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Abstract

This paper deals with a physically based bio-optical model for the simultaneous determi-
nation of concentrations of water constituents chlorophyll-a (CHL), total suspended matter
(TSM), and coloured, dissolved organic matter (CDOM). The model is based on the depen-
dency of absorption and backscatter coefficients on the constituent concentrations. A funda-
mental remote sensing equation is rewritten to a regression model which is used to estimate
the concentrations of CHL and TSM. A weighted regression analysis is performed and the
weights are determined as the weights chosen in a partial least squares (PLS) or canonical
covariance analysis of in situ measurements of CHL, TSM and CDOM with in situ spectra in
the 400-730 nm region. Resampled weights are used with geometrically corrected and cali-
brated airborne optical casi data to produce maps of jointly estimated CHL and TSM contents.
Also, considerations to give a better understanding of the PLS technique than offered by the
NIPALS algorithm are given and canonical correlations analysis is briefly described.

1 Introduction

Based on [1] we suggest a model for the joint estimation of concentrations of water constituents
chlorophyll-a (CHL), total suspended matter (TSM), and coloured, dissolved organic matter (CDOM)
[2]. Here, we estimate CHL and TSM only but the model can be used to estimate CDOM also.
Although CDOM is not estimated its spectral behaviour is accounted for in the joint estimation of
CHL and TSM.

Below the following symbols are used:

� ����� is the irradiance reflected just below the water surface,
� � is the absorption coefficient,
� �� is the backscatter coefficient,
� � is a proportionality constant (here � � ����),
� CHL is the concentration of chlorophyll-a,
� TSM is the concentration of total suspended matter,
� TSM�� is the concentration of the part of TSM that is unrelated to CHL,
� TSM�� is the concentration of the part of TSM that is related to CHL,
� �� is a proportionality constant (here �� � ����),
� �� is the absorption coefficient for water,
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� ����	�� is the specific absorption coefficient for TSM��,
� ����
 is the specific absorption coefficient for CHL,
� ����	 is the absorption coefficient for CDOM,
� ��� is the backscatter coefficient for water,
� �����	�� is the specific backscatter coefficient for TSM��.

2 A Bio-optical Model

A fundamental remote sensing equation, (1) below, and equations relating inherent optical prop-
erties (IOPs: ��, ����	��, ����
, ����	, ��� and �����	��) and the absorption and backscatter coeffi-
cients � and ��

����� � �
��

�� ��
(1)

� � �� � ����	�� � TSM�� � ����
 � CHL � ����	 (2)

�� � ��� � �����	�� � TSM�� (3)

TSM � TSM�� � TSM�� � TSM�� � �� � CHL (4)

are rewritten using the auxiliary variable � � �� ������� leading to �� �� � � � � or

���� � ����	 � ��� � �� � (5)

�����
 � �� � ��
�

��	�� � �����	�� � ��� � CHL

� �����	�� � � � TSM�

The IOPs and ����� and therefore also � are wavelength dependent and the above equation is
valid for all � wavelengths available. The equations for all wavelengths can be written in vector
and matrix notation as

� � �� � � (6)

where

� � (�� �) contains ���� � ����	 � ��� � �� for all � wavelengths available,
� � (� � 	) in the first column contains ����
 � �� � ��

�

��	�� � �����	�� � �� and in the second
column contains �����	�� � � for all � wavelengths available, and

� � (	� �) is 
CHL TSM� to be estimated;
� � (�� �) are the residuals.

In [1] a slightly different model is used for two wavelengths (675 nm and 705 nm) to solve for
the two unknowns CHL and TSM��. Here, we apply more wavelengths in a (weighted) regression
analysis to obtain the desired estimates.

3 Methods

Earlier work on the model in [1] based on ordinary least squares (OLS) regression showed that
results depended heavily on the wavelengths chosen. A weighted least squares (WLS) regression
is therefore performed. To find the weights to be applied partial least squares (PLS) or canonical
covariance analysis is chosen.
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3.1 PLS regression

In partial least squares, PLS, we consider two multivariate sets � (� � �) and � (	 � �) with
� considered as response variables. � often contains (many) spectral variables, � 
 	 or
� 

 	. In this notation � and � are vector random variables, one for each observation. Often
the number of observations � is small. PLS is normally described as a black-box method (as the
so-called NIPALS algorithm). A thorough understanding of PLS is prevented by this description.
A more “multivariate-statistics-oriented” description is given here.

We want to maximise the covariance � between linear combinations � � �� of � and  �
�� of � , � � Cov��� � � �

����, under the constraints �� � �� � �. ��� (� � 	)
is the covariance between � and � (��� � �


��

). To maximise � we use a Lagrange multiplier
technique and introduce � � � � ����	���

� � �� � ����	���
� � �� which we maximise

without constraints. This is done by setting ����� � ����� � � leading to

���� � ��� (7)

���� � ���� (8)

(Setting ������ � � merely reproduce the constraints.) Multiplying (7) by � and (8) by � we
see that �� � �� � � and by substituting � from (7) into (8) and � from (8) into (7) we get

������� � ��� (9)

������� � ��� (10)

[3, 4], i.e., we find the desired projections for � by considering the conjugate eigenvectors
	�� � � � �	� corresponding to the eigenvalues ��

�
� � � � � ��

� of ������. Similarly, we may find
the desired projections for � by considering the conjugate eigenvectors 
�� � � � � 
� of ������

corresponding to the same eigenvalues ��

� . (As the solutions � and � are interrelated by (7) and
(8) we only need find one of them.) [4] also hints a way to perform multiset or multiblock PLS. In
this situation � naturally splits into several sets of blocks.

If 	 � �, i.e., the response is univariate (� � � ) an eigensolution is not needed. In this case

� is the scalar one (� � � � �) and ��� � ��� (an � � � vector), � � ����
�
�
��
���, and

� � ����.

This is very similar to canonical correlations analysis [5, 6, 7, 8], in which the correlation � �

Corr�	�� 
� � � 	���
�
�
�	���	��



���
� is maximised. To do this we set ����	 �

����
 � � and get

	���	 ���
 � � ���	 (11)


���
 ���	 � � ���
� (12)

Without loss of generality we choose 	 and 
 so that 	���	 � 
���
 � �, i.e., the new
variables called canonical variates have unit variance, which leads to

����
��

��
���	 � �����	 (13)

����
��

��
���
 � �����
� (14)

i.e., inversion of ��� and ��� is needed. This is not feasible when the number of observations is
small.

In PLS only the first pair of canonical variates (or latent variables) � and  corresponding to
the eigensolutions with the largest eigenvalue are calculated and the response  is regressed on
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the predictor �:  � �� � �. Loadings are defined as � � ������
���� (X-loadings) and

 � ������

���� (Y-loadings). If more information is present in the residuals � these are

subtracted from the original response variables (i.e., � is replaced by � � ���), the predictor
variables are projected onto a subspace orthogonal to the solution found (i.e., � is replaced by
� � �� or � � ��, the former is normally chosen) and the procedure is repeated on the new �

and � , see also [9, 10, 11, 12].

Here, � contains in situ spectra (�����) covering from 400 nm to 730 nm in 2 nm intervals
(� � ���). � is in situ 
CHL TSM CDOM� (	 � �). 43 observations from various coastal
regions in Denmark were available. Figure 1 shows the weights and loadings obtained from a PLS
(or canonical covariance) analysis with one latent variable. Also, jackknife weights obtained by
leaving out one observation at a time are shown. Since these jackknife weights seem stable all 43
observations are used. Very low weights for 400-402 nm and negative weights for 404-536 nm are
set to 0 in the WLS regression.

3.2 WLS regression

The ordinary least squares (OLS) regression solution to (6) obtained by minimising the sum of
squared residuals, i.e., by setting �������� � � is

���OLS � �� (15)
�OLS � ������� �� (16)

The weighted least squares (WLS) regression solution obtained by minimising the sum of weighted
squared residuals, i.e., by setting ��������� � � is

����WLS � ��� (17)
�WLS � ���������� (18)

where � is a diagonal matrix with weights for each wavelength available (in both cases provided
of course that the inverse matrices exist). The weights are obtained using partial least squares (or
canonical covariance) analysis as described above. Since in this case both � and � are based on
measured quantities, orthogonal regression could be considered. This idea is not pursued further
here.

4 Results with Airborne Data

With geometrically corrected and calibrated airborne casi (compact airborne spectrographic im-
ager, [13]) data shown in Figure 2, we apply WLS regression in model (5) with 12 of the 19
recorded wavelengths. The casi data are recorded overÅrhus Bugt, Denmark, on 7 August 1999,
pixels are 4�4 m�, and the image size is 8,892 rows by 787 columns. In the figures this one
flight line is shown as three columns of data. The weights applied are nearest neighbour versions
of the weights chosen as described above. The IOPs applied are nearest neighbour versions of
region specific in situ IOPs. The WLS regression gives simultaneous estimates for CHL (stretched
linearly between 0 and 3 �g/l) and TSM (stretched linearly between 0 and 0.5 mg/l) shown in
Figures 3 and 4. In both cases the colour scale goes from blue over cyan-green-yellow to red.
Simultaneously recorded in situ measurements (5 observations) of CHL lie in the interval 1.6–2.8
�g/l. For TSM in situ measurements lie in the interval 0.7–1.7 mg/l.
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5 Conclusions

Based on inherent optical properties established from in situ sampling and in situ irradiance mea-
surements a framework for physically based simultaneous estimation of water constituent concen-
trations by means of weighted least squares regression is described. The weights applied in the
analysis are obtained from a one latent variable partial least squares model of 43 observations of
in situ measurements of water constituent concentrations and the spectral response in the 400-730
nm wavelength region. The estimates obtained for chlorophyll-a lie in the same interval as the in
situ measurements whereas the estimated values for total suspended matter seem low.
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Figure 1: Weights, loadings and jackknife weights from PLS with one latent variable
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Figure 2: Simulated natural colour RGB plot of casi data; the flight line is broken into three strips
each 12,000 m long and 3,148 m across
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Figure 3: CHL estimate from casi data, stretch is linear from 0 to 3 �g/l, colour scale is from blue
over cyan-green-yellow to red; the flight line is broken into three strips each 12,000 m long and
3,148 m across

8



Figure 4: TSM estimate from casi data, stretch is linear from 0 to 0.5 mg/l, colour scale is from
blue over cyan-green-yellow to red; the flight line is broken into three strips each 12,000 m long
and 3,148 m across
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