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Prewhitening for Narrow-Band Noise in
Subspace Methods for Noise Reduction

Per Christian Hansen and Søren Holdt Jensen,senior member, IEEE

Abstract— A fundamental issue in connection with subspace
methods for noise reduction is that the covariance matrix for the
noise is required to have full rank, in order for the prewhitening
step to be defined. However, there are important cases where
this requirement is not fulfilled, typically when the noise has
narrow-band characteristics, including the case of tonal noise.
We extend the concept of prewhitening to include the case when
the noise covariance matrix is rank deficient, using a weighted
pseudoinverse and the quotient SVD, and we show how to
formulate a general rank-reduction algorithm that works also
for rank deficient noise. We also demonstrate how to formulate
this algorithm by means of a quotient ULV decomposition, which
allows for faster computation and updating. Finally we apply our
algorithm to a problem involving a speech signal contaminated
by narrow-band noise.

I. I NTRODUCTION

SUBSPACE methods and rank reduction have emerged
as important techniques for noise reduction in many

applications, including speech enhancement, see [4], [5], [12],
[13], [19]. In all these applications there is a fundamental
restriction, namely, that the covariance matrix for the noise
must have full rank; this is necessary because the prewhitening
step essentially consists of post multiplying the signal-matrix
with the inverse of the Cholesky factor of the noise covariance
matrix.

However, there also exist important applications where the
requirement of full rank is not satisfied, for example, in the
case of narrow-band noise. It is therefore preferable to have
a general method which is guaranteed to work in all cases,
independently of the rank of the noise correlation matrix.
Hence it is of interest to extend the concept of prewhitening
for subspace methods, such that it can also handle rank-
deficient noise covariance matrices – in such a way that the
new technique is identical to standard prewhitening in the full-
rank case.

The underlying mathematics of a general prewhitener for a
rank-deficient noise covariance matrix was recently developed
in [10]. In that paper the quotient (or generalized) SVD
was used to demonstrate that the prewhitening matrix, to be
post-multiplied to the signal matrix, should be a weighted
pseudoinverse. An algorithm suited for efficient updating,
based on the rank-revealing quotient ULV decomposition, was
also outlined in [10].
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The purpose of this paper is to complete the theory of
the rank-deficient prewhitening algorithm, to give a filter-bank
interpretation of the algorithm (similar to the work in [11]),
and to demonstrate the usefulness of the new algorithm in
connection with realistic signals. Our work makes use of a
weighted pseudoinverse which originates in work by Mitra and
Rao [16] and Eld́en [7], and which is related to the oblique
projection, a tool that is currently receiving attention in the
signal processing literature [1], [2].

One of the features of subspace methods is that they do not
require detailed models of neither the signal nor the noise. In
the present work there are no assumptions about the rank of
neither the signal covariance matrix nor the noise covariance
matrix.

Our paper is organized as follows. In Section II we discuss
full-rank and low-rank prewhitening in terms of the quotient
singular value decomposition, and we give a FIR filter in-
terpretation of the algorithm. In Section III we introduce the
rank-revealing quotient ULV decomposition, which is a com-
putationally attractive alternative to the quotient SVD, and we
demonstrate how to formulate the rank-deficient prewhitening
in terms of this decomposition. Section IV discusses some
technical issues related to a special case where one of the
matrices in the decompositions is singular, and we demonstrate
that in practice this case does not lead to difficulties with the
algorithms. Finally, in Section V we illustrate the performance
of our algorithms by an example involving a speech signal with
narrow-band low-rank noise.

II. PREWHITENING FORSUBSPACEMETHODS

The fundamental idea in subspace methods is, from a given
noisy signal, to determine a (low-dimensional) signal subspace
which contains most of the desired signal. This typically
involves the formation of a Toeplitz or Hankel matrixX, in
such a way that the cross productXT X is a scaled estimate of
the signal’s covariance matrix, and such that the desired signal
subspace is a proper subspace of the column space (range)
of X.

If the noise in the signal is additive and white, and if it
is uncorrelated with the pure signal, then the signal subspace
simply consists of the principal left singular vectors of the
signal matrixX; see, e.g., [3] and [18].

A. Full-Rank and Low-Rank Prewhiteners

If the noise is not white, then it is still possible to use the
same basic approach provided that the covariance matrixC for
the noise has full rank. The key idea is to use prewhitening; if
C has the Cholesky factorizationC = RT R then the matrix
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X R−1 represents a new signal whose noise component is
white, and the principal left singular vectors of this matrix
form the desired signal subspace. A matrixX̂filt that represents
the filtered signal is then obtained by filtering the singular
values of X R−1 followed by right multiplication withR
(“dewhitening”).

We emphasize that this approach requires that we are able
to estimateC, typically by forming a “noise matrix”E from
samples of pure noise (similar toX) such thatET E is a scaled
estimate ofC. This is often possible in speech processing
applications where the noise can be recorded in speech-less
frames.

The prewhitening breaks down when the noise covariance
matrix C is rank deficient and the matrixR−1 therefore no
longer exists. We shall now demonstrate that in connection
with rank-deficient noise a weighted pseudoinverse takes the
place ofR−1.

The basis for our analysis is thequotient singular value
decomposition(QSVD)1 of the two matricesX and E. Let
X ∈ RmX×n andE ∈ RmE×n with mX ≥ n and mE ≥ n,
and assume thatrank(E) = p ≤ n. Moreover, assume that
the matrix (XT , ET ) has full rank. Then the QSVD takes
the form

X = QX

(
Σ 0
0 In−p

)
ΘT (1)

E = QE (M , 0 )ΘT (2)

whereQX ∈ RmX×n and QE ∈ RmE×p have orthonormal
columns;Θ ∈ Rn×n is a nonsingular matrix; andΣ and M
are diagonalp × p matrices satisfyingΣ2 + M2 = Ip. It
is convenient to partition the two matricesQX and Θ into
submatrices

QX = ( QX1 , QX2 ), Θ = ( Θ1 , Θ2 ) (3)

with p andn− p columns, respectively.
The case whereE has full rank, i.e.,p = n, was studied in

[13]. Here the three submatricesQX2, Θ2 and In−p vanish,
and the QSVD takes the simpler form

X = QX ΣΘT , E = QE M ΘT .

In this case,E has the QR factorizationE = QR whereR is
the above-mentioned Cholesky factor, and the Moore-Penrose
pseudoinverse ofE is given by

E† = R−1QT =
(
ΘT

)−1
M−1QT

E .

Hence, the matrix quotient

X E† = X R−1QT = QX (ΣM−1)QT
E ,

has the same singular values and left singular vectors as the
prewhitened matrixX R−1 introduced above. Moreover, we
see that when using this prewhitener, the QSVD immediately
provides the SVD of the matrix quotientX E†, and thus
the desired signal subspace is immediately available from the
QSVD in the form of the vectors ofQX . Neither R−1 nor
E† is needed. To see that the prewhitened noise is indeed

1The QSVD is also known as the generalized SVD (GSVD); it is computed
in Matlab by means of the functiongsvd .

white, we note thatE E† = QE QT
E represents a signal with

covariance matrixIn.
To reconstruct the filtered matrix̂Xfilt via the QSVD, we

first filter the singular values of the matrix quotientX E† and
then right-multiply withE. Inserting the QSVD it is easy to
see that the complete process can be written as

X̂filt = QX Ψ̂Σ ΘT ,

where Ψ̂ denotes a diagonal filter matrix [13]. It follows
immediately that the covariance matrix for the filtered signal
is given by

X̂T
filtX̂filt = ΘΨ̂2 Σ2 ΘT

As an example, the least squares (LS) estimate of rankk is
obtained by choosinĝΨ such that thek largest elements ofΣ
are retained while the rest are discarded.

We now return to the case with a rank-deficient noise ma-
trix E, still assuming that(XT , ET ) has full rank. By means
of the QSVD (1)–(2) we can express the scaled covariance
matrix of the observed signal as

XT X = Θ
(

Σ 0
0 In−p

)2

ΘT

= Θ1 Σ2 ΘT
1 + Θ2 ΘT

2 .

This expression shows that we can consider the observed
signal as a sum of two signal components with covariance
matricesΘ1 Σ2 ΘT

1 andΘ2 ΘT
2 , respectively. Moreover, since

the scaled covariance matrix for the noise is

ET E = Θ1 M2ΘT
1 ,

we see that the first signal component is associated with the
same p-dimensional subspaceR(Θ1) as the rank-deficient
noise, while the second component is associated with the
subspaceR(Θ2). These two subspaces are disjoint but not
orthogonal.

The key observation is that the second signal component,
which lies inR(Θ2), is not influence by the noise. Only the
first component, lying inR(Θ1), is affected by the noise, and
only this component needs to be filtered. Hence the covariance
matrix for the filtered signal must take the form

X̂T
filtX̂filt = Θ1 Ψ̂2 Σ2 ΘT

1 + Θ2 ΘT
2 ,

where again̂Ψ is a diagonalp× p filter matrix. This, in turn,
corresponds to writing the reconstructed matrix as

X̂filt = QX

(
Ψ̂Σ 0
0 In−p

)
ΘT . (4)

Again, the necessary filtering is easily accomplished via the
QSVD, and we see that the desired signal subspace is spanned
by columns of the matrixQX .

The above analysis also sheds light on the existence and
form of a matrix which can take the place of the full-rank
prewhitening matricesR−1 and E†. Inserting the QSVD it
follows immediately that if we multiplyX from the right with
the matrix

E†
X =

(
ΘT

)−1
(

M−1

0

)
QT

E (5)



3

�����

�����

�

��

Fig. 1. Illustration of the oblique projection. The subspacesR(Θ1) and
R(Θ2) are represented by a plane and a line, intersecting at an angle less
than90◦. Any vectorx can be written as a sumx = Px+(I−P)x, where
Px ∈ R(Θ1) is the oblique projection ofx onR(Θ1) alongR(Θ2).

then we obtain

X E†
X = QX

(
ΣM−1

0

)
QT

E = QX1 (ΣM−1)QT
E (6)

which is the desired SVD ofX E†
X , from which we construct

the filter matrix Ψ̂. The matrixE†
X in (5) is known as the

X-weighted pseudoinverseof E; see [7] for details about the
weighted pseudoinverse and its relation to the QSVD.

Again we must verify that the prewhitened noise is white,
and therefore we consider the matrixE E†

X . Inserting the
QSVD we obtain

E E†
X = QE (M , 0 )ΘT

(
ΘT

)−1
(

M−1

0

)
QT

E = QE QT
E

which represents white noise in ap-dimensional subspace. We
have thus shown that the prewhitenerE†

X indeed produces a
new signal with white noise. Moreover, the filtered component
of the reconstructed signal lies in thep-dimensional subspace
R(Θ1), while the unfiltered component of the reconstructed
signal lies in the subspaceR(Θ2) of dimensionn− p.

The above theory generalizes the existing theory from [13],
and in the full-rank case the two methods are identical because
E†

X = E† whenE has full column rank.
We note that the matrixQX1 ΣΘT

1 , which represents the
signal component inR(Θ1), can be written as

QX1 ΣΘT
1 = X E†

XE

and that the matrix

P =
(
E†

XE
)T

= Θ
(

Ip 0
0 0

)
Θ−1

is the projection matrix for the oblique projection ontoR(Θ1)
alongR(Θ2). Figure 1 illustrates an oblique projection. See,
e.g., [2] concerning the use of oblique projections in signal
processing.

It is the use of this oblique projection that allows us to
prewhiten with rank-deficient noise via a splitting ofRn into
the noise and noise-free subspaces, precisely in such a way that
the signal component in the noise-free subspaceR(Θ2) is left
unfiltered, while only the component in the noise subspace
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Fig. 2. FIR filter interpretation of the QSVD algorithm. The rightmost block
is a time varying amplifier.Replace “D” with “Dˆ{-1}” and swap ξ and θ.

R(Θ1) is filtered. The Moore-Penrose pseudoinverseE† (for
which the matrix(E†E)T = E†E is an orthogonal projection)
does not provide this subspace splitting.

B. FIR Filter Interpretation of the QSVD Algorithm

As shown in [6] and [11], subspace-based noise reduction
algorithms can be interpreted by means of FIR filters defined
by the right singular vectors of the SVD or QSVD. Here we
extend these results to the rank-deficient case considered in
this paper.

First we need to introduce some notation from [11]. Given
a vectorx of lengthN , we define the Hankel matrixH(x) ∈
Rm×n with m + n− 1 = N by

H(x) =




x1 x2 · · · xn

x2 x3 · · · xn+1
...

... . . . ...
xm xm+1 · · · xN


 .

This is precisely the matrixX used throughout our paper. We
also need the augmented Hankel matrix

Haug(x) =




0 0 · · · x1
...

... . . . ...
0 x1 · · · xn−1

H(x)
xm+1 xm+2 · · · 0

...
... . . . ...

xN 0 · · · 0




and theN ×N diagonal matrix

D = diag(1, 2, 3, . . . , n, n, . . . , n, . . . , 3, 2, 1).

Finally we write

Θ = (θ1, . . . , θn) and Θ−T = (ξ1, . . . , ξn).

Then it follows from the theory in Section IV of [11] that if
the reconstructed signal̂x is obtained by averaging along the
antidiagonals ofX̂filt then this signal can be expressed as

x̂ = D−1
n∑

i=1

giHaug

(H(x)ξi

)
J θi (7)

whereJ is the exchange matrix. We have introduced the gains
gi = Ψ̂ii for i ≤ p andgi = 1 otherwise. Referring to Eq. (4),
the firstp filtered components correspond toQX1Ψ̂ΣΘT

1 while
the lastn− p unfiltered components correspond toQX2ΘT

2 .
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TABLE I

AMPLITUDES aj OF THE PURE SIGNAL AND THE PURE NOISE, AND

AMPLITUDES â
(k)
j OF THE RECONSTRUCTION.

j 1 2 3 4 5 6
fj 25 50 21 30 45 57
aj 3.00 5.00 0.80 0.80 0.80 0.80

â
(0)
j 1.58 2.51 0.04 0.11 0.12 0.04

â
(1)
j 1.82 4.36 0.01 0.09 0.23 0.18

â
(2)
j 3.02 5.03 0.09 0.24 0.41 0.25

â
(3)
j 3.01 4.97 0.23 0.30 0.44 0.31

â
(4)
j 2.99 4.99 0.48 0.58 0.52 0.40

The interpretation of the result in Eq. (7) is that the recon-
structed signal consists of a weighted sum (with weightsgi)
of n filtered signals. Each of these filtered signals is obtained
by first filtering the original signalx with a FIR filter whose
coefficients are the elements ofξi, and then filtering this
intermediate signal with another FIR filter whose coefficients
are the elements of the vectorθi in reverse order. The complete
process is illustrated in Fig. 2.

C. Examples of Low-Rank Prewhitening

Before turning to computationally efficient methods for
working with full-rank and low-rank prewhitening, it is worth-
while to illustrate the ideas of the low-rank prewhitening
approach described above. We do this by two simple examples.

Sinusoids in Low-Rank Noise.The pure signalx̄ has
length N = 128 and consists of a sum of two sampled
sinusoids

x̄i = a1 sin
(
i 2π

N f1

)
+ a2 sin

(
i2π

N f2

)
, i = 1, . . . , N

whose amplitudes and frequencies are given in Table I. The
noise is an interfering signal consisting of a sum of four
sinusoids

ei =
6∑

j=3

aj sin
(
i2π

N fj + φj

)
, i = 1, . . . , N

whose amplitudes and frequencies are also given in Table I
while their phases are chosen randomly. The observed signal
is x = x̄ + e. The signal matrixX is the 119 × 10 Hankel
matrix defined by the vectorx, and this matrix has full rank,
i.e., rank(X) = n = 10. The matrix corresponding to the pure
signal x̄ has rank 4. Finally, the matrixE for the pure noise
hasrank(E) = p = 8, i.e., E is rank deficient.

Since the pure signal matrix has rank 4, we expect that a
signal subspace of dimension 4 will lead to the best recon-
struction. In our experiments, we choose the LS filter matrix
Ψ̂ that selects thek largest values ofΣ, thus ensuring that
rank(X̂filt) = n−p+k = 2+k. Finally the reconstructed sig-
nal is obtained by averaging along the antidiagonals ofX̂filt.

The amplitudeŝa(k)
j of the reconstructed signal at the six

relevant frequencies are listed in the bottom rows of Table I.
For k = 0 andk = 1 the dimension of the signal subspace is
not large enough to capture the desired signal, while it is well
reconstructed fork = 2, 3 and 4. Ask increases the signal
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Fig. 3. LPC power spectra of order 12 and equivalent filters. Top: pure and
noisy speech signals, the noise consisting of two sinusoids at 1.5 kHz and
2.5 kHz. Middle: pure and filtered signals usingk = 0, for n = 20 and
n = 40. Bottom: equivalent filters forn = 20 andn = 40; both are notch
filters located at the frequencies of the interfering noise signal.

subspace captures an increasing amount of the low-rank noise.
The optimal reconstruction is obtained fork = 2, as expected,
where the errors ina(2)

1 and a
(2)
2 are less than 1%, while all

four noise amplitudeŝa(2)
j for j = 3, 4, 5, 6 are damped.

For k = 2 the dimensions of the estimated and the pure
signal subspaces are both equal to 4, and we can compute the
angle between these two subspaces. The angle is 0.24 radians
(about14◦) which is quite small compared to the large SNR
in the noisy signal.

Voiced Speech in Low-Rank Noise.The pure signal is a
voiced speech signal of lengthN = 160 and sampled at 8 kHz,
while the low-rank noise is an interfering signal consisting of
a sum of two sinusoids

ei = sin(i 2πf1 ∆t) + sin(i 2πf2 ∆t), i = 1, . . . , N.

The two frequenciesf1 = 1.5 kHz andf2 = 2.5 kHz of the
noise are selected such that the former is between the second
and the third formant, while the latter is close to the fourth
formant. The signal-to-noise ratio is 5 dB.
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The data matrixX and the noise matrixE are again Hankel
matrices withn columns. The noise matrix has rankp = 4
while the data matrix has full rank. In order to suppress the
interference as much as possible, we choosek = 0, i.e.,
our reconstructed signal lies solely in the noise-free subspace
R(Θ2) of dimensionn − 4. Moreover, we usen = 20 and
n = 40 to illustrate the relation between matrix dimensions
and noise-reduction performance.

The 12th-order LPC spectra of the pure signal, the observed
noisy signal and the two reconstructed signals are shown
in Fig. 3, together with the equivalent filters obtained from
Eq. (7) with weights

gi = 0, i = 1, 2, 3, 4, gi = 1, i = 5, . . . , n.

Clearly we are able to suppress the noise by the QSVD
approach, which effectively puts two notch filters at the
frequenciesf1 andf2 of the interfering noise signal. The width
of these filters decreases asn increases.

III. I MPLEMENTATION BY THE RANK -REVEALING

QUOTIENT ULV D ECOMPOSITION

Although the QSVD is ideal for defining the weighted
pseudoinverse and the low-rank prewhitening algorithm, the
QSVD algorithm may be too computationally demanding for
realtime applications. Hence we need an alternative decompo-
sition which is easier to compute and update, and which yields
good approximations to the quantities in the QSVD. The rank-
revealing quotient ULV (QULV) decomposition, also referred
to as the ULLV decomposition, is such a tool.

A. The ULV and QULV Decompositions

Before introducing the QULV, we first briefly describe
the ULV decomposition [17] which was introduced as a
computationally attractive alternative to the SVD. The ULV
decomposition ofX takes the form

X = U LV T = ( Ur , Uo )
(

Lr 0
F G

)
( Vr , Vo )T

where U and V have orthonormal columns,L is lower
triangular, and the numerical rank ofX is revealed inL in the
sense that both norms‖F‖2 and ‖G‖2 are small. Hence the
matrix Ur Lr V T

r is a low-rank approximation toX, and the
range ofUr is an approximation to the desired signal subspace.
The ULV decomposition can therefore replace the SVD in
subspace algorithms for the white-noise case.

The QULV decomposition2 [10], [15] factors the two ma-
tricesX andE as products of a left orthogonal matrix, one or
two lower triangular matrices, and a common right orthogonal
matrix. Specifically, the QULV decomposition takes the form

X = UX L

(
L̄ 0
0 In−p

)
V T (8)

E = UE ( L̄ , 0 ) V T (9)

in which UX ∈ RmX×n, UE ∈ RmE×p andV ∈ Rn×n have
orthonormal columns, whileL ∈ Rn×n and L̄ ∈ Rp×p are

2Matlab software for computing the rank-revealing QULV decomposition in
the full-rank and rank-deficient cases is available in [9] and [8], respectively.

lower triangular.3 Similar to the QSVD, it is convenient to
work with the partitionings

UX = ( UX1 , UX2 ), V = ( V1 , V2 )

and

L =
(

L11 0
L21 L22

)

whereUX1 andV1 havep columns, andL11 is p× p.
The similarity between the QULV and the QSVD is perhaps

better revealed by rewriting the QULV decomposition in the
form

X = UX

(
L11 0
0 In−p

)
( Θ̄1 , Θ̄2 )T

E = UE ( Ip , 0 ) ( Θ̄1 , Θ̄2 )T

where we have defined the matrix̄Θ = ( Θ̄1 , Θ̄2 ) with

Θ̄1 = V1L̄
T

and

Θ̄2 = V1L̄
T LT

21 + V2L
T
22 = Θ̄1L

T
21 + V2L

T
22.

The column spaces of the QULV matricesUX1, UX2, UE ,
Θ̄1 and Θ̄2 are approximations to the column spaces of the
corresponding QSVD matricesQX1, QX2, QE , Θ1 and Θ2,
respectively.

When E has full rank, the matricesUX2, In−p and V2

vanish and the QULV takes the simpler formX = UX L L̄ V T

andE = UE L̄ V T . This is the original version of the QULV
from [14].

The QULV decomposition is rank-revealing in the following
sense. As shown in [10] theX-weighted pseudoinverse ofE
can be written in terms of the QULV decomposition as

E†
X =

(
Θ̄T

)−1
(

Ip

0

)
UT

E = V

(
L̄−1

−L−1
22 L21

)
UT

E .

Consequently the matrix quotientX E†
X can be expressed in

terms of the QULV factors simply as

X E†
X = UX1 L11 UT

E ,

which is a rank-revealing ULV decomposition ofX E†
X .

Hence the numerical rank ofX E†
X is immediately revealed in

thep×p triangular submatrixL11 in the QULV. To incorporate
filtering we must filter or truncate this submatrix. Hence, the
QULV-based reconstruction takes the form

X̂filt = UX

(
Ψ̂L11 0

0 In−p

)
( Θ̄1 , Θ̄2 )T

= UX1 Ψ̂L11 Θ̄T
1 + UX2 Θ̄T

2 ,

whereΨ̂ is the diagonal filter matrix.
The covariance matrix for̂Xfilt thus takes the form

X̂T
filtX̂filt = Θ̄1L

T
11Ψ̂

T Ψ̂L11Θ̄T
1 + Θ̄2Θ̄T

2 .

This expression shows that, again, the reconstructed signal
has a filtered component lying in thep-dimensional subspace

3We emphasize thatL andV in the ULV and QULV decompositions are
not the same matrices.
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TABLE II

AMPLITUDES aj OF THE PURE SIGNAL AND THE PURE NOISE, AND

AMPLITUDES â
(k)
j OF THE QULV-BASED RECONSTRUCTION.

j 1 2 3 4 5 6
fj 25 50 21 30 45 57
aj 3.00 5.00 0.80 0.80 0.80 0.80

â
(0)
j 1.58 2.51 0.04 0.11 0.13 0.04

â
(1)
j 2.45 3.59 0.07 0.22 0.19 0.10

â
(2)
j 2.94 4.94 0.07 0.24 0.38 0.20

â
(3)
j 3.00 5.01 0.26 0.37 0.50 0.34

â
(4)
j 2.95 4.98 0.36 0.41 0.58 0.42

R(Θ̄1), and an unfiltered component in the subspaceR(Θ̄2)
of dimensionn − p. The two subspaces are disjoint but not
orthogonal, and in the Appendix we prove that if∠(Θ̄1, Θ̄2)
denotes the subspace angle between the column spaces ofΘ̄1

and Θ̄2 then

cos∠(Θ̄1, Θ̄2) ≤ ‖L−1
22 L21 L̄‖2 (10)

showing that the smaller the norm ofL21 the larger the angle
between the two subspaces.

We note in passing that there is also an equivalent quotient
URV decomposition with upper triangular matrices. However,
the analysis in [10] shows that this decomposition is impracti-
cal in connection with the applications that we have in mind.

B. Examples of the QULV-Based Algorithm

We illustrate the use of the QULV-based algorithm by means
of the two examples from the previous section.

Sinusoids in Low-Rank Noise.We applied the QULV-
based algorithm to the first test problem, and computed a
least squares estimate by keeping the leadingk × k block
of L11 and setting the remaining elements ofL11 to zero. The
reconstructions are of essentially the same quality as those
computed by means of the QSVD, cf. Table II. The subspace
angle (for k = 2) between the exact and estimated signal
subspaces is again 0.24 radians. This illustrates that the QULV
decomposition is indeed able to yield good approximations to
the quantities defined by the QSVD.

Voiced Speech in Low-Rank Noise.We also applied the
QULV algorithm to the second test problem, using only the
component of the solution inR(Θ̄2). We obtained recon-
structed signals whose LPC power spectra are very similar to
those obtained by means of the QSVD; the spectral distance
between the QSVD and QULV spectra is of the order 1 dB
for n = 20 and less than one forn = 40.

IV. T HE RANK DEFICIENT CASE

So far we have assumed that the matrix(XT , ET ) has
full rank. A rank deficient(XT , ET ) implies that the order
n of the model used for describing the system (n is the size of
the covariance matrices ofX andE) is larger than necessary.
Therefore one cure for rank deficiency is to reduce the ordern.

However, for generality of our algorithms it is important to
be able to treat the rank-deficient case, because this allows

an implementation with a fixedn. We shall now demonstrate
that the QSVD and QULV decompositions described above
can also be used to handle this case.

From the conditionΣ2+M2 = Ip it follows that the middle
matrix in the expression

(
X
E

)
=

(
QX 0
0 QE

) 


Σ 0
0 In−p

M 0


 ΘT

has full rank. The leftmost matrix has orthonormal columns
and therefore also full rank. Hencerank

(
(XT , ET )

)
=

rank(Θ), i.e., any rank deficiency must manifest itself in the
matrix Θ. Consequently, when(XT , ET ) is rank deficient
we cannot infer about the ranks ofX and E merely from
inspection ofΣ andM .

The situation is the same in the QULV setting, in which

(
X
E

)
=

(
UX 0
0 UE

) 


L11 0
0 In−p

Ip 0


 Θ̄T

showing thatrank
(
( XT , ET )

)
= rank(Θ̄). A closer look at

Θ̄T =
(

Ip 0
L21 L22

)(
L̄ 0
0 In−p

)
V T

reveals that any rank deficiency inrank
(
(XT , ET )

)
mani-

fests itself inL22 being singular, becausēL has full rank.

A. The QSVD Algorithm

To extend the QSVD algorithm from Section II-A to the
case whereΘ is rank deficient, we seek a prewhitening matrix
E⊕

X of the form
E⊕

X = Z M−1UT
E

whereZ ∈ Rn×p is a matrix to be determined. There are two
requirements toE⊕

X , namely, thatE E⊕
X must represent white

noise, and thatX E⊕
X must represent a prewhitened signal with

no component in the noise-free subspace. From the expressions

E E⊕
X = QE M ΘT

1 Z M−1QT
E

X E⊕
X = QX

(
ΣΘT

1 Z
ΘT

2 Z

)
M−1QT

E

we see that the two requirements are achieved if we choose
Z such thatM ΘT

1 Z M−1 is an orthogonal projection matrix,
and such thatΘT

2 Z = 0.
It is straightforward to show that ifW is a matrix whose

columns span the null space ofΘT
2 then the choice

Z = W
(
M ΘT

1 W
)†

M

satisfies both requirements. Specifically, we obtain

E E⊕
X = QE P QT

E

X E⊕
X = QX1 ΣM−1P QT

E ,

with the orthogonal projection matrixP given by

P = M ΘT
1 W

(
M ΘT

1 W
)†

.

We remark that ifΘ has full rank thenW consists of the first
p columns of (ΘT )−1 and consequentlyZ = W , ΘT

1 Z =
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Ip, P = Ip and E⊕
X = E†

X . Therefore our choice of the
prewhitening matrixE⊕

X is a natural extension of the weighted
pseudoinverseE†

X .
The QSVD algorithm from Section II-A never forms the

matricesE†
X andX E†

X explicitly, it only needs the diagonal
matrix ΣM−1 to reveal the rank ofX E†

X in Eq. (6). The
desired signal is then reconstructed from̂Xfilt in Eq. (4).

When Θ is rank deficient we should ideally work with
the prewhitened matrixX E⊕

X . However it is not practical
to compute the matrixP , and instead we prefer to use the
original QSVD algorithm and ignoreP . To understand the
consequence of this we need to examineX E⊕

X closer. Assume
that rank(Θ1) = q < p and writeP = QQT with Q ∈ Rp×q.
ThenX E⊕

X takes the form

X E⊕
X = QX1 (ΣM−1Q) (UEQ)T .

If we ignore P (and thusQ) then the decision about which
columns ofQX1 to include in the signal subspace is based
solely on the elements of the diagonal matrixΣM−1. Ideally,
however, the decision should be based on the matrixΣM−1Q.

Hence, if the number of columns ofΣM−1Q with large
norm is smaller than the number of large elements inΣM−1,
then the signal subspace based onΣM−1 may be too large,
i.e., it may include noise components. The opposite situation
where the dimension is chosen too small, such that genuine
signal components are ignored, cannot happen. For this reason
we believe that it is safe to use the original QSVD algorithm,
independent of the rank of(XT , ET ) and thus avoiding the
rank check and avoiding to work with the projection matrixP .

B. The QULV Algorithm

We now repeat the above analysis for the QULV algorithm
from Section III-A. WhenΘ̄ is rank deficient, we seek a matrix
Z̄ such thatE⊕

X = V Z̄ UT
E and such that the two previous

requirements on

E E⊕
X = UE ( L̄ , 0 ) Z̄ UT

E

and

X e⊕X = UX

(
(L11L̄ , 0 ) Z̄

(L21L̄ , L22 ) Z̄

)
UT

E

are again satisfied, i.e., such that(L11L̄ , 0 ) Z̄ is an orthog-
onal projection matrix and(L21L̄ , L22 ) Z̄ = 0. If W is a
matrix whose columns span the null space of(L21L̄ , L22 ),
then

Z̄ = W
(
( L11L̄ , 0 ) W

)†
,

and it follows that

E E⊕
X = UE P̄ UT

E

X E⊕
X = UX1 L11 P̄ UT

E

with the orthogonal projection matrix̄P given by

P̄ = ( L11L̄ , 0 ) W
(
(L11L̄ , 0 ) W

)†
.

We note that when̄Θ has full rank, thenW =
(

Ip

−L−1
22 L21

)

and we obtain the results from Section III-A, showing that the

Clean signal

Noisy signal

0 20 40 60 80 100 120 140 160 180 200

Filtered signal

Fig. 4. An example of the signals in the numerical example. Top: pure voiced
signal. Middle: noisy signal (SNR = 5 dB). Bottom: filtered signal (SNR =
18.6 dB).

above approach is a natural extension of the original QULV
algorithm.

Let us now examine the influence of neglecting the matrix
P̄ in the QULV algorithm. We writeP̄ = Q̄Q̄T such that

X E⊕
X = UX1 (L11Q) (UEQ̄)T ,

showing that the decision about the signal subspace should
ideally be based on the matrixL11Q̄. Hence, if the number of
columns inL11Q̄ with large norm is smaller than the number
of large-norm columnsL11 then we might include noise
components in the signal subspace. As before, the opposition
situation cannot happen, i.e., there is no danger that we omit
important signal components.

In conclusion, we find also in the QULV setting that it is
safe to ignoreP̄ (and thusQ̄) and use the original QULV
algorithm, independent of the rank of( XT , ET ).

V. NUMERICAL EXAMPLE

We illustrate the use of our algorithm with samples of a
male voice signal contaminated by noise originating from a
buzz saw, with a signal-to-noise ratio of 5 dB. We process the
signal by splitting the full time signal into frames of length
200 samples each, and applying the QSVD algorithm in each
time frame.

The noise signal from the buzz saw is dominated by a
few harmonics whose frequency vary with time. Hence, the
noise matrixE changes in each time frame; it is always rank
deficient, and its rank changes between time frames. The noise
reduction is achieved by maintaining the largestk values of
Σ in (4), and discarding the rest. We use a different value of
k in each time frame.

Figure 4 shows an example of the signals involved in this
example: the clean signal, the noisy signal and the filtered
signal. In this frame, the SNR has been improved by about
13 dB.

Figure 5 shows LPC spectra for the signals in four repre-
sentative time frames. We used an LPC order of 20 in order
to captures the spikes in the noise spectra. Above each plot,
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Fig. 5. LPC spectra (order 20) for four representative time frames. Thin line:
noisy signal. Medium line: clean signal. Thick line: filtered signal. For each
time frame we give the achieved SNR and the number QSVD componentsk
that was used.

we give the SNR that was obtained in the corresponding time
frame, together with the value ofk that was used.

Clearly, the QSVD algorithm is able to suppress the harmon-
ics of the rank-deficient noise signal in an adaptive fashion.

VI. CONCLUSION

We have used the results from [10] to extend the QSVD
algorithm [13] to the case with narrow-band noise, where the
covariance matrix of the noise is rank deficient. In particular
we demonstrated that the QSVD of the signal and noise
matrices produces all the quantities necessary to perform
the rank reduction and construct the signal subspace for the
reconstruction. We also demonstrated how the algorithm can
be formulated in terms of the rank-revealing QULV algorithm,
which has lower computational complexity and is better suited
for updating. Finally we demonstrated the efficiency of the
QSVD and QULV algorithms with numerical examples in-
volving speech signals and rank-deficient noise.

APPENDIX

To prove Eq. (10) we first note that a left orthogonal trans-
formation does not change the subspace angle, and therefore
the angle between̄Θ1 andΘ̄2 is identical to the angle between
the ranges of

(
L̄T

0

)
and

(
L̄T LT

21

LT
22

)
.

From the assumption that(XT , ET ) has full rank, it follows
that bothL̄ andL22 have full rank. The range of a matrix is
not altered by right-multiplication with a full-rank matrix, and
hence we seek the subspace angle between the ranges of

(
Ip

0

)
and

(
L̄T LT

21L
−T
22

In−p

)
. (11)

Let QR denote the “skinny” QR factorization of the latter
matrix. Then

cos ∠(Θ̄1, Θ̄2) =

∥∥∥∥∥
(

Ip

0

)(
Ip

0

)T

Q

∥∥∥∥∥
2

=
∥∥∥∥
(

L̄T LT
21L

−T
22

0

)
R−1

∥∥∥∥
2

≤ ‖L̄T LT
21L

−T
22 ‖2 ‖R−1‖2.

Since the singular values of the second matrix in (11) are
greater than or equal to one, it follows that‖R−1‖2 ≤ 1 and
thuscos∠(Θ̄1, Θ̄2) ≤ ‖L−1

22 L21 L̄‖2.
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