
HotpathVM: An Effective JIT Compiler for
Resource-constrained Devices

Andreas Gal
Donald Bren School of Information and

Computer Science
University of California, Irvine
Irvine, CA 92697-3425, USA

gal@uci.edu

Christian W. Probst
Informatics and Mathematical Modelling

Technical University of Denmark
2800 Kongens Lyngby, Denmark

probst@imm.dtu.dk

Michael Franz
Donald Bren School of Information and

Computer Science
University of California, Irvine
Irvine, CA 92697-3425, USA

franz@uci.edu

Keywords Dynamic Compilation, Embedded and Resource-constrained
Systems, Mixed-mode Interpretive/compiled Systems, Software
Trace Scheduling, Static Single Assignment Form, Virtual Ma-
chines

Abstract
We present a just-in-time compiler for a Java VM that is small
enough to fit on resource-constrained devices, yet is surprisingly ef-
fective. Our system dynamically identifies traces of frequently ex-
ecuted bytecode instructions (which may span several basic blocks
across several methods) and compiles them via Static Single As-
signment (SSA) construction. Our novel use of SSA form in this
context allows to hoist instructions across trace side-exits without
necessitating expensive compensation code in off-trace paths. The
overall memory consumption (code and data) of our system is only
150 kBytes, yet benchmarks show a speedup that in some cases
rivals heavy-weight just-in-time compilers.

1. Introduction
A decade after the arrival of Java, great progress has been made
in improving the run-time performance of platform-independent
virtual-machine based software. However, using such machine-
independent software on resource-constrained devices such as mo-
bile phones and PDAs remains a challenge, as both interpretation
and just-in-time compilation of the intermediate VM language run
into technological limitations.

Running virtual-machine based code strictly in interpreted
mode brings with it severe performance overheads, and as a re-
sult requires to run the device’s processor at a much higher clock
speed than if native code were executed instead. This in turn leads
to an increased power consumption, reduced battery autonomy,
and may require the overall use of more expensive processors vs. a
pure native-code solution. Just-in-time compilation, on the other
hand, produces more efficient native code as an end result, but the
process of getting to that native code may be very costly for a
resource-constrained device to perform in the first place.
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For example, Sun’s Java HotSpot Virtual Machine 1.4.2 for
PowerPC includes a just-in-time compiler that achieves an impres-
sive speedup of over 1500% compared to pure interpretation. How-
ever, this comes at the price of a total VM size of approximately
7MB, of which about 90% can be attributed to the just-in-time
compiler. Clearly, such resources (that don’t yet include dynamic
memory requirements) are not available on most current embedded
devices.

As a consequence, distinct embedded just-in-time compilers
have emerged, in which trade-offs are being made between re-
source consumption of the just-in-time compiler and the ultimate
execution performance of the code being run on top of the VM.
As a representative of this class of VM-JIT compilers, Insignia’s
Jeode EVM [16] achieves a speedup of 600% over pure interpreta-
tion [14].

Embedded just-in-time compilers achieve their results using
significantly fewer resources than their larger counterparts mostly
by using simpler algorithms. A commonly cited example is the
use of linear-scan register allocation instead of a graph-coloring
approach, which not only reduces the run-time of the algorithm,
but also greatly diminishes the memory footprint. Embedded just-
in-time compilers also tend to use far less ambitious data struc-
tures than “unconstrained” compilers—for example, while the use
of Static Single Assignment form [6] is fairly standard in just-in-
time compilers, the time and memory needed to convert just the
10% most frequently executed methods to SSA form using tradi-
tional techniques would far exceed the resources of most embedded
computers.

In this paper, we present a just-in-time compiler that pursues a
new dynamic-compilation approach. Our compiler is an add-on to
the JamVM [17], a virtual machine for embedded devices. Unlike
other just-in-time compilers that are “intertwined” with the virtual
machine hosting them, ours requires changing no more than 20
lines of JamVM’s source code. The first prototype of our compiler
was in fact designed as an add-on for Sun’s KVM [23, 24] virtual
machine. Porting the compiler to JamVM only required minimal
changes to both our JIT compiler as well as the JamVM source
base. Our JIT compiler runs in a total footprint of 150 kBytes
(including code and data) while for regular code still achieving
speedups similar to those of heavyweight JIT compilers.

Key to the success of our approach is trace-based compilation
using SSA form. Similar to other systems before, the HotpathVM
JIT compiler dynamically identifies execution traces that are exe-
cuted frequently—we build dynamic traces from bytecode (which
would have been interpreted anyway) rather than from native code,
so that the relative overhead of trace recording is much less criti-
cal. But the real novelty of our system comes to bear after a hot
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trace has been identified: it is then dynamically compiled into na-
tive code via a nontraditional application of SSA form, which we
call Trace SSA (TSSA).

In the classical use of SSA form, a control-flow graph is trans-
lated into SSA form in its entirety, and φ nodes are placed in
control-flow join nodes. Our approach differentiates between the
values used in a trace being compiled, which are in SSA form, and
values in the rest of the VM, which are not. The VM explicitly
moves data from the stack and local variables into dedicated SSA
variables before any generated native code is called, and explic-
itly moves non-dead SSA results back onto the stack and into local
variables on every exit from such an optimized trace (including side
exits). This approach enables the just-in-time compiler to perform
aggressive optimizations on the trace, including moving operations
on SSA values across side exit points. Because instruction traces
are essentially linear (they may contain only internal back edges)
liveness analysis and placement of φ nodes are straightforward. Our
system supports fairly sophisticated merging of multiple traces that
have a common ancestor.

The remainder of this paper is organized as follows. In Sec-
tion 2, we describe our approach to identify and extract linear code
sequences from non-sequential programs. Section 3 describes our
trace compiler, which is a specialized JIT compiler that translates
bytecode traces to PowerPC machine code. In Section 4 we de-
tail our approach to extend primary traces with secondary traces to
cover irregular control-flow scenarios. Then (Section 5), we give
a brief overview of the current state of our prototype implementa-
tion. Related work is discussed in Section 6. Our paper concludes
in Section 7.

2. Trace Selection and Recording
When loading bytecode programs into memory, traces are not read-
ily visible in the code. In fact, most general purpose code is not
even purely sequential. The Java bytecode format groups code into
methods that are associated with classes, with all code for a class
stored in individual class files.

To transform such non-sequential code into linear sequences
of instructions, we use an approach called software trace schedul-
ing [9]. Software trace scheduling is based on the observation that
a physical CPU does not actually execute a code graph, but merely
follows linear instruction sequences (traces) along the edges of that
graph. To obtain a trace from a code graph, we record instructions
at runtime as they are executed. As not all code is equally worthy of
compilation and optimization, we limit our efforts to loops and only
start recording bytecode traces once we have identified a frequently
executed loop header.

This section gives an overview of the main steps—identifying
loop headers, recording traces, and conditions for ending the
recording.

2.1 Identifying Loop Headers
To identify loop headers, we use a simple heuristics that first ap-
peared in Dynamo [3], a framework for dynamic runtime optimiza-
tion of binary code.

Initially, our virtual machine interprets the bytecode program in-
struction by instruction. Each time a backwards branch instruction
is executed, the destination of that jump is recorded as a potential
loop header. The rationale of this approach is that the general flow
of control in bytecode is forward, and thus each loop has to contain
at least one backward branch.

To filter actual loop headers from the superset of potential
loop headers, we track the invocation frequency of (potential) loop
headers. Only after the execution frequency of a potential loop
header exceeds a certain threshold, our VM starts recording a
bytecode trace (Figure 1). To reduce the overhead for code that is
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getstatic System.out

  for (i = 0; i < 1000; ++i)
    ++k;
  System.out.println(k);
}
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if_icmpge B
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goto A
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public static void main(String[] args) {
  int i, k = 0;
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Figure 1. Recording bytecode traces. The source program (upper
part of the figure) contains a frequently executed loop that we
want to compile (a hotspot). The other parts of the program are
executed infrequently and compiling them would likely not much
benefit overall performance. The bottom part of the figure shows
the resulting bytecode program. A frequently executed backward
branch to A triggers the recording of a trace. The trace is complete
when execution returns to the loop header. We also refer to recorded
traces as ”hotpaths”, as they are the results of tracing hotspots.

not suitable for trace-based JIT compilation, the execution monitor
disconnects itself from the virtual machine if no usable traces can
be found and a second threshold is exceeded.

As branch instructions appear frequently in Java bytecode, it
is essential to minimize the housekeeping overhead for keeping
track of the invocation frequency of backward branches. In our
first KVM-based implementation we used a relatively small (977
entries) closed hash table, consisting of 16-bit integer counters, for
this purpose. Every time a backward-branch instruction is executed,
the corresponding counter in the hash table is incremented. Colli-
sions in the hash table are intentionally tolerated as their impact on
code generation is relatively limited. Collisions can merely lead to
overestimation of the ”hotness” of a code region, triggering code
generation for ”cold” code. In the worst case this overestimation
will cause a slight performance degradation as the VM might be
unable to recover the compilation cost in terms of cycles spent on
code optimization vs. cycles recovered from more efficient program
execution.

Using a hash table is well suited for interpreters such as KVM,
which interpret the native bytecode format as it exists in Java class
files. JamVM, in contrast, translates the bytecode format into its
own intermediate representation prior to execution. Amongst oth-
ers, relative branch addresses are resolved to absolute target ad-
dresses and constant values are retrieved from the constant pool
and stored directly in the intermediate representation. To further
reduce the overhead of the branch monitoring approach described
above, we directly embed the profiling information in the interme-
diate representation. This allows us to avoid the additional hash
table lookup per branch instruction.



2.2 Recording Traces
Traces are recorded by manipulating the threaded code branch tar-
get stored in the intermediate representation of each instruction as it
is executed by JamVM’s direct threaded interpreter [4]. The entire
interpreter of JamVM is located in a single C method. Each Java
Virtual Machine Language (JVML) instruction is implemented as
a code block that is preceded by a label. The address of this la-
bel is stored in the intermediate representation, and JamVM uses
GCC’s [12] computed goto statement to jump to the corresponding
label of each instruction as it is executed.

To record a trace, the monitor manipulates the threaded code
branch target in the instruction immediately following the first in-
struction of the trace to redirect execution to a recording code
block. This special code block can be understood as a meta instruc-
tion that is (virtually) inserted after each executed instruction. The
recording block records the current value of the program counter,
the opcode of the executed instruction, and the value on top of the
stack in a trace structure. Every time the recording block is invoked
it reverses the change to the previously executed instruction that
caused the recording block to be invoked and patches the next in-
struction label instead. Using this technique the recording block
essentially chases the execution, always making sure that it is one
step ahead of the program counter.

While our approach triples the number of hard to predict (and
thus costly) indirect dispatches during trace recording, the overhead
is essentially zero when the trace recorder is disconnected and is
not recording traces. The only noteworthy overhead is incurred
for JVML branch instructions, because we have to increment the
invocation frequency counter and compare it to a threshold value.
To eliminate this overhead we redirect branch instructions to code
blocks that do no longer perform profiling once a second stop-loss
threshold is exceeded. In this case we assume that no suitable traces
could be extracted from the bytecode in question.

While recording traces, the direction (taken or not taken) of
every conditional branch is recorded. These decision points in
the original program become guard instructions in the recorded
trace. At runtime, these guard instructions ensure that the control
flow still follows the previously encountered path. Depending on
whether the original branch was taken or not, a guard instruction
is emitted that either checks for the branch condition itself or its
complement.

A taken branch instruction that branches if the value is equal
zero (jeq), for example, becomes a guard if not equal zero in-
struction (gne), because the compiled trace has to be aborted if the
original assumption (value is equal zero) does not hold at the time
the trace is executed. The same branch instruction (jeq) would be
converted into a guard if equal zero instruction (geq) if it was not
taken in the initial code, because now the compiled trace has to be
guarded against the opposite condition.

Lookup table dispatches (JVML instructions lookupswitch
and tableswitch) are used in Java to efficiently implement the
switch/case construct of the Java high-level language. When
encountering a lookup table dispatch instruction, the virtual ma-
chine determines the bytecode address where to continue execution
based on a table of address and value pairs. We treat lookup table
dispatches as if they were simple conditional branches that com-
pare a value with a constant. When the trace is executed, we expect
the same value to be encountered by the guard instruction, or the
trace is terminated through a side exit.1

Optimizing virtual method invocations is a non-trivial task for
traditional compilers. Since our compiler always follows the ac-
tually executed instruction stream, we only have to insert a guard

1 We will discuss in the next section how to merge several traces so we can
compile lookup table dispatches that have several hot paths.

instruction that checks that the predicted target method is still valid.
For this, the guard instruction compares the actual type of the object
the virtual method is invoked on with the type that was encountered
when the trace was recorded. If the two types still match, execution
of the trace continues with the already recorded and compiled in-
struction stream.

If any guard instruction fails at runtime, control is transfered
back to the VM to resume execution at the bytecode level. For this,
the mapping between machine code registers and Java stack and
local variables has to be preserved. Our intermediate representation
embeds this information in every guard instruction and the code
generator creates side exit stubs that write back the values into the
appropriate local variable locations.

Our initial implementation maintained mapping information for
both, the Java operand stack as well as Java local variables. Pro-
filing of our first prototype showed that the code generator never
actually had to generate write-back code for stack locations. While
in principle legal in JVML, the Java compiler does not generate ba-
sic blocks that have more than one predecessor and a non-empty
stack at the entry point. Instead, the stack is always empty after
branch instructions, except for some special constructs such as the
“? :” operator. However, the latter can never be a loop header and
thus will never trigger the recording of a trace and is thus irrelevant
in this context. Based on this observation we removed support for
traces that start with a non-empty stack or contain side-exits with a
non-empty stack.

The last map is recorded at the very end of the trace where
execution returns to the loop header (trace entry point). This map is
special as it indicates which Java local variables are altered during
each loop iteration. To ensure proper semantics, all values altered
during a loop iteration have to be written back at all side exists,
because the value could still be pending from a previous loop
iteration (Figure 2).

2.3 Stop Conditions
Recording ends in two cases—either we decide to abort the record-
ing due to certain circumstances, or we successfully finish the
recording.

As we are only interested in the loop body itself, we define
a number of abort conditions which terminate the recording of a
trace. If an exception is thrown, for example, we immediately ter-
minate recording, because exceptions are by definition rare events
and by its very nature JIT compilation only focuses on frequently
executed code areas. Similarly, we also abort tracing when we en-
counter a native method invocation. The rationale of this design
decision is that native method invocations are already fairly expen-
sive, no matter if compiled or interpreted, and we expect them to
happen infrequently. Also, by not having to generate code for native
code invocation, our backend compiler is simplified significantly.

When execution returns to the original loop header where a trace
started, the recording of the trace ends and the newly recorded trace
is sent to the JIT compiler for translation to optimized machine
code.

3. Compiling Traces
Once a trace has been recorded, our trace compiler translates it to
directly executable machine code. As mentioned previously, our
compiler is specialized in compiling traces only and expects its
input to be free of branch instructions except for a single, final,
unconditional branch at the end of the trace, which jumps back
to the loop header. The code generated for the trace is optimized
with the assumption that the trace will be executed repeatedly
(loop), until it is left through a side exit (guard instructions). In
our system, traces do not have a generic exit point, as they always



int i = 10, a;
while (i-- > 0) {

if (b[i] == 0) [R1 => i] /* add: R2 => a */
break;

a = 1;
} [ R1 => i, R2 => a ]

Figure 2. To ensure proper semantics, any values altered during a
loop iteration have to be written back at all side exists, because the
value could still be pending from a previous loop iteration. The map
recorded for the if instruction, for example, initially only contains
the necessary information to update the loop counter (i). The tail
map at the end of the loop in contrast indicates that a has to be
updated as well. This information is subsequently merged into all
side exits to ensure that the if instruction not only updates i but
also a in case of a side exit. This is necessary, because as we will
discuss in the next section we will perform register coalescing on
the tail map, ensuring that the next loop iteration finds all values
in the corresponding register without actually writing back any
values into the Java local variable locations. Thus each side exit
is responsible for this step, even for values that were carried over
from the previous iteration and have not been redefined yet in this
iteration.

unconditionally branch back to the loop header once an iteration
has been completed.

As we record traces across method calls, the input of our com-
piler is also free from method invocations, which significantly sim-
plifies code generation.

The work of our trace compiler can be divided into three phases:
a) stack deconstruction and transformation into SSA form, b) anal-
ysis, and c) code generation. Each phase is accomplished in a single
sweep over the trace and thus executes roughly in linear time.

3.1 Stack Deconstruction
During the initial phase, we deconstruct the Java stack and replace
references to stack locations and local variables with the index
number of the instruction that defined the corresponding value. By
doing so, we effectively also transform the trace into SSA form
(Figure 3). For this, we track for each stack location and local
variable the index of the instruction that defined the corresponding
value, and update on the fly each operand reference. To import the
initial context which consists of values stored on the Java stack
and in local variables when the trace starting point is reached, the
virtual machine automatically reports read pseudo instructions for
all occupied local variable slots.

At the end of the loop, a renaming table and the tail map are
used to decide which incoming context values are loop invariant.
The renaming table maps local variables to their SSA names and is
updated as each instruction is recorded and transformed on-the-fly
into SSA. Each time a value is written into a local variable, a new
SSA name is assigned and the renaming table is updated to reflect
the new SSA name. For each use the renaming table is consulted to
obtain the current SSA name for the corresponding local variable,
which is recorded instead of the actual local variable index.

Each mapping in the tail map consists of the location where
the value was defined and the local variable index where the value
has to be written back to. A mapping that refers to a definition
other than the read pseudo instruction we initially filled in for
a given local variable slot indicates that the local variable context
was redefined in the loop body. For these instructions the read
pseudo instruction is transformed into a φ pseudo instruction.

φ pseudo instructions are similar to read pseudo instructions
in that they read a value from the VM stack or a local variable be-
fore entering the loop. Along the loop edge, however, φ pseudo
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A: iload_1
sipush 1000
if_icmpge B
iinc 2,1
iinc 1,1
goto A

B: getstatic System.out
iload 2
invokevirtual println(int)
return

0: read L1 (phi L1,4)
1: read L2 (phi L2,5)
2: sipush 1000
3: if_icmpge bail-out
4: iinc 1,1
5: iinc 0,1
6: goto 3
bail-out:

return to VM

Figure 3. Phase 1: Stack deconstruction and transformation into
SSA form. In our SSA-based IR, operands refer to the defining in-
struction in the trace instead of stack locations or local variables.
Incoming values are represented through explicit read instructions,
which in this case read local variables 1 and 2. In a single forward
scan through the code, all operand references are updated by track-
ing the definition point for each stack location and local variable in
a renaming table. The table initially contains the mappings (L1:0,
L2:1), which causes the two iinc instructions to be updated with
new operands. At the same time, the renaming table is updated to
(L1:4, L2:5) because the iinc instructions redefined the values in lo-
cal variables 1 and 2. At the end of the loop, we check which entries
in the renaming table have been modified. All modified entries are
loop variables, and their corresponding read instructions are each
replaced with a φ instruction that reads the updated value along
the loop edge, instead of the initial one. The remaining entries are
flagged as loop invariant.

instructions return the value produced by a downstream instruction
in the previous iteration. As the virtual machine has already in-
serted read instructions for all context values, we do not actually
have to insert any φ pseudo instructions into the trace code. We
merely transform the corresponding read pseudo instruction into
a φ pseudo instruction.

It should be noted that we do not have to calculate a dominator
tree to place φ nodes, because our traces contain at most one merge
point, which is the trace entry where the loop edge and the entry
edge meet. Furthermore, our initial phase also performs a loop
invariant analysis—essentially for free.

3.2 Code Analysis in SSA form
Once we have obtained the SSA-based intermediate representation,
we perform a series of data-flow analyses on the code (phase 2).
Also these analyses occur during a single forward sweep over the
trace. Among others, we propagate the loop invariant information
to dependent instructions. In other words, all instructions that only
depend on loop-invariant inputs are flagged as loop invariant and
will be hoisted out of the loop body.

Initially, only the read and φ pseudo instructions inserted at the
beginning of the trace are considered loop-invariant. read pseudo
instructions are invariant, because they merely read values from
the Java stack and local variables into temporary registers and the



Java stack and local variables are in fact not updated during trace
execution. φ pseudo instructions, in contrast, are by definition loop
variant, however, for our purposes we can still hoist them out of
the loop because only the invariant part of their semantics results in
actual code to be generated.

φ pseudo instructions have a different semantics, depending on
whether they are executed during initial loop-entry or following a
loop iteration. For the initial loop-entry, similarly to read pseudo
instructions, φ pseudo instructions fetch context information from
the Java stack or local variables. In case of a loop iteration, how-
ever, they carry over the value from the last iteration to the cur-
rent one. The latter semantics, which is loop variant, we guaran-
tee through our register allocation algorithm by assigning the same
output register to φ pseudo instructions as the loop-carrying input
register they are supposed to copy in case of a loop iteration. As
no code generation is necessary to guarantee this property, we can
safely move φ instructions out of the loop body.

Starting with the read and φ pseudo instructions, all instruc-
tions that only depend on loop-invariant inputs are hoisted out of
the actual loop body, and are executed before the loop code.

To create more opportunity to invariant code motion, the
trace recorder splits complex Java bytecode instructions into sub-
instructions, some of which might be suitable to be hoisted out
of the loop body or at least they can be shared between similar
subsequent instructions. In fact, we did not have to introduce a
large number of new instructions as most of the sub-instructions
are simply JVML instructions with relaxed typing (we use IADD
for address arithmetic, for example).

A common example for this principle are array access instruc-
tions (i.e. IALOAD). Each IALOAD instruction is emitted as a com-
bination of a shift operation (ISHL) to transform the index into
an appropriate offset depending on the array element size and an
IADD instruction to generate an address from the offset and the ob-
ject reference (array base address). Subsequent array accesses can
then share parts or the entire address calculation. This approach
also creates additional opportunity for efficient code generation by
the backend, which can fold constant address calculations (i.e. con-
stant index expression) and emit more compact code using fewer
registers.

Integer modulo instructions (IREM) undergo a similar treatment
and are emitted as a combination of an integer division, multi-
plication and subtraction since many architectures do not directly
support modulo calculation. For architectures that do (i.e. x86) the
backend can easily detect and compact the resulting code pattern,
while architectures such as PowerPC that have no modulo ma-
chine instruction can optimize the resulting instruction stream, i.e.
through common subexpression elimination.

In order to guarantee proper semantics for memory accesses, we
only consider memory accesses to be loop invariant if no matching
read/write exists with the same base type and field offset (or abso-
lute address in case of static fields). While this approach is rather
pessimistic and does not take any high-level type information into
account, it still allows us to hoist most memory reads/writes out of
the loop without having to invest a lot of resources in proper alias
analysis.

We also perform common subexpression elimination (CSE) and
flag redundant instructions, which the backend phase in turn will
suppress during code generation. The rationale for not immediately
eliminating redundant instructions is that at this point the register
pressure is still unknown, and it might be beneficial to leave the
redundant instruction in the code, instead of having to spill due to
excessive register pressure.2

2 This condition rarely occurs in case of the PowerPC architecture, but is
more frequent on architectures with few registers such as Intel 386.

One could argue that by performing CSE and loop invariant
code motion (hoisting) on a trace, we actually perform profile-
guided partial redundancy elimination (PRE), because we perform
CSE only along the hot path (trace), utilizing any partial redun-
dancy, which regular CSE may not be able to realize on the entire
graph. This observation underlines our claim that compilation of
code traces is much simpler to facilitate than code generation in
presence of code graphs.

The final register allocation and code generation phase is some-
what special in that it works bottom-up, starting at the last instruc-
tion in the trace working its way upstream. Register allocation and
code generation are performed simultaneously. The register alloca-
tor is pre-initialized by assigning fixed register locations to all loop
variables (φ instructions), which is necessary to guarantee that val-
ues generated during a loop iteration are properly carried over to
the next iteration.

We try to coalesce both operands of φ pseudo instructions into
the same hardware register to avoid unnecessary register moves at
the end of the trace (loop). This is of course only legal if the live
ranges of the of the two operands are disjunct. An overlap can for
example occur when the loop code references the previous value of
a loop variable after it has already been updated. A frequent cause
for this are the unary operators i++ and i-- that increment/decre-
ment a loop counter (in this case i), but return the previous value
as result of the expression. To ensure proper semantics the register
where the loop expects the incoming value to arrive in the next it-
eration can only be updated with the new value at the very end of
the loop. Thus we have to ensure that the two instances are not co-
alesced into the same register but the value is explicitly transfered
through a move instruction at the end of the loop.

As all other data-flow analyses, live range analysis is trivial on
a linear sequence of instructions. We merely record the last use
of each instruction during the initial iteration over the trace code.
The last-use information is maintained as a simple pointer from
each instruction to the last instruction in the trace that uses the
value generated by it. This information is collected by continuously
updating the last use pointer every time a value defined by an
instruction appears as operand of another instruction. Intermediate
uses are overwritten by subsequent uses, leaving the final use in the
pointer field.

Whether the live ranges of the two operands of a φ pseudo
instruction (the incoming value, and the value generated during
each iteration) overlap, can easily be determined by comparing
the last use information of the incoming value (context φ pseudo
instruction) with the definition of the loop-generated value.

If the loop-generated value of the φ pseudo instruction is defined
after the last use, the two values can be coalesced into the same
register. Otherwise a move instruction is generated at the end of the
loop (trace).

3.3 Code Generation
The code generator then starts to emit code, starting at the last in-
struction, and moving backwards. Correspondingly, the machine
code is also generated backwards, which has the subtle advantage
that the target address of conditional branches is always encoun-
tered before the actual branch instruction, eliminating the need to
fix up target addresses in a second pass.

During code generation, we first try to perform constant folding
for each operand reference of the instruction that is currently being
compiled. Traditionally, constant folding is performed at compile
time by executing the dynamic semantics of constant instructions.
In a mixed-mode interpreter, this leads to significant code duplica-
tion between the compiler and the virtual machine, because both es-
sentially perform the same task (executing bytecode instructions).
In our system, instead of folding constants in the compiler, we rely



IADD:
if constant(son[0]) && constant(son[1]) {

value = OP(son[0],son[1])
return

}
if constant(son[0])

swap(son[0], son[1])
if int_const(son[1]) && imm16(son[1])

emit(addi, reg(son[0]), value(son[1]))
else

emit(add, reg(son[0]), reg(son[1]))

Figure 4. The backend iterates over the code bottom-up, which
allows us to use simple pattern-matching for emitting specialized
instruction forms. The generator function for the IADD bytecode
instruction, for example, first checks whether its left operand is
constant, and swaps its operands in that case. This is to ensure that
if one operand is constant, this is always the right one, as expected
by the addi machine instruction. Only operands that cannot be
folded into a constant are assigned a register using the reg function.
The corresponding code for the definition will be emitted later, once
the code generator arrives at the defining instruction.

on the bytecode interpreter to record the value calculated by each
instruction in the trace. The compiler merely tracks a bit whether
operands are constant or not, and if all operands of an instruction
are constant, the result previously recorded by the virtual machine
is assumed to be the correct result value of the instruction.

The only JVML instruction that warrants special treatment is
the IINC instruction. In contrast to all other JVML instructions it
does not store the value it generates on top of the stack and thus
our stack recording mechanism cannot capture the value. Instead,
it directly pushes the new value into a local variable. Our recording
code is aware of this irregularity and records the value of the local
variable instead of the top of the stack for IINC instructions.

Only if constant folding fails we assign a register to the in-
struction defining the operand, which is the main reason why we
perform code generation in reverse order. It guarantees that we al-
ways encounter all uses of a value before its actual definition. The
code for the definition is only generated if not all uses could be
resolved through constant folding and specialized instruction pat-
terns. A common example is the addi instruction that allows to
directly embed one operand as an immediate as long the value is
within a certain range. If all uses of the value can be directly em-
bedded in such a fashion, it is not necessary to actually generate
that value at the definition site and no register has to be assigned
to it. In case of forward code generation we would have to decide
whether to emit the code for a definition before we know whether
the value will actually be used or not, which in turn would require
to analyze each use of the value.

As code generation continues, we will eventually reach the
instruction we just assigned a register to, and generate the necessary
code to produce a value into that register. Code is only generated for
instructions that were previously assigned a register. If we are able
to satisfy all uses statically through constant folding, the instruction
will have no register allocation when we arrive at it, and it is
considered dead.

Besides simplifying register allocation, bottom-up code genera-
tion also enables us to perform efficient pattern matching to emit
specialized machine instruction forms (Figure 4). As described
above, we try to fold all operands into constants, and if we real-
ize that one operand of an add instruction is a constant, for exam-
ple, we emit the specialized addi machine instruction (in case of a
PowerPC backend).

02801008: cmpwi r2,1000
0280100c: bgel- 0x2801034
02801010: addi r3,r3,1
02801014: addi r2,r2,1
02801018: b 0x2801008

Figure 5. The final code emitted by our backend for the example
introduced above. By assigning fixed registers to the φ instructions,
we avoid any trailing move instruction at the end of the loop to
correct the state of the register allocator before following the loop
edge back to the loop header. The branch instruction in the original
bytecode was compiled as a guard instruction, which exits the
compiled code when execution diverges from the predicted path.
We use the link register of the PowerPC to record the location
where this bail-out happened, which allows the VM to unwind the
execution state accordingly.

The resulting machine code for the example introduced in the
previous section is shown in Figure 5.

3.4 Side Exits
The initial version of our compiler did not generate specific ma-
chine code for individual side exits. Guard instructions were trans-
lated to conditional branch and link instructions that all pointed to
the same compensation code. Every time a guard instruction is ex-
ecuted (whether it passes or fails), the processor updates the link
register with the current value of the program counter, which is es-
sentially the address of the conditional branch instruction that was
generated for the guard instruction. We can make such liberal use of
the link register, because we don’t invoke any methods from within
compiled traces. If a guard instruction fails, execution is transfered
to the side exit compensation code shared by all guard instructions.
The compensation code first has to locate the appropriate register
to local variable mapping information by translating back from the
machine address recorded by the branch instruction to the address
of the branch instruction in the intermediate representation that ul-
timately contains the pointer to the register mapping information.

Benchmarks have shown that this approach creates a significant
overhead for traces that are frequently exited through side exists
after only few iterations (or no complete iteration at all). We have
thus changed our code generator to generate dedicated compensa-
tion code for each side exit.

Each side exit stub consists of a series of memory stores trans-
ferring values back from hardware registers into the appropriate
local variable storage area.

If the side exit occurred while executing an inlined method, the
compensation code has to generate additional stack frames to write
back the current state.

In our implementation we actually write back the values first,
and then create the new stack frames ”around” the already written
back stack and local variable information, because most temporary
values are held in hardware registers, which in turn would have
to be flushed to memory before we can execute the high-level
functions of JamVM that are responsible for creating new stack
frames. As a consequence we have to ensure that the garbage
collector is not triggered while we are writing back the stack frames
(or while we execute compiled code). We do so by holding the
garbage collector lock at all times when compiled code is executed.

While in principle this blocks the garbage collector from re-
claiming unused memory while compiled code is executed, and
could cause a memory overflow, in practice this does not seem to
be a significant limitation. Performance-critical code such as a loop
rarely performs any memory allocations.

The main reason for seeing so few memory allocations inside
loop bodies is the inherent cost of the memory allocation opera-
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Figure 6. An example for a loop with more than one frequently ex-
ecuted path. If we supported just a single hotpath for each loop and
then encountered A, F, G first and recorded a trace for it, all other
combinations (A, B, C, E, G and A, B, D, E, G) would result in
expensive bail-out operations in which the VM has to recover from
failed guard instructions. Our secondary trace approach avoids this
problem.

tion. If a loop calls into the memory allocator on every iteration,
the overhead of running the memory allocator often by far out-
weighs any speedup that compilation of the rest of the loop code
could achieve. Thus not compiling such loops in the first place is an
acceptable initial heuristics.3 Since the runtime of the loop is domi-
nated by the runtime of the memory allocator, the performance loss
will be small.

There is, however, a class of loops that would benefit from com-
pilation despite the presence of memory allocation instructions.
Since Java does not allow explicit stack allocation of temporary
objects, regular heap allocation instructions are used. As these tem-
porary objects are only live for a single iteration, we could actu-
ally bypass the allocator altogether and allocate temporary stack
space instead. This would enable us to speed up the loop body with-
out building up any unused heap blocks that the garbage collector
would have to reclaim (which it can’t since we block garbage col-
lection while executing compiled code.)

We are currently working on a specialized linear-time escape
analysis that will allow us to identify such temporary objects at
runtime.

4. Trace Merging
Trace-based JIT compilation as presented in the previous two sec-
tions works well for very regular code. Unfortunately, code is rarely
purely regular. Loops often do not contain a single dominant path,
but several frequently executed paths (Figure 6). To achieve good
performance in this more general case, we have to support multiple
hot paths through a loop.

For this, similarly to Dynamo we record secondary (child) traces
every time we exit a trace along a non-exception edge (Figure 7).
The guard instruction is updated to jump to the child trace, instead
of returning to the VM. The child trace shares the upstream code
with its parent trace, and is compiled bottom-up just as its parent
trace, with the register allocator initialized to the final state of the

3 Our compiler currently also rejects such loops since memory allocation
requires a callback into the virtual machine and is thus effectively a native
method invocation, which in our prototype abort trace compilation.
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Figure 7. Recording secondary traces. Every time we exit a trace
along a non-exception edge, we immediately start recording a new
trace. The guard instruction that triggered the recording of the new
trace is then patched to point to the newly recorded and compiled
trace.

parent trace. This is necessary in order for the child trace to know
in which register the parent trace stored values that were computed
upstream.

If a child trace is left through a side exit, we resume recording
but that trace will also be directly associated with the parent trace.
In essence we lazily record all actually executed traces through the
loop as we encounter them, and connect them to the single loop
header of the parent trace.

In certain cases we also have to insert compensation code along
the new edge to the child trace, for example in order to compute a
value that was dead in the parent trace, but is now active in the child
trace. These cases are easily recognizable, because a use refers to a
definition in the parent trace that has no register allocation assigned
to it.

It should be noted that this approach leads to a certain amount
of code duplication, however, it also permits specialized code opti-
mization along each path (Figure 8).

Invariant code motion in the presence of secondary traces also
warrants special consideration. By aggressively hoisting computa-
tions out of the initially recorded primary trace, a large number of
registers would be blocked for further use by secondary traces. To
circumvent this problem, we selectively spill certain invariant val-
ues into memory when switching from parent to child traces.

An interesting effect can be observed in the presence of nested
loops. As shown in Figure 9, in a nested loop construct the inner
part of the loop tends to be ”hotter” than the outer parts of the
nested loop. Thus, the first loop header to be detected as such is
likely B, because it is part of the inner loop. Once the trace B −C
has been recorded and is executed, a new trace is recorded as soon
C exits to D instead of following the loop edge. We record a new
child trace D − A and reconnect it to B, which we consider the
loop header. The fact that we only consider B as a loop header
as far as optimization is concerned means that the primary trace
B−C will get more resources allocated than C−D−A. However,
considering that the inner loop is likely the hotter path, this is
actually exactly what we want. Effectively, we have turned the
loop inside out, giving maximum consideration to the hottest loop
region, and slightly disadvantaging the outer loop parts.
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Figure 8. Code duplication resulting from trace-based compila-
tion. A compiler designed to compiler whole control-flow graphs
is able to generate shared code for F , while our trace compiler has
to generate versions of F separately for each trace. While this is
a disadvantage from a code density perspective, it does allow our
compiler to individually optimize each version of F , according to
its specific pre-context (B −D and C − E).
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Figure 9. Handling of nested loops. As inner loops tend to be
executed more frequently than the outer parts of the loop, the trace
through the inner loop is recognized as the primary trace. The loop
header of the inner loop B becomes the sole loop header. When C
branches to D instead of looping back to B, we start recording a
child trace and connect it back to A once the inner loop is entered
again.

Once we support trace merging, the question arises how this
approach is still different from compilation of whole control-flow
graphs. The two most significant advantages over traditional com-
pilation are that paths are split and optimized individually (down-
stream), and that relevant paths are compiled and optimized only,
whereas compilers designed to compile whole control-flow graphs
often compile entire ”hot” methods, even though only parts of the
method are in fact hot, while certain other parts are rarely or never
executed.

5. Benchmarks
We have implemented a prototype of the trace-based HotpathVM
JIT compiler. While initially our prototype was built based on Sun’s
KVM [24, 23] virtual machine, the current implementation we
are reporting on in this section has been ported to JamVM [17].
Similarly to KVM, JamVM is a small virtual machine suitable
for embedded devices. In contrast to traditional JIT compilers that
heavily depend on the internals of the virtual machine they are

hosted by, and are deeply interwoven with virtual machine code,
for both, KVM and JamVM, we only had to touch approximately
20 lines of the VM source code to add our compiler to the VM. The
most relevant change was to invoke our trace recorder every time a
branch instruction is encountered, to decide whether to start a new
recording, or to execute an already existing trace. The remainder
of the changes signal trace abort conditions to the JIT compiler, for
example when exceptions are raised or a native method is executed.

The JIT compiler itself consists of roughly 1800 lines of C
code, from which 900 lines are used by the frontend (phase 1
and 2), and 900 by the backend (phase 3, PowerPC). Our initial
implementation that performed manual constant folding instead of
recording constant values through the VM stack was 700 lines
large, which is almost a 50% savings over the current size of the
JIT compiler.

Compiled to native code, our JIT compiler has a footprint of
approximately 50 kBytes, which is noteworthy for a compiler that
implements a series of aggressive optimizations that were previ-
ously inaccessible to embedded mobile code frameworks. For com-
parison, JamVM alone consists of over 20,000 lines of C code
(180 kBytes of PowerPC native code) [13].

Additionally to the static size of the code, during compilation
our JIT compiler requires approximately 48 bytes of heap per in-
struction in the trace. The space is freed up in between compiler
runs. To cache compiled traces, we use a 64 kBytes code buffer,
bringing our overall minimum memory consumption to approxi-
mately 128 kBytes.

We have measured the performance of our Hotpath Virtual Ma-
chine for a set of benchmark programs from the SciMark2 [19]
and Java Grande [18] benchmark suites. The set contains programs
that are ideal for trace compilation (SOR, LU) but also programs
that can be considered the worst-case scenario for trace compila-
tion (NumericSort and MonteCarlo), because they contain branches
without clear preferred branch direction (taken and not taken are
both equally likely).

The performance was compared to the standard interpreting
Java VM, JamVM 1.3.3, which is one of the fastest purely interpret-
ing Java virtual machines, and finally Sun’s HotSpot just-in-time
compiler (Figure 10). Ideally, we would have preferred to com-
pare our trace-based compiler to a commercial just-in-time com-
piler such as Sun’s CLDC HotSpot VM [15, 20] as well. Unfor-
tunately, however, Sun was unable to license CLDC Hotspot to a
non-commercial entity such as the University of California in ei-
ther binary or source code form.

As expected, our JIT compiler performs well on highly regu-
lar and sequential programs such as LU, SOR, and Linpack. FFT
and SparseCompRow still yield a speedup of factor two over in-
terpretation but suffer from the lack of long traces that could be
exploited. We are unable to record meaningful traces for Monte-
Carlo and NumericSort because our current prototype does not sup-
port trace merging across (inlined) method invocations, which both
benchmarks would require.

Our compiler is efficient for pure Java, but fails to optimize a
single trace in the presence of native method invocations (because
we abort trace recording when encountering a native method invo-
cation). This points to a significant problem regarding the current
Java libraries. Because Java interpreters are generally relatively
slow, some performance critical methods (such as arraycopy)
are implemented in native C. This ”optimization” improves perfor-
mance in case of interpretation, but inhibits our compiler from
performing actual JIT compilation, resulting in very poor per-
formance. To improve performance, we will likely have to re-
implement all relevant parts of the Java library that do not rely
on unsafe language constructs in pure Java. This would be partic-
ularly beneficial in an embedded context since Java code is often
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Figure 10. Execution time for a set of benchmark programs from
the SciMark2 and Java Grande benchmark suites, executed by for
pure interpretation with the standard Java VM (java -Xint),
JamVM 1.3.3 (jamvm), our trace-based JIT compiler (TJIT), and
finally Sun’s Hotspot VM (Hotspot). As expected, our JIT com-
piler performs well on highly regular and sequential programs such
as LU, SOR, and Linpack. FFT and SparseCompRow still yield a
speedup of factor two over interpretation but suffer from the lack of
long traces that could be exploited. We are unable to record mean-
ingful traces for MonteCarlo and NumericSort because our current
prototype does not support trace merging across (inlined) method
invocations, which both benchmarks would require.

significantly more compact than equivalent pre-compiled native
code.

Currently, we do not plan on adding support for inlining native
methods to our compiler. Previous work in this area [22] has shown
that efficient inlining of native code blocks requires translating
the machine code instructions inside the native method into the
higher-level intermediate representation used internally by the JIT
compiler. In essence this amounts to decompiling the native code,
so that it can be (re-)optimized, specialized, and interwoven with
the surrounding Java code. It is unlikely that this analysis effort
would pay off in an embedded context.

6. Related Work
Our research is related to a number of existing works and projects.
The main inspiration for our trace selection and recording mecha-
nism was Dynamo [3]. Our system differs from Dynamo, because
we record bytecode traces, and then compile them to native ma-
chine code, whereas Dynamo performs dynamic optimization on
native machine code, emitting optimized native machine code. Our
actual trace recording algorithms also differ from Dynamo, be-
cause we have more high-level information available than Dynamo,
which only sees native machine code instructions.

Our approach of bottom-up code generation is closely related to
Burg [11, 10] that extends work by [1, 2]. Just like BEG [8] and
Twig [1], Burg works on tree grammars and generates a tree parser,
which in turn makes two passes over the tree for code generation.
The main difference for all these approaches with respect to our
work is that they all need a structured IR to work, while our input
is a mere linear sequence of instructions (that is read backwards).
Our approach also combines code generation, constant folding,
and register allocation, and all three steps are performed in inter-
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Figure 11. Speedup of trace-based JIT compilation over pure in-
terpretation. For highly regular programs our compiler achieves a
speedup of 7-11 over a fast interpreter. For code with significant
side exists the speedup drops to factor 3. For highly irregular code
our JIT compiler is unable to extract useful traces and does not im-
prove execution time.

lock in a single pass over the code. We can perform all three
steps in a single pass because we iterate backwards over the code,
guaranteeing that we will always see all uses before the actual
definition, which we utilize for on-the-fly dead code analysis and
register allocation.

The work by Chang et al. [5] on superblock formation and
optimization is closely related to our loop compilation mechanism.
Similar to Chang, we transform loop code into suitable single-entry
traces through re-tracing and duplicating the loop body along each
possible execution path. Our work differs from Chang in that we do
so at runtime and lazily: we only add additional child traces to the
loop construct as we encounter them dynamically at runtime.

A number of existing virtual machines target the same mobile
domain our work aims at. Sun has produced its own JIT com-
piler for the Kilobyte Virtual Machine, called KJIT [21]. KJIT is a
lightweight dynamic compiler. Similarly to our work, it only com-
piles a subset of bytecodes to reduce the size of the compiler. In
contrast to our JIT compiler, however, KJIT does not perform any
significant code optimization but merely maps bytecode instruc-
tions to machine code sequences. Also, KJIT seems to be an inter-
nal research project only and we have not been able to use it for
comparative benchmarks.

Sun’s current implementation of an embedded JIT compiler is
called CLDC Hotspot VM [15, 20]. Unfortunately, very little is
known about the internal details of this compiler. According to
Sun’s white papers, CLDC Hotspot performs some basic optimiza-
tions including constant folding, constant propagation, and loop
peeling, while our compiler also applies common subexpression
elimination and invariant code motion.

Other VM’s for the embedded domain include E-Bunny [7] and
Jeode EVM [16]. E-bunny is a simple, non-optimizing compiler for
x86, that uses stack-based code generation, which is very fast as far
as compile time is concerned, but yields poor code quality in com-
parison to optimizing compilers. Jeode is an optimizing compiler
that uses a simplified form of dynamic compilation. Unfortunately,
little is known about its internals.



7. Summary and Conclusion
We have presented an approach to just-in-time compilation that
records frequently executed code traces and compiles them to
executable native code. Instead of supporting generalized code
graphs, our compiler is highly specialized to support only instruc-
tion traces, which greatly simplifies the algorithms involved in
compilation and code optimization. Whereas traditional systems
often compile entire methods, regardless of whether all parts of the
method are hot or not, our approach focuses solely on hot code
paths and leaves cold regions to the interpreter.

Furthermore, our approach opens up additional optimization po-
tential by not allowing irrelevant code parts (such as rarely executed
exception edges) to interfere with the code quality of hot areas. Ad-
ditionally, compiler analyses and optimizations that are complex
and costly when applied to graphs of basic blocks are trivial to im-
plement when the input is restricted to traces.

To support irregular control flow, our system implements a trace
merging algorithm that compiles secondary traces when an initial
trace is exited along a non-exception edge. Secondary traces are
then directly attached to the parent trace and future executions
along this new path will be nearly as efficient as continuing along
the edges of the original primary trace.

We plan to port our JIT compiler to additional target architec-
tures. Due to the simplicity and small size of the compiler (which
is a direct result of limiting the code input to traces), we expect to
be able to add additional backends without much effort. A Strong-
ARM backend would be particularly interesting as it would allow
a direct comparison with existing embedded virtual machines such
as Jeode EVM.

Preliminary performance results from our prototype implemen-
tation are highly encouraging, and position our approach favorably
among the price/performance trade-offs made by embedded just-
in-time compilers. As a simple and effective technique for reduc-
ing the size of optimizing just-in-time compilers, and thereby the
trusted code base of critical systems, our approach may even be
applicable outside of the embedded systems space.
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