
An exact algorithm for Aircraft Landing Problem

Min Wen Jesper Larsen Jens Clausen
Informatics and Mathematical Modelling

Technical University of Denmark

2800 Kgs. Lyngby

Denmark

September 4, 2005

Abstract

This paper addresses the problem of scheduling aircraft landings at an airport.
Given a set of planes and runways, the objective is to minimize the total (weighted)
deviation from the target landing time for each plane. Thereare costs associated
with landing either earlier or later than a target landing time for each plane. Each
plane has to land on one of the runways within its predetermined time windows
such that separation criteria between all pairs of planes are satisfied. This type of
problem is a large-scale optimization problem, which occurs at busy airports where
making optimal use of the bottleneck resource (the runways)is crucial to keep the
airport operating smoothly.

This paper is the first attempt to develop a column generation-based exact de-
composition algorithm for the Aircraft Landing Problem (ALP). We formulate the
problem as an mixed integer program, then reformulate it, using Dantzig-Wolfe de-
composition, as a set partitioning problem with side constraints. We also present
a mixed integer formulation for the subproblem to generate the columns with neg-
ative reduce cost. Based on the set partitioning formulation, a branch-and-bound
algorithm is developed to obtain the exact solution for the problem. Computa-
tional results are presented for publicly available test problems involving up to 50
aircrafts and 4 runways. The initial implementation shows that optimal solutions
can be produced with less than 500 columns generated in acceptable CPU time.

Keywords: Aircraft Landing Problem, Branch-and-Price.

1 Introduction

In this paper, we consider the problem of scheduling aircraft landings at an airport.
Given a set of planes and runways, the objective is to minimize the total (weighted)
deviation from the target landing time for each plane. Thereare costs associated with
landing either earlier or later than a target landing time for each plane. Each plane
has to land on one of the runways within its predetermined time windows such that

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13700635?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


separation criteria between all pairs of planes are satisfied. This type of problem is a
large-scale optimization problem, which occurs at busy airports where making optimal
use of the bottleneck resource (the runways) is crucial to keep the airport operating
smoothly.

Upon entering within the radar range (or horizon) of an air traffic control (ATC) at
an airport a plane requires ATC to assign it a landing time andalso a runway if more
than one runway is in use. The landing time must lie within a predetermined time
windows, bounded by an earliest landing time and a latest landing time. The time win-
dows are different for different planes. The earliest time represents the time required
if a plane flies at its maximum airspeed. The latest time corresponds to the landing
time of a plane flying at its most fuel efficient airspeed whileholding (circling) for the
maximum allowable time.

Each plane also has a most economical, preferred speed, referred to as the cruise
speed. The preferred or target time of a plane is the time it would land if it is required
to fly at cruise speed. If ATC requires the plane to either slowdown, hold or speed up,
a cost will be incurred.

Furthermore, planes have to keep separation distance to avoid turbulences caused
by preceding planes. Thus, there are certain minimum constraints on the separation de-
lay between aircrafts of different types, e.g. a Boeing 747 can handle (and generates)
more turbulence than a Hawker 700.

Beasley, Krishnamoorthy, Sharaiha and Abramson (2000) presented a mixed in-
teger formulation of the ALP. After relaxing binary variables and strengthening the
formulation with additional constraints the problem is solved optimally with a lin-
ear programming based tree search algorithm. Jung and Laguna (2003) proposed a
heuristic algorithm based on the segmentation of time. The time horizon is divided
into time segments that determine subproblems of ALP. Cheng, Crawford and Menon
(1999) addressed four genetic schemes for solving the multiple runway ALP. Ernst,
Krishnamoorthy and Storer (1999) solved the multiple runway ALP through a heuris-
tic approach involving a genetic algorithm to search a perturbation space, and an exact
approach which is implememted as a branch-and-bound algorithm. Pinol and Beasley
(2004) first applied the scatter search and bionomic algorithm for the multiple runway
ALP. Bianco, Ricciardelli, Rinaldi and Sassano (1988) adopt a job-shop scheduling
view of the ALP. The ALP may also be viewed as an open travelingsalesman problem
with time window when only one runway is considered (Biancoet al. 1993).

In this research, we investigate the multiple runway case. We use column genera-
tion combined with branch-and-bound (so called branch-and-price) to solve the prob-
lem. The contribution of this paper is that our algorithm is the first attempt to develop
a branch-and-price algorithm for the problem.The remainder of the paper is structured
as follows: In section 2, we give the problem description andthe mathematical for-
mulation for the ALP. In section 3, we reformulate it as a set partitioning formulation
with side constraints. The mathematical model for the subproblem is also given. The
branch-and-price algorithm is developed in section 4. In section 5, some implementa-
tion details are given. Computational results are reportedin section 6. Conclusion are
given in Section 7.

2



2 The Aircraft Landing Problem

This section presents a mixed integer formulation of the static multiple runway Air-
craft Landing Problem that is based on the formulaiton presented in Beasleyet al.
(2000). Given a set of planesP , each planei has a predetermined landing time win-
dows[Ei, Li], and also, a target timeTi (Ei ≤ Ti ≤ Li) at which time the plane is
landed with cost 0.Sij is the required seperation time between planei andj (wherei
lands beforej) for landing them on the same runway. As custom in the multiple runway
case, we assume the seperation time between two planes on thedifferent runways is 0.
gi andhi denote the unit costs for planei landing earlier and later than the target time
respectively. Figure 1 depicts this variation in cost within the time windows of a planei.

6

-@
@

@
@@

!!!!!!!!!!!!!!!

TiEi Li

gi hi

Cost

Time

Figure 1: Variation in cost for a plane within its time window

We use the decision variables:

xi = the landing time for planei (i ∈ P );

αi = how soon planei lands beforeTi (i ∈ P )

βi = how late planei lands afterTi

δij =

{

1 if planei lands beforej (i, j ∈ P ; i 6= j);
0 otherwise

zij =

{

1 if i andj land on the same runway(i, j ∈ P ; i 6= j);
0 otherwise

yjr =

{

1 if planej lands on runwayr (j ∈ P ; r ∈ R);
0 otherwise

The mathematical formulation can now be written as:

3



MIP:

min

P
∑

i=1

(giαi + hiβi) (1)

s.t. Ei ≤ xi ≤ Li ∀i ∈ P ; i 6= j (2)

δij + δji ≤ 1 ∀i, j ∈ P (3)
R

∑

r=1

yir = 1 ∀i ∈ P ; r ∈ R (4)

zij = zji ∀i, j ∈ P ; i 6= j (5)

zij ≥ yir + yjr − 1 ∀i, j ∈ P ; i 6= j (6)

xj ≥ xi + Sijzij + (Li + Sij − Ej)δji∀i, j ∈ P ; i 6= j (7)

αi ≥ Ti − xi ∀i ∈ P (8)

0 ≤ αi ≤ Ti − Ei ∀i ∈ P (9)

βi ≥ xi − Ti ∀i ∈ P (10)

0 ≤ βi ≤ Li − Ti ∀i ∈ P (11)

xi = Ti − αi + βi ∀i ∈ P (12)

δij , yij , zij binary ∀i, j ∈ P ; i 6= j (13)

The objective function (Eq.1) minimize the sum of the costs of deviation from
the target times (Ti). Constraints (Eq.2) ensure that each plane lands within its time
windows. Constraints (Eq.3) indicate that either planei must land before planej (δij =
1) or planej must land before planei (δji = 1). Constraints (Eq.4) ensure that each
plane lands on exactly one runway whereas constraints (Eq.5) are symmetry constraints
(if i andj land on the same runway so doj andi). Constraints (Eq.6) ensure that, if
there is any runwayr on which planei andj are both landed, then we forcezij to be
1 (i andj land on the same runway). Ifzij = 0, then (Eq.6) ensure that planesi and
j can not land on the same runway. Constraints (Eq.7) are the separation constraints.
Constraints (Eq.8) and (Eq.9) ensure thatαi is at least as big as zero and the time
difference betweenTi and xi, and at most the time difference betweenTi and Ei.
Constraints (Eq.10) and (Eq.11) are similar equations forβi. Constraits (Eq.29) relate
the landing time (xi) to the timei lands before (αi), or after (βi), target (Ti).

The linear programming relaxation (denoted asLMIP) is obtained by relaxing the
integer constraints (Eq.13) with

δij , zij , yir ∈ [0, 1] ∀i, j ∈ P ; i 6= j (14)

3 Decomposition and Column Generation

As the experimental result presented in Beasleyet al. (2000), theLMIP provides a
poor bound on the optimal ofMIP. In order to get a better formulation, we formulate it
as a set partitioning formulation. LetS denote the set of all feasible landing sequences.

4



Let as
i be 1 if planei appears in the landing sequences (s ∈ S) and 0 otherwise. Let

cs be the cost of the landing sequences, which is given by,

cs =

P
∑

i=1

(giαia
s
i + hiβia

s
i )

The resulting model becomes:
SP:

min
∑

s∈S

cszs (15)

s.t.
∑

s∈S

as
izs = 1 ∀i ∈ P (16)

∑

s∈S

zs = R (17)

zs binary (18)

where thezs is the binary variable which is 1 if the landing sequences is selected and
0 otherwise.

(Eq.15) is the objective function minimizing the accumulated costs of all the planes.
Constraints (Eq.16) ensure that each plane lands on exactlyone runway, while the
constraint (Eq.17) indicates the limit on the number of the runways.

Consider a small example involving 4 planes and 2 runways. Itis possible to enu-
merate all possibilities of the landing sequences. Fig.2 shows the coefficient matrix for
this small problem.

1: 1 1 1 1 1 1 1 =1
2: 1 1 1 1 1 1 1 =1
3: 1 1 1 1 1 1 1 =1
4: 1 1 1 1 1 1 1 =1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 =2

Figure 2: Coefficient matrix for a small example involving of4 planes and 2 runways

However, for a problem with 50 planes, there exsit
∑50

k=1

(

50

k

)

≈ 1.1259 × 1015

feasible columns. It is computational inefficient to enumerate all these columns. In-
stead, we use column generation method to solve the problem.The column generation
method split the problem into two problems: a master problemand a subproblem. We
start by solving the master problem which is an LP relaxationwith only a small set
of the columns (denoted asLSP). This problem is also denoted the restricted linear
program. Afterwards, we check if the addition of one or more columns, currently not
in the restricted linear program, might improve the LP-solution. Similar to the simplex
algorithm, a variable of negtive reduce cost can improve thesolution. The column gen-
eration can be stopped as soon as no further columns with negative reduced cost exist.
The general framework of column generation is presented in Fig.3.

5



generate an initial feasible solution (columns)
repeat
solve the master problem by linear programming
find out the columns with negetive reduce cost
add the column(s) into the master problem
until termination, when there exists no column with negative reduce cost

Figure 3: The framework of column generation

When solving theLSP by the column generation procedure described earlier, the
aim of solving subproblems is to find the column with the minimum reduced cost,
which can be given by,

min

P
∑

i=1

(giαiai + hiβiai) −

P
∑

i=1

πiai − λ (19)

πi denote the dual variable value corresponding to planei, for eachi ∈ P , in constraint
(Eq.16), andλ denote the dual variable value corresponding to the (Eq.17)in the master
problem.ai is the binary variable which is 1 if planei appears in the landing sequence
and 0 otherwise.

The constraints for obtaining a landing sequence are:

s.t. aiEi ≤ xi ≤ aiLi ∀i ∈ P (20)

δij ≤ ai ∀i, j ∈ P ; i 6= j (21)

δij ≤ aj ∀i, j ∈ P ; i 6= j (22)

1 ≥ δij + δji ≥ ai + aj − 1 ∀i, j ∈ P ; i 6= j (23)

xj ≥ xi + Sijδij − (Li − Ej)δji − (aiLi − ajEj)

+ (Li − Ej)(δij + δji) ∀i, j ∈ P ; i 6= j (24)

αi ≥ aiTi − xi ∀i ∈ P (25)

0 ≤ αi ≤ Ti − Ei ∀i ∈ P (26)

βi ≥ xi − aiTi ∀i ∈ P (27)

0 ≤ βi ≤ Li − Ti ∀i ∈ P (28)

xi = aiTi − αi + βi ∀i ∈ P (29)

δij , aij binary ∀i, j ∈ P (30)

The landing time (xi), earliness (αi) and tardiness (βi) are active only if the plane
i appears in the landing sequence (i.e.ai = 1). This is ensured by constraints (Eq.20)
Similarly, constraints (Eq.21) and (Eq.22) show thatδij is active ifi andj both are in
the landing sequence (i.e.ai = aj = 1). Constraints (Eq.23) show that either planei
must land before planej (δij = 1) or planej must land before planei (δji = 1) if both
of them are active (i.e.ai = aj = 1). Constraints (Eq.24) enforce the separation time

6



between two planes. There are 4 cases considered here:
a. if both of planei andj are active (i.e.ai = aj = 1), then eitheri lands before

j (i.e. δij = 1) or j lands beforei (i.e. δij = 0). Therefore, (Eq.24) becomes either
xj ≥ xi +Sij ensuring that separation is enforced, orxj ≥ xi− (Li−Ej) a constraint
that is always true,

b. if ai = 1 aj = 0, from (Eq.21) and (Eq.22), we have thatδij = δji = 0.
Therefore, (Eq.24) becomes0 ≥ xi − Li,

c. if ai = 0 aj = 1, similar to case b, (Eq.24) becomesxj ≥ Ei,
d. if ai = 0 aj = 0, it becomes0 ≥ 0.

The subproblem is denoted asSUB. If the objective function value is non-negative,
then the master problemLSP has been solved, otherwise the corresponding columna
is added to the master problem and the master problem is then solved again.

For Integer programs (IP) like the one presented in this work, however, column
generation may not find the optimal solution as linear programming duality theory is
not valid for IPs. In this case, we use column generation together with branch-and-
bound (called branch-and-price) to guarantee that we end upwith an integer solution.

4 Branch-and-Price

For solving our problemSP traditional branching on thez-variable may cause trouble
along a branch where a variable has been set to be zero. Recallthatzs in SP represents
a partial landing sequence on a single runway generated by solving a single runway
subproblem, the branchingzs = 0 means that this partial landing sequence is excluded
and hence no such schedule can be generated in the subsequentsubproblems. However,
it is very hard to exclude a landing sequence when solving a single runway subproblem.

Instead of branching on thez-variable in the set partitioning formulation, we branch
on whether planej is landed immediately afteri or not. Letyij denote the new variable
which is 1 if planej is landed immediately afteri and 0 otherwise. For any feasible
solution ofLSP, (z̄s, s ∈ S), the correspondinḡyij is given by

ȳij =
∑

s∈S

ws
ij z̄s ≥ 0 ∀i, j ∈ P ; i 6= j (31)

wherews
ij is 1 if s ∈ S covers bothi andj andi is immediately afterj, and 0 otherwise.

Consider a branch-and-bound node suppose itsLSP solution (denoted as̄zs, s ∈
S), is fractional and is not pruned. Compute the corresponding ȳij value by (Eq.31).
Then a branching decision can be made on this node. A pair (m, n) is selected such
that ȳmn is fractional value closest to 1. (i.e.ȳmn = max(ȳij , ȳij ∈ (0, 1))). Then two
son nodes are created, one along the branch withȳmn fixed as 1 and the other as 0.
Constraints enforcing this requirement need to be added to the problem.

a. If ȳmn is fixed as 1, then the initial restricted master problem of the correspond-
ing son node consists of all the columns of its father node where planen is landed
immediatly after planem if they are active. At the same time, the structure of the

7



subproblemSUB is updated. The following two constraints should be imposed:

am = an (32)
∑

k∈P δkm =
∑

k∈P δkn − ai (33)

Constraint (Eq.32) indicates that either both or none of them is covered by the landing
sequence. Constraint (Eq.33) ensuresn lands immediatly afterm if they are both active
(i.e.am = an = 1).

b. If ȳmn is fixed as 0, then the initial restricted master problem of the corre-
sponding son node consists of all the columns of its father node except where planen
is landed immediatly after planem. At the same time, the following two constraints
should be added to the subproblemSUB:

am + an ≤ 1 + Mdmn (34)

2 − Mδnm ≤
∑

k∈P δkn −
∑

k∈P δkm + M(1 − dmn) (35)

wheredmn is a binary variable.M is a large number. In this case, either constraint
(Eq.34) is active (indicating only one or none of them is in the sequence), or constraint
(Eq.35) is active (indicating eithern lands beforem or there are planes landing after
m and beforen).

The node selection strategy we use here is thedepth-first Search(DFS). If the cur-
rent node is not pruned (i.e. the solution is fractional and is less than the upper bound
UB of the search tree), then the DFS is applied such that the son node withȳmn = 1 is
selected as the next node to be solved.

5 Implementation Details

5.1 The Upper Bound

Before starting the exploration of the search tree, we have to set the upper bound for
the problem. It is usually provided by a feasible solution through an approximation
algorithm or a heuristic method. Beasleyet al. (2000) presented a simple heuristic
for the problem. Specifically, the planes are ordered in nondecreasing target time, then
assigned one by one to the runway with the least cost. The landing cost on a runway
is calculated according to the previous landings and the corresponding separation time.
Let Bir be the cost of airplanei landing on runwayr, then

Bir = max(Ti, xk + Ski|∀k ∈ Ar)

whereAr is the previous landings on runwayr and planei is the one being considered
for a runway assignment. The current plane is assigned to therunway r∗ with the
minimumBir. Hence, after this step, the temporary assignment of landing times are
always on or after the target times. To improve the solution obtained, we solve the LP
problem with the order of landing on the runway fixed. The optimal objective function
value of the LP problem is a true upper bound that we denote with ZUB. This can also
be used for tightening the time windows as follows:

Ei = max[Ei, Ti − ZUB/gi] ∀i ∈ P

8



Li = min[Li, Ti + ZUB/hi] ∀i ∈ P

5.2 The initial columns for Column Generation

The initial columns for the the column generation consist ofthree parts. The first
part is P ’dummy’ columns. Each column contains one plane without taking account
of the runways, that is, the column contains a single 1 for thei’th row (ac

i = 1).
They are added to ensure a feasible LP upon branching and theyare assighed a cost
sufficiently high in order to force them out of the basis in theoptimal solution. In order
to get a good starting objective value, we also add the columns corresponding to the
heuristic solution in the master problem. We also generate some columns with cost 0.
Specifically, the planes are ordered in nondecreasing target time (stored inordind[]),
then considered one by one whether to be landed or not. If the cost of landing the
current plane is 0, in other words, the separation time between its target time and the
previous landings is satisfied, we assign it on the runway, otherwise we discard it and
store it intononexist[]. Let k denote the number of non-existing planes. The next step
is to generatek columns, in each column, we first fix one of the non-existing planes
to be landed at its target time, then insert the rest P-1 planes as many as we can. The
detail of the algorithm for generating the columns is shown in Fig.4.

initialization
ordindT =sortindex(T);
cost0_col =zeros(num,P);
nonexist = [];
col0_col(1, ordindT(1)) = 1;
for j = 2 to p do

if the seperation time between T(ordindT(j)) and the previouslandings is satisfied
then

cost0_col(1, ordindT(j)) = 1;
else

nonexist = [nonexist, j];
end if

end for
for i = 1 to length(nonexist)do

for j = 1 to P do
if j 6= i then

if the seperation time between T(ordindT(j)) and the previouslandings is
satisfiedthen

cost0_col(i+1, ordindT(j)) = 1;
end if

end if
end for

end for

Figure 4: The algorithm for generate the columns with cost 0

9



6 Experimental Results

The decomposition algorithm were implemented in Matlab on a..Hz Pentium PC with
..GB of memory. The linear programming problemsLSP and the subproblems are
solved by GAMS. Computational results are presented in thissection for 8 instances,
publicly available from the OR-Library, involving from 10 to 50 aircrafts.

Table 1 shows the result of our first computational experiment. The first column
is the number of the problem. The following two column ’P’ and’R’ represent the
number of planes and the number of runways respectively. Each problem was solved
with an increasing number of runways until the optimal solution value dropped to zero
(indicating that we have sufficient runways to enable all planes to land on target). The
column ’LMIP-IP gap’ represents the gap in percentage between the linear relaxation
solution value of the mixed integer formulation and the integer solution value, while the
column ’LSP-IP gap’ represents the gap between the linear relaxation solution value
of column generation and the integer solution value. The rest information regarding
the number of tree nodes searched for solving the problem, the number of columns
generated, and the total running time of the algorithm.

Number Number Total
Problem LMIP-IP LSP-IP of Tree of Time Optimal
Number P R Gap(%) Gap(%) nodes Columns (sec) Soluiton

1 10 2 100 0.0 1 23 27.1 90
3 - - - - - 0

2 15 2 100 0.0 1 39 64.0 210
3 - - - - - 0

3 20 2 100 0.0 1 24 4.9 60
3 - - - - - 0

4 20 2 100 0.0 1 92 260.8 640
3 100 0.0 1 85 96.7 130
4 - - - - - 0

5 20 2 100 0.0 9 153 1066.1 650
3 100 0.0 12 121 496.5 170
4 - - - - - 0

6 30 2 100 0.0 9 440 3207.7 554
3 - - - - - 0

7 44 2 - - - - - 0
8 50 2 100 0.0 1 204 909.3 135

Table 1: Computational results for the multiple runway problem

It is clear from Table 1 that our algorithm found the optimal solution for all the prob-
lems. In addition, the optimal solutions were found early inthe tree search in our
branch-and-bound algorithm with less than 12 tree nodes. Compared the column 4
and 5, we can see that, for every problem we tested, the LMIP-IP gap is 100, while
the LSP-gap is 0 indicating that the lower bound provided by the column generation

10



is exact the same as the solution value of the integer problemSP. The LSP-IP gap is
much smaller than the LMIP-IP gap. Moreover, the optima are produced with very few
columns generated. For example, if we consider the last problem with 50 planes, there
exsit

∑50
k=1

(

50

k

)

≈ 1.1259×1015 feasible columns in the entire set partitioning master
problem. However, in our algorithm, only 204 columns were used to get the optimality
for this problem. It can also be seen from the table that less than 450 columns were
generated for all the problems.

Compared with the computational performances of the same problem in some other
literatures, the running time in this paper is substantially larger. One main factor is that
we used too much time for calling GAMS from Matlab. Therefore, we believe that
using other languages (e.g. JAVA or C++) will significantly shorten the running time.

7 Conclusion

In this paper, we presented a set partition formulation for the ALP and an exact al-
gorithm using branch-and-price method which have not been applied to the ALP pre-
viously in the literature. The computational experiments show that the bound based
on the column generation is much better than the LP relaxation of the mixed integer
formulation and the algorithm can solve the problem successfully. Further more, it is
worthy to note that all of our problems we solved generating less than 450 columns. A
potential problem as the problem size increases is that, it will not be a computationally
effective procedure to solve the subproblem by mathematical modelSUB. Research ef-
fors can be made in future to develop an effective heuristic method for the subproblem.

11



References

[1] J.E. Beasley, M. Krishnamoorthy, Y.M. Sharaiha, and D. Abranmson, Scheduling
Aircraft Landings-the static case,Transportation Science, 34(2):180-197, 2000.

[2] A.T. Ernst, M. Krishnamoorthy, and T.H. Storer, Heuristic and Exact Algorithms
for Scheduling Aircraft Landings,Networks, 34:229-241, 1999.

[3] H. Pinol, and J.E. Beasley, Scatter Search and Bionomic Algorithms for the Aircraft
Landing Problem,

[4] G. Jung, and M. Laguna, Time segmenting heuristic for an aircraft landing problem,

[5] J. Abela, D. Abramson, M. Krishnamoorthy, A. De Silva, and G. Mills, Computing
optimal schedules for landing aircraft, InProceedings of the 12th National ASOR Con-
ference, pages 71-90, 1993

[6] J.E. Beasley, J. Sonander, and P. Havelock, Scheduling aircraft landings at London
Heathrow using a population heuristic.Journal of the Operational Research Society,
55:54-64, 2004.

[7] V. Ciesielski, and P. Scerri, Real time genetic scheduling of aircraft landing times,
In D. Fogel, editor,Proceedings of the 1998 IEEE International Conference on Evolu-
tionary Computation (ICEC98), pages 360-364. IEEE, NewYork, USA, 1998.

[8] V.H.L. Cheng, L.S. Crawford, and P.K. Menon, Air traffic control using genetic
search techniques,IEEE International Conference on Control Applications, 1999.

[9] L. Bianco, S. Ricciardelli, G. Ginaldi and A. Sassano, Scheduling tasks with se-
quence dependent processing time,Naval Research Logistics, 35:177-184, 1988.

[10] L. Bianco, A. Mingozzi and A. Ricciardelli, The Traveling Salesman Problem
with Cumulative Costs,Networks 23, 81-91, 1993.

12


