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Abstract

Multinomial distributions are often used to
model text documents. However, they do
not capture well the phenomenon that words
in a document tend to appear in bursts: if
a word appears once, it is more likely to
appear again. In this paper, we propose
the Dirichlet compound multinomial model
(DCM) as an alternative to the multinomial.
The DCM model has one additional degree
of freedom, which allows it to capture bursti-
ness. We show experimentally that the DCM
is substantially better than the multinomial
at modeling text data, measured by perplex-
ity. We also show using three standard docu-
ment collections that the DCM leads to bet-
ter classification than the multinomial model.
DCM performance is comparable to that ob-
tained with multiple heuristic changes to the
multinomial model.

1. Introduction

Document classification is the task of identifying what
topic(s) a document concerns. Generative approaches
to classification are popular since they are relatively
easy to interpret and can be trained quickly. With
these approaches, the key problem is to develop a prob-
abilistic model that represents the data well. Unfor-
tunately, for text classification too little attention has
been devoted to this task. Instead, a generic multino-
mial model is typically used.

Recent work (Rennie et al., 2003) has pointed out a
number of deficiencies of the multinomial model, and
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suggested heuristics to improve its performance. In
this paper, we follow an alternative path. We present a
different probabilistic model that, without any heuris-
tic changes, is far better suited for representing a class
of text documents.

As most researchers do, we represent an individual
document as a vector of word counts (Salton et al.,
1975). This bag-of-words representation loses seman-
tic information, but it simplifies further processing.
The usual next simplification is the assumption that
documents are generated by repeatedly drawing words
from a fixed distribution. Under this assumption,
word emissions are independent given the class, i.e. the
naive Bayes property holds. This property is not valid
(Lewis, 1998), but naive Bayes models remain popu-
lar (McCallum & Nigam, 1998; Sebastiani, 2002) be-
cause they are fast and easy to implement, they can
be fit even with limited training data, and they do
yield accurate classification when heuristics are ap-
plied (Jones, 1972; Rennie et al., 2003).

The central problem with the naive Bayes assumption
is that words tend to appear in bursts, as opposed to
being emitted independently (Church & Gale, 1995;
Katz, 1996). Rennie et al. (2003) address this is-
sue by log-normalizing counts, reducing the impact of
burstiness on the likelihood of a document. Teevan
and Karger (2003) empirically search for a model that
fits documents well within an exponential family of
models, while Jansche (2003) proposes a zero-inflated
mixture model.

In this paper we go further. We show that the multino-
mial model is appropriate for common words, but not
for other words. The distributions of counts produced
by multinomials are fundamentally different from the
count distributions of natural text. Zipf’s law (Zipf,
1949) states that the probability pi of occurrence of an
event follows a power law pi ≈ i−a, where i is the rank
of the event and a is a parameter. The most famous



example of Zipf’s law is that the frequency of an Eng-
lish word, as a function of the word’s rank, follows a
power law with exponent close to minus one.

We propose to model a collection of text documents
with a Dirichlet distribution (Minka, 2003). The
Dirichlet distribution can be interpreted in two ways
for this purpose, either as a bag-of-scaled-documents
or as a bag-of-bags-of-words. We show below that the
latter approach works well.

Dirichlet distributions have been used previously to
model text, but our approach is fundamentally dif-
ferent. In the LDA approach (Blei et al., 2003) the
Dirichlet is a distribution over topics, while each topic
is modeled in the usual way as a multinomial distribu-
tion over words. In our approach, each topic, i.e. each
class of documents, is modeled in a novel way by a
Dirichlet distribution instead of by a multinomial. Our
approach is therefore complementary to the LDA and
related approaches.

2. Multinomial modeling of text

When using a multinomial distribution for text mod-
eling, the multinomial specifies the probability of ob-
serving a given vector of word counts, where the prob-
ability θw for the emission of word w is subject to the
constraints

∑
w θw = 1 and θw > 0. The probability of

a document x represented as a vector of word counts
xw is

p(x|θ) =
n!∏W

w=1 xw!

W∏
w=1

θxw
w

where xw is the number of times word w appears in
the document, θw is the probability of emitting word
w, W is the size of the vocabulary, and n =

∑
xw.

The multinomial distribution is different for each dif-
ferent document length n. This is not a problem when
learning the parameters; it is possible to generalize
over documents with different lengths. The maximum
likelihood parameter estimates θ̂ are

θ̂w =
∑D

d=1 xdw∑W
w′=1

∑D
d=1 xdw′

where d is the document number and D is the number
of documents. These estimates depend only on the
fraction of times a given word appears in the entire
corpus.

When the multinomial model is used to generate a
document, the distribution of the number of emissions
(i.e. count) of an individual word is a binomial:

p(xw|θ) =
(

n

xw

)
θxw

w (1− θw)n−xw . (1)

Figure 1. Count probabilities of common, average and rare
words in the industry sector corpus. The figure shows, for
example, that the probability a given rare word occurs ex-
actly 10 times in a document is 10−6. The ripple effect seen
in common words occurs because no vocabulary pruning is
done, so certain HTML keywords such as “font” or “table”
occur an even number of times in beginning and ending
tags.

3. The burstiness phenomenon

The term “burstiness” (Church & Gale, 1995; Katz,
1996) describes the behavior of a rare word appearing
many times in a single document. Because of the large
number of possible words, most words do not appear
in a given document. However, if a word does appear
once, it is much more likely to appear again, i.e. words
appear in bursts. To illustrate this behavior, the prob-
ability that a given word occurs in a document exactly
x times is shown in Figure 1 for the industry sector
corpus. Words have been split into three categories
based on how often they appear in the corpus. The
categories are “common,” “average,” and “rare.” The
common words are the 500 most frequent words; they
represent 1% of the words in the vocabulary and 71%
of the emissions. The average words are the next 5000
most common words; they represent 10% of the vocab-
ulary and 21% of the emissions. The rare words are
the rest of the vocabulary (50,030 words) and account
for 8% of the emissions.

A few things should be noted about Figure 1. Not sur-
prisingly, common words are more probable than av-
erage words which are more probable than rare words.
Interestingly, though, the curves for the three cate-
gories of words are close to parallel and have similar
decay rates. Even though average and rare words are
less likely to appear, once a word has appeared, the
probability that it will occur multiple times is similar
across all words.

Equation (1) shows that it is unlikely under the



Figure 2. Count probabilities for a maximum likelihood
multinomial model, trained with the industry sector cor-
pus.

multinomial model for a word to occur many times in a
document, because the single word count distribution
decays exponentially. Figure 2 shows the average word
count probabilities from ten synthetic corpora gener-
ated from a multinomial model trained on the industry
sector corpus. Each synthetic corpus was generated so
its documents have the same length distribution as
documents in the industry sector corpus.

The multinomial captures the burstiness of common
words, but the burstiness of average and rare words is
not modeled correctly. This is a major deficiency in
the multinomial model since rare and average words
represent 99% of the vocabulary and 29% of emissions
and, more importantly, these words are key features
for classification. An explanation for this behavior is
that the common words are more likely to satisfy the
independence assumption, since many of the common
words are non-content, function words. The rare and
average words are information-carrying words, mak-
ing them more likely to appear if they have already
appeared in a document.

Figure 3 shows the simplex of possible count vectors
for three words when a multinomial model is used and
the sum of the counts is n = 50. All the probability
mass is close to the most likely counts, so burstiness
is not likely. If bursts were likely, then the probability
mass would be on the edges and corners of the simplex.

4. Dirichlet modeling of text

The Dirichlet distribution is a probability density func-
tion over distributions. It is defined as

p(θ|α) =
Γ
(∑W

w=1 αw

)
∏W

w=1 Γ(αw)

W∏
w=1

θαw−1
w

Figure 3. Simplex of possible count vectors using the
multinomial bag-of-words model with parameters θ =
{0.4375, 0.25, 0.3125} and n = 50.

where θ is a vector in the W -dimensional probability
simplex, i.e.

∑
w θw = 1. The α vector entries are the

parameters of the Dirichlet.

When modeling text, the θ vector represents a docu-
ment, making the model have the form dataparameter.
This form makes Dirichlet models qualitatively similar
to Zipf distributions, where the parameter is an expo-
nent. In contrast, the multinomial model has the form
parameterdata. By rewriting the Dirichlet distribution
in the exponential family form

log p(θ|α) =
W∑

w=1

(αw − 1) log θw

+ log Γ(
W∑

w=1

αw)−
W∑

w=1

log Γ(αw)

we see that the log transform of the data is naturally
considered. This is again in contrast to the multino-
mial in exponential form.

In the bag-of-words representation, documents are vec-
tors of word counts. The Dirichlet distribution is a
distribution not over count vectors but over probabil-
ity vectors. There are multiple ways to represent a
document as a probability vector. The obvious choice
is to let θ be a scaled version of the document vector.
We can view this approach as drawing a scaled bag of
words (representing one document) from the Dirichlet
bag-of-scaled-documents.

The difficulty with this approach is that document vec-
tors are sparse in nature, i.e. each document tends to
contain only a small subset of the vocabulary, resulting
in many of the entries being zero. Since the Dirichlet
likelihood for a probability vector is zero if the vec-
tor contains any zeros, smoothing of the training data



is required before a Dirichlet distribution can be esti-
mated. In practice, this results in an over-smoothed
distribution, where all the rare words have about the
same probability of appearing in all the classes. Since
the rare words contain most of the discriminative in-
formation, this model is not useful for document clas-
sification.

A better approach is hierarchical: let the count vec-
tor for each document be generated by a multinomial
distribution whose parameters are generated by the
Dirichlet distribution. This model is called the Dirich-
let compound multinomial (DCM) (Minka, 2003) and
can be understood as a bag-of-bags-of-words. To gen-
erate a document using the DCM, a sample is first
drawn from the Dirichlet to get a multinomial distri-
bution, then words are iteratively drawn for the doc-
ument based on the multinomial distribution.

Although we talk about the parameters θ, the only
genuine parameters for a DCM are the α vector entries.
The likelihood of a document of length n is an integral
over θ vectors weighted by a Dirichlet distribution:

p(x|α) =
∫

θ

p(x|θ)p(θ|α)dθ

=
∫

θ

n!
W∏

w=1
xw!

(
W∏

w=1

θxw
w

) Γ
(

W∑
w=1

αw

)
W∏

w=1
Γ(αw)

W∏
w=1

θαw−1
w dθ

=
n!

W∏
w=1

xw!

Γ
(

W∑
w=1

αw

)
W∏

w=1
Γ(αw)

∫
θ

W∏
w=1

θαw+xw−1
w dθ

=
n!

W∏
w

xw!

Γ
(

W∑
w=1

αw

)
Γ
(

W∑
w=1

xw + αw

) W∏
w=1

Γ (xw + αw)
Γ(αw)

. (2)

The last step of equation (2) is obtained by notic-
ing that

∏W
w=1 θxw

w combined with
∏W

w=1 θαw−1
w is

the unnormalized version of the Dirichlet distribution
p(θ|α + x), and using the fact that

∫
p(θ|α)dθ = 1.

There exists no closed-form solution for the maximum
likelihood parameter values for the DCM model. An
iterative gradient descent optimization method can be
used to estimate the α vector by computing the gradi-
ent of the DCM log likelihood. Two bound inequations
are used with the gradient, leading to the update

αnew
w = αw

D∑
d=1

Ψ(xdw + αw)−Ψ(αw)

D∑
d=1

Ψ(xdw +
W∑

w′=1

αw′)−Ψ(
W∑

w′=1

αw′)

Figure 4. Count probabilities for a maximum likelihood
DCM model, trained with the industry sector corpus.

where the digamma function Ψ is defined as Ψ(α) =
d

dα log Γ(α). For more information see Minka (2003).

Figure 2 shows that the multinomial is unable to cor-
rectly model the burstiness of natural text. Figure
4 shows the probability of a term appearing multiple
times in a document under the DCM model. The ex-
perimental design is similar to that of Figure 2. The
DCM can model burstiness for all word types. The
curves for the three categories of words are close to
parallel, like in the original data (Figure 1).

A Dirichlet has the same number of parameters as a
multinomial, so it is not obvious how the DCM can
model burstiness. The reason is that the multinomial
parameters are constrained to sum to one, unlike the
DCM parameters, so the DCM has one extra degree of
freedom. The smaller the α parameters are, the more
the emission of words is bursty. Figure 5 shows the
simplex of count probabilities given by equation (2)
for three words with n = 50, for different α vectors.
When the parameters are small, most probability mass
is located near the corners of the simplex. When the
parameters are large, most mass is near the center of
the simplex, modeling word counts that are not bursty.
As the parameters tend to infinity, the DCM model
approaches equivalence with a multinomial model.

Since a DCM has only a single extra degree of freedom
compared to a multinomial, it cannot model the indi-
vidual burstiness of each word. This inflexibility is a
trade-off between the expressiveness of the model and
its learnability with limited training data.

5. Experiments

We use three standard corpora: the so-called industry
sector, 20 newsgroups and Reuters-21578 document



(a) low-scaled DCM (b) mid-scaled DCM

(c) high-scaled DCM (d) multinomial

Figure 5. Three word probability simplices with DCM pa-
rameters (a) 0.44, 0.25, 0.31 (b) 1.32, 0.75, 0.93 and (c)
3.94, 2.25, 2.81 and multinomial (d) 0.44, 0.25, 0.31.

collections. We compare the DCM method against
the multinomial model as well as against recent heuris-
tically improved versions of the multinomial method,
which perform as well as discriminative methods (Ren-
nie et al., 2003). We have made every effort to repro-
duce previous results in order to ensure that a fair
comparison is made.

Documents are preprocessed and count vectors are ex-
tracted using the Rainbow toolbox (McCallum, 1996).
The 500 most common words are removed from the
vocabulary to ensure that our results are comparable
with previous results. The Dirichlet toolbox (Minka,
2003) is used to estimate the parameters of the DCM
model.

When using DCM or multinomial models for classifi-
cation, we apply Bayes’ rule p(y|x) = p(x|y)p(y)/p(x)
with a uniform prior p(y) over the classes, follow-
ing (Rennie et al., 2003). The class y with the highest
probability p(y|x) is the predicted label.

5.1. Heuristics to improve multinomial models

Various heuristics have been applied to the multino-
mial and related models to enhance classification per-
formance (Rennie et al., 2003). We briefly review them
here for completeness. The first heuristic is the log-
transformation of the data, which has been shown to

mitigate problems caused by burstiness. In the tables
of results below, L is shorthand for the transformation

xlog
dw = log(1 + xdw)

where all logarithms are natural, i.e. base e. One
traditional information retrieval heuristic is the term-
frequency inverse-document-frequency (TFIDF) trans-
formation, which exists in various forms (Aizawa,
2003). The version used here includes the log-
transformation:

xtfidf
dw = log(1 + xdw) log

D∑D
d′=1 δd′w

where δdw is 1 if word w is present in document d. Af-
ter the TFIDF transformation, document vectors are
L2-normalized:

xnorm
dw =

xtfidf
dw√∑W

w′=1 xtfidf
dw

2
.

This makes all document vectors have the same length
and therefore the same amount of influence on the
model parameters. The combination of TFIDF and
L2-normalization is denoted TW-L below.

A couple of additional heuristics are also applied.
The most important is complement modeling (Ren-
nie et al., 2003): the model for a class is trained with
all the documents that do not belong to that class.
In most cases, by using other classes’ data, substan-
tially more data is available for parameter estimation
resulting in better modeling of each class:

θ̂comp
kw =

∑
i:ydk 6=1 xnorm

dw + ε∑W
w′=1

∑
i:ydk 6=1 xnorm

dw′ + ε

where the class variable ydk equals 1 if document d
belongs to class k and 0 otherwise, and ε is a smoothing
constant, which is necessary to prevent probabilities
for unseen words from becoming zero. Typically, ε =
1, but this value is often much too large, so we also
report results below with ε = 0.01. Non-complement
models are smoothed in a similar way. DCM models
are also smoothed, but differently, by adding a small
constant to each parameter αw. This constant equals
0.01 times the smallest non-zero estimated αw.

If documents can belong to more than one class, the
usual approach is a one-versus-all-but-one classifier.
The complement model is the same as the standard
model, in these cases. For this reason, the complement
model is defined differently for multi-label problems as
an all-versus-all-but-one classifier (Rennie et al., 2003,
Appendix A).



Finally, the model parameters are log-normalized:

θ̂norm
kw =

log θ̂comp
kw∑W

w′=1 log θ̂comp
kw′

making the influence of common words smaller (Ren-
nie et al., 2003). The letter C below denotes com-
plement modeling combined with log-normalization of
parameters.

The heuristics described above, and others commonly
used with multinomial models for text, modify both in-
put data (word counts) and distribution parameters.
Therefore, they do not give probability distributions
that are properly normalized, i.e. that sum to one ap-
propriately.

5.2. Document collections

The industry sector1 data set contains 9555 documents
distributed in 104 classes. The data set has a vocabu-
lary of 55,055 words, and each document contains on
average 606 words. The data are split into halves for
training and testing. The 20 newsgroups2 data set con-
tains 18,828 documents belonging to 20 classes. This
collection has a vocabulary of 61,298 words with an
average document length of 116 words. The data are
split into 80/20 fractions for training and testing. In
the industry and newsgroup data sets each document
belongs to one class only.

The Reuters-215783 data set contains 21,578 docu-
ments. We use the Mod Apte split which only con-
tains 10,789 documents (Apte et al., 1994), those in
the 90 classes with at least one training and one test
example. The Mod Apte split uses a predefined set of
7,770 training documents and 3,019 test documents.
The documents are multi-labeled and can belong to
one or more of the 90 classes. This collection has a
vocabulary of 15,996 words and the documents have
an average length of 70 words.

5.3. Perplexity results

We start by evaluating the perplexity of alternative
models over the same test data (Blei et al., 2003).
When a document is represented as a vector of word
counts, its probability includes a factor n!/

∏W
w=1 xw!

that measures how many word sequences could gener-
ate the same vector of counts. We define perplexity
over a set of D documents as

exp(
−
∑D

d=1

∑W
w=1 log p(xdw)∑D
d=1 nd

)

1www.cs.umass.edu/∼mccallum/code-data.html
2people.csail.mit.edu/people/jrennie/20Newsgroups
3kdd.ics.uci.edu

where p(x) does not include the factor nd!/
∏W

w=1 xdw!.
Perplexity on test data measures how well a model
predicts unseen data. A lower value indicates better
prediction.

The perplexity measure is calculated for the 20 news-
groups data, with one model trained for each of the
20 classes. The perplexity for multinomial models is
5311± 755 versus 2609± 382 for DCM models, where
both results are means ± one standard deviation cal-
culated over 10 random splits. We do not report per-
plexity results for heuristically modified multinomial
models, since the transformed parameters and data
no longer define a proper probability distribution that
sums to one.

5.4. Classification results

The performance of the models is compared on the
industry and newsgroup collections using precision

TP
TP+FP to measure the accuracy of classification. Here
TP is the number of true positives, FP the number of
false positives, and FN the number of false negatives.

With multi-labeled data, it is necessary to consider
both precision and recall TP

TP+FN to get a fair mea-
sure of performance. This is the case for the Reuters
data. Following previous work, we combine precision
and recall by computing the “break-even” point where
precision equals recall. This point can be defined using
either micro or macro averaging:

BEmicro =
1
N

K∑
k=1

Nk
TPk

TPk + FPk

BEmacro =
1
K

K∑
k=1

TPk

TPk + FPk

where K is the number of document classes, N is the
number of documents and Nk is the number of docu-
ments in class k. It is not always possible to get exactly
the same value for precision and recall, so the aver-
age between the two measures is used in these cases.
Using micro-averaging, every document is considered
equally important. The macro-averaging measure pe-
nalizes classifiers that have poor performance on doc-
uments from rare classes.

We acknowledge that precision and break-even may
not be the best measures of the effectiveness of a text
classifier (Sebastiani, 2002), but we use these measures
here for comparability with previous work. The re-
sults in Tables 1 and 2 are averages over 10 random
splits (50/50 for industry sector and 80/20 for 20 news-
groups), shown ± one standard deviation σ over the
10 splits.



Table 1. Classification results for the industry sector col-
lection.

Method Smoothing ε Precision ± σ

M 1 0.600 ± 0.011
L-M 1 0.654 ± 0.009
M 0.01 0.783 ± 0.008
DCM 0.806 ± 0.006
L-M 0.01 0.812 ± 0.005
TW-L-M 1 0.819 ± 0.004
TW-L-M 0.01 0.868 ± 0.005
C-M 1 0.889 ± 0.006
C-M 0.01 0.889 ± 0.004
C-L-M 0.01 0.899 ± 0.005
C-L-M 1 0.912 ± 0.005
C-DCM 0.917 ± 0.004
C-TW-L-M 0.01 0.919 ± 0.005
C-TW-L-M 1 0.921 ± 0.004

Table 2. Classification results for the 20 newsgroups collec-
tion.

Method Smoothing ε Precision ± σ

M 0.01 0.853 ± 0.004
L-M 0.01 0.865 ± 0.005
TW-L-M 0.01 0.876 ± 0.005
C-M 0.01 0.876 ± 0.005
C-L-M 0.01 0.886 ± 0.005
DCM 0.890 ± 0.005
C-DCM 0.892 ± 0.004
C-TW-L-M 0.01 0.893 ± 0.005

Table 1 shows the performance of the different algo-
rithms on the industry sector data set. Our results
using multinomial-based methods are similar to those
reported by Rennie et al. (2003) and McCallum and
Nigam (1998). Smoothing with ε = 0.01 is clearly
better than with ε = 1 for non-complement models.
The DCM model produces results that are better than
the multinomial and the complement-DCM produces
results similar to the multinomial with all heuristics
applied.

The results in Table 2 are obtained using the 20 news-
groups data. As in the industry sector data, the
DCM model outperforms the multinomial. In this cor-
pus, each class is represented by many examples, so
complement modeling is not as useful and the DCM
and complement-DCM models perform similarly to the
best multinomial with heuristics. We show results with
ε = 0.01 only because results with ε = 1 are worse, as
in the industry sector data, and for compatibility with
Rennie et al. (2003).

Table 3. Classification results for the Reuters collection.
The third column shows macro break-even, while the last
column shows micro break-even.

Method Smoothing ε Macro BE Micro BE

M 1 0.268 0.761
L-M 1 0.303 0.756
DCM 0.359 0.740
TW-L-M 1 0.390 0.768
M 0.01 0.405 0.741
L-M 0.01 0.407 0.759
TW-L-M 0.01 0.456 0.753
C-TW-L-M 0.01 0.560 0.732
C-L-M 0.01 0.562 0.759
C-M 1 0.563 0.759
C-L-M 1 0.594 0.764
C-M 0.01 0.607 0.776
C-DCM 0.624 0.823
C-TW-L-M 1 0.657 0.840

Table 3 shows results on the Reuters corpus, which
is special in that documents contain few words, and
many classes only contain a few documents. The DCM
and C-DCM methods still perform well. Standard de-
viations are not given since there is a single standard
training set/test set split for this corpus.

We can evaluate the statistical significance of the dif-
ferences in performance for the industry sector and
20 newsgroups collections. On these two collections,
the DCM model outperforms the standard multino-
mial and a Student’s t-test shows that this difference
is extremely significant. The complement-DCM model
performs slightly worse than the multinomial model
with all heuristics applied. A t-test shows that for
both data sets, the differences in performance between
the complement-DCM model and C-TW-L-M method
are not statistically significant.

6. Discussion

We have argued that the Dirichlet compound multino-
mial (DCM) model is a more appropriate genera-
tive model for text documents than the traditional
multinomial model. The reason is that a DCM can
model burstiness: the phenomenon that if a word ap-
pears once, it is more likely to appear again.

We have shown experimentally that the DCM model
performs better than the multinomial model for two
standard text mining tasks. First, as measured by
perplexity, the DCM models a single collection of doc-
uments better. Second, when documents are classified
using Bayes’ rule using a generative model for each of



the alternative classes, accuracy using a DCM model
for each class is higher than when using a multino-
mial model for each class. When the most effective
known heuristics are applied in addition, accuracy us-
ing multinomial models versus using DCM models is
similar.

The DCM model is a generative model for the doc-
uments within a class. Given a Dirichlet distribu-
tion, a document is not generated directly. Instead,
the Dirichlet is used to generate a multinomial; this
multinomial is then used to generate the document.
Conceptually, different documents within the same
class are generated by different multinomials. This
procedure allows for diversity within the class. The
words that are bursty in a particular document are
those that have high probability in the particular
multinomial used to generate this document.

A DCM model can represent a topic (i.e. a class of doc-
uments) where different documents use alternative ter-
minology. For example, some automotive documents
may use the word “hood” while others use the word
“bonnet.” This within-topic diversity is different from
the within-document diversity allowed by latent topic
modeling, where each topic is represented by a sin-
gle multinomial, but each word in a document may be
generated by a different topic (Deerwester et al., 1990;
Hofmann, 1999; Blei et al., 2003).

We hope that many applications of text modeling in
addition to those outlined in this paper will benefit
from using DCM models in the future.
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