
Control Flow Analysis Can Find New Flaws Too?

Chiara Bodei1, Mikael Buchholtz2, Pierpaolo Degano1,
Flemming Nielson2, Hanne Riis Nielson2

1 Dipartimento di Informatica, Università di Pisa, Via F. Buonarroti 2, I-56127
Pisa, Italy. – {chiara,degano}@di.unipi.it; 2 Informatics and Mathematical

Modelling, Technical University of Denmark, Richard Petersens Plads bldg 321,
DK-2800 Kongens Lyngby, Denmark – {mib,nielson,riis}@imm.dtu.dk

Abstract. A previous study [6] showed how control flow analysis can
be applied to analyse key distribution protocols based on symmetric
key cryptography. We have extended both the theoretical treatment and
our fully automatic verifier to deal with protocols based on asymmetric
cryptography. This paper reports on the application of our technique –
exemplified on the Beller-Chang-Yacobi MSR protocol, which uses both
symmetric and asymmetric cryptography – and show how we discover
an undocumented flaw.

1 Introduction

Formal analysis of security protocols has recently received a lot of atten-
tion from many different communities. Our attention has been on using
control flow analysis and the main points we see in favour of this static
analysis approach are the following: (i) the analysis is fully automatic
and always terminating (often in low polynomial time); (ii) the analysis
is correct with relation to a formal operational semantics of the calculus;
and (iii) a single analysis step suffices for a variety of properties: dif-
ferent inspections of an analysis result permit to check different security
properties of a protocol, with no need of re-analysing it several times.

We demonstrated in [6] that our technique is strong enough to report
the known flaws on a range of key distribution protocols and to guar-
antee the absence of flaws on their amended versions. Here, we report
on an extension to deal with asymmetric cryptography. Our approach is
sufficiently robust so that only small incremental additions are needed to
analyse protocols that use this encryption scheme. As a matter of fact,

? Supported in part by the Information Society Technologies programme of the Euro-
pean Commission, Future and Emerging Technologies, under the IST-2001-32072
project DEGAS; the Danish SNF-project LoST; and the Italian MIUR-project
MEFISTO.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13700709?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

our analysis can be further extended with other features typically used
in protocol design as demonstrated in [11].

We have experimented with this new feature of our automatic veri-
fier by considering some asymmetric key protocols among which is the
well-known Needham-Schroeder (public key) [21]. Here, we felt reassured
about the applicability of our extensions since we rediscovered the known
attack by Lowe [16] and validated the correctness of the amendment.

Other experiments were carried out on the Beller-Chang-Yacobi MSR
protocols [4], which use a combination of symmetric and asymmetric key
cryptography to attain authentication in wireless networks. These pro-
tocols have received quite some attention in the literature, e.g. [12, 25, 9,
10], and our automatic verifier was able to rediscover the known flaws.
To our surprise, we also found a family of parallel session attacks that,
to the best of our knowledge [8], has not previously been documented.

Section 2 of this paper reviews our analysis technique including the
extensions to handle asymmetric cryptography while Section 3 reports,
in detail, on the application of the technique to the MSR protocols and
demonstrates how it discovers the new flaws.

2 The Technique

2.1 The LySa Calculus

The LySa calculus is based on the π-calculus and the Spi-calculus, but
it differs from these essentially in two aspects. The first is the absence of
channels: LySa assumes to have one global communication medium to
which all processes have access. The second is that the tests associated
with input and decryption are expressed using pattern matching.

LySa consists of names, terms, and processes. Names, N ∈ N , are
used to model symmetric keys, nonces, messages, etc. as well as asym-
metric keys m+ and m−. If m+ is used for encryption then only m−

can be used for decryption, and vice versa, catering both for asymmetric
encryption and digital signatures à la RSA [24]:

N ::= n | m+ | m−

Terms, E, are used to model messages built from names, variables, and
encryption under a symmetric or an asymmetric key:

E ::= terms

N name (N ∈ N)
x variable (x ∈ X)
{E1, · · · , Ek}E0

symmetric key encryption
{|E1, · · · , Ek|}E0

asymmetric key encryption

3

Symmetric key encryptions are tuples of terms E1, · · · , Ek encrypted un-
der a term E0 representing the symmetric key, while asymmetric encryp-
tions are tuples encrypted under an asymmetric key E0, which should be
one of a key pair. Processes, P , are given as

P ::= processes

(ν n)P name creation
(ν± m)P key pair creation
〈E1, · · · , Ek〉. P output
(E1, · · · , Ej ; xj+1, · · · , xk). P input (with matching)
decrypt E as {E1, · · · , Ej ; xj+1, · · · , xk}E0

in P

symmetric decryption (with matching)
decrypt E as {|E1, · · · , Ej ; xj+1, · · · , xk|}E0

in P

asymmetric decryption (with matching)
P1 | P2 parallel composition
!P replication
0 the terminated process

The operator (ν n)P creates a new name, n, to be used as a nonce, a
message, or a symmetric key and restricts the scope of n to the process
P . The operator (ν± m)P instead creates two new names, m+ and m−, to
be used as a key pair in P . The process 〈E1, · · · , Ek〉. P sends the k-tuple
〈E1, · · · , Ek〉 on the network and then continues as the process P . Cor-
respondingly, the process (E1, · · · , Ej ; xj+1, · · · , xk). P receives a k-tuple
〈E′

1, · · · , E
′

k〉 thereby removing the k-tuple from the network. This input
is combined with pattern matching of the first j terms in the message and
only succeeds if Ei = E′

i for all i ∈ [1, j]. On successful matching, the vari-
ables xj+1, · · · , xk are bound to the remaining k − j terms E ′

j+1, · · · , E
′

k.
Syntactically, a semi-colon separates the components where matching is
performed from those where binding takes place. The same simple form of
patterns is also used for decryption — a more flexible choice of patterns
is explored in [11].

The process decrypt E as {E1, · · · , Ej ; xj+1, · · · , xk}E0
in P attempts

to decrypt E with the symmetric key E0. The decryption succeeds only
if the term E is of the form {E ′

1, · · · , E
′

k}E′
0

and the key E′
0 is the same

as E0. Again pattern matching takes place so if furthermore Ei = E′
i

for all i ∈ [1, j] then decryption succeeds and the process behaves as
P [E′

j+1/xj+1, . . . , E
′

k/xk]. Similarly, the process decryptE as {|E1, · · · , Ej ;
xj+1, · · · , xk|}E0

inP attempts to decrypt E with the asymmetric key E0

and succeeds provided that E = {|E ′
1, · · · , E

′

k|}E′
0

and that (E0, E
′
0) is a

pair consisting of a public key and its private counterpart; it is irrelevant

4

which is which, so catering for both asymmetric encryption and for digital
signature validation.

Security Properties. Anticipating our analysis in the next section, we are
interested in two security properties: secrecy and message authentication.
Our analysis will explicitly represent the knowledge of the attacker and,
thus, secrecy of any given value may easily be determined simply by
inspecting whether the value is in the knowledge of the attacker or not.

Secondly, we consider a message authentication property that, infor-
mally, describes whether messages end up at the right places. The attacker
can, of course, redirect any network messages and there will, in general,
be no guarantee that they end up in the right places. Instead, we focus
on the messages for which the attacker does not have full control, namely
the ones where cryptography has been applied as some kind of safeguard.

To describe the message authentication intentions of protocols, we
decorate their text with labels, called crypto-points, and with assertions

specifying the intended origin and destination of encrypted messages.
Crypto-points ` are from some enumerable set C (disjoint from N and X)
and are mechanically attached to program points where encryption and
decryption occur. Crypto-points and assertions are added to the syntax
and encryptions will, thus, have the form:

{E1, · · · , Ek}
`
E0

[dest L] or {|E1, · · · , Ek|}
`
E0

[dest L]

where ` is the crypto-point where the encryption takes place while [dest L]
is the assertion that specifies the intended crypto-points L ⊆ C for de-
cryption of the term. Similarly, a decryption process will be of the form:

decrypt E as {E1, · · · , Ej ; xj+1, · · · , xk}
`
E0

[orig L] in P or

decrypt E as {|E1, · · · , Ej ; xj+1, · · · , xk|}
`
E0

[orig L] in P

where ` is point of decryption while [orig L] specifies the intended encryp-
tion points L ⊆ C at which E was created.

Semantics. As far as the semantics is concerned, we consider two variants:
(i) the first is the standard reduction semantics P → P ′ that ignores the
annotations, while (ii) the second, called the reference monitor seman-
tics P →RM P ′, checks annotations when performing the decryptions and
aborts the execution if the conditions are violated. More specifically, de-
cryptions should only occur at the crypto-points designated when the
corresponding encryptions were made, and vice versa. For example, the
check (` ∈ L′ ∧ `′ ∈ L) is necessary for symmetric decryption of the form

decrypt {E1, · · · , Ek}
`
E0

[dest L] as {E′

1, · · · , E
′

j ; xj+1, · · · , xk}
`′

E′
0
[orig L′] in P

5

and analogously for the asymmetric case. When the origin and destination
are not the expected ones, we say that the reference monitor aborts the
execution i.e. there is no next configuration.

2.2 Control Flow Analysis

The aim of the analysis is to safely approximate when the reference mon-
itor may abort the execution of a process P . The analysis roughly com-
putes an over-approximation of:

– the messages that may flow on the network, κ ⊆ ℘(V∗), and of

– the values to which a given variable may be bound ρ : X → ℘(V)

where V is the set of values (being terms with no free variables). For
example, an analysis of the process

〈A,B, {K}`A

KA
[dest `S]〉 | (A;x, y).decrypt y as {; z}`S

KA
[orig `A] in P

will tell that 〈A,B, {K}`A

KA
[dest `S]〉 ∈ κ and, since pattern matching in

both input and decryption succeeds, that B ∈ ρ(x), {K}A
KA

[dest `S] ∈
ρ(y), and K ∈ ρ(z). The analysis result represents a conservative over-
approximation of the values present in the execution of a process. Such
values, e.g. the ones above, are guaranteed to be recorded in the anal-
ysis result but over-approximation may cause additional false positives

to also appear. A “good” analysis is one that in practice gives few false
positives and our analysis behaves well in this respect. For example, no
false positives arose in the study presented here.

An additional error component ψ collects pairs of crypto-points (`, `′),
where the assertions in annotations may be violated. Intuitively, (`A, `B) ∈
ψ indicates that something encrypted at the crypto-point `A may wrongly

be decrypted at the crypto-point `B. Conversely, if ψ is empty then the
protocol is correct with respect to the assertions.

A triple (ρ, κ, ψ) is called an estimate when it correctly describes the
behaviour of a process P . Formally, the analysis is specified as a Flow
Logic with judgements ρ, κ |= P : ψ that for each process P gives a for-
mula that constraints the analysis components according to the behaviour
of P . Our implementation of the analysis computes the least estimate that
satisfies these judgements.

Our analysis is semantically correct regardless of the way the seman-
tics is parameterised and there is a subject reduction result both for the
standard and the reference monitor semantics: if ρ, κ |= P : ψ, then the

6

1. B → A : B,K+

B

2. A→ B : {|K|}
K

+

B

3. A→ B : {A, {|A|}
K

−

U

}K

1. B → A : B, {|B|}
K

−

U

,K+

B

2. A→ B : {|K|}
K

+

B

3. A→ B : {A, {|A|}
K

−

U

}K

Fig. 1: MSR protocol (left) and Improved MSR protocol (right) [4].

same triple (ρ, κ, ψ) is a valid estimate for all the states passed through
in an execution of P , i.e. for all the derivatives of P .

Additionally, when analysing a process P if the error component ψ is
empty then the reference monitor cannot abort the execution of P . This
means that our analysis correctly predicts when we can safely dispense
with the reference monitor.

Hardest Attackers. Protocols are executed in an environment where there
may be malicious attackers. We consider attackers in the style of Dolev
and Yao: such attackers can receive everything flowing on the network, can
decrypt every ciphertext if they know the key, can compose any message
with the terms they know and send it. Furthermore, they will initially
have access to their own names n•,K

+
• , and K−

• ; the last two forming an
asymmetric key pair. We have a formula FDY characterising all attackers
having these features at analysis level i.e. using ρ and κ. The attacker
keeps its knowledge in a special variable z•, in terms of the analysis,
in ρ(z•). The initial knowledge can be increased: for example, for each
message 〈V1, · · · , Vk〉 included in κ, we have that Vi ∈ ρ(z•) for all i ∈
[1, k]. This is the static counter-part of the fact that the attacker can
receive every message flowing on the network. Moreover, the attacker has a
special crypto-point called `• and the formula can also check annotations.
The formula FDY is therefore such that whenever an estimate (ρ, κ, ψ)
satisfies FDY then ρ, κ |= Q : ψ for all attackers Q. Actually, there exists
a process – a “hardest attacker” [22] – which has all the capabilities of
this formula.

Our analysis suffices to statically guarantee the message authentica-
tion property for a process P if it results in a empty error component
i.e. if ρ, κ |= P : ∅ and (ρ, κ, ∅) satisfies the formula FDY describing the
attacker. The implementation of the analysis, including the attacker, runs
in low polynomial time in the size of the process P .

3 Analysis of the MSR Protocols

The MSR protocols by Beller, Chang, and Yacobi [4] are intended for
authentication between portables, denoted A, and base stations, denoted

7

B, that communicate through wireless networks. In [4], the protocols
are described using a Modular Square Root algorithm for asymmetric
cryptography having the advantage that different principals need not use
the same amount of computational power to execute the protocol. In
the protocol narrations in Figure 1 we have abstracted these operations
to standard cryptographic primitives, writing {m}K for symmetric key
encryption of m under K, {|m|}K+ for asymmetric key encryption of m
under K+, and {|m|}K− for m signed under K−.

The MSR protocol relies on an off-line certificate authority U that
issues signed certificates of the identities (the name A and B) of portables
and base stations. When a portable A arrives at a new base station B
it first sends a dummy message on the network to alert the base station
that it wants to authenticate. The base station replies with message 1
in the protocol narration on Figure 1 thereby sending its public key.
The portable generates a fresh session key K and sends its back to the
base station along with its certificate in messages 2 and 3. The MSR
protocol and the Improved MSR protocol differ only in the certificate
in the first message intended to give extra authentication capabilities as
detailed below.

3.1 Formalising the Protocols in LySa

The MSR protocols shown in Figure 1 are straightforward to encode in
LySa. Each protocol is encoded in a scenario where there is

– m portables, Ai for i = 1 . . .m,
– n base stations, Bj for j = 1 . . . n, and
– one certificate authority, U .

This scenario corresponds to the (implicit) assumption of [4] that no base
station will play the role of a portable or vice versa, and that the certificate
authority is a separate principal. Each base station, Bj , is equipped with
a key pair (K+

j ,K
−

j) where the second component will be kept secret.

Furthermore, the certificate authority has a signature key pair (K+

U ,K
−

U)
and initially all Ai’s and Bj ’s know the signature validation key K+

U along
with their own certificates signed with K−

U .
We encode the protocol such that each portable Ai simultaneously

and repeatedly is willing to communicate with each base station Bj and
vice versa. This corresponds to a setup where the portables are within
the coverage of several base stations at the same time, which is quite
realistic in a wireless network where the coverage of base stations over-
lap. Finally, we encode all messages such that source and destination

8

1 (ν± KU) 〈KU
+〉 |

2 |mi=1 |nj=1 !(Bj , Ai, Bj ; xCij , xKij).

3 decrypt xCij as {|Bj ; |}a1i

KU
+ [orig b1j] in

4 (ν Kij)〈Ai, Bj , {|Kij |}
a2i

xKij
[dest b2j]〉.

5 〈Ai, Bj , {Ai, {|Ai|}
a3i

KU
−
}a4i

Kij
[dest b3j]〉. 0

6 | (ν±
n
j=1Kj)

7 |nj=1 |mi=1 !〈Bj , Ai, Bj , {|Bj |}
b1j

KU
−
,K+

j 〉.

8 (Ai, Bj ; y1ij).

9 decrypt y1ij as {|; y2ij |}
b2j

K
−

j

in

10 (Ai, Bj ; y3ij).

11 decrypt y3ij as {Ai; y4ij}
b3j

y2ij
[orig a4i] in

12 decrypt y4ij as {|Ai; |}
b4j

KU
+ [orig a3i] in 0

Fig. 2: The Improved MSR protocol in LySa.

addresses are explicitly added as the first two components i.e. in the for-
mat 〈source, destination,message1 , · · · ,messagek 〉. This ensures that all
addresses are sent in clear on the network and, therefore, that the security
of the protocol will not depend on keeping the addresses secret.

The LySa encoding of the Improved MSR protocol is shown in Fig-
ure 2. In line 1 the keys of the certificate authority are distributed to
the principals, line 2–5 describe the part of m portables while line 6–12
describe the part of the n base stations.

Each point of encryption and decryption in the process is annotated
with a label `i or `j for portables and base stations, respectively, and ` is
chosen such that each crypto-point is unique. Furthermore, annotations
of the intended destination and origin of encrypted messages are included.
For example, in line 4, where a portable Ai is interested in talking to a
base station Bj , the annotation [dest b2j] says that the encrypted message
is intended to be decrypted by a base station Bj at its second crypto-
point, only. This corresponds to what is intended in the informal protocol
narration in Figure 1 when writing “A → B : {|K|}K+

B
”. Similarly in

line 5, the second message encrypted by the portable is intended to reach
Bj ’s fourth crypto-point, only, and so on.

Correspondingly, annotations are added at decryption points as in
line 3, where [orig b1j] specifies that the certificate validated here is sup-
posed to be the one from Bj . At the first decryption made by the base
station in line 9 there is no check of origin of the message, since the base
station does not expect that only particular principals may use its public

9

i = 1 . . .m, Error component ψ Attacker’s basic knowledge
j = 1 . . . n ρ(z•) ∩N

MSR (a2i, `•), (a4i, `•), (`•, b3j), n•,K
+
• ,K

−
• , Ai, Bj ,

(a2i, b2j), (a4i, b3j) Kij ,K
+

j ,KU
+

Improved MSR (a2i, `•), (a4i, `•), (`•, b3j), n•,K
+
• ,K

−
• , Ai, Bj ,

(a2i, b2j), (a4i, b3j) Kij ,K
+

j ,KU
+

Fig. 3: The result of running the analysis.

key. When the base station gets further in the execution of a protocol run
it will, however, expect that only messages from Ai may be successfully
decrypted as specified in line 11 and 12.

3.2 The Analysis Result

The control flow analysis of the MSR protocols gives the results reported
in Figure 3. At a first glance it is clear that the protocols are flawed
both because there is a non-empty error component, ψ, and because the
attacker may learn all the session keys Kij . That is, there is both a breach
of authentication as specified in the annotations of the protocol and a
breach of secrecy of the session keys.

The MSR protocol itself is meant to provide the base stations with
authentication of the portables as well as to provide secrecy of the session
keys. The Improved MSR protocol contains an extra certificate in the first
message in order to provide additional authentication of the base stations
to the portables i.e. to provide mutual authentication. Below we use the
analysis result to evaluate the extent to which these goals are met.

Inspecting the attacker’s knowledge in the analysis result in Figure 3,
we see that neither of the protocols provide session key secrecy and this
corresponds to what has previously been reported by Carlsen [12]. He
also describes an attack on the portable’s authentication of base station
as depicted in the attack sequence on Figure 4 (left) where, at the end of
the protocol run, the portable A1 thinks it is talking to B1 but is really
talking to the attacker M whose public key we denote K+

• .
We may compare the attack sequence on Figure 4 (left) to the elements

in the error component ψ in Figure 3. In the last two messages of the
attack sequence something encrypted by the portable A1 is decrypted
by the attacker as reported by the two families of elements (a2i, `•) and
(a4i, `•) in the error component.

Note that on decryption of message 2.2 in the attack sequence on
Figure 4 (left) the attacker learns session key K11. This gives the attacker

10

1.1. B1 →M(A2) : B1, {|B1|}K
−

U

,K+

B

2.1. M(B1) → A1 : B1, {|B1|}K
−

U

,K+
•

2.2. A1 →M(B1) : {|K11|}K
+
•

2.3. A1 →M(B1) : {A1, {|A1|}K
−

U

}K11

1.1 B1 →M(A1) : B1, {|B1|}K
−

U

,K+

B1

2.1 B2 →M(A1) : B2, {|B2|}K
−

U

,K+

B2

2.1′ M(B2) → A1 : B2, {|B2|}K
−

U

,K+

B1

2.2 A1 →M(B2) : {|K12|}K
+

B1

2.3 A1 →M(B2) : {A, {|A|}
K

−

U

}K12

1.2′ M(A1) → B1 : {|K12|}K
+

B1

1.3′ M(A1) → B1 : {A, {|A|}
K

−

U

}K12

Fig. 4: Two kinds of attacks on Improved MSR: key spoofing attacks [12]
(left) and new parallel session attacks (right).

the ability to create messages of the form of the protocol’s third message
giving a breach of the base station’s authentication of the portable. Again
this attack was reported by Carlsen [12] and is also evident in our analysis
result as the element (`•, b3j) in ψ, saying that something encrypted at
the attacker may wrongfully be decrypted at Bj .

However, the remaining two elements in ψ, (a2i, b2j) and (a4i, b3j),
cannot be explained by any of the attacks previously reported in the liter-
ature. Indeed they represent a previously undocumented class of parallel
session attacks in the style of the attack sequence on the right of Fig-
ure 4. At the end of the protocol run the portable A1 thinks it is talking
to B2 but is really talking to B1 explaining the unintended cross-over be-
tween information constructed by legitimate principals leading to errors,
(a2i, b2j) and (a4i, b3j), as reported by our control flow analysis.

The certificate in the first message of Improved MSR has very little
effect and indeed our analysis results in Figure 3 report the same errors
for both components. The attack sequences in Figure 4 also work on
the simpler MSR protocol (provided that the certificates are removed, of
course) though, strictly speaking, they are not attacks on MSR since that
protocol is not intended to provide authentication of the base stations.

4 Conclusion

This paper advances our application of static analysis technology to the
analysis of key distribution protocols by incorporating also perfect asym-
metric cryptography. As expected we are able to find the well-known flaws
of protocols and to validate the corrected versions. When considering the
Improved MSR protocol by Beller, Chang and Yacobi, we were able to
pinpoint a new class of attacks that to the best of our knowledge [8] have
not been reported previously.

11

When assessing our method it is important to stress that it is a fun-
damentally different approach from at least some of its competitors, e.g.
model checking and theorem proving [16, 19, 20, 18, 13, 3, 17, 7, 23]. Pro-
tocol analysis really amounts to capturing the dynamic behaviour of a
communication protocol; however, this may be an undecidable property
due to the richness of the term language.

In our view, model checking approaches the problem by trying to
characterise an under-approximation of this recursively enumerable set.
If there is a flaw, model checking may be able to pinpoint it, whereas it
cannot in general guarantee the absence of flaws. This is very clear e.g.
in the works of [3] although one may impose boundedness conditions to
try to achieve termination (but with weaker guarantees).

Our approach on the other hand, tackles the problem by trying to
characterise an over-approximation of the recursively enumerable set.
Hence if we report no flaws indeed there will be no flaws; also our methods
are guaranteed always to terminate. The potential weakness of our ap-
proach is that, because of the over-approximation, it may report ”flaws”
that really are not there. In our work so far, this has only happened rarely
and no such phenomena arose in the work reported in the present paper.
As far as the computational complexity is concerned we operate in low
polynomial time in the size of the expanded LySa process encoding the
protocol. Similar remarks could be said about other approximation based
techniques [5, 14, 2] though [5, 14] have significantly higher complexity,
while [2] focuses on secrecy only.

Expanding our comparison to other approaches we would describe
theorem proving much in the same vein as model checking. Here one is
searching for potential proofs of correctness and the risk is that one misses
the proof actually showing correctness and that the theorem proving then
does not terminate. Type systems, on the other hand are somewhat closer
to our approach, especially for those type systems that have principal
types; however, many type systems used for protocol analysis [1, 15] would
seem to admit polynomial time type checking but no principal types,
and therefore would seem to require exponential time as far as practical
systems are concerned.

References

1. M. Abadi. Secrecy by typing in security protocols. Journal of the ACM, 5(46):18–
36, 1999.

2. R. Amadio and W. Charatonik. On name generation and set-based analysis in the
Dolev-Yao model. In Proc. of CONCUR’02, LNCS 2421, pages 499–514. Springer,
2002.

12

3. A. Armando, D. Basin, M. Bouallagui, Y. Chevalier, L. Compagna, S. Mödersheim,
M. Rusinowitch, M. Turuani, L. Viganò, and L. Vigneron. The AVISS security
protocol analysis tool. In CAV’02, LNCS 2404, pages 349–353. Springer, 2002.

4. M. J. Beller, L.-F. Chang, and Y. Yacobi. Privacy and authentication on a portable
communications system. IEEE Journal of Selected Areas in Communications,
11(6):821–829, 1993.

5. B. Blanchet. From secrecy to authenticity in security protocols. In Proc. of SAS’02,
LNCS 2477, pages 342–359. Springer, 2002.

6. C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. Riis Nielson. Automatic
validation of protocol narration. In Proc. of CSFW’03, pages 126–140. IEEE, 2003.

7. D. Bolignano. An approach to the formal verification of cryptographic protocols.
In Proc. of 3rd ACM Conf. on Computer and Communications Security, pages
106–118. ACM Press, 1996.

8. C. Boyd, 2003. Personal e-mail communication.
9. C. Boyd and A. Mathuria. Key establishment protocols for secure mobile commu-

nication: a critical survey. Computer Communications, 23:575–587, 2000.
10. C. Boyd and A. Mathuria. Protocols for Authentication and Key Establishment.

Springer, 2003.
11. M. Buchholtz, F. Nielson, and H. Riis Nielson. A calculus for control flow analysis

of security protocols. International Journal of Information Security, To appear.
12. U. Carlsen. Optimal Privacy and Authentication on a Portable Communications

System. Operating Systems Review, 28(3):16–23, 1994.
13. E.M. Clarke, S. Jha, and W. Marrero. Verifying security protocols with Brutus.

ACM Trans. on S/W Engineering and Methodology, 9(4):443–487, 2000.
14. H. Comon, V. Cortier, and J. Mitchell. Tree automata with memory, set constraints

and ping-pong protocols. In Proc. of ICALP’01, LNCS 2305. Springer., 2001.
15. A. D. Gordon and A. Jeffrey. Types and Effects for Asymmetric Cryptographic

Protocols. In Proc. of CSFW’02, pages 77 –91, 2002.
16. G. Lowe. An attack on the Needham-Schroeder public-key authentication protocol.

Information Processing Letters, 56(3):131–133, 1995.
17. C. Meadows. The NRL protocol analyzer: An overview. Journal of Logic Program-

ming, 26(2):113–131, 1996.
18. J. Millen. CAPSL web site. http://www.csl.sri.com/users/millen/capsl/.
19. J. Millen. The Interrogator: A tool for cryptographic protocol security. In Proc.

of Symposium on Security and Privacy, pages 134–141. IEEE, 1984.
20. J. C. Mitchell, M. Mitchell, and U. Stern. Automated analysis of cryptographic

protocols using murφ. In Proc. of S&P, pages 141–153. IEEE, 1997.
21. R. M. Needham and M. D. Schroeder. Using encryption for authentication in large

networks of computers. Communications of the ACM, 21(12):993–999, 1978.
22. F. Nielson, H. Riis Nielson, and R. R. Hansen. Validating firewalls using flow

logics. Theoretical Computer Science, 283(2):381–418, 2002.
23. L. C. Paulson. The inductive approach to verifying cryptographic protocols. Jour-

nal of Computer Security, 6:85–128, 1998.
24. R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures

and public key cryptosytems. Communications of the ACM, 21(2):120–126, 1978.
25. Y. Zheng. An authentication and security protocol for mobile computing. In Proc.

of 1996 World Conference on Mobile Communications, pages 249–57. Chapman &
Hall, 1996.

