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Abstract

This paper addresses the problem of scheduling aircraftige at an airport.
Given a set of planes and runways, the objective is to mirgrthie total (weighted)
deviation from the target landing time for each plane. Theeecosts associated
with landing either earlier or later than a target landimgetifor each plane. Each
plane has to land on one of the runways within its predetethiime windows
such that separation criteria between all pairs of planesatisfied. This type of
problem is a large-scale optimization problem, which os@iibusy airports where
making optimal use of the bottleneck resource (the runwigysucial to keep the
airport operating smoothly.

This paper is the first attempt to develop a column generdtamed exact de-
composition algorithm for the Aircraft Landing Problem (R). We formulate the
problem as an mixed integer program, then reformulateiiigantzig-Wolfe de-
composition, as a set partitioning problem with side caists. We also present
a mixed integer formulation for the subproblem to generagecolumns with neg-
ative reduce cost. Based on the set partitioning formuiatiobranch-and-bound
algorithm is developed to obtain the exact solution for thebfgm. Computa-
tional results are presented for publicly available teebfams involving up to 50
aircrafts and 4 runways. The initial implementation shokat bptimal solutions
can be produced with less than 500 columns generated intabdeCPU time.

Keywords: Aircraft Landing Problem, Branch-and-Price.

1 Introduction

In this paper, we consider the problem of scheduling aitdeafdings at an airport.
Given a set of planes and runways, the objective is to mirgrttie total (weighted)
deviation from the target landing time for each plane. Tlagecosts associated with
landing either earlier or later than a target landing timedach plane. Each plane
has to land on one of the runways within its predetermine@ timndows such that
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separation criteria between all pairs of planes are satisfiéis type of problem is a
large-scale optimization problem, which occurs at bugyatis where making optimal
use of the bottleneck resource (the runways) is crucial gpkée airport operating
smoothly.

Upon entering within the radar range (or horizon) of an aiffit control (ATC) at
an airport a plane requires ATC to assign it a landing timealad a runway if more
than one runway is in use. The landing time must lie within edetermined time
windows, bounded by an earliest landing time and a lateditgtime. The time win-
dows are different for different planes. The earliest timpresents the time required
if a plane flies at its maximum airspeed. The latest time epoads to the landing
time of a plane flying at its most fuel efficient airspeed wiitdding (circling) for the
maximum allowable time.

Each plane also has a most economical, preferred speetterkfe as the cruise
speed. The preferred or target time of a plane is the timeitldviand if it is required
to fly at cruise speed. If ATC requires the plane to either slown, hold or speed up,
a cost will be incurred.

Furthermore, planes have to keep separation distance io tawbulences caused
by preceding planes. Thus, there are certain minimum caingéron the separation de-
lay between aircrafts of different types, e.g. a Boeing 7d7 ltandle (and generates)
more turbulence than a Hawker 700.

Beasley, Krishnamoorthy, Sharaiha and Abramson (200Gepted a mixed in-
teger formulation of the ALP. After relaxing binary variasland strengthening the
formulation with additional constraints the problem isv&al optimally with a lin-
ear programming based tree search algorithm. Jung and Ba@®®3) proposed a
heuristic algorithm based on the segmentation of time. Trhe horizon is divided
into time segments that determine subproblems of ALP. Chérgwford and Menon
(1999) addressed four genetic schemes for solving the prailtunway ALP. Ernst,
Krishnamoorthy and Storer (1999) solved the multiple rupaP through a heuris-
tic approach involving a genetic algorithm to search a pb#tion space, and an exact
approach which is implememted as a branch-and-bound gigarPinol and Beasley
(2004) first applied the scatter search and bionomic algorfor the multiple runway
ALP. Bianco, Ricciardelli, Rinaldi and Sassano (1988) @adojpb-shop scheduling
view of the ALP. The ALP may also be viewed as an open travedalgsman problem
with time window when only one runway is considered (Biaetal. 1993).

In this research, we investigate the multiple runway case.ugé column genera-
tion combined with branch-and-bound (so called branchyanak) to solve the prob-
lem. The contribution of this paper is that our algorithmhie first attempt to develop
a branch-and-price algorithm for the problem.The remainflthe paper is structured
as follows: In section 2, we give the problem description #rmmathematical for-
mulation for the ALP. In section 3, we reformulate it as a satiioning formulation
with side constraints. The mathematical model for the soiblem is also given. The
branch-and-price algorithm is developed in section 4. ttise 5, some implementa-
tion details are given. Computational results are repdriegction 6. Conclusion are
given in Section 7.



2 TheAircraft Landing Problem

This section presents a mixed integer formulation of thdcstaultiple runway Air-
craft Landing Problem that is based on the formulaiton preskin Beasleyet al.
(2000). Given a set of plands, each plané has a predetermined landing time win-
dows|[E;, L;], and also, a target timg; (E; < T; < L;) at which time the plane is
landed with cost 05;; is the required seperation time between plaaad;j (where:
lands beforg) for landing them on the same runway. As custom in the meltiphway
case, we assume the seperation time between two planes difféhent runways is 0.
g; andh; denote the unit costs for plaéanding earlier and later than the target time
respectively. Figure 1 depicts this variation in cost witthie time windows of a planie
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Figure 1: Variation in cost for a plane within its time window

We use the decision variables:

Yir

the landing time for plané (i € P);
how soon plané lands beford; (i € P)
how late plane lands aftefT;

{1

o= O= O

if planei lands beforg (i, j € P;i # j);
otherwise

if ¢ and;j land on the same runwafi, j € P;i # j);
otherwise

if planej lands on runway (j € P;r € R);
otherwise

The mathematical formulation can now be written as:



MIP:

P
min Z(giai + hiB:) Q)
i=1
st. E; <z <L Vi€ P;i+#j (2
5ij 4+ 65 <1 Vi,jeP 3)
R
> v =1 Vie PireR (4)
=1
Zij = Zji Vi,j € Pyi#j (5)
2ij 2 Yir + Yjr — 1 Vi,j € Pii#j (6)
r; > @ + Sijzij + (Li + Sij — E;)6;:Vi,j € Pyi # j (7)
o; >T; —x; Vie P (8)
0<a; <T,—E Vie P 9)
B> a—T, VieP (10)
0<B <Li-T, Vie P (11)
v, =T, —o; + 5 Vi e P (12)
dij, Yij, 2zij binary Vi,j € P;i#j (13)

The objective function (Eq.1) minimize the sum of the codtsleviation from
the target timesT;). Constraints (Eq.2) ensure that each plane lands withitirite
windows. Constraints (Eq.3) indicate that either plameist land before plang(d;; =
1) or planej must land before plang(d;; = 1). Constraints (Eqg.4) ensure that each
plane lands on exactly one runway whereas constraints BeSymmetry constraints
(if ¢ andj land on the same runway so gandi). Constraints (Eq.6) ensure that, if
there is any runway on which plane and;j are both landed, then we foreg; to be
1 (@ andy land on the same runway). f; = 0, then (Eq.6) ensure that planeand
j can not land on the same runway. Constraints (Eq.7) are paga#on constraints.
Constraints (Eq.8) and (Eq.9) ensure thatis at least as big as zero and the time
difference betweed; and z;, and at most the time difference betweEnand E;.
Constraints (Eq.10) and (Eq.11) are similar equationgifoConstraits (Eq.29) relate
the landing time £;) to the time: lands befored;), or after (3;), target ().

The linear programming relaxation (denoted_&41P) is obtained by relaxing the
integer constraints (Eq.13) with

dij, zij» Yir € [0,1] Vi,je Pii#j (14)

3 Decomposition and Column Generation

As the experimental result presented in Beaglegl. (2000), theLMIP provides a
poor bound on the optimal &fl 1 P. In order to get a better formulation, we formulate it
as a set partitioning formulation. Letdenote the set of all feasible landing sequences.



Let a; be 1 if planei appears in the landing sequencé € S) and 0 otherwise. Let
¢s be the cost of the landing sequengavhich is given by,

P
ce = Y _(gicial + hifia;)

i=1

The resulting model becomes:

SP:

min chzs (15)

ses
st. Y alz,=1 VieP (16)

seS
S i =R (7)

seS
zs binary (18)

where thez, is the binary variable which is 1 if the landing sequende selected and
0 otherwise.

(Eqg.15) is the objective function minimizing the accumatitosts of all the planes.
Constraints (Eq.16) ensure that each plane lands on exacdyrunway, while the
constraint (Eq.17) indicates the limit on the number of teways.

Consider a small example involving 4 planes and 2 runwayis.dossible to enu-
merate all possibilities of the landing sequences. Figavstthe coefficient matrix for
this small problem.

1. 1 1 1 1 1 1 1 =1
2: 1 1 1 1 11 1 =
3: 1 1 1 11 1 1 =
4: 1 1 1 1 1 1 1 =1

1111111111111 1 =2

Figure 2: Coefficient matrix for a small example involvingdoplanes and 2 runways

However, for a problem with 50 planes, there egif~, (%°) ~ 1.1259 x 10
feasible columns. It is computational inefficient to enuaterall these columns. In-
stead, we use column generation method to solve the profleencolumn generation
method split the problem into two problems: a master proldecha subproblem. We
start by solving the master problem which is an LP relaxatiith only a small set
of the columns (denoted dsSP). This problem is also denoted the restricted linear
program. Afterwards, we check if the addition of one or maskimns, currently not
in the restricted linear program, might improve the LP-8olu Similar to the simplex
algorithm, a variable of negtive reduce cost can improvestietion. The column gen-
eration can be stopped as soon as no further columns withivegaduced cost exist.
The general framework of column generation is presentedqii3 F



generate an initial feasible solution (columns)

repeat

solve the master problem by linear programming

find out the columns with negetive reduce cost

add the column(s) into the master problem

until termination, when there exists no column with negative cectost

Figure 3: The framework of column generation

When solving thel SP by the column generation procedure described earlier, the
aim of solving subproblems is to find the column with the minimreduced cost,
which can be given by,

P

P
min Y (gicuai + hifiai) — Y miai — A (19)
i=1

i=1

m; denote the dual variable value corresponding to plafer eachi € P, in constraint
(Eq.16), and\ denote the dual variable value corresponding to the (Ednifig master
problem.a; is the binary variable which is 1 if planeappears in the landing sequence
and 0 otherwise.

The constraints for obtaining a landing sequence are:

st aF; <z <a;L; Vie P (20)
5 < a; Vi,jePyi#j  (21)
dij < aj Vi,je Pii#j  (22)
1> 65 +0j > ai+a; — 1 VijePyi£j (23)
xj >z + 8i;0;5 — (Li — Ej)65 — (aiLi — a; E;)

+ (Li — E;)(65; + 0;) Vi,jePyi#j  (24)
a; > a;T; — x; Vie P (25)
0<a; <Ti — E VieP  (26)
Bi 2 x; — a;T; Vie P (27)
0<B<Li—T, Vie P (28)
r; =a; Ty —a; + B; Vie P (29)
dij, ai; binary Vi,j € P (30)

The landing time £;), earlinessd;) and tardiness{;) are active only if the plane
1 appears in the landing sequence (ug= 1). This is ensured by constraints (Eq.20)
Similarly, constraints (Eq.21) and (Eq.22) show thatis active ifi andj both are in
the landing sequence (i.e; = a; = 1). Constraints (Eq.23) show that either plane
must land before plang(d;; = 1) or planej must land before plang(d;; = 1) if both
of them are active (i.ea; = a; = 1). Constraints (Eq.24) enforce the separation time



between two planes. There are 4 cases considered here:

a. if both of plane andyj are active (i.ea; = a; = 1), then either lands before
j (i.e. ;5 = 1) or j lands before (i.e. §;; = 0). Therefore, (Eq.24) becomes either
x; > x; +S;; ensuring that separation is enforcedgzor> x; — (L; — E;) a constraint
that is always true,

b. if a; = 1 a; = 0, from (Eq.21) and (Eq.22), we have thgt = 6;; = 0.
Therefore, (Eq.24) becomés> z; — L;,

c. ifa; = 0a; = 1, similar to case b, (Eq.24) becomes> E;,

d.if a; =0a; =0, it become® > 0.

The subproblem is denoted &B. If the objective function value is non-negative,
then the master problemSP has been solved, otherwise the corresponding colwmn
is added to the master problem and the master problem is ¢iheadsagain.

For Integer programd P) like the one presented in this work, however, column
generation may not find the optimal solution as linear prognéng duality theory is
not valid forIPs. In this case, we use column generation together with brand-
bound (called branch-and-price) to guarantee that we endthpan integer solution.

4 Branch-and-Price

For solving our problen$sP traditional branching on the-variable may cause trouble
along a branch where a variable has been set to be zero. Rextall in SP represents
a partial landing sequence on a single runway generatedlnga single runway
subproblem, the branching = 0 means that this partial landing sequence is excluded
and hence no such schedule can be generated in the subsaduysablems. However,
itis very hard to exclude a landing sequence when solvingg@eiunway subproblem.
Instead of branching on thevariable in the set partitioning formulation, we branch
on whether plang is landed immediately aftéror not. Lety;; denote the new variable
which is 1 if planej is landed immediately afterand O otherwise. For any feasible
solution ofLSP, (5, s € S), the corresponding;; is given by

Gij = ) _wijZs 20 Vi j € Pii# j (31)
ses

wherew;; is 1if s € S covers both and; and: is immediately aftey, and O otherwise.
Consider a branch-and-bound node supposk $8 solution (denoted as;, s €
S), is fractional and is not pruned. Compute the correspanginvalue by (Eq.31).
Then a branching decision can be made on this node. A pain)is selected such
thaty,,, is fractional value closest to 1. (ig., = max(yi;,%:; € (0,1))). Then two
son nodes are created, one along the branch gyithfixed as 1 and the other as 0.
Constraints enforcing this requirement need to be addduktproblem.
a. If y,,,,, is fixed as 1, then the initial restricted master problem efdbrrespond-
ing son node consists of all the columns of its father noderevipéanen is landed
immediatly after planen if they are active. At the same time, the structure of the



subproblenBUB is updated. The following two constraints should be imposed
A = ap (32)
> kep Okm =2 pep Okn — @i (33)

Constraint (Eq.32) indicates that either both or none afitieecovered by the landing
sequence. Constraint (Eq.33) ensurdsnds immediatly aftem if they are both active
(i.eam =a, =1).

b. If ., is fixed as 0, then the initial restricted master problem ef tbrre-
sponding son node consists of all the columns of its fathderexcept where plane
is landed immediatly after plane. At the same time, the following two constraints
should be added to the subprobl&wB:

Am + an <1+ Mdp, (34)
2= Mbpm < X pep Okn — Spep Okm + M(1 = dyny) (35)

whered,,,,, is a binary variable.M is a large number. In this case, either constraint
(Eqg.34) is active (indicating only one or none of them is ia sequence), or constraint
(Eqg.35) is active (indicating either lands beforen or there are planes landing after
m and beforen).

The node selection strategy we use here igiheth-first SearcfDFS). If the cur-
rent node is not pruned (i.e. the solution is fractional anleé$s than the upper bound
UB of the search tree), then the DFS is applied such that the@dawithy,,,,, = 1 is
selected as the next node to be solved.

5 Implementation Details
5.1 TheUpper Bound

Before starting the exploration of the search tree, we hawet the upper bound for
the problem. It is usually provided by a feasible solutiorotlgh an approximation
algorithm or a heuristic method. Beasleyal. (2000) presented a simple heuristic
for the problem. Specifically, the planes are ordered in eorehsing target time, then
assigned one by one to the runway with the least cost. Théngrdst on a runway
is calculated according to the previous landings and theesponding separation time.
Let B;,- be the cost of airplanglanding on runway-, then

B;r = max(T;, zx + Ski|Vk € A)

whereA.,. is the previous landings on runwayand plane is the one being considered
for a runway assignment. The current plane is assigned toutisay r* with the
minimum B;,.. Hence, after this step, the temporary assignment of lgniitimes are
always on or after the target times. To improve the solutioiaimed, we solve the LP
problem with the order of landing on the runway fixed. The mjali objective function
value of the LP problem is a true upper bound that we denoteXyjtz. This can also
be used for tightening the time windows as follows:

Ei:maac[Ei,Ti—ZUB/gi] Vi € P



5.2 Theinitial columnsfor Column Generation

The initial columns for the the column generation consisttwée parts. The first
part is P 'dummy’ columns. Each column contains one planbaut taking account
of the runways, that is, the column contains a single 1 forittterow (af = 1).
They are added to ensure a feasible LP upon branching andithegssighed a cost
sufficiently high in order to force them out of the basis in ¢iptimal solution. In order
to get a good starting objective value, we also add the coduconresponding to the
heuristic solution in the master problem. We also gene@ateescolumns with cost 0.
Specifically, the planes are ordered in nondecreasingttinge (stored inordind][]),
then considered one by one whether to be landed or not. Ifdeeaf landing the
current plane is 0, in other words, the separation time bevits target time and the
previous landings is satisfied, we assign it on the runwderatise we discard it and
store it intononexist|]. Let k denote the number of non-existing planes. The next step
is to generaté: columns, in each column, we first fix one of the non-existirenpk
to be landed at its target time, then insert the rest P-1 plasenany as we can. The
detail of the algorithm for generating the columns is showhip.4.

initialization
ordindT =sortindex(T);
cost0_col =zeros(num,P);
nonexist = [];
col0_col(1, ordindT(1)) = 1;
for j =2topdo
if the seperation time between T(ordindT(j)) and the previangings is satisfied
then
cost0_col(1, ordindT(j)) = 1;
else
nonexist = [nonexist, j];
end if
end for
for ¢ = 1 to length(nonexist)do
for j =1to P do
if j #ithen
if the seperation time between T(ordindT(j)) and the previauslings is
satisfiedthen
costO_col(i+1, ordindT(j)) = 1;
end if
end if
end for
end for

Figure 4: The algorithm for generate the columns with cost 0



6 Experimental Results

The decomposition algorithm were implemented in Matlab afla Pentium PC with
..GB of memory. The linear programming probleinSP and the subproblems are
solved by GAMS. Computational results are presented ins#dsion for 8 instances,
publicly available from the OR-Library, involving from 10 60 aircrafts.

Table 1 shows the result of our first computational experim@ie first column
is the number of the problem. The following two column 'P’ aRl represent the
number of planes and the number of runways respectivelyh Beablem was solved
with an increasing number of runways until the optimal Soluvvalue dropped to zero
(indicating that we have sufficient runways to enable alhpkato land on target). The
column 'LMIP-IP gap’ represents the gap in percentage bettvike linear relaxation
solution value of the mixed integer formulation and thegetesolution value, while the
column 'LSP-IP gap’ represents the gap between the lindaxation solution value
of column generation and the integer solution value. Theinésrmation regarding
the number of tree nodes searched for solving the probleenptimber of columns
generated, and the total running time of the algorithm.

Number Number  Total
Problem LMIP-IP  LSP-IP  of Tree of Time  Optimal
Number P R Gap(%) Gap(%) nodes Columns (sec) Soluiton
1 10 2 100 0.0 1 23 27.1 90
3 - - - - - 0
2 15 2 100 0.0 1 39 64.0 210
3 - - - - - 0
3 20 2 100 0.0 1 24 4.9 60
3 - - - - - 0
4 20 2 100 0.0 1 92 260.8 640
3 100 0.0 1 85 96.7 130
4 - - - - - 0
5 20 2 100 0.0 9 153 1066.1 650
3 100 0.0 12 121 496.5 170
4 - - - - - 0
6 30 2 100 0.0 9 440 3207.7 554
3 - - - - - 0
7 44 2 - - - - - 0
8 50 2 100 0.0 1 204 909.3 135

Table 1: Computational results for the multiple runway peoty

Itis clear from Table 1 that our algorithm found the optimaligion for all the prob-

lems. In addition, the optimal solutions were found earlthie tree search in our
branch-and-bound algorithm with less than 12 tree nodesnpaoed the column 4
and 5, we can see that, for every problem we tested, the LMIgab is 100, while
the LSP-gap is 0 indicating that the lower bound providedh®/dolumn generation
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is exact the same as the solution value of the integer proBRenThe LSP-IP gap is
much smaller than the LMIP-IP gap. Moreover, the optima aoelpced with very few
columns generated. For example, if we consider the lastg@motvith 50 planes, there
exsitZi(’:1 (%) ~ 1.1259 x 10'° feasible columns in the entire set partitioning master
problem. However, in our algorithm, only 204 columns weredi® get the optimality
for this problem. It can also be seen from the table that leas 450 columns were
generated for all the problems.

Compared with the computational performances of the saotdgm in some other
literatures, the running time in this paper is substantialiger. One main factor is that
we used too much time for calling GAMS from Matlab. Therefone believe that
using other languages (e.g. JAVA or C++) will significanthosten the running time.

7 Conclusion

In this paper, we presented a set partition formulation fier ALP and an exact al-
gorithm using branch-and-price method which have not beefied to the ALP pre-
viously in the literature. The computational experimeritevg that the bound based
on the column generation is much better than the LP relaxatidhe mixed integer
formulation and the algorithm can solve the problem suda#gsFurther more, it is
worthy to note that all of our problems we solved generatisg than 450 columns. A
potential problem as the problem size increases is thaill ih@t be a computationally
effective procedure to solve the subproblem by mathenmatiodelSUB. Research ef-
fors can be made in future to develop an effective heuriséithad for the subproblem.
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