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Abstract
This paper introduces a novel method for simulating photon mapping for real-time applications. First we intro-
duce a new method for selectively redistributing photons. Then we describe a method for selectively updating the
indirect illumination. The indirect illumination is calculated using a new GPU accelerated final gathering method
and the illumination is then stored in light maps. Caustic photons are traced on the CPU and then drawn using
points in the framebuffer, and finally filtered using the GPU. Both diffuse and non-diffuse surfaces can be handled
by calculating the direct illumination on the GPU and the photon tracing on the CPU. We achieve real-time frame
rates for dynamic scenes.

Keywords: photon mapping, real-time, global illumina-
tion, graphics hardware

1. Introduction and Previous Work

Global illumination methods such as radiosity ([GTGB84])
and photon mapping ([Jen01]) tend to be slow. Therefore,
many attempts have been made to optimize the calculation
of global illumination.

Recently, concepts for graphics hardware acceleration of
ray-tracing have been suggested ([CHH02]). In [PDC∗03]
the photon mapping algorithm was implemented almost en-
tirely on graphics hardware. These solutions have proven
that it is possible to implement complex algorithms on the
GPUs. However, so far these implementations are not faster
than CPU based implementations. In [PDC∗03] the final
gathering step is omitted and consequently the image quality
is low. The final gathering step is the most computational ex-
pensive step and even though this step is omitted the frame
rates are only near interactive when using progressive up-
dates.

Another research direction is to use a great number of
CPUs ([WKB∗02]). However, such a setup is mostly avail-
able at universities.

In [TPWG02], a method for calculating interactive global
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illumination is described. The scene is rendered using graph-
ics hardware and the illumination is stored in a hierarchi-
cal patch structure in object space. At first, the top level is
used but based on priorities calculated in camera space the
patches are then subdivided. The illumination is calculated
using a path tracing algorithm and the illumination of only
10 to 100 patches can be calculated per second on each CPU.
As a result of this low number up to 16 CPUs are used. When
the camera or objects are moved quickly artefacts will occur.

In [Kel97], instant radiosity is introduced. The technique
is based on Quasi-Monte-Carlo (QMC) walk of photons. As
each photon hits a surface, a point light source is created
which is rendered using graphics hardware. The final image
is created by rendering the scene a large number of times and
adding the images using the accumulation buffer. Therefore
when the view is changed, the entire process has to be started
over. Halton sequences are used to distribute the photons and
these are updated based on an age criterion.

In [DBMS02], photons are divided into groups and re-
emitted selectively based on dynamic objects collision with
a bounding volume around photon groups. This solution
demonstrates interactive frame rates in a purely diffuse en-
vironment. The photons are also distributed using a QMC
method. Photon energies are stored at the nearest vertices in
the scene, and the scene therefore has to be tesselated heav-
ily. The photon energies are also used for the direct illumi-
nation, which makes the direct illumination very inaccurate.
The weakness of using selective photon tracing using this
approach is that the final gathering step is not not include.
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The final gathering step is necessary for calculating accurate
indirect illumination ([Jen01]).

Real-time caustics have been approximated in [WS03],
but the solution is limited to single specular interaction and
assumes that the light sources are far away from the specular
reflectors. Furthermore, occlusion between the light source
and the specular reflector are not handle.

Thus, several attempts have been made to obtain an in-
teractive global illumination solution. However, no general
solution has been obtained that can run on commodity hard-
ware. Severe limitations exist either on the computer plat-
form, in the scene complexity, the generality of the global
solution, or the dynamics of the scene.

However, for individual elements in global illumination,
solutions have been proposed for dynamic scenes on com-
modity hardware. Real-time direct lighting has been known
for many years, but has been made more versatile recently
by the introduction of programmable hardware. Real-time
soft shadows can be approximated using different techniques
([HLHS03]). Specular interreflection between planar sur-
faces, between curved surfaces, and between mixtures of
planar and curved surfaces can also be handled in real-time
([NC02]).

This paper introduces a new method for simulating pho-
ton mapping in real-time for dynamic scenes on commodity
hardware. We will do this by exploiting the main idea be-
hind photon mapping, namely that the different elements in
global illumination can be calculated individually. The di-
rect, specular, caustics, and indirect illuminations are simply
added together. Parts of the global illumination solution can
be derived from the results mentioned above, and we will
need to find specific methods for the following four prob-
lems that tend to be computationally intensive for a real-time
application:

• First, we improve photon emission from light sources in
dynamic scenes. Specifically, we introduce an improved
method for exploiting the frame-to-frame coherence for
moving objects in a scene.

• Secondly, we introduce a strategy for an approximated re-
construction of the full illumination of the scene after the
photon emission.

• Thirdly, we use this reconstruction to find the indirect illu-
mination in a scene using a hardware optimized fast gath-
ering method.

• Fourthly, we introduce an optimized solution for caustics
also based on an adequate reconstruction method.

Our proposed methods follow the photon mapping strat-
egy closely ([Jen01]).

The photon emission (Section 2), reconstruction of the
photon map (Section 3), final gathering (Section 4), and
caustics (Section 5) solve our four main problems. Section
6 handles the remaining contributions (such as direct illumi-

nation, shadows, and specular inter-reflections) and Section
7 integrates the individual contributions into a final solution.

2. Selective Photon Emission

In traditional photon mapping all photons are traced in a
first pass. But tracing all photons each frame in a real-time
application is too computationally expensive. The selective
photon tracing introduced in [DBMS02] solves this prob-
lem in some ways as only intelligently selected photons are
re-emitted each frame. They give each photon a fixed ini-
tial direction using QMC Halton sequences, and the photons
from the light source are divided into groups where the ini-
tial direction of each photon is similar. Each group contains
an equal amount of photons with equal energies. The pho-
tons are traced on the CPU. We find this to be an attractive
strategy, but we distribute the photons a bit differently. We
do this to avoid the weaknesses of the method which are de-
scribed in the introduction.

We enumerate the photons in each group, and for each
frame only one photon from the group is traced. In the next
frame, a new photon from the same group is selected. This
is done in a Round-Robin fashion. The path of each pho-
ton is stored, and if the new path diverges from the previous
path, all photons from the group will be marked for redistri-
bution. In this way, more effort is spent in areas where the
scene is modified. It is also guaranteed that minor changes
will eventually be seen by a photon. It may nevertheless take
more time to discover minor changes than major changes.
This is the case as only few photons from the group may
be invalidated and the group may act for a longer time as if
no changes have occured in its domain. Major changes will
be registered faster as many or all photons from a particu-
lar group will be invalidated. Photon bounces are handled by
using Russian Roulette ([Jen01]).

The photons are stored as photon-hits on the surfaces
along the path of the traced photon. The complete path of
each photon is also stored. In this way, it is easy to remove
the photon-hits from the scene in constant time if the path
of the photon is invalidated. It is also faster to determine
whether the photon path has been invalidated. Each surface
also has pointers to the photon-hits that have hit that partic-
ular surface, making it faster to determine the total amount
of photon energies on a surface. The extra storage needed
per photon is an energy amount for each hit, and a pointer
from the photon-hit to the surface, and a pointer from the sur-
face to the photon-hit. The average length of a path is fairly
short when using Russian Roulette. The memory overhead
for storing the photon path is therefore not substantial.

As a result of our chosen strategy of storing the photon
paths, a moving light source will cause all photon paths to
be invalidated each frame.
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3. Approximated Reconstruction of the Full
Illumination

The photons distributed as described in the previous section
carry information about the full illumination in the scene.
These photons are used for reconstructing an approximation
of the full illumination. This process is described in the fol-
lowing.

If enough photons are distributed, the photons will repre-
sent the correct illumination in the scene, and they can be
calculated directly by using density estimation ([SWH∗95]).
The problem is that ”enough” photons are many millions
and it is almost impossible to completely remove the noise.
Therefore, the photons are used to reconstruct an approxima-
tion of the full illumination, and then this approximation is
used in the final gathering step to calculate a smooth and ac-
curate approximation of the indirect illumination. The num-
ber of photons needed when performing the final gathering
is many times smaller than the photons needed for density
estimation ([Jen01]).

In order to approximate the full illumination we compute
the irradiance using an N-nearest neighbor query of the pho-
tons, and the total energy of these photons is divided by the
area that they span. The radiance of the surface is stored in
reconstruction texture maps applied to the surfaces. We call
these texture maps approximated illumination maps (AIMs).

Kd-trees are fast for N-nearest neighbor queries. In order
to build the kd-tree, only photons that are located on sur-
faces which could possibly contribute to the irradiance of
the current surface are considered. We use a technique sim-
ilar to the one presented in [LC03]. In [LC03] the division
into surfaces is done automatically, however in our imple-
mentation we have performed the division by hand using a
3D modelling tool. When a photon hits a surface, it is not
stored in a global structure but in a structure belonging to
the surface that was hit (see the discussion for an analysis
of this choice). A surface can contain an arbitrary number of
polygons. Figure 1 shows a Cornell box with a bumpy floor
and unique colors for each surface.

Figure 1: Left: A unique color is displayed for each surface,
Right: Same scene shown using wireframe (13.000 polygons
and 16 surfaces

Updating all the AIMs for each frame is computationally
expensive and undesirable. Therefore we use a delta value
for each surface to control when its AIM should be updated.
The value (∆ f ) is a delta value for the full approximated il-
lumination. The ∆ f value is affected by the energy of any
photon that is removed or stored on a surface. Only when
∆ f is larger than a small threshold value, the AIM should be
updated.

In practice it can be necessary to limit the amount of work
done per frame. In our implementation we first handle sur-
faces with high ∆ f divided by the surface area. We only up-
date a limited amount of surfaces per frame.

As only one photon map from a single surface is utilized
at any point in time, it is only necessary to create a small
photon map in the memory. This makes the memory require-
ment smaller than if one global photon map containing all
the photons had been used.

4. Indirect Illumination using Hardware Optimized
Final Gathering

A hardware optimized final gathering method was intro-
duced in [CG85], namely the hemi-cube. This method needs
to render the scene 5 times for each resulting final gather
value. The 5 renderings are one for each side of the hemi-
cube. The front side of the hemi-cube contributes with about
56% of the value, while each of the side planes each con-
tribute with about 11% of the value. In [SP89] a method is
introduced that only uses the front plane of the hemi-cube
and then enlarges this front plane. In this way, a more accu-
rate solution can be achieved, as we only use the front plane.
If e.g. the front side is enlarged to double side length, thus
making the total area 4 times larger, this accounts for about
86% of the total incoming directions (See Figure 2).

Figure 2: Final gathering using a single plane

We use this method for the final gathering step and ren-
der the scene with the AIMs. Each pixel of this rendering
must be multiplied with the fraction of the hemisphere that
it spans and a cosine factor in order to calculate the irradi-
ance. The irradiance is defined as:

E =
∫

Ω
L(ω)(n ·ω)dω (1)

where E is the irradiance, L is the incoming light, n is the
normal, ω is the direction of the incoming light, and dω is
the solid angle.

The cosine weighted area on the hemisphere which a frag-
ment on the rendered surface of the rendered plane spans is
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defined as:

Fh(x,y) =
1

π(x2 + y2 +1)2 ∆A f (2)

where Fh is the cosine weighted area of the hemisphere and
∆A f is the area of a fragment. The (x,y) components are the
distances from the center of the plane([CG85]). The irradi-
ance can then be calculated as:

E = ∑
x,y

p(x,y)Fh(x,y) (3)

where p(x,y) is the pixel value of the rendered plane. The
irradiance value should be divided by the percentage of the
hemisphere which the rendered plane spans in order to com-
pensate for the missing areas.

The calculation above can be implemented on the GPU.
The way we have implemented this is first to render the scene
to a pixel buffer (pbuffer). Then this pbuffer is used as input
to a fragment program which multiplies each pixel with a
value calculated using Equation 2. Then the resulting sum-
mation is calculated using hardware MIP map functional-
ity (we use the OpenGL extension SGIS generate mipmap).
The MIP map function calculates the average of a texture
in the topmost level of the MIP map. Therefore we multiply
each pixel by the total number of rendered pixels. This is per-
formed in the fragment program which is run before the MIP
map is executed. We copy this final pixel to a texture that is
applied to the surface in the scene. We call this texture the
indirect illumination map (IIM) (In our implementation they
have the same resolution as the AIMs). All the steps are ex-
ecuted on the GPU, and no expensive read-back to the CPU
is necessary.

Calculating the radiance for the indirect illumination can
be done in several ways. If a texture is applied to the sur-
face, the irradiance should be stored in the IIM and multi-
plied with the texture during rendering. But if the surface
has a uniform color, the radiance could just as well be stored
directly in the IIM. This can be done by pre-multiplying the
irradiance values with the reflectance of the surface in the
fragment program.

Displaying the illumination is often done in real-time ap-
plications by using texture maps which are also called light
maps. Light maps usually contain both direct and indirect il-
lumination and they are often coarse. Since the indirect illu-
mination usually changes slowly over a surface it is possible
to use an even coarser texture.

It is noted that when we use this approach, only diffuse
reconstruction of the indirect illumination can be handled.

Many techniques can be used for applying a texture with
uniform size to a model, and several full automatic methods
have been proposed. In our implementation, we have applied
the textures manually by using a 3D modelling tool.

As with the AIMs, it is computationally expensive to up-
date all the IIMs for each frame. Therefore, we introduce ∆i

which is the delta value for the indirect illumination. This
value is similar to ∆ f except that it is only affected by pho-
tons that have bounced at least once. As with the AIMs the
surface with the highest ∆i will have its IIM updated first.

In our implementation, we restrict the number of texels
which can be updated per frame in order to keep a high frame
rate.

We use two textures for the IIMs. One that is visualized
and one that is being updated (double buffering). When the
update of a texture is done, the two textures are switched
using a blend between the textures. This is done in order to
avoid popping. But for the indirect illumination to be up-
dated this is a trade-off between popping and lag. We have
therefore set the blend function to be fairly fast. Whether a
quick or a slow blend should be used depends on the appli-
cation.

5. Caustics

Caustics arise when a photon hits a diffuse surface after hav-
ing been specularly reflected one or several times directly
from the light source. When using photon mapping, caustic
photons are traced in the same way as with the photons used
for the indirect illumination. But photons are only traced in
directions where known caustics generators (specular reflec-
tors) are located ([Jen01]). When the photon hits a diffuse
surface, its location is stored. Our method is based on this
strategy, which means that we do not have the limitations of
the real-time caustic method described in [WS03].

We distribute the photons evenly using QMC Halton se-
quences in order to lower the noise and avoid flickering. The
photons are traced by using a standard CPU ray-tracer. We
store the photons in a simple list. We do not divide the pho-
tons into groups as with the indirect illumination because
caustics are very localized.

In order to reconstruct the caustics, we do the following.
First we draw the scene by using the color black to a pbuffer
with the depth buffer enabled. This is done in order to get
the right occlusion of the photons. Then all the photons are
drawn additively as points by using blending. Afterwards the
pbuffer contains a count of the photons that have hit a par-
ticular pixel. This pbuffer is used as a texture, which makes
it possible for a fragment program to read the color value
of the current pixel from the previous rendering. A screen
size polygon with this texture is therefore drawn by using a
fragment program.

Furthermore it is also possible to read the photon count.
Based on the photon count of the nearby pixels, a filter is
applied to the pixels:

c(x,y) = s
k

∑
i=−k

k

∑
j=−k

t(x+ i,y+ j)
√

1+2k2
− (i2 + j2) (4)
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where c(x,y) is the resulting color at position (x,y) and
t(x,y) is the texture value at position (x,y). s is a scaling
value that adjusts power of the photon energies. We use a
filter of size 7x7 (i.e. k = 3).

This is a screen space filtering while photon mapping tra-
ditionally uses filtering in world space. If the depth buffer
is also made available to the fragment program (which is
possible on the GPUs of today), it is possible to calculate
the world space position of the photon by multiplying the
depth with the inverse modelview projection matrix (after re-
scaling to the canonical view volume). In this way, it is possi-
ble to perform the caustic filtering in world space, which will
produce more correct caustics. Even though this will create
more accurate caustics, it will also make the fragment pro-
gram longer and consequently slower as this calculation has
to be done for all fragments. In our case that would be 49
times. We have therefore chosen only to implement screen
space filtering.

By using this method, it is possible to count 255 photons
(8 bits) at each pixel, and this will be sufficient in most cases.
When counting the photons in the framebuffer it is assumed
that all lights and all caustics generators have the same color,
otherwise a floating point pbuffer is needed.

Tracing all photons in every frame may not be necessary.
If the application run at e.g. 30 fps, it may not be notable
if each photon is only retraced every second to every tenth
frame. If the specular object is moved fast, it will be pos-
sible to see a trail after the specular object. Whether this is
visually acceptable depends on the application. In our expe-
rience, the delayed photon distribution does not disturb the
visual appearance, and if the object moves slowly it is hard
to notice.

The implementation of equation 4 is a time consuming
fragment program. When using a filter of size 7x7, the sum-
mations are unrolled to a program that has about 400 lines
of assembly code and 49 lookups in the texture. Therefore it
is desirable to limit the use of the fragment program to areas
where caustic photons are actually present. This is done by
using the following method.

Before the photons are drawn to the pbuffer, stenciling
is enabled. The stencil is set to increment on zpass. When
the photons are drawn, they are also marked in the stencil
buffer. Then the screen is divided into a number of grid cells.
For each grid cell, an occlusion query is started as a quad is
drawn. The stencil function is set only to let pixel be writ-
ten to the pbuffer if the stencil value in the pbuffer is greater
than zero. When the quad is drawn, the occlusion query will
return the number of pixels that were modified. If no pixels
were modified, no photons need to be filtered in this area.
In this way, the inexpensive occlusion query can identify the
areas that have caustic photons. Often the caustic only fills a
few percent of the screen. The process is illustrated in Fig-
ure 3.

Figure 3: Left: photons are drawn on the screen. Middle:
Areas on the screen are tested for photons. Right: Areas are
filtered in screen space.

6. Direct Illumination, Shadows and Specular
Interreflections

By using modern graphics hardware, it is possible to evalu-
ate the shading of each pixel individually ([MGA03]). In our
implementation, we use a fragment program for calculating
the direct light, and we use stencil buffer shadow volumes
for calculating the shadows. Our implementation uses hard
shadows but real time hardware rendered soft shadows could
just as well have been used as described in [JCLP04] or one
from [HLHS03] could be selected. Any soft shadow algo-
rithm is equally well suited as the shadow rendering is done
in a separate pass. When combining the light contributions
the shadow is applied by using a screen size texture.

We use a dynamic environment map for specular reflec-
tions. This is done by using a cube-map and for each frame
the scene is rendered six times in order to update the sides of
the cube. Multiple interreflections could have been used as
well ([NC02]).

7. Combining the Light Contributions

Combining the various contributions is an additive process.
We create a separate pbuffer for the shadows and another for
the caustics. When the scene is rendered, the direct illumina-
tion is calculated for each pixel and multiplied by the content
in the shadow pbuffer. The texture value for the indirect il-
lumination is sampled in the IIMs which are applied to each
surface. These values are added to the final color along with
the caustic’s value (see Figure 4). In this way, we combine
the contributions in a final pass.

The formula is as follows:

L = Lindirect +Lcaustics +Lspecular +Ldirect ∗ shadow (5)

When several lights are present in the scene the formula
is as follows:

L = Lindirect +Lcaustics +Lspecular +
lights

∑
i=0

Ldirect(i)∗shadow(i)

(6)

c© The Eurographics Association 2004.



Bent Dalgaard Larsen & Niels Jørgen Christensen / Simulating Photon Mapping for Real-time Applications

Figure 4: Top left: The direct illumination without shad-
ows. Top middle: Shadows. Top right: Reflections. Bottom
left: Indirect illumination. Bottom middle: Caustics. Bottom
right: Complete illumination

8. Results

We have implemented our application on a Pentium 4, 2.4
Ghz with a GeForceFx 5950 graphics card running Win-
dows. All code has been written in C++ and compiled by us-
ing Visual Studio 6. Cg was used for all vertex and fragment
programs ([MGA03]). Our photon-tracer utilizes a standard
axis-aligned BSP-tree.

Each dynamic object in the scenes uses a separate BSP-
tree. Any photon traced in the scene is therefore tested for
intersection with all BSP-trees.

The scene in Figure 4 with indirect illumination and caus-
tics runs a 35+ fps. The cube and the sphere are dynamic
objects. 10000 photons are used for the caustics, and they
are completely updated over 8 frames. For the indirect illu-
mination, 77 photon groups are used each with 40 photons.
A maximum of 20 texels per frame are updated by using fi-
nal gathering. The big surfaces on the walls have textures of
5 by 5 texels for both the AIM and IIM. In total, the scene
has 140 texels for the AIMs and similarly 140 texels for the
IIMs. The scene is rendered at a resolution of 512 by 512
pixels and all pbuffers are also 512 by 512 pixels. The en-
vironment map is rendered as a cube-map and the scene is
rendered 6 times per frame. Each side in the cube-map has a
resolution of 128 by 128 pixels. The memory used for stor-
ing the photons and their paths is in this case the number of
photons multiplied by 3 floats for the energies and the size
of two pointers multiplied by the average path length, which
in our case is approximately 2. This gives a total memory
requirement of approximately 120 Kb.

If we consider two unconnected rooms, and modifications
only occur in one of the rooms, then no updates will be nec-
essary in the other room. Only minimal computational power
will be spent in the other room as no photons will be invali-
dated. This case is shown in the top-most scene in Figure 5.

Photons Irradiance lookup (100 photons) Balancing time

300 0.023 ms 0.10 ms

500 0.027 ms 0.18 ms

1000 0.029 ms 0.39 ms

2000 0.034 ms 0.84 ms

Table 1: Timings for balancing a kd-tree with photons

When the rooms are connected, updates made in one of the
rooms will now affect the illumination in both rooms (see
middle image in Figure 5). The bottom-most image in Fig-
ure 5 shows a scene, where the right room is illuminated
primarily by indirect illumination.

Figure 5: Top: A scene with two divided rooms each with
two light sources. Middle: The rooms have been connected.
Bottom: Two of the light sources have been turned off.

Balancing a kd-tree for fast searching is computationally
cheap when the number of photons in the kd-tree is low. In
Table 1, timings for balancing a kd-tree are shown. The time
for finding the nearest 100 photons is also shown.

When the indirect illumination is updated it is important
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Render size Fragments Polygons in scene Timings

8 8x8 34 0.75 ms

16 16x16 34 0.76 ms

32 32x32 34 0.78 ms

8 8x8 13,000 0.90 ms

16 16x16 13,000 0.91 ms

32 32x32 13,000 0.97 ms

8 8x8 133,000 1.55 ms

16 16x16 133,000 1.57 ms

32 32x32 133,000 1.59 ms

Table 2: GPU final gathering timings

that the final gathering step is fast. We have measured how
much time a single final gathering takes. A single final gath-
ering includes a rendering of the scene using textures of the
approximated illumination, a fragment processing of each
pixel, summation of the pixels using hardware MIP map gen-
eration, and a copy of the final pixel to a texture (see section
4). We have timed these steps using scenes with different
polygon count. The scenes with 13,000 and 133,000 poly-
gons were made by subdividing the surfaces and making the
surfaces more bumpy. The results can be observed in Table
2. It is noted that the timings are not very sensitive to the
number of polygons in the scene.

Another option would be to use traditional ray-tracing for
the final gathering step and send the calculated value to the
graphics hardware. Our timings show that copying a single
texture value from the CPU to the GPU takes 0.65 ms. Trac-
ing 1024 (32x32) rays in a scene with one dynamic object
(i.e. two BSP-trees) and 8000 polygons takes 16.7 ms us-
ing our implementation of the axis-aligned BSP tree. Fur-
thermore, the radiance should be calculated at the surface
that each ray hits and a final cosine weighted summation
should be performed. Using our measurements, it can there-
fore be concluded that our hardware optimized final gath-
ering method is many times faster than a ray-tracer based
approach.

The filtering of caustics in screen space is optimized by
using the occlusion query which is described in a previous
section. Our timing of the occlusion query shows that it takes
0.33 ms to run 100 occlusion queries over an area of 512
times 512 pixels. Using our GPU caustics filter on an area of
512 times 512 takes 37.6 ms while only filtering 1% of this
area takes 0.38 ms. In a typical scene, the caustics fills less
than 5% of the screen (see Figure 6). The time spent on the
occlusion query is therefore well worth the extra effort.

Figure 6: Top:Caustics being cast from a dynamic object
onto another dynamic object and a bumpy floor. Bottom: The
same scene shown using wireframe

9. Discussion and Future Work

Many methods can be used for optimizing a 3D applica-
tion. Popular methods are culling, LOD, tri-stripping, and
front-to-back render order, but many others can be used
([AMH02]). These all work well with our new methods.

The final gathering method renders the entire visible scene
using the center of the texel that should be updated as the
camera point. Since all pixels of this rendering are averaged
using MIP mapping before they are used, it is not necessary
to render an extremely accurate image, and the lowest level
of detail for all objects in the scene might as well be chosen.
Culling algorithms should of course also be enabled using
the final gathering renderings.

Tracing photons is done using an axis-aligned BSP-tree.
If the scene is divided up into a number of cells e.g. using
portals the BSP-tree can just as well be divided up into sev-
eral trees. But since photon tracing using a BSP-tree only
takes O(logn) it may not be desirable to split the BSP-tree.

Both our method for final gathering and photon tracing
scales well with regard to the number of polygons in the
scene. The limiting factor is the movement of objects in the
scene that causes photons to be invalidated and the indirect
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illumination to be updated. Particularly the accuracy of the
indirect illumination, i.e. the number of texels in the IIMs, is
a limiting factor. Consequently, making the scene larger e.g.
with more rooms and floors, will not affect the lag and frame
rate if modifications occur locally. But the computation time
will be affected heavily if the objects get more detailed and
more and smaller texels have to be used for representing the
illumination. Our method scales well with the size of the
scene but not with a lot of fine details in the geometry. Nev-
ertheless, a fractal floor, as demonstrated in our example, can
be handled appropriately. Avoiding many small texels in the
IIMs is an area of future research.

As each light source has a fixed number of photon groups
it may be expensive to trace a single photon from each group
every frame if many light sources are present in the scene. It
may therefore be desirable to trace fewer photons from each
light source per frame. Whether to trace a photon from each
photon group or trace fewer photons from a light source can
e.g. be determined by the distance from the light source to
the viewer.

We have implemented the summation of all pixels in the
final gathering step using hardware MIP mapping. Currently
this can only be done using 8 bit precision. In the next gen-
eration of GPUs it is likely that this can be done using float-
ing point precision. Another option would be to calculate the
MIP mapping using fragment programs which is done in e.g.
[NPG03].

Aliasing is usually a problem when using hemi-cube
based methods. We use the hemi-cube for gathering radiance
values from textures with large texels. The large texels is a
filtering of the radiances which reduces the aliasing problem.
Further it is cheap to increase the size of the hemi-cube (See
Table 2).

One of the biggest advantages of using photon mapping
compared to e.g. radiosity is that it is mesh independent.
When using our approach, we group the geometry into sur-
faces and use local photon maps, and this suggests that our
method is less geometry independent than traditional photon
mapping. But when calculating the irradiance by using tra-
ditional photon mapping with an n-nearest neighbors query,
only photons with normals similar to the center of the query
are usually used. This can be viewed as an implicit division
of the geometry similar to our grouping of the surfaces.

By using our method, shadows and direct illumination is
updated in every frame while the indirect illumination is up-
dated progressively. We find this to be a good strategy since
our observation is that correct direct illumination and shad-
ows are more important than indirect illumination for the
visual impression of a scene.

Our strategy for updating the indirect illumination is in
some ways similar to [TPWG02] as the indirect illumination
is updated selectively. We based our priorities on invalidated
photons in object space while they calculate their priorities

in camera space. When using our method it is therefore pos-
sible to move the camera quickly without severe artefacts.
This is something that is often done in e.g. games. This is
possible because the indirect illumination of the entire scene
is cached and because the indirect illumination is assumed
to be diffusely reflected.

The texture resolution for the indirect illumination (IIM)
is fixed in our implementation. Further research should be
made to address the problem of dynamically choosing the
texture resolution in order to reconstruct the indirect illumi-
nation more accurately. One direction for this research could
be to apply a filter to the texture in order to find high second
order derivatives, as this is probably a good location for in-
creasing the texture resolution. Another direction would be
to use methods that depend on distances to other surfaces
similar to what is used in irradiance caching ([WRC88]). A
hierarchical method similar to [TPWG02] could also be used
for subdividing the surfaces although it requires a fine mesh-
ing or a constant re-meshing of the scene.

It should be easy to add our methods at specific locations.
E.g. in one room, indirect illumination could be enabled and
at an outdoor location, caustics could be enabled for a single
object. In this way, the designer of e.g. a game can make
sure that the application always runs at a sufficient frame
rate while adding additional features only where it will not
compromise the frame rate.

10. Conclusion

We have introduced a solution for simulating photon map-
ping for real-time applications. The method uses a combi-
nation of CPU and GPU based algorithms and uses features
that are currently available in most commodity GPUs.

Our main contributions in this paper are the fast calcu-
lation of indirect light and the fast calculation of caustics.
These two elements can be implemented individually and
added to the remaining light contributions such as direct illu-
mination, shadows and specular reflections to produce a full
global illumination solution similar to the strategy of photon
mapping.

Both the photon tracing and the direct illumination can
handle diffuse and non-diffuse surfaces. However, the re-
construction of the indirect illumination is restricted to dif-
fuse surfaces as the indirect illumination is currently stored
in textures.

We have used selective updates in several levels for the
indirect illumination and in this way obtained an intelligent
caching mechanism while still keeping all the elements of
the photon mapping method. The key parameters have been
an improved selective photon emission and tracing, together
with local selectively updated photon maps. Furthermore we
have exploited graphics hardware for fast final gathering us-
ing a hemi-cube based method with negligible aliasing arte-
facts.
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Our caustic algorithm can run in real-time without the
limitations of previous methods. The method is fast because
of a simple selective filtering and the image quality is rea-
sonable even though we have only implemented screen space
filtering.

We have proven that our indirect illumination method
works well for small scenes but argued that it scales well
to larger scenes if the geometric details do not demand too
heavy use of detailed texture maps. Furthermore using tex-
ture maps we avoid heavy meshing of the scenes.
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Figure 4: Top left: The direct illumination without shadows.
Top middle: Shadows. Top right: Reflections.
Bottom left: Indirect illumination. Bottom middle: Caustics.
Bottom right: Complete illumination.

Caustics being cast from a dynamic object onto another dy-
namic object and a bumpy floor.
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