
Type Inference, Principal Typings, and Let-Polymorphism
for First-Class Mixin Modules ∗

Henning Makholm

Technical University of Denmark†

http://henning.makholm.net/

J. B. Wells
Heriot-Watt University

http://www.macs.hw.ac.uk/∼jbw/

Abstract
A mixin moduleis a programming abstraction that simultaneously
generalizesλ-abstractions, records, and mutually recursive defini-
tions. Although various mixin module type systems have been de-
veloped, no one has investigatedprincipal typingsor developed
type inferencefor first-class mixin modules, nor has anyone added
Milner’s let-polymorphismto such a system.

This paper proves that typability is NP-complete for the naive
approach followed by previous mixin module type systems. Be-
cause aλ-calculus extended withrecord concatenationis a simple
restriction of our mixin module calculus, we also prove the folk be-
lief that typability is NP-complete for the naive early type systems
for record concatenation.

To allow feasible type inference, we presentMartini, a new
system ofsimple typesfor mixin modules withprincipal typings.
Martini is conceptually simple, with no subtyping and a clean and
balanced separation between unification-based type inference with
type and row variables and constraint solving for safety of linking
and field extraction. We have implemented a type inference algo-
rithm and we prove its complexity to beO(n2), or O(n) given a
fixed bound on the number of field labels.1 To prove the complex-
ity, we need to present an algorithm forrow unificationthat may
have been implemented by others, but which we could not find
written down anywhere. BecauseMartini has principal typings, we
successfully extend it with Milner’s let-polymorphism.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Data types and struc-
tures; modules, packages; polymorphism

General Terms Design, theory, algorithms

Keywords Type systems, mixin modules, record concatenation,
row unification, polymorphism

∗ Supported by EC FP5/IST/FET grant IST-2001-33477 “DART”, and Sun
Microsystems equipment grant EDUD-7826-990410-US.
† Work done while at Heriot-Watt University.
1 Technically, there is also a factor ofα(n), butα(n) ≤ 4 for n < 1010100

(a
“googolplex”).

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’05 September 26–28, 2005, Tallinn, Estonia.
Copyright c© 2005 ACM 1-59593-064-7/05/0009. . . $5.00.

1. Introduction
The goal of this work is to produce a type system for first-class
mixin modulesthat would have principal typings and thus support
compositional type analysis.

As a programming tool, first-class mixin modules are aimed not
only at programming-in-the-large issues such as generic modules
and dynamic linking, but also at programming-in-the-small issues,
because they combine the features ofλ-abstractions (first-class
functions), records, environments with mutually recursive defini-
tions, and namespaces [31]. A mixin module consists of named
components; some areexportsthat the module defines for other
modules, some areimports to be supplied by other modules, and
some arelocals, i.e., private to the module. Once all imports are
satisfied bylinking modules, the exports can beextracted.

Linking is symmetric: whenA andB are linked together,A’s ex-
ports can satisfyB’s imports andvice versa. For example, consider
the following two modules, whereN(g,i) stands for some expres-
sion containing the identifiersg andi and so forth forO, P, Q:

A = {[export f = N(g,i); import g,h; local i = O(h)]}
B = {[import f; export g = P(f,i); local i = Q]}

Linking A andB produces this combined module:

A⊕B = {[export f = N(g,j), g = P(f,k); import h;
local j = O(h), k = Q]}

Because the local definitions ofi in A and B are independent,
they (or at least one) must be renamed inA⊕B to avoid conflicts.
Also note thatf andg in the linked module are mutually recursive,
though no recursion is apparent inA or B alone.

This behavior is like compilation unit linking in C (and indeed,
most languages) and is quite different from the asymmetric link-
ing of the ML family’s structuresandfunctors. However, unlike C
“modules”, the mixin modules we investigate arefirst-class, i.e.,
they can be stored in data structures, passed as arguments, returned
as results, nested using variables that are in scope, etc., and which
modules are linked may depend on arbitrary run-time computa-
tions. In fact, modern programs in C and other languages do dy-
namically link modules at run-time (sometimes entire libraries that
are also loaded at run-time). However, this is generally outside the
language definitions and the type systems do not prevent linking
failures due to missing or multiple definitions for a name. We focus
instead on astrongly typedsituation with better static guarantees.

Type analysis iscompositionalwhen each program fragment’s
analysis result does not depend on its lexical context. Composition-
ality simplifies type inference algorithms and helps with issues like
separate compilation and accurate type error reporting. The main
problem in compositional type inference for mixin modules is en-
suring that the type system containsprincipal typingsfor expres-
sions likeλxy.x⊕y, which links two unknown modules. In this ex-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13700561?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ample, the type system must not allow modules given asx andy to
both export the same name. But to be compositional, we must ana-
lyzeλxy.x⊕y without any knowledge about its eventual arguments.

The problem for mixin modules is similar to compositional
analysis of calculi withrecord concatenation. Records are the spe-
cial case of mixin modules with no imports and no internal recur-
sion, and record concatenation is just a special case of linking mixin
modules. The fundamental problem in analyzing record concatena-
tion turns out to be similar to that for linking mixin modules, al-
though mixin modules have more complications. Record concate-
nation has been intensively investigated as a potentially useful pro-
gramming feature and also as one possible way to model object-
oriented multiple inheritance. (Note that type inference for record
concatenationis much harder than single-field recordextension.)

Our approach to types for mixin modules is inspired in some re-
spects by previous work on type inference for record concatenation.
However, we could not build directly on a type system for record
concatenation, because the most successful such systems usesub-
typing polymorphism. For technical reasons, we find this undesir-
able for mixin modules; for example, we would need different type
rows for a module’s imports and exports, which is problematic in
our favored family of mixin module calculi where the externally
visible names of imports and exports use the same namespace.

Thus, while our type systemMartini for mixin modules has
some features in common with record concatenation systems, it
also exhibits interesting properties of its own which become ap-
parent when it isrestrictedto work with aλ-calculus with records.
The restriction, which we callBowtie, does not type as many terms
as some previous systems, but it has some other advantages, among
which is a fast and conceptually simple type inference algorithm,
which runs in almost linear time. In contrast, among record con-
catenation type inference algorithms with complexity analyses, the
next best runs in cubic time [19].

Along the way to our main goal, we prove that the most obvious
straightforward systems of simple types for mixin modules and
record concatenation have NP-complete typability problems.

Martini (and its restrictionBowtie) hasprincipal typings[29],
which is a precondition for compositional analysis and is also
needed for adding Milner’s let-polymorphism. Principal typings
should not be confused with the weaker notion of principaltypes
which is usually all that remainsafter let-polymorphyism is added.

Martini is asimpletype system that does not yet includepoly-
morphism, which is needed for a serious strongly typed language.
We present the simply typed versionMartini first, because the ma-
chinery of polymorphism would obscure the novel features that
handle mixin module linking. Sect. 7 shows how to extendMartini
to Martini∀ that has Milner’s let-polymorphism, as used in ML and
other languages. This ought to be enough to support programming-
in-the-small. For programming-in-the-large, further work is needed
to add toMartini encapsulation and parameterization capabilities
like those of the ML module language.

Our type inference implementation forMartini can be found at
〈URL:http://www.macs.hw.ac.uk/DART/software/Martini/〉 as a
web application and as source code.

2. Notation
These notations are fairly standard: Afunction f is a set of
pairs, where we write each pair in the form “a 7→ b”, such that
{(a 7→ b),(a 7→ c)} ⊆ f impliesb = c. In this section, letf andg
range over functions and letA andB range over sets. Thedomain
of f is Dom f = {x | (x 7→ y) ∈ f }. Therangeof f is Rng f = {y |
(x 7→ y) ∈ f }. The inverseof f is f−1 = {x 7→ y | (y 7→ x) ∈ f }.
The expressionf (A) is { f (a) | a ∈ A∩Dom f } if A /∈ Dom f .
Composition is given by(f ◦ g)(x) = f (g(x)). P (A) is the set of

See Section 2 for some essential notation used here, such as
· , fin→ , ¢, # ,et cetera.

Variables: x ::= x | y | z | · · ·
Field labels: ` ::= f0 | f1 | f2 | · · ·

Label sets: L ∈ Pfin(`)

External parts:E ∈ ` fin
inj→ x

Internal parts: I ∈ x fin→ M
Values: V ::= {[E;I]}
Terms: M,N ::= V | x | M⊕N | M.` | M \\L

To be closer to the notation in earlier module calculi, we allow
writing E functions as “̀1 .x1, . . . , `n .xn” instead of “{`1 7→
x1, . . . , `n 7→ xn}” and I functions as “y1 = N1, . . . ,yk = Nk”
instead of “{y1 7→ N1, . . . ,yk 7→ Nk}”.

M ↪→ M′

M⊕N ↪→ M′⊕N
RC1

N ↪→ N′

M⊕N ↪→ M⊕N′
RC2

M ↪→ N
M.` ↪→ N.`

RCdot
M ↪→ N

M \\L ↪→ N\\L
RChide

FV(RngI1) # X2 X1 # X2 FV(RngI2) # X1
whereX i = RngEi ∪ (Dom Ii \RngE) for i = 1,2

{[E ¢E1;I1]}⊕{[E ¢E2;I2]} ↪→{[E ¢E1 ¢E2;I1 ¢ I2]}
RLink

RngE ⊆ Dom I
S = {x 7→ {[f.x;I]}.f | x∈ Dom I }

{[E;I]}.` ↪→ [S](I(E(`)))
RExtract

DomE1 # L DomE2 ⊆ L
RngE2 ⊆ Dom I

{[E1 ¢E2;I]}\\L ↪→{[E1;I]}
RHide

Figure 1. Syntax and semantics of them-calculus

all subsets ofA. The set differenceA\B is {a ∈ A | a 6∈ B}. The
disjoint unionA]B is A∪B if A∩B= ∅, and undefined otherwise.

These notations are less common: For any metavariable symbol
X, X is the set thatX ranges over.Pfin(A) is the set of allfinite
subsets ofA. The statementA # B abbreviatesA∩ B = ∅. The
expressionA fin→B is the set of all finite functionsf ⊆ A×B, and
A fin

inj→B is the set of allinjectivefunctions inA fin→B. The expression
f ¢g meansf ∪g if Dom f # Domg, and is undefined otherwise.

If X is a set of syntactic entities that can contain (concrete)
variables in the setx ⊂ X , then any (partial or total) functionf
from x to X can be used as asubstitution. The application off to
an entierX is defined in the usual way by recursive descent through
X, replacing each variablex by f (x) wheneverx ∈ Dom f and
renaming bound variables inX as needed to avoid name capture.
We identify syntactic entities modulo renaming of bound variables.

We sometimes enclosef in square brackets (like[f]) in order
to emphasize that it is being used as a substitution. This happens in
particular whenf is given by listing its elements, in which case we
omit the set braces and write just[x1 7→ X1, . . . ,xn 7→ Xn].

3. Them-calculus of mixin modules
Our goal is to create a type system with compositional type in-
ference for the simple mixin module calculus defined in Figure 1,
called them-calculus. Its syntax is essentially isomorphic to that of

the m-calculus of Wells and Vestergaard [31]. The key difference
is a simplified call-by-name semantics, because the more sophisti-
cated semantics (and equational theory) of the m-calculus are irrel-
evant for the typing issues this paper investigates. Hirschowitz et
al. [13] give a similar calculus with a call-by-value semantics. The
m-calculus is in a family of mixin module calculi where imports
and exports share a single namespace; an alternative family with
separate import and export namespaces starts from CMS [4].

The basic construct is amixin module, written {[E; I]}, where
E (the external part) maps field labels to variables andI (the
internal part) maps variables to terms. The module expression
{[`1 .x1, . . . , `n .xn; y1 = N1, . . . ,yk = Nk]} binds all of the vari-
ablesx1 to xn andy1 to yk within theNi ’s. Thus the free variables
of {[E;I]} are FV({[E;I]}) =

(
S

N∈RngI FV(N)
)

\ (RngE∪Dom I)
and all other cases of FV(M) just collect free variables componen-
twise. Each bound namex falls in one of three classes:
• (` . x) ∈ E is an import with external name ` and internal

namex iff there is no(x = N) ∈ I . When the module is linked
with a module that has an export with name`, references tox in
theNi ’s become bound to the exported expression.

• (`.x)∈ E together with(x= N)∈ I is anexport. The exported
expressionN can be used from outside via thefield extraction
operationM.`, but only once all imports have been satisfied via
linking. ThenN will be evaluated in the context of the other
definitions inI . The exported termN can satisfy imports of the
namè by other modules via linking. The internal namex can be
mentioned in all of theNi ’s, and the defined value can thereby
be directly or indirectly recursive.

• (x= N)∈ I is alocal iff there is no(`.x)∈E. Local definitions
can be used in all of theNi ’s. They can be directly or indirectly
recursive, but are not observable outside their containing mod-
ule except by being referred to by an export.
Field labels (i.e., external names) are fixed, but bound variables

(i.e., internal names) are subject toα-conversion (which must keep
them distinct from other bound variables of the same module) and
the actual names of the bound variables are not visible outside the
module expression. We identifyα-equivalent terms.

The fundamental mixin operation islinking , written M1⊕M2.
Its reduction ruleRLink is intuitively simple; linking two mod-
ules puts their internal parts side by side (choosing appropriateα-
variants to avoid wrong name captures), and joins their external
parts. The rule divides each of the two incoming external parts into
acommonpartE and aseparatepartEi . The separate parts are un-
touched by the linking. The linking happens in the common partE,
containing the labels mentioned bybothoperands; such labels can-
not be inE1 and E2, because thenE1 ¢ E2 would be undefined
on the right-hand side (RHS) of the ruleRLink. A label occur-
ring in E maps to thesameinternal name in both operands; this
is always possible byα-conversion. No label can be exported by
both operands; otherwiseI1¢ I2 would be undefined on the RHS of
RLink. A label exported by one module and imported by the other
is forced by the commonE to have the same internal name (vari-
able) in both operands, so importing variable references in oneIi
can become bound to definitions from the other after the linking.

The premises ofRLink ensure that wrong name captures do
not occur.X i is the set of internal names in operandi that do
not participate in the link. The names inX i will be bound on
both sides post-linking, so they must be disjoint from the other
side’s internal names and free variables. For example, the linking
{[f.x,g.y;y = x]}⊕ {[h.z;x = 13,z = x−6]} (where the com-
monE is empty) does not proceed with the shownα-variants of the
operands because of the premiseX1 #X2 where both sets containx.
Without this premise, the result would be a module that (wrongly)
exported 13 asf. To avoid this, the rule forces us to firstα-convert
one or both of thex’s. Another example needingα-conversion is

{[f.x;x = 42]}⊕ {[g.y;y = x]} where thex on the left must be
α-renamed to avoid wrongly capturing the (free)x on the right.

Thefield extraction ruleRExtract extracts the export with the
given label while unfolding into the field body the implicit letrec
of the moduleM to achieve call-by-name semantics. Thehiding
operatorM\\L removes exported fields if they exist in the operand.
A hidden export turns into a local because the internal partI is kept
unchanged. If none of the fields inL are exported or imported the
hiding is simply a no-op.

It is a run-time error to try to link two modules that both export
the same label̀, as well as to try to extract a field from a module
that does not export it or has imports, or to try to hide an import.
Our task is designing a type system that prevents these errors while
also allowing compositional type inference.

3.1 Syntactic sugar for mixin modules and records

The representation of a mixin module as separateE andI parts is
formally convenient in that it allows our type and reduction rules to
be stated relatively compactly. However, it is not very intuitive for
actual programming, so our implementation also supports a more
readable notation (which we have used already in the example in
the introduction):

Values: V ::= · · · | {[γ1; . . . ;γk]}

Module groups:γ ::= import `1 .x1, . . . , `k .xk
| export `1 .x1 = M1, . . . , `k .xk = Mk
| local x1 = M1, . . . ,xk = Mk

The construct{[γ1; . . . ;γk]} is sugar for

{[[γ1]
E

¢ · · ·¢ [γk]
E;[γ1]

I
¢ · · ·¢ [γk]

I]},
where

[import `1 .x1, . . . , `k .xk]
E = {`i 7→ xi | 1≤ i ≤ k}

[export `1 .x1 = M1, . . . , `k .xk = Mk]
E = {`i 7→ xi | 1≤ i ≤ k}

[local x1 = M1, . . . ,xk = Mk]
E = ∅

[import `1 .x1, . . . , `k .xk]
I = ∅

[export `1 .x1 = M1, . . . , `k .xk = Mk]
I = {xi 7→ Mi | 1≤ i ≤ k}

[local x1 = M1, . . . ,xk = Mk]
I = {xi 7→ Mi | 1≤ i ≤ k}

and where it is required that Rng[γi]
E # Dom [γ j]

I for i 6= j.
(Note that syntactic correctness of the result follows from implicit
constraints imposed by the definition of¢ and the fact that each
mixin external partE is a bijection.) For additional compactness,
“` . x” in import andexport groups can be written as just “`” if x
and` are textually identical (even though they belong to different
namespaces).

We further define a fourth form of module group (distinguished
by its lack of keyword):

γ ::= · · · | `1 = M1, . . . , `k = Mk,

which is syntactic sugar for “export `1.y1 = M1, . . . , `k.yk = Mk”,
where theyi ’s are chosen fresh. This allows modules that have
neither imports nor local definitions nor internal references to their
own exports to be written with a record-like syntax.

For example, the record-like expression{[f = 5, g = true]}
abbreviates{[export f . x = 5, g . y = true]}, which in turn ab-
breviates{[f.x,g.y;x = 5,y = true]}, which finally abbreviates
{[{f 7→ x,g 7→ y};{x 7→ 5,y 7→ true}]}.

3.2 Encoding of theλ-calculus

The reader may wonder how interesting them-calculus is given
that its only data constructor is the mixin module. It is natural
to assume that one would need an additional language layer for
manipulating mixin modules programatically. However, this turns
out to be unneeded, because we can encode theλ-calculus using
only mixin constructions. A functionλx.M can be represented as

Rows: Σ ∈ ` fin→ τ

Types: τ ::= ’a | ’b | ’c | . . . | {[Σ / L]}

Environments:Γ ∈ x fin→ τ

Typings: T ::= 〈Γ ` τ〉

x : 〈Γ ` Γ (x)〉

DomΓ = RngE∪Dom I
I(x) : 〈Γ0 ¢Γ ` Γ (x)〉 for all x∈ Dom I
L = E−1(Dom I) (Γ ◦E) = Σ

{[E;I]} : 〈Γ0 ` {[Σ / L]}〉

M : 〈Γ ` {[Σ / L]}〉 L = DomΣ

M.` : 〈Γ ` Σ(`)〉

L1 # L2
M : 〈Γ ` {[Σ ¢Σ1 / L1]}〉 N : 〈Γ ` {[Σ ¢Σ2 / L2]}〉

M⊕N : 〈Γ ` {[Σ ¢Σ1 ¢Σ2 / L1∪L2]}〉

M : 〈Γ ` {[Σ1 ¢Σ2 / L]}〉
DomΣ1 # L0 DomΣ2 ⊆ (L0∩L)

M \\L0 : 〈Γ ` {[Σ1 / (L \L0)]}〉

Figure 2. Riviera: Naive simple types for them-calculus

{[import arg.x; export res.y = M]}, and an applicationN M as
(N⊕{[export arg . y = M]}).res, wherearg (argument) andres
(result) are globally fixed labels and in both cases we choosey /∈
FV(M). It is easy to see that an application ofRLink followed by a
number ofRExtract will simulate aβ-reduction in theλ-calculus.
This is not a new result [31, 4], but is essential for understanding
how them-calculus can be used. We will freely use this translation
as syntactic sugar in examples and constructions.

Let λ
⊕ denote the fragment ofm-calculus that can be written

using only the constructions from the following grammar, some of
which use the syntactic sugar forλ-calculus and records:

M ::= λx.M | M N | {[`1 = M1, . . . , `k = Mk]} | M1⊕M2 | M.`

We will useλ
⊕ when comparingMartini with earlier record con-

catenation type systems.

4. Riviera: Naive simple types for mixin modules
A natural first attempt at defining a (Curry-style) simple type sys-
tem for them-calculus is the naive type system calledRiviera
shown in Figure 2. Following [29], we write typing judgements as
“M : 〈Γ ` τ〉” rather than using the older convention of “Γ `M : τ ”.

A Riviera type has the shape{[Σ / L]} whereL ⊆ DomΣ, and
denotes a module that exports every label inL and imports every
label in (Dom Σ) \ L , with the types of the exports and imports
given by therow Σ. (In the context ofRiviera, a row is just a
finite map from labels to types. Later in our type systemMartini
in Section 5 we will consider partially unknown rows, which will
use different metavariables.) Of course, we could equally well have
written{[Σ1 ⇒ Σ2]} whereΣ1 andΣ2 partition the field types into
imports and exports, but the{[Σ / L]} syntax makes the typing rules
more compact (and we do not intend to actually useRiviera as we
will prove it has unfeasible type inference).

An expression written with the syntactic sugarλx.M defined in
Section 3.2 will always have a type that can be written{[{arg 7→
τ1, res 7→ τ2} / {res}]}. We will abbreviate such a typeτ1 → τ2.

4.1 Typability in Riviera is NP-hard

Riviera can be provensound(i.e., programs it accepts do not “go
wrong”), but that about exhausts its nice formal properties. In

particular, even though it is only at the level of simple types,type
inferenceis provably hard.

Theorem 4.1. Typability2 for Riviera is NP-complete.

We define the construction that proves this in several stages.
Let M B N abbreviate(λx.N) M, and let M ∼ N abbreviate

(λx.(x M)B (x N)) (λy.y), where for both we choosex /∈ FV(M N).

Lemma 4.2. M B N : 〈Γ ` τ〉 iff there exists a typeτ ′ such that
both M : 〈Γ ` τ ′〉 and N: 〈Γ ` τ〉.

Lemma 4.3. M∼N : T if and only if M: T and N: T.

Call canonical the following two fixed types:Off = {[∅ / ∅]}
andOn = {[{a 7→ {[∅ / ∅]}} / {a}]}. Let Nand(x1, . . . ,xn) abbre-
viateλy1 . . .λyn.

(

(y1⊕x1).a⊕·· ·⊕ (yn⊕xn).a
)

.b.

Lemma 4.4. In an environment that maps each xi to a canonical
type,Nand(x1, . . . ,xn) has a type iff the type of some xi is Off .

Let P(x,y) = Nand(x,y)B (x⊕y)∼ (y⊕x)∼{[a = {[∅]}]}.

Lemma 4.5. P(x,y) has a type exactly in environments where one
of x and y has typeOff and the other has typeOn.

We will be reducing from Boolean formula satisfiability, so let
a countable set of Boolean variablesP be given, and select a fixed
correspondence that assigns a uniquem-calculus variablevP to
each Boolean variable. An environment naturally corresponds to
a Boolean valuation for thoseP such that it assignsvP either type
On or Off . The corresponding valuation makesP true ifvP has type
On and false ifvP has typeOff .

Now define a translation from formulae to terms by

[P] = λt.λf.P(t,f)BvP∼t

[¬A] = λt.λf.[A]f t
[A ∨B] = λt.λf.λt1.λf1.λt2.λf2.

P(t,f)B [A]t1f1 B [B]t2f2B

Nand(t1,f)B Nand(t2,f)B Nand(t,f1,f2)
[A ∧B] = [¬(¬A ∨¬B)]

Lemma 4.6. [A] has a type exactly in environments that corre-
spond to valuations forA ’s variables. The types of[A] in such an
environment have the shapeOn → Off → τ if A is true under the
corresponding valuation andOff → On → τ if A is false. (There
may be one or moreτ ’s that can appear in a valid type for[A].)

Proof. By a straightforward induction over the structure ofA .

Proof of Theorem 4.1. It is clear that typability is in NP; given an
oracle which tells for each variable which fields its type imports
and exports, type inference is like for the simply typedλ-calculus.

For NP-hardness, we reduce from satisfiability of arbitrary
Boolean formulae. A formulaA is satisfiable exactly if the term
MA = [A]tfB Nand(f) is Riviera-typable. It follows from Lem-
ma 4.6 that any typing forMA implies a satisfying truth assignment
for A . Conversely, any satisfying truth assignment corresponds to
an environmentΓ such that[A] : 〈Γ ` On → Off → τ〉 for some
τ . From there one easily getsMA : 〈Γ , t : On,f : Off ` τ〉.

4.2 Asymmetric variants

In a calculus withasymmetric linking, M⊕N succeeds even when
M andN both define some label`, in which case the result will use
the definition fromN. One can construct aRiviera-like type system
RivieraA for such a calculus by replacing the⊕ typing rule with:

2 Typability means deciding for a given termM whether there exists a typing
T such thatM : T. Note that specifying theΓ part ofT would not make the
problem easier: one can just abstract overM’s free variables and setΓ = ∅.

DomΣ11 = L1∩L2
M : 〈Γ ` {[Σ ¢Σ1 ¢Σ11 / L1]}〉 N : 〈Γ ` {[Σ ¢Σ2 / L2]}〉

M⊕N : 〈Γ ` {[Σ ¢Σ1 ¢Σ2 / L1∪L2]}〉

Another possible variant of linking allows asymmetric linking,
but requires that a field that is defined in both linked modules
must have the sametypeeven though at run-time one of them is
discarded. This gives rise to aRiviera variant with this linking rule:

M : 〈Γ ` {[Σ ¢Σ1 / L1]}〉 N : 〈Γ ` {[Σ ¢Σ2 / L2]}〉

M⊕N : 〈Γ ` {[Σ ¢Σ1 ¢Σ2 / L1∪L2]}〉

We call this variantjoin-like , and name itRivieraJ, because the
type behavior of this rule is identical to the type-level behavior of
thejoin operatoron in relational algebras [15, 25]. It is not common
for modules or records (an exception is the Church-style calculus
of [32]), but we mention it to highlight the similarities between
type problems in relational calculi and in calculi with concatenation
and linking. Further, the simplest variation of our systemMartini
(introduced later in Section 5) which allows overwriting linking
would have a join-like typing rule.

Theorem 4.7. Typability forRivieraA andRivieraJ is NP-complete.

The proof for Theorem 4.1 has been constructed to workverba-
tim for RivieraA andRivieraJ. (This does make it more complex,
however. Simpler constructions forRiviera and RivieraA can be
found in the long version of this paper [14]).

4.3 Other calculi

Riviera is very similar to Typed CMS as defined by Ancona and
Zucca [4], except that Typed CMS is a Church-style system with
mandatory type annotations in terms. There are also minor differ-
ences, such that the fact the CMS has different namespaces for
import and export labels, and uses a special “freeze” operator to
connect imports with exports. However, the proof of Theorem 4.1
does not use imports at all, except in the syntactic sugar for trans-
latingλ abstractions. If one uses theλ translation for CMS (defined
in [4]), our proof directly yields NP-completeness of typability in
the Curry-style variant of Typed CMS (i.e., Typed CMS with type
annotations removed), a previously unknown result.

We believe our proof of NP-completeness of typability can also
be adapted to the implicitly typed systems CMSv [12], MM [13]
and Mix [11], although we have not checked this formally.

If one restrictsRivieraA to (asymmetric)λ⊕, one gets a type
system equivalent to Wand’s type system for record concatena-
tion [28]. Because the proof of Theorem 4.1 uses only theλ

⊕ frag-
ment of them-calculus, we get as a bonus result a direct proof of
the folk belief that typability in Wand’s system is NP-hard.

4.4 Discussion

NP-completeness may not sound bad when one compares it to the
familiar result that typability for the Hindley/Milner type system
is DEXPTIME-complete. However, it should be kept in mind that
Riviera is a simply typed system where polymorphism has yet to
be added. Thus the proper comparison would be the simply typed
λ-calculus, where typability is almost linear (i.e.,O(nα(n))).

Our result suggests that type inference for mixin modules is
hard independently of the details of the calculus. A feasible type
system for mixin modules (or record concatenation) must introduce
complications that are not aimed solely at strengthening the type
system itself (in the sense of enlarging the set of typable programs)
but serve to make type inference a tractable problem.

A related result was achieved by Palsberg and Zhao [16], who
prove NP-completeness of typability for a typed object calcu-
lus with symmetric record concatenationand subtyping. It is not

clear to us whether this proof can be easily adapted to record-
concatenation type systemswithoutsubtyping. Vansummeren [25]
proved NP-completenes of typability in various fragments of a
naively typed relational algebra. Ohori and Buneman [15] proved
NP-completeness of typability in a lambda calculus with primitive
sets of records and join operator. Their system is defined in terms
of constraints, but appears to be equivalent in expressive power to
aRivieraJ-like type system.

5. Martini: A better type system for mixin
modules

Figure 3 show our type systemMartini for them-calculus. It is de-
signed to simultaneously reach two goals in addition to the usual
basic safety. (1) It should have feasible type inference. (2) It should
haveprincipal typings[29], which are needed to express intermedi-
ate results in a compositional inference algorithm usingMartini’s
own type language. Also, principal typings allow adding Milner’s
let-polymorphism (as we do in Section 7).

A mixin module type inMartini has the shape{[R / Q⇒S]},
whereQ represents the set ofimport labels andS represents the
set ofexport labels. The rowR gives the type of both inputs and
outputs, likeΣ in Riviera; however aMartini row may define types
for fields that the module neither imports nor exports.

For example, given obvious extensions with integers and bool-
eans, the termM = {[f.x,g.y;x = y > 5]} has the typing〈∅ `
{[f:bool, g:int, r / {g}⇒{f}]} | ∅〉 (r is a row variable whose
role will be described shortly). This is also a typing forN = {[f.x;
x = true]}, even thoughN does not importg — it is allowed for a
Q to overapproximate the true set of imports. This allows construc-
tions such asif · · ·then M else N to be typed without requiring a
dummy import ofg in N.

In Riviera it was essentially an arbitrary choice to use a single
row for imports as well as exports. In contrast, the same decision
in Martini is essential for our type inference strategy. In order to
facilitate type inference with principal typings, the three partsR, Q
andSof a mixin type{[R/ Q⇒S]} have a more elaborate internal
structure than the monolithicΣ andL of Riviera — in particular,
each part can be avariable.

Wand [26] introduced row variables for manipulating partial
knowledge about mappings from field labels to types. Using the
same row variable at the end of different row expressions can
express that the two rows agree at some but not all labels, as
happens in the ruleTHide. Adding more fields to the row part
of a module type does not change the type’s meaning if the set
expression part stays the same. ThereforeMartini needs no syntax
for an “empty row”; a row variable can always be used for this.

Typings now containconstraintsets, which assert relations be-
tween label sets that are not known yet. As a concrete example, the
term{[import f.x,g.y; h = x⊕y]} has theMartini typing
〈

` {[

f:{[r / q1⇒s1]},
g:{[r / q2⇒s2]},
h:{[r / q3⇒s3]}, r0

 / {f,g}⇒{h}]}
s3=s1]s2,
q3⊇ q1\s2,
q3⊇ q2\s1

〉

.

The recurrence ofr in all three field types means thatif one of the
imports contains a field̀ at all, its type must be the same as that
expected for̀ in the result. The constraints3= s1] s2 says that
every field defined in the result must be defined in exactly one of
the arguments. This particular typing is not principal;Martini also
allows the term to have the type{[· · · / {f,g,k}⇒{h}]} even though
it does not importk. A principal typing for the term would have
{[· · · / q⇒{h}]} as its type part and an extra constraintq⊇ {f,g}.

Martini’s strategy for escaping the NP-hardness ofRiviera is to
consider the constraints3=s1]s2 “good” for as long as we have
no information abouts1 or s2, regardless of whether information

Type variables: α ::= ’a | ’b | ’c | . . .
Row variables: r ::= r0 | r1 | r2 | · · ·
Import set variables: q ::= q0 | q1 | q2 | · · ·
Export set variables: s ::= s0 | s1 | s2 | · · ·
Type rows: R ::= r | `:τ , R
Import set expressions:Q ::= q | L
Export set expressions:S::= s | L | ⊥

Types: τ ::= α | {[R/ Q⇒S]}

Environments:Γ ∈ x fin→ τ

Constraints: c ::= S=S1]S2 | S=S1 \L
| Q⊇ Q1 \S | Q#L

Const. sets: C ∈ Pfin(c)
Typings: T ::= 〈Γ ` τ | C〉

We forbid as ill-formed rows that define any label` more than once and we consider types (etc.) modulo thisrow structure equation:

(`1:τ1, `2:τ2, R) = (`2:τ2, `1:τ1, R) when`1 6= `2

ForΣ = {`1 7→ τ1, . . . , `n 7→ τn} ∈ ` fin→ τ , let Σ •R abbreviatè 1:τ1, . . . , `n:τn, R.
Let S1 =S2, Q1 ⊇ Q2, andQ⊆ Sabbreviate the constraintsS1 =S2]∅, Q1 ⊇ Q2 \∅, and∅ ⊇ Q\S, respectively.
We allow omitting the set braces around concrete environments and constraint sets in typings.

Let T range overtype substitutions, which are functions that mapq to Q , s to S , r to R , and α to τ , such that only finitely

many variables do not map to themselves. Type substitutions are extendedcomponentwise to map each of the classesQ , S , R , τ ,

Γ , c , C , and T to itself.

A constraintc is solved, written°c, iff either cis a true statement of set theory (L =L1]L2 is true iff L = L1∪L2 andL1 # L2)
or c contains⊥ to theright of the relation sign (that is, to the right of=, ∈, or⊇).

Let °C abbreviate∀c∈C : °c, and letC1 ° C2 abbreviate∀T : °T (C1) ⇒ °T (C2).
Write τ1 ≈ τ2 iff τ1 andτ2 are identical except for import and export set expressions.
Let C ° τ1 = τ2 abbreviateτ1 ≈ τ2∧∀T : °T (C) ⇒ T (τ1) = T (τ2) .
Let C ° Γ1 = Γ2 mean that DomΓ1 = DomΓ2 andC ° Γ1(x) = Γ2(x) for x∈ DomΓ1.

C ° Γ (x) = τ

x : 〈Γ ` τ | C〉
TVar

DomΓ = RngE∪Dom I I (x) : 〈Γ0 ¢Γ ` Γ (x) | C〉 for all x∈ Dom I
L = E−1(Dom I) L

′ = DomE \L C ° {Q⊇ L ′, S=L }

{[E;I]} : 〈Γ0 ` {[(Γ ◦E)•R/ Q⇒S]} | C〉
TMixin

M : 〈Γ ` {[R/ Q1⇒S1]} | C〉 N : 〈Γ ` {[R/ Q2⇒S2]} | C〉
C ° {Q⊇ Q1 \S2, S=S1]S2, Q⊇ Q2 \S1}

M⊕N : 〈Γ ` {[R/ Q⇒S]} | C〉
TLink

M : 〈Γ ` {[`:τ , R/ ∅⇒S]} | C〉 C ° {{`} ⊆ S}
M.` : 〈Γ ` τ | C〉

TExtract

DomΣ1 = DomΣ2 = L M : 〈Γ ` {[Σ1 •R/ Q⇒S1]} | C〉 C ° {Q#L , S2 =S1 \L }

M \\L : 〈Γ ` {[Σ2 •R/ Q⇒S2]} | C〉
THide

Figure 3. Our type systemMartini for them-calculus

abouts3 shows up later. Thus, e.g.,λx.(x⊕x).f is typable inMar-
tini even though there isno value that it can safely be applied to.
This is still sound, asMartini will reject attempts to actually call it.
Thus,Martini does not reject some nonsensical (but dynamically
safe) programs as type errors, but also escapes NP-hardness of
typability. Theorem 4.1 depends on being able to ask the type
system: “Canany possible call to this function be proved error-
free?”. Martini refuses to answer until we refine the question to
“Will this particular call be error-free?”.

The termλx.(x⊕ x).f has a principal typing with the shape
〈∅ ` {[arg:{[f:’a, r / q⇒s]}, res:’a, r0 / q0⇒{res}]} | s1=
s]s,{f}⊆ s1, . . .〉. This typing is “good” because we can solve its
constraint set by substituting the special set expression⊥ for each
of s ands1. This is the role of⊥; it allows a constraint to be solved
as long as we have no evidence that a use of the linking or field
extraction operation that the constraint corresponds to will actually
go wrong at run-time. Principal typings never need to contain⊥.
Effectively, {[R/ Q⇒⊥]} is a type that describes no values at all.
An expression with such a type must be eitherdead(its result will
never be used, perhaps because its evaluation diverges) orsleeping
(its result will not be used unless the program is put into a larger

context).Martini accepts mistakes in dead or sleeping code that are
hard to check for until a concrete calling context is provided, but it
still rejects mistakes that areeasyto find in dead or sleeping code.

Now return to the typing for{[import f . x,g . y; h = x⊕ y]}
and consider its triple occurrence ofr. Becauser appears in the
arguments as well as in the result,Martini can begin to resolve
their connection before enough information to solve the constraint
arrives. This lets some internal errors in sleeping code be caught
early and also gives more readable principal typings by express-
ing more relations between types without constraints. However,
some strength is sacrificed: Each module type must contain the field
types of any module it may be linked with. (The programmer need
not write them as they will be inferred.) ThusMartini will reject,
for example,λx.{[a = x⊕{[f = 5]},b = x⊕{[f = true]}]}, because
the type ofx must predict a single type forf in all of its descen-
dants. One way to mitigate thisrow pollution problem is to use
let-polymorphism (Section 7) instead ofλ to bindx, to allow poly-
morphism in the type off. Another is to insert dummy hiding oper-
ators:λx.{[a = x\\{f}⊕{[f = 5]},b = x\\{f}⊕{[f = true]}]} is ty-
pable. Since this solution depends on guessing which fields will be

defined by the other operand to⊕, it cannot be applied fully auto-
matically; it can be considered a programmer-supplied typing hint.

5.1 Soundness

Proving type soundness forMartini proceeds as usual, except for
the details of handling constraint sets.

Lemma 5.1 (weakening).Assume M: 〈Γ ` τ | C〉. For any C′ °C
andΓ ′ ⊇ Γ it holds that M: 〈Γ ′ ` τ | C′〉.

A constraint setC is solvableiff °T (C) for some substitution
T . A typing is called solvable iff its constraint set component is.

Lemma 5.2. Assume C° τ1 = τ2 and C° Γ1 = Γ2. Then M: 〈Γ1 `
τ1 | C〉 implies M: 〈Γ2 ` τ2 | C〉.

Lemma 5.3 (substitution). If M : T, then M: T (T).

Lemma 5.4 (term substitution). Assume M: 〈Γ ¢ {x 7→ τ ′} `
τ | C〉 and N: 〈∅ ` τ ′ | C〉. Then[x 7→ N]M : 〈Γ ` τ | C〉.

Theorem 5.5 (subject reduction). If M ↪→ N and M: 〈∅ ` τ | C〉
for solvable C, then N: 〈∅ ` τ | C〉.

Theorem 5.6 (progress). If M : 〈∅ ` τ | C〉 for solvable C, then
either M is a value or M↪→ N for some N.

Theorem 5.7 (type soundness).Programs (closed terms) with
solvable typings do not get stuck.

5.2 Testing constraint set solvability

To make Thm. 5.7 useful, this section develops an algorithm to
identify solvable constraint sets.

Define the relationC ☞ T by:
1.∀C,s,L1,L2 : C∪{s=L1]L2}☞ [s 7→ (L1∪L2)] if L1 #L2,
2.∀C,s,L1,L2 : C∪{s=L1 \L2} ☞ [s 7→ (L1\L2)].

Lemma 5.8. If C ☞ T , then C is solvable if and only ifT (C)
is.

Lemma 5.9. Assume that there is noT such that C☞ T , and letT0
map every export set variable in C to⊥ (and every other variable
to itself). Then C is solvable if and only ifT0(C) is.

Proof. The “if” direction is obvious. For “only if”, assume that
C is solved by someT1. We claim thatT1 also solvesT0(C).
For otherwise there would be ac ∈ C such thatT1(c) is solved
but T1(T0(c)) is not. Their only difference is thatT1(T0(c)) may
contain⊥ in a place whereT1(c) has another (input) set expression.
The only place⊥ can appear without solvingT1(T0(c)) is to the left
of “=”, soc must have the forms=L1\L2 or s=L1]L2 (where in
the latter caseL1 andL2 must be disjoint, becauseT1(c) is solved).
But in either of these two cases we could find aT such thatC ☞ T ,
contradicting the assumption.

For any constraint setC and any` that occurs inC, let QC
` be

the least subset ofq such that

1. When(q⊇ L1\L2) ∈C with ` ∈ (L1\L2), thenq∈ QC
` , and

2. When(q2 ⊇ q1\L) ∈C with ` 6∈ L , thenq1 ∈ QC
` ⇒ q2 ∈ QC

` .

ComputingQC
` for a givenC and` is a simpleO(n) graph reacha-

bility problem. The intended intuition is thatQC
` is “the set ofq’s

that` can reach according toC” and{` | q∈ QC
` } is a lower bound

on the possible values ofq in all ground solutions ofC. LetC ☛ T
hold whenT (q) = {` | q ∈ QC

` } for all q mentioned inC andT
maps all other variables to themselves.

Lemma 5.10. If C ☛ T and C is solvable and free of export set
variables, thenT (C) is solved.

Proof. BecauseC is assumed solvable, any constraint inC that does
not contain at least oneq variable must be solved already, and can
therefore be ignored. Constraints of the formQ2 ⊇ Q1 \⊥ are also
solved, so the only constraints we need to consider are those of the
formsQ2 ⊇ Q1 \L andQ#L .

Given an arbitraryT ′ that solvesC, wheneverq ∈ QC
` it must

hold that` ∈ T ′(q); this follows directly from the inductive con-
struction ofQC

` . Also, if we let T ′
` (q) be T ′(q) \ {`} for q 6∈ QC

`
andT ′(q) otherwise, thenT ′

` still solvesC — it would contradict
the construction ofQC

` if this change caused an unsolved constraint
to appear. Now, if any solution toC exists at all, thenT is also a
solution, because an arbitrary solution can be transformed intoT

label for label by the preceding remarks.

Theorem 5.11. Constraint sets can be tested for solvability in time
O(nm), where n is the number of constraints and m is the number
of distinct labels in the constraints.

Proof. The testing procedure consists of first rewriting as much as
possible by Lemma 5.8, and then eliminating the remaining export
set variables by Lemma 5.9. The constraint set now contains onlyq
variables, and solvability can therefore be decided by Lemma 5.10.

Complexity bound: In the Lemma 5.8 phase, each constraint
is processed at most four times: Once to see if it can be rewritten
immediately, up to twice when set variables on its left-hand side are
instantiated, and once to check whetherT (c) is solved. IfL ’s are
represented as bit vectors, each visit of the constraint takesO(m)
time. Lemma 5.9 can obviously be completed in timeO(n). For
Lemma 5.10, theQC

` ’s andT can be straightforwardly constructed
in timeO(mn); checking°T (C) takesO(mn) time.

5.3 Type inference

Define the relation v between typings by:〈Γ1 ` τ1 | C1〉 v
〈Γ2 ` τ2 | C2〉 iff there exists a type substitutionT andΓ ′

2 ⊆ Γ2
such thatC2 ° Γ ′

2 = T (Γ1) andC2 ° τ2 = T (τ1) andC2 ° T (C1).

Lemma 5.12. If M : T1 and T1 v T2, then M: T2.

Let T ≤T ′ (T is “at least as precise as”T ′) meanM : T ⇒M : T ′

for all M. A typing T is principal [29] for M iff M : T and
M : T ′ ⇒ T ≤ T ′ for all T ′. A typing T is syntactically principal
for M iff M : T andM : T ′ ⇒ T v T ′ for all T ′. BecauseT v T ′

impliesT ≤ T ′, a syntactically principal typing forM is principal.
The definitions directly imply that ifT1 v T2 andT2 is solvable,

thenT1 is also solvable. Therefore a syntactically principal typing
for a termM is solvable unlessM has no solvable typings at all.

Theorem 5.13. The algorithmTYPEINFdefined in Figure 4 com-
putes a syntactically principal typing for every typable term. The
algorithm runs in time O(nmα(n)) where n is the size of the ana-
lyzed term and m is the number of distinct field labels in it.

As a corollary,Martini has principal typings.

Before we prove the theorem, here are some high-level remarks
about the algorithm. In our description it consists of two phases.
The COLLECT phase processes the input term to collect type equa-
tions and constraints; the RUNIFY phase solves the type equations
by a unification algorithm extended to deal with rows. The col-
lected constraints are not touched (except for the side effects of the
unification step); they appear directly in the principal typing. Im-
plementations will usually perform the two phases in parallel as
co-processes, and check constraint solvability using Thm. 5.11 af-
terward; we leave such refinements to the reader’s imagination.

The recursive syntax-directed COLLECT phase takes two in-
puts: a termM and a type environmentΓ that maps all of
M’s free variables to distinct type variables. It produces a triple
COLLECT(M,Γ) = (W,τ ,C), whereW is a set of type equations

COLLECT(x,Γ) = (∅,Γ (x),∅)

COLLECT({[E;I]},Γ) =
let X = RngE∪Dom I ;
let L = E−1(Dom I) andL ′ = DomE \L ;
let r, q, s, andαx for eachx∈ X be fresh;
let Γ ′(x) beαx for x∈ X , andΓ (x) otherwise;
let (Wx,τx,Cx) = COLLECT(I(x),Γ ′) for all x∈ Dom I ;
let W =

S

x∈Dom I
(

Wx∪{τx = αx}
)

;
let Σ = {` 7→ Γ ′(E(`)) | ` ∈ DomE}
in (W,{[Σ • r / q⇒s]},

S

x∈Dom I Cx∪{q⊇ L ′, s=L }).

COLLECT(M1⊕M2,Γ) =
let r, q, q1, q2, s, s1, ands2 be fresh;
let (Wi ,τi ,Ci) = COLLECT(Mi ,Γ) for i ∈ {1,2};
let C = C1∪C2∪{q⊇ q1 \s2, s=s1]s2, q⊇ q2 \s1};
let W = W1∪W2∪{τ1 = {[r / q1⇒s1]}, τ2 = {[r / q2⇒s2]}}
in (W,{[r / q⇒s]},C).

COLLECT(M.`,Γ) =
let α, r, s be fresh;
let (W,τ ,C) = COLLECT(M,Γ)
in (W∪{τ = {[`:α, r / ∅⇒s]}},α,C∪{{`} ⊆ s}).

COLLECT(M \\L ,Γ) =
let r, q, s0, s, andα` andα′

` for each̀ ∈ L be fresh;
let Σ0 = {` 7→ α′

` | ` ∈ L } andΣ = {` 7→ α` | ` ∈ L };
let (W,τ ,C) = COLLECT(N,Γ);
let W′ = W∪{τ = {[Σ0 • r / q⇒s0]}}
in (W′,{[Σ • r / q⇒s]},C∪{q#L , s=s0\L }).

TYPEINF(M) =
let Γ map each free variable ofM to a fresh type variable;
let (W,τ ,C) = COLLECT(M,Γ);
let T = RUNIFY(W)
in 〈T (Γ) ` T (τ) | T (C)〉.

Figure 4. The definition of the type inference algorithm. The sub-
algorithmRUNIFY(W) will be defined in Section 6.

(of the form τ1 = τ2), τ is a type expression, andC is a con-
straint set. Note that the inputΓ is only used to map term variables
to type variables (not arbitrary types) and it is never changed by
COLLECT, although the equations in the producedW may give
rise to substitutions for the type variables in DomΓ later.
REMARK 5.14. In a strictlycompositionalinference algorithm, the
type environmentΓ should be an output instead of an input. How-
ever, computing the principal environment for any subexpression
bottom-up will incur possibly large reconciliation costs when the
principal environments for two sibling expressions meet each other,
and would therefore destroy the advertisedO(nmα(n)) complexity.
The best type inference solution that we could find that produced
Γ only as output had complexityO(nlogn+ nmα(n)) (which is
worse whenm is small), but even that depended (as our current
algorithm does) on a mutable union-find data structure shared by
all the subcomputations.3 One possible solution could be to start
by α-renaming all variables away from each other and then deriv-

3 Incidentally, this suggests that a consistently compositional type infer-
ence algorithm cannot achieve the folkloreO(nα(n)) behavior on programs
where the number of free variables in a subexpression may be large. How-
ever, that is not a real problem; the main point of compositionalinference is
that the analysiscanbe broken at any point in the expression tree, but there
is no obligation to actually break the analysis at every point.

ing the type variable nameΓ (x) from the name ofx. However, this
does not work in practice, where type variables are represented by
heap-allocated union-find elements to facilitate unification.

A unifier for a type equation setW is a type substitutionT such
that every equation inT (W) is an identity (remembering that types
are already identified modulo the row structure equation).

Lemma 5.15. Assume that(W,τ ,C) = COLLECT(M,Γ) where
Γ maps each free variable in M to a unique type variable. Let
T = 〈Γ ` τ | C〉. For each unifierT for W, it holds that M: T (T).
Conversely, whenever M: T ′, it holds that there is a unifierT for
W such thatT (T) v T ′.

Lemma 5.16. COLLECT(M,Γ) can be computed in time linear
in the size of M.

Proof. The only parts of the computation for which this is not
obviously the case are lookups and additions inΓ . If we represent
Γ as atrie, the operations are all linear in the length of the variable
name, so the total time spent here is linear in the size ofM.4

A most general unifier(MGU) for W is a unifierT for W such
that every other unifier forW can be written asT ′ ◦T for someT .
The second phase of type inference computes an MGU of the final
equation setW. Section 6 will construct a function RUNIFY such
that RUNIFY(W) computes one of the MGUs ofW, if it has any,
in time O(nmα(n)), wheren is the size ofW andm is the number
of distinct field labels mentioned inW.

Proof of Thm. 5.13. The correctness of the result of TYPINF fol-
lows from Lemma 5.15 and the property that RUNIFY computes
most general unifiers.

According to Lemma 5.16, the COLLECT phase completes in
timeO(n), so the size ofW is O(n) too. Therefore, the computation
(and, implicitly, application) of MGU(W) can be completed in time
O(nmα(n)) — a detailed argument for this will be given in Section
6. Thus the entire computation has complexityO(nmα(n)).

5.4 Incremental constraint simplification

Superficially, it seems that we have solved type analysis forMarti-
ni. To analyze a term, one computes its principal typing (Thm. 5.13)
and then checks whether its constraint part is solvable (Thm. 5.11).
Each step is efficient and relatively simple. So are we happy?

Not entirely. Postponing constraint solving until the end has
practical and theoretical disadvantages. One problem is that the
constraint parts of the inferred typings can grow quite large, be-
cause they can track each module operation in the term,even those
that are irrelevant for observable behavior. For example, the term
({[f= 5]}⊕{[]}).f gets the inferred typing〈∅ ` int | s={f},{f} ⊆
s〉 rather than the more concise〈∅ ` int | ∅〉 — which, inciden-
tally, is also syntactically principal for it.

Instead, we want tointerleavethe constraint solving (Section
5.2) with other type inference steps. But we must be a little careful;
if we blindly applied the entire constraint solving procedure from

4 A reader of early drafts of this explanation complained that this assumes
that variable names are represented with a fixed finite alphabet in the input,
whereas the rest of our complexity analysis assumes a constant-cost RAM
with a word length that expands with the input size such that all parts
of the input can be addressed. The reader complained that it was not fair
not to allow the representation of variable names to take advantage of this
increasing word length, and that the complexity bounds oughtto include a
logarithmic factor to take account of this. We disagree with this objection;
we believe it is a common convention in complexity theory to measure the
“size of the input” inbits even when one is working with a cost model
whereinternal operations can work with larger pieces of data at once. This
means we are measuring our algorithm the same way other algorithms in
the literature are measured, so comparisons will be meaningful.

Section 5.2, a simple term such asx.f would get its original princi-
pal typing〈x : {[f:’a, r / q⇒s]} ` ’a | {f} ⊆ s, ∅ ⊇ q〉 rewritten
to 〈x : {[f:’a, r / ∅⇒⊥]} ` ’a | ∅〉 which is far from principal. To
preserve principality we must make sure that whenever we rewrite
T to T ′ it holds thatT v T ′ and T′ v T, in which case we say it is
safeto rewriteT to T ′. In this section we identify some rewritings
that are safe.

First, constraints that are already solved can be dropped:

Lemma 5.17. Let T = 〈Γ ` τ | C〉 and T′ = 〈Γ ` τ | {c ∈ C |
¬°c}〉. Then it is safe to rewrite T to T′.

Second, it is safe to perform the⊥-less solving ofs variables
described by Lemma 5.8:

Lemma 5.18. Let T = 〈Γ ` τ | C〉 and assume C☞ T . Then it is
safe to rewrite T toT (T).

The construction in Lemma 5.9 is not safe. The one in Lemma
5.10 is only partially safe;C ☛ T sets allq’s to a lower bound on
the possible values ofq. We should onlyusethis lower bound when
that entails no restriction on set variables that are visible in the
type and environment parts of the typing. We should also exclude
variables where the lower bound cannot yet be computed because
theSpart of aQ⊇ Q\Sconstraint is still a variable.

Lemma 5.19. Let T = 〈Γ ` τ | C〉, and letQ be the least subset
of q such that

1. If q appears anywhere inΓ or τ , then q∈ Q.
2. If (q⊇ Q\s) ∈C, then q∈ Q.
3. If (q⊇ q′ \L) ∈C then q′ ∈ Q ⇒ q∈ Q.

Let C☛ T , and letT ′(q) be T (q) when q6∈ Q and q otherwise.
Then it is safe to rewrite T toT ′(T).

As a simple example of incremental constraint simplification,
consider the term(x⊕{[f.y,h.z;y = z]}).g. Its inferred but not
simplified typing is〈x : {[f:’a, g:’b, h:’a, r / q⇒s]} ` ’b | C〉
where

C =

{

q1⊇ {h}, s1={f}, ∅ ⊇ q1\s,
s2=s]s1, ∅ ⊇ q\s1, {g} ⊆ s2

}

We first reduce fors variables by Lemma 5.8. The only reduction
in this case isC ☞ [s1 7→ {f}]; after this we have the same typing
but with constraint set

C′ =

{

q1⊇ {h}, {f}={f}, ∅ ⊇ q1\s,
s2=s]{f}, ∅ ⊇ q\{f}, {g} ⊆ s2

}

We now compute the variousQC′

` ’s and getC′ ☛ [q 7→ ∅, q1 7→
{h}]. In Lemma 5.19,Q is {q} (asq appears in the type assumption
for x), so we apply just the substitution[q1 7→ {h}] to get

C′′ =

{

{h} ⊇ {h}, {f}={f}, ∅ ⊇ {h}\s,
s2=s]{f}, ∅ ⊇ q\{f}, {g} ⊆ s2

}

After dropping solved constraints and using abbreviations for the
unsolved ones, we get the simplified typing

〈

x : {[

(

f:’a, g:’b,
h:’a, r

)

/ q⇒s]} ` ’b
{h} ⊆ s, s2=s]{f},
q⊆ {f}, {g} ⊆ s2

〉

5.5 Discussion

Martini allows compositional type inference for mixin modules
without type annotations. Previous typed mixin module calculi
[7, 4, 1, 12, 13] have not considered type inference, and several
expect full type annotations for difficult operations. Because of
the row pollution problem,Martini sometimes fails to type some
terms unless the programmer switches to let-polymorphism (not
always possible) or inserts dummy hiding operations. In contrast,
previous mixin module systems tend to need full type annotations

for these problem terms. Also, as Section 4.4 points out, the naive
approach of previous type systems leads to unfeasible NP-complete
typability in the absence of full type annotations.

Some previous mixin calculi have features not supported by
them-calculus orMartini. Duggan and Sourelis [5] allow different
cases of a function that operates by pattern matching to come from
different modules. Ancona et al. [2] allow extracting an export from
a mixin module with imports, if the types prove that the export does
not depend on the imports.

If we restrictMartini to theλ
⊕ fragment of them-calculus that

we defined in Section 3.2, we can derive a type system for theλ-
calculus with record concatenation. We call this systemBowtie; it
arises by adding a primitive type constructor→ for function types
and then fixing theQ part of all remaining record types to∅.

Our entire development forMartini, including the type infer-
ence algorithm and its complexity analysis, carries over toBowtie
without change (except that of course constraint solving forq vari-
ables can be omitted).

Bowtie is not the first type system for aλ-calculus with record
concatenation that supports type inference, but to the best of our
knowledge there are no previous systems with a published type-
inference complexity bound as low asO(nmα(n)). One system
by Rémy [21] can probably be implemented within this bound;
unfortunately the types in this system are excessively inflexible and
it can not reasonably be used for programming. A series of systems
have been defined by Pottier [17, 18, 19], but the only one of these
that has a complexity analysis [19] has complexityO(n3mlogm),
which is significantly more thanBowtie’s O(nmα(n)).

Previous type systems for record concatenation include work by
Wand [27, 28], Harper and Pierce [8, 9], Rémy [21, 23], Zwanen-
burg [32], Pottier [17, 18, 19], and Palsberg and Zhao [16]. Rémy’s
system in [23] is the earliest to tolerate type “errors” in dead and
sleeping code. TheBot concept in Pottier’s system in [17] is very
similar to the “⊥” in Bowtie (andMartini).

6. Row unification
In this section we describe an efficient algorithm for computing
most general unifiers modulo the row structure equation(`1:τ1,
`2:τ2, R) = (`2:τ2, `1:τ1, R). This is used in our type inference
procedure, but we also believe it has some general interest. This
row unification problem has a standard algorithm (see for exam-
ple [20]), but a direct implementation of this is too slow to fit within
theO(nmα(n)) complexity we need. The more efficient procedure
we define here may have been independently developed by many
implementers, but appears never to have been written down explic-
itly. We think it deserves to be recorded.

The key idea is to handle an entire row equation(`1:τ1,
. . . , `k:τk, r) = (`′1:τ ′1, . . . , `′k′ :τ

′
k′ , r ′) in a single step. Whenever

`i = `′j , a unification ofτi = τ ′j must be scheduled; labels that ap-
pear only on one side must have corresponding entries added to
the end of the list of the other side. The standard algorithm uses up
to Ω(m2) label commutation steps to bring the elements on either
side of the equation into the same order. This corresponds to linear
searches through the two row expressions; with a monolithic solu-
tion we are free to use more efficient data structures such a search
trees or arrays for this purpose.

The only point where our algorithm differs from an implemen-
tation of the standard algorithm for row unification is in steps (b)
and (c) of the RECUNIF operation in Figure 6. We describe the al-
gorithm at a more concrete level than most unification descriptions
in the literature. It is usual for such description to allow wholesale
manipulation of type terms and substitutions; but working at that
level would reduce our complexity analysis to pure handwaving.

6.1 Data representation

During row unification (and type inference in general) labels will
be represented as small integers between 1 andm, the number
of distinct labels in the program. This allows representing label-
indexed maps as arrays. In the original input labels are usually
strings that must be interned to small integers before type inference;
this can be done in a linear-time pass over the program using a trie
recording indexes for already-seen labels.

In the algorithm type expressions are represented as a di-
rected acyclic graph of pointer-linked memory blocks. We use the
metavariableX for pointers to nodes in the type graph. Each node
has asort from the set{TYPE,ROW,QSET,SSET}, correspond-
ing to the syntactic categoriesτ , R , Q and S , respectively.
The sorts need not be explicitly present in the graph at run-time,
but it is useful to imagine that they are. Each node also has acon-
tents which is eitherVAR or ξ(X1, . . . ,Xn) whereξ is one of the
following type constructors:5

• {[· / ·⇒·]} with kind ROW×QSET×SSET → TYPE.
• `:·, ·, for any`, with kind TYPE×ROW → ROW.
• ⊥ with kind SSET.
• L , for anyL , with kind SSET or QSET.

When the contents of a nodeX is ξ(X1, . . . ,Xn), the number and
sorts of nodesX1 throughXn, as well as the sort ofX itself, must be
as specified by the kind ofξ.

A node with contentsVAR represents a type (or row or set)
variable of the appropriate sort. Each such variable is represented
by exactly one node; we can thus identify the variable with the node
and do not need explicit names for type variables until and unless
we want to output the inferred type textually.

The nodes in the type graph are elements of a union-find data
structure, which provides the following four primitives: EQUAL
(X1,X2) tests whetherX1 andX2 refer to the same node. READ(X)
produces the contents of nodeX. FUSE(X1,X2,ζ) creates a single
node with contentsζ and destructively redirects all existing refer-
ences to eitherX1 or X2 such that they now refer to the new node.
(The unification algorithm only performs this operation whenX1
andX2 have the same sort, so the sort of the new node is unam-
biguous.) Finally, one may CREATE a new node with a given sort
and contents. It is well known thatk operations in the union-find
structure can be done in total time at mostO(kα(k)), whereα is an
extremely slow-growing function.6

6.2 Consistent graphs

The exposed nodesof the type graph are all nodes of sortROW
that are mentioned in the contents of a node whose sort isnotROW.
That is, the onlyROW nodes that arenot exposed are those that
are linked to either not at all or only fromROW nodes. The state
of the algorithm isconsistentiff there exists a functionψ ∈ X →

Pfin(`) such thatψ(X) = ∅ for all exposed nodesX, and whenever
READ(X) = `:X′, X′′ it holds thatψ(X′′) = ψ(X)]{`} (andψ(X)
can be undefined ifX is not of sortROW). Consistency means
that each row variable always appears after the same set of labels
(although they may appear in different orders).

It is an invariant of the algorithm that its state is consistent. This
ensures that we will not have to worry about creating ill-formed
rows that define the same label twice; the mapψ in the definition

5 For other type systems thanMartini it is easy to add more type construc-
tors, for example “→” of kind TYPE → TYPE → TYPE. The only fixed
part of the signature is the constructors forROW which must be exactly
“`:·, ·” and nothing else.
6 A possible definition is:α(k) is the leasti ≥ 1 such thatA(i,4) > logk,
whereA is a variant of Ackermann’s function [24].

1. For each type, row or set variableβ in W, CREATE a node
with the appropriate sort and contentsVAR. Let θ be the
map from eachβ to its corresponding node.

2. Replace each(τ ,τ ′) in W with the pair (BUILDθ(τ),
BUILDθ(τ

′)).
3. Do steps (4)-(10) for as long asW is not empty. Go to step

(11) whenW becomes empty.
4. Select an equation(X,X′) from W and remove it fromW.
5. If EQUAL(X,X′), then discard the pair and start over from

step (3).
6. If READ(X) = VAR, then execute FUSE(X,X′,

READ(X′)), and start over from step (3).
If READ(X′) = VAR, then execute FUSE(X,X′,
READ(X)), and start over from step (3).

7. Setξ(X1, . . . ,Xk) = READ(X) and setξ′(X′
1, . . . ,X

′
k′) =

READ(X′). (This step will not be reached unless the con-
tents of the two nodes have this form.)

8. If ξ 6= ξ′, then the unification problem is intrinsically un-
solvable. Report failure and terminate the algorithm. (Mar-
tini has only one constructor of sortTYPE, but this can
happen forSSET andQSET.)

9. Execute FUSE(X,X′,ξ(X1, . . . ,Xk)).
10. Execute RECUNIF(Xi ,X′

i), defined below, for 1≤ i ≤ k,
and start over from step (3).

11. (This step is reached whenW becomes empty.) Search
for cycles in the type graph, for example by a depth-first
traversal looking for back edges. If any are found, then
stop and report failure.

12. If this step is reached, then the unification has succeeded.
Return the substitution{READOUT(θ(β)) | β ∈Domθ}.

Figure 5. Definition of the unification algorithmRUNIFY(W)

corresponds to the kinding discipline of [20, pp. 647ff]. In particu-
lar, the initial state produced by the caller must be consistent or the
algorithm will not work. Fortunately, it is easy see that the equa-
tion sets produced by the COLLECT procedure of Section 5.3 will
naturlly be represented by consistent graphs. (Each recursive invo-
cation of COLLECT constructs an isolated component of the graph
that is initially connected to other components solely through the
unification queueW, which has no influence on consistency.)

6.3 The algorithm

The unification algorithm is defined in Figures 5 and 6. The algo-
rithm keeps a queueW of waiting equalities, represented as pairs
(X1,X2). It is an invariant that when(X1,X2) ∈W, thenX1 andX2
must have the same sort, whichmust not beROW. In step (4), the
strategy for picking an equation to remove is not important; the
usualrecursiveunification algorithm corresponds to a LIFO queue
that coincides with the implementation language’s call stack.

Step (11) implements theoccurs check, which is usually de-
scribed as being part of step (6), but the latter is executed too often
to afford doing it there if we want almost-linear complexity. If (con-
trary to most real-world type checkers that want to report errors to
the user in a readable way) we are not interested in knowingwhy
the unification failed, it suffices to check the type graph for cycles
once after the unification queue becomes empty.

Notice that part (b) and (c) of RECUNIF is the only place in the
algorithm that specifically concerns rows. All other steps appear
unchanged in the well-known first order unification algorithm.

Theorem 6.1. TheRUNIFY algorithm produces a most general
unifier whenever its input has any unifier. If the input does not have
a unifier it will terminate with a failure report.

This is the RECUNIF(X,X′) procedure used in step (10) of
RUNIFY:

a. If the sort ofX andX′ is not ROW, just add(X,X′) to W
and return.

b. (If this step is reached, both ofX and X′ are exposed
ROW nodes.) Let(ϕ,X0) = GETROW(X) and(ϕ′,X′

0) =
GETROW(X′). For each̀ ∈ (Domϕ∪Domϕ′) (in some
arbitrary order), do

1. If ` ∈ (Domϕ∩Domϕ′), add(ϕ(`),ϕ′(`)) to W.
2. Otherwise, if` ∈ Dom ϕ: CREATE a new nodeX′

1
with sort ROW and contentsVAR. Then execute
FUSE(X′

0,X
′
0,(`:ϕ(`), X′

1)), and setX′
0 := X′

1.
3. Otherwise, if` ∈ Dom ϕ′: CREATE a new nodeX1

with sort ROW and contentsVAR. Then execute
FUSE(X0,X0,(`:ϕ′(`), X1)), and setX0 := X1.

c. Execute FUSE(X0,X′
0,VAR) and return.

BUILDθ(t) is a side-effecting function from type termst to
node names, parameterized by a mapθ from variables toX :

BUILDθ(β) = θ(β).
BUILDθ(ξ(t1, . . . , tn)) =

let Xi = BUILDθ(ti) for 1≤ i ≤ n
in CREATE a node with contentsξ(X1, . . . ,Xm)

and return its name.

GETROW(X) is defined whenX is a node of sortROW and
the unification graph isconsistent:

GETROW(X) =
case READ(X) of `:X′, X′′ ⇒ let (ϕ,X′′′) = GETROW(X′′)

in ({` 7→ X′}¢ϕ,X′′′)
| VAR ⇒ (∅,X)

READOUT maps a node name in anacyclic graph to a type
term. It depends on a fixed injective mappingκ from node
names to variables of appropriate sorts.

READOUT(X) =
case READ(X) of
ξ(X1, . . . ,Xn) ⇒ ξ(READOUT(X1), . . . ,READOUT(Xn))

| VAR ⇒ κ(X)

Figure 6. Helper definitions forRUNIFY

Theorem 6.2. TheRUNIFY algorithm, except for the finalREAD-
OUT operations, runs in time O(nmα(n)), where n is the total size
of the input and m is the number of different field labels mentioned
in it.

Proof. Let N be the largest number of operands of any type con-
structor; this is assumed to be a constant. Whenϕ’s are represented
as arrays, each GETROW operation uses at mostO(m) time plus
m union-find operations. Each RECUNIF operation uses at most
O(m) time plus 4m+ 1 union-find operations. It may add up tom
pairs toW. The total number of RECUNIF operations is at most
Nn, because step (10) is always done together with (9), which de-
creases by one the number of non-ROW nodes (which are never
created after step (2)). Therefore, at mostNnmpairs are added to
theO(n) initial pairs inW during the algorithm. Steps (1)–(10) of
the main algorithm are executed at mostO(Nnm)+O(n) = O(nm)
times. Each execution spends constant time plus a constant num-
ber of union-find operations outside RECUNIF. Step (11) uses a

Terms: M,N ::= · · · | let x = N in M
Generalized t-vars:β ::= s | q | r | α

Variable sets: B ∈ Pfin(β)

Type schemes: σ ::= ∀B.〈τ |C〉
Environments: Γ ∈ x fin→ τ ∪ σ

let x = N in M ↪→ [x 7→ N]M
RLet

Γ (x) = ∀B.〈τ |C〉 ∀β 6∈ B : T (β) = β

x : 〈Γ ` T (τ) | T (C)∪C′〉
TPoly

N : 〈Γ ` τ | C〉 B = FTV(τ ,C)\FTV(Γ)
M : 〈Γ ¢{x 7→ ∀B.〈τ |C〉} ` τ ′ | C′〉

let x = N in M : 〈Γ ` τ ′ | C′〉
TLet

Figure 7. Adding Hindley/Milner polymorphism toMartini to
makeMartini∀. Things not defined here are in Figure 3.

constant number of union-find operations for each graph edge. The
number of edges is bounded by the number of operations already
performed (each edge must have been added at some time), so be-
cause step (11) happens only once, it can at most increase the num-
ber of operations performed by a constant factor.

In total, O(nm) + O(Nn(4m+ 1)) = O(nm) union-find opera-
tions are executed. The work except for these is alsoO(nm), so
the total time complexity of the unification algorithm isO(nm)+
O(O(nm)α(O(nm))) = O(nmα(n)), as required.

7. Let-polymorphism
BecauseMartini has principal typings, we can add to it Milner’s let-
polymorphism to get a type systemMartini∀ that is toMartini what
the Hindley/Milner (HM) type system (used by languages like ML)
is to the simply typedλ-calculus. Figure 7 shows the completely
conventional additions that do this. Note that type schemes have a
constraint component, as is often done in HM extensions involving
constraints.

We know that the additional rules in Figure 7 correctly im-
plement let-polymorphism, becauseMartini∀ types the same pro-
grams as would be typed byMartini extended with the single rule

N : 〈Γ ` τ | C〉 [x 7→ N]M : 〈Γ ` τ ′ | C′〉

let x = N in M : 〈Γ ` τ ′ | C′〉

which deliberately ignoresτ and C and is well known to cor-
rectly characterize the power of Milner’s let-polymorphism. Prin-
cipal types relative to a givenΓ in Martini∀ can be computed by
the obvious extension of the standard algorithmW or one of its
variants. Interleaved constraint simplification yields ground princi-
pal types. Note that, as usual for systems extended with Milner’s
let-polymorphism,Martini∀ has only the weaker principaltypes,
not principaltypings.

Note that let-polymorphism is not enough for ML-style mod-
ules. Entire mixin modules can be polymorphic, but not individual
module components, unlike ML structures and functors, which also
have features addressing type abstraction and thediamond import
problem such as type components in structures and type sharing
specifications. More work is needed to add such features toMarti-
ni.

8. Conclusion
8.1 Summary of contributions

This paper makes these novel contributions:

1. Section 4 proves that typability is NP-complete forRiviera, the
straightforward system of simple types for them-calculus, a
calculus of first-class mixin modules with symmetric linking.
Riviera roughly corresponds to previous mixin module type
systems. We point out that the expense comes from the type
system checking constraints fromdeador sleepingcode.

2. Because our NP-completeness proof (1) works for the restric-
tion of Riviera to theλ

⊕ subset of them-calculus and (2) is in-
sensitive to whether linking is symmetric or asymmetric (over-
riding), we have also proven that type inference is NP-complete
for Wand’s type system for theλ-calculus with record concate-
nation [28]. The only similar previous NP-completeness result
is by Palsberg and Zhao [16] for a more complicated system
with subtyping.

3. Section 5 developsMartini, a system of simple types for them-
calculus.Martini is conceptually simple, with no subtyping and
a clean and balanced separation between (1) traditional simple
types with type and row variables for determining field types
and (2) constraints for safety of linking and field extraction.

4. Section 5 also develops type inference forMartini, and proves
that Martini has principal typings [29].Martini is the first
type system for first-class mixin modules with a type inference
algorithm. Its time complexity isO(nmα(n)), where the input
has sizen andm distinct field labels, andα(n) is negligible.

5. By restrictingMartini to theλ
⊕ subset of them-calculus, we

achieve type inference for aλ-calculus with symmetric record
concatenation with the same complexity, better than the previ-
ously best published complexity for any type inference algo-
rithm for record concatenation. (Some previous type inference
algorithms for record concatenation without published com-
plexity analyses may have comparable complexities.)

6. Section 6 presents an efficient implementation ofrow unifica-
tion with a rigorous complexity analysis.

7. We have implemented inference of principal typings forMar-
tini; our implementation can be downloaded or used on-line at
〈URL:http://www.macs.hw.ac.uk/DART/software/Martini/〉.

8. Section 7 shows how to extendMartini with Milner’s let-
polymorphismto makeMartini∀, which we believe is the first
polymorphic type system for first-class mixin modules.

8.2 Acknowledgements

We are grateful to Davide Ancona, Sonia Fagorzi, and Elena Zucca
for discussions during a visit by us to Genova which led directly to
this work. We thank François Pottier and James Cheney for enlight-
ening electronic discussions of the complexity of row unification,
and Elena Zucca, Tom Hirschowitz, Gérard Boudol, and anony-
mous referees for helpful comments.

References
[1] D. Ancona, S. Fagorzi, E. Moggi, E. Zucca. Mixin modules and
computational effects. InProc. 30th Int’l Coll. Automata, Languages, and
Programming, vol. 2719 ofLNCS. Springer-Verlag, 2003.
[2] D. Ancona, S. Fagorzi, E. Zucca. A calculus with lazy module
operators. InIFIP TC1 3rd Int’l Conf. Theoret. Comput. Sci. (TCS ’04).
Kluwer Academic Publishers, 2004.
[3] D. Ancona, E. Zucca. A primitive calculus for module systems. In
Proc. Int’l Conf. Principles & Practice Declarative Programming, vol.
1702 ofLNCS. Springer-Verlag, 1999.
[4] D. Ancona, E. Zucca. A calculus of module systems.J. Funct.
Programming, 12(2), 2002. Extended version of [3].

[5] D. Duggan, C. Sourelis. Mixin modules. InProc. 1996 Int’l Conf.
Functional Programming. ACM Press, 1996.
[6] Programming Languages & Systems, 9th European Symp. Program-
ming, vol. 1782 ofLNCS. Springer-Verlag, 2000.
[7] M. Flatt, M. Felleisen. Units: Cool modules for HOT languages. In
Proc. ACM SIGPLAN ’98 Conf. Prog. Lang. Design & Impl., 1998.
[8] R. Harper, B. C. Pierce. A record calculus based on symmetric
concatenation. Technical Report CMU-CS-90-157R, Carnegie Mellon
Univ., 1991.
[9] R. Harper, B. C. Pierce. A record calculus based on symmetric
concatenation. InConf. Rec. 18th Ann. ACM Symp. Princ. of Prog. Langs.,
1991.
[10] T. Hirschowitz.Mixin Modules, Modules, and Extended Recursion in
a Call-by-Value Setting. PhD thesis, Université Paris 7, 2003.
[11] T. Hirschowitz. Rigid mixin modules. InSeventh International
Symposium on Functional and Logic Programming (FLOPS 2004), 2004.
[12] T. Hirschowitz, X. Leroy. Mixin modules in a call-by-value setting. In
Programming Languages & Systems, 11th European Symp. Programming,
vol. 2305 ofLNCS. Springer-Verlag, 2002.
[13] T. Hirschowitz, X. Leroy, J. B. Wells. Call-by-value mixin modules:
Reduction semantics, side effects, types. InProgramming Languages &
Systems, 13th European Symp. Programming, vol. 2986 ofLNCS. Springer-
Verlag, 2004. More details can be found in [10].
[14] H. Makholm, J. B. Wells. Type inference, principal typings, and let-
polymorphism for first-class mixin modules. Technical report,Heriot-Watt
Univ., School of Math. & Comput. Sci., 2005.
[15] A. Ohori, P. Buneman. Type inference in a database programming
language. InProc. 1988 ACM Conf. LISP Funct. Program., Snowbird,
Utah, U.S.A., 1988.
[16] J. Palsberg, T. Zhao. Type inference for record concatenation and
subtyping.Inform. & Comput., 189, 2004.
[17] F. Pottier. A 3-part type inference engine. In ESOP ’00 [6].
[18] F. Pottier. A versatile constraint-based type inference system.Nordic
Journal of Computing, 7(4), 2000.
[19] F. Pottier. A constraint-based presentation and generalization of rows.
In Proc. 18th Ann. IEEE Symp. Logic in Comput. Sci., 2003.
[20] F. Pottier, D. Ŕemy. The essence of ML type inference. In B. C. Pierce,
ed.,Advanced Topics in Types and Programming Languages, chapter 10.
MIT Press, Cambridge, Massachusetts, 2005.
[21] D. Rémy. Typing record concatenation for free. InConf. Rec. 19th
Ann. ACM Symp. Princ. of Prog. Langs., 1992. A later version is [22].
[22] D. Rémy. Typing record concatenation for free. In C. A. Gunter,
J. C. Mitchell, eds.,Theoretical Aspects Of Object-Oriented Programming:
Types, Semantics and Language Design. MIT Press, 1993.
[23] D. Rémy. A case study of typechecking with constrained types:
Typing record concatenation. Presented at the workshop on Advances in
Types for Computer Science at the Newton Institute, Cambridge, UK, 1995.
[24] R. E. Tarjan. Efficiency of a good but not linear set unionalgorithm.
J. ACM, 22(2), 1975.
[25] S. Vansummeren. On the complexity of deciding typability in the
relational algebra.Acta Informatica, 200X. To appear.
[26] M. Wand. Complete type inference for simple objects. InProc. 2nd
Ann. Symp. Logic in Comput. Sci., 1987. A corrigendum appeared at LICS
1988.
[27] M. Wand. Type inference for record concatenation and multiple
inheritance. InProc. 4th Ann. Symp. Logic in Comput. Sci., Pacific Grove,
CA, U.S.A., 1989. IEEE Comput. Soc. Press.
[28] M. Wand. Type inference for record concatenation and multiple
inheritance.Inform. & Comput., 93, 1991.
[29] J. B. Wells. The essence of principal typings. InProc. 29th Int’l Coll.
Automata, Languages, and Programming, vol. 2380 ofLNCS. Springer-
Verlag, 2002.
[30] J. B. Wells, R. Vestergaard. Confluent equational reasoning for linking
with first-class primitive modules (long version). A short version is [31].
Full paper, 3 appendices of proofs, 1999.
[31] J. B. Wells, R. Vestergaard. Equational reasoning for linking with
first-class primitive modules. In ESOP ’00 [6]. A long version is [30].
[32] J. Zwanenburg. A type system for record concatenation and subtyping.
In K. Bruce, G. Longo, eds.,Third Workshop on Foundations of Object
Oriented Languages (FOOL 3), Rutgers Univ., NJ, USA, 1996.

