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Abstract

The linear scale invariance of the multivariate alteration detection (MAD) transformation is used to obtain invariant pixels for automatic

relative radiometric normalization of time series of multispectral data. Normalization by means of ordinary least squares regression method is

compared with normalization using orthogonal regression. The procedure is applied to Landsat TM images over Nevada, Landsat ETM+

images over Morocco, and SPOT HRV images over Kenya. Results from this new automatic, combined MAD/orthogonal regression method,

based on statistical analysis of test pixels not used in the actual normalization, compare favorably with results from normalization from

manually obtained time-invariant features.

D 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Radiometric normalization of satellite imagery re-

quires, among other things, an atmospheric correction

algorithm and the associated atmospheric properties at

the times of image acquisition. For most historical

satellite scenes, such data are not available and even

for planned acquisitions they may be difficult to obtain.

A relative normalization based on the radiometric infor-

mation intrinsic to the images themselves is an alternative

whenever absolute surface radiances are not required, for

example in change detection applications or for super-

vised land cover classification.

Several methods (Du et al., 2002; Furby & Campbell,

2001; Hall et al., 1991; Moran et al., 1992; Schott et al.,

1988) have been proposed for the relative radiometric

normalization of multispectral images taken under different

conditions at different times. All proceed under the assump-

tion that the relationship between the at-sensor radiances

recorded at two different times from regions of constant

reflectance is spatially homogeneous and can be approxi-

mated by linear functions. The most difficult and time-
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consuming aspect of all of these methods is the determina-

tion of suitable time-invariant features upon which to base

the normalization.

Nielsen et al. (2002, 1998) recently proposed a change

detection technique, called multivariate alteration detection

(MAD), which is invariant to linear and affine scaling.

Thus, if one uses MAD for change detection applications,

preprocessing by linear radiometric normalization is super-

fluous. However, radiometric normalization of imagery is

important for many other applications, such as mosaicking,

tracking vegetation indices over time, supervised and

unsupervised land cover classification, etc. Furthermore,

if some other, non-invariant change detection procedure is

preferred, it must generally be preceded by radiometric

normalization.

We have applied the MAD transformation to select the

no-change pixels in bitemporal images, and then used them

for radiometric normalization. The procedure is simple, fast

and completely automatic and compares very favorably with

normalization using hand-selected, time-invariant features.
2. Selecting invariant pixels

In order to mask out the change pixels in a bitemporal

scene, we first form linear combinations of the intensities for
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all N channels in the two images, acquired at times t1 and t2.

Representing the intensities by the random vectors F and G,

respectively, we have

U ¼ aMF ¼ a1F1 þ a2F2 þ . . .þ aNFN

V ¼ bMG ¼ b1G1 þ b2G2 þ . . .þ bNGN ;

where a and b are constant vectors. Nielsen et al. suggest

determining the transformation coefficients so that the

positive correlation between U and V is minimized. This

means that the difference image U–V will show maximum

spread in its pixel intensities. If we assume that the spread is

primarily due to actual changes that have taken place in the

scene over the interval [t2, t1], then this procedure will

enhance those changes as much as possible.

Specifically, we seek linear combinations such that

VarðU � V Þ ¼ VarðUÞ þ VarðV Þ � 2CovðU ;V Þ

! maximum; ð1Þ

subject to the constraints

VarðUÞ ¼ VarðV Þ ¼ 1 ð2Þ

and with Cov(U, V)>0. Note that under these constraints

VarðU � V Þ ¼ 2ð1� qÞ; ð3Þ

where q is the correlation of the transformed vectors U and

V,

q ¼ CorrðU ;V Þ ¼ CovðU ;V Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðUÞVarðV Þ

p

The combined random vector for the bitemporal scene
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where m and l are Lagrange multipliers. This leads to the

coupled generalized eigenvalue problems
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Thus, the desired projections U = aMF are given by the

eigenvectors a1. . .aN corresponding to the generalized eigen-
values

q2
1z . . .zq2

N

of
P

fg

P�1
gg

P
gf with respect to

P
ff . Similarly the desired

projections V= bMG are given by the eigenvectors b1. . .bN ofP
gf

P�1
ff

P
fg with respect to

P
gg corresponding to the

same eigenvalues. Nielsen et al. (1998) refer to the N

difference components

MADi ¼ Ui � Vi ¼ aM
i F � bM

i G; i ¼ 1 . . .N ; ð5Þ
as the multivariate alteration detection (MAD) components

of the combined bitemporal image. The covariances of the

MAD components are given by

CovðUi � Vi;Uj � VjÞ ¼ 2dijð1� qjÞ;
where dij is Kronecker’s delta,

dij ¼
1 for i ¼ j

0 for i p j:

8<
:

The components are thus orthogonal (uncorrelated) with

variances

VarðUi � ViÞ ¼ r2
MADi

¼ 2ð1� qiÞ: ð6Þ

The last MAD component has maximum spread in its pixel

intensities and, ideally, maximum change information. The

second-to-last component has maximum spread subject to

the condition that the pixel intensities are statistically uncor-

related with those in the first MAD component, and so on.

The MAD components are invariant under linear trans-

formations of the original image intensities. We can see this

as follows. Suppose the second image G is transformed

according to some linear transformation H =TG. The rele-

vant covariance matrices are then

X
fg

V ¼ hFHMi ¼
X

fg
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X
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V ¼ hHFMi ¼ T
X
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X
ff

V ¼
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ff

X
gg

V ¼ hHHMi ¼ T
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Fig. 2. Landsat-5 TM image from July, 1991 over Nevada.
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The eigenvalue problems (Eq. (4)) are therefore equivalent

to

X
fg

TM T
X

gg
TM


 ��1
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gf
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ff
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where c is the desired projection for H. These in turn are

equivalent to

X
fg

X�1

gg

X
gf

a ¼ q2
X

ff
a

X
gf

X�1

ff

X
fg
ðTMcÞ ¼ q2

X
gg
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which are identical to Eq. (4) with b =TMc. Therefore, the

MAD components in the transformed situation are

aMi F� cMi H ¼ aMi F� cMi TG ¼ aMi F� ðTMciÞMG
¼ aMi F� bMi G

as before. Given this scale invariance, we can select for

radiometric normalization all pixel coordinates which satisfy

XN
i¼1

MADi

rMADi

� �2

< t;

where t is a decision threshold. Under the hypothesis of

no-change, the above sum of squares of standardized
Fig. 1. Landsat-7 ETM+ image from December, 1999 over Morocco.
MAD variables is approximately chi-square distributed

with N degrees of freedom. We therefore choose t =

vN,P = 0.01
2 where P is the probability of observing that

value of t or lower.

The pixels thus selected should correspond to truly

invariant features so long as the overall radiometric differ-

ences between the two images can be attributed to linear

effects. Since this method usually identifies quite a large

number of no-change pixels, we can, without serious
Fig. 3. SPOT HRV image from 1987 over Kenya.



Table 1

Time-invariant features chosen for normalization to the 1999 scene

Feature Number of pixels Appearance

Clay 213 bright

Sand 183 bright

Fixed sand 9347 medium

Pediment1 301 medium

Quarzite 117 medium

Pediment2 365 dark

Dark stones 233 dark

Table 2

Ordinary least squares regression on manually selected training pixels for

the Morocco scenes; â is the fitted intercept, b̂ is the fitted slope, r is the

correlation and RMSE is the root mean square error

Band â r̂a b̂ r̂b r RMSE

1 8.60 0.39 1.081 0.006 0.818 2.019

2 � 3.00 0.24 1.184 0.004 0.928 1.845

3 � 7.09 0.23 1.198 0.003 0.947 2.761

4 � 6.37 0.18 1.258 0.003 0.961 2.020

5 4.76 0.23 1.081 0.003 0.927 2.891

7 5.31 0.24 1.077 0.003 0.910 2.870
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penalty, reserve some fraction of them for subsequent

testing and use the remaining pixels for performing the

linear regressions.

With regard to the actual normalization on the basis of

the no-change pixels, this is usually done by means of

ordinary least squares (OLS) regression analysis, see, e.g.

(Yang & Lo, 2000), which is a method that allows for

measurement uncertainty (or error) in one variable only.

For radiometric normalization, both variables involved

have measurement uncertainty associated with them—in

fact which variable is termed reference and which is

termed unnormalized data is arbitrary. We have therefore

also investigated orthogonal linear regression to perform

the actual normalization, as this method treats the data
Fig. 4. Regression of the 1999 Morocco reference scene on the 2000 target (uncali

regression; dashed line: ordinary least squares regression.
symmetrically. The method is explained in detail in

Appendix A.
3. Data and results

The data set used to investigate radiometric normaliza-

tion consisted of Landsat TM (thematic mapper) images

over Morocco and Nevada and SPOT HRV (high resolution

visible) images over Kenya.

Two Landsat-7 ETM+ (extended thematic mapper)

images acquired over Morocco on December 19, 1999

and October 18, 2000 (see Fig. 1) were examined for
brated) scene using manually selected training pixels. Solid line: orthogonal



Table 3

As in Table 2, for orthogonal regression

Band â r̂a b̂ r̂b r RMSE

1 � 11.22 0.72 1.400 0.011 0.818 1.273

2 � 9.94 0.37 1.300 0.006 0.928 1.157

3 � 13.79 0.41 1.280 0.005 0.947 1.734

4 � 10.41 0.28 1.322 0.004 0.961 1.237

5 � 2.95 0.44 1.180 0.005 0.927 1.916

7 � 3.80 0.47 1.202 0.006 0.910 1.894

Table 5

Comparison of variances of hold-out test pixels for the 2000 Morocco scene

before and after normalization to the 1999 scene with ordinary least squares

regression, with F-tests for equal variances

TM band 1 2 3 4 5 7

Uncorrected(2000) 6.96 14.48 44.93 29.60 40.692 31.70

Normalized(2000) 8.14 20.34 64.52 46.85 47.60 36.77

Reference(1999) 10.88 22.09 68.98 49.16 54.16 43.27

F 1.336 1.086 1.069 1.049 1.138 1.177

p 0.000 0.013 0.0443 0.147 0.000 0.000
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comparison of the MAD procedure with normalization

based on invariant features. The areas were selected on

the basis of availability of ground reference data on

features of constant reflectance. The dimensions of the

scenes were 729	 754 pixels. The Nevada data consisted

of one Landsat-4 TM and five Landsat-5 TM scenes taken

at approximately monthly intervals in the second half of

1991. A region of interest (1000	 1000 pixels) was

chosen having some agricultural activity (pivot irrigation)

and significant cloud cover at the time used as normaliza-

tion reference, see Fig. 2. The Kenya data consisted of two

SPOT HRV images recorded in 1987 and 1989 over an

agricultural region near Thika just north of Nairobi, Fig. 3.

The size of scenes was 512	 512 pixels. These data were

chosen to illustrate radiometric normalization in a non-arid

region.

The Morocco and Nevada scenes were registered to one

another by applying an automatic contour matching algo-

rithm due to Li et al. (1995) and using second-order

polynomial, nearest-neighbor resampling. The RMS errors

were less than 0.5 pixel. The Kenya data were geocoded to a

common reference map with similar accuracy.

3.1. Morocco

As mentioned above, the Morocco scenes, for which

ground reference data were available, were used to compare

the MAD procedure with normalization based on manual

selection of invariant features; see, e.g. Schott et al. (1988).

The features were chosen from dark, bright and medium

reflectance surfaces representative of the surface variability,

see Table 1.

In their original paper on ‘‘pseudo-invariant features’’

(PIFs), Schott et al. (1988) do not use ordinary linear
Table 4

Comparison of mean intensities of hold-out test pixels for the 2000

Morocco scene before and after normalization to the 1999 scene with

ordinary least squares regression, with paired t-tests for equal means

TM band 1 2 3 4 5 7

Uncorrected(2000) 62.080 59.898 81.975 62.612 77.989 72.898

Normalized(2000) 75.720 67.969 91.143 72.400 89.117 83.820

Reference(1999) 75.650 67.969 91.115 72.455 89.114 83.771

Difference � 0.069 0.000 � 0.027 0.055 � 0.003 � 0.049

t � 2.207 � 0.001 � 0.589 1.668 � 0.069 � 1.062

p 0.027 0.998 0.555 0.095 0.944 0.287
regression, but rather assume a direct (error-free) linear

relation between digital numbers recorded from man-made

features at two times. Since imagery is always subject to

stochastic measurement error, we prefer to use regression

methods which allow for this error. Fig. 4 shows the

orthogonal regressions (solid lines) for normalization of

the two Morocco images, based on 2/3 of the no-change

pixels (referred to henceforth as ‘‘training pixels’’) deter-

mined from the invariant features. For comparison, the

results of ordinary least squares regression are also given

(dashed lines). Note that orthogonal regression leads to a

consistently higher slope and correspondingly smaller inter-

cept than ordinary regression. The fitted intercepts (â) and
slopes (b̂) for ordinary regression are shown in Table 2 for

the 7200 training pixels, those for orthogonal regression in

Table 3. Tables 4 and 5 show, respectively, the means and

variances of the 1999 scene before and after normalization

to the 2000 scene using the ordinary least squares regression

line. They were determined with the 3600 holdout test

pixels. Tables 6 and 7 show similar results after normaliza-

tion using the orthogonal regression lines.

In contrast with the manually selected data, Fig. 5 dis-

plays the orthogonal and ordinary least squares regressions

for normalization of the two Morocco images based on

11260 no-change training pixels derived from the MAD

procedure. Tables 8–13 give the corresponding information

on regression statistics and on the comparisons of means

and variances with 5630 test pixels.

Comparing Tables 4 and 6, we see that the paired t-tests

for equal mean values of the individual bands after the

manual normalization are better (the differences and t-values

are closer to zero and the p-values are higher) for OLS

regression for all bands except TM7. The p-value is the

probability of finding a larger value of jtj. We also see that

for all bands except TM1 for both OLS and orthogonal

regression, none of the p-values are below 5%. This means
Table 6

As in Table 4, for orthogonal regression

TM band 1 2 3 4 5 7

Uncorrected(2000) 62.08 59.90 81.98 62.61 77.99 72.90

Normalized(2000) 75.73 67.97 91.15 72.40 89.11 83.81

Reference(1999) 75.65 67.97 91.12 72.46 89.11 83.77

Difference � 0.084 0.000 � 0.030 0.058 0.005 � 0.044

t � 2.367 0.012 � 0.635 1.694 0.103 � 0.915

p 0.018 0.991 0.525 0.090 0.918 0.360



Table 7

As in Table 5, for orthogonal regression

TM band 1 2 3 4 5 7

Uncorrected(2000) 6.97 14.49 44.93 29.60 40.69 31.70

Normalized(2000) 13.67 24.51 73.63 51.78 56.70 45.80

Reference(1999) 10.88 22.09 68.98 49.16 54.16 43.27

F 0.796 0.901 0.937 0.949 0.955 0.945

p 0.000 0.002 0.050 0.118 0.167 0.0868

Table 8

Ordinary least squares regression on training MAD pixels for the Morocco

scenes

Band â r̂a b̂ r̂b r RMSE

1 � 1.56 0.19 1.230 0.003 0.966 1.074

2 � 4.68 0.13 1.191 0.002 0.978 1.372

3 � 8.88 0.12 1.194 0.001 0.983 2.109

4 � 8.31 0.10 1.265 0.002 0.987 1.546

5 � 2.22 0.13 1.148 0.001 0.981 2.244

7 � 1.33 0.14 1.146 0.002 0.976 1.983
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that we can assume that the band-wise mean values are

equal after normalization except for TM1. A T 2-test for

equality of the mean vectors of all bands after normalization

does not show significant equality. The T 2-value is lower

(19.865 vs. 21.793) and the significance level is higher, i.e.,

better (0.0030 vs. 0.0014) for OLS regression.

Comparing Tables 5 and 7, we see that the band-wise

variances are quite different after normalization for both

OLS and orthogonal regression. The F-values are the ratios

between the variances of the reference data and the normal-

ized data. These values should be close to one. The

significance levels show that we can assume equal variances

for TM4 with OLS and for TM3, TM4, TM5 and TM7 with

orthogonal regression since these are all higher than 5%.

Comparing Tables 9 and 12, we see that the paired t-tests

for equal mean values of the individual bands after the
Fig. 5. Regression of the 1999 Morocco reference scene on the 2000 target (u

regression; dashed line: ordinary least squares regression.
MAD-based normalization are better (the differences and t-

values are closer to zero and the p-values are higher) for

OLS regression for all bands. We also see that for all bands

for both OLS and orthogonal regression, none of the p-

values are below 5%. This means that we can assume that

the band-wise mean values are equal after normalization.

Also the T 2-test for equality of the mean vectors of all

bands after normalization shows significant equality. The

T 2-value is lower (5.777 vs. 6.063) and significance level is

higher, i.e., better (0.4493 vs. 0.4169) for orthogonal

regression.

In Tables 10 and 13, the F-tests for equal variances show

that we cannot reject the hypothesis of equal variances for

any band with orthogonal regression whereas we must reject
ncalibrated) scene using the MAD training pixels. Solid line: orthogonal



Table 9

Comparison of mean intensities of hold-out test MAD pixels for the 2000

Morocco scene before and after normalization to the 1999 scene with

ordinary least squares regression, with paired t-tests for equal means

TM band 1 2 3 4 5 7

Uncorrected(2000) 62.734 61.544 83.894 64.573 88.128 80.094

Normalized(2000) 75.577 68.621 91.319 73.345 98.936 90.441

Reference(1999) 75.576 68.595 91.279 73.323 98.905 90.414

Difference � 0.001 � 0.026 � 0.039 � 0.022 � 0.032 � 0.027

t � 0.059 � 1.416 � 1.390 � 1.079 � 1.052 � 1.020

p 0.953 0.157 0.165 0.280 0.293 0.308

Table 11

As in Table 8, for orthogonal regression

Band â r̂a b̂ r̂b r RMSE

1 � 4.96 0.20 1.284 0.003 0.966 0.670

2 � 6.66 0.15 1.223 0.002 0.978 0.875

3 � 10.98 0.18 1.219 0.002 0.983 1.346

4 � 9.65 0.13 1.285 0.002 0.987 0.954

5 � 4.53 0.20 1.174 0.002 0.981 1.465

7 � 3.95 0.20 1.179 0.002 0.976 1.293
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the hypothesis of equal variances for TM1 and TM7 for

OLS regression.

Tables 2, 3, 8 and 11 show that the RMS errors are lower

for MAD-based normalization and for orthogonal regres-

sion. This is true for all bands.

Finally, the plots in Figs. 4 and 5 clearly show a lot more

scatter in the no-change pixels for the manual method

corresponding to lower correlations as seen in Tables 2 (or

3) and 8 (or 11).

In spite of the better OLS fit for the means, all the above

shows that in this case the automatic MAD-based normal-

ization outperforms the manual normalization and that

orthogonal regression is to be preferred over the OLS

regression normally applied to normalization.

3.2. Nevada

Five of the Nevada images (August through December,

1991) were normalized to the July, 1991 image with the

MAD procedure using orthogonal regression as described

above. Fig. 6 displays the reference image (lower center)

and of the December, 1991 target image before (upper left)

and after normalization (upper right). The main spectral

differences prior to normalization are due to Sun elevation,

circular pivot plantations and clouds. Normalization to the

July image as reference results in a qualitatively similar

image for December. Since the clouds and irrigation pivots

represent real changes, they have no influence on the

calibration. The only other subjectively evident differences

after normalization are the longer shadows in the December

scene and some bidirectional reflectance effects in the

mountainous areas.

For radiometric normalization over arid areas, both

atmospheric differences and actual changes in surface re-
Table 10

Comparison of variances of hold-out test MAD pixels for the 2000

Morocco scene before and after normalization to the 1999 scene with

ordinary least squares regression, with F-tests for equal variances

TM band 1 2 3 4 5 7

Uncorrected(2000) 10.58 28.71 86.99 54.45 95.67 59.79

Normalized(2000) 15.99 40.72 124.11 87.06 126.05 78.50

Reference(1999) 16.92 42.43 128.44 89.26 131.27 82.86

F 1.058 1.042 1.035 1.025 1.041 1.056

p 0.035 0.121 0.197 0.348 0.126 0.042
flectance are likely to be small. Fig. 7 displays the overall

mean pixel intensities in the six Landsat TM images before

and after normalization to the July image. The intensities

have been averaged over all six non-thermal bands. The

means were calculated using the 33% holdout test pixels.

Also shown in the figure are the unnormalized mean

intensities multiplied by the factor

d2i
coshi

� cosh1
d21

; i ¼ 1 . . . 6;

where hi is the Sun zenith angle and di is the Earth–Sun

distance for each of the six acquisition dates. Since the sensor

gains and offsets were constant over the acquisition period,

this is equivalent to a normalization without atmospheric

correction. Therefore, the variations may be attributed to

differences in atmospheric absorption and scattering.

3.3. Kenya

The Kenya data are from an agricultural region near

Thika just north of Nairobi and were used to test the MAD

normalization based on both OLS and orthogonal regression

on data from a non-arid region. The images cover the town

of Thika, large pineapple fields to the north and small coffee

fields to the northwest of Thika.

Results for the test pixels (not shown) are similar to those

of the data from arid regions: although we see more scatter

and therefore less correlation (especially for band 3) than in

the cases with arid data, both OLS and orthogonal regres-

sion give normalized data with the same mean as the

reference data, OLS gives better significance. OLS regres-

sion gives significantly different variances whereas orthog-

onal regression gives equal variances. Also the RMSEs are

smaller for orthogonal regression.

Fig. 8 shows the cumulative distribution functions for the

three bands before and after MAD-based normalization with
Table 12

As in Table 9, for orthogonal regression

TM band 1 2 3 4 5 7

Uncorrected(2000) 62.734 61.544 83.894 64.573 88.128 80.094

Normalized(2000) 75.580 68.625 91.324 73.349 98.943 90.447

Reference(1999) 75.576 68.595 91.279 73.323 98.905 90.414

Difference � 0.004 � 0.030 � 0.044 � 0.026 � 0.039 � 0.033

t � 0.310 � 1.625 � 1.554 � 1.248 � 1.279 � 1.236

p 0.757 0.104 0.120 0.212 0.201 0.217



Table 13

As in Table 10, for orthogonal regression

TM band 1 2 3 4 5 7

Uncorrected(2000) 10.58 28.71 86.99 54.45 95.67 59.79

Normalized(2000) 17.44 42.96 129.37 89.96 131.89 83.06

Reference(1999) 16.92 42.43 128.44 89.26 131.27 82.86

F 0.970 0.987 0.993 0.992 0.995 0.997

p 0.254 0.644 0.784 0.766 0.858 0.927
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orthogonal regression: a visually pleasing fit has been

obtained.
Fig. 7. Unnormalized (stars) and normalized (boxes) mean pixel intensities

(in digital number units) for six Landsat TM images over Nevada from July

to December, 1991. The July image was taken as reference. The diamonds

are the unnormalized mean values corrected for Sun elevation and Earth–

Sun distance (see text).
4. Conclusions

The procedure for radiometric normalization suggested

here is automatic, very fast and requires, apart from the chi-
Fig. 6. Radiometric normalization of the Nevada scene. Top left: the uncorrected December, 1991 image; top right: the December scene after normalization;

bottom middle: the July, 1991 reference scene.



Fig. 8. Cumulative distribution functions for SPOT HRV bands before and after MAD-based normalization with orthogonal regression.

Fig. 9. Mosaic of two Landsat ETM+ scenes from May 2 and May 27, 2000

without radiometric normalization.
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square percentile, no externally adjustable parameters such

as decision thresholds or subjective criteria for defining PIF

masks; everything else is entirely determined by the image

data themselves. The method yields results which compare

favorably to those obtained by the more laborious manual

choice of time-invariant features in the images involved. On

the whole, orthogonal regression using the no-change pixels

is to be preferred to ordinary least squares regression. As the

no-change pixels are actually selected for each image on the

basis of multispectral change detection relative to the

reference image, the method automatically avoids interfer-

ence due to cloud cover, or indeed due to any other kind of

reflectance changes that might occur.

In a recent proposal by Du et al. (2002), pseudo-

invariant pixels are also selected using statistical properties

rather than physical characteristics of reflecting surfaces.

Their selection of suitable pixels for normalization is based

on a bitemporal principal component transformation. Be-

cause of the presence of change pixels in the transforma-

tion, the principal axis must be recalculated after setting of

rejection thresholds. Since the principal component trans-

formation, unlike the MAD transformation, is not scale

invariant, the method proposed here would appear to be

better and more natural. Conservation of radiometric reso-

lution after normalization, an aspect emphasized in Du et

al. (2002), can of course be achieved similarly with the

MAD method.

Finally, as an example of the application of relative

radiometric normalization with MAD, Figs. 9 and 10 show



Fig. 10. As in Fig. 9, with radiometric normalization using the MAD

procedure and orthogonal regression.
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a part of the intersection area of a mosaic of Landsat

ETM+ scenes over south Morocco on adjacent paths

dating from May 2, 2000 and May 25, 2000. Fig. 9 is

without, Fig. 10 with radiometric normalization. For Fig.

10, a subset of the overlap area of the images was used to

calculate the regression parameters. The true changes in

the surface reflectance, still apparent in the figure after

normalization, are the result of rainfall prior to the acqui-

sition of the second scene, as is the difference in the water

level in the river.
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Appendix A

Some readers may not be familiar with the two types of

regression analysis applied in this paper. We therefore give a

very brief account of some of the more important character-

istics of the two.
A.1. Ordinary least squares regression

In the model for ordinary least squares (OLS) regression

yi ¼ a þ bxi þ ci; i ¼ 1 . . . n ð7Þ

where x is considered as an independent (fixed, determin-

istic) predictor and y is considered as a dependent (ran-

dom, stochastic) response, the x’s are assumed to be

uncertainty- or error-free. (This usage of the terms depen-

dent and independent is different from the usual probabi-

listic meaning.) n is the number of observations and c is a

white, Gaussian noise term with mean zero and variance

r2, white meaning that ci and cj are stochastically inde-

pendent if i p j.

In this model, the estimator for b is (see any good

textbook on statistics), for example (Rice, 1995)

b̂ ¼ sxy

s2xx
ð8Þ

where

sxy ¼
1

n

Xn
i¼1

ðxi � x̄Þðyi � ȳÞ; ð9Þ

s2xx ¼
1

n

Xn
i¼1

ðxi � x̄Þ2 ð10Þ

with nx̄ ¼
Xn
i¼1

xi and nȳ ¼
Xn
i¼1

yi. The estimator for a is

â ¼ ȳ� b̂x̄: ð11Þ

The variance/covariance matrix (also known as the disper-

sion matrix) of the vector [â b̂]T is

r2

n
P

x2i � ð
P

xiÞ2

P
x2i �

P
xi

�
P

xi n

2
4

3
5 ð12Þ

where r2 can be replaced by

r̂2 ¼ 1

n� 2

Xn
i¼1

ĉ2i ð13Þ

with ĉi= yi� â � b̂xi. The root-mean-squared error (RMSE)

is r̂.
The standard errors of â and b̂ are the square roots of the

diagonal elements of the above dispersion matrix. The test

statistics for â and b̂ being significantly different from zero

are the estimates divided by the standard errors.

A.2. Orthogonal regression

In the model for ordinary least squares regression the x’s

are assumed to be error-free. In the calibration case where it

is arbitrary what we call the reference variable and what we

Environment 91 (2004) 441–451
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call the uncalibrated variable to be normalized, we should

allow for error in both x and y. If we impose the model (we

reuse the symbols â and b̂, later also r)

yi � ei ¼ a þ bðxi � diÞ; i ¼ 1 . . . n ð14Þ

with e and d as uncorrelated, white, Gaussian noise terms

with mean zero and equal variances r2, we get for the

estimator of b (Kendall & Stuart, 1979),

b̂ ¼
ðs2yy � s2xxÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2yy � s2xxÞ

2 þ 4s2xy

q
2sxy

ð15Þ

with

s2yy ¼
1

n

Xn
i¼1

ðyi � ȳÞ2 ð16Þ

and the remaining quantities defined in the section imme-

diately above. The model in Eq. (14) is often referred to as a

linear functional relationship in the literature.The estimator

for a is

â ¼ ȳ� b̂x̄: ð17Þ

According to (Bilbo, 1989; Patefield, 1977), we get for

the dispersion matrix of the vector [âb̂]T

r2b̂ð1þ b̂2Þ
nsxy

x̄2ð1þ ŝÞ þ sxy=b̂ �x̄ð1þ ŝÞ

�x̂ð1þ ŝÞ 1þ ŝ

2
4

3
5 ð18Þ

with

ŝ ¼ r2b̂

ð1þ b̂2Þsxy
ð19Þ

and where r2 can be replaced by

r̂2 ¼ n

ðn� 2Þð1þ b̂2Þ
ðs2yy � 2b̂sxy þ b̂2s2xxÞ; ð20Þ

It can be shown that estimators of a and b can be

calculated by means of the elements in the eigenvector

corresponding to the smallest eigenvalue of the dispersion

matrix of the n by two data matrix with a vector of the x’s in
the first column and a vector of the y’s in the second column

(Kendall & Stuart, 1979). This can be used to perform

orthogonal regression in higher dimensions, i.e., when we

have, for example, more x variables than the one variable we

have in our case.

Software packages to perform ordinary least squares

regression (LAPACK) and orthogonal regression (ODR-

PACK) can be found on the Internet.
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