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Abstract

This paper considers the Cardinality Constrained Quadratic Knapsack Problem (QKP) and

the Quadratic Selective Travelling Salesman Problem (QSTSP). The QKP is a generalization of

the Knapsack Problem and the QSTSP is a generalization of the Travelling Salesman Problem.

Thus, both problems are NP hard.

The QSTSP and the QKP can be solved using branch-and-cut methods, and in doing so,

good bounds can be obtained if strong constraints are used. Hence it is important to identify

strong or even facet-defining constraints. This paper presents the polyhedral combinatorics of

QSTSP and QKP, i.e. amongst others identify facet-defining constraints for the QSTSP and the

QKP, and provide mathematical proofs that they do indeed define facets.

Keywords: Quadratic Knapsack; Quadratic Selective Travelling Salesman; Polyhedral Analy-

sis; Facets

1 Introduction

A well-known extension of the Travelling Salesman Problem (TSP) is the Selective (or Prize-

collecting) TSP: In addition to the edge-costs, each node has an associated reward (denoted the

node-reward) and instead of visiting all nodes, only profitable nodes are visited. The Quadratic

Selective TSP (QSTSP) has the additional complications: (1) each pair of nodes have an associated
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reward (denoted the edge-reward) which can be gained only if both nodes are visited; and (2)

a constraint on the number of nodes selected is imposed, which we refer to as the cardinality

constraint. The objective of an QSTSP is to maximize the total node-reward and edge-rewards

gained minus the edge-costs incurred subject to the satisfaction of the cardinality constraint.

Conceptually the QSTSP consists of two interacting problems, a cardinality-constrained min-cost

circuit problem with respect to the edge-costs and a cardinality-constrained max-reward clique

problem with respect to the edge-rewards.

The cardinality constrained circuit problem (CCCP) is considered in [Bauer, 1997] where polyhe-

dral results are presented and in [Bauer et al., 2002] where a branch and cut algorithm is discussed.

The max-reward clique problem is a special case of the quadratic knapsack problem where the

knapsack constraints have unit coefficients. We denote this problem the cardinality constrained

quadratic knapsack problem (QKP). The quadratic knapsack problem (when coefficients are not

necessarily unit) is considered in e.g. [Johnson et al., 1993], [Billionnet and Calmels, 1996] and

[Caprara et al., 1999]. If edge-rewards are non-negative, the cardinality constraint will be met

with equality. This is similar to the p-dispersion problem considered in [Erkut, 1990] wherein the

objective is to maximize the minimum edge-reward. The p-dispersion problem is considered in

[Pisinger, 1999] with an objective equivalent to the one considered here.

Various TSP-like problems are similar to QSTSP in the way that a subset of nodes has to be selected.

E.g. the Prize-collecting TSP [Balas, 1989, Balas, 1995], Selective TSP [Gendreau et al., 1998,

Laporte and Martello, 1990], the Orienteering problem [Fischetti et al., 1998], and the Gener-

alized TSP [Fischetti et al., 1995, Fischetti et al., 1997]. Problems that consider the combina-

tion of a clique problem and a cycle problem has been studied in [Gendreau et al., 1995] and

[Gouveia and Manuel Pires, 2001]. Gendreau, Labbe, and Laporte [Gendreau et al., 1995] study

a problem where instead of imposing the cardinality constraint, an upper bound on the sum of

the edge-costs are imposed. Gouveia and Manuel Pires [Gouveia and Manuel Pires, 2001] study a

QSTSP-like problem with the additional requirement that some nodes must be in the ring.

In this paper we study the polyhedral combiatorics of the QKP and the QSTSP. Our interest in

studying the QSTSP is due to the fact that this problem arose as a subproblem from another

combinatorial optimisation problem which deals with designing hierarchical ring networks (see

[Stidsen and Thomadsen]). Naturally, the faster we can solve the QSTSP, the better. The QKP,

however, is an interesting problems in its own right, but we study the QKP mostly for its relevance

in understanding the QSTSP. Since QKP is a generalization of the Knapsack Problem and QSTSP

is a generalization of the Travelling Salesman Problem, both problems are NP hard.

A promising approach in solving these combinatorial optimisation problems is the branch-and-cut

method. A significant factor in the success of the method is the use of strong constraints that at

least partially describe the convex hull of the incidence vectors of all feasible solutions, in other

words, the use of facet-defining cuts.
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The contribution of this research is therefore the identification of some of the facet-defining cuts,

the mathematical proofs that these cuts are indeed facet-defining, and the various mathematical

techniques used in proving these results.

We begin with, in Section 2, giving an integer programming model for QSTSP and define the

polyhedra of the QKP, CCCP, and the QSTSP. In Sections 3 and 4, we present our polyhedral

results on the QKP and the QSTSP polytopes. Finally, in Section 5, we conclude our findings.

2 Integer Programming Model and the Polyhedra

We consider QSTSP defined on the undirected graph G = (V,E). We assume that G is a complete

undirected graph. This is not restrictive, since we can always introduce high costs for edges that

do not exist.

For notational convenience, we use (U1, U2) to denote {(i, j) ∈ E | i ∈ U1, j ∈ U2}, for any

U1, U2 ⊆ V ; use δ(S) to denote {(i, j) ∈ E | i ∈ S, j ∈ V \ S}; and use E(S) to denote

{(i, j) ∈ E | i, j ∈ S}.

To give the model, we use ri for the node-reward, we for the edge-reward, ce for the edge-cost,

and b for the maximum number on nodes allowed in the ring. Let xe be the decision variable with

xe = 1 if e ∈ E is chosen in the ring and 0 otherwise; yi be the decision variable with yi = 1 if

i ∈ V is on the ring, 0 otherwise; and ze be the decision variable with ze = 1, for (i, j) ∈ E if node

i and j are both on the ring, 0 otherwise. If (i, j) = e ∈ E, then zij is sometimes used in place of

ze. Given these, the QSTSP is formulated as follows.

max
∑

i∈V

ri · yi +
∑

e∈E

we · ze −
∑

e∈E

ce · xe (1)

s.t.
∑

e∈δ(i)

xe = 2yi, ∀i ∈ V (2)

ze ≤ yi, ∀i ∈ V, e ∈ δ(i) (3)

zij ≥ yi + yj − 1, ∀(i, j) ∈ E, i < j (4)
∑

e∈δ(S)

xe ≥ 2(yk + yl − 1),

∀∅ ⊂ S ⊂ V, k ∈ S, l 6∈ S (5)
∑

i∈V

yi ≤ b (6)

xe ∈ {0, 1}, ∀e ∈ E (7)

yi ∈ {0, 1}, ∀i ∈ V (8)
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ze ∈ {0, 1}, ∀e ∈ E (9)

Constraints (2) makes sure that if and only if a node is selected, the indegree of the node is 2.

Constraints (3) and (4) establishes that zij = 1 if and only if yi = yj = 1. Constraints (5) is the

subtour elimination constraints and (6) is the cardinality constraint. Finally (7), (8) and (9) are

the binary constraints. Let n = |V |. The Quadratic Selective Travelling Salesman(QSTS) polytope

is defined to be

Pnb
QS = conv {(x, y, z) ∈ R2|E|+n|(x, y, z) satisfies (2) − (9)}. (10)

We identify two related polytopes. The cardinality constrained quadratic knapsack(QK) polytope,

Pnb
QK = conv {(y, z) ∈ R|E|+n|(y, z) satisfies (3), (4), (6), (8) and (9)}, (11)

and the cardinality constrained circuit polytope,

Pnb
C = conv {(x, y) ∈ R|E|+n|(x, y) satisfies (2), (5) − (8)}}. (12)

Note that Pnb
QS is contained in the intersection of Pnb

QK and Pnb
C . Thus any valid inequality for either

Pnb
QK or Pnb

C is valid for Pnb
QS . Note also that for the CCCP and QSTSP we consider in this paper,

we assume that the empty cycle is considered as a feasible solution, whereas in Bauer [Bauer, 1997],

it is not considered as a feasible solution. No feasible cycles with one or two nodes exists.

The contribution of this paper is to study the QK polytope and a QSTS polytope modelled without

the y variables, denoted by P̃nb
QS . We show that P̃nb

QS and Pnb
QS are in fact describing the same set

of feasible solutions for the QSTSP, and that any facet-defining inequality defined for P̃nb
QS is also

facet-defining for Pnb
QS . Then we work on P̃nb

QS and Pnb
QK : we establish the dimensions of these

polytopes, and for each of them, we develop several classes of constraints and prove that they are

facet-defining.

3 Polyhedral results for the QK polytope

In this section, we present our polyhedral results on the dimension of Pnb
QK and that four classes of

constraints are facet-defining. The first class is the non-negativity constraint on ze, the following

two classes are generalizations of (3) and (4) respectively and the last class of constraints are

obtained by modifying (6).

In what follows, we use incidence vectors (y, z) ∈ {0, 1}|V |+|E|, for y ∈ {0, 1}|V | and z ∈ {0, 1}|E|

to represent our solutions. Each element in a vector corresponds to a node j ∈ V or an edge

(i, j) ∈ E. We also use ej ∈ {0, 1}|V |+|E|, for any j ∈ V , to represent a vector with the value of

the element corresponding to node j equals 1 and the values of all other elements equal 0; and

use eij ∈ {0, 1}|V |+|E|, for any (i, j) ∈ E, to represent a vector with the value of the element

corresponding to edge (i, j) equals 1 and the values of all other elements equal 0.

4



Theorem 3.1 Given any G = (V,E), 2 ≤ b ≤ |V |, the dimension of the QK polytope, Pnb
QK , is

|E| + |V |, i.e., it is full dimensional.

Proof. Consider the following feasible solutions:

1. (y, z)0 = 0;

2. (y, z)1 = ej , for all j ∈ V ; and

3. (y, z)2 = ei + ej + eij , for all (i, j) ∈ E.

Clearly, these give us |E|+|V |+1 affinely independent feasible solutions, and therefore the dimension

of the QK polytope is |E| + |V |. 2

Theorem 3.2 Given any G = (V,E), 2 ≤ b ≤ |V | the constraints, given as

zf ≥ 0, ∀f ∈ E, (13)

are facet-defining for Pnb
QK .

Proof. We need to show that the dimension of F = Pnb
QK ∩ {zf = 0} is |E| + |V | − 1. First of all,

it is trivially true that F defines a proper face and therefore dim(F ) ≤ |E|+ |V | − 1. Now consider

the following feasible solutions:

1. (y, z)0 = 0;

2. (y, z)1 = ej , for all j ∈ V ; and

3. (y, z)2 = ei + ej + eij , for all (i, j) ∈ E \ {f}.

Clearly, these give us |E| + |V | affinely independent feasible solutions, and therefore dim(F ) is

|E| + |V | − 1. 2

Theorem 3.3 Given any G = (V,E), 3 ≤ b ≤ |V | the constraints, given as:

∑

e∈(i,S)

ze ≤ yi +
∑

e∈E(S)

ze,∀i ∈ V, S ⊆ V \ {i}, |S| ≥ 2. (14)

are facet-defining for Pnb
QK .
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Note that (3) is a special case of (14).

Proof. Let F = Pnb
QK ∩

{

∑

e∈(i,S)

ze = yi +
∑

e∈E(S)

ze

}

. Since (y, z) = ej , for any j ∈ V \ {i}, does

not satisfy the constraint at equality, dim(F ) ≤ dim(Pnb
QK) − 1. Now, we show that dim(F ) ≥

dim(Pnb
QK)− 1 by finding exactly dim(Pnb

QK) = |V |+ |E| affinely independent feasible solutions that

satisfy the constraints at equality. We do so by sequentially introducing the following vectors, each

representing a feasible solution.

1. (y, z)1 = {0};

2. (y, z)2 = {(y, z)2j | ∀j ∈ V \ {i}} where (y, z)2j = ej , (we have |V | − 1 of these solutions);

3. (y, z)3 = {(y, z)3ij | ∀j ∈ S} where (y, z)3ij = ei + ej + eij , for all j ∈ S, (we have |S| of

these solutions);

4. (y, z)4 = {(y, z)4jk | ∀j ∈ S, k ∈ S̄\{i}} where (y, z)4jk = ej +ek+ejk, (we have |(S, S̄\{i})|

of these solutions);

5. (y, z)5 = {(y, z)5jk | ∀j, k ∈ S̄ \ {i}, j < k} where (y, z)5jk = ej + ek + ejk, (we have

|E(S̄ \ {i})| of these solutions);

6. (y, z)6 = {(y, z)6jk | ∀j, k ∈ S, j < k} where (y, z)6jk = ei + ej + ek + eij + eik + ejk, (we

have |E(S, S)| of these solutions); and

7. (y, z)7 = {(y, z)7jk | j ∈ S, ∀k ∈ S̄ \ i}, where (y, z)7jk = ei + ej + ek + eij + eik + ejk, (we

have |S̄| − 1 of these solutions).

Hence, we have |V | + |E| affinely independent feasible solutions in total and thus the theorem is

proved. 2

Theorem 3.4 Given any G = (V,E), 3 ≤ b ≤ |V |, the constraints, given as:

∑

e∈E(S)

ze + 1 ≥
∑

i∈S

yi, ∀S ⊆ V, |S| ≥ 2 (15)

are facet-defining for the QK polytope.

Note that (4) is a special case of (15).

Proof. Let F = Pnb
QK ∩

{

∑

e∈E(S)

ze + 1 =
∑

i∈S

yi

}

. Since (y, z) = 0 does not satisfy the constraint

at equality, dim(F ) ≤ dim(Pnb
QK) − 1. Now, we show that dim(F ) ≥ dim(Pnb

QK) − 1 by finding

exactly dim(Pnb
QK) = |V |+ |E| affinely independent feasible solutions that satisfy the constraints at

equality. We do so by taking the following steps.
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1. (y, z)1 = {(y, z)1i | ∀i ∈ S}, where (y, z)1i = ei (we have |S| of these solutions);

2. (y, z)2 = {(y, z)2ij | ∀i ∈ S, j ∈ V }, where (y, z)2ij = ei +ej +eij , (we have |(S, S)|+ |(S, S̄)|

of these solutions);

3. (y, z)3 = {(y, z)3k | ∀k ∈ S̄}, where (y, z)3k = ei + ej + ek + eij + eik + ejk, for a fixed i ∈ S,

and a fixed j ∈ S \ {i}, (we have |S̄| of these solutions); and

4. (y, z)4 = {(y, z)4jk | ∀j, k ∈ S̄}, where (y, z)4jk = ei + ej + ek + eij + eik + ejk, for a fixed

i ∈ S, (there are |(S̄, S̄)| of these solutions).

It is obvious that the |S|+ |(S, S)| + |(S, S̄)| feasible solutions introduced in Step 1 and Step 2 are

affinely independent. We now show, by contradiction, that the solutions introduced in Step 3 are

in fact affinely independent to any of the previously introduced solutions. We assume that, w.l.o.g.,

the first solution introduced in Step 3 is (y, z)3l , for any l ∈ S̄, and that (y, z)3l =
∑

i

λi(y, z)1i +

∑

ij

µij(y, z)2ij , for some λ ∈ IR|S|, µ ∈ IR|(S,S)|+|(S,S̄)|, (λ, µ) 6= 0. Now, to obtain the elements

in (y, z)3l corresponding to the z variables, we need µij = µil = µjl = 1, and µf = 0 for all

f ∈ E \ {(i, j), (i, l), (j, l)}. Observe that in (y, z)1, the value of the elements corresponding to

variable yl is always 0, (since l ∈ S̄), so y3
l has a value of 2 instead of 1. Hence there is a

contradiction. Clearly (y, z)3 are independent as elements in S̄ are all distinct, we conclude that

the incidence vectors in (y, z)3 are all affinely independent. Last of all, the solutions introduced

in Step 4, i.e. (y, z)4 are obviously affinely independent to all the previously introduced solutions.

Thus the theorem is proved. 2

Theorem 3.5 Given any G = (V,E), 3 ≤ b ≤ |V | − 1, the constraints, given as:

∑

e∈δ(i)

ze ≤ (b − 1)yi, ∀i ∈ V (16)

are facet-defining for Pnb
QK .

Constraint (16) can be obtained by multiplying (6) with yi and noting that yiyi = yi and yiyj = zij .

Proof. We need to show that the dimension of F = Pnb
QK ∩ {

∑

e∈δ(i)

ze = (b − 1)yi} is |E| + |V | − 1.

Since (y, z) = ei does not satisfy constraint (16) at equality, dim(F ) ≤ |E|+ |V | − 1. Now consider

the following feasible solutions:

1. (y, z)0 = 0;

2. (y, z)1 = ek, for all k ∈ V \ {i}, (we have |V | − 1 of these solutions);
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3. (y, z)2 = ek + el + ekl, for all {k, l} ⊆ V \{i}, (we have |E|− (|V |− 1) of these solutions); and

Clearly, these |E| + 1 points are affinely independent, and satisfy (16) at equality.

Now, we are left with finding |V |−1 affinely independent feasible solutions. We do so by inspecting

the set of all feasible solutions that selects exactly b nodes: the node i plus b−1 other nodes from the

set V \{i}. We define such a set to be ΩV,b = {I1, . . . , Im | Il = {i}∪U, |Il| = b, ∀l = 1, . . . ,m},

where U ⊂ V \ {i}. (Note that m is finite). We denote Il by {i, jl
1, . . . , j

l
b−1} for each l = 1, . . . ,m.

Our inductive hypothesis is that ΩV,b contains precisely |V | − 1 affinely independent feasible solu-

tions. Our proof takes the following steps: Step 1 concerns the initial case for |V | = 4 and b = 3;

Step 2 concerns induction on |V | while holding b constant; and Step 3 concerns induction on both

b and |V |.

Step 1. We have found precisely 3 affinely independent feasible solutions for the case when |V | = 4

and b = 3.

Step 2. We assume that our inductive hypothesis is true for |V | = 4, . . . , s and b = t. We now show

that it is true for |V | = s+1 and b = t. Consider the QKP defined on G̃ = (Ṽ , Ẽ), for Ṽ = V ∪{q},

Ẽ = (q, V ) ∪ E(V ). We show that ΩṼ ,t contains exactly s affinely independent feasible solutions.

By our inductive hypothesis, there exists ΩV,t that contains s − 1 affinely independent feasible

solutions, and w.l.o.g., let these s − 1 solutions be I1, . . . , Is−1. As b was held constant at t, these

s − 1 points are also feasible for G̃ and satisfy (16) at equality. Now consider a new solution

Is = {i, j1
1 , . . . , j1

t−2, q}. Clearly, Is is affinely independent to any of the previously introduced

solutions (wherein q is never used), and it satisfy (16) at equality.

Step 3. We assume that our inductive hypothesis holds for |V | = 4, . . . , s, b = 3, . . . , t, for t ≤ s−1,

and prove that it holds for |V | = s + 1 and b = t + 1. Recall I1, . . . , Is−1 defined in Step 2. First,

consider I ′s = I1 ∪ {k}, for k ∈ V \ I1, which uses exactly t + 1 nodes, and is affinely independent

to (y, z)1 and (y, z)2 (as the node i is never selected therein). Then we define I ′l = Il ∪ {q}, for all

l = 1, . . . , s − 1, and thus obtain s − 1 affinely independent feasible solutions each selecting t + 1

nodes. These are affinely independent to (y, z)1, (y, z)2, and I ′s due to the use of node q. Thus

completes the proof. 2

4 Polyhedral results for the QSTS polytope

In this section, we present our polyhedral results for the QSTS polytope, P̃nb
QS . (Recall that this

concerns the formulation without the y variables). We first establish the dimension of P̃nb
QS and

establish the links between P̃nb
QS and Pnb

QS . We then prove that five classes of constraints are facet-

defining for P̃nb
QS. The first class of constraints concerns the relationship between xe and ze; the
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second class of constraints is a strengthened version of the subtour elimination constraints (5); and

the last three classes of constraints are also facets for the QK polytope, except that herein we use
1
2

∑

e∈δ(i)

xe in place of yi.

In what follows, we use incidence vectors (x, z) ∈ {0, 1}2|E|, for x, z ∈ {0, 1}|E| to represent our

solutions. We also define (λ, µ) ∈ IR2|E|, for λ, µ ∈ IR|E|, with each element in λ and µ representing

an edge e ∈ E. Furthermore, when we refer to p-cycles, we refer to cycles in G that contain p

nodes.

We will use the following result frequently.

Proposition 4.1 Given an undirected graph G = (V,E), |V | = 5, let X be the matrix generated

by incident vectors of all 3- and 4-cycles in G. Under the assumption that G is complete, if

X(λ, µ)T = 0, then λe = µe = 0 for all e ∈ (E).

Proof. It can be verified that X is of rank 2|E| = 20, hence the result follows immediately. 2

Theorem 4.1 Given any QSTSP defined on an undirected graph G = (V,E), with |V | ≥ 5 and

4 ≤ b ≤ |V |, under the assumption that G is complete, the dimension of the QSTS polytope, P̃nb
QS,

is 2|E|.

Proof. We show, by contradiction, that the dimension of P̃nb
QS is 2|E|. We first assume that P̃nb

QS

is not full-dimensional, and hence there must be at least one equality constraint, λ · x + µ · z = λ0,

satisfied by all feasible solutions in the polytope. Then we establish that this is true only when

λe = µe = λ0 = 0, for all e ∈ E, thus implying that there is no equality constraint satisfied by

all feasible solutions in the polytope and hence the polytope is full dimensional. Consider the

0-cycle defined by (x, z) = 0. We have λ · 0 + µ · 0 = λ0. Hence we get λ0 = 0. To show that

λe = µe = λ0 = 0, for all e ∈ E, consider any arbitrary subgraph G̃ = (Ṽ , Ẽ) for Ṽ ⊆ V , |Ṽ | = 5,

and Ẽ = E(Ṽ ). Under the assumption that G is complete, G̃ is also complete. Now, consider a

matrix X generated by the incident vectors of all the 3-cycles and the 4-cycles in G̃. Since λ0 = 0,

by result of Proposition 4.1, we have λe = µe = 0 for all e ∈ Ẽ. As G̃ is arbitrary in G, we have

that λe = µe = 0, for all e ∈ E. Hence the theorem is proved. 2

Next, we discuss the relation between P̃nb
QS and Pnb

QS . Essentially, we try to establish that the two

polytopes represent the same set of feasible solutions, and that facets found for one are facets for

the other (with slight modifications). Hence, all facets of P̃nb
QS we propose in this paper are also

facets for Pnb
QS. These results are echos of similar results of Bauer et a. [Bauer et al., 2002] for the

CCCP.
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Proposition 4.2 For any QSTSP defined on G = (V,E) where |V | ≥ 5, and 4 ≤ b ≤ |V |, we have

that dim(P̃nb
QS) = dim(Pnb

QS).

Proof. Each incidence vector (x, z) ∈ IR2|E| ∩ P̃nb
QS can be represented by an incident vector

(x, y, z) ∈ IR2|E|+|V | ∩Pnb
QS. For any set of 2|E|+ 1 affinely independent incident vectors that spans

P̃nb
QS, we can get 2|E| + 1 affinely independent incident vectors in Pnb

QS. Thus dim(Pnb
QS) ≥ 2|E|.

As the rank of the degree constraints, (2), is |V |, clearly dim(Pnb
QS) ≤ 2|E| + |V | − |V |, and thus

dim(Pnb
QS) = 2|E|. 2

Remark 4.1 Since dim(P̃nb
QS) = dim(Pnb

QS), and each incidence vector (x, z) ∈ IR2|E| ∩ P̃nb
QS can be

represented by an incident vector (x, y, z) ∈ IR2|E|+|V | ∩ Pnb
QS, the two polytopes describe the same

set of feasible solutions for the QSTSP.

Proposition 4.3 For any QSTSP defined on G = (V,E) where |V | ≥ 5, and 4 ≤ b ≤ |V |, if

ax + bz ≤ a0 defines a facet for P̃nb
QS, then it also defines a facet for Pnb

QS.

Proof. The same 2|E| affinely independent incidence vectors (x, z) ∈ IR2|E| ∩ P̃nb
QS that satisfy

ax + bz ≤ a0 at equality can be converted to 2|E| affinely independent incidence vectors (x, y, z) ∈

IR2|E|+|V | ∩ Pnb
QS. Hence the result. 2

Proposition 4.4 For any QSTSP defined on G = (V,E) where |V | ≥ 5, and 4 ≤ b ≤ |V |, if

αx + βy + γz ≤ α0 defines a facet for Pnb
QS, then α̃x + γz ≤ α0 also defines a facet for P̃nb

QS, where

α̃ij = αij + 1
2 (βi + βj).

Proof. Suppose Ω = {(x1, y1, z1), . . . , (x|E|, y|V |, z|E|)} defines 2|E| affinely independent feasible

solutions that satisfy αx+βy +γz ≤ α0 at equality, then Ω̃ = {(x̃1, 0, z1), . . . , (x̃|E|, 0, z|E|)}, where

x̃ij = xij + 1
2 (yi + yj) for all (i, j) ∈ E, (which is essentially obtained from Ω by simple linear row

operations), are also affinely independent. Hence the result. 2

Theorem 4.2 Given any QSTSP defined on an undirected graph G = (V,E), with |V | ≥ 5 and

4 ≤ b ≤ |V |, the constraints given below, are facet-defining for the QSTS polytope, P̃nb
QS.

xe ≤ ze, ∀e ∈ E. (17)

Proof. We first show that the result holds for |V | ≥ 6 and b ≥ 4. (For |V | = 5 and 5 ≥ b ≥ 4,

one can easily prove this by generating 2|E| affinely independent feasible points that satisfy (17) at

equality). First we show that P̃nb
QS ∩ {xe = ze} defines a proper face. This is achieved by showing
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that there is at least one each of a solution that satisfies the constraint at equality and a solution

that does not. Let e = (i, j). Consider a 4-cycle given by (l, i,m, j), for l,m ∈ V \ {i, j}, clearly

xe = 0 and ze = 1, hence the constraint is not satisfied at equality. Now consider a 3-cycle given

by (l, i, j), for l ∈ V \ {i, j}, clearly xe = ze = 1 and the constraint is satisfied at equality. Thus F

defines a proper face.

Now, using Theorem 3.6 in Part I.4 of Nemhauser and Wolsey [Nemhauser and Wolsey, 1988], we

need to show that if λ · x + µ · z = λ0 for all x ∈ P̃nb
QS ∩ {xe = ze}, then

λf =

{

α, if f = e,

0, otherwise;
λ0 = 0; and µf =

{

−α, if f = e,

0, otherwise;

for some α ∈ IR.

By considering the 0-cycle, we obtain λ0 = 0. Now consider any arbitrary subgraph G̃ = (Ṽ , Ẽ)

for Ṽ ⊆ V \ {i}, e = (i, j), |Ṽ | = 5, and Ẽ = E(Ṽ ). Obviously e /∈ Ẽ thus (17) holds with equality

for all cycles in G̃. By Proposition 4.1, we thus have λf = µf = 0, for all f ∈ Ẽ. As G̃ is arbitrary,

we have λf = µf = 0, for all f ∈ E \ {e}. Then, consider any arbitrary 3-cycle that contains the

edge e, we get λe + µe = 0. Let λe = α for some α ∈ IR, we have µe = −α and thus the theorem is

proved. 2

To eliminate subtours (for the QSTSP), we propose a class of constraints which strengthens (5),

given as:

∑

e∈δ(S)

xe ≥ 2zkl, ∀∅ ⊂ S ⊂ V, k ∈ S, l 6∈ S. (18)

Theorem 4.3 Given any QSTSP defined on an undirected graph G = (V,E), with |V | ≥ 10,

|V | − 5 ≥ |S| ≥ 5 and 4 ≤ b ≤ |V |, the constraints given by (18), are facet-defining for the QSTS

polytope, P̃nb
QS.

Proof. P̃nb
QS ∩

{

∑

e∈(S,S̄)

xe = 2zkl

}

defines a proper face, since (18) holds with equality for the

0-cycle while it does not for the 3-cycle (k, p, q), for p, q ∈ S̄ \ {l}, p 6= q.

Now, we are left to show that if λ · x + µ · z = λ0 for all x ∈ P̃nb
QS ∩

{

∑

e∈(S,S̄)

xe = 2zkl

}

, then

λe =

{

α, if e ∈ (S, S̄),

0, otherwise;
λ0 = 0; and µe =

{

−2α, if e = (k, l),

0, otherwise;

for some α ∈ IR.

By considering the 0-cycle, we have λ0 = 0. Now, consider any arbitrary subgraph G̃ = (S̃, Ẽ) for

S̃ ⊆ S, |S̃| = 5, and Ẽ = E(S̃). Constraint (18) holds with equality for all cycles in G̃. Thus, by
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Proposition 4.1, we have λf = µf = 0, for all f ∈ Ẽ. As G̃ is arbitrary, we have λf = µf = 0, for

all f ∈ E(S). Analogously it can be obtained that λf = µf = 0, for all f ∈ E(S̄).

Now we obtain values for all the remaining elements in (λ, µ), i.e., we find λe and µe for all

e ∈ (S, S̄), by comparing cycles with 3 or 4 nodes for which (18) holds with equality. In the

following, we assume arbitrary i, j,m, for i, j ∈ S \ {k}, i 6= j and m ∈ S̄ \ {l}.

Let (x1, z1) and (x2, z2) be the incidence vectors of the 4-cycle defined by (k, i, j, l) and the 3-cycle

defined by (k, i, j) respectively. We get:

λ · x1 + µ · z1 − (λ · x2 + µ · z2) = λjl + λkl − λjk + µkl + µil + µjl = 0. (19)

Note that λjk = 0 since k, j ∈ S. Analogously let (x3, z3) be the incidence vectors of the 4-cycle

defined by (k, j, i, l). We get:

λ · x3 + µ · z3 − (λ · x2 + µ · z2) = λkl + λil − λik + µkl + µil + µjl = 0. (20)

Note that λik = 0 since k, i ∈ S. By comparing (19) with (20), we get λil = λjl. Let λil = α, by

symmetry, we get λil = α for all i ∈ S \ {k}. Now by comparing the 3-cycle (k, j, l) with (19) it

follows that µil = 0 for all i ∈ S \ {k}.

Comparing the 4-cycle (k, i, l, j) with the 3-cycle (k, i, j), we get µkl = −2α and by comparing the

3-cycle (k, j, l) with the 4-cycle (k, j, l, i), we get λkl = α. Given this and by symmetry, λkm = α

and µkm = 0 for all m ∈ S̄ \ {l}.

By comparing the 3-cycle (i, l, k) and the 4-cycle (i, l,m, k), we get µim = 0 for all i ∈ S \ {k} and

all m ∈ S̄ \ {l}. Last of all, by comparing the 3-cycle (k, i, l) and the 4-cycle (k, i,m, l), we obtain

λim = α, for all i ∈ S \ {k}, m ∈ S̄ \ {l}. 2

Theorem 4.3 does not hold for 7 ≤ |V | ≤ 9, but it actually holds for |V | = 6, |S| = 5 and 4 ≤ b ≤ |V |

(and for |S| = 1 which is the symmetric case). This can be verified by generating 2|E| affinely

independent feasible points that satisfy (18) at equality.

Theorem 4.4 Given any G = (V,E), |V | ≥ 6, b ≥ 4, the constraints, given as:

∑

e∈(i,S)

ze ≤
1

2

∑

e∈δ(i)

xe +
∑

e∈E(S)

ze,∀i ∈ V, S ⊂ V \ {i}, 1 ≤ |S| ≤ |V | − 5, (21)

are facet-defining for P̃nb
QS.

Constraint (21) is obtained by replacing yi by 1
2

∑

e∈δ(i)

xe in (14) and is a generalization of (3).
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Proof. P̃nb
QS ∩

{

∑

e∈(i,S)

ze =
1

2

∑

e∈δ(i)

xe +
∑

e∈E(S)

ze

}

defines a proper face since the 0-cycle satisfies

the constraint at equality whereas the 3-cycle (i, p, q), for p, q ∈ S̄ \ {i}, for p 6= q, does not. Now,

we need to show that if λ · x + µ · z = λ0 for all x ∈ P̃nb
QS ∩

{1

2

∑

e∈δ(i)

xe +
∑

e∈E(S)

ze =
∑

e∈(i,S)

ze

}

, then

λe =

{

1
2α, if e ∈ δ(i),

0, otherwise;
λ0 = 0; and µe =















α, if e ∈ E(S),

−α, if e ∈ (i, S),

0, otherwise;

for some α ∈ IR.

By considering the 0-cycle we get λ0 = 0. W.l.o.g. let R, k be arbitrary for R ⊆ S̄ \ {i}, |R| = 4

and k ∈ S. Consider the subgraph G̃ = (Ṽ , Ẽ), Ṽ ⊆ V , Ṽ = R ∪ {k} and Ẽ = E(Ṽ ). Constraint

(21) holds with equality for all cycles in G̃, hence by Proposition 4.1, λe = µe = 0 for all e ∈ Ẽ.

Since R and k are arbitrary, λe = µe = 0 for all e ∈ E(S̄ \ {i}) ∪ (S, S̄ \ {i}).

Let k ∈ S and p, q ∈ S̄ \ {i}, p 6= q be arbitrary. By comparing the cycles (k, i, p, q) and (k, i, p),

we obtain λpq + λkq − λkp + µkq + µiq + µpq = 0. Since λpq = λkq = λkp = µkq = µpq = 0, µiq = 0.

Since k, p and q are arbitrary, µip = 0 for all p ∈ S̄ \ {i}.

Let k ∈ S and p, q ∈ S̄ \ {i}, p 6= q be arbitrary. By comparing the cycles (k, p, i, q) and (k, p, i),

we obtain λkq + λiq − λki + µkq + µpq + µiq = 0. Since λkq = µkq = µpq = µiq = 0, λiq = λki are

constant and let the constant be 1
2α. Since k, p and q are arbitrary, λe = 1

2α for all e ∈ δ(i).

Let k ∈ S and p ∈ S̄ \{i} be arbitrary. Consider the cycle (i, k, p) to obtain µik = −α for all k ∈ S.

If |S| = 1, we are done. Otherwise, let k, l ∈ S, k 6= l and p ∈ S̄ \ {i} be arbitrary. By comparing

the cycles (k, l, i, p) and (k, i, l, p), we obtain λkl+λip = λki+λlp. Since λlp = 0 and λip = λki = 1
2α,

λkl = 0. Since k, l and p are arbitrary, λe = 0 for all e ∈ E(S).

Finally, let k, l ∈ S, k 6= l be arbitrary. Consider the cycle (i, k, l) to obtain µkl = α. Since k and l

are arbitrary, µe = α for e ∈ E(S). 2

Theorem 4.5 Given any G = (V,E), |V | ≥ 5, b ≥ 5, the constraints, given as:

∑

e∈E(S)

ze + 1 ≥
∑

e∈E(S)

xe +
1

2

∑

e∈δ(S)

xe,∀S ⊂ V, 2 ≤ |S| ≤ |V | − 3, (22)

are facet-defining for P̃nb
QS.

Constraint (22) is obtained by replacing yi by 1
2

∑

e∈δ(i)

xe in (15). Note that (4) is a special case of

(22).
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Proof. P̃nb
QS∩

{

∑

e∈E(S)

ze+1 =
∑

e∈E(S)

xe+
1

2

∑

e∈δ(S)

xe

}

defines a proper face since the 3-cycle (i, j, k),

i ∈ S, j, k ∈ S̄ satisfies the constraint at equality and the 0-cycle does not.

Now, we need to show that if λ·x+µ·z = λ0 for all x ∈ P̃nb
QS∩

{

∑

e∈E(S)

ze+1 =
∑

e∈E(S)

xe+
1

2

∑

e∈δ(S)

xe

}

,

then

λe =















−α, if e ∈ E(S),

−1
2α, if e ∈ δ(S),

0, otherwise;

λ0 = α; and µe =

{

α, if e ∈ E(S),

0, otherwise;

for some α ∈ IR.

W.l.o.g. let R ⊆ S, |R| = 2 and T ⊆ S̄, |T | = 3 be arbitrary. Consider the subgraph G̃ = (Ṽ , Ẽ),

Ṽ ⊆ V , Ṽ = R∪T , (so |Ṽ | = 5) and Ẽ = E(S̃). Let λ0 = α. Let the matrix X be generated by the

incident vectors of all the cycles in G̃ for which (22) holds with equality. X is found to be of rank

2|Ẽ| = 20, thus X(λ, µ)T = α has an unique solution. The solution is λe = −α for all e ∈ E(R),

λe = −1
2α for all e ∈ δ(R), and λe = 0 for all e ∈ E(T ); µe = α for all e ∈ E(R) and µe = 0 for all

e ∈ δ(R)∪E(T ). Since R is arbitrary in S, T is arbitrary in S̄, and each e ∈ E is in this arbitrarily

chosen G̃, λe = −α for all e ∈ E(S), λe = −1
2α for all e ∈ δ(S) and λe = 0 for all e ∈ E(S̄), µe = α

for all e ∈ E(S) and µe = 0 for all e ∈ δ(S) ∪ E(S̄). 2

The following constraints are found to be very effective in practise when solving QSTSPs using a

branch-and-cut method (see [Stidsen and Thomadsen]):

∑

e∈δ(i)

ze ≤
b − 1

2

∑

e∈δ(i)

xe, ∀i ∈ V. (23)

Constraint (23) is obtained by replacing yi with 1
2

∑

e∈δ(i)

xe in constraint (16).

Theorem 4.6 Given any QSTSP defined on an undirected graph G = (V,E), with |V | ≥ 6 and

4 ≤ b ≤ |V | − 1, the constraints given by (23) are facet-defining for the QSTS polytope, P̃nb
QS.

Proof. P̃nb
QS ∩

{

∑

e∈δ(i)

ze =
b − 1

2

∑

e∈δ(i)

xe

}

defines a proper face, since any 3-cycle (i, j, k), j, k ∈

V \ {i}, j 6= k does not satisfy the constraint at equality whereas the 0-cycle does.

Now, we are left to show that if λ ·x+µ · z = λ0 for all x ∈ P̃nb
QS ∩

{

∑

e∈δ(i)

ze =
b − 1

2

∑

e∈δ(i)

xe

}

, then

λe =

{

α(b−1)
2 , if e ∈ δ(i),

0, otherwise;
λ0 = 0; and µe =

{

−α, if e ∈ δ(i),

0, otherwise;

for some α ∈ IR.
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By considering the 0-cycle, it can be obtained that λ0 = 0. Now, consider any arbitrary subgraph

G̃ = (Ṽ , Ẽ) for Ṽ ⊆ V \ {i}, |Ṽ | = 5, and Ẽ = E(Ṽ ). Since all cycles in G̃ satisfies constraint (23)

at equality, it follows from Proposition 4.1 that λf = µf = 0, for all f ∈ Ẽ. As G̃ is arbitrary, we

have λf = µf = 0, for all f ∈ E(V \ {i}).

Let {i1, . . . , ib−1} ⊆ V \ {i} be arbitrary. Now compare the two b-cycles (i, i1, i2, i3, . . . , ib−1) and

(i, i2, i1, i3, . . . , ib−1). This gives λii1 + λi2i3 = λii2 + λi1i3 . Since λi2i3 = λi1i3 = 0, λiia is constant

for a = 1, . . . , b − 1 and let the constant be α(b−1)
2 . Since {i1, . . . , ib−1} ⊆ V \ {i} is arbitrary,

λij = α(b−1)
2 for all j ∈ V \ {i}. Finally compare the b-cycle (i, i1, i2, i3, . . . , ib−1) with the (b − 1)-

cycle (i1, i2, i3, . . . , ib−1) to obtain λii1 + λiib−1
− λi1ib−1

+

b−1
∑

k=1

µik = 0. Since λi1ib−1
= 0 and

λii1 = λiib−1
= α(b−1)

2 , µiia = −α for a = 1, . . . , b − 1. Since {i1, . . . , ib−1} ⊆ V \ {i} is arbitrary,

µij = −α for all j ∈ V \ {i} and the theorem is proved. 2

5 Conclusion

In this paper, we studied the polyhedra of the Quadratic Knapsack Problem and the Quadratic

Selective Travelling Salesman Problem. For each of these polytopes, we established its dimension,

identified a number of strong constraints, and proved that these constraints are indeed facet-defining

cuts. Various mathematical techniques were used in proving these results.

These results are of great significance in the implementation of a branch-and-cut method for ob-

taining exact solutions. The benefit of using such facet-defining cuts is that it improves the quality

of the linear programming relaxation bounds.
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