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Abstract. We invoke an auto-regressive IIR inverse model for convolu-
tive ICA and derive expressions for the likelihood and its gradient. We
argue that optimization will give a stable inverse. When there are more
sensors than sources the mixing model parameters are estimated in a
second step by least squares estimation. We demonstrate the method
on synthetic data and finally separate speech and music in a real room
recording.

1 Introduction

Independent component analysis (ICA) of convolutive mixtures is a key problem
in signal processing, the problem is important in speech processing and numerous
other applications including medical, visual, and industrial signal processing, see,
e.g., [1–5] . Convolutive ICA in its basic form concerns reconstruction of the L+1
mixing matrices Aτ and the N source signal vectors st of dimension K, from a
D-dimensional convolutive mixture,

xt =
∑

τ

Aτst−τ . (1)

We will assume L so large that all correlations in the process x can be ‘explained’
by the mixing process, and the source signal vectors are assumed temporally
independent: p({st}) =

∏N
t=1 p(st). This is motivated by the observation that

source signal auto-correlations can not be identified without additional a priori
information [1]. This is most apparent in the frequency domain Aωsω. A non-
zero ‘filter’ h(ω) can be multiplied on a given source if 1/h(ω) is applied to the
corresponding column of the set of Fourier transformed mixing matrices Aω.

Statistically motivated maximum likelihood schemes have been proposed, see
e.g. [1,6–8]. The likelihood approach is attractive for a number of reasons. First,
it forces a declaration of the statistical assumptions—in particular the a priori
distribution of the source signals, secondly, the maximum likelihood solution
is asymptotically optimal given the assumed observation model and the prior
choices for the ‘hidden’ variables.

IIR representations of an inverse model have been proposed in e.g. [9,10]. In
this paper we will invoke an auto-regressive IIR inverse model. This involves a
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linear recursive filter for estimation of the source signal and a non-linear recursive
filter for maximum likelihood estimation of the mixing matrices. Our derivation
formally allows the number of sensors to be greater than the number of sources.

2 Estimating the sources through a stable inverse

Let us define x, A, and s such that x = As is a matrix product abbreviation of
the convolutive mixture




xN

xN−1

...
x1


 =




A0 A1 . . . AL

A0 A1 . . . AL

. . .
A0







sN

sN−1

...
s1


 (2)

which allows the likelihood to be written p(x|{Aτ}) =
∫

δ(x−As)p(s)ds.

2.1 Square case likelihood

In the square case, D = K, the likelihood integral evaluates to

p(x|{Aτ}) = | detA|−1p(A−1x). (3)

Since A is upper block triangular we obtain p(x|{Aτ}) = | detA0|−Np(A−1x),
furthermore, assuming i.i.d. source signals we finally get

p({xt}|{Aτ}) = | detA0|−N
N∏

t=1

p((A−1x)t). (4)

The inverse operation A−1x is the multivariate AR(L) process

s̃t = A−1
0 xt −A−1

0

L∑
τ=1

Aτ s̃t−τ (5)

which follows simply by eliminating st in (1). In terms of (5) we now rewrite the
negative log likelihood

L({Aτ}) = N log |det A0| −
N∑

t=1

log p(s̃t) , K = D. (6)

2.2 Overdetermined case likelihood

When D > K there are many inverse operations A−1 : IRD 7→ IRK which satisfy
A−1A = I. In this work we base the source estimates ŝt on a particular choice
of inverse operation, i.e. we define ŝ = A−1x by the multivariate AR(L) process

ŝt = A#
0 xt −A#

0

L∑
τ=1

Aτ ŝt−τ , (7)



where A#
0 denotes Moore-Penrose generalized inverse. The process (7) is inverse

in the sense A−1A = I which means that when it is configured with the true
mixing matrices it allows perfect reconstruction of the sources. Evoking (7) the
likelihood integral can be evaluated to

L({Aτ}) =
N

2
log | detAT

0 A0| −
N∑

t=1

log p(ŝt) , K ≤ D. (8)

The derivation of (8) is deferred to Sec. A for aesthetic reason, but note that
(8) is based on our particular choice of inverse (7). For K = D we note that (7)
and (8) are identical to (5) and (6) respectively.

2.3 Optimization yields a stable inverse

In praxis, convolution system matrices such as A are often found to be poorly
conditioned and hence the inverse problem ŝ = A−1x sensitive to noise, see
e.g. [11]. The extreme case for the inverse is it being unstable and sensitive
to machine precision rounding errors. Fortunately, the maximum likelihood ap-
proach has a built-in regularization against this problem. This is seen from the
likelihood noting that an ill-conditioned estimator {Âτ} will lead to a divergent
source estimate ŝt; but such large amplitude signals are exponentially penalized
under the source pdf’s typically used in ICA (p(s) = sech(s)/π). Therefore, our
proposition is that it is ’safe’ to use an iterative learning scheme for optimiz-
ing (8) because once it has been initialized with a well-conditioned convolution
matrix A a learning decrease in (8) will lead to further refinements {Âτ} which
are stable in the context of equation (7). If no exact stable inverse exists the
Maximum-Likelihood approach will give us a regularized estimator.

We propose here to use a gradient optimization technique. The gradient of
the negative log likelihood w.r.t. A#

0 is given by

∂L({A})
∂(A#

0 )ij

= −N(AT
0 )ij −

N∑
t=1

ψT (ŝt)
∂ŝt

∂(A#
0 )ij

(9)

where

∂(ŝt)k

∂(A#
0 )ij

= δ(i− k)

(
xt −

L∑
τ=1

Aτ ŝt−τ

)

j

−
(

A#
0

L∑
τ=1

Aτ
∂ŝt−τ

∂(A#
0 )ij

)

k

(10)

and ( ψ(ŝt) )k = p′( (ŝt)k )/p( (st)k ). The gradient w.r.t. to the other mixing
matrices is given by

∂L({A})
∂(Aτ )ij

= −
N∑

t=1

ψT (ŝt)
∂ŝt

∂(Aτ )ij
(11)

where
∂(ŝt)k

∂(Aτ )ij
= −(A#

0 )ki(ŝt−τ )j −
(

A#
0

L∑

τ ′=1

Aτ ′
∂ŝt−τ ′

∂(Aτ )ij

)

k

(12)



These expressions allow for general gradient optimization schemes. A starting
point for the algorithm is A0 being random numbers and Aτ = 0 for τ 6= 0 — a
stable initialization according to (7).

2.4 Re-estimating the mixing filters

When the dimension of xt is strictly greater than the number of sources, D > K,
the mixing matrices which figure as parameters for the learning process can not
be taken as mixing filter estimates because AA−1 6= I ⇒ Âŝ 6= x. Instead
we here propose to estimate the mixing filters by least-squares. Multiplying (1)
with sT

t−λ from right and taking the expectation we obtain the following normal
equations

< xts
T
t−λ > =

∑
τ

Aτ < st−τsT
t−λ > (13)

which is solved for Aτ by regular matrix inversion using the estimated sources
and < · >= 1

N

∑N
1=1. This system is unlikely to be ill conditioned because the

sources are typically uncorrelated mutually and temporally.

2.5 Dimensionality reduction

For lowering the training complexity we here propose to use a K-dimensional
subspace representation of the data yt = UT

Kxt where UK ∈ IRD×K is a projec-
tion. We can write a regular convolutive mixture where the number of sensors
is now equal to K,

yt =
L∑

τ=0

Bτst−τ , Bτ = UT
KAτ , (14)

and note that the sources are unaltered by the projection. This means that we
should be able to recover the sources from the projection using the square case
of our algorithm. Once the sources have been estimated the D-by-K mixing
matrices {Aτ} are estimated c.f. Sec 2.4.

3 Experiments

3.1 Simulation data

We now illustrate the algorithm on a three-dimensional convolutive mixture
of two sources, i.e. D = 3, K = 2. The true mixing filters are shown in the
left panel of Fig.1 and set to decay within 30 lags, i.e. L = 30. The source
signals, N = 30000, are both drawn from a Laplace distribution. 5000 consecutive
samples is zeroed out from one of the sources, say ’Source-1’. Results are then
evaluated from the estimated Source-1 by measuring the interference power Pi

in the period where the true Source-1 is silent. We here define the Signal to
Interference Ratio (SIR) Ps/Pi, where Ps is the signal power which is estimated
in a period where both sources are active.
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Fig. 1. (left) true mixing filters, (right) estimated mixing filters.

The data is projected onto the two major principal components and the
sources ŝt are estimated c.f. Sec. 2.5. The optimization scheme is Newton steps,
i.e. updating {Âτ} by −H−1g where g is the gradient vector and H−1 is the
inverse Hessian which is estimated using the outer product approximation update
per sample (see e.g. [12, page 153]). Convergence detected in 124 iterations.
Obtained SIR = 19.3dB. The corresponding mixing filters estimated by (13) are
then used as a starting guess for the general overdetermined algorithm using the
original three-dimensional data as input. Convergence detected in 20 iterations.
Obtained SIR = 34.2dB. Then we use (13) to estimate the corresponding mixing
filters and the result is displayed in the right pane of Fig. 1.

3.2 Real audio recording

We now apply the proposed method to a 16kHz signal which was recorded indoor
by two microphones and produced by a male speaker counting one-ten and a
loud music source respectively. The microphones and the sources were located
in the corners of a square. The signal is kindly provided by Dr. T-W. Lee, and
is identical to the one used in [13]. We choose the number of mixing matrices
L = 50. This time we use a BFGS Quasi-Newton optimization scheme (see
e.g. [12, page 288]) convergence is reached in 490 iterations.

As noted, the source signals can only be recovered up to an arbitrary filter and
we experience indeed a whitening effect on the sources. In [13] a low-pass filter
was applied to overcome the whitening effect, hence, to make the sources ‘sound
more real’. In our presentation, because we have the forward model parameters,
we reconstruct the microphone signals separately as they would sound if the
other source was shut. This is simply achieved by propagating the given source
signal through the estimated mixing model. Fig. 2 shows the recorded mixture
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Fig. 2. Separation of real world sound signals. (Top row) The recorded mixture of
speech and music. (Middle row) Separated speech reconstructed in the sensor domain.
(Bottom row) Separated music reconstructed in the sensor domain.

along with the results of separation. For listening test and further analysis we
have placed the resulting audio files at URL http://www.imm.dtu.dk/~mad/
cicaar/sound.html. Again we evaluate the result by SIR; the interference power
Pi as the mean power in ten manually segmented intervals in which the speaker
is silent, and the signal power Ps is similarly estimated as the mean power in
ten manually intervals where the speaker is clearly audible (and subtracting
off the interference power). The SIR of the proposed algorithm and using the
parameters described is SIR = 12.42 dB. The algorithm proposed by Parra and
Spence [2] represents a state-of-the-art alternative for evaluation of performance.
In the following table we give SIR’s for the Parra-Spence algorithm using the
implementation kindly provided by Stefan Harmeling1 based on window lengths
(N) and for three different numbers of un-mixing matrices (Q):

SIR (dB) Q = 50 Q = 100 Q = 200
N = 512 11.9 11.8 12.3
N = 1024 12.0 12.2 12.5
N = 2048 11.9 12.0 12.3

The table indicates that in order to obtain a separation performance similar to
that of the proposed algorithm the Parra-Spence inverse filter Q needs to be
somewhat larger than the length of the IIR filter L = 50 we have used. Future
quantitative studies are needed to substantiate this finding invoking a wider
variety of signals and interferences.

4 Conclusion

We have proposed a maximum-likelihood approach to convolutive ICA in which
an auto-regressive inverse model is put in terms of the forward model parame-
ters. The algorithm leads to a stable (possibly regularized) inverse and formally
allows the number of sensors to be greater than the number of sources. Our
experiment shows good performance in a real world situation. In general, for
perfect separation a stable un-regularized inverse must exist. An initial delay,

1 http://ida.first.gmd.de/~harmeli/download/download_convbss.html



e.g., is not minimum phase and no causal inverse exist. On the other hand, in
that case, the source can simply be delayed and thus remove the initial delay in
the filter — exploiting the filter ambiguity. Such manoeuvre will in some cases
make a real room impulse response minimum phase [14].

A Derivation of the likelihood in the overdetermined case

We shall make use of the following definition: ŝt(st−1, st−2, . . . , st−L) ≡ A#
0 xt −

A#
0

∑L
τ=1 Aτst−τ . We can write the likelihood

p(X|{Aτ}) =
∫

s1

∫

s2

· · ·
(∫

sN

p(sN )δ(fN )dsN

) N−1∏
t=1

p(st)δ(ft)ds1 . . . dsN−1.

(15)
where ft ≡ xt−

∑L
τ=0 Aτst−τ . The first step in this derivation is to marginalize

out sN , using ∫

sN

p(sN )δ(fN )dsN = |AT
0 A0|−1/2p( ŝ

(1)
N ) (16)

where ŝ
(1)
N = ŝN (sN−1, . . . , sN−L). Then we can rewrite the likelihood with one

integral evaluated, i.e.

p(X|{Aτ}) = |AT
0 A0|−1/2

∫

s1

∫

s2

· · ·
∫

sN−1

p( ŝ
(1)
N )

N−1∏
t=1

p(st)δ(ft)ds1 . . . dsN−1.

(17)
Following the same idea to marginalize out sN−1 now using

∫

sN−1

p( ŝ
(1)
N )p(sN−1)δ(fN−1)dsN−1 =|AT

0 A0|−1/2p( ŝ
(2)
N )p( ŝ

(1)
N−1 ) (18)

where

{
ŝ
(1)
N−1 = ŝN−1(sN−2, sN−3, . . . , sN−1−L)

ŝ
(2)
N = ŝN (ŝ(1)

N−1, sN−2, . . . , sN−L)
. Then we can write the likeli-

hood with two integrals evaluated

p(X|{Aτ}) = |AT
0 A0|−2/2

∫

s1

∫

s2

· · ·
∫

sN−2

p( ŝ
(2)
N )p( ŝ

(1)
N−1 )

N−2∏
t=1

p(st)δ(ft)ds1 . . . dsN−2.

(19)

By repeating this procedure to evaluate all integrals we eventually get

p(X|{Aτ}) =|AT
0 A0|−N/2

N∏
t=1

p( ŝ
(t)
t ) ,





ŝ
(1)
1 = ŝ1(s0, s−1, . . . , s1−L)

ŝ
(2)
2 = ŝ2(ŝ

(1)
1 , s0, . . . , s2−L)

ŝ
(3)
3 = ŝ3(ŝ

(2)
2 , ŝ

(1)
1 , . . . , s3−L)

...
ŝ
(t)
t = ŝt(ŝ

(t−1)
t−1 , ŝ

(t−2)
t−2 , . . . , ŝ

(t−L)
t−L )

(20)



Assuming st zero for t ≤ 0 we finally get

p(X|{Aτ}) = |AT
0 A0|−N/2

N∏
t=1

p(ŝt) , ŝt = ŝt(ŝt−1, ŝt−2, . . . , ŝt−L). (21)
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