
The Matrix exponential, Dynamic Systems and

Control

Niels Kjølstad Poulsen

Informatics and Mathematical Modelling, Building 321

Technical University of Denmark

DK-2800 Lyngby

2004-02-18 15.06

Abstract

The matrix exponential can be found in various connections in analysis

and control of dynamic systems. In this short note we are going to list a

few examples. The matrix exponential usably pops up in connection to the

sampling process, whatever it is in a deterministic or a stochastic setting or

it is a tool for determining a Gramian matrix.

This note is intended to be used in connection to the teaching post the

course in Stochastic Adaptive Control (02421) given at Informatics and

Mathematical Modelling (IMM), The Technical University of Denmark. This

work is a result of a study of the litterature.

1 Introduction

One way to give a formal definition on the matrix exponential is through its Taylor
expansion

eA = I + A +
1

2
A2 + ... +

1

n!
An + ...

The numerical evaluation of the matrix exponential can in some situations be done
by applying the definition and the Taylor expansion. Depending on the properties
of A different numerical alternatives might be used.

The following Lemma can be found in e.g. [1] (page 235). Consider matrices A11,
A12 and A22 with adequate dimensions. Let

[

F11 F12

0 F22

]

= exp

([

A11 A12

0 A22

]

h

)

(1)

Then
F11 = eA11h F22 = eA22h

and

F12 =

∫ h

0

eA11(h−s)A12e
A22s ds

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13700817?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 2 Sampling of a deterministic system

Since the matrices are block upper triangular, we easily get

F11 = eA11h and F22 = eA22h

If we differentiate (1) we get

d

dt

[

F11 F12

0 F22

]

=

[

A11 A12

0 A22

][

F11 F12

0 F22

]

and
d

dt
F12 = A11F12 + A12F22

Using the solution for F22 and F12(0) = 0 we have

F12 =

∫ h

0

eA11(h−s)A12e
A22sds

This lemma has several applications in connection to system theory, as we will
illustrate in the next sections.

2 Sampling of a deterministic system

Let a deterministic (LTI) system in continuous time be given by the state space
description

d

dt
x = Ax + Bu x(0) = x0

It is well known that the solutions to this description is given by

x(t) = eAtx0 +

∫ t

0

eA(t−s)Bu(s) ds

yi

D
A

A
D

Plant

ui

Figure 1. Sampled-data control system with the plant embedded with sensors and
actuators among filters and converters.

From a computer point of view (and using a zero order hold sample and hold
network) the system (or the plant) can in discrete be described by a discrete time
model

xi+1 = Φxi + Γui

yi = Cxi

where

Φ = eAh Γ =

∫ h

0

eA(h−s)B ds =

∫ h

0

eAτB dτ

In the latter substitution we have used τ = h − s. Notice the control action is
assumed to be constant between samples (when we use a zero order hold network).



3

Also
Γ = A−1(Φ− I)B = (Φ− I)A−1B

Let
[

F11 F12

0 F22

]

= exp

([

A B

0 0

]

h

)

and using the Lemma we have

F11 = eAh F12 =

∫ h

0

eA(h−s)BIds

and

Φ = F11 Γ = F12

The Matlab implementation of this algorithm is listed in Appendix C as c2d.m.

3 Sampling of a stochastic system

Consider a (LTI) continuous time stochastic system

d

dt
x = Ax + w

where the intensity of w is R. In discrete time, i.e. for t = ih where h is the
sampling period, the system can be described by

xi+1 = Φxi + vi

where the variance of vi is Σ which (see e.g. [3] p. 84) is given by

Σ =

∫ h

0

eAcsRce
AT

c
s ds

or the solution to
d

dt
Σ = AΣ + ΣAT + R Σ(0) = 0

One method can be found in [3] p. 111. Let

[

F11 F12

F21 F22

]

= exp

([

A R

0 −AT

]

h

)

then
F11 = eAh = Φ F22 = e−AT h = Φ−1

and

F12 =

∫ h

0

eA(h−s)Rse
−AT sds =

∫ h

0

eA(h−s)Rse
AT (h−s)ds e−AT h

If we apply the substitution τ = h− s we get

Φ = F11 Σ = F12F
−1
22

Another method is the following. Let
[

F11 F12

F21 F22

]

= exp

([

−A R

0 AT

]

h

)



4 5 Observability

then
F11 = e−Ah = Φ−1 F22 = eAT h = ΦT

and

F12 =

∫ h

0

e−A(h−s)ReAT s ds = e−Ah

∫ h

0

eAsReAT s ds

and the

Φ = F T
22 Σ = F T

22F12

The Matlab implementation of this algorithm is listed in Appendix C as nc2d.m.

4 Controlability

If we address the question whatever it is possible to drive the system

d

dt
x = Ax + Bu x(0) = x0

from any initial state to any target state in finite time, we might answer that (See
e.g. [2] p. 610 or [1] p. 236) by checking the rank properties of the controlability
Gramian

Wc =

∫ h

0

eAsBBT eAT s ds

The controlability Gramian can also be found as the solution to the following dif-
ferential equation

d

dt
Wc = AWc + WcA

T + BBT Wc(0) = 0

Define
[

F11 F12

0 F22

]

= exp

([

−A BBT

0 AT

]

h

)

then
F11 = e−Ah = Φ−1 F22 = eAT h = ΦT

and

F12 =

∫ h

0

e−A(h−s)BBT eAT s ds = e−Ah

∫ h

0

eAsBBT eAT s ds

and

Φ = F T
22 Wc = F T

22F12

The Matlab implementation of this algorithm is listed in Appendix C as syswc.m.

5 Observability

The dual to the controlability problem is the oberservability problem. If we observe
the output from the system

d

dt
x = Ax



5

over a finite period of time, then the question is whatever we can determine any
initial state value. This problem is solved (See e.g. [2] p. 615.) by checking the
rank properties of the obervervability Gramian

Wo =

∫ h

0

eAT sCT CeAs ds

d

dt
Wo = AT Wo + WoA + CT C Wo(0) = 0

Define
[

F11 F12

0 F22

]

= exp

([

−AT CT C

0 A

]

h

)

then
F11 = e−AT h = Φ−T F22 = eAh = Φ

and

F12 =

∫ h

0

e−AT (h−s)CT CeAs ds = e−AT h

∫ h

0

eAT sCT CeAs ds

and

Φ = F22 Wc = F T
22F12

The Matlab implementation of this algorithm is listed in Appendix C as syswo.m.

6 Sampled-data control

Consider the problem of controlling a continuous time LTI system

d

dt
x(t) = Ax(t) + Bu(t) x(0) = x(0) (2)

such that the (standard continuous time) objective function

J =
1

2
xT (T )Px(T ) +

1

2T

∫ T

0

xT (t)Qx(t) + uT (t)Ru(t) dt

is minimized. The control actions are assumed to be constant between samples, i.e.

u(t) = ui for ih < t ≤ ih + h

where h is the length of the (constant) sampling period. We assume for the sake of
simplicity that the horizon is a multiple of the sampling period, i.e. T = Nh. The
Bellman equation becomes in this situation

Vi(xi) = min
ui

[

1

h

∫ ih+h

ih

1

2
xT (t)Qx(t) dt +

1

2
uT

i Rui + Vi+1(xi+1)

]

(3)

VN (xN ) =
1

2
xT

NPxN

where the Bellman function, Vi(xi), is the optimal cost to go. We will investigate
the following candidate function

Vi(xi) =
1

2
xT

i Sixi



6 6 Sampled-data control

which obviously is satisfied for i = N . By notation xi = x(ih) and xN = x(T ). Let
for short s = t− ih ≤ h. The solution to (2) is well known and is

x(t) = eAsxi +

∫ h

0

eA(s−τ)B dτ ui

= Φsxi + Γsui

where

Φs = eAs Γs =

∫ h

0

eA(s−τ)B dτ =

∫ h

0

eAτB dτ

If we furthermore introduces the integrals

Q1 =
1

h

∫ h

0

ΦT
s QΦs ds Q12 =

1

h

∫ h

0

ΦT
s QΓs ds Q2 =

1

h

∫ h

0

ΓT
s QΓs ds

then the inner part of the minimization in (3) can be written as

I =
1

2

[

xT
i uT

i

]

[

Q1 Q12

QT
12 Q2

][

xi

ui

]

+
1

2
uT

i Rui+
1

2

[

xT
i uT

i

]

[

ΦT
h Si+1Φh ΦT

h Si+1Γh

ΓT
h Si+1Φh ΓT

h Si+1Γh

] [

xi

ui

]

or as

I =
1

2

[

xT
i uT

i

]

[

Q1 + ΦT
h Si+1Φh Q12 + ΦT

h Si+1Γh

QT
12 + ΓT

h Si+1Φh R + Q2 + ΓT
h Si+1Γh

] [

xi

ui

]

That means that the control is given by:

ui = −
[

R + Q2 + ΓT
h Si+1Γh

]

−1 [

QT
12 + ΓT

h Si+1Φh

]

xi

where Si is given by the recursion

Si = Q1+ΦT
h Si+1Φh−

[

Q12 + ΦT
h Si+1Γh

] [

R + Q2 + ΓT
h Si+1Γh

]

−1
[

QT
12 + ΓT

h Si+1Φh

]

SN = P

This ensures that the candidate function satisfy the Bellman equation. Notice, the
solution to this problem coincide with the solution to a discrete time problem, just
with transformed weight matrices.

We will now use the matrix exponential for determine the these weight matrices.
Let

Σ =

[

Q1 Q12

QT
12 Q2

]

For determining the matrices, define the square matrix

A =

[

A B

0 0

]

Then by the Lemma

eAs =

[

eAs
∫ s

0
eA(s−t)dt

0 I

]

=

[

eAs
∫ s

0
eAtdt

0 I

]

=

[

Φs Γs

0 I

]

If we furthermore define the matrix

Qc =

[

Q 0
0 0

]



REFERENCES 7

it is straight forward to check that

Σ =

∫ h

0

eA
T sQce

As ds =

∫ h

0

[

ΦT
s 0

ΓT
s I

] [

Q 0
0 0

][

Φs Γs

0 I

]

ds

If we compute the matrix:

[

F11 F12

0 F22

]

= exp

([

−AT Qc

0 A

]

h

)

then
F11 = e−A

T h F22 = eAh

and

F12 =

∫ h

0

e−A
T (h−s)Qce

As ds = e−A
T h

∫ h

0

eA
T sQce

As ds

and finally

Σ = F T
22F12

and

F22 =

[

Φh Γh

0 I

]

The Matlab implementation of this algorithm is listed in Appendix C as conc2d.m.

References

[1] T. Chen and B. Francis. Optimal Sampled-Data Control Systems. Communica-
tions and Control Engineering Series. Springer-Verlag New York Inc., 1995.

[2] T. Kailath. Linear Systems. Prentice Hall, 1980.

[3] T. Söderström. Discrete-Time Stochastic Systems: Estimation and Control.
Prentice Hall, 1994.



8 A Sampled-data control

A Sampled-data control

The problem in section 6 can be treated in a more general framework (see e.g. [1]
page 238). Here the problem will be solved in the same setting as in section 6.

Consider the problem of controlling a continuous time LTI system

d

dt
x(t) = Ax(t) + Bu(t) x(0) = x(0) (4)

y(t) = Cx(t) + Du(t)

such that the objective function

J =
1

2
xT (T )Px(T ) +

1

2

∫ T

0

‖y(t)‖2 dt (5)

is minimized. Notice the traditional weights is embedded in the output matrices,
C and D. The alternative formulation

J =
1

2
xT (T )Px(T ) +

1

2T

∫ T

0

[

xT (t) uT (t)
]

[

Q S

ST R

][

x(t)
u(t)

]

dt

is easily obtained from the methods described in B. The control actions are, as in
section 6, assumed to be constant between samples, i.e.

u(t) = ui for ih < t ≤ ih + h

It is quite easy to check that the cost function in (5) is equivalent with the discrete
time problem of controlling the system

xi+1 = Φxi + Γui x0 = x0

such that the cost function

J =
1

2
xT

NPxN +
1

2

N−1
∑

i=0

[

xT
i uT

i

]

[

Q11 Q12

QT
12 Q22

][

xi

ui

]

is minimized. Here:

Q11 =

∫ h

0

eAT sCT CeAs ds

Q12 =

∫ h

0

eAT tCT

[

D + C

∫ t

0

eAsB ds

]

dt

Q22 =

∫ h

0

[

D + C

∫ t

0

eAsB ds

]T [

D + C

∫ t

0

eAsB ds

]

dt

Let

Σ =

(

Q11 Q12

Q21 Q22

)

and Qc =

[

CT

DT

]

[

C D
]

=

[

Q S

ST R

]

Define the square matrix

A =

[

A B

0 0

]

Then by the Lemma

eAt =

[

eAt
∫ h

0
eA(t−s)ds

0 I

]

=

[

eAt
∫ t

0 eAsds

0 I

]



9

It is straight forward to check that

Σ =

∫ h

0

eA
T s

[

CT

DT

]

[

C D
]

eAs ds =

∫ h

0

eA
T sQce

As ds

Compute the matrix

[

F11 F12

0 F22

]

= exp

([

−AT Q

0 A

]

h

)

Then

Σ = F T
22F12

and

F22 =

[

Φ Γ
0 I

]

The Matlab implementation of this algorithm is listed in Appendix C as smplq.m.

B Manipulation of cost functions

Connection between output point of view and cost functions. Consider

z = Cx + Du =
(

C D
)

(

x

u

)

Then

J = ‖z‖2 =
(

xt uT
)

[

CT

DT

]

[

C D
]

(

x

u

)

=
(

xt uT
)

Q

(

x

u

)

where

Q =

(

CT C CT D

DT C DT D

)

On the other hand, given Q we can easily find C and D. Assuming Q to be positive
definite we can perform a cholesky factorization, i.e. find H such that

Q = HT H

Then (using a matlab notation)

C = H(:, 1 : n) D = H(:, n + 1 : end)

If Q is not positive definite (but still symmetric) we have to user SVD instead. Then

Q = USUT

where U is an upper triangular matrix and S is a diagonal matrix. In this case

H =
√

SUT



10 C Codes

C Codes

The codes listed below is the Matlab implementations of the algorithms described
in the previous chapters. The listning occur in their stripped version, i.e. without
any significant input checking or options.

function [Ad,Bd] = c2d(A,B,h)

%Usage [Ad,Bd] = c2d(A,B,h)

%

%Find the discret time model

%

% x(t+1)=Ad*x(t)+Bd*u(t)

%

%when the continuous time model

%

% dot(x)=A*x+B*u

%

%is sampled with h as sampling period and the input is

%constant between samples.

[n,m]=size(B);

F=expm([[A B]*h; zeros(m,n+m)]);

Ad=F(1:n,1:n);

Bd=F(1:n,n+1:end);

function (S,Ad)=nc2d(A,R,h)

% Usage: (S,Ad)=nc2d(A,R,h)

n=length(A);

F=exp([-A R; zeros(n,n) A’]*h);

F12=F(1:n,n+1:end);

F22=F(n+1:end,n+1:end);

Ad=F22’;

S=Ad*F12;

function [Wc,Ad]=syscwc(A,B,h)

n=length(A);

F=exp([-A B*B’; zeros(n,n) A’]*h);

F12=F(1:n,n+1:end);

F22=G(n+1:end,n+1:end);

Ad=F22’;

Wc=Ad*F12;

function [Wo,Ad]=syscwo(C,A,h)



11

n=length(A);

F=exp([-A’ C’*C; zeros(n,n) A]*h);

F12=F(1:n,n+1:end);

F22=G(n+1:end,n+1:end);

Ad=F22;

Wc=Ad’*F12;

function [Q1,Q2,Q12,Ad,Bd]=conc2d(A,B,Q,R,h)

% Usage: [Q1,Q2,Q12,Ad,Bd]=conc2d(A,B,Q,R,h)

[n,m]=size(B);

Qc=[Q zeros(n,m); zeros(m,n) R*h];

Ac=[A B; zeros(n,n+m)];

F=exp([-A’ Qc; zeros(n.n) A]*h);

F22=F(n+m+1:end,n+m+1:end);

F12=F(1:n+m,n+m+1:end);

Q=F22’*F12/h;

Q1=Q(1:n,1:n);

Q2=Q(n+1:end,n+1:end);

Q12=Q(1:n,n+1:end);

Ad=F22(1:n,1:n);

Bd=F22(1:n,n+1:end);

function [Ad,Bd,Cd,Dd]=smplq(A,B,C,D,h)

% Usage [Ad,Bd,Cd,Dd]=smplq(A,B,C,D,h)

% sysd=smplq(sysc,h)

if nargin==5,

typ=1;

elseif nargin==2,

typ=2,

[A,B,C,D]=ssdata(sysc);

else

disp(’Wrong argument list’);

return 1

end

[n,m]=size(B);

Qc=[C’;D’]*[C D];

Ac=[A B; zeros(n,n+m)];

F=exp([-A’ Qc; zeros(n.n) A]*h);

F22=F(n+m+1:end,n+m+1:end);

F12=F(1:n+m,n+m+1:end);

Q=F22’*F12;

Ad=F22(1:n,1:n);

Bd=F22(1:n,n+1:end);

[U,S]=svd(Q);

H=sqrt(S)*U’;

Cd=H(:,1:n);



12 C Codes

Dd=H(:,n+1:end);

if typ==2,

Ad=ss(Ad,Bd,Cd,Dd,h),

end


