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1 Matrix Notation and Basic Operations

A matrix is defined the following way:

A ∈ R
m×n ⇔ A =















a11 · · · a1n

... aij

...

am1 · · · amn















aij ∈ R (1)

Some calculations may involve complex matrices. A complex matrix is defined as

A = B + iC ∈ C
m×n, (2)

where the real part is given by<A = B ∈ R
m×n and the imaginary part is given by=A = C ∈

R
m×n.

Thecomplex conjugationof a matrix is denoted as

A∗ = (B + iC)∗ = B − iC (3)

A vector is defined the following way:

a ∈ R
m×1 ⇔ a =











a1

a2
...

am











ai ∈ R (4)
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In the following the matrices and vectors is allowed to be complex unless other is stated.
Thetranspositionof a matrix is denoted as

AT ⇔ (aij)
T = aji (5)

Theconjugate transposition(or Hermitian transposition) of a matrix is denoted as

AH ⇔ (aij)
H = (a∗

ij)
T = a∗

ji (6)

A matrix A ∈ C
n×n is calledHermitian if A = AH . Notice, if A ∈ R

m×n thenAH = AT since
A∗ = A.
If A ∈ C

m×p andB ∈ C
p×n then theproductbetweenA andB is given by

AB = C ∈ C
m×n ⇔ cij =

p
∑

k=1

aikbkj (7)

Thetraceof a matrix is defined as

tr(A) =
n

∑

i=1

aii, A ∈ C
n×n (8)

Combining (7) and (8) yields

tr(AB) =
n

∑

i=1

n
∑

k=1

aikbki, A ∈ C
n×n (9)

Thesubmatrixof a matrixA, denoted by(A)ij is a(n−1)×(n−1) matrix obtained by deleting
theith row and thejth column ofA.
Thecofactorof a submatrix(A)ij can be found as

cof(A)ij = (−1)i+j det(A)ij, (10)

wheredet is thedeterminant(see (15)). Thematrix of cofactorscan be created from the cofac-
tors

cof(A) =















cof(A)11 · · · cof(A)1n

... cof(A)ij

...

cof(A)n1 · · · cof(A)nn















(11)

Theadjoint matrix is the transpose of the cofactor matrix

adj(A) = (cof(A))T , (12)

and
adj(A)ij = adj(A)ji = (−1)i+j det(A)ji (13)
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Thedeterminantof a matrixA ∈ C
n×n is defined (Golub and van Loan [1996]) as

det(A) =
n

∑

j=1

(−1)j+1a1j det ((A)1j) (14)

=
n

∑

j=1

a1jcof(A)1j. (15)

The inverseA−1 of a matrixA ∈ C
n×n is defined such that

AA−1 = A−1A = I, (16)

whereI is then × n identity matrix. If A−1 exists,A is said to benonsingular. Otherwise,A is
said to besingular (Golub and van Loan [1996]).
The inverse matrix can be calculated by the following formula

A−1 =
adj(A)

det(A)
(17)

TheHadamard productis defined as the product of corresponding elements, i.e.

A ◦ B =











a11b11 a12b12 · · · a1nb1n

a21b21 a22b22 · · · a2nb2n

...
...

...
am1bm1 am2bm2 · · · amnbmn











(18)

Let A ∈ R
m×n andB ∈ R

p×q. TheKronecker productis then defined as (Golub and van Loan
[1996])

A ⊗ B =











a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

...
am1B am2B · · · amnB











(19)

The dimension of the resulting matrix is thusmp × nq.

1.1 Eigenvalues and Eigenvectors

Consider the linear system
Ax = λx, (20)

whereA ∈ C
n×n, x ∈ C

n×1, λ ∈ C. If λ satisfies (20),λ is referred to as aneigenvalue. Then

eigenvectorsλ1, . . . , λn are defined by solving thecharacteristic equation:

det(A − λI) = 0 (21)
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The left hand side of the characteristic equation is called the characteristic polynomial. The
corresponding vectorsx that satisfy (20) are calledeigenvectors. In general,x is referred to as
the right eigenvector, if it satisfiesAx = λx and theleft eigenvectorif it satisfiesxHA = λxH

(Golub and van Loan [1996]). When the eigenvalues are known, the eigenvectors are found by
solving the linear system

(A − λI)x = 0 (22)

2 Properties of Products, Transposition, Determinant, Trace
and Inverse

The formulas from are taken from Roweis [1999], Minka [2000],Stainvas [2002] and Golub
and van Loan [1996]. In these references though, it is not always clear whether the formulas
hold if the matrices contain complex numbers.

A(B + C) = AB + AC, A ∈ C
m×p, B, C ∈ C

p×n (23)
(A + B)H = AH + BH , A, B ∈ C

m×n (24)
(AB)T = BT AT , A ∈ C

m×p, B ∈ C
p×n (25)

(ABC . . .)T = . . . CT BT AT , ABC . . . ∈ C
m×n (26)

(AB)H = BHAH , A ∈ C
m×p, B ∈ C

p×n (27)
(ABC . . .)H = . . . CHBHAH , ABC . . . ∈ C

m×n (28)
(AB)−1 = B−1A−1, A ∈ C

n×n, B ∈ C
n×n (29)

(A−1)T = (AT )−1, A ∈ C
n×n (30)

(A−1)H = (AH)−1, A ∈ C
n×n (31)

tr(A) =
n

∑

i=1

λi, A ∈ C
n×n (32)

tr(A) =
n

∑

i=1

aii, A ∈ C
n×n (33)

tr(A) = tr(AT ), A ∈ C
n×n (34)

tr(A) = tr((A∗)H) = tr(AH)∗, A ∈ C
n×n (35)

tr(A + B) = tr(A) + tr(B), A, B ∈ C
n×n (36)

tr(AB) = tr(BA), A, B ∈ C
n×n (37)

(37) can be extended to the more general case (Roweis [1999]):

tr(ABC . . .) = tr(BC . . . A) = tr(C . . . AB) = . . . , A, B, C, . . . ∈ C
n×n (38)

det (A) =
n

∏

i=1

λi, A ∈ C
n×n (39)
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det (AT ) = det (A), A ∈ C
n×n (40)

det (AH) = det (A∗) = det (A)∗, A ∈ C
n×n (41)

det (A−1) =
1

det (A)
, A ∈ C

n×n (42)

det(AB) = det(A) det(B), A, B ∈ C
n×n (43)

det(αA) = αn det(A), A ∈ C
n×n (44)

2.1 Matrix Inversions

Several matrix inversion formulas exist.
Sherman-Morrison Formula: Given the matrixA ∈ R

n×n and the vectorsu and v, where
u ⊗ v ∈ R

n×n. Then (Press et al. [2002])

(A + u ⊗ v)−1 = A−1 +
(A−1u) ⊗ (vA−1)

1 + λ
, (45)

where
λ = vA−1u. (46)

The following type of matrix inversion formulas are derivedby considering block matrices.
Woodbury Formula([Bishop, 1995, p. 153])

(A + BC)−1 = A−1 − A−1B(I + CA−1B)−1CA−1 (47)

(III [2003], Roweis [1999]))

(A + BX−1C)−1 = A−1 + A−1B(X + CA−1B)−1CA−1 (48)

(A + XBXT )−1 = A−1 − A−1X(B−1 + XT A−1X)−1XA−1 (49)

Matrices can as well be inverted by partitioning the matrix (Press et al. [2002]). Consider the
following matrix

A =

[

P Q
R S

]

, (50)

whereP andQ are square matrices. If

A−1 =

[

P̃ Q̃
R̃ S̃

]

, (51)

5



thenP̃, Q̃, R̃ andS̃ can be written as

P̃ = (P − QS−1R)−1 (52)

= P−1 + P−1Q(S − RP−1Q)−1RP−1 (53)

Q̃ = −(P − QS−1R)−1QS−1 (54)

= −P−1Q(S − RP−1Q)−1 (55)

R̃ = −(S − RP−1Q)−1QP−1 (56)

= −S−1R(P − QS−1R)−1 (57)

S̃ = (S − RP−1Q)−1 (58)

= S−1 + S−1R(P − QS−1R)−1QS−1. (59)

The determinant of the partitioned matrixA can be written as (Press et al. [2002])

det A = det P det(S − RP−1Q) (60)

= det S det(P − QS−1R). (61)

3 Matrix Derivatives

Several kinds of derivatives can be expressed as scalars, vectors or matrices:

• Scalar differentiated with respect to a scalar:dy

dx

• Scalar differentiated with respect to a vector:dy

dx = ∂y

∂xj

• Scalar differentiated with respect to a matrix:dy

dX = ∂y

∂xij

• Vector differentiated with respect to a scalar:dy
dx

= ∂yi

∂x

• Vector differentiated with respect to a vector:dy
dx = ∂yi

∂xj

• Matrix differentiated with respect to a scalar:dY
dx

=
∂yij

∂x

The following rules are very useful when deriving the differential of an expression (Minka
[2000]):

∂A = 0 (A is a constant) (62)
∂(αX) = α∂X (63)

∂(X + Y) = ∂X + ∂Y (64)
∂(tr(X)) = tr(∂X) (65)
∂(XY) = (∂X)Y + X(∂Y) (66)

∂(X ◦ Y) = (∂X) ◦ Y + X ◦ (∂Y) (67)
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∂(X ⊗ Y) = (∂X) ⊗ Y + X ⊗ (∂Y) (68)
∂(X−1) = −X−1(∂X)X−1 (69)

∂(det(X)) = det(X)tr(X−1∂X) (70)
∂(ln(det(X))) = tr(X−1∂X) (71)

∂XT = (∂X)T (72)
∂XH = (∂X)H (73)

3.1 Complex Derivatives

In order to differentiate an expressionf(z) with respect to a complexz, the Cauchy-Riemann
equations have to be satisfied (Brookes [2003]):

df(z)

dz
=

∂<(f(z))

∂<z
+ i

∂=(f(z))

∂<z
(74)

and
df(z)

dz
= −i

∂<(f(z))

∂=z
+

∂=(f(z))

∂=z
(75)

or in a more compact form:
∂f(z)

∂=z
= i

∂f(z)

∂<z
. (76)

A complex function that satisfies the Cauchy-Riemann equations for points in a region R is
said yo beanalytic in this region R. In general, expressions involving complex conjugate or
conjugate transpose do not satisfy the Cauchy-Riemann equations. In order to avoid this prob-
lem, a more generalized definition of complex derivative is used (Schwartz [1967], Brandwood
[1983]):

• Generalized Complex Derivative:

df(z)

dz
=

1

2

(∂f(z)

∂<z
− i

∂f(z)

∂=z

)

(77)

• Conjugate Complex Derivative

df(z)

dz∗
=

1

2

(∂f(z)

∂<z
+ i

∂f(z)

∂=z

)

(78)

The Generalized Complex Derivative equals the normal derivative, whenf is an analytic func-
tion. For a non-analytic function such asf(z) = z∗, the derivative equals zero. The Conju-
gate Complex Derivative equals zero, whenf is an analytic function. The Conjugate Complex
Derivative has e.g been used by Parra and Spence [2000] when deriving a complex gradient.
Notice:

df(z)

dz
6=

∂f(z)

∂<z
+ i

∂f(z)

∂=z
(79)
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• Complex Gradient Vector: Iff is a real function of a complex vectorz, then the complex
gradient vector is given by ([Haykin, 2002, p. 798])

∇f(z) = 2
df(z)
dz∗

(80)

=
∂f(z)
∂<z

+ i
∂f(z)
∂=z

• Complex Gradient Matrix: Iff is a real function of a complex matrixZ, then the complex
gradient matrix is given by (Anemüller et al. [2003])

∇f(Z) = 2
df(Z)

dZ∗
(81)

=
∂f(Z)

∂<Z
+ i

∂f(Z)

∂=Z

These expressions can be used for gradient descent algorithms.

3.2 Scalar differentiated with respect to matrices

Let y = f(X) be a scalar function ofX ∈ C
m×n. Then the derivative ofy is defined as1

dy

dX
=











∂y

∂x11

∂y

∂x12

· · · ∂y

∂x1n
∂y

∂x21

∂y

∂x22

· · · ∂y

∂x2n

...
...

...
∂y

∂xm1

∂y

∂xm2

· · · ∂y

∂xmn











(82)

This matrix is known as thegradient matrix(Felippa [2003]).

3.2.1 The Chain Rule

Sometimes the objective is to find the derivative of a matrix which is a function of another
matrix. LetU = f(X), the goal is to find the derivative of the function g(U) with respect toX:

∂g(U)

∂X
=

∂g(f(X))

∂X
(83)

1The definition of matrix derivative agrees with the definitions in Roweis [1999], Stainvas [2002], Felippa
[2003]. The matrix derivative in Minka [2000] is defined in a different way:

dy

dX
=

dy

dXT
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Then the Chain Rule can then be written the following way:

∂g(U)

∂X
=

∂g(U)

∂xij

=
M

∑

k=1

N
∑

l=1

∂g(U)

∂ukl

∂ukl

∂xij

(84)

Using matrix notation, this can be written as:

∂g(U)

∂X
=

tr((∂g(U)
∂U )T ∂U)

∂X
. (85)

3.2.2 The Chain Rule for complex numbers

The chain rule is a little more complicated when the functionof a complexu = f(x) is non-
analytic. For a non-analytic function, the following chainrule can be applied (Brookes [2003])

∂g(u)

∂x
=

∂g

∂u

∂u

∂x
+

∂g

∂u∗

∂u∗

∂x
(86)

=
∂g

∂u

∂u

∂x
+

(∂g∗

∂u

)

∗∂u∗

∂x

Notice, if the function is analytic, the second term reducesto zero, and the function is reduced
to the normal well-known chain rule. For the matrix derivative of a scalar functiong(U), the
chain rule can be written the following way:

∂g(U)

∂X
=

tr((∂g(U)
∂U )T ∂U)

∂X
+

tr((∂g(U)
∂U∗ )T ∂U∗)

∂X
. (87)

3.2.3 Basic derivatives

Assume that all the arguments are real and the argument inside the trace is square. Further,
assume that the elements ofX are functionally independent.

∂(aT Xb)

∂X
= abT (88)

∂(aT XT b)

∂X
= baT (89)

∂(aT XT Xb)

∂X
= X(abT + baT ) (90)

∂(aT XT Xa)

∂X
= 2XaaT (91)

∂(aT XT CXb)

∂X
= CT XabT + CXbaT (92)

∂(aT XT CXa)

∂X
= (C + CT )XaaT (93)
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∂(aT XT
ΣXa)

∂X
= 2ΣXaaT , Σ = Σ

T (94)

∂((Xa + b)T C(Xa + b))

∂X
= (C + CT )(Xa + b)aT (95)

ProvidedX−1 exists:

∂(aT X−1b)

∂X
= −(XT )−1abT (XT )−1 (96)

Useful formulas involving derivatives of traces and determinants exist.

3.2.4 Derivatives of Traces

One of the most common matrix norms is theFrobeniusnorm. The Frobenius norm is defined
as (Golub and van Loan [1996])

‖A‖ =

√

√

√

√

m
∑

i=1

n
∑

i=j

|aij|2. (97)

Using matrix notation, thesquared Frobeniusnorm can be written as

m
∑

i=1

n
∑

i=j

|aij|
2 = tr(AHA) (98)

Therefore, matrix derivatives of traces are a common problem. Then the following formulas
exists:

∂tr(X)

∂X
=

∂tr(XT )

∂X
= I (99)

∂tr(Xk)

∂X
= k(Xk−1)T (100)

∂tr(AXk)

∂X
=

k−1
∑

r=0

(XrAXk−r−1)T (101)

∂tr(AX)

∂X
=

∂tr(XA)

∂X
= AT , see (143) (102)

∂tr(AXT )

∂X
=

∂tr(XT A)

∂X
= A (103)

∂tr(AXB)

∂X
=

∂tr(BT XT AT )

∂X
=

∂tr(BAX)

∂X
= (BA)T (104)

∂tr(AT XBT )

∂X
=

∂tr(BXT A)

∂X
= AB (105)

∂tr(AXBX)

∂X
= AT XT BT + BT XT AT (106)

∂tr(AXT BXT )

∂X
= AXT B + BXT A (107)
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∂tr(AXBXT C)

∂X
= AT CT XBT + CAXB (108)

∂tr(AXT BXC)

∂X
= BXCA + BT XAT CT (109)

∂tr(XAXT )

∂X
=

∂tr(AXT X)

∂X
=

∂tr(XT XA)

∂X
= X(A + AT ) (110)

∂tr(XT AX)

∂X
=

∂tr(AXXT )

∂X
=

∂tr(XXT A)

∂X
= (A + AT )X (111)

Notice, (110) and (111) are special cases of (108) and (109),respectively. Provided thatX−1

exists, the following expressions can be proved.

∂tr(AX−1B)

∂X
= −(X−1)T AT BT (X−1)T (112)

∂tr(AX−1)

∂X
=

∂tr(X−1A)

∂X
= −(X−1)T AT (X−1)T (113)

The following is true providedΣ ∈ R
n×n is symmetric:

∂tr((XΣXT )−1A)

∂X
= −(ΣX(XT

ΣX)−1)(A + AT )(XT
ΣX)−1 (114)

∂tr((XΣ1XT )−1(XΣ2XT ))

∂X
= −2Σ1X(XT

Σ1X)−1XT
Σ2X(XT

Σ1X)−1 (115)

+ 2Σ2X(XT
Σ1X)−1

3.2.5 Complex Derivatives of Traces

If the derivatives involve complex numbers, the conjugate transpose is often involved. The most
useful way to show complex derivative is to show the derivative with respect to the real and the
imaginary part separately. An easy example is:

∂tr(X∗)

∂<X
=

∂tr(XH)

∂<X
= I (116)

i
∂tr(X∗)

∂=X
= i

∂tr(XH)

∂=X
= I (117)

Since the two results have the same sign, the conjugate complex derivative (78) should be used.

∂tr(X)

∂<X
=

∂tr(XT )

∂<X
= I (118)

i
∂tr(X)

∂=X
= i

∂tr(XT )

∂=X
= −I (119)

Here, the two results have different signs, the generalizedcomplex derivative (77) should be
used. Hereby, it can be seen that (99) holds even ifX is a complex number.

∂tr(AXH)

∂<X
= A (120)
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i
∂tr(AXH)

∂=X
= A (121)

∂tr(AX∗)

∂<X
= AT (122)

i
∂tr(AX∗)

∂=X
= AT (123)

∂tr(XXH)

∂<X
=

∂tr(XHX)

∂<X
= 2<X (124)

i
∂tr(XXH)

∂=X
= i

∂tr(XHX)

∂=X
= i2=X (125)

By inserting (124) and (125) in (77) and (78), it can be seen that

∂tr(XXH)

∂X
= X∗ (126)

∂tr(XXH)

∂X∗
= X (127)

Since the function tr(XXH) is a real function of the complex matrixX, the complex gradient
matrix (81) is given by

∇tr(XXH) = 2
∂tr(XXH)

∂X∗
= 2X (128)

3.2.6 Derivatives of Determinants

Assume that all the arguments are real and the argument inside the derivative is square. Then
the following formulas exists:

∂ det(AXB)

∂X
= det(AXB)(XT )−1 (129)

∂ det(X)

∂X
=

∂ det(XT )

∂X
= det(X)(XT )−1, see (144) (130)

∂ det(Xk)

∂X
= k det(Xk)(XT )−1 (131)

∂ ln(det(AXB))

∂X
= (XT )−1 (132)

∂ ln(det(X))

∂X
= (XT )−1, see (145) (133)

∂ ln(det(Xk))

∂X
= k(XT )−1 (134)

∂ det(XT AX)

∂X
= det(XT AX)(AX(XT AX)−1 + AT X(XT AT X)−1) (135)
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ProvidedΣ is symmetric:

∂ det(XT
ΣX)

∂X
= 2 det(XT

ΣX)ΣX(XT
ΣX)−1 (136)

∂ ln(det(XT
ΣX))

∂X
= 2ΣX(XT

ΣX)−1 (137)

Further, ifX andΣ are square and non-singular:

∂ det(XT
ΣX)

∂X
= 2 det(XT

ΣX)(XT )−1 (138)

3.2.7 Complex Derivative Involving Determinants

Here, a calculation example is provided. The objective is tofind the derivative ofdet(XHAX)
with respect toX ∈ C

m×n. The derivative is found with respect to the real part and theimagi-
nary part ofX, by use of (70) and (66),det(XHAX) can be rewritten as:

∂ det(XHAX) = det(XHAX)tr[(XHAX)−1∂(XHAX)]
= det(XHAX)tr[(XHAX)−1(∂(XH)AX + XH∂(AX))]
= det(XHAX)

(

tr[(XHAX)−1∂(XH)AX] + tr[(XHAX)−1XH∂(AX)]
)

= det(XHAX)
(

tr[AX(XHAX)−1∂(XH)] + tr[(XHAX)−1XHA∂(X)]
)

First, the derivative is found with respect to the real part of X

∂ det(XHAX)

∂<X
= det(XHAX)

( tr[AX(XHAX)−1∂(XH)]

∂<X
+

tr[(XHAX)−1XHA∂(X)]

∂<X

)

= det(XHAX)
(

AX(XHAX)−1 + ((XHAX)−1XHA)T
)

Through the calculations, (102) and (120) were used. In addition, by use of (121), the derivative
is found with respect to the imaginary part ofX

i
∂ det(XHAX)

∂=X
= i det(XHAX)

( tr[AX(XHAX)−1∂(XH)]

∂=X
+

tr[(XHAX)−1XHA∂(X)]

∂=X

)

= det(XHAX)
(

AX(XHAX)−1 − ((XHAX)−1XHA)T
)

Hence, derivative yields

∂ det(XHAX)

∂X
=

1

2

(∂ det(XHAX)

∂<X
− i

∂ det(XHAX)

∂=X

)

= det(XHAX)
(

(XHAX)−1XHA
)T

(139)

and the complex conjugate derivative yields

∂ det(XHAX)

∂X∗
=

1

2

(∂ det(XHAX)

∂<X
+ i

∂ det(XHAX)

∂=X

)

= det(XHAX)AX(XHAX)−1 (140)
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Notice, for realX, A, the sum of (139) and (140) is reduced to (135).
Similar calculations yield

∂ det(XAXH)

∂X
=

1

2

(∂ det(XAXH)

∂<X
− i

∂ det(XAXH)

∂=X

)

= det(XAXH)
(

AXH(XAXH)−1
)T

(141)

and

∂ det(XAXH)

∂X∗
=

1

2

(∂ det(XAXH)

∂<X
+ i

∂ det(XAXH)

∂=X

)

= det(XAXH)(XAXH)−1XA (142)

3.2.8 Special Cases

If the elements ofX functionally depend on each other, the derivative may yielda result that
differs from the case, where the elements ofX are functionally independent. IfX is symmetric,
then (Boik [2002], Stainvas [2002]):

∂tr(AX)

∂X
= A + AT − (A ◦ I), see (146) (143)

∂ det(X)

∂X
= 2X − (X ◦ I) (144)

∂ ln det(X)

∂X
= 2X−1 − (X−1 ◦ I) (145)

If X is diagonal, then (Minka [2000]):

∂tr(AX)

∂X
= A ◦ I (146)

3.3 Other References

Other references not already mentioned, which contain useful information on matrix derivatives
are Petersen [2004], Hyvärinen et al. [2001], Dyrholm [2004], Joho [2000], Cichocki and Amari
[2002].

4 Correspondence

Please report any errors or suggestions to the author by email to: msp(a)imm.dtu.dk. This
document will not be changed further. In the future, corrections will be applied into "The Matrix
Cookbook" available fromhttp://www.imm.dtu.dk/pubdb/views/publication_
details.php?id=3274 .
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