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Abstract—A fundamental issue in connection with subspace  The purpose of this paper is to complete the theory of
mgtho_ds for rjoise reduction is that_the covariance matrix_ forl the the rank-deficient prewhitening algorithm, to give a filter-bank
noise is reqwre_d to have full rank, in orde( for the prewhitening interpretation of the algorithm (similar to the work in [11]),
step to be defined. However, there are important cases where ) .
this requirement is not fulfilled, typically when the noise has and to Qemonstrate_th_e u_sefulness of the new algorithm in
narrow-band characteristics, including the case of tonal noise. Connection with realistic signals. Our work makes use of a
We extend the concept of prewhitening to include the case when weighted pseudoinverse which originates in work by Mitra and
the noise covariance matrix is rank deficient, using a weighted Rao [16] and Elén [7], and which is related to the oblique

pseudoinverse and the quotient SVD, and we show how t0 yrgiaction, a tool that is currently receiving attention in the
formulate a general rank-reduction algorithm that works also . - .
signal processing literature [1], [2].

for rank deficient noise. We also demonstrate how to formulate .
this algorithm by means of a quotient ULV decomposition, which ~ One of the features of subspace methods is that they do not

allows for faster computation and updating. Finally we apply our require detailed models of neither the signal nor the noise. In
algorithm to a problem involving a speech signal contaminated the present work there are no assumptions about the rank of
by narrow-band noise. neither the signal covariance matrix nor the noise covariance
matrix.
Our paper is organized as follows. In Section Il we discuss
full-rank and low-rank prewhitening in terms of the quotient
UBSPACE methods and rank reduction have emerggghgular value decomposition, and we give a FIR filter in-
as important techniques for noise reduction in mangrpretation of the algorithm. In Section Il we introduce the
applications, including speech enhancement, see [4], [5], [1dnk-revealing quotient ULV decomposition, which is a com-
[13], [19]. In all these applications there is a fundamentglytationally attractive alternative to the quotient SVD, and we
restriction, namely, that the covariance matrix for the noisfamonstrate how to formulate the rank-deficient prewhitening
must have full rank; this is necessary because the prewhitenjgterms of this decomposition. Section IV discusses some
step essentially consists of post multiplying the signal-matrigchnical issues related to a special case where one of the
with the inverse of the Cholesky factor of the noise covarianggatrices in the decompositions is singular, and we demonstrate
matrix. that in practice this case does not lead to difficulties with the
However, there also exist important applications where thggorithms. Finally, in Section V we illustrate the performance

requirement of full rank is not satisfied, for example, in thef our algorithms by an example involving a speech signal with
case of narrow-band noise. It is therefore preferable to haygrrow-band low-rank noise.

a general method which is guaranteed to work in all cases,
independently of the rank of the noise correlation matrix. Il. PREWHITENING FORSUBSPACEMETHODS

Hence it is of interest to extend the concept of prewhitening The fund tal idea i b thods is. f .
for subspace methods, such that it can also handle rank- € lundamental idea In subspace methods 1S, Irom a given

deficient noise covariance matrices — in such a way that Ha'sy signal, to determine a (low-dimensional) signal subspace

new technique is identical to standard prewhitening in the fulfy ich_contains mqst of the des_|red signal. This typ_mally
rank case. involves the formation of a Toeplitz or Hankel matri, in

The underlying mathematics of a general prewhitener fora%fh.a W&Il,y that the Cross Tr.OdLKZX 'Shatﬁc?ltid %St'ma;e O.f |
rank-deficient noise covariance matrix was recently develop bS|gna S covariance mir'x’ an ?utﬁ al € desired sigha
in [10]. In that paper the quotient (or generalized) sypUPsPace IS a proper subspace of the column space (range)

was used to demonstrate that the prewhitening matrix, to BEX'

post-multiplied to the signal matrix, should be a weighted If the noise in _the signal is_additive and white, and if it
pseudoinverse. An algorithm suited for efficient updatin§ uncorrelated with the pure signal, then the signal subspace

based on the rank-revealing quotient ULV decompaosition, wi ply con;ists of the principal left singular vectors of the
also outlined in [10]. signal matrixX; see, e.g., [3] and [18].
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X R~! represents a new signal whose noise componentwsite, we note that? ET = Q Q% represents a signal with
white, and the principal left singular vectors of this matrixovariance matrix,,. R
form the desired signal subspace. A mafXix, that represents  To reconstruct the filtered matriXg), via the QSVD, we
the filtered signal is then obtained by filtering the singuldirst filter the singular values of the matrix quotiektE" and
values of X R~! followed by right multiplication with R then right-multiply with E. Inserting the QSVD it is easy to
(“dewhitening”). see that the complete process can be written as
We emphasize that this approach requires that we are able -~ ~ T
to estimateC, typically by forming a “noise matrix’E’ from Xiiw = Qx X O7,
samples of pure noise (similar £) such FhatETE isascaled \yhere U denotes a diagonal filter matrix [13]. It follows
estimate ofC'. This is often possible in speech processing,mediately that the covariance matrix for the filtered signal
applications where the noise can be recorded in speech—lgsaiven by
frames. o _ _ XTI Xe = 0025207
The prewhitening breaks down when the noise covariance
matrix C' is rank deficient and the matriR—! therefore no As an example, the least squares (LS) estimate of faigk
longer exists. We shall now demonstrate that in connectiobtained by choosing such that thé: largest elements of
with rank-deficient noise a weighted pseudoinverse takes e retained while the rest are discarded.
place of R~ 1. We now return to the case with a rank-deficient noise ma-
The basis for our analysis is thguotient singular value trix £, still assuming that X7, ET') has full rank. By means
decompositio(QSVD)! of the two matricesX and E. Let of the QSVD (1)—(2) we can express the scaled covariance
X e Rmx*" and E € R™E*™ with mx > n andmg > n, matrix of the observed signal as
and assume thatank(E) = p < n. Moreover, assume that

2
the matrix (X7, ET) has full rank. Then the QSVD takes xTY - © (E 0 ) oT
the form 0 Inp
2T T
E 0 = @1 E @1 + 62 @2 .
x = ax(y ) )er o _ | |
n—p This expression shows that we can consider the observed

E = Qp(M,0)07 (2) signal as a sum of two signal components with covariance
matrices®; ¥? 07 and©, ©7, respectively. Moreover, since

where e R™mx*" and € R™eXP have orthonormal L : S0
Qx Qe the scaled covariance matrix for the noise is

columns;© € R™ "™ is a nonsingular matrix; an& and M

are diago_nalp X p m_a_trices satisfyingE_2 + M? = Ip_. It ETE =0, M?0eT,
is convenient to partition the two matricégx and © into
submatrices we see that the first signal component is associated with the
same p-dimensional subspac®(©,) as the rank-deficient
Qx =(Qx1,Qx2), ©=(061,62) () noise, while the second component is associated with the
with p andn — p columns, respectively. subspaceR(0,). These two subspaces are disjoint but not

The case wherd has full rank, i.e.p = n, was studied in °rthogonal. o .
[13]. Here the three submatric€®y,, © and I,,_, vanish, ~ 1he key observation is that the second signal component,

and the QSVD takes the simpler form which lies inR(O2), is not influence by the noise. Only the
. . first component, lying ik (0, ), is affected by the noise, and
X=QxX0", E=QrMO". only this component needs to be filtered. Hence the covariance
In this caseE has the QR factorizatioff — Q R whereR is matrix for the filtered signal must take the form
the above-mentioned Cholesky factor, and the Moore-Penrose X5 Xae =0, 925207 + 0,07,

pseudoinverse of’ is given by R
where again? is a diagonap x p filter matrix. This, in turn,

—1T T™~1ly,—1-T
E'=RT'Q" = (") M~QE. corresponds to writing the reconstructed matrix as
Hence, the matrix quotient - Y 0
—1 T -1\ T X = Qx ( 0 I ) o*. @
XE'=XR'Q" =Qx (M) QF, "

has the same singular values and left singular vectors as fHf&in. the necessary filtering is easily accomplished via the
prewhitened matrixX R~! introduced above. Moreover, weQSVD, and we see that the desired signal subspace is spanned

see that when using this prewhitener, the QSVD immediatdly columns of the matrix)y. . _
provides the SVD of the matrix quotienX Ef, and thus The above analysis also sheds light on the existence and

the desired signal subspace is immediately available from #Q&m Of & matrix WhiChf‘fa” take; the place of the full-rank
QSVD in the form of the vectors of) x. Neither R~ nor prewhitening matrices:~—* and E7. Inserting the QSVD it

E' is needed. To see that the prewhitened noise is indd@yows immediately that if we multiplyX' from the right with
the matrix

-1
1The QSVD is also known as the generalized SVD (GSVD); it is computed ET _ (@T) -1 (M QT (5)
in Matlab by means of the functiogsvd . X 0 E
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Fig. 2. FIR filter interpretation of the QSVD algorithm. The rightmost block
is a time varying amplifierReplace “D” with “D*{-1}" and swap £ and 6.

/ R(0©,) is filtered. The Moore-Penrose pseudoinveEse(for

which the matrix ETE)” = ETE is an orthogonal projection)
Fig. 1. lllustration of the oblique projection. The subspadg;) and d0O€s not provide this subspace splitting.
R(©2) are represented by a plane and a line, intersecting at an angle less

than90°. Any vectorz can be written as a sum= Pz + (I — P)x, where ] ) )
Pz € R(©1) is the oblique projection of on R(61) alongR(O2). B. FIR Filter Interpretation of the QSVD Algorithm

As shown in [6] and [11], subspace-based noise reduction
algorithms can be interpreted by means of FIR filters defined
. by the right singular vectors of the SVD or QSVD. Here we
XFEy =Qx <Z]\g > QL = Qx1 (SM1) QL  (6) extend these results to the rank-deficient case considered in
this paper.

First we need to introduce some notation from [11]. Given
a vectorz of length N, we define the Hankel matrix((z) €
R™*™ with m+n—1= N by

then we obtain

which is the desired SVD ok El, from which we construct
the filter matrix ¥'. The matrle}( in (5) is known as the
X-weighted pseudoinverss F; see [7] for details about the

weighted pseudoinverse and its relation to the QSVD. T To B
Again we must verify that the prewhitened noise is white, T T3 cee T
and therefore we consider the matriX E'.. Inserting the H(x) = S

QSVD we obtain
Tm Tm+1 e TN
-1
EEL =Qp (M, 0)@T(G)T)_1 (MO ) QL =QpQL  This is precisely the matriX used throughout our paper. We
also need the augmented Hankel matrix
which represents white noise irpadimensional subspace. We

have thus shown that the prewhitenigt. indeed produces a 0 0 oon

new signal with white noise. Moreover, the filtered component : : ‘ :

of the reconstructed signal lies in thedimensional subspace 0 T Tt Tp-a

R(©1), while the unfiltered component of the reconstructed Haug () = H(x)

signal lies in the subspac@(©,) of dimensionn — p. Tmt+1 Tmt2 0
The above theory generalizes the existing theory from [13], : : . :

and in the full-rank case the two methods are identical because mN 0 o 0

El = ET when E has full column rank.
We note that the matrix) x; £ ©7, which represents the and theN x N diagonal matrix
signal component ik (©), can be written as D= diag(1,2,3,....m s s 13,2, 1),

T _ i
Qx120; =X ExE Finally we write

©=(1,...,0,) and O T =(&,....&).

_ T _ p 1
P= (EXE) =© ( 0 0) © Then it follows from the theory in Section IV of [11] that if
the reconstructed signal is obtained by averaging along the
antidiagonals othIt then this signal can be expressed as

and that the matrix

is the projection matrix for the oblique projection oriR4©;)
along R(©-). Figure 1 illustrates an oblique projection. See,
e.g., [2] concerning the use of oblique projections in si nal

It is the use of this oblique projection that allows us to =
prewhiten with rank-deficient noise via a splitting Bf' into whereJ is the exchange matrix. We have introduced the gains
the noise and noise-free subspaces, precisely in such a way that ¥;; for ; < p andg; = 1 otherwise. Referring to Eq. (4),
the signal component in the noise-free subsa¢e,) is left  the firstp filtered components correspond@o;; X607 while
unfiltered, while only the component in the noise subspatige lastn — p unfiltered components correspond@g,©7 .



AMPLITUDES aj OF THE PURE SIGNAL AND THE PURE NOISEAND
AMPLITUDES a;

. (k)

TABLE |

OF THE RECONSTRUCTION

LPC power spectra (order 12)

g

j 1 2 3 4 5 6 E

7, [ 25 50 21 30 45 57 =

a; | 300 500 080 080 080 080
a'” | 158 251 004 011 012 004 20 ‘ ‘ ‘ ‘ ‘ 3
"‘Zl) 500 1000 1500 2000 2500 3000 3500 4000
a) | 1.82 436 001 009 023 018
a;’) | 302 503 009 024 041 025 o |
i’ | 301 497 023 030 044 031
oV | 200 499 048 058 052 0.40 i

Mag. [dB]

-30H

The interpretation of the result in Eq. (7) is that the recor _400M ‘ ‘

structed signal consists of a weighted sum (with weigh)s O 00 R0 N0 ERe o se e A0
of n filtered signals. Each of these filtered signals is obtain¢ |
by first filtering the original signat with a FIR filter whose
coefficients are the elements gf, and then filtering this
intermediate signal with another FIR filter whose coefficient’s -2+ \ i
are the elements of the vectrin reverse order. The complete = _ | N S |
process is illustrated in Fig. 2. 0T
0

I I I
500 1000 1500 2000 2500 3000 3500 4000
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2

C. Examples of Low-Rank Prewhitening

Before turning to computationally efficient methods fo
working with full-rank and low-rank prewhitening, it is worth- z - |
while to illustrate the ideas of the low-rank prewhitening?-zo i 8
approach described above. We do this by two simple exampl .

Sinusoids in Low-Rank Noise.The pure signalz has
length N = 128 and consists of a sum of two samplec % 500 1000 1500 2000 2500 3000 3500 4000
sinusoids Frea.(ve)

Equivalent filters

— . .92 s (22 . . . .
Ty = a1 sm(zﬁfl) + a2 Sm(LWWﬁ) , i1=1,...,N Fig. 3. LPC power spectra of order 12 and equivalent filters. Top: pure and

. . . . noisy speech signals, the noise consisting of two sinusoids at 1.5 kHz and
whose amplitudes and frequencies are given in Table |. Thg kHz. Middle: pure and filtered signals usitg= 0, for n = 20 and

noise is an interfering signal consisting of a sum of four = 40. Bottom: equivalent filters for. = 20 andn = 40; both are notch
sinusoids filters located at the frequencies of the interfering noise signal.

subspace captures an increasing amount of the low-rank noise.
The optimal reconstruction is obtained for= 2, as expected,
whose amplitudes and frequencies are also given in Tablgvhere the errors im!® anda$® are less than 1%, while all
while their phases are chosen randomly. The observed Sigpg|r noise amplitudes'® for j = 3, 4,5, 6 are damped.
is & = 7 + e. The signal matrixX is the 119 x 10 Hankel o 1 — 9 the dimensions of the estimated and the pure
matrix defined by the vectar, and this matrix has full rank, gjgnal subspaces are both equal to 4, and we can compute the
i.e., rank(X) = n = 10. The matrix corresponding to the pure;,qje hetween these two subspaces. The angle is 0.24 radians
signalz has rank 4. Finally, the matri¥’ for the pure noise (4pyt14°) which is quite small compared to the large SNR
hasrank(FE) = p = 8, i.e., E is rank deficient. in the noisy signal.

Since the pure signal matrix has rank 4, we expect that 3\ /iced Speech in Low-Rank NoiseThe pure signal is a
signal subspace of dimension 4 will lead to the best recolsiced speech signal of lengfi = 160 and sampled at 8 kHz,

%‘ruﬁt'on' Iln ourhe;plerlments, Iwe Ch%OST] the LS f|_|ter nr:atr%h”e the low-rank noise is an interfering signal consisting of
that selects t argest values ofS, thus ensuring that , <\ of two sinusoids

rank()?ﬁlt) =n—p+k = 2+k. Finally the reconstructgd sig-

nal is obtained by averaging along the antidiagonalXgf.
The amplitudesﬁﬁ.k) of the reconstructed signal at the six

relevant frequencies are listed in the bottom rows of TableThe two frequencieg; = 1.5 kHz and f, = 2.5 kHz of the

For k = 0 andk = 1 the dimension of the signal subspace isoise are selected such that the former is between the second

not large enough to capture the desired signal, while it is walhd the third formant, while the latter is close to the fourth

reconstructed fok = 2, 3 and 4. Ask increases the signal formant. The signal-to-noise ratio is 5 dB.

6
e; =Y ajsin(i¥Ffi+¢;), i=1,...,N
7j=3

e; = sin(i 2w f1 At) +sin(i 2n fo At), i=1,...,N.



The data matrixX and the noise matri¥ are again Hankel lower triangula? Similar to the QSVD, it is convenient to
matrices withn columns. The noise matrix has rapk= 4 work with the partitionings
while the data matrix has full rank. In order to suppress the
interference as much as possible, we chobse- 0, i.e., Ux =(Ux1, Ux2), V=(Vi,V2)
our reconstructed signal lies solely in the noise-free subspaggi

R(©3) of dimensionn — 4. Moreover, we usex = 20 and I — L1 O
n = 40 to illustrate the relation between matrix dimensions Loy Lo
and noise-reduction performance. whereUx; andV; havep columns, andi,; is p x p.

The 12th-order LPC spectra of the pure signal, the observedry,q similarity between the QULV and the QSVD is perhaps

noisy signal and the two reconstructed signals are showgiier revealed by rewriting the QULV decomposition in the
in Fig. 3, together with the equivalent filters obtained frorg,

Eq. (7) with weights

_ Ly O 5 A& \T
gi:07i21,273,4, gi=1,1=5,...,n. X = UX( 0 Inp)((—)l’GQ)
Clearly we are able to suppress the noise by the QSVD E = Ug(l,,0)(61,0)"

approach, which effectively puts two notch filters at th@vhere e have defined the matéx— (©. . © ith
frequenciesf; and f, of the interfering noise signal. The width W v ! - (O1, ©2) wi

of these filters decreases adncreases. 6, =W LT
and
Ill. | MPLEMENTATION BY THE RANK-REVEALING

QUOTIENT ULV D ECOMPOSITION O, =WLTLL + WLl =06,LT + WLL,

Although the QSVD is ideal for defining the weightedThe column spaces of the QULV matricés,, Uxs, U
pseudoinverse and the low-rank prewhitening algorithm, t = Lo ' Y
QSVD algorithm may be too computationally demanding fo(g 1 and©, are approximations to the column spaces of the

. . . orresponding QSVD matric , , , and O,
realtime applications. Hence we need an alternative decom épec?ivel; 9Q ic83x1, @xz, Qrs O1 ©:
sition which is easier to compute and update, and which yiel h ) .

) ) L en E has full rank, the matrice¥/x», I,,_, and Vx
good approximations to the quantities in the QSVD. The ran(g— X2 P z

. X - anish and the QULV takes the simpler fobh= Ux L L V7T
revealing quotient ULV (QULV) decomposition, also referre F T - - .
o ) ndE = Ug LV*. This is the original version of the QULV
to as the ULLV decomposition, is such a tool. E 9 Q

from [14].

- The QULV decomposition is rank-revealing in the following

A. The ULV and QULV Decompositions sense. As shown in [10] th& -weighted pseudoinverse @
Before introducing the QULV, we first briefly describecan be written in terms of the QULV decomposition as

the ULV decomposition [17] which was introduced as a I -1

computationally attractive alternative to the SVD. The ULV~ E} = (87) < 6”) vl =v < [l ) UL.

decomposition ofX takes the form Szl

Consequently the matrix quotief E'. can be expressed in
T L. 0 T : X

X=ULV" =(Ur,Uo) | 7 o) (Ve Vo) terms of the QULV factors simply as

where U and V have orthonormal columnsl is lower XEI( =Ux1 L1 U,

triangular, and the numerical rank &f is revealed inL in the

sense that both nor and||G||2 are small. Hence the . - . .
die 162 Hence the numerical rank of E', is immediately revealed in

matrix U, L, V,T is a low-rank approximation td, and the i i | bmatrid... in the OULY. To i ¢
range ofU,. is an approximation to the desired signal subspacﬁ'.erp riangular submatrid,y, in the Q - 10 Incorporate

The ULV decomposition can therefore replace the SVD i tering we must filter or truncate this submatrix. Hence, the
subspace algorithms for the white-noise case. QULV-based reconstruction takes the form

which is a rank-revealing ULV decomposition OXEI(.

The QULV decompositich[10], [15] factors the two ma- < - U U Ly, 0 (61, 6,)"
trices X and E as products of a left orthogonal matrix, one or e = PX 0 I, Ly 2
two lower triangular matrices, and a common right orthogonal — Usx UL 07T 5T
: " o = + Ux2 03,
matrix. Specifically, the QULV decomposition takes the form R X 1 X2
i 0 whereV is the diagonal filter matrix.
X = UxlL (0 I ) vt (8) The covariance matrix foXpg;; thus takes the form
n—p
E = Ug(L,0)V" ) X Xew = ©1L1, 9T W L1167 4 6,07

in which Uy € R™x*n UUp € R™=XP gndV e R™*" have This expression shows that, again, the reconstructed signal
orthonormal columns, whild. € R**" and L € RP*? are has a filtered component lying in thedimensional subspace

2Matlab software for computing the rank-revealing QULV decomposition in 3We emphasize that and V' in the ULV and QULV decompositions are
the full-rank and rank-deficient cases is available in [9] and [8], respectivelyot the same matrices.



TABLE I
AMPLITUDES a; OF THE PURE SIGNAL AND THE PURE NOISEAND
AMPLITUDES &;M OF THE QULV-BASED RECONSTRUCTION

an implementation with a fixed. We shall now demonstrate
that the QSVD and QULV decompositions described above
can also be used to handle this case.

j 1 5 3 4 5 6 From the conditior?+ M? = I, it follows that the middle

f 25 50 21 30 45 57 matrix in the expression

a; | 300 500 08 080 080 0.80

a | 1.58 251 004 011 013 004 X Ox 0 0 .

oV | 245 350 007 022 019 0.0 (E) = ( 0 QE) J\(z_f Ino—p ©

a;’) | 294 494 007 024 038 020

ag’) 300 501 026 037 050 0.34 has full rank. The leftmost matrix has orthonormal columns
o'V | 295 498 036 041 058 0.42 and therefore also full rank. Hencemk((X”, ET)) =

rank(@), i.e., any rank deficiency must manifest itself in the
matrix ©. Consequently, whei X”' | ET") is rank deficient

_ . ) _ we cannot infer about the ranks & and £ merely from
R(©1), and an unfiltered component in the subsp&(®.) inspection of% and M.

of dimensionn — p. The two subspaces are disjoint but not e sjtyation is the same in the QULV setting, in which
orthogonal, and in the Appendix we prove that/ifO©, ©-)

denotes the subspace angle between the column spaéss of X Ux 0 Ly, 0 -
and©, then <E> = ( 0 UE) 0 I,,|©
1, 0

. /(0. 6 —1 7
€08 £(01,02) < [ Ly L Ll (10) showing thatrank (( X”', ET')) = rank(©). A closer look at
showing that the smaller the norm &f; the larger the angle -
between the two subspaces. oT — ( Iy 0 ) (L 0 ) vT

We note in passing that there is also an equivalent quotient La1 Lo 0 Inp
URV decompOSition with upper triangular matrices. Howevefeveajs that any rank deficiency Hank(( XT , ET )) mani-
the analysis in [10] shows that this decomposition is impractests itself inLy, being singular, becaus has full rank.
cal in connection with the applications that we have in mind.

A. The QSVD Algorithm

B. Examples of the QULV-Based Algorithm To extend the QSVD algorithm from Section II-A to the
We illustrate the use of the QULV-based algorithm by meamsse wher® is rank deficient, we seek a prewhitening matrix
of the two examples from the previous section. E$ of the form
Sinusoids in Low-Rank Noise.We applied the QULV- ES =ZM'UE

based algorithm to the first test problem, and computed
least squares estimate by keeping the leading &k block

of L;; and setting the remaining elementsigf, to zero. The
reconstructions are of essentially the same quality as th
computed by means of the QSVD, cf. Table Il. The subspa@

w%ereZ € R™*P is a matrix to be determined. There are two
requirements t&Z%, namely, that ES must represent white
&oése, and thak EY must represent a prewhitened signal with

Q component in the noise-free subspace. From the expressions

angle (for k = 2) between the exact and estimated signal EE?? = QEMG)ITZ M‘lQE
subspaces is again 0.24 radians. This illustrates that the QULV »oly

. L. . . . XE@ — Q 1 M—lQT
decomposition is indeed able to yield good approximations to X X erz E

the quantities defined by the QSVD. . ] ]

Voiced Speech in Low-Rank NoiseWe also applied the We See that the two requirements are achieved if we choose
QULV algorithm to the second test problem, using only th& such that\ ©1'Z M~ is an orthogonal projection matrix,
component of the solution iRR(6,). We obtained recon- and such t_ha92TZ =0. o _
structed signals whose LPC power spectra are very similar tdt IS straightforward to show that it is a matrix whose
those obtained by means of the QSVD; the spectral distarf@uUmns span the null space 6f then the choice
between the QSVD and QULV spectra is of the order 1 dB 7w (M @TW)T M
for n = 20 and less than one for = 40. 1

satisfies both requirements. Specifically, we obtain

IV. THE RANK DEFICIENT CASE EEY = QpPQp

So far we have assumed that the ma_lt(riXT, ET) has XE? = QM 'PQYL,
full rank. A rank deficient( X7, ET) implies that the order
n of the model used for describing the systemiq the size of With the orthogonal projection matrik given by
the covariance matrices df and F) is larger than necessary. _ T Tt
Therefore one cure for rank deficiency is to reduce the atder P=M&W (M®1 W) '
However, for generality of our algorithms it is important toMe remark that if© has full rank theri¥/ consists of the first
be able to treat the rank-deficient case, because this allgwsolumns of (67)~! and consequentlyy = W, 077 =



I,, P = I, and EZ = EL. Therefore our choice of the Clean signa

prewhitening matrixz'{ is a natural extension of the weighted
pseudoinversel, .

The QSVD algorithm from Section II-A never forms the
matricesE, and X E' explicitly, it only needs the diagonal Noisy signal
matrix M ! to reveal the rank ofX EE( in Eq. (6). The
desired signal is then reconstructed frofgy;, in Eq. (4).

When © is rank deficient we should ideally work with
the prewhitened matrixX E§§. However it is not practical Fitered signal
to compute the matrix?, and instead we prefer to use the ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
original QSVD algorithm and ignoré®. To understand the
consequence of this we need to exami&? closer. Assume
thatrank(6,) = ¢ < pand writeP = QQT with @ eR™.  — W mw
Then X EY takes the form

X E;‘? =Qx1 (ZM*lQ) (UEQ)T. F_ig. 4. A_n examp!e of Fhe signals in the numerical exqmple. Tpp: pure voiced
signal. Middle: noisy signal (SNR = 5 dB). Bottom: filtered signal (SNR =

If we ignore P (and thusQ) then the decision about which18-6 dB).
columns of @x; to include in the signal subspace is based

solely on the elements of the diagonal mafriz/ —!. Ideally,
however, the decision should be based on the mamik—1 Q.

Hence, if the number of columns &EM—1Q with large . . . .
norm is smaller than the number of large elements i~ Let us now examine the influence of neglecting the matrix

_ . L= =2
then the signal subspace basedXh —! may be too large, P in the QULV algorithm. We writeP = QQ" such that

i.e., it may ir_lclude. noi_se components. The opposite situatipn X E® = Uxy (L11Q) UsQ)T,
where the dimension is chosen too small, such that genuine
signal components are ignored, cannot happen. For this reasbawing that the decision about the signal subspace should
we believe that it is safe to use the original QSVD algorithnideally be based on the matrix; Q. Hence, if the number of
independent of the rank ¢fX” , E7") and thus avoiding the columns inLq;Q with large norm is smaller than the number
rank check and avoiding to work with the projection matfix Of large-norm columnsL;; then we might include noise
components in the signal subspace. As before, the opposition
B. The QULV Algorithm _situation ca_nnot happen, i.e., there is no danger that we omit
important signal components.

We now repeat the above analysis for the QULV algorithm | conclusion, we find also in the QULV setting that it is
from Section IlI-A. Wher© is rank deficient, we seek a matrixsafe to ignoreP (and thusQ) and use the original QULV
Z such thatE§ = V ZUL and such that the two previousa|gorithm, independent of the rank o7, ET)
requirements on

above approach is a natural extension of the original QULV
algorithm.

EEY =Up(L,0)ZU% V. NUMERICAL EXAMPLE

We Illustrate the use of our algorithm with samples of a

Xe® U (L11_E, O)Z_ T male voice .signalicontaminalted by noise originating from a

€x = Ux (LotL, Las) Z E b_uzz saw, W|t_h a 5|gnal-to-n_0|se r_atlo o_f 5 dB. We process the
signal by splitting the full time signal into frames of length

are again satisfied, i.e., such that1, L, 0) Z is an orthog- 200 samples each, and applying the QSVD algorithm in each
onal projection matrix and Lo1L, Lao ) Z = 0. If W is @ time frame.

and

matrix whose columns span the null space(dfiL, L22),  The noise signal from the buzz saw is dominated by a
then _ _ — 1 few harmonics whose frequency vary with time. Hence, the
Z=W ((LuL,0)W), noise matrixk changes in each time frame; it is always rank

deficient, and its rank changes between time frames. The noise

and it follows that L . S
reduction is achieved by maintaining the largéstalues of

EEY = Up PUL Y in (4), and discarding the rest. We use a different value of
XE® = Ux, Ly PUY k in each time frame.
_ o o Figure 4 shows an example of the signals involved in this
with the orthogonal projection matrik given by example: the clean signal, the noisy signal and the filtered
_ - — - — signal. In this frame, the SNR has been improved by about
P=(LuL,0)W((LuL,0)W)". ey P y
I, Figure 5 shows LPC spectra for the signals in four repre-

We note that whei® has full rank, theiV” = { _; -1, | sentative time frames. We used an LPC order of 20 in order
and we obtain the results from Section IlI-A, showing that th® captures the spikes in the noise spectra. Above each plot,



SNR =16.6501, k=12 SNR =8.6645, k=6

0 0
oy -10 ) -10
%- -20 ‘? -20
= -30 = -30
-40 -40
SNR = 16.1064, k = 10 SNR=8.2332, k=8
0 0 [1]
= -10 @ —10
= = 2
g- -20 g -20 [ ]
= -30 = -30
-40 -40

(3]

Fig. 5. LPC spectra (order 20) for four representative time frames. Thin linﬁ4
noisy signal. Medium line: clean signal. Thick line: filtered signal. For eac 1
time frame we give the achieved SNR and the number QSVD compohents
that was used.

(5]

we give the SNR that was obtained in the corresponding timg;
frame, together with the value @f that was used.
Clearly, the QSVD algorithm is able to suppress the harmorb]
ics of the rank-deficient noise signal in an adaptive fashion.
(8]
VI. CONCLUSION ]
We have used the results from [10] to extend the QSVD
algorithm [13] to the case with narrow-band noise, where the
covariance matrix of the noise is rank deficient. In particulzglro]
we demonstrated that the QSVD of the signal and noigsa]
matrices produces all the quantities necessary to perform
the rank reduction and construct the signal subspace for th
reconstruction. We also demonstrated how the algorithm can
be formulated in terms of the rank-revealing QULV algorithm1
which has lower computational complexity and is better suitéo?’]
for updating. Finally we demonstrated the efficiency of the
QSVD and QULV algorithms with numerical examples inl14l
volving speech signals and rank-deficient noise. [15]

APPENDIX
To prove Eq. (10) we first note that a left orthogonal trangts]

Since the singular values of the second matrix in (11) are
greater than or equal to one, it follows tHaR ', < 1 and
thuscos Z (01, 03) < || Ly Loy Ll|2.
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