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ABSTRACT
We solve a class of blind signal separation problems us-
ing a constrained linear Gaussian model. The observed
signal is modelled by a convolutive mixture of colored
noise signals with additive white noise. We derive a
time-domain EM algorithm ‘KaBSS’ which estimates
the source signals, the associated second-order statistics,
the mixing filters and the observation noise covariance
matrix. KaBSS invokes the Kalman smoother in the E-
step to infer the posterior probability of the sources, and
one-step lower bound optimization of the mixing filters
and noise covariance in the M-step. In line with (Parra
and Spence, 2000) the source signals are assumed time
variant in order to constrain the solution sufficiently.
Experimental results are shown for mixtures of speech
signals.

1. INTRODUCTION

Reconstruction of temporally correlated source signals
observed through noisy, convolutive mixtures is a fun-
damental theoretical issue in signal processing and is
highly relevant for a number of important signal pro-
cessing applications including hearing aids, speech pro-
cessing, and medical imaging. A successful current ap-
proach is based on simultaneous diagonalization of mul-
tiple estimates of the source cross-correlation matrix [5].
A basic assumption in this work is that the source cross-
correlation matrix is time variant. The purpose of the
present work is to examine this approach within a prob-
abilistic framework, which in addition to estimation of
the mixing system and the source signals will allow us
to estimate noise levels and model likelihoods.

We consider a noisy convolutive mixing problem
where the sensor input xt at time t is given by

xt =
L−1∑

k=0

Akst−k + nt. (1)

The L matrices Ak define the delayed mixture and st

is a vector of possibly temporally correlated source pro-
cesses. The noise nt is assumed i.i.d. normal. The objec-
tive of blind source separation is to estimate the sources,
the mixing parameters, and the parameters of the noise
distribution.

Most blind deconvolution methods are based on
higher-order statistics, see e.g. [4], [1]. However, the
approach is proposed by Parra and Spence [5] is based
on second order statistics and is attractive for its rela-
tive simplicity and implementation, yet excellent perfor-

mance. The Parra and Spence algorithm is based on es-
timation of the inverse mixing process which maps mea-
surements to source signals. A heuristic second order
correlation function is minimized by the adaptation of
the inverse process. The scheme needs multiple correla-
tion measurements to obtain a unique inverse. This can
be achieved, e.g., if the source signals are non-stationary
or if the correlation functions are measured at time lags
less than the correlation length of the source signals.

The main contribution of the present work is to pro-
vide an explicit statistical model for the decorrelation of
convolutive mixtures of non-stationary signals. As a re-
sult, all parameters including mixing filter coefficients,
source signal parameters and observation noise covari-
ance are estimated by maximum-likelihood and the ex-
act posterior distribution of the sources is obtained. The
formulation is rooted in the theory of linear Gaussian
models, see e.g., the review by Ghahramani and Roweis
in [7]. The so-called Kalman Filter model is a state
space model that can be set up to represent convolutive
mixings of statistically independent sources added with
observation noise. The standard estimation scheme for
the Kalman filter model is an EM-algorithm that im-
plements maximum-likelihood (ML) estimation of the
parameters and maximum-posterior (MAP) inference of
the source signals, see e.g. [3]. The specialization of the
Kalman Filter model to convolutive mixtures is covered
in section 2 while the adaptation of the model parame-
ters is described in section 3. An experimental evalua-
tion on a speech mixture is presented in section 4.

2. THE MODEL

The Kalman filter model is a generative dynamical state-
space model that is typically used to estimate unob-
served or hidden variables in dynamical systems, e.g.
the velocity of an object whose position we are track-
ing. The basic Kalman filter model (no control inputs)
is defined as

st = Fst−1 + vt (2)
xt = Ast + nt

The observed dx-dimensional mixture, xt =
[x1,t, x2,t, .., xdx,t]T , is obtained from the multipli-
cation of the mixing matrix, A, on st, the hidden state.
The source innovation noise, vt, and the evolution ma-
trix, F, drive the sources. The signals are distributed
as vt ∼ N (0,Q), nt ∼ N (0,R) and s1 ∼ N (µ,Σ).

By requiring F,Q and Σ to be diagonal matrices,
equation (2) satisfies the fundamental requirement of
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Figure 1: The AR(4) source signal model. The mem-
ory of st is updated by discarding si,t−4 and composing
new s1,t and s2,t using the AR recursion. Blanks signify
zeros.

any ICA formulation, namely that the sources are sta-
tistically independent. Under the diagonal constraint,
this source model is identical to an AR(1) random pro-
cess. In order for the Kalman model to be useful in
the context of convolutive ICA for general temporally
correlated sources we need to generalize it in two as-
pects, firstly we will move to higher order AR processes
by stacking the state space, secondly we will introduce
convolution in the observation model.

2.1 Model generalization

By generalizing (2) to AR(p) source models we can
model wider classes of signals, including speech. The
AR(p) model for source i is defined as:

si,t = fi,1si,t−1 + fi,2si,t−2 + .. + fi,psi,t−p + vi,t. (3)

In line with e.g. [2], we implement the AR(p) process in
the basic Kalman model by stacking the variables and
parameters to form the augmented state vector

s̄t =
[

sT
1,t sT

2,t .. sT
ds,t

]T

where the bar indicates stacking. The ‘memory’ of the
individual sources is now represented in si,t:

si,t = [ si,t si,t−1 .. si,t−p+1 ]T

The stacking procedure consists of including the last p
samples of st in s̄t and passing the (p − 1) most recent
of those unchanged to s̄t+1 while obtaining a new st by
the AR(p) recursion of equation (3). Figure 1 illustrates
the principle for two AR(4) sources. The involved
parameter matrices must be constrained in the following
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Figure 2: The convolutive mixing model requires a full
¯̄A to be estimated.

way to enforce the independency assumption:

F̄ =




F̄1 0 · · · 0
0 F̄2 · · · 0
...

...
. . .

...
0 0 · · · F̄L




F̄i =




fi,1 fi,2 · · · fi,p−1 fi,p

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0




Q̄ =




Q̄1 0 · · · 0
0 Q̄2 · · · 0
...

...
. . .

...
0 0 · · · Q̄L




(Q̄i)jj′ = { qi j = j′ = 1
0 j 6= 1

∨
j′ 6= 1

Similar definitions apply to Σ̄ and µ̄. The generaliza-
tion of the Kalman Filter model to represent convolutive
mixing requires only a slight additional modification of
the observation model, augmenting the observation ma-
trix to a full dx × p× ds matrix of filters,

¯̄A =




aT
11 aT

12 .. aT
1ds

aT
21 aT

22 .. aT
2ds

aT
dx1 aT

dx2 .. aT
dxds




where aij = [aij,1, aij,2, .., aij,L]T is the length L(= p)
impulse response of the signal path between source i
and sensor j. Figure 2 illustrates the the convolutive
mixing matrix.

It is well-known that deconvolution cannot be per-
formed using stationary second order statistics. We
therefore follow Parra and Spence and segment the sig-
nal in windows in which the source signals can be as-
sumed stationary. The overall system then reads

s̄n
t = F̄ns̄n

t−1 + v̄n
t

xn
t = ¯̄As̄n

t + nn
t



where n identify the segment of the observed mixture.
A total of N segments are observed. For learning we will
assume that during this period the mixing matrices ¯̄A
and the observation noise covariance, R are stationary.

3. LEARNING

A main benefit of having formulated the convolutive
ICA problem in terms of a linear Gaussian model is that
we can draw upon the extensive literature on parameter
learning for such models. The likelihood is defined in
abstract form for hidden variables S and parameters θ

L(θ) = log p(X|θ) = log
∫

dSp(X,S|θ)

The generic scheme for maximum likelihood learning of
the parameters is the EM algorithm. The EM algorithm
introduces a model posterior pdf. p̂(·) for the hidden
variables

L(θ) ≥ F(θ, p̂) ≡ J (θ, p̂)−R(p̂) (4)

where

J (θ, p̂) ≡
∫

dSp̂(S) log p(X,S|θ)

R(p̂) ≡
∫

dSp̂(S) log p̂(S)

In the E-step we find the conditional source pdf based on
the most recent parameter estimate, p̂(S) = p(S|X, θ).
For linear Gaussian models we achieve F(θ, p̂) = L(θ).
The M-step then maximize J (θ, p̂) wrt. θ. Each com-
bined M and E step cannot decrease L(θ).

3.1 E-step

The Markov structure of the Kalman model allows an
effective implementation of the E-step referred to as the
Kalman smoother. This step involves forward-backward
recursions and outputs the relevant statistics of the pos-
terior probability p(s̄t|x1:τ , θ), and the log-likelihood of
the parameters, L(θ)1. The posterior source mean (i.e.
the posterior average conditioned on the given segment
of observations) is given by

ˆ̄st ≡ 〈s̄t〉

for all t. The relevant second order statistics, i.e. source
i autocorrelation and time-lagged autocorrelation, are:

Mi,t ≡ 〈si,t(si,t)T 〉
≡ [ mi,1,t mi,2,t .. mi,L,t ]T

M1
i,t ≡ 〈si,t(si,t−1)T 〉

The block-diagonal autocorrelation matrix for s̄t is de-
noted M̄t., It contains the individual Mi,t, for i =
1, 2, .., ds.

1For notational brevity, the segment indexing by n has been
omitted in this section.

3.2 M-step

In the M-step, the first term of (4) is maximized with
respect to the parameters. This involves the average of
the logarithm of the data model wrt. the source posterior
from the previous E-step

J (θ, p̂) = −1
2

N∑
n=1

[
ds∑

i=1

log detΣn
i + (τ − 1)

ds∑

i=1

log qn
i

+τ log detR +
ds∑

i=1

〈(sn
i,1 − µn

i )T (Σn
i )−1(sn

i,1 − µn
i )〉

+
τ∑

t=2

ds∑

i=1

〈 1
qn
i

(sn
i,t − (fn

i )T sn
i,t−1)

2〉

+
τ∑

t=1

〈(xn
t − ¯̄As̄n

t )T R−1(xn
t − ¯̄As̄n

t )〉]

where fT
i = [ fi,1 fi,2 .. fi,p ]. The derivations are

analogous with the formulation of the EM algorithm in
[3]. The special constrained structure induced by the
independency of the source signals introduces tedious
but straight-forward modifications. The segment-wise
update equations for the M-step are:

µi,new = ŝi,1

Σi,new = Mi,1 − µi,newµT
i,new

fT
i,new =

[ τ∑
t=2

(m1
i,t)

T
][ τ∑

t=1

Mi,t−1

]−1

qi,new =
1

τ − 1

[ τ∑
t=2

mi,t − fT
i,newm1

i,t

]

Reconstruction of µ̄new, Σ̄new, F̄new and Q̄new from
the above is performed according to the stacking defi-
nitions of section 2. The estimators ¯̄Anew and Rnew

include the statistics from all observed segments:

¯̄Anew =
[ N∑

n=1

τ∑
t=1

xt,n(ˆ̄st,n)T
][ N∑

n=1

τ∑
t=1

M̄t,n

]−1

Rnew =
1

Nτ

N∑
n=1

τ∑
t=1

diag[xt,nxT
t,n − ¯̄Anewˆ̄st,nxT

t,n]

We accelerate the EM learning by a relaxation of the
lower bound, which amounts to updating the parame-
ters proportionally to an self-adjusting step-size, α, as
described in [6]. We refer to the Kalman filter based
blind source separation approach as ‘KaBSS’.

4. EXPERIMENTS

The proposed algorithm was tested on a binaural convo-
lutive mixture of two speech signals with additive noise
in varying signal to noise ratios (SNR). A male speaker
generated both signals that were recorded at 8kHz. This
is a strong test of the blind separation ability, since
the ‘spectral overlap’ is maximal for a single speaker.



The noise-free mixture was obtained by convolving the
source signals with the impulse responses:

¯̄A =
[

1 0.3 0 0 0 0.8
0 0.8 0.24 1 0 0

]

Subsequently, observation noise was added in each sen-
sor channel to construct the desired SNR. Within each
experiment, the algorithm was restarted 10 times, each
time estimating the parameters from 10 randomly sam-
pled segments of length τ = 70. Based on a test log-
likelihood, Ltest(θ), the best estimates of ¯̄A and R were
used to infer the source signals and estimate the source
model (F̄ and Q̄). The model parameters were set to
p = 2 and L = 3.

The separation quality was compared with the State-
of-the-Art method proposed by Parra and Spence2[5].
A signal to interference ratio (SIR): SIR = P11+P22

P12+P21
is

used as comparison metric. Pij is the power of the
signal constituting the contribution of the ith original
source to the jth source estimate. The normalized cross-
correlation function was used to estimate the powers in-
volved. The ambiguity of the source assignment was
fixed prior to the SIR calculations. The results are
shown in figure 3. Noise-free scenarios excepted, the
new method produce better signal-to-interference val-
ues peaking at an improvement of 4dB for an SNR of
20dB. It should be noted that the present method is
considerably more computational demanding than the
reference method.

5. CONCLUSION

Blind source separation of non-stationary signals has
been formulated in a principled probabilistic lin-
ear Gaussian framework allowing for (exact) MAP-
estimation of the sources and ML-estimation of the
parameters. The derivation involved augmentation of
state-space representation to model higher order AR
processes and augmentation of the observation model
to represent convolutive mixing. The independency con-
straint could be implemented exactly in the parameter
estimation procedure. The source estimation and the
parameter adaptation procedures are based on second-
order statistics ensuring robust estimation for many
classes of signals. In comparison with other current con-
volutive ICA models the present setup allows blind sep-
aration of noisy mixtures and it can estimate the noise
characteristics. Since it is possible to compute the like-
lihood function on test data it is possible to both use
validation sets for model order estimation as well as ap-
proximate schemes such as AIC and BIC based model
order selection. A simulation study was used to validate
the model in comparison with a State-of-the-Art refer-
ence method. The simulation consisted in a noisy con-
volutive mixture of two recordings of the same speaker.
The simulation indicated that speech signals are de-
scribed well-enough by the colored noise source model
to allow separation. For the given data set, the pro-
posed algorithm outperforms the reference method for
a wide range of noise levels. However, the new method

2See ”http://newton.bme.columbia.edu/ lparra/publish/”.
The hyper-parameters of the reference method were fitted to the
given data-set: T = 1024, Q = 6, K = 7 and N = 5. It should be
noted that the estimated SIR is sensitive to the hyper-parameters.
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Figure 3: The separation performance for varying SNR
of KaBSS and the reference method proposed by Parra
and Spence (PS) [5]. The signals are two utterances by
the same speaker. Two convolutive mixtures were cre-
ated with variable strength additive white noise. The
SIR measures the crosstalk between the two sources in
the source estimates. The error bars represent the stan-
dard deviation of the mean for 10 experiments at each
SNR.

is computationally demanding. We expect that signifi-
cant optimization and computational heuristics can be
invoked to simplify the algorithm for real-time applica-
tions. Likewise, future work will be devoted to monitor
and tune the convergence of the EM algorithm.
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