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Abstract. This paper presents hierarchical probabilistic clustering methods for unsu-
pervised and supervised learning in datamining applications. The probabilistic clus-
tering is based on the previously suggested Generalizable Gaussian Mixture model.
A soft version of the Generalizable Gaussian Mixture model is also discussed. The
proposed hierarchical scheme is agglomerative and based on a L 2 distance metric.
Unsupervised and supervised schemes are successfully tested on artificially data and
for segmention of e-mails.

1 Introduction

Hierarchical methods for unsupervised and supervised datamining give multilevel description
of data. It is relevant for many applications related to information extraction, retrieval navi-
gation and organization, see e.g., [1, 2]. Many different approaches to hierarchical analysis
from divisive to agglomerative clustering have been suggested and recent developments in-
clude [3, 4, 5, 6, 7]. We focus on agglomerative probabilistic clustering from Gaussian density
mixtures. The probabilistic scheme enables automatic detection of the final hierarchy level.
In order to provide a meaningful description of the clusters we suggest two interpretation
techniques: 1) listing of prototypical data examples from the cluster, and 2) listing of typical
features associated with the cluster. The Generalizable Gaussian Mixture model (GGM) and
the Soft Generalizable Gaussian mixture model (SGGM) are addressed for supervised and
unsupervised learning. Learning from combined sets of labeled and unlabeled data [8, 9] is
relevant in many practical applications due to the fact that labeled examples are hard and/or
expensive to obtain, e.g., in document categorization. This paper, however, does not discuss
such aspects. The GGM and SGGM models estimate parameters of the Gaussian clusters with
a modified EM procedure from two disjoint sets of observations that ensures high generaliza-
tion ability. The optimum number of clusters in the mixture is determined automatically by
minimizing the generalization error [10].

This paper focuses on applications to textmining [8, 10, 11, 12, 13, 14, 15, 16] with
the objective of categorizing text according to topic, spotting new topics or providing short,
easy and understandable interpretation of larger text blocks; in a broader sense to create
intelligent search engines and to provide understanding of documents or content of web-
pages like Yahoo’s ontologies.

2 The Generalizable Gaussian Mixture Model

The first step in our approach for probabilistic clustering is a flexible and universal Gaussian
mixture density model, the generalizable Gaussian mixture model (GGM) [10, 17, 18], which
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models the density for d-dimensional feature vectors by:
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where p(xjk) are the component Gaussians mixed with the non-negative proportions P (k),PK
k=1 P (k). Each component k is described by the mean vector�k and the covariance matrix

�k. Parameters are estimated with an iterative modified EM algorithm [10] where means are
estimated on one data set, covariances on an independent set, and P (k) on the combined set.
This prevents notorious overfitting problems with the standard approach [19]. The optimum
number of clusters/components is chosen by minimizing an approximation of the generaliza-
tion error; the AIC criterion, which is the negative log-likelihood plus two times the number
of parameters.

For unsupervised learning parameters are estimated from a training set of feature vectors
D = fxn;n = 1; 2 : : : ; Ng, where N is the number of samples. In supervised learning
for classification from a data set of features and class labels D = fxn; yng, where yn 2
f1; 2; : : : ; Cg we adapt one Gaussian mixture, p(xjy), for each class separately and classify
by Bayes optimal rule by maximizing p(yjx) = p(xjy)P (y)=

PC
y=1 p(xjy)P (y) (under 1/0

loss). This approach is also referred to as mixture discriminant analysis [20].
The GGM can be implemented using either hard or soft assignments of data to com-

ponents in each EM iteration step. In the hard GMM approach each data example is as-
signed to a cluster by selecting highest p(kjxn) = p(xnjk)P (k)=p(xn). Means and co-
variances are estimated by classical empirical estimates from data assigned to each com-
ponent. In the soft version (SGGM) e.g., the means are estimated as weighted means �k =P

n p(kjxn) � xn=
P

n p(kjxn).
Experiments with the hard/soft versions gave the following conclusions. Per iteration the

algorithms are almost identical, however, SGGM requires typically more iteration to con-
verge, which is defined by no changes in assignment of examples to clusters. Learning curve1

experiments indicate that hard GGM has slightly better generalization performance for small
N while similar behavior for large N - in particular if clusters are well separated.

3 Hierarchical Clustering

In the suggested agglomerative clustering scheme we start by K clusters at level j = 1 as
given by the optimized GGM model of p(x), which in the case of supervised learning is
p(x) =

PC
y=1

PKy

k=1 p(xjk; y)P (k)P (y), where Ky is the optimal number of components for
class y. At each higher level in the hierarchy two clusters are merged based on a similarity
measure between pairs of clusters. The procedure is repeated until we reach one cluster at
the top level. That is, at level j = 1 there are K clusters and 1 cluster at the final level,
j = 2K � 1. Let pj(xjk) be the density for the k’th cluster at level j and Pj(k) as its mixing
proportion, i.e., the density model at level j is p(x) =

PK�j+1
k=1 Pj(k)pj(xjk). If clusters k

and m at level j are merged into ` at level j + 1 then

pj+1(xj`) =
pj(xjk) � Pj(k) + pj(xjm) � Pj(m)

Pj(k) + Pj(m)
; Pj+1(`) = Pj(k) + Pj(m) (2)

The natural distance measure between the cluster densities is the Kullback-Leibler (KL) di-
vergence [19], since it reflects dissimilarity between the densities in the probabilistic space.
The drawback is that KL only obtains an analytical expression for the first level in the

1Generalization error as as function of number of examples.



hierarchy while distances for the subsequently levels have to be approximated [17, 18].
Another approach is to base distance measure on the L2 norm for the densities [21], i.e.,
D(k;m) =

R
(pj(xjk)� pj(xjm))2 dx where k and m index two different clusters. Due to

Minkowksi’s inequality D(k;m) is a distance measure. Let I = f1; 2; � � � ; Kg be the set
of cluster indices and define disjoint subsets I� \ I� = ;, I� � I and I� � I, where I�,
I� contain the indices of clusters which constitute clusters k and m at level j, respectively.
The density of cluster k is given by: pj(xjk) =

P
i2I�

�ip(xji), �i = P (i)=
P

i2I�
P (i) if

i 2 I�, and zero otherwise. pj(xjm) =
P

i2I�
�ip(xji), where �i obtains a similar definition.

According to [21] the Gaussian integral
R
p(xji)p(xj`) dx = G(�i � �`;�i + �`), where

G(�;�) = (2�)�d=2 � j�j1=2 � exp(��>��1�=2). Define the vectors� = f�ig, � = f�ig of
dimension K and the K�K symmetric matrixG = fGi`g with Gi` = G(�i��`;�i+�`),
then the distance can be then written as D(k;m) = (�� �)>G(�� �). Figure 1 illustrates
the hierarchical clustering for Gaussian distributed toy data.

A unique feature of probabilistic clustering is the ability to provide optimal cluster and
level assignment for new data examples which have not been used for training. x is assigned
to cluster k at level j if pj(kjx) > � where the threshold � typically is set to 0:9. The proce-
dure ensures that the example is assigned to a wrong cluster with probability 0.1.

Interpretation of clusters is done by generating likely examples from the cluster, see
further [17]. For the first level in the hierarchy where distributions are Gaussian this is
done by drawing examples from a super-eliptical region around the mean value, i.e., (x �
�k)

>
�
�1

k (x� �k) < const. For clusters at higher levels in the hierarchy samples are drawn
from each Gaussian cluster with proportions specified by P (k).
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Figure 1: Hierarchical clustering example. Left panel is a scatter plot of the data. Clusters 1,2 and 4 have wide
distributions while 3 has a narrow one. Since the distance is based on the shape of the distribution and not
only its mean location, clusters 1 and 4 are much closer than any of these to cluster 3. Right panel presents the
dendrogram.

4 Experiments

The hierarchical clustering is illustrated for segmentation of e-mails. Define term-vector as
a complete set of the unique words occurring in all the emails. An email histogram is the
vector containing frequency of occurrence of each word from the term-vector and defines the
content of the email. The term-document matrix is then the collection of histograms for all
emails in the database. After suitable preprocessing2 the term-document matrix contains 1405
(702 for training and 703 for testing) e-mail documents, and the term-vector 7798 words. The
emails where annotated into the categories: conference, job and spam. It is possible to model

2Words which are too likely or too unlikely are removed. Further only word stems are kept.



directly from this matrix [8, 15], however we deploy Latent Semantic Indexing (LSI) [22]
which operates from a latent space of feature vectors. These are found by projecting term-
vectors into a subspace spanned by the left eigenvectors associated with largest singular value
of a singular value decomposition of the term-document matrix. We are currently investigat-
ing methods for automatic determination of the subspace dimension based on generalization
concepts. We found that a 5 dimensional subspace provides good performance using SGGM.

A typical result of running supervised learning is depicted in Figure 2. Using supervised
learning provides a better resemblance with the correct categories at the level in the hierarchy
as compared with unsupervised learning. However, since labeled examples often are lacking
or few the hierarchy provides a good multilevel description of the data with associated inter-
pretations. Finding typical features as described on page 3 and back-projecting into original
term-space provides keywords for each cluster as given in Table 1.
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Figure 2: Supervised hierarchical clustering. Upper rows show the confusion of clusters with the annotated
email labels on the training set at the first level and the level where 3 clusters remains, corresponding to the three
categories conference, job and spam. At level 1 clusters 1,11,17,20 have big resemblance with the categories. In
particular spam are distributed among 3 clusters. At level 19 there is a high resemblance with the categories and
the average probability of erroneous category on the test set is 0.71. The lower left panel shows the dendrogram
associated with the clustering. The lower right panel shows the histogram of cluster assignments for test data,
cf. page 3. Clearly some samples obtain a reliable description at the first level (1–21) in the hierarchy, whereas
others are reliable at a higher level (22–41).

5 Conclusions

This paper presented a probabilistic agglomerative hierarchical clustering algorithm based
on the generalizable Gaussian mixture model and a L2 metric in probabilty density space.
This leads to a simple algorithm which can be used both for supervised and unsupervised
learning. In addition, the probabilistic scheme allows for automatic cluster and hierarchy level
assignment for unseen data and further a natural technique for interpretation of the clusters



Table 1: Keywords for supervised learning
1 research,university,conference 8 neural,model 15 click,remove,hottest,action
2 university,neural,research 9 university,interest,computetion 16 free,adult,remove,call
3 research,creativity,model 10 research,position,application 17 website,adult,creativity,click
4 website,information 11 science,position,fax 18 website,click,remove
5 information,program,computation 12 position,fax,website 19 free,call,remove,creativity
6 research,science,computer,call 13 research,position,application 20 mac
7 website,creativity 14 free,adult,call,website 21 adult,government

1 research,university,conference 11 science,position,fax 39 free,website,cal l,creativity

via prototype examples and features. The algorithm was successfully applied to segmentation
of emails.
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