
Vector-Quantization using Information Theoretic Concepts

Tue Lehn-Schiøler (tls@imm.dtu.dk)
Intelligent Signal Processing, Informatics and Mathematical Modelling, Technical
University of Denmark, 2800 Kgs. Lyngby, Denmark

Anant Hegde (ahegde@cnel.ufl.edu), Deniz Erdogmus
(deniz@cnel.ufl.edu) and Jose C. Principe
(principe@cnel.ufl.edu)
Computational NeuroEngineering Laboratory, Electrical & Computer Engineering
Department, University of Florida, Gainesville, FL 32611, USA

Abstract. The process of representing a large data set with a smaller number
of vectors in the best possible way, also known as vector quantization, has been
intensively studied in the recent years. Very efficient algorithms like the Kohonen
Self Organizing Map (SOM) and the Linde Buzo Gray (LBG) algorithm have been
devised. In this paper a physical approach to the problem is taken, and it is shown
that by considering the processing elements as points moving in a potential field an
algorithm equally efficient as the before mentioned can be derived. Unlike SOM and
LBG this algorithm has a clear physical interpretation and relies on minimization of
a well defined cost-function. It is also shown how the potential field approach can be
linked to information theory by use of the Parzen density estimator. In the light of
information theory it becomes clear that minimizing the free energy of the system
is in fact equivalent to minimizing a divergence measure between the distribution of
the data and the distribution of the processing element, hence, the algorithm can
be seen as a density matching method.

Keywords: Information particles, Information theoretic learning, Parzen density
estimate, Self organizing map, Vector-Quantization

Abbreviations: SOM – Self-organized map; PE – Processing element; C-S –
Cauchy-Schwartz; K-L – Kullback-Leibler; VQIT – Vector-Quantization using In-
formation Theoretic Concepts; QE – Quantization error LBG – Linde Buzo Gray

1. Introduction

The idea of representing a large data set with a smaller set of pro-
cessing elements (PE’s) has been approached in a number of ways and
for various reasons. Reducing the number of data points is vital for
computation when working with a large amount of data whether the
goal is to compress data for transmission or storage purposes, or to
apply a computationally intensive algorithm.

In vector quantization, a set of data vectors is represented by a
smaller set of code vectors, thus requiring only the code vector to be
stored or transmitted. Data points are associated with the nearest code
vector generating a lossy compression of the data set. The challenge is
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to find the set of code vectors (the code book) that describes data in
the most efficient way. A wide range of vector quantization algorithms
exist, the most extensively used are K-means (MacQueen, 1967) and
LBG (Linde et al., 1980).

For other applications like visualization, a good code book is not
enough. The ‘code vectors’, or processing elements (PE’s), as they
are often denoted in the self-organizing literature, must preserve some
predefined relationship with their neighbors. This is achieved by incor-
porating competition and cooperation (soft-competition) between the
PE’s. Algorithms with this property create what is known as Topology
Preserving Maps. The Self-Organized Map (SOM) (Kohonen, 1982) is
the most famous of these. It updates not only the processing element
closest to a particular data point, but also its neighbors in the topology.
By doing this it aligns the PE’s to the data and at the same time draws
neighboring PE’s together. The algorithm has the ability to ’unfold’ a
topology while approximating the density of the data.

It has been shown (Erwin et al., 1992) that when the SOM has
converged, it is at the minimum of a cost function. This cost-function
is highly discontinuous and drastically changes if any sample changes
its best matching PE. As a result it is not possible to use the con-
ventional methods to optimize and analyze it. Further more, the cost
function is not defined for a continuous distribution of input points
since boundaries exist where a sample could equally be assigned to two
different PE’s (Erwin et al., 1992). Attempts has been made to find a
cost function that, when minimized, gives results similar to the original
update rule (Heskes and Kappen, 1993).

Efforts have also been made to use information theoretic learning
to find good vector quantifiers and algorithms for Topology Preserving
Maps. Heskes (1999) introduces a cost function as a free energy func-
tional consisting of two parts, the quantization error and the entropy
of the distribution of the PE’s. He also explored the links between
SOM, vector quantization, Elastic nets (Durbin and Willshaw, 1987)
and Mixture modeling, concluding that the methods are closely linked
via the free energy. Van Hulle (2002) uses an information theoretic ap-
proach to achieve self-organization. The learning rule adapts the mean
and variance of Gaussian kernels to maximize differential entropy. This
approach, however, leads to a trivial solution where PE’s eventually
coincide. To circumvent this, Van Hulle proposes to maximize the dif-
ferential entropy and at the same time minimize the mutual information
by introducing competition between the kernels. The competition is not
based on information theory but rather implements an activity-based,
winner-takes all heuristic. Bishop et al. (1996) proposes an algorithm
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(the Generative Topographic Map) in which a mapping between a
lattice of PE’s and data space is trained using the EM algorithm.

Ideas on interactions between energy particles have been explored
previously by Scofield (1988). However, in this paper, we approach the
same problem with an information-theory perspective and explicitly
use the probability distributions of the particles to minimize the free
energy between them.

In this paper, an algorithm for vector quantization using information
theoretic learning (VQIT) is introduced. Unlike the methods described
above, this algorithm is designed to take the distribution of the data
explicitly into account. This is done by matching the distribution of
the PE’s with the distribution of the data. This approach leads to
the minimization of a well defined cost function. The central idea is
to minimize the free energy of an information potential function. It
is shown that minimizing free energy is equivalent to minimizing the
divergence between a Parzen estimator of the PE’s density distribu-
tions and a Parzen estimator of the data distribution. In section 2, an
energy interpretation of the problem is presented and it is shown how
this has close links to information theory. In section 3, the learning
algorithm is derived using the Cauchy-Schwartz inequality. Numerical
results are presented in section 4, where performance is evaluated on
an artificial data set. In section 5 limitations and possible extensions
to the algorithm are discussed and it is compared to already existing
algorithms. Finally, concluding remarks are given in section 6.

2. Energy interpretation

The task is to choose locations for the PE’s, so that they represent a
larger set of data points as efficiently as possible. Consider two kind
of particles; each kind has a potential field associated with it, but the
polarity of the potentials are opposite. One set of particles (the data
points) occupies fixed locations in space while the other set (the PE’s)
are free to move. The PE’s will move according to the force exerted
on them by data points and other PE’s, eventually minimizing the free
energy. The attracting force from data will ensure that the PE’s are
located near the data-points and repulsion between PE’s will ensure
diversity.
The potential field created by a single particle can be described by a
kernel of the form K(·). Placing a kernel on each particle, the potential
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energy at a point in space x is given by

p(x) =
1
N

N∑
i=1

K(x− xi) (1)

where the index i runs over the positions of all particles (xi) of a par-
ticular charge. If the kernel decays with distance (K(x) ∝ 1

(x−xi)
) the

potential is equivalent to physical potentials like gravitation and electric
fields. However, in the information theoretic approach, any symmetric
kernel with maximum at the center can be chosen. For the sake of
simplicity, Gaussian kernels are used herein.
Due to the two different particle types, the energy of the system has
contributions from three terms:

1. Interactions between the data points; since the data points are
fixed, these interactions will not influence minimization of the en-
ergy.

2. Interactions between the data and the processing elements; due to
the opposite signs of the potentials, these particles will attract each
other and hence maximize correlation between the distribution of
data and the distribution of PE’s.

3. Interactions between PE’s; the same sign of all the PE’s potentials
causes them to repel each other.

In the information theoretic literature equation (1) is also considered
a density estimator. In fact it is exactly the well known Parzen density
estimator (Parzen, 1962). In order to match the PE’s with the data, we
can use equation (1) to estimate their densities and then minimize the
divergence between the densities. The distribution of the data points
(xi) can be written as f(x) =

∑
i G(x − xi, σf ) and the distribution

over PE’s (wi) as g(x) =
∑

i G(x− wi, σg).
Numerous divergence measures exist, of which the Kullback-Leibler

(K-L) divergence is the most commonly used (Kullback and Leibler, 1951).
The Integrated square error and the Cauchy-Schwartz (C-S) inequality,
are both linear approximations to the K-L divergence. If C-S is used,
the link between divergence and energy interpretation becomes evident.
The Cauchy-Schwartz inequality,

|ab| ≤ ||a||||b|| (2)

is an equality only when vectors a and b are collinear. Hence, maximiz-
ing |ab|

||a||||b|| is equivalent to minimizing the divergence between a and b.
To remove the division, the logarithm can be maximized instead. This
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is valid since the logarithm is a monotonically increasing function. In
order to minimize the divergence between the distributions f(x) and
g(x) the following expression is minimized:

Dc−s(f(x), g(x)) = − log
(
∫
(f(x)g(x))dx)2∫

f2(x)dx
∫

g2(x)dx
(3)

= log
∫

f2(x)dx− 2 log
∫

f(x)g(x)dx + log
∫

g2(x)dx

Following Principe et al. (2000) V =
∫

g2(x)dx is denoted as the
information potential of the PE’s and C =

∫
f(x)g(x)dx the cross

information potential between the distributions of data and the PE’s.
Note that

H(x) = − log
∫

g2(x)dx = −logV (4)

is exactly the Renyi quadratic entropy (Rényi, 1970) of the PE’s. As a
result, minimizing the divergence between f and g is equal to maximiz-
ing the sum of the entropy of the PE’s and the cross information poten-
tial between the densities of the PE’s and the data. The link between
equation (3) and the energy formulation can be seen by comparing the
terms with the items in the list above.

3. The algorithm

As described in the previous section, finding the minimum energy lo-
cation of the PE’s in the potential field is equivalent to minimizing
the divergence between the Parzen estimate of the distribution of data
points f(x) and the estimator of the distribution of the PE’s g(x).
The Parzen estimate for the data has a total of N kernels, where N
is the number of data points, and the Parzen estimator for the PE’s
uses M kernels, M being the number of processing elements (typically
M << N).

Any divergence measure can be chosen, but in the following the
derivation will be carried out for the Cauchy-Schwartz divergence,

J(w) = log
∫

f2(x)dx− 2 log
∫

f(x)g(x)dx + log
∫

g2(x)dx (5)

The cost function J(w) is minimized with respect to the location of the
PE’s (w).

When the PE’s are located such that the potential field is at a
local minima, no effective force acts on them. Moving the PE’s in the
opposite direction of the gradient will bring them to such a potential
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minimum; this is also known as the gradient descent method. The
derivative of equation (5) with respect to the location of the PE’s must
be calculated; but, since the data points are stationary only the last two
terms of equation (5) (the cross information potential and the entropy
of the PE’s) have non-zero derivatives.

For simplicity, the derivation of the learning rule has been split in
two parts; calculation of the contribution from cross information poten-
tial and calculation of the contribution from entropy. In the derivation
Gaussian kernels are assumed, although, any symmetric kernel that
obeys Mercer’s condition (Mercer, 1909) can be used.
Consider the cross information potential term (log

∫
f(x)g(x)dx); the

Parzen estimator for f(x) and g(x) puts Gaussian kernels on each data
point xj and each PE wi respectively, where the variances of the kernels
are σ2

f and σ2
g . Initially the location of the PE’s are chosen randomly.

C =
∫

f̂(x)ĝ(x)dx (6a)

=
1

MN

∫ M∑
i

G(x− wi, σ
2
g)

N∑
j

Gf (x− xj , σ
2
f )dx (6b)

=
1

MN

M∑
i

N∑
j

∫
G(x− wi, σ

2
g)G(x− xj , σ

2
f )dx (6c)

=
1

MN

M∑
i

N∑
j

G(wi − xj , σ
2
a) (6d)

where the covariance of the Gaussian after integration is σ2
a = σ2

f +σ2
g .

The gradient update for PE wk from the cross information potential
term then becomes:

d
dwk

2 log C = −2
∆C

C
(7)

Where ∆C denotes the derivative of C with respect to wk.

∆C = − 1
MN

N∑
j

Ga(wk − xj , σa)σ−1
a (wk − xj) (8)

Similarly for the entropy term(− log
∫

g2(x)dx)

V =
∫

ĝ2(x)dx =
1

M2

M∑
i

M∑
j

G(wi − wj ,
√

2σg) (9a)

d
dwk

log V =
∆V

V
(9b)
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With

∆V = − 1
M2

M∑
i

G(wk − wi,
√

2σg)σ−1
g (wk − wi) (10)

The update for point k consist of two terms; cross information potential
and entropy of the PE’s:

wk(n + 1) = wk(n)− η

(
∆V

V
− 2

∆C

C

)
(11)

where η is the step size. The final algorithm for vector-quantization
using information theoretic concepts (VQIT), consist of a loop over all
wk. Note that ∆C and ∆V are directional vectors where as C and V
are scalar normalizations.

As with all gradient based methods this algorithm has problems
with local minima. One of the ways local minima can be avoided is by
annealing the kernel size (Erdogmus and Principe, 2002). The potential
created by the particles will depend on the width of the kernels and the
distance between the particles. When the distance is large compared
to the width, the potential will be very ’bumpy’ and have many local
minima, and when the particles are close compared to the width, the
corresponding potential will be ’smooth’. If, in addition, the number
of particles is large the potential will have the shape of a normal dis-
tribution. Starting with a large kernel size will therefore help to avoid
local minima. As with the SOM, a good starting point is to choose the
kernels such that all particles interact with each other.

The algorithm derived in this section uses the gradient descent method
to minimize an energy function based on interactions between infor-
mation particles. Each iteration of the algorithm requires O(M2N)
Gaussian evaluations due to the calculation of C for each PE. The
parameters for the algorithm are the variances of the density estimators
σ2

f and σ2
g along with the step size η. The variances can be set equal

and can be annealed from a size where all particles interact. The step
size should be chosen small enough to ensure smooth convergence.

4. Simulations

In this section the ability of the VQIT algorithm to perform vector
quantization is illustrated on a synthetic data set consisting of two half
circles with unit radius which has been distorted with Gaussian noise
with variance 0.1. One of the halves is displaced in horizontal direction
(Figure 1).
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Figure 1. Artificial data used to evaluate performance, points are chosen from two
half circles distorted by Gaussian noise. Initially all processing elements (PE’s) were
chosen randomly from the unit square, in all simulations the algorithm converged
to the same solution (indicated by circles).

The data essentially consist of two clusters, as shown in Figure 1.
Initially, 16 PE’s are placed at random locations. The objective is to
have the 16 PE’s efficiently capture the structural property of the data.

a. Development of the cost-function
averaged over 50 trials. The cost-
function is always non-negative and
has its minimum at zero but it is not
guaranteed that a cost of zero can be
achieved.

b. The quantization error measure
is included for comparison with other
algorithms.

Figure 2. Convergence of the algorithm, cost-function and quantization error.
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Table I. Mean square errors for the data set
shown in figure 1, the results are the average of
50 trials with different initial conditions. The
Som, LBG and the VQIT algorithm always
converges to the same solution.

VQIT SOM LBG K-means

QE 0.1408 0.1419 0.1393 0.1668

Using the algorithm presented above, the final locations of the PE’s are
shown, all in proper alignment with the data (Figure 1).

To assess the convergence of the VQIT, 50 monte-carlo simulations
were performed. Starting with different initial conditions chosen uni-
formly from the unit square, it was found that with the right choice of
parameters the algorithm always converges to the same solution. Dur-
ing training mode, having an initial large kernel-size and progressively
annealing it can avoid the local minima. In this simulation, the width
of the kernels was adjusted to equal the data-variance on each of its
individual projections. The initial kernel size for the PE’s was set to
be:

σg = σn

[
0.75 0
0 0.5

]
where σn is the decaying variable. This is initially set to σ0 = 1 and it
decays after every iteration according to:

σn =
σ0

1 + (0.05σ0n)

The kernel size for the data (σf ) was set equal to σg.
The evolution of the cost-function is shown in figure 2.a. Note that

the cost-function is always positive and that the minimum value it
can obtain is zero. The quantization error (QE) is also calculated by
computing the average distance between the data points and their
corresponding winner PE. The QE convergence curve is shown in fig-
ure 2.b. To compare with other algorithms, the quantization error is
used as a figure of merit since it is a commonly used evaluation metric.
Comparison is provided with three algorithms: SOM, LBG and K-
means. K-means is the only algorithm of these that does not converge
to the same solution regardless of initial conditions. The result of the
comparison can be seen in Table I. The quantization error for the
VQIT, SOM, and LBG centers around 0.14 while the K-means does
not perform as well. It should be noted that none of the algorithms
directly minimizes QE, however, LBG includes it in the iterations.
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5. Discussion

In this section some of the critical issues regarding the algorithm are
discussed. Emphasis is put on links to other algorithms and possible
extensions.

The algorithm presented in this work is derived on the basis of the
Cauchy-Schwartz inequality. This leads to a divergence measure based
on the inner-product between two vectors in a Riemann space. As noted
earlier this is not the only choice, and has infact only been used here
because of its close links to entropy. Another choice for cost-function is
the Integrated Square Error which uses the quadratic distance between
the distributions instead of an inner product:∫

(f(x)− g(x))2dx =
∫

f2(x)dx− 2
∫

f(x)g(x)dx +
∫

g2(x)dx.(12)

The terms correspond to the information potentials of the data and
the PE’s and the cross information potential between the two. Note
that equation (12) is similar to equation (5) except for the logarithm.
Derivations equivalent to those used for C-S yields the very simple
update:

wk = wk + η (∆V −∆C) (13)

which requires O(MN) calculations per iteration. Annealing can also
be used and the performance is similar to the VQIT.

“Density estimation is an ill posed problem and requires large amount
of data to solve well” (Vapnik, 1995). Therefore, Vapnik suggests that
one should not try to estimate densities in order to solve simpler prob-
lems (like vector quantization).

Even though this approach uses Parzen density densimates in its
formulation, the pdf is never estimated. Instead the integral can be
computed exactly through the double sum and therefore the method
does not violate Vapnik’s recommendations.

In a physical system, all potentials have the same form and only
the magnitude (charge) can change, i.e. the same kernel type must be
used for all particles. Also, in the Parzen estimator the mixture is ho-
moskedastic, i.e. all mixtures have the same variance. However, in many
of the recent publications (Van Hulle, 2002, Yin and Allinson, 2001,
Heskes, 1999), a heteroskedastic approach is followed allowing the vari-
ance and weighting of the mixture components to change. It is easy to
extend the algorithm presented in this work to include heteroskedastic
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mixtures. The cost-function can just as well be minimized with respect
to both means, variances and mixture weights. One can then choose to
use either gradient descent or the EM algorithm to find the minimum.
However, introducing more free parameters also means estimating more
parameters from the same data points and can therefore lead to over
fitting and poor generalization performance.

Another important issue is topology preservation. This feature is
important if the mapping is to be used for visualization. Unlike the
SOM, the learning rule proposed in this work is not topology preserving;
it does not define an ordering of the PE’s. It is however important to
notice that if an ordering exists, the algorithm will approximately keep
this ordering during convergence. Two different alterations can ensure
that neighbors in the topology are also neighbors in the mapping.
The first and simplest is to add a term to the cost function equation (5).
The term should include attraction from PE’s that are close on the grid,
one possibility is:

∑
i∈N

(xj − xi) (14)

Where N is the set of neighbors defined by the topology. Since the
cost-function is changed, we cannot expect the PE’s to converge to the
same positions. However, once the topology has unfolded, the weighting
of the neighborhood term equation (14) can be reduced and a solution
will be obtained with PE at the desired positions and this time with
the desired topology.
Another option more along the lines of the SOM and other algorithms
(Yin and Allinson, 2001, Van Hulle, 2002), is to change the update of
the cross information potential term. If we chose a winner PE for every
data point and then update only itself and its neighbors, PE’s close in
the topology will be drawn together. Unfortunately this is not straight
forward to put into the information theoretic framework.

The VQIT algorithm is based on block-computation of the data.
It is possible to develop an online sample-by-sample update, which
may result in a significant reduction in computational complexity. One
way this can be achieved is by eliminating the second summation in
equation (6) and computing the Kernel for only the current sample.
However, this idea is still being explored and efforts directed at finding
its similarity with the Kohonen-SOM will be addressed in a future
paper.
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6. Conclusion

In this paper an algorithm for finding the optimal quantization of
a data set is proposed. The algorithm is derived based on concepts
from information theoretic learning and it is shown how information
potential fields and Parzen estimators can be used to give a physical
interpretation of vector quantization. Simulations show errors equiva-
lent to those obtained by the SOM and the LBG algorithms. However,
unlike SOM and LBG, the algorithm proposed here utilizes a cost-
function and its derivative. The algorithm can easily be extended to
form a topology preserving map.

Future efforts will be directed towards comparing numerical proper-
ties of the algorithm and to incorporate the suggested changes. Further
more, it will be interesting to see how VQIT performs on real data.

The main contribution of this work is a novel approach to vector-
quantization utilizing physical laws and introducing probability densi-
ties directly into the optimization.
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