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Abstract

The ELDSP problem is a combined lot sizing and sequencing problem. A

supplier produces and delivers components of di�erent component types to a

consumer in batches. The task is to determine the cycle time, i.e. that time

between deliveries, which minimizes the total cost per time unit. This includes

the determination of the production sequence of the component types within

each cycle.

We investigate the computational behavior of two published algorithms, a

heuristic and an optimal algorithm. With large number of component types,

the optimal algorithm has long running times. We devise a hybrid algorithm,

which is both optimal and e�cient.
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1 Introduction

The ELDSP problem is a combined lot sizing and sequencing problem. A supplier

produces and delivers components of di�erent component types to a consumer in

batches. The amount of each component type delivered in a batch is equal to

the demand of the consumer for that component type in the time period between

deliveries. Holding costs are present, both at the supplier and the consumer side.

Each delivery has a �xed cost, and there are both set-up times and costs.

As usual in lot sizing problem, one wants to �nd that time between deliveries,

which minimizes the average cost per time unit, the cycle time. Since the set-up

times and holding costs may vary between component types, �nding the actual cost

of a given cycle time involves also the determination of the production sequence for

the component types. Since there are exponentially many sequences, this problem

at �rst glance seems hard.

Hahm and Yano introduced a heuristic for the problem in 1995. The heuristic is

remarkably accurate regarding solution quality. In 2003, Jensen and Khouja devised

an algorithm for the ELDSP problem, which solves the problem to optimality. They

also compared this against the H&Y heuristic, both with respect to quality and

running time. However, their experiments were limited regarding to the number of

possible component types.

In the current paper we perform a thorough computational investigation of the

two algorithms. We have modi�ed the problem generator used by both Hahm and

Yano and Jensen and Khouja, since this for larger number of component types turned

out to generate problems with trivial optimal solutions. The investigation shows

that the running time of the optimal algorithms becomes excessive for large number

of component types, and we therefore construct an algorithm, which is a hybrid

between the two previous algorithms. The algorithm uses the H&Y heuristic as a

preprocessor to the K&J algorithm, thereby maintaining the optimality guarantee

and at the same time obtaining a running less than three times that of the H&Y

heuristic.

The paper is organised as follows: In Section 2, we give the basic formulation of

the problem and describe the two key components of all solution methods, namely

procedures to �nd the optimal production sequence given the cycle time, and to �nd

the optimal cycle time given the production sequence. Section 3 brie�y introduces

previous solution methods, and Section 4 describes our hybrid algorithm. Section

5, which is main contribution of the paper, describes the problem generator and

gives the computational results from extensive testing of the algorithms. Section 6

concludes the paper.
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2 The Problem

We consider the standard formulation of the ELDSP-problem as given in [6]. A

consumer uses a set of components {1, . . . , J} all produced by the same supplier.

The demand per time unit for each component Di is known. The components are

produced and delivered in batches. and there is a �xed delivery cost A per batch.

For each speci�c component i ∈ {1, . . . , J} there is a �xed setup time si and a

production time per unit, pi. Furthermore, there is a setup cost, Si. When the

required number of units of component i has been produced, these have to be held

in inventory unitl all components of the batch have been produced. The holding cost

per unit for i is hi per time unit. Likewise, the consumer has to pay an inventory

cost for holding components during the period of production; again the holding cost

per unit for i is hi per time unit.

The ELDSP problem is now to decide the so-called cycle time denoted T . T is

the time interval between deliveries and should be determined such that the overall

costs of production, inventory (both at supplier and consumer), and shipping is as

small as possible. The cost is expressed as average cost per time unit and denoted

TC. Note that for a �xed T , the number of units of component i is calculated

as DiT , and the problem becomes that of �nding the best sequence q among all

possible sequences C of components (permutations of {1, . . . , J}). This sequence

depends only on the inventory costs at the supplier - the transportation cost and

setup cost is a constant for each batch, and for �xed T , the inventory cost at the

assembly facility is also a constant.

Figure 1 is an example of the inventory levels of three components both at the

supplier and the assembly facility.
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Figure 1: Inventory levels of three components in two production cycles: (a) supplier;

(b) assembly facilty.
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2.1 Mathematical Formulation of ELDSP

During the cycle time T , components necessary for the next delivery must be pro-

duced. The time needed to set up and produce all components for one delivery is∑J
i=1(si + piDiT ), which must be less than or equal to the cycle time T . Therefore,

to be feasible, T must satisfy

J∑
i=1

(si + piDiT ) ≤ T ⇒ T ≥

J∑
i=1

si

1 −
J∑

i=1

piDi

≡ τmin (1)

There is no production at the consumer (assembly facility). Thus all components

needed in a period of length T must be delivered at the beginning of the period.

On average the inventory level at the consumer for a component is one half of the

delivery, and the inventory holding cost of component i is thus 1
2
TDihi. The total

inventory holding cost of all components per time unit at the assembly facility is

therefore:

J∑
i=1

1

2
TDihi =

1

2
T

J∑
i=1

Dihi

The average inventory holding cost for units of component i at the supplier

depends upon the accumulation during the production time of component i itself
and the elapsed time for setup and production of components produced after i but
before delivery. The inventory holding cost per time unit at the supplier is therefore:

J∑
i=1

Dq[i]hq[i]

{
1

2
TDq[i]pq[i] +

J∑
j=i+1

(TDq[j]pq[j] + sq[j])

}

=
1

2
T

J∑
i=1

D2
i pihi +

J∑
i=1

{
Dq[i]hq[i]

J∑
j=i+1

(TDq[j]pq[j] + sq[j])

}

=
1

2
T

J∑
i=1

D2
i pihi + Z1(q) + Z2(q) · T
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where

Z1(q) =
J∑

i=1

Dq[i]hq[i]

J∑
j=i+1

sq[j]

Z2(q) =

J∑
i=1

Dq[i]hq[i]

J∑
j=i+1

Dq[j]pq[j]

The average cost per time unit TC is the sum of production setup costs at

the supplier, inventory holding costs at the supplier, inventory holding costs at the

assembly facility, and transportation costs:

TC =

J∑
i=1

Si

T
+

1

2
T

J∑
i=1

D2
i pihi + Z1(q) + Z2(q)T +

1

2
T

J∑
i=1

Dihi +
A

T

=
S + A

T
+ αT + Z1(q) + Z2(q)T + βT (2)

with S =
∑J

i=1 Si, α = 1
2

∑J
i=1 Dihi(1 − piDi), and β =

∑J
i=1 D2

i pihi.

TC must be minimized subject to the constraint:

T ≥ τmin

2.2 The case of a �xed production sequence

Consider now the situation with a �xed production sequence, q. Di�erentiating TC
as given by 2 with respect to T gives:

∂TC

∂T
= −S + A

T 2
+ α + β + Z2(q)

Since ∂2TC
∂T 2 = S+A

2T 3 is positive for T > 0, TC is a convex function of T for �xed

q. Denote the value of T which minimizes TC for sequence q by T ∗(q). Then T ∗(q)
can be found at a unique stationary point provided this is feasible:

∂TC

∂T
= 0 ⇔ T =

√
S + A

α + β + Z2(q)
≡ T ∗(q) (3)

De�ne τmax =
√

S+A
α+β

. Note that αandβ do not depend in the particular sequence

q in question, and that Z2(q) > 0 for any q. Therefore, for any q the optimal cycle
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time T ∗(q) must satisfy T ∗(q) < τmax if it is found at a stationary point of TC.

Any feasible cycle time satis�es T ≥ τmin. Therefore, if τmin > τmax, the optimal

production cycle time is τmin.

2.3 The case of a �xed cycle time

We now consider the problem of �nding the best production sequence for a given

cycle time T . The only sequence-dependent parts of the objective function TC (2)

is Z1(q) + Z2(q)T . In order to minimize TC, we must therefore minimize:

Z1(q) + Z2(q)T

=

J∑
i=1

Dq[i]hq[i]

J∑
j=i+1

sq[j] + T

J∑
i=1

Dq[i]hq[i]

J∑
j=i+1

Dq[j]pq[j]

=
J∑

i=1

{
Dq[i]hq[i]

J∑
j=i+1

(TDq[j]pq[j] + sq[j])

}

According to theorem 2.4 of [1], the value is minimized when the components are

arranged in non-increasing order of
TDq[i]pq[i]+sq[i]

Dq[i]hq[i]
. We therefore determine the opti-

mal solution by �nding a processing sequence satisfying:

TDq[1]pq[1] + sq[1]

Dq[1]hq[1]

≥ TDq[2]pq[2] + sq[2]

Dq[2]hq[2]

≥ . . . ≥ TDq[J ]pq[J ] + sq[J ]

Dq[J ]hq[J ]

(4)

3 Previous Solution Methods

Solving the ELDSP-problem requres the simultaneous identi�cation of the optimal

cycle length and the corresponding production sequence. In the previous sections,

the optimal cycle time for a given production sequence q and the optimal production

sequence for a given cycle time were determined.

3.1 Hahm and Yano's heuristic algorithm

The heuristic of Hahm and Yano [6] iterates between �nding the optimal value of T
for a given q, and �nding the optimal sequence given T using the methods previously

described. The algorithm starts with T = τmax, and the termination criterion is that

the optimal sequence does not change or that the optimal cycle time equals τmin.
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In Figure 2, the two possible results are illustrated: Either the optimal solution is

identi�ed or the algorithm terminates in a local optimum.

(a)
0 T

TC 1q3q

2q

(b)
0

TC

T

3q
2q

1q

Figure 2: Performance of Hahm and Yano's heuristic algorithm: (a) terminated at

a global optimal solution. (b) terminated at a local optimal solution.

Hahm and Yano test their algorithm on 72 randomly generated problems, cf. [6].

The algorithm is able to �nd the global optimal solution in all of these. Nevertheless,

there exist examples, where only a locally optimal solution is found.

3.2 Jensen and Khouja's polynomial time algorithm

In [14], Jensen and Khouja developed a polynomial time algorithm for the ELDSP-

problem. The J&K algorithm divide the range of feasible cycle times into a number

of intervals such that the optimal sequence in each interval is unique. The optimal

sequence in each interval can be found by (4). The optimal values for TC from

each interval are compared, and the minimum of these is then the optimal value of

TC with corresponding optimal cycle time and optimal production sequence. For

a small number of components, the running time of the algorithm is short. For a

large number of components, the increase observed in the running time suggests the

search for a more e�cient algorithm. Running times for the J&K are reported in

Table 3 and Table 4.

4 The Hybrid Method

Since H&Y's algorithm does not always generate the optimal solutions and the

running time of J&K's algorithm is large for a large number of components, an

obvious idea is to combine these two methods into a hybrid algorithm. First, H&Y's

algorithm is used twice. One solution (ql, Tl, TCl) is found by setting the starting

point at τmin and working with increasing values of T , and another (qr, Tr, TCr) is
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found from the starting point τmax working with decreasing values of T . If these two
solutions are equal, i.e. Tl = Tr, then the optimal solution is found, cf [6]. Otherwise,

the intervals between Tl and Tr corresponding to unique production sequences are

calculated. If the the smallest of the optimal solution values for these intervals is

less than both TCl and TCr, the corresponding optimal cycle time and production

sequence is chosen as the optimal solution, otherwise, the smaller value of TCl and

TCr is the optimal solution.

Figure 3 illustrates the behavior of the hybrid method. The search range for T
covers [τmin, τmax], and thus the global optimal solution is found.

T

TC

0 τmin τmaxTl TrTiT2T1

Figure 3: The behavior of the hybrid method.

5 Test Results

H&Y's heuristic algorithm and J&K's polynomial time algorithm have previously

been tested only for number of components up to 9. In this section, the algorithms

are run for larger number of components and compared both with respect to solution

time and solution quality.

5.1 The Test Problem Generator

For an ELDSP-problem satisfying τmin ≥ τmax, the optimal sequence is uniquely

determined by τmin and both the H&Y and the J&K algorithm stops at the very

beginning before iterating. In order to gain insight and compare the running times

of the two algorithms on a more fair basis, the problems generated should satisfy

τmin < τmax to make each algorithm complete also the iterative part. Hahm and

Yano can not generate problems which make their algorithm fail cf. [6]. We have
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Step 1: Calculate τmin and τmax.

Step 2: If τmin ≥ τmax, then τmin is optimal,

Topt = τmin, �nd qopt by Eq.(4),

TCopt = TC∗(qopt, τmin),
go to Step 5.

Step 3: Tl = τmin, Tr = τmax.

stop = 0.
do {

for a given Tr, calculate qr (Eq.(4)), T ∗(qr) (Eq.(3)),

if T ∗(qr) 6= Tr ∧ T ∗(qr) ≥ τmin

Tr = T ∗(qr), TCr = TC∗(qr, T
∗(qr))

else if T ∗(qr) 6= Tr ∧ T ∗(qr) < τmin

Topt = τmin, �nd qopt by Eq.(4)

TCopt = TC∗(qopt, τmin)
go to Step 5.

else

stop = 1;

} while ( stop = 0 );

stop = 0.
do {

for a given Tl, calculate ql (Eq.(4)), T ∗(ql) (Eq.(3)),

if T ∗(ql) 6= Tl ∧ T ∗(ql) ≥ τmin

Tl = T ∗(ql), TCl = TC∗(ql, T
∗(ql))

else if T ∗(ql) 6= Tl ∧ T ∗(ql) < τmin

Tl = τmin, �nd ql by Eq.(4)

TCl = TC∗(ql, τmin), stop = 1.
else

stop = 1;

} while ( stop = 0 );

Step 4: If ( TCl = TCr )

qopt = ql, Topt = Tl, TCopt = TCl

else

for each pair of components i and j, i 6= j solve TDipi+si

Dihi
= TDjpj+sj

Djhj
.

Store the values within [Tl, Tr] into M = [Tl, T1, T2, . . . , Ti, . . . , Tr].
Sort M in increasing order. m = size(M).

TCbest = ∞
for ( i = 1; i < m; i = i + 1){

for Tm = 1
2 (Mi + Mi+1), calculate qm, T ∗(qm), TC(qm, T ∗(qm))

if (T ∗(qm) ∈ [Mi, Mi+1] ∧ TC(qm, T ∗(qm)) < TCbest )

qbest = qm, Tbest = T ∗(qm), TCbest = TC(qm, T ∗(qm))
}
if TCbest < min(TCl, TCr)

qopt = qbest, Topt = Tbest, TCopt = TCbest

else

if (TCl > TCr )

qopt = qr, Topt = Tr, TCopt = TCr,
else

qopt = ql, Topt = Tl, TCopt = TCl,
Step 5: Return qopt, Topt, TCopt.

Table 1: The hybrid algorithm.
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�rst used the same generation rules as [14] to generate 100,000 problems. See Table

2.

J Number of

problems

(J&K's

generator)

Number of

problems

satisfying

τmin < τmax

Number

of prob-

lems (New

generator)

Number of

problems

satisfying

τmin < τmax

2 100000 98722 100000 99454

3 100000 98084 100000 99737

5 100000 91909 100000 99933

7 100000 73382 100000 99976

10 100000 30809 100000 99997

20 100000 33 100000 100000

30 100000 0 100000 100000

50 100000 0 100000 100000

100 100000 0 100000 100000

Table 2: Problems compared using di�erent generation rules.

The left part of Table 2 shows that J&K's generator can not generate problems

satisfying τmin < τmax especially if the number of components exceeds 10. From the

expressions τmin =
PJ

i=1 si

1−PJ
i=1 piDi

and τmax =
√PJ

i=1 Si+A

α+β
it is clear that both values

increase with increasing number of components. However, the rate of increase for

τmin is expected to be much larger than the rate for τmax if the drawing ranges for

the problem parameters are kept constant. Thus, situations with τmin > τmax will

occur more frequently for larger number of components. This de�cit in the generator

used by J&K can be resolved by decreasing si and increasing Si respectively while

drawing for larger number of components. In our generator, Si is drawn from a

uniform distribution U [0,
√

J ] rahter than from U [0, 1], and si and is drawn from a

uniform distribution U [0, 0.25√
J

] rather than from U [0, 0.25]. Otherwise, the features
of the problem generator are kept unchanged. Once again 100,000 problems are

generated now using the new generation rules. The last column of Table 2 shows that

the new generation rules perform well especially for large number of components.

In the following, all problems are hence generated using the new generation rules.

5.2 E�ciency of the algorithms

Table 3 shows the results from the solution of 100,000 problems all generated using

the new generation rules with number of components ranging from 2 up to 100, and

maintaining the condition τmin < τmax. The running time for each algorithm and

each component number is given as the total running time in seconds of all problems
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with that number of components. When the number of components is small, the

di�erences in running times are small. However, when the number of components

increases, the di�erences becomes more and more profound. For the 100 components

case, the total running time of J&K's algorithm is more than 20 times those of the

other two algorithms.

The average number of intervals investigated in J&K's algorithm increases quickly

when the number of components increase, while the average number of intervals cal-

culated when Tl 6= Tr in the hybrid algorithm is very stable. This accounts for the

steep increase in the running time of J&K algorithm.

J No. of Running J&K's algorithm Hybrid algorithm

problems

with

τmin <
τmax

time of

H&Y's

algorithm

Running

time

Average

no. of

intervals

Running

time

Average

no. of

intervals

when

Tl 6= Tr

2 100000 0.137 0.148 1.119 0.309 2.000

3 100000 0.227 0.260 1.424 0.479 2.015

5 100000 0.511 0.705 2.282 1.231 2.004

7 100000 0.962 1.833 3.291 2.136 2.033

10 100000 1.725 6.078 5.064 4.685 2.027

20 100000 6.978 43.514 12.740 16.447 2.027

30 100000 14.533 160.275 23.058 37.697 2.047

50 100000 37.679 868.8 50.515 98.827 2.034

100 100000 125.603 8091.5 152.677 319.429 2.042

Table 3: Running times in seconds for di�erent algorithms.

In Table 4, the running time of each algorithm is compared for component num-

bers larger than 100. Due to time limitations only one problem is generated and

solved for each problem size. Nevertheless, it is evident that J&K's algorithm is not

e�cient for larger number of components. The running time of the hybrid algorithm

is two to three times larger than that of H&Y's heuristic.

5.3 Making the H&Y heuristic fail

Table 5 displays the number of failures of H&Y's algorithm. In the vast majority

of the 100,000 problems generated, H&Y's algorithm �nds the globally optimal

solution. The fourth column in Table 5 is the number of problems passed on to

Step 4 of the hybrid algorithm. The last two columns indicate that H&Y's algorithm

fails when Tl is found optimal or a new sequence is found optimal between [Tl, Tr].
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J No. of Running J&K's algorithm Hybrid algorithm

problems

with

τmin <
τmax

time of

H&Y's

algorithm

Running

time

No. of

intervals

Running

time

No. of

intervals

when

Tl 6= Tr

100 1 0.001 0.054 104 0.003 0

200 1 0.005 0.852 425 0.013 0

500 1 0.031 27.645 1580 0.081 0

1000 1 0.123 382.451 6257 0.402 0

2000 1 0.638 1.14 hs 14720 2.395 0

5000 1 6.562 12.4 hs 26833 13.877 0

10000 1 28.630 > 12.4 hs >26833 72.373 0

Table 4: Running times for number of components larger than 100.

Moreover, the cases when a new sequence between [Tl, Tr] gives rise to the global

optimum are rare.

J No. of Hybrid algorithm: No. of problem satisfying

problems

satisfying

τmin < τmax

H&Y's

algorithm

fails

Tl 6= Tr Tr is op-

timal

Tl is op-

timal

A new q
is found

optimal

2 100000 21 30 9 21 0

3 100000 66 127 61 66 0

5 100000 203 414 211 203 0

7 100000 266 563 297 264 2

10 100000 359 721 362 358 1

20 100000 331 697 366 327 4

30 100000 308 614 306 305 3

50 100000 233 442 209 232 1

100 100000 163 313 150 163 0

Table 5: Statistical results of the hybrid algorithm.

5.4 An example

Table 6 displays the parameter values of a 10 component ELDSP problem. The

problem is solved once with each of the three algorithms described above. The

results are shown in Table 7. J&K's algorithm and the hybrid algorithm �nd the

globally optimal solution, while H&Y's algorithm is trapped in a local optimum.
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Comparing the objective function values of TCs as given in Table 7, the di�erence

between the global optimum and the local optimum is only 0.09%.

i Si si pi hi Di

1 1.86048 0.0627592 0.169927 0.575915 0.0550249

2 1.28404 0.325193 0.0496841 0.955138 0.899564

3 0.588602 0.00670489 0.0496841 0.78338 0.0011597

4 1.80885 0.0705763 0.0901517 0.95291 0.484787

5 0.197166 0.0645518 0.753441 0.00778222 0.00747703

6 2.49116 0.0197262 0.158788 0.962798 0.532823

7 0.518634 0.0185681 0.328471 0.294168 0.234291

8 0.372038 0.00069727 0.103854 0.596454 0.753502

9 2.66912 0.00392305 0.145878 0.139225 0.236702

10 2.34833 0.0776865 0.0960417 0.28254 0.880032

A = 1.97607

Table 6: Parameter values of 10 components.

This example also illustrates the case for the hybrid algorithm, where a new

circuit time between [Tl, Tr] gives rise to the optimal solution. In Figure 4, curve l is
the �nal sequence found from the side of lower bound (τmin = 1.20959). Curve r is

the �nal sequence found from the side of upper bound (τmax = 3.37365). Obviously,

the objective function values from curve l and curve r are not equal, so the hybrid

algorithm investigates the intervals between Tl and Tr. In this case, three intervals

are found, and a new sequence m is found optimal in one of these.

2.96 2.98 3 3.02 3.04 3.06 3.08 3.1 3.12 3.14
11.05

11.055

11.06

11.065

T

T
C

l r 

m 

Figure 4: An example of 10 components.
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T TC q
H&Y's algorithm 3.08817 11.0548 5 3 7 9 1 10 6 8 2 4

J&K's algorithm 3.04597 11.0539 5 3 7 9 1 10 6 2 8 4

The hybrid algorithm 3.04597 11.0539 5 3 7 9 1 10 6 2 8 4

Table 7: Results of 10-component example.

6 Conclusion

In this paper we have reported a thorough computational investigation of two pub-

lished solution methods for the ELDSP problem, a heuristic and an optimal algo-

rithm, and a third hybrid method. The hybrid method has running times only a

factor three larger than the heuristic, but is still an optimal algorithm. An immedi-

ate topic for further research is the generalisation of the methods described to more

general cases of the ELDSP problem.
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