to any communication. The probe
is a function which takes a channel name as its argument and returns a Boolean.
The syntax for probing channel C is C.

As an aside we mention that some languages for programming concurrent
systems assume channels with (possibly unbounded) buffering capability. The
implication of this is that the channel acts as a FIFO, and the communicating
processes do not synchronize when they communicate. Consequently this form
of communication is called asynchronous message passing.

Going back to our synchronous message passing, it is obvious that the phys-
ical implementation of a memoryless channel is simply a set of wires together
with a protocol for synchronizing the communicating processes. It is also ob-
vious that any of the protocols that we have considered in the previous chapters
may be used. Synchronous message passing is thus a very useful language
construct that supports the high-level modeling of asynchronous circuits by ab-
stracting away the exact details of the data encoding and handshake protocol
used on the channel.

Unfortunately both VHDL and Verilog lack such primitives. It is possible
to write low-level code that implements the handshaking, but it is highly unde-
sirable to mix such low-level details into code whose purpose is to capture the
high-level behaviour of the circuit.

In the following section we will provide some small program examples to
give a flavour of this type of language. The examples will be written in Tangram
as they also serve the purpose of illustrating syntax-directed compilation in a

126 Part I: Asynchronous circuit design – A tutorial

subsequent section. The source code, handshake circuit figures, and fragments
of the text have been kindly provided by Ad Peeters from Philips.

Manchester University has recently developed a similar language and syn-
thesis tool that is available in the public domain [4], and is introduced in Part
II of this book. Other examples of related work are presented in [9] and [13].

8.3. Tangram: program examples
This section provides a few simple Tangram program examples: a 2-place

shift register, a 2-place ripple FIFO, and a greatest common divisor function.

8.3.1 A 2-place shift register
Figure 8.2 shows the code for a 2-place shift register named ShiftReg. It

is a process with an input channel In and an output channel Out, both carrying
variables of type [0..255]. There are two local variables x and y that are
initialized to 0. The process performs an unbounded repetition of a sequence
of three statements: out!y; y:=x; in?x.

x y out

ShiftReg

in

T = type [0..255]
& ShiftReg : main proc(in? chan T & out! chan T).

begin
& var x,y: var T := 0

|
forever do

out!y ; y:=x ; in?x
od

end

Figure 8.2. A Tangram program for a 2-place shift register.

8.3.2 A 2-place (ripple) FIFO
Figure 8.3 shows the Tangram program for a 2-place first-in first-out buffer

named Fifo. It can be understood as two 1-place buffers that are operating in
parallel and that are connected by a channel c. At first sight it appears very
similar to the 2-place shift register presented above, but a closer examination
will show that it is more flexible and exhibits greater concurrency.

Chapter 8: High-level languages and tools 127

x yin out

Fifo

c

T = type [0..255]
& Fifo : main proc(in? chan T & out! chan T).

begin
& x,y: var T
& c : chan T
|

forever do in?x ; c!x od
|| forever do c?y ; out!y od

end

Figure 8.3. A Tangram program for a 2-place (ripple) FIFO.

8.3.3 GCD using while and if statements
Figure 8.4 shows the code for a module that computes the greatest common

divisor, the example from section 3.7. The “do x<>y then . . . od” is a while
statement and, apart from the syntactical differences, the code in figure 8.4 is
identical to the code in figure 3.11 on page 39.

The module has an input channel from which it receives the two operands,
and an output channel on which it sends the result.

int = type [0..255]
& gcd_if : main proc (in?chan <<int,int>> & out!chan int).

begin x,y:var int ff
| forever do

in?<<x,y>>
; do x<>y then

if x<y then y:=y-x
else x:=x-y

fi
od

; out!x
od

end

Figure 8.4. A Tangram for GCD using while and if statements.

128 Part I: Asynchronous circuit design – A tutorial

8.3.4 GCD using guarded commands
Figure 8.5 shows an alternative version of GCD. This time the module has

separate input channels for the two operands and its body is based on the repe-
tition of a guarded command. The guarded repetition can be seen as a general-
ization of the while statement. The statement repeats until all guards are false.
When at least one of the guards is true, exactly one command corresponding to
such a true guard is selected (either deterministically or non-deterministically)
and executed.

int = type [0..255]
& gcd_gc : main proc (in1,in2?chan int & out!chan int).

begin x,y:var int ff
| forever do

in1?x || in2?y
; do x<y then y:=y-x

or y<x then x:=x-y
od

; out!x
od

end

Figure 8.5. A Tangram program for GCD using guarded repetition.

8.4. Tangram: syntax-directed compilation
Let us now address the synthesis process. The design flow uses an inter-

mediate format based on handshake circuits. The front-end design activity is
called VLSI programming and, using syntax-directed compilation, a Tangram
program is mapped into a structure of handshake components. There is a one-
to-one correspondence between the Tangram program and the handshake circuit
as will be clear from the following examples. The compilation process is thus
fully transparent to the designer, who works entirely at the Tangram program
level.

The back-end of the design flow involves a library of handshake circuits that
the compiler targets as well as some tools for post-synthesis peephole optimiza-
tion of the handshake circuits (i.e. replacing common structures of handshake
components by more efficient equivalent ones). A number of handshake circuit
libraries exist, allowing implementations using different handshake protocols
(4-phase dual-rail, 4-phase bundled-data, etc.), and different implementation
technologies (CMOS standard cells, FPGAs, etc.). The handshake components
can be specified and designed: (i) manually, or (ii) using STGs and Petrify as
explained in chapter 6, or (iii) using the lower steps in Martin’s transformation-
based method that is presented in the next section.

Chapter 8: High-level languages and tools 129

It is beyond the scope of this text to explain the details of the compilation
process. We will restrict ourselves to providing a flavour of “syntax-directed
compilation” by showing handshake circuits corresponding to the example Tan-
gram programs from the previous section.

8.4.1 The 2-place shift register
As a first example of syntax-directed compilation figure 8.6 shows the hand-

shake circuit corresponding to the Tangram program in figure 8.2.

-in →- →-x-

; 0
1

2

?

→-y- - out

Figure 8.6. The compiled handshake circuit for the 2-place shift register.

Handshake components are represented by circular symbols, and the chan-
nels that connect the components are represented by arcs. The small dots on
the component symbols represent ports. An open dot denotes a passive port
and a solid dot denotes an active port. The arrowhead represents the direction
of the data transfer. A nonput channel does not involve the transfer of data and
consequently it has no direction and no arrowhead. As can be seen in figure 8.6
a handshake circuit uses a mix of push and pull channels.

The structure of the program is a forever-do statement whose body consists
of three statements that are executed sequentially (because they are separated
by semicolons). Each of the three statements is a kind of assignment statement:
the value of variable y is “assigned” to output channel out, the value of variable
x is assigned to variable y, and the value received on input chanel in is assigned
to variable x. The structure of the handshake circuit is exactly the same:

At the top is a repeater that implements the forever-do statement. A
repeater waits for a request on its passive input port and then it performs
an unbounded repetition of handshakes on its active output channel. The
handshake on the input channel never completes.

Below is a 3-way sequencer that implements the semicolons in the pro-
gram text. The sequencer waits for a request on its passive input channel,
then it performs in sequence a full handshake on each of its active out-

130 Part I: Asynchronous circuit design – A tutorial

put channels (in the order indicated by the numbers in the symbol) and
finally it completes the handshaking on the passive input channel. In
this way the sequencer activates in turn the handshake circuit constructs
that correspond to the individual statements in the body of the forever-do
statement.

The bottom row of handshake components includes two variables, x and
y, and three transferers, denoted by ‘→’. Note that variables have passive
read and write ports. The transferers implement the three statements
(out!y; y:=x; in?x) that form the body of the forever-do statement,
each a form of assignment. A transferer waits for a request on its passive
nonput channel and then initiates a handshake on its pull input channel.
The handshake on the pull input channel is relayed to the push output
channel. In this way the transferer pulls data from its input channel and
pushes it onto its output channel. Finally, it completes the handshaking
on the passive nonput channel.

8.4.2 The 2-place FIFO
Figure 8.7 shows the handshake circuit corresponding to the Tangram pro-

gram in figure 8.3. The component labeled ‘psv’ in the handshake circuit of
figure 8.7 is a so-called passivator. It relates to the internal channel c of the
Fifo and implements the synchronization and communication between the ac-
tive sender (c!x) and the active receiver (c?y).

-in

?

;0 1

→- →-x- psv-

‖ ?

;0 1

→- →-y- - out

Figure 8.7. Compiled handshake circuit for the FIFO program.

An optimization of the handshake circuit for Fifo is shown in figure 8.8.
The synchronization in the datapath using a passivator has been replaced by a
synchronization in the control using a ‘join’ component. One may observe that
the datapath of this handshake circuit for the FIFO design is the same as that of
the shift register, shown in figure 8.2. The only difference is in the control part
of the circuits.

Chapter 8: High-level languages and tools 131

-in

?

;0 1

→- →-x-

•

‖ ?

;0 1

→-y- - out

Figure 8.8. Optimized handshake circuit for the FIFO program.

8.4.3 GCD using guarded repetition
As a more complex example of syntax-directed compilation figure 8.9 shows

the handshake circuit compiled from the Tangram program in figure 8.5. Com-
pared with the previous handshake circuits, the handshake circuit for the GCD
program introduces two new classes of components that are treated in more
detail below.

Firstly, the circuit contains a ‘bar’ and a ‘do’ component, both of which are
data-dependent control components. Secondly, the handshake circuit contains
components that do not directly correspond to language constructs, but rather
implement sharing: the multiplexer (denoted by ‘mux’), the demultiplexer (de-
noted by ‘dmx’), and the fork component (denoted by ‘•’).

Warning: the Tangram fork is identical to the fork in figure 3.3 but the
Tangram multiplexer and demultiplexer components are different. The Tangram
multiplexer is identical to the merge in figure 3.3 and the Tangram demultiplexer
is a kind of “inverse merge.” Its output ports are passive and it requires the
handshakes on the two outputs to be mutually exclusive.

The ‘bar’ and the ‘do’ components: The do and bar component together
implement the guarded command construct with two guards, in which the do
component implements the iteration part (the do od part, including the evalu-
ation of the disjunction of the two guards), and the bar component implements
the choice part (the then or then part of the command).

The do component, when activated through its passive port, first collects
the disjunction of the value of all guards through a handshake on its active
data port. When the value thus collected is true, it activates its active nonput
port (to activate the selected command), and after completion starts a new
evaluation cycle. When the value collected is false, the do component completes
its operation by completing the handshake on the passive port.

132 Part I: Asynchronous circuit design – A tutorial

→-in2 mux
?

- y-

↓
?

− ¾
ª

dmx

6

•
6

<
R

-

→-in1 mux

6

- x-

↑
6

− ¾

I

dmx

?

•
?

<

µ

-

bar -
µ

R
do‖

→ - out-

;0 1
2

?

Figure 8.9. Compiled handshake circuit for the GCD program using guarded repetition.

The bar component can be activated either through its passive data port, or
through its passive control port. (The do component, for example, sequences
these two activations.) When activated through the data port, it collects the
value of two guards through a handshake on the active data ports, and then
sends the disjunction of these values along the passive data port, thus completing
that handshake. When activated through the control port, the bar component
activates an active control port of which the associated data port returned a
‘true’ value in the most recent data cycle. (For simplicity, this selection is
typically implemented in a deterministic fashion, although this is not required
at the level of the program.) One may observe that bar components can be

Chapter 8: High-level languages and tools 133

combined in a tree or list to implement a guarded command list of arbitrary
length. Furthermore, not every data cycle has to be followed by a control cycle.

The ‘mux’, ‘demux’, and ‘fork’ components The program for GCD in
figure 8.4 has two occurrences of variable x in which a value is written into x,
namely input action in1?x and assignment x:=x-y. In the handshake circuit
of figure 8.9, these two write actions for Tangram variable x are merged by the
multiplexer component so as to arrive at the write port of handshake variable x.

Variable x occurs at five different locations in the program as an expression,
once in the output expression out!x, twice in the guard expressions x<y and
y<x, and twice in the assignment expressions x-y and y-x. These five in-
spections of variable x could be implemented as five distinct read ports on the
handshake variable x, which is shown in the handshake circuit in [101, Fig. 2.7,
p.34]. In figure 8.9, a different compilation is shown, in which handshake
variable x has three read ports:

A read port dedicated to the occurrence in the output action.

A read port dedicated to the guard expressions. Their evaluation is mu-
tually inclusive, and hence can be combined using a synchronizing fork
component.

A read port dedicated to the assignment expressions. Their evaluation is
mutually exclusive, and hence can be combined using a demultiplexer.

The GCD example is discussed in further detail in chapter 13.

8.5. Martin’s translation process
The work of Martin and his group at Caltech has made fundamental contri-

butions to asynchronous design and it has influenced the work of many other
researchers. The methods have been used at Caltech to design several significant
chips, most recently and most notably an asynchronous MIPS R3000 processor
[63]. As the following presentation of the design flow hints, the design process
is elaborate and sophisticated and is probably only an option to a person who
has spent time with the Caltech group.

The mostly manual design process involves the following steps (semantics-
preserving transformations):

(1) Process decomposition where each process is refined into a collection
of interacting simpler processes. This step is repeated until all processes are
simple enough to be dealt with in the next step in the process.

(2) Handshake expansion where each communication channel is replaced by
explicit wires and where each communication action (e.g. send or receive) is
replaced by the signal transitions required by the protocol that is being used.

134 Part I: Asynchronous circuit design – A tutorial

For example a receive statement such as:

C?y

is replaced by a sequence of simpler statements – for example:

[Creq]; y := data; Cack ↑; [¬Creq]; Cack ↓
which is read as: “wait for request to go high”, “read the data”, “drive acknowl-
edge high”, “wait for request to go low”, and “drive acknowledge low”.

At this level it may be necessary to add state variables and/or to reshuffle
signal transitions in order to obtain a specification that satisfies a condition
similar to the CSC condition in chapter 6.

(3) Production rule expansion where each handshaking expansion is replaced
by a set of production rules (or guarded commands), for example:

a ∧ b 7→ c ↑ and ¬b ∧ ¬c 7→ c ↓
A production rule consist of a condition and an action, and the action is per-
formed whenever the condition is true. As an aside we mention that the above
two production rules express the same as the set and reset functions for the signal
c on page 96. The production rules specify the behaviour of the internal signals
and output signals of the process. The production rules are themselves sim-
ple concurrent processes and the guards must ensure that the signal transitions
occur in program order (i.e. that the semantics of the original CHP program
are maintained). This may require strengthening the guards. Furthermore, in
order to obtain simpler circuit implementations, the guards may be modified
and made symmetric.

(4) Operator reduction where production rules are grouped into clusters and
where each cluster is mapped onto a basic hardware component similar to a
generalized C-element. The above two production rules would be mapped into
the generalized C-element shown in figure 6.17 on page 100.

8.6. Using VHDL for asynchronous design
8.6.1 Introduction

In this section we will introduce a couple of VHDL packages that provide the
designer with primitives for synchronous message passing between processes
– similar to the constructs found in the CSP-family of languages (send, receive
and probe).

The material was developed in an M.Sc. project and used in the design of a
32-bit floating-point ALU using the IEEE floating-point number representation
[84], and it has subsequently been used in a course on asynchronous circuit
design. Others, including [70, 89, 113, 55], have developed related VHDL
packages and approaches.

Chapter 8: High-level languages and tools 135

The channel packages introduced in the following support only one type
of channel, using a 32-bit 4-phase bundled-data push protocol. However, as
VHDL allows the overloading of procedures and functions, it is straightforward
to define channels with arbitrary data types. All it takes is a little cut-and-paste
editing. Providing support for protocols other than the 4-phase bundled-data
push protocol will require more significant extensions to the packages.

8.6.2 VHDL versus CSP-type languages
The previous sections introduced several CSP-like hardware description lan-

guages for asynchronous design. The advantages of these languages are their
support of concurrency and synchronous message passing, as well as a limited
and well-defined set of language constructs that makes syntax-directed compi-
lation a relatively simple task.

Having said this there is nothing that prevents a designer from using one
of the industry standard languages VHDL (or Verilog) for the design of asyn-
chronous circuits. In fact some of the fundamental concepts in these languages
– concurrent processes and signal events – are “nice fits” with the modeling and
design of asynchronous circuits. To illustrate this figure 8.10 shows how the
Tangram program from figure 8.2 could be expressed in plain VHDL. In addi-
tion to demonstrating the feasibility, the figure also highlights the limitations of
VHDL when it comes to modeling asynchronous circuits: most of the code ex-
presses low-level handshaking details, and this greatly clutters the description
of the function of the circuit.

VHDL obviously lacks built-in primitives for synchronous message passing
on channels similar to those found in CSP-like languages. Another feature of
the CSP family of languages that VHDL lacks is statement-level concurrency
within a process. On the other hand there are also some advantages of using an
industry standard hardware description language such as VHDL:

It is well supported by existing CAD tool frameworks that provide sim-
ulators, pre-designed modules, mixed-mode simulation, and tools for
synthesis, layout and the back annotation of timing information.

The same simulator and test bench can be used throughout the entire
design process from the first high-level specification to the final imple-
mentation in some target technology (for example a standard cell layout).

It is possible to perform mixed-mode simulations where some entities
are modeled using behavioural specifications and others are implemented
using the components of the target technology.

Many real-world systems include both synchronous and asynchronous
subsystems, and such hybrid systems can be modeled without any prob-
lems in VHDL.

136 Part I: Asynchronous circuit design – A tutorial

library IEEE;
use IEEE.std_logic_1164.all;

type T is std_logic_vector(7 downto 0)

entity ShiftReg is
port (in_req : in std_logic;

in_ack : out std_logic;
in_data : in T;
out_req : out std_logic;
out_ack : in std_logic;
out-data : out T);

end ShiftReg;

architecture behav of ShiftReg is
begin
process

variable x, y: T;
begin

loop
out_req <= ’1’ ; -- out!y
out_data <= y ;
wait until out_ack = ’1’;
out_req <= ’0’;
wait until out_ack = ’0’;
y := x; -- y := x
wait until in_req = ’1’; -- in?x
x := in_data;
in.ack <= ’1’;
wait until ch_req = ’0’;
ch_ack <= ’0’;

end loop;
end process;

end behav;

Figure 8.10. VHDL description of the 2-place shift register FIFO stage from figure 8.2.

8.6.3 Channel communication and design flow
The design flow presented in what follows is motivated by the advantages

mentioned above. The goal is to augment VHDL with CSP-like channel com-
munication primitives, i.e. the procedures send(<channel>, <variable>)
andreceive(<channel>,<variable>) and the functionprobe(<channel>).
Another goal is to enable mixed-mode simulations where one end of a channel
connects to an entity whose architecture body is a circuit implementation and
the other end connects to an entity whose architecture body is a behavioural de-
scription using the above communication primitives, figure 8.11(b). In this way
a manual top-down stepwise refinement design process is supported, where the
same test bench is used throughout the entire design process from high-level
specification to low-level circuit implementation, figure 8.11(a-c).

Chapter 8: High-level languages and tools 137

(c)
Data

Control

Latches

Ack

Req

Comb. logic

Entity 2:

High−level model:

Entity 2:

Receive(<channel>,<var>)
channel

Data

Control

Latches

Ack

Req

Comb. logic

channel

Mixed−mode model: Entity 2:

Entity 1:

channel

Comb. logic
Latches

Ack

Req

Data

Control

Low−level model:

Entity 1:

Send(<channel>,<var>)

Entity 1:

Send(<channel>,<var>)

(a)

(b)

Figure 8.11. The VHDL packages for channel communication support high-level, mixed-mode
and gate-level/standard cell simulations.

In VHDL all communication between processes takes place via signals.
Channels therefore have to be declared as signals, preferably one signal per
channel. Since (for a push channel) the sender drives the request and data part
of a channel, and the receiver drives the acknowledge part, there are two drivers
to one signal. This is allowed in VHDL if the signal is a resolved signal. Thus,
it is possible to define a channel type as a record with a request, an acknowledge
and a data field, and then define a resolution function for the channel type which
will determine the resulting value of the channel. This type of channel, with
separate request and acknowledge fields, will be called a real channel and is
described in section 8.6.5. In simulations there will be three traces for each
channel, showing the waveforms of request and acknowledge along with the
data that is communicated.

A channel can also be defined with only two fields: one that describes the
state of the handshaking (called the “handshake phase” or simply the “phase”)
and one containing the data. The type of the phase field is an enumerated type,
whose values can be the handshake phases a channel can assume, as well as
the values with which the sender and receiver can drive the field. This type of

138 Part I: Asynchronous circuit design – A tutorial

channel will be called an abstract channel. In simulations there will be two
traces for each channel, and it is easy to read the phases the channel assumes
and the data values that are transfered.

The procedures and definitions are organized into two VHDL-packages: one
called “abstpack.vhd” that can be used for simulating high-level models and one
called “realpack.vhd” that can be used at all levels of design. Full listings can
be found in appendix 8.A at the end of this chapter. The design flow enabled
by these packages is as follows:

The circuit and its environment or test bench is first modelled and sim-
ulated using abstract channels. All it takes is the following statement in
the top level design unit: “usepackage work.abstpack.all”.

The circuit is then partitioned into simpler entities. The entities still
communicate using channels and the simulation still uses the abstract
channel package. This step may be repeated.

At some point the designer changes to using the real channel package
by changing to: “usepackage work.realpack.all” in the top-level
design unit. Apart from this simple change, the VHDL source code is
identical.

It is now possible to partition entities into control circuitry (that can be
designed as explained in chapter 6) and data circuitry (that consist of or-
dinary latches and combinational circuitry). Mixed mode simulations as
illustrated in figure 8.11(b) are possible. Simulation models of the con-
trol circuits may be their actual implementation in the target technology
or simply an entity containing a set of concurrent signal assignments –
for example the Boolean equations produced by Petrify.

Eventually, when all entities have been partitioned into control and data,
and when all leaf entities have been implemented using components of
the target technology, the design is complete. Using standard technology
mapping tools an implementation may be produced, and the circuit can
be simulated with back annotated timing information.

Note that the same simulation test bench can be used throughout the entire
design process from the high-level specification to the low-level implementation
using components from the target technology.

8.6.4 The abstract channel package
An abstract channel is defined in figure 8.12 with a data type called fp (a

32-bit standard logic vector representing an IEEE floating-point number). The
actual channel type is called channel fp. It is necessary to define a channel

Chapter 8: High-level languages and tools 139

type handshake_phase is
(

u, -- uninitialized
idle, -- no communication
swait, -- sender waiting
rwait, -- receiver waiting
rcv, -- receiving data
rec1, -- recovery phase 1
rec2, -- recovery phase 2
req, -- request signal
ack, -- acknowledge signal
error -- protocol error

);

subtype fp is std_logic_vector(31 downto 0);

type uchannel_fp is
record
phase : handshake_phase;
data : fp;

end record;

type uchannel_fp_vector is array(natural range <>) of uchannel_fp;

function resolved(s : uchannel_fp_vector) return uchannel_fp;

subtype channel_fp is resolved uchannel_fp;

Figure 8.12. Definition of an abstract channel.

for each data type used in the design. The data type can be an arbitrary type,
including record types, but it is advisable to use data types that are built from
std logic because this is typically the type used by target component libraries
(such as standard cell libraries) that are eventually used for the implementation.

The meaning of the values of the type handshake phase are described in
detail below:

u: Uninitialized channel. This is the default value of the drivers. As long as
either the sender or receiver drive the channel with this value, the channel
stays uninitialized.

idle: No communication. Both the sender and receiver drive the channel with
the idle value.

swait: The sender is waiting to perform a communication. The sender is driving
the channel with thereqvalue and the receiver drives with theidlevalue.

rwait: The receiver is waiting to perform a communication. The sender is
driving the channel with the idle value and the receiver drives with the

140 Part I: Asynchronous circuit design – A tutorial

rwait value. This value is used both as a driving value and as a resulting
value for a channel, just like the idle and u values.

rcv: Data is transfered. The sender is driving the channel with the req value
and the receiver drives it with the rwait value. After a predefined amount
of time (tpd at the top of the package, see later in this section) the receiver
changes its driving value to ack, and the channel changes its phase to
rec1. In a simulation it is only possible to see the transfered value during
the rcv phase and the swait phase. At all other times the data field
assumes a predefined default data value.

rec1: Recovery phase. This phase is not seen in a simulation, since the channel
changes to the rec2 phase with no time delay.

rec2: Recovery phase. This phase is not seen in a simulation, since the channel
changes to the idle phase with no time delay.

req: The sender drives the channel with this value, when it wants to perform a
communication. A channel can never assume this value.

ack: The receiver drives the channel with this value when it wants to perform
a communication. A channel can never assume this value.

error: Protocol error. A channel assumes this value when the resolution func-
tion detects an error. It is an error if there is more than one driver with
an rwait, req or ack value. This could be the result if more than two
drivers are connected to a channel, or if a send command is accidentally
used instead of a receive command or vice versa.

Figure 8.13 shows a graphical illustration of the protocol of the abstract
channel. The values in large letters are the resulting values of the channel, and
the values in smaller letters below them are the driving values of the sender
and receiver respectively. Both the sender and receiver are allowed to initiate
a communication. This makes it possible in a simulation to see if either the

IDLE

IDLE

RWAIT
IDLE
RWAIT

SWAIT
REQ
IDLE

RCV
REQ

REC1
REQ
ACK

REC2
IDLE
ACK-

U
U

IDLE
RWAIT

Figure 8.13. The protocol for the abstract channel. The values in large letters are the resulting
resolved values of the channel, and the values in smaller letters below them are the driving values
of the sender and receiver respectively.

Chapter 8: High-level languages and tools 141

sender or receiver is waiting to communicate. It is the procedures send and
receive that follow this protocol.

Because channels with different data types are defined as separate types, the
procedures send, receive and probe have to be defined for each of these
channel types. Fortunately VHDL allows overloading of procedure names,
so it is possible to make these definitions. The only differences between the
definitions of the channels are the data types, the names of the channel types and
the default values of the data fields in the channels. So it is very easy to copy
the definitions of one channel to make a new channel type. It is not necessary
to redefine the type handshake phase. All these definitions are conveniently
collected in a VHDL package. This package can then be referenced wherever
needed. An example of such a package with only one channel type can be seen
in appendix A.1. The procedures initialize in and initialize out are
used to initialize the input and output ends of a channel. If a sender or receiver
does not initialize a channel, no communications can take place on that channel.

A simple example of a subcircuit is the FIFO stage fp latch shown in
figure 8.14. Notice that the channels in the entity have the mode inout, and

library IEEE;
use IEEE.std_logic_1164.all;
use work.abstract_channels.all;

entity fp_latch is
generic(delay : time);
port (d : inout channel_fp; -- input data channel
port (q : inout channel_fp; -- output data channel

resetn : in std_logic);
end fp_latch;

architecture behav of fp_latch is
begin

process
variable data : fp;

begin
initialize_in(d);
initialize_out(q);
wait until resetn = ’1’;
loop

receive(d, data);
wait for delay;
send(q, data);

end loop;
end process;

end behav;

Figure 8.14. Description of a FIFO stage.

142 Part I: Asynchronous circuit design – A tutorial

d q

resetn

fp_latch

ch_in ch_out
d q

resetn

fp_latch

d q

resetn

fp_latch

FIFO_stage_1 FIFO_stage_2 FIFO_stage_3

Figure 8.15. A FIFO built using the latch defined in figure 8.14.

Figure 8.16. Simulation of the FIFO using the abstract channel package.

the FIFO stage waits for the reset signal resetn after the initialization. In that
way it waits for other subcircuits which may actually use this reset signal for
initialization.

The FIFO stage uses a generic parameter delay. This delay is inserted for
experimental reasons in order to show the different phases of the channels.
Three FIFO stages are connected in a pipeline (figure 8.15) and fed with data
values. The middle section has a delay that is twice as long as the other two
stages. This will result in a blocked channel just before the slow FIFO stage
and a starved channel just after the slow FIFO stage.

The result of this experiment can be seen in figure 8.16. The simulator used
is the Synopsys VSS. It is seen that ch in is predominantly in the swait phase,
which characterizes a blocked channel, and ch out is predominantly in the
rwait phase, which characterizes a starved channel.

8.6.5 The real channel package
At some point in the design process it is time to separate communicating

entities into control and data entities. This is supported by the real channel
types, in which the request and acknowledge signals are separate std logic
signals – the type used by the target component models. The data type is the
same as the abstract channel type, but the handshaking is modeled differently.
A real channel type is defined in figure 8.17.

Chapter 8: High-level languages and tools 143

subtype fp is std_logic_vector(31 downto 0);

type uchannel_fp is
record
req : std_logic;
ack : std_logic;
data : fp;

end record;

type uchannel_fp_vector is array(natural range <>) of
uchannel_fp;

function resolved(s : uchannel_fp_vector) return uchannel_fp;

subtype channel_fp is resolved uchannel_fp;

Figure 8.17. Definition of a real channel.

All definitions relating to the real channels are collected in a package (sim-
ilar to the abstract channel package) and use the same names for the channel
types, procedures and functions. For this reason it is very simple to switch to
simulating using real channels. All it takes is to change the name of the package
in the use statements in the top level design entity. Alternatively, one can use
the same name for both packages, in which case it is the last analyzed package
that is used in simulations.

An example of a real channel package with only one channel type can be
seen in appendix A.2. This package defines a 32-bit standard logic 4-phase
bundled-data push channel. The constant tpd in this package is the delay
from a transition on the request or acknowledge signal to the response to this
transition. “Synopsys compiler directives” are inserted in several places in the
package. This is because Synopsys needs to know the channel types and the
resolution functions belonging to them when it generates an EDIF netlist to the
floor planner, but not the procedures in the package.

Figure 8.18 shows the result of repeating the simulation experiment from the
previous section, this time using the real channel package. Notice the sequence
of four-phase handshakes.

Note that the data value on a channel is, at all times, whatever value the sender
is driving onto the channel. An alternative would be to make the resolution
function put out the default data value outside the data-validity period, but
this may cause the setup and hold times of the latches to be violated. The
procedure send provides a broad data-validity scheme, which means that it
can communicate with receivers that require early, broad or late data-validity
schemes on the channel. The procedure receive requires an early data-validity
scheme, which means that it can communicate with senders that provide early
or broad data-validity schemes.

144 Part I: Asynchronous circuit design – A tutorial

Figure 8.18. Simulation of the FIFO using the real channel package.

The resolution functions for the real channels (and the abstract channels) can
detect protocol errors. Examples of errors are more than one sender or receiver
on a channel, and using a send command or a receive command at the wrong
end of a channel. In such cases the channel assumes the X value on the request
or acknowledge signals.

8.6.6 Partitioning into control and data
This section describes how to separate an entity into control and data entities.

This is possible when the real channel package is used but, as explained below,
this partitioning has to follow certain guidelines.

To illustrate how the partitioning is carried out, the FIFO stage in figure 8.14
in the preceding section will be separated into a latch control circuit called
latch ctrl and a latch called std logic latch. The VHDL code is shown
in figure 8.19, and figure 8.20 is a graphical illustration of the partitioning that
includes the unresolved signals ud and uq as explained below.

In VHDL a driver that drives a compound resolved signal has to drive all fields
in the signal. Therefore a control circuit cannot drive only the acknowledge
field in a channel. To overcome this problem a signal of the corresponding
unresolved channel type has to be declared inside the partitioned entity. This
is the function of the signals ud and uq of type uchannel fp in figure 8.17.
The control circuit then drives only the acknowledge field in this signal; this is
allowed since the signal is unresolved. The rest of the fields remain uninitialized.
The unresolved signal then drives the channel; this is allowed since it drives
all of the fields in the channel. The resolution function for the channel should
ignore the uninitialized values that the channel is driven with. Components that
use the send and receive procedures also drive those fields in the channel
that they do not control with uninitialized values. For example, an output to a
channel drives the acknowledge field in the channel with the U value. The fields

Chapter 8: High-level languages and tools 145

library IEEE;
use IEEE.std_logic_1164.all;
use work.real_channels.all;

entity fp_latch is
port (d : inout channel_fp; -- input data channel

q : inout channel_fp; -- output data channel
resetn : in std_logic);

end fp_latch;

architecture struct of fp_latch is

component latch_ctrl
port (rin, aout, resetn : in std_logic;

ain, rout, lt : out std_logic);
end component;

component std_logic_latch
generic (width : positive);
port (lt : in std_logic;

d : in std_logic_vector(width-1 downto 0);
q : out std_logic_vector(width-1 downto 0));

end component;

signal lt : std_logic;
signal ud, uq : uchannel_fp;

begin

latch_ctrl1 : latch_ctrl
port map (d.req,q.ack,resetn,ud.ack,uq.req,lt);

std_logic_latch1 : std_logic_latch
generic map (width => 32)
port map (lt,d.data,uq.data);

d <= connect(ud);
q <= connect(uq);

end struct;

Figure 8.19. Separation of the FIFO stage into an ordinary data latch and a latch control circuit.

in a channel that are used as inputs are connected directly from the channel to
the circuits that have to read those fields.

Notice in the description that the signals ud and uq do not drive d and q
directly but through a function called connect. This function simply returns
its parameter. It may seem unnecessary, but it has proved to be necessary when
some of the subcircuits are described with a standard cell implementation. In
a simulation a special “gate-level simulation engine” is used to simulate the
standard cells [98]. During initialization it will set some of the signals to the
value X instead of to the value U as it should. It has not been possible to get

146 Part I: Asynchronous circuit design – A tutorial

Lt

d

std_logic_latch

q

d

resetn

Lt

Lt
aoutain

rin rout

resetn

ud
q

uq

latch_ctl

ch_in ch_out

q

resetn

d

fp_latchfp_latch fp_latch

FIFO_stage FIFO_stage FIFO_stage

Figure 8.20. Separation of control and data.

the channel resolution function to ignore these X values, because the gate-level
simulation engine sets some of the values in the channel. By introducing the
connect function, which is a behavioural description, the normal simulator
takes over and evaluates the channel by means of the corresponding resolution
function. It should be emphasized that it is a bug in the gate-level simulation
engine that necessitates the addition of the connect function.

8.7. Summary
This chapter addressed languages and CAD tools for high-level modeling and

synthesis of asynchronous circuits. The text focused on a few representative
and influential design methods that are based languages that are similar to
CSP. The reason for preferring these languages are that they support channel
based communication between processes (synchronous message passing) as
well as concurrency at both process and statement level – two features that
are important for modeling asynchronous circuits. The text also illustrated a
synthesis method known as syntax directed translation. Subsequent chapters in
this book will elaborate much more on these issues.

Finally the chapter illustrated how channel based communication can be
implemented in VHDL, and we provided two packages containing all the nec-
essary procedures and functions including: send, receive and probe. These
packages supports a manual top-down stepwise-refinement design flow where
the same test bench can be used to simulate the design throughout the entire
design process from high level specification to low level circuit implementation.

This chapter on languages and CAD-tools for asynchronous design concludes
the tutorial on asynchronous circuit design and it it time to wrap up: Chapter 2

Chapter 8: High-level languages and tools 147

presented the fundamental concepts and theories, and provided pointers to the
literature. Chapters 3 and 4 presented an RTL-like abstract view on asyn-
chronous circuits (tokens flowing in static data-flow structures) that is very
useful for understanding their operation and performance. This material is
probably where this tutorial supplements the existing body of literature the
most. Chapters 5 and 6 addressed the design of datapath operators and con-
trol circuits. Focus in chapter 6 was on speed-independent circuits, but this
is not the only approach. In recent years there has also been great progress
in synthesizing multiple-input-change fundamental-mode circuits. Chapter 7
discussed more advanced 4-phase bundled-data protocols and circuits. Finally
chapter 8 addressed languages and tools for high-level modeling and synthesis
of asynchronous circuits.

The tutorial deliberately made no attempts at covering of all corners of the
field – the aim was to pave a road into “the world of asynchronous design”.
Now you are here at the end of the road; hopefully with enough background
to carry on digging deeper into the literature, and equally importantly, with
sufficient understanding of the characteristics of asynchronous circuits, that
you can start designing your own circuits. And finally; asynchronous circuits
do not represent an alternative to synchronous circuits. They have advantages
in some areas and disadvantages in other areas and they should be seen as a
supplement, and as such they add new dimensions to the solution space that the
digital designer explores. Even today, many circuits can not be categorized as
either synchronous or asynchronous, they contain elements of both.

The following chapters will introduce some recent industrial scale asyn-
chronous chips. Additional designs are presented in [80].

148 Part I: Asynchronous circuit design – A tutorial

Appendix: The VHDL channel packages
A.1. The abstract channel package
-- Abstract channel package: (4-phase bundled-data push channel, 32-bit data)

library IEEE;
use IEEE.std_logic_1164.all;

package abstract_channels is

constant tpd : time := 2 ns;

-- Type definition for abstract handshake protocol

type handshake_phase is
(

u, -- uninitialized
idle, -- no communication
swait, -- sender waiting
rwait, -- receiver waiting
rcv, -- receiving data
rec1, -- recovery phase 1
rec2, -- recovery phase 2
req, -- request signal
ack, -- acknowledge signal
error -- protocol error

);

-- Floating point channel definitions

subtype fp is std_logic_vector(31 downto 0);

type uchannel_fp is
record
phase : handshake_phase;
data : fp;

end record;

type uchannel_fp_vector is array(natural range <>) of
uchannel_fp;

function resolved(s : uchannel_fp_vector) return uchannel_fp;

subtype channel_fp is resolved uchannel_fp;

procedure initialize_in(signal ch : out channel_fp);

procedure initialize_out(signal ch : out channel_fp);

procedure send(signal ch : inout channel_fp; d : in fp);

procedure receive(signal ch : inout channel_fp; d : out fp);

function probe(signal ch : in channel_fp) return boolean;

end abstract_channels;

Chapter 8: High-level languages and tools 149

package body abstract_channels is

-- Resolution table for abstract handshake protocol

type table_type is array(handshake_phase, handshake_phase) of
handshake_phase;

constant resolution_table : table_type := (
--
-- 2. parameter: | |
-- u idle swait rwait rcv rec1 rec2 req ack error |1. par:|
--

(u, u, u, u, u, u, u, u, u, u), --| u |
(u, idle, swait,rwait,rcv, rec1, rec2, swait,rec2, error), --| idle |
(u, swait,error,rcv, error,error,rec1, error,rec1, error), --| swait |
(u, rwait,rcv, error,error,error,error,rcv, error,error), --| rwait |
(u, rcv, error,error,error,error,error,error,error,error), --| rcv |
(u, rec1, error,error,error,error,error,error,error,error), --| rec1 |
(u, rec2, rec1, error,error,error,error,rec1, error,error), --| rec2 |
(u, error,error,error,error,error,error,error,error,error), --| req |
(u, error,error,error,error,error,error,error,error,error), --| ack |
(u, error,error,error,error,error,error,error,error,error));--| error |

-- Fp channel

constant default_data_fp : fp := "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX";

function resolved(s : uchannel_fp_vector) return uchannel_fp is
variable result : uchannel_fp := (idle, default_data_fp);

begin
for i in s’range loop

result.phase := resolution_table(result.phase, s(i).phase);
if (s(i).phase = req) or (s(i).phase = swait) or

(s(i).phase = rcv) then
result.data := s(i).data;

end if;
end loop;
if not((result.phase = swait) or (result.phase = rcv)) then

result.data := default_data_fp;
end if;
return result;

end resolved;

procedure initialize_in(signal ch : out channel_fp) is
begin
ch.phase <= idle after tpd;

end initialize_in;

procedure initialize_out(signal ch : out channel_fp) is
begin
ch.phase <= idle after tpd;

end initialize_out;

procedure send(signal ch : inout channel_fp; d : in fp) is
begin
if not((ch.phase = idle) or (ch.phase = rwait)) then

wait until (ch.phase = idle) or (ch.phase = rwait);

150 Part I: Asynchronous circuit design – A tutorial

end if;
ch <= (req, d);
wait until ch.phase = rec1;
ch.phase <= idle;

end send;

procedure receive(signal ch : inout channel_fp; d : out fp) is
begin

if not((ch.phase = idle) or (ch.phase = swait)) then
wait until (ch.phase = idle) or (ch.phase = swait);

end if;
ch.phase <= rwait;
wait until ch.phase = rcv;
wait for tpd;
d := ch.data;
ch.phase <= ack;
wait until ch.phase = rec2;
ch.phase <= idle;

end receive;

function probe(signal ch : in channel_fp) return boolean is
begin

return (ch.phase = swait);
end probe;

end abstract_channels;

A.2. The real channel package
-- Low-level channel package (4-phase bundled-data push channel, 32-bit data)

library IEEE;
use IEEE.std_logic_1164.all;

package real_channels is

-- synopsys synthesis_off
constant tpd : time := 2 ns;
-- synopsys synthesis_on

-- Floating point channel definitions

subtype fp is std_logic_vector(31 downto 0);

type uchannel_fp is
record
req : std_logic;
ack : std_logic;
data : fp;

end record;

type uchannel_fp_vector is array(natural range <>) of
uchannel_fp;

function resolved(s : uchannel_fp_vector) return uchannel_fp;

Chapter 8: High-level languages and tools 151

subtype channel_fp is resolved uchannel_fp;

-- synopsys synthesis_off
procedure initialize_in(signal ch : out channel_fp);

procedure initialize_out(signal ch : out channel_fp);

procedure send(signal ch : inout channel_fp; d : in fp);

procedure receive(signal ch : inout channel_fp; d : out fp);

function probe(signal ch : in uchannel_fp) return boolean;
-- synopsys synthesis_on

function connect(signal ch : in uchannel_fp) return channel_fp;

end real_channels;

package body real_channels is

-- Resolution table for 4-phase handshake protocol

-- synopsys synthesis_off
type stdlogic_table is array(std_logic, std_logic) of std_logic;

constant resolution_table : stdlogic_table := (
-- --
-- | 2. parameter: | |
-- | U X 0 1 Z W L H - |1. par:|
-- --

(’U’, ’X’, ’0’, ’1’, ’X’, ’X’, ’X’, ’X’, ’X’), -- | U |
(’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’), -- | X |
(’0’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’), -- | 0 |
(’1’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’), -- | 1 |
(’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’), -- | Z |
(’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’), -- | W |
(’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’), -- | L |
(’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’), -- | H |
(’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’)); -- | - |

-- synopsys synthesis_on

-- Fp channel

-- synopsys synthesis_off
constant default_data_fp : fp := "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX";
-- synopsys synthesis_on

function resolved(s : uchannel_fp_vector) return uchannel_fp is
-- pragma resolution_method three_state
-- synopsys synthesis_off
variable result : uchannel_fp := (’U’,’U’,default_data_fp);

-- synopsys synthesis_on
begin
-- synopsys synthesis_off
for i in s’range loop

result.req := resolution_table(result.req,s(i).req);
result.ack := resolution_table(result.ack,s(i).ack);

152 Part I: Asynchronous circuit design – A tutorial

if (s(i).req = ’1’) or (s(i).req = ’0’) then
result.data := s(i).data;

end if;
end loop;
if not((result.req = ’1’) or (result.req = ’0’)) then
result.data := default_data_fp;

end if;
return result;

-- synopsys synthesis_on
end resolved;

-- synopsys synthesis_off
procedure initialize_in(signal ch : out channel_fp) is
begin

ch.ack <= ’0’ after tpd;
end initialize_in;

procedure initialize_out(signal ch : out channel_fp) is
begin

ch.req <= ’0’ after tpd;
end initialize_out;

procedure send(signal ch : inout channel_fp; d : in fp) is
begin

if ch.ack /= ’0’ then
wait until ch.ack = ’0’;

end if;
ch.req <= ’1’ after tpd;
ch.data <= d after tpd;
wait until ch.ack = ’1’;
ch.req <= ’0’ after tpd;

end send;

procedure receive(signal ch : inout channel_fp; d : out fp) is
begin

if ch.req /= ’1’ then
wait until ch.req = ’1’;

end if;
wait for tpd;
d := ch.data;
ch.ack <= ’1’;
wait until ch.req = ’0’;
ch.ack <= ’0’ after tpd;

end receive;

function probe(signal ch : in uchannel_fp) return boolean is
begin

return (ch.req = ’1’);
end probe;
-- synopsys synthesis_on

function connect(signal ch : in uchannel_fp) return channel_fp is
begin

return ch;
end connect;

end real_channels;

Epilogue

Asynchronous technology has existed since the first days of digital electronics – many of
the earliest computers did not employ a central clock signal. However, with the development of
integrated circuits the need for a straightforward design discipline that could scale up rapidly with
the available transistor resource was pressing, and clocked design became the dominant approach.
Today, most practising digital designers know very little about asynchronous techniques, and
what they do know tends to discourage them from venturing into the territory. But clocked design
is beginning to show signs of stress – its ability to scale is waning, and it brings with it growing
problems of excessive power dissipation and electromagnetic interference.

During the reign of the clock, a few designers have remained convinced that asynchronous
techniques have merit, and new techniques have been developed that are far better suited to the
VLSI era than were the approaches employed on early machines. In this book we have tried
to illuminate these new techniques in a way that is accessible to any practising digital circuit
designer, whether or not they have had prior exposure to asynchronous circuits.

In this account of asynchronous design techniques we have had to be selective in order not
to obscure the principal goal with arcane detail. Much work of considerable quality and merit
has been omitted, and the reader whose interest has been ignited by this book will find that there
is a great deal of published material available that exposes aspects of asynchronous design that
have not been touched upon here.

Although there are commercial examples of VLSI devices based on asynchronous techniques
(a couple of which have been described in this book), these are exceptions – most asynchronous
development is still taking place in research laboratories. If this is to change in the future, where
will this change first manifest itself?

The impending demise of clocked design has been forecast for many years and still has not
happened. If it does happen, it will be for some compelling reason, since designers will not
lightly cast aside their years of experience in one design style in favour of another style that is
less proven and less well supported by automated tools.

There are many possible reasons for considering asynchronous design, but no single ‘killer
application’ that makes its use obligatory. Several of the arguments for adopting asynchronous
techniques mentioned at the start of this book – low power, low electromagnetic interference,
modularity, etc. – are applicable in their own niches, but only the modularity argument has the
potential to gain universal adoption. Here a promising approach that will support heterogeneous
timing environments is GALS (Globally Asynhronous Locally Synchronous) system design. An
asynchronous on-chip interconnect – a ‘chip area network’ such as Chain (described on page 312)
– is used to connect clocked modules. The modules themselves can be kept small enough for
clock skew to be well-contained so that straightforward synchronous design techniques work
well, and different modules can employ different clocks or the same clock with different phases.

153

154 Part I: Asynchronous circuit design – A tutorial

Once this framework is in place, it is then clearly straightforward to make individual modules
asynchronous on a case-by-case basis.

Here, perhaps unsurprisingly, we see the need to merge asynchronous technology with estab-
lished synchronous design techniques, so most of the functional design can be performed using
well-understood tools and approaches. This evolutionary approach contrasts with the revolu-
tionary attacks described in Part III of this book, and represents the most likely scenario for the
widespread adoption of the techniques described in this book in the medium-term future.

In the shorter term, however, the application niches that can benefit from asynchronous
technology are important and viable. It is our hope in writing this book that more designers will
come to understand the principles of asynchronous design and its potential to offer new solutions
to old and new problems. Clocks are useful but they can become straitjackets. Don’t be afraid
to think outside the box!

For further information on asynchronous design see the bibliography at the end of this book,
the Asynchronous Bibliography on the Internet [85], and the general information on asynchronous
design available at the Asynchronous Logic Homepage, also on the Internet [36].

References

[1] T. Agerwala. Putting Petri nets to work. IEEE Computer, 12(12):85–94,
December 1979.

[2] T.S. Balraj and M.J. Foster. Miss Manners: A specialized silicon compiler
for synchronizers. In Charles E. Leierson, editor, Advanced Research in
VLSI, pages 3–20. MIT Press, April 1986.

[3] A. Bardsley and D.A. Edwards. Compiling the language Balsa to delay-
insensitive hardware. In C. D. Kloos and E. Cerny, editors, Hardware
Description Languages and their Applications (CHDL), pages 89–91,
April 1997.

[4] A. Bardsley and D.A. Edwards. The Balsa asynchronous circuit synthesis
system. In Forum on Design Languages, September 2000.

[5] P.A. Beerel, C.J. Myers, and T.H.-Y. Meng. Automatic synthesis of
gate-level speed-independent circuits. Technical Report CSL-TR-94-648,
Stanford University, November 1994.

[6] P.A. Beerel, C.J. Myers, and T.H.-Y. Meng. Covering conditions and algo-
rithms for the synthesis of speed-independent circuits. IEEE Transactions
on Computer-Aided Design, March 1998.

[7] G. Birtwistle and A. Davis, editors. Proceedings of the Banff VIII Work-
shop: Asynchronous Digital Circuit Design, Banff, Alberta, Canada, Au-
gust 28–September 3, 1993. Springer Verlag, Workshops in Computing
Science, 1995. Contributions from: S.B. Furber, “Computing without
Clocks: Micropipelining the ARM Processor,” A. Davis, “Practical Asyn-
chronous Circuit Design: Methods and Tools,” C.H. van Berkel, “VLSI
Programming of Asynchronous Circuits for Low Power,” J. Ebergen, “Par-
allel Program and Asynchronous Circuit Design,” A. Davis and S. Nowick,
“Introductory Survey”.

[8] E. Brinksma and T. Bolognesi. Introduction to the ISO specification
language LOTOS. Computer Networks and ISDN Systems, 14(1), 1987.

[9] E. Brunvand and R.F. Sproull. Translating concurrent programs into delay-
insensitive circuits. In Proc. International Conf. Computer-Aided De-

155

156 Part I: Asynchronous circuit design – A tutorial

sign (ICCAD), pages 262–265. IEEE Computer Society Press, November
1989.

[10] J.A. Brzozowsky and C.-J.H. Seager. Asynchronous Circuits. Springer
Verlag, Monographs in Computer Science, 1994. ISBN: 0-387-94420-6.

[11] S.M. Burns. Performance Analysis and Optimization of Asynchronous
Circuits. PhD thesis, Computer Science Department, California Institute
of Technology, 1991. Caltech-CS-TR-91-01.

[12] S.M. Burns. General condition for the decomposition of state holding ele-
ments. In Proc. International Symposium on Advanced Research in Asyn-
chronous Circuits and Systems. IEEE Computer Society Press, March
1996.

[13] S.M. Burns and A.J. Martin. Syntax-directed translation of concurrent
programs into self-timed circuits. In J. Allen and F. Leighton, editors,
Advanced Research in VLSI, pages 35–50. MIT Press, 1988.

[14] D.M. Chapiro. Globally-Asynchronous Locally-Synchronous Systems.
PhD thesis, Stanford University, October 1984.

[15] K.T. Christensen, P. Jensen, P. Korger, and J. Sparsø. The design of an
asynchronous TinyRISC TR4101 microprocessor core. In Proc. Interna-
tional Symposium on Advanced Research in Asynchronous Circuits and
Systems, pages 108–119. IEEE Computer Society Press, 1998.

[16] T.-A. Chu. Synthesis of Self-Timed VLSI Circuits from Graph-Theoretic
Specifications. PhD thesis, MIT Laboratory for Computer Science, June
1987.

[17] T.-A. Chu and R.K. Roy (editors). Special issue on asynchronous circuits
and systems. IEEE Design & Test, 11(2), 1994.

[18] T.-A. Chu and L.A. Glasser. Synthesis of self-timed control circuits
from graphs: An example. In Proc. International Conf. Computer De-
sign (ICCD), pages 565–571. IEEE Computer Society Press, 1986.

[19] B. Coates, A. Davis, and K. Stevens. The Post Office experience: Design-
ing a large asynchronous chip. Integration, the VLSI journal, 15(3):341–
366, October 1993.

[20] F. Commoner, A.W. Holt, S. Even, and A. Pnueli. Marked directed graphs.
J. Comput. System Sci., 5(1):511–523, October 1971.

[21] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev. Petrify: a tool for manipulating concurrent specifications
and synthesis of asynchronous controllers. In XI Conference on Design
of Integrated Circuits and Systems, Barcelona, November 1996.

[22] U. Cummings, A. Lines, and A. Martin. An asynchronous pipelined lattice
structure filter. In Proc. International Symposium on Advanced Research
in Asynchronous Circuits and Systems, pages 126–133, November 1994.

REFERENCES 157

[23] A. Davis. A data-driven machine architecture suitable for VLSI imple-
mentation. In Proceedings of the First Caltech Conference on VLSI, pages
479–494, Pasadena, CA, January 1979.

[24] A. Davis and S.M. Nowick. Asynchronous circuit design: Motivation,
background, and methods. In G. Birtwistle and A. Davis, editors, Asyn-
chronous Digital Circuit Design, Workshops in Computing, pages 1–49.
Springer-Verlag, 1995.

[25] A. Davis and S.M. Nowick. An introduction to asynchronous circuit de-
sign. Technical Report UUCS-97-013, Department of Computer Science,
University of Utah, September 1997.

[26] A. Davis and S.M. Nowick. An introduction to asynchronous circuit
design. In A. Kent and J. G. Williams, editors, The Encyclopedia of
Computer Science and Technology, volume 38. Marcel Dekker, New York,
February 1998.

[27] J.B. Dennis. Data Flow Computation. In Control Flow and Data Flow
— Concepts of Distributed Programming, International Summer School,
pages 343–398, Marktoberdorf, West Germany, July 31 – August 12,
1984. Springer, Berlin.

[28] J.C. Ebergen and R. Berks. Response time properties of linear asyn-
chronous pipelines. Proceedings of the IEEE, 87(2):308–318, February
1999.

[29] K.M. Fant and S.A. Brandt. Null Conventional Logic: A complete and
consistent logic for asynchronous digital circuit synthesis. In Interna-
tional Conference on Application-specific Systems, Architectures, and
Processors, pages 261–273, 1996.

[30] R.M. Fuhrer, S.M. Nowick, M. Theobald, N.K. Jha, B. Lin, and
L. Plana. Minimalist: An environment for the synthesis, verifica-
tion and testability of burst-mode asynchronous machines. Techni-
cal Report TR CUCS-020-99, Columbia University, NY, July 1999.
http://www.cs.columbia.edu/˜nowick/minimalist.pdf.

[31] S.B. Furber and P. Day. Four-phase micropipeline latch control circuits.
IEEE Transactions on VLSI Systems, 4(2):247–253, June 1996.

[32] S.B. Furber, P. Day, J.D. Garside, N.C. Paver, S. Temple, and J.V. Woods.
The design and evaluation of an asynchronous microprocessor. In Proc.
Int’l. Conf. Computer Design, pages 217–220, October 1994.

[33] S.B. Furber, D.A. Edwards, and J.D. Garside. AMULET3: a 100 MIPS
asynchronous embedded processor. In Proc. International Conf. Com-
puter Design (ICCD), September 2000.

158 Part I: Asynchronous circuit design – A tutorial

[34] S.B. Furber, J.D. Garside, P. Riocreux, S. Temple, P. Day, J. Liu, and N.C.
Paver. AMULET2e: An asynchronous embedded controller. Proceedings
of the IEEE, 87(2):243–256, February 1999.

[35] S.B. Furber, J.D. Garside, S. Temple, J. Liu, P. Day, and N.C. Paver.
AMULET2e: An asynchronous embedded controller. In Proc. Interna-
tional Symposium on Advanced Research in Asynchronous Circuits and
Systems, pages 290–299. IEEE Computer Society Press, 1997.

[36] J.D. Garside. The Asynchronous Logic Homepages.
http://www.cs.man.ac.uk/async/.

[37] J.D. Garside, W.J. Bainbridge, A. Bardsley, D.A. Edwards, S.B. Furber,
J. Liu, D.W. Lloyd, S. Mohammadi, J.S. Pepper, O. Petlin, S. Temple, and
J.V. Woods. AMULET3i – an asynchronous system-on-chip. In Proc. In-
ternational Symposium on Advanced Research in Asynchronous Circuits
and Systems, pages 162–175. IEEE Computer Society Press, April 2000.

[38] B. Gilchrist, J.H. Pomerene, and S.Y. Wong. Fast carry logic for digital
computers. IRE Transactions on Electronic Computers, EC-4(4):133–
136, December 1955.

[39] L.A. Glasser and D.W. Dobberpuhl. The Design and Analysis of VLSI
Circuits. Addison-Wesley, 1985.

[40] S. Hauck. Asynchronous design methodologies: An overview. Proceed-
ings of the IEEE, 83(1):69–93, January 1995.

[41] L.G. Heller, W.R. Griffin, J.W. Davis, and N.G. Thoma. Cascode voltage
switch logic: A differential CMOS logic family. Proc. International Solid
State Circuits Conference, pages 16–17, February 1984.

[42] C.A.R. Hoare. Communicating sequential processes. Communications
of the ACM, 21(8):666–677, August 1978.

[43] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, En-
glewood Cliffs, 1985.

[44] D.A. Huffman. The synthesis of sequential switching circuits. J. Franklin
Inst., pages 161–190, 275–303, March/April 1954.

[45] D.A. Huffman. The synthesis of sequential switching circuits. In E. F.
Moore, editor, Sequential Machines: Selected Papers. Addison-Wesley,
1964.

[46] K. Hwang. Computer Arithmetic: Principles, Architecture, and Design.
John Wiley & Sons, 1979.

[47] S.C. Johnson and S. Mazor. Silicon compiler lets system makers design
their own VLSI chips. Electronic Design, 32(20):167–181, 1984.

[48] G. Jones. Programming in OCCAM. Prentice-Hall international, 87.

REFERENCES 159

[49] M.B. Josephs, S.M. Nowick, and C.H. van Berkel. Modeling and design of
asynchronous circuits. Proceedings of the IEEE, 87(2):234–242, February
1999.

[50] J. Kessels, T. Kramer, G. den Besten, A. Peeters, and V. Timm. Applying
asynchronous circuits in contactless smart cards. In Proc. International
Symposium on Advanced Research in Asynchronous Circuits and Systems,
pages 36–44. IEEE Computer Society Press, April 2000.

[51] J. Kessels, T. Kramer, A. Peeters, and V. Timm. DESCALE: a design
experiment for a smart card application consuming low energy. In R. van
Leuken, R. Nouta, and A. de Graaf, editors, European Low Power Ini-
tiative for Electronic System Design, pages 247–262. Delft Institute of
Microelectronics and Submicron Technology, July 2000.

[52] Z. Kohavi. Switching and Finite Automata Theory. McGraw-Hill, 1978.

[53] A. Kondratyev, J. Cortadella, M. Kishinevsky, L. Lavagno, and
A. Yakovlev. Logic decomposition of speed-independent circuits. Pro-
ceedings of the IEEE, 87(2):347–362, February 1999.

[54] J. Liu. Arithmetic and control components for an asynchronous micro-
processor. PhD thesis, Department of Computer Science, University of
Manchester, 1997.

[55] D.W. Lloyd. VHDL models of asychronous handshaking. (Personal
communication, August 1998).

[56] A.J. Martin. The probe: An addition to communication primitives. Infor-
mation Processing Letters, 20(3):125–130, 1985. Erratum: IPL 21(2):107,
1985.

[57] A.J. Martin. Compiling communicating processes into delay-insensitive
VLSI circuits. Distributed Computing, 1(4):226–234, 1986.

[58] A.J. Martin. Formal program transformations for VLSI circuit synthesis.
In E.W. Dijkstra, editor, Formal Development of Programs and Proofs,
UT Year of Programming Series, pages 59–80. Addison-Wesley, 1989.

[59] A.J. Martin. The limitations to delay-insensitivity in asynchronous cir-
cuits. In W.J. Dally, editor, Advanced Research in VLSI: Proceedings of
the Sixth MIT Conference, pages 263–278. MIT Press, 1990.

[60] A.J. Martin. Programming in VLSI: From communicating processes to
delay-insensitive circuits. In C.A.R. Hoare, editor, Developments in Con-
currency and Communication, UT Year of Programming Series, pages
1–64. Addison-Wesley, 1990.

[61] A.J. Martin. Asynchronous datapaths and the design of an asynchronous
adder. Formal Methods in System Design, 1(1):119–137, July 1992.

160 Part I: Asynchronous circuit design – A tutorial

[62] A.J. Martin, S.M. Burns, T.K. Lee, D. Borkovic, and P.J. Hazewindus.
The first asynchronous microprocessor: The test results. Computer Ar-
chitecture News, 17(4):95–98, 1989.

[63] A.J. Martin, A. Lines, R. Manohar, M. Nyström, P. Penzes, R. Southworth,
U.V. Cummings, and T.-K. Lee. The design of an asynchronous MIPS
R3000. In Proceedings of the 17th Conference on Advanced Research in
VLSI, pages 164–181. MIT Press, September 1997.

[64] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[65] C.E. Molnar, I.W. Jones, W.S. Coates, and J.K. Lexau. A FIFO ring
oscillator performance experiment. In Proc. International Symposium on
Advanced Research in Asynchronous Circuits and Systems, pages 279–
289. IEEE Computer Society Press, April 1997.

[66] C.E. Molnar, I.W. Jones, W.S. Coates, J.K. Lexau, S.M. Fairbanks, and
I.E. Sutherland. Two FIFO ring performance experiments. Proceedings
of the IEEE, 87(2):297–307, February 1999.

[67] D.E. Muller. Asynchronous logics and application to information pro-
cessing. In H. Aiken and W. F. Main, editors, Proc. Symp. on Application
of Switching Theory in Space Technology, pages 289–297. Stanford Uni-
versity Press, 1963.

[68] D.E. Muller and W.S. Bartky. A theory of asynchronous circuits. In
Proceedings of an International Symposium on the Theory of Switching,
Cambridge, April 1957, Part I, pages 204–243. Harvard University Press,
1959. The annals of the computation laboratory of Harvard University,
Volume XXIX.

[69] T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings
of the IEEE, 77(4):541–580, April 1989.

[70] C.J. Myers. Asynchronous Circuit Design. John Wiley & Sons, July 2001.
ISBN: 0-471-41543-X.

[71] C.D. Nielsen. Evaluation of function blocks for asynchronous design.
In Proc. European Design Automation Conference (EURO-DAC), pages
454–459. IEEE Computer Society Press, September 1994.

[72] C.D. Nielsen, J. Staunstrup, and S.R. Jones. Potential performance ad-
vantages of delay-insensitivity. In M. Sami and J. Calzadilla-Daguerre,
editors, Proceedings of IFIP workshop on Silicon Architectures for Neural
Nets, StPaul-de-Vence, France, November 1990. North-Holland, Amster-
dam, 1991.

[73] L.S. Nielsen. Low-power Asynchronous VLSI Design. PhD thesis, De-
partment of Information Technology, Technical University of Denmark,
1997. IT-TR:1997-12.

REFERENCES 161

[74] L.S. Nielsen, C. Niessen, J. Sparsø, and C.H. van Berkel. Low-power
operation using self-timed circuits and adaptive scaling of the supply
voltage. IEEE Transactions on VLSI Systems, 2(4):391–397, 1994.

[75] L.S. Nielsen and J. Sparsø. A low-power asynchronous data-path for a
FIR filter bank. In Proc. International Symposium on Advanced Research
in Asynchronous Circuits and Systems, pages 197–207. IEEE Computer
Society Press, 1996.

[76] L.S. Nielsen and J. Sparsø. An 85 µW asynchronous filter-bank for
a digital hearing aid. In Proc. IEEE International Solid State circuits
Conference, pages 108–109, 1998.

[77] L.S. Nielsen and J. Sparsø. Designing asynchronous circuits for low
power: An IFIR filter bank for a digital hearing aid. Proceedings of the
IEEE, 87(2):268–281, February 1999. Special issue on “Asynchronous
Circuits and Systems” (Invited Paper).

[78] D.C. Noice. A Two-Phase Clocking Dicipline for Digital Integrated Cir-
cuits. PhD thesis, Department of Electrical Engineering, Stanford Uni-
versity, February 1983.

[79] S.M. Nowick. Design of a low-latency asynchronous adder using specu-
lative completion. IEE Proceedings, Computers and Digital Techniques,
143(5):301–307, September 1996.

[80] S.M. Nowick, M.B. Josephs, and C.H. van Berkel (editors). Special issue
on asynchronous circuits and systems. Proceedings of the IEEE, 87(2),
February 1999.

[81] S.M. Nowick, K.Y. Yun, and P.A. Beerel. Speculative completion for the
design of high-performance asynchronous dynamic adders. In Proc. In-
ternational Symposium on Advanced Research in Asynchronous Circuits
and Systems, pages 210–223. IEEE Computer Society Press, April 1997.

[82] International Standards Organization. LOTOS — a formal description
technique based on the temporal ordering of observational behaviour.
ISO IS 8807, 1989.

[83] N.C. Paver, P. Day, C. Farnsworth, D.L. Jackson, W.A. Lien, and J. Liu. A
low-power, low-noise configurable self-timed DSP. In Proc. International
Symposium on Advanced Research in Asynchronous Circuits and Systems,
pages 32–42, 1998.

[84] M. Pedersen. Design of asynchronous circuits using standard CAD tools.
Technical Report IT-E 774, Technical University of Denmark, Dept. of
Information Technology, 1998. (In Danish).

[85] A.M.G. Peeters. The ‘Asynchronous’ Bibliography.
http://www.win.tue.nl/~wsinap/async.html.
Corresponding e-mail address: async-bib@win.tue.nl.

162 Part I: Asynchronous circuit design – A tutorial

[86] A.M.G. Peeters. Single-Rail Handshake Circuits. PhD thesis, Eindhoven
University of Technology, June 1996.
http://www.win.tue.nl/~wsinap/pdf/Peeters96.pdf.

[87] J.L. Peterson. Petri nets. Computing Surveys, 9(3):223–252, September
1977.

[88] J. Rabaey. Digital Integrated Circuits: A Design Perspective. Prentice-
Hall, 1996.

[89] M. Renaudin, P. Vivet, and F. Robin. A design framework for asyn-
chronous/synchronous circuits based on CHP to HDL translation. In
Proc. International Symposium on Advanced Research in Asynchronous
Circuits and Systems, pages 135–144, April 1999.

[90] M. Roncken. Defect-oriented testability for asynchronous ICs. Proceed-
ings of the IEEE, 87(2):363–375, February 1999.

[91] C.L. Seitz. System timing. In C.A. Mead and L.A. Conway, editors,
Introduction to VLSI Systems, chapter 7. Addison-Wesley, 1980.

[92] N.P. Singh. A design methodology for self-timed systems. Master’s thesis,
Laboratory for Computer Science, MIT, 1981. MIT/LCS/TR-258.

[93] J. Sparsø, C.D. Nielsen, L.S. Nielsen, and J. Staunstrup. Design of self-
timed multipliers: A comparison. In S. Furber and M. Edwards, editors,
Asynchronous Design Methodologies, volume A-28 of IFIP Transactions,
pages 165–180. Elsevier Science Publishers, 1993.

[94] J. Sparsø and J. Staunstrup. Delay-insensitive multi-ring structures. IN-
TEGRATION, the VLSI Journal, 15(3):313–340, October 1993.

[95] J. Sparsø, J. Staunstrup, and M. Dantzer-Sørensen. Design of delay insen-
sitive circuits using multi-ring structures. In G. Musgrave, editor, Proc.
of EURO-DAC ’92, European Design Automation Conference, Hamburg,
Germany, September 7-10, 1992, pages 15–20. IEEE Computer Society
Press, 1992.

[96] L. Stok. Architectural Synthesis and Optimization of Digital Systems.
PhD thesis, Eindhoven University of Technology, 1991.

[97] I.E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720–
738, June 1989.

[98] Synopsys, Inc. Synopsys VSS Family Core Programs Manual, 1997.

[99] S.H. Unger. Asynchronous Sequential Switching Circuits. Wiley-
Interscience, John Wiley & Sons, Inc., New York, 1969.

[100] C.H. van Berkel. Beware the isochronic fork. INTEGRATION, the VLSI
journal, 13(3):103–128, 1992.

REFERENCES 163

[101] C.H. van Berkel. Handshake Circuits: an Asynchronous Architecture for
VLSI Programming, volume 5 of International Series on Parallel Com-
putation. Cambridge University Press, 1993.

[102] C.H. van Berkel, R. Burgess, J. Kessels, A. Peeters, M. Roncken, and
F. Schalij. Asynchronous circuits for low power: a DCC error corrector.
IEEE Design & Test, 11(2):22–32, 1994.

[103] C.H. van Berkel, R. Burgess, J. Kessels, A. Peeters, M. Roncken, and
F. Schalij. A fully asynchronous low-power error corrector for the DCC
player. In ISSCC 1994 Digest of Technical Papers, volume 37, pages
88–89. IEEE, 1994. ISSN 0193-6530.

[104] C.H. van Berkel, R. Burgess, J. Kessels, A. Peeters, M. Roncken,
F. Schalij, and R. van de Viel. A single-rail re-implementation of a DCC
error detector using a generic standard-cell library. In 2nd Working Con-
ference on Asynchronous Design Methodologies, London, May 30-31,
1995, pages 72–79, 1995.

[105] C.H. van Berkel, F. Huberts, and A. Peeters. Stretching quasi delay insen-
sitivity by means of extended isochronic forks. In Asynchronous Design
Methodologies, pages 99–106. IEEE Computer Society Press, May 1995.

[106] C.H. van Berkel, M.B. Josephs, and S.M. Nowick. Scanning the tech-
nology: Applications of asynchronous circuits. Proceedings of the IEEE,
87(2):223–233, February 1999.

[107] C.H. van Berkel, J. Kessels, M. Roncken, R. Saeijs, and F. Schalij. The
VLSI-programming language Tangram and its translation into handshake
circuits. In Proc. European Conference on Design Automation (EDAC),
pages 384–389, 1991.

[108] C.H. van Berkel, C. Niessen, M. Rem, and R. Saeijs. VLSI programming
and silicon compilation. In Proc. International Conf. Computer Design
(ICCD), pages 150–166, Rye Brook, New York, 1988. IEEE Computer
Society Press.

[109] H. van Gageldonk, D. Baumann, C.H. van Berkel, D. Gloor, A. Peeters,
and G. Stegmann. An asynchronous low-power 80c51 microcontroller. In
Proc. International Symposium on Advanced Research in Asynchronous
Circuits and Systems, pages 96–107. IEEE Computer Society Press, April
1998.

[110] P. Vanbekbergen. Synthesis of Asynchronous Control Circuits from
Graph-Theoretic Specifications. PhD thesis, Catholic University of Leu-
ven, September 1993.

[111] V.I. Varshavsky, M.A. Kishinevsky, V.B. Marakhovsky, V.A. Peschansky,
L.Y. Rosenblum, A.R. Taubin, and B.S. Tzirlin. Self-timed Control of Con-

164 Part I: Asynchronous circuit design – A tutorial

current Processes. Kluwer Academic Publisher, 1990. V.I.Varshavsky
Ed., (Russian edition: 1986).

[112] T. Verhoeff. Delay-insensitive codes - an overview. Distributed Com-
puting, 3(1):1–8, 1988.

[113] P. Viviet and M. Renaudin. CHP2VHDL, a CHP to VHDL translator - to-
wards asynchronous-design simulation. In L. Lavagno and M.B. Josephs,
editors, Handouts from the ACiD-WG Workshop on Specification models
and languages and technology effects of asynchronous design. Diparte-
mento di Elettronica, Polytecnico de Torino, Italy, January 1998.

[114] J.F. Wakerly. Digital Design: Principles and Practices, 3/e. Prentice-
Hall, 2001.

[115] N. Weste and K. Esraghian. Principles of CMOS VLSI Design – A systems
Perspective, 2nd edition. Addison-Wesley, 1993.

[116] T.E. Williams. Self-Timed Rings and their Application to Division. PhD
thesis, Department of Electrical Engineering and Computer Science, Stan-
ford University, 1991. CSL-TR-91-482.

[117] T.E. Williams. Analyzing and improving latency and throughput in self-
timed rings and pipelines. In Tau-92: 1992 Workshop on Timing Issues in
the Specification and Synthesis of Digital Systems. ACM/SIGDA, March
1992.

[118] T.E. Williams. Performance of iterative computation in self-timed rings.
Journal of VLSI Signal Processing, 6(3), October 1993.

[119] T.E. Williams and M.A. Horowitz. A zero-overhead self-timed 160 ns.
54 bit CMOS divider. IEEE Journal of Solid State Circuits, 26(11):1651–
1661, 1991.

[120] T.E. Williams, N. Patkar, and G. Shen. SPARC64: A 64-b 64-active-
instruction out-of-order-execution MCM processor. IEEE Journal of
Solid-State Circuits, 30(11):1215–1226, November 1995.

[121] C. Ykman-Couvreur, B. Lin, and H. de Man. Assassin: A synthesis sys-
tem for asynchronous control circuits. Technical report, IMEC, September
1994. User and Tutorial manual.

[122] K.Y. Yun and D.L. Dill. Automatic synthesis of extended burst-mode
circuits: Part II (automatic synthesis). IEEE Transactions on Computer-
Aided Design, 18(2):118–132, February 1999.

Index

Acknowledgement (or indication), 15
Actual case latency, 65
Addition (ripple-carry), 64
And-or-invert (AOI) gates, 102
Arbitration, 79
Asymmetric delay, 48, 53
Asynchronous advantages, 3
Atomic complex gate, 94, 103
Balsa, 123
Bubble, 30
Bubble limited, 49
Bundled-data, 9
Burst mode, 85

input burst, 86
output burst, 86

C-element, 14, 58, 92
asymmetric, 100, 59
generalized, 100, 103, 105
implementation, 15
specification, 15, 92

Caltech, 133
Capture-pass latch, 19
CCS (calculus of communicating systems), 123
Channel (or link), 7, 30
Channel type

biput, 115
nonput, 115
pull, 10, 115
push, 10, 115

CHP (communicating hardware processes),
123–124

Circuit templates:
for statement, 37
if statement, 36
while statement, 38

Classification
delay-insensitive (DI), 25
quasi delay-insensitive (QDI), 25
self-timed, 26
speed-independent (SI), 25

Closed circuit, 23
Codeword (dual-rail), 12

empty, 12
intermediate, 12

valid, 12
Compatible states, 85
Complete state coding (CSC), 88
Completion indication, 65
Completion

detection, 21–22
indication, 62

strong, 62
weak, 62

Complex gates, 104
Concurrent processes, 123
Concurrent statements, 123
Consistent state assignment, 88
Control-data-flow graphs, 36
Control limited, 50
Control logic for transition signaling, 20
CSP (communicating sequential processes), 123
Cycle time of a ring, 49
Data-flow abstraction, 7
Data encoding

bundled-data, 9
dual-rail, 11
m-of-n, 14
one-hot (or 1-of-n), 13
single-rail, 10

Data limited, 49
Data validity scheme (4-phase bundled-data)

broad, 116
early, 116
extended early, 116
late, 116

DCVSL, 70
Deadlock, 30
Delay-insensitive (DI), 12, 17, 25

codes, 12
Delay assumptions, 23
Delay insensitive minterm synthesis (DIMS), 67
Delay matching, 11
Delay model

fixed delay, 83
inertial delay, 83

delay time, 83
reject time, 83

min-max delay, 83

165

166 Part I: Asynchronous circuit design– A tutorial

transport delay, 83
unbounded delay, 83

Delay selection, 66
Demultiplexer (DEMUX), 32
Dependency graph, 52
Differential logic, 70
DIMS, 67–68
Dual-rail carry signals, 65
Dual-rail encoding, 11
Dummy environment, 87
Dynamic wavelength, 49
Empty word, 12, 29–30
Environment, 83
Event, 9
Excitation region, 97
Excited gate/variable, 24
FIFO, 16
Finite state machine (using a ring), 35
Firing (of a gate), 24
For statement, 37
Fork, 31
Forward latency, 47
Function block, 31, 60–61

bundled-data (“speculative completion”), 66
bundled-data, 18, 65
dual-rail (DIMS), 67
dual-rail (Martin’s adder), 71
dual-rail (null convention logic), 69
dual-rail (transistor level CMOS), 70
dual-rail, 22
hybrid, 73
strongly indicating, 62
weakly indicating, 62

Fundamental mode, 81, 83–84
Generalized C-element, 103, 105
Generate (carry), 65
Greatest common divisor (GCD), 38, 131
Guarded command, 128
Guarded repetition, 128
Handshake channel, 115

biput, 115
nonput, 115, 129
pull, 10, 115, 129
push, 10, 115, 129

Handshake circuit, 128
2-place ripple FIFO, 130–131
2-place shift register, 129
greatest common divisor (GCD), 132

Handshake component
arbiter, 79
bar, 131
demultiplexer, 32, 76, 131
do, 131
fork, 31, 58, 131, 133
join, 31, 58, 130
latch, 29, 31, 57

2-phase bundled-data, 19

4-phase bundled-data, 18, 106
4-phase dual-rail, 21

merge, 32, 58
multiplexer, 32, 76, 109, 131
passivator, 130
repeater, 129
sequencer, 129
transferer, 130
variable, 130

Handshake expansion, 133
Handshake protocol, 5, 9

2-phase bundled-data, 9
2-phase dual-rail, 13
4-phase bundled-data, 9, 117
4-phase dual-rail, 11
non-return-to-zero (NRZ), 10
return-to-zero (RTZ), 10

Handshaking, 5
Hazard

dynamic-01, 83
dynamic-10, 83, 95
static-0, 83
static-1, 83, 94

Huffmann, D. A., 84
Hysteresis, 22, 64
If statement, 36
IFIR filter bank, 39
Indication (or acknowledgement), 15

of completion, 65
dependency graphs, 73
distribution of valid/empty indication, 72
strong, 62
weak, 62

Initial state, 101
Initialization, 101, 30
Input-output mode, 81, 84
Input free choice, 88
Intermediate codeword, 12
Isochronic fork, 26
Iterative computation (using a ring), 35
Join, 31
Kill (carry), 65
Latch (see also: handshake comp.), 18
Latch controller, 106

fully-decoupled, 120
normally opaque, 121
normally transparent, 121
semi-decoupled, 120
simple/un-decoupled, 119

Latency, 47
actual case, 65

Link (or channel), 7, 30
Liveness, 88
Logic decomposition, 94
Logic thresholds, 27
LOTOS, 123
M-of-n threshold gates with hysteresis, 69

INDEX 167

Matched delay, 11, 65
Merge, 32
Metastability, 78

filter, 78
mean time between failure, 79
probability of, 79

Micropipelines, 19
Microprocessors

asynchronous MIPS, 39
asynchronous MIPS R3000, 133

Minterm, 22, 67
Monotonic cover constraint, 97, 99, 103
Muller C-element, 15
Muller model of a closed circuit, 23
Muller pipeline/distributor, 16
Muller, D., 84
Multiplexer (MUX), 32, 109
Mutual exclusion, 58, 77

mutual exclusion element (MUTEX), 77
NCL adder, 70
Non-return-to-zero (NRZ), 10
NULL, 12
Null Convention Logic (NCL), 69
OCCAM, 123
Occupancy (or static spread), 49
One-hot encoding, 13
Operator reduction, 134
Performance parameters:

cycle time of a ring, 49
dynamic wavelength, 49
forward latency, 47
latency, 47
period, 48
reverse latency, 48
throughput, 49

Performance
analysis and optimization, 41

Period, 48
Persistency, 88
Petri net, 86

merge, 88
1-bounded, 88
controlled choice, 89
firing, 86
fork, 88
input free choice, 88
join, 88
liveness, 88
places, 86
token, 86
transition, 86

Petrify, 102
Pipeline, 5, 30

2-phase bundled-data, 19
4-phase bundled-data, 18
4-phase dual-rail, 20

Place, 86

Precharged CMOS circuitry, 116
Primitive flow table, 85
Probe, 123, 125
Process decomposition, 133
Production rule expansion, 134
Propagate (carry), 65
Pull channel, 10, 115
Push channel, 10, 115
Quasi delay-insensitive (QDI), 25
Quiescent region, 97
Re-shuffling signal transitions, 102, 112
Read-after-write data hazard, 40
Receive, 123, 125
Reduced flow table, 85
Register

locking, 40
Rendezvous, 125
Reset function, 97
Return-to-zero (RTZ), 9–10
Reverse latency, 48
Ring, 30

finite state machine, 35
iterative computation, 35

Ripple FIFO, 16
Self-timed, 26
Semantics-preserving transformations, 133
Send, 123, 125
Set-Reset implementation, 96
Set function, 97
Shared ressource, 77
Shift register

with parallel load, 44
Signal transition, 9
Signal transition graph (STG), 86
Silicon compiler, 124
Single-rail, 10
Single input change, 84
Spacer, 12
Speculative completion, 66
Speed-independent (SI), 23–25, 83
Stable gate/variable, 23
Standard C-element, 106

implementation, 96
State graph, 85
Static data-flow structure, 7, 29
Static data-flow structure

examples:
greatest common divisor (GCD), 38
IFIR filter bank, 39
MIPS microprocessor, 39
simple example, 33
vector multiplier, 40

Static spread (or occupancy), 49, 120
Static type checking, 118
Stuck-at fault model, 27
Synchronizer flip-flop, 78
Synchronous message passing, 123

168 Part I: Asynchronous circuit design– A tutorial

Syntax-directed compilation, 128
Tangram, 123
Tangram examples:

2-place ripple FIFO, 127
2-place shift register, 126
GCD using guarded repetition, 128
GCD using while and if statements, 127

Technology mapping, 103
Test, 27

IDDQ testing, 28
halting of circuit, 28
isochronic forks, 28
short and open faults, 28
stuck-at faults, 27
toggle test, 28
untestable stuck-at faults, 28

Throughput, 42, 49

Time safe, 78
Token, 7, 30, 86
Transition, 86
Transparent to handshaking, 7, 23, 33, 61
Unique entry constraint, 97, 99
Valid codeword, 12
Valid data, 12, 29
Valid token, 30
Value safe, 78
Vector multiplier, 40
Verilog, 124
VHDL, 124
VLSI programming, 128
VSTGL (Visual STG Lab), 103
Wave, 16

crest, 16
trough, 16

While statement, 38
Write-back, 40

	coverpage.pdf
	TheWorks.pdf

