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ABSTRACT

In the Bayesian modeling framework there is a close relation
between regularization and the prior distribution over pa-
rameters. For prior distributions in the exponential family,
we show that the optimal hyper-parameter, i.e., the optimal
strength of regularization, satisfies a simple relation: The ex-
pectation of the regularization function, i.e., takes the same
value in the posterior and prior distribution. We present
three examples: two simulations, and application in fMRI
neuroimaging.

1. LINEAR INVERSE PROBLEMS

Noisy linear inverse problems are of interest in data analy-
sis, e.g., in astronomy, computerized tomography, early vi-
sion, electrocardiography, mathematical physics and metrol-
ogy ([2]). Straightforward solutions in terms of matrix in-
version often provides useless solutions dominated by noise.
Variable strength ‘regularization’ is therefore invoked to con-
trol the signal to noise ratio of the solution. Methods for tun-
ing the amount of regularization have been extensively stud-
ied and include generalized cross-validation, the so-called
‘L-curve’, and Bayesian approaches. In this contribution
we will discuss the Bayesian approach. First we provide
some general results. We recapitulate a proof of the fact
that Bayesian averaging is generalization optimal under ideal
conditions, i.e. that we have both the correct observation
model and we have complete prior knowledge. Secondly, we
derive a new theoretical result for so-called empirical Bayes,
which is relevant when we only know the functional form
of the prior, but not its strength. We show that operating
with adaptive priors in a linear regression model can lead to
parameter pruning, i.e., that the optimal regularization is in-
finite. Finally, we discuss the special case of the Bayesian
general linear model with conjugate priors and give a appli-
cation to data analysis of functional brain imaging.

2. BAYES OPTIMALITY

Often a learning problem has natural quantitative measure of
generalization. If a loss function is defined the natural mea-
sure is the so-called generalization error, i.e., the expected
loss on a random sample independent of the training set.
Generalizability is a key topic of learning theory and much
progress has been reported. Analytic results for a broad class
of adaptive systems can be found in the literature [18, 12, 13].
Typically they estimate the asymptotic generalization ability
of algorithms that are parameterized by a finite number of
real values parameters. Haussler and Opper presented a very
rich framework for analysis of generalization for Bayesian
averaging and other schemes in [7]. Analytic generalization
errors for finite training sets can only be obtained for specific

learning machines such as linear regression [3].

Bayesian averaging is optimal in a number of ways (ad-
missibility, the likelihood principle etc) [16]. It is important
to note that Bayesian predictions are stochastic just like pre-
dictions of any other inference scheme that generalize from
a finite sample. Here we recapitulate a proof originally pre-
sented in [5] that Bayesian averaging is generalization op-
timal if the observation model and the a prior are identical
to the distributions of the processes that generate the data
(the likelihood) and choose the parameters (the so-called
‘teacher’ distribution), respectively. To prove this let us con-
sider a model that is smoothly parameterized and whose pre-
dictions can be described in terms of a so-called predictive
density. Predictions in the model are based on a given train-
ing set: a finite sample D = {ym}g’=1 of the stochastic vector
y whose density — the teacher — is denoted p(y|6p). In other
words the true density is assumed to be defined by a fixed,
but unknown, teacher parameter vector 6y. The model, de-
noted H, involves the parameter vector 8 and its predictive
density is,

pyID.H) = [ p(yle.H)p(6D.H)aB, (D)

p(0|D,H) is the posterior parameter distribution. In a max-
imum likelihood scenario this distribution is a delta function
centered on the most likely parameters under the model for
the given data set. In ensemble averaging approaches, like
boosting bagging or stacking, the distribution is obtained by
(re-)training on re-sampled training sets. In a Bayesian sce-
nario, the parameter distribution is the posterior distribution,

p(D|6,H)p(6|H)

p(9|D,H): fp(D|9’,H)p(9’\H)d9/ @

where p(6|H) is the prior distribution. In the following we
will only consider one model hence we suppress the model
conditioning label H.

The generalization error will be the expected negative
log probability (also known as the ‘deviance’) I'(6y|D) =
[ —logp(y|D)p(y|60)dy,. The expected value of the gener-
alization error for training sets produced by the given teacher
is given by

r(6) = [ [ ~logp(y|D)p(ylen)dyp(Dlen)aD. @)

Playing the game of “guessing a probability distribution” [7]
we not only face a random training set, we also face a teacher
drawn from the teacher distribution p(6p). The teacher aver-
aged generalization must then be defined as

r= [T(60)p(60)dth. @)
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I is the expected generalization error for a random training
set sampled from the randomly chosen teacher for a given
learning procedure. The generalization error is minimized
by Bayes averaging if the teacher distribution is used as prior.
To see this, form the Lagrangian functional

Zlg(yID)] =
[ [ [ ~1oeatsI0)p(y 600y p(Diew)app(6)asy
+1([ atyID)dy = 1) )

defined on positive normalizable functions ¢(y|D). The La-
grange multiplier / is used to ensure that ¢(y|D) is indeed a
normalized density in the domain of y. Equating the varia-
tional derivative to zero we recover the predictive distribution
of Bayesian averaging,

an(v1D) = [ py1o) LD a6, ©

where [ = [ p(D|0)p(6)d0 is the normalization constant.

3. EMPIRICAL BAYES’ MODELING

The main challenge using Bayes is that the prior needs to be
specified correctly to prove optimality. In practical applica-
tions one can invoke so-called empirical Bayes methods, in
which the prior is specified with a certain set of free hyper-
parameters to determine for the given instance. Here we will
derive a conceptually simple relation which can be used for
setting hyper-parameters for priors in the exponential family.

Let the model be finitely parameterized by the vector 8,
and the likelihood of the data set D be denoted P(D|0). As-
sume a prior distribution in the exponential family:

_exp (—le(G))
POIA) = T (A E6)) a6 7

Where £(60) is a vector of regularization functions and A the
associated vector of hyper-parameters (strengths).

The optimal hyper-parameter vector can be found in an
ML-II approach by maximizing the log-posterior:

log P(D|A) +1ogP(A) —log P(D)
/P(D\G)P(G\?L)de ®)

logP(A|D) =
P(D|2)

We have denoted a possible prior on the hyper-parameters by
P(A). The derivative of the log-posterior is given by

dlogP(A|D) [ P(D|0)252d6  dlogP()

L [P(D|6)P(6|A)d6 ER ©)

The derivative of the parameter prior has two components,
dP(0|1)

ar
where we have defined the expectation in the prior distribu-

tion, (£(0))prior = [ £(6)P(6|A)d6. Inserting Eq. (10) in Eq.
(9) we obtain our key result

= [{£(6))prior —£(6)]P(6]|2), (10)

dlogP(A e pla
1g§7/1(\0) = (£(6))prior — (£(6)) post + 137/11"() an

with the definition of the posterior expectation

(£(0))post = /f(G)P(6|D)d9
_ _P(D|®)P(B|A)
POID) = T5pie)r(e]2)do0 (12)

In the case of a non-specific (zero derivative in the vicin-
ity of the maximum of the posterior) hyper-parameter prior
this suggest that we should search for the optimal parameters
among the solutions to the equation

<f(6)>prior = <f(0)>post7 (13)

i.e., the hyper-parameters should be tuned so that the prior
and posterior expectations of the regularization function are
identical.

This approach is illustrated in Figure 1. We have defined
a simple simulation problem with d =49, N = 50. The de-
sign matrix W is a random matrix and is designed to have a
given condition number. We show the difference between left
and right sides of Eq. (13) as function of the regularization
parameter. For reference we also show the error - computed
as the mean square distance between the obtained solution
and the ‘true’ solution. The minimum error is obtained close
to A = 1.0, which is also close to the point were Eq. (13) is
obtained.

4. A LINEAR MODEL WITH ADAPTIVE ‘RIDGE’
REGULARIZATION

The linear regression model y = Wx + n appears in many
contexts, with n an i.i.d. Gaussian noise process with vari-
ance parameter 62. In the regression model W is unknown
while the data set consists of input-output samples (x,y).
Collecting the parameters W in a d-dimensional vector 6,
the log-likelihood takes on the quadratic form (N = |D|),

logP(D|6) = —%(6 — GML)TA(G —6mr) +const  (14)

where A is a d X d matrix and 6y, is shorthand for the max-
imum likelihood parameters. Assuming a Gaussian prior
on the parameters which is controlled by a single hyper-
parameter A,

P(OIA) = \/X/Zexp—%lez (15)

the regularization function is f(6) = 162, the whole model

then corresponding to so-called ‘ridge-regression’.

As both the likelihood and prior are Gaussians, the pos-
terior also becomes a Gaussian, and the mean vector is
O(1) = A(A +A/N)~ !0y while co-variance matrix eas-

ily is found to be (1) = 1/N(A +A/N)~'. Hence, the
expectations are given by
1 d
(567 prior 7 (16)
1, 1 5 1
(56 ) post i,u(l) +§Trace2(l) (17)
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Figure 1: The difference between expectation of the regular-
ization function in the prior and posterior distributions (dif-
ference between left and right side of Eq. (13)) is plotted ver-
sus the strength of the hyper-parameter (A) for a simple linear
model with Gaussian prior on the parameters (‘ridge regres-
sion’). The quality of the estimator measured as the mean
square difference between the regularized parameters and the
‘true’ parameters is plotted for reference. The mean square
error is minimal at the (<»), approximately A = 1, which is
also close to the point were Eq. (13) is obtained.

4.1 Pruning from adaptive regularization

In [4] we discussed several scenarios for optimization of
hyper-parameters, in particular, it was shown that for very
low signal-to-noise ratios, the adaptive regularization leads
to pruning, i.e., the optimal regularization strength is infi-
nite. This can be illustrated in the present model by ana-
lyzing a the simple special case: Let the A = al. In this
situation the posterior expectation simplifies to (362)post =
16
2 (a+A/N)
hyper-parameter,

AT g i and this in turn leads to the optimal

d

(18)

hence, for 6%, < d/(aN) the optimal regularization is infi-
nite and the optimal parameters are pruned: Gop = 0.

4.2 The conjugate prior for a general linear model

We now turn to the Bayesian general linear model y =
Wx + n, with x unknown. The so-called ‘design matrix’
W is a set of hypothesized effects of unknown strengths x.
Let the additive noise in the linear inverse problem be drawn
i.1.d. from a zero mean normal distribution with (unknown)
variance 2. For a given set of ‘parameters’ x, 2 the likeli-
hood function is given by,

2 1 N/2 1 2
P01 x W) = (5o ) o0 (5t~ WP
(19)

Since, however, these parameters are unknown we will inte-
grate them out using a prior distribution P(x,0?). Here we
choose the conjugate prior which is defined to be a prior that
produces a posterior of the same functional form, but with
updated - data dependent - parameters,

P(y) = / / P(x,6%)P(y|0?,x, W)dodx

g P 762 _ W 2
- / / (27(;:;2)N32 exp— 262X) do’dx, (20)

seee.g., [16].

The conjugate prior for the linear model with additive
gaussian noise is the so-called normal-inverse-gamma, see
[14], or NIG(a,d, m, V), distribution,

(a/z)d/Z(GZ)—(d+p+2)/2
(2m)P2[V|1/2D(d/2)
exp (—(x —m)' (26°V) H(x—m) -

P(x,0%) =

a
202

The hyper-parameters, collected in the vector A =
{d,a,m,V}, have the following meaning: The marginal
prior distribution of x, is a multivariate ¢-distribution with
mean m and covariance (a/(d —2)) V. This distribution is
unimodally centered at m, with heavier ‘tails’ than a normal
distribution. The marginal prior distribution of ¢ is given
by

). @1

(a/2)7d/2((52)’(d+2)/2
I(d/2)

P(c*m,l) = exp (—a/(20?)).

(22)
Hence an inverse gamma distribution (meaning: 1/0? is
gamma distributed) of mean a/(d —2), d > 2.

Here we will simplify the prior by the following assump-
tions. First, the prior on x is zero mean, hence, m = 0. Sec-
ondly, we will let the prior on the noise variance have finite
variance, but otherwise vague, e.g., d = 3. Finally, we will
let the covariance be proportional to the unit matrix V = v1.
The parameter v plays a role similar to the regularizer A
above.

The relation (13) can be simplified for exponential family
distributions where is possible to compute the normalization
constant C. In the present case both the prior and the pos-
terior are NIG-distributions, hence, we can normalize both
prior and posterior to obtain Cpyior, Cpost- In this case the rela-
tion reads in terms of the vector of regularization parameters

9108 Cpost(A) 9108 Cprior(A)
or  or

which is simply equivalent to optimization of the ‘evidence’

[91,

(23)

ilog Cprior()t) — i

ar Cpost(A) 94
The evidence can be computed analytically using, with the
following relations between the prior and posterior NIG pa-
rameters

logP(D|A) =0, (24)

vl = Vi ww,

mp = VpWy,

ap = a+yy-m'pV;'mp,

dp = d+N. (25)



and reads,

|Vp|'/2a4/T (dp/2)
V12451 (d/2)

P(D|a,V,d,W) o< (26)

In Figure 2 we show the evidence as function of the two
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Figure 2: Evidence of a general linear model with the
normal-inverse-gamma conjugate prior as function the two
hyperparameters a and v controlling the noise variance
and the parameters respectively. The evidence optimum is
achieved in the vicinity of the pointv=1,a = 1.

control parameters for the noise variance prior and for the
prior on the solution to the linear inverse problem with the
optimal Bayes parameters located in the vicinity of the point
v=1l,a=1.

4.3 Detecting the response to periodic stimulus in fMRI

Using functional magnetic resonance imaging (fMRI) is it
possible to obtain a mapping from the visual field to the cor-
tex. This mapping can be used for investigating the subject’s
placement visual field, e.g., as a spatial guide for interpre-
tation of more complex visual stimuli. Specifically a visual
field sign map is often obtained by either a polar mapping
experiment (rotating wedge) and an eccentricity mapping ex-
periment (expanding ring) [15], the two can be combined in
one efficient measurement as shown recently in [10]. The
idea is that every location in the visual field is activated in a
periodic pattern with a certain phase which is a characteristic
of given spatial locations. Thus we need an efficient detec-
tor of periodic signals for rather short signals. The use of the
Bayes general linear model for this task was first presented in
[6]. We here illustrate the results of using the general linear
model with the NIG prior for detecting model orders and re-
constructing the detected signal using its phase to link visual
field and cortex.

Data: Using a 3T MRI scanner (Magnetom Trio,
Siemens, Erlangen, Germany) 528 GRE EPI volumes were
acquired. The functional volumes consisted of 20 slices
with 3 mm thickness, oriented along the calcarine sulcus,
TR=1.2s, FOV=192, 64x64 matrix, flip angle = 67°. The
visual stimulation consisted of a wedge rotating either clock-
wise (CW) or counter clockwise (CCW) at two different cy-
cle times (time for a full rotation) on a grey background (as

shown to the left). Simultaneously an expanding/contracting
ring was shown also at two different cycle rates (time for one
full expansion/contraction). Within both the ring and wedge
a black-white checkerboard flickered at a reversal rate of 8
Hz, both stimuli covered a maximum of 18.4° of the subject’s
visual field. The stimulation can be summarized as follows:

- 90s CCW wedge cycle rate of 25 s and expanding ring
cycle rate of 30s (1 and 2)

- 90s CCW wedge cycle rate of 30 s and expanding ring
cycle rate of 25s (3 and 4)

- 25s pause with fixation point only

- 90s CW wedge cycle rate of 25 s and contracting ring
cycle rate of 30s (5 and 6)

- 90s CW wedge cycle rate of 30 s and contracting ring
cycle rate of 25s (7 and 8)

The change in cycle rate assured that the same number of
cycles where completed for both the ring and the wedge. The
response was modelled with sine and cosine predictors (1.
and 2. order harmonics) with the frequency corresponding to
each of the cycle rates.

Analysis A 3D rigid body transformation was used to
correct for motion. The effects of interest were modelled
with harmonics of the stimulation cycle rate as shown in Fig-
ure 3. To determine the phase of the activation the time
to peak was found from the reconstructed signal (using the
maximum a posteriori parameter estimates) for each of the 8
different activation types. The hemodynamic lag was deter-
mined and accounted for by comparing the phase of stimuli
running in opposite directions with the same frequency.

Furthermore we have used the evidence for detecting the
cycle time combinations of the two periodic stimuli. In Fig-
ure 4 we show the evidence of different models (different
‘W’s) in a region of interest (delignated in the visual cortex).
Different models were constructed assuming the cycle time
combinations indicated on the axes. The correct combination
25s and 30s are identified as the most probable.

Figure 3: Left: Design matrix W for linear modeling of the
response to simultaneous periodic visual stimulus. Right:
Snapshot of the visual stimulus.

5. DISCUSSION

Adaptive regularization - aka ‘empirical Bayes’ - can be a
useful tool for solving noisy linear inverse problems, see
e.g., [11]. While the issue here has been to discuss some
generic aspects of adaptive regularization, such as the pos-
sibility of pruning and the fact that the optimal hyperpa-
rameters solve a simple equation (13) we also note that this
method is only one among several existing methods for con-
trolling the amount of regularization. The so-called L-curve



Figure 4: Mapping from visual field to primary visual cor-
tices: Phase maps of the activation shown on an inflated ver-
sion of the right and left hemispheres. The legend in the top
left corner indicates corresponding maps in the visual field.
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Figure 5: Detecting cycle time combinations. The figure
show the mean posterior probabilities of different models in
a region of interest (in the visual cortex). Different models
were constructed assuming the cycle time combinations in-
dicated on the axes. The correct combination 25s and 30s is
identified as the most probable. The probabilities are shown
in log colour scale.

method is based on a parametric plot of the regularized solu-
tion norm ||Lx; ||> and the residual norm ||Ax, — b||. Both
of these are parameterized by A. The optimal regularization
occur when both norms are small as mentioned in [2] and
also discussed in [8]. The L-curve method proposes to bal-
ance the terms by finding the location of maximum positive
curvature in the parametric plot, at this choice of regulariza-
tion the solution changes nature from being dominated by
regularization errors (over smoothing) to being dominated
by errors in the right hand side. The regularization param-
eter can also be estimated using so-called generalized cross
validation (GCV) [1]. The basic idea is: if any data point y;
is left out and a solution x; is computed to the reduced prob-
lem of one dimension less, then the estimate of y; computed
from x; must be a good estimate. Methods for estimation of
regularization have been compared in [17]. There is no clear
consensus about the relative merits of these approaches, so
a principled statistical approach like the Bayesian approach
suggested here may helpful for understanding the properties
of regularization functions and hyperparameter tuning.
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