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1. INTRODUCTION

In this booklet we shall discuss numerical methods for constrained opti-
mization problems. The description supplements the description of uncon-
strained optimization in Frandsen et al (1998). We consider a real function
of a vector variable which is constrained to satisfy certain conditions, specif-
ically a set of equality constraints and a set of inequality constraints.

Definition 1.1. Feasible region.A point x∈ IRn is feasibleif it satis-
fies theequality constraints

ci(x) = 0, i= 1, . . . , r, r ≥ 0

and theinequality constraints

ci(x) ≥ 0, i= r+1, . . . ,m, m ≥ r ,
where theci : IRn 7→ IR are given.

The set of feasible points is denoted byP and called thefeasible region.

Notice that ifr= 0, then we have no equality constraints, and ifr=m we
have no inequality constraints.

A constrained minimizer gives a minimal value of the function while satis-
fying all constraints, ie

Definition 1.2. Global constrained minimizer.Find

x+ = argminx∈Pf(x) ,

wheref : IRn 7→ IR andP is given in Definition 1.1.

Here,f is the so-calledobjective functionor cost function.
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Example 1.1. In IR1 consider the objective functionf(x) = (x − 1)2. The
unconstrained minimizeris x+

u = 1 with f(x+
u ) = 0. We shall look at the effect

of some simple constraints.

1◦. With the constraintx≥ 0,
(
r= 0, m= 1, c1(x) =x

)
we also find the con-

strained minimizerx+ = 1.

2◦ With the constraintx−2≥ 0 the feasible region is the intervalP = [2,∞[,
andx+ = 2 with f(x+) = 1.

3◦ The inequality constraints given byc1(x) =x−2 andc2(x) = 3−x lead to
P = [2, 3] andx+ = 2.

4◦ If we have the equality constraint3−x= 0, then the feasible region consists
of one point only,P = {3}, and this point will be the minimizer.

5◦ Finally, 3−x≥ 0, x−4≥ 0 illustrates thatP may be empty, in which case
the constrained optimization problem has no solution.

In many constrained problems the solution is at the border of the feasible
region (as in cases2◦ – 4◦ in Example 1.1). Thus a very important special
case is the set of points inP which satisfy some of the inequality constraints
to the limit, ie with equality. At such a pointz∈P the corresponding con-
straints are said to beactive. For practical reasons a constraint which is not
satisfied atz is also called active atz.

Definition 1.3. Active constraints. A constraintck(x)≥ 0 is said to
be

active atz∈ IRn if ck(z) ≤ 0 ,

inactive atz∈ IRn if ck(z) > 0 .

The active setat z, A(z), is the set of indices of equality constraints
and active inequality constraints:

A(z) = {1, . . . , r} ∪Ã(z) ,

where Ã(z) = {j ∈ {r+1, . . . ,m} | cj(z) ≤ 0} .

Thus, an inequality constraint which is inactive atz has no influence on the
optimization problem in a neighbourhood ofz.
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Example 1.2. In case3◦ of Example 1.1 the constraintc1 is active andc2 is inactive
at the solutionx+. Here the active set is

A(x+) =Ã(x+) = {1} .

As in unconstrained optimization a global, constrained minimizer (Defini-
tion 1.2) can only be computed under special circumstances, like for in-
stance convexity of some of the functions. In some cases (including some
non-convex problems) methods of interval analysis can be applied to find a
global, constrained minimizer (see for instance Caprani et al (2002)).

In this booklet, however, we shall only discuss methods that determine a
local constrained minimizer. Such a method provides a function value which
is minimal inside a feasible neighbourhood, determined byε (ε > 0) :

Definition 1.4. Local constrained minimizer.Findx∗ ∈ P so that

f(x∗) ≤ f(x) for all x ∈ P with ‖x− x∗‖ < ε .

Since the feasible regionP is a closed set we have the following result
concerning constrained optimization.

Theorem 1.5. Assume that

0) The feasible regionP is not empty

1) ci (i= 1, . . . ,m) are continuous for allx∈P
2) f is continuous for allx∈P
3) P is bounded(∃ C ∈ IR : ‖x‖ ≤ C for all x∈P)

Then there exists (at least) one global, constrained minimizer.

If both the cost functionf and all constraint functionsci are linear inx,
then we have a so-called alinear optimization problem. The solution of
such problems is treated in Nielsen (1999). In another important special
case all constraints are linear, andf is a quadratic polynomial; this is called
aquadratic optimization problem, see Chapter 3.

We conclude this introduction with two sections on important properties of
the functions involved in our problems.

1.1. Smoothness and Descent Directions 4

1.1. Smoothness and Descent Directions
In this booklet we assume that the cost function satisfies the following Tay-
lor smoothness condition,

f(x+h) = f(x) + h>g + 1
2
h>H h +O(‖h‖3) (1.6a)

whereg is thegradient,

g ≡ f ′(x) ≡


∂f

∂x1
(x)

...

∂f

∂xn
(x)

 , (1.6b)

andH is theHessian matrix,

H ≡ f ′′(x) ≡
[
{ ∂2f

∂xi∂xj
(x)}

]
. (1.6c)

Furthermore we assume that the feasible regionP has a piecewise smooth
boundary. Specifically we request the constraint functions to satisfy the
following Taylor smoothness condition,

ci(x+h) = ci(x) + h>ai + 1
2
h>Aih +O(‖h‖3) (1.7a)

for i= 1, . . . ,m. Hereai andAi represent the gradient and the Hessian
matrix respectively,

ai = c ′i (x) , Ai = c ′′i (x) . (1.7b)

Notice that even when (1.7) is true, the boundary ofP may contain points,
curves, surfaces (and other subspaces), where the boundary is not smooth,
eg points where more than one inequality constraint is active.

Example 1.3. We consider a two-dimensional problem with two inequality con-
straints,c1(x)≥ 0 andc2(x)≥ 0.
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Figure 1.1:Two inequality
constraints inIR2.
The infeasible side is hatched.
In this and the following figures
c1 means the set{x | c1(x) = 0},
etc.

c1

c2

x1

x2

In Figure 1.1 you see two curves with the points wherec1 andc2, respectively,
is active, see Definition 1.3. The infeasible side of each curve is indicated by
hatching. The resulting boundary ofP (shown with thick line) is not smooth at
the point where both constraints are active. You can also see that at this point the
tangents of the two “active curves” form an angle which is less than (or equal to)
π, when measured inside the feasible region. This is a general property.

Next, we consider a three-dimensional problem with two inequality constraints.
Below, you see the active surfacesc1(x) = 0 and c2(x) = 0. As in the 2-
dimensional case we have marked the actual boundary of the feasible region
by thick line and indicated the infeasible side of each constraint by hatching. It
is seen that the intersection curve is a kink line in the boundary surface. It is also
seen that the angle between the intersecting constraint surfaces is less than (or
equal to)π, when measured insideP.

Figure 1.2:Two inequality
constraints inIR3.

c2

c1

x1

x2

x3

1.1. Smoothness and Descent Directions 6

The methods we present in this booklet are in essencedescent methods, ie it-
erative methods where we move from the present positionx in a direction
h that provides a smaller value of the cost function. We must satisfy the
descent condition

f(x+h) < f(x) . (1.8)

In Frandsen et al (1999) we have shown that the direction giving the fastest
local descent rate is theSteepest Descentdirection

hsd = −f ′(x) . (1.9)

In the same reference we also showed that the hyperplane

H(x) = {x+u | u>f ′(x) = 0} (1.10)

divides the space IRn into a “descent” (or “downhill”) half space and an
“uphill” half space.

A descent directionh is characterized by having a positive projection onto
the steepest descent direction,

h>hsd > 0 ⇐⇒ h>f ′(x) < 0 . (1.11)

Now consider the constraint functions. The equality constraintsci(x) =
0 (i= 1, . . . , r) and the boundary curves corresponding to theactive in-
equality constraints,ci(x)≥ 0 satisfied with “=”, can be considered as level
curves or contours(n= 2), respectively level surfaces or contour surfaces
(n> 2), for these functions. We truncate the Taylor series (1.7) to

ci(x+h) = ci(x) + h>ai +O(‖h‖2) (i= 1, . . . ,m) .

From this it can be seen that the directionai (= c ′i (x)) is orthogonal to any
tangent to the contour at positionx, ie ai is a normal to the constraint curve
(surface) at the position.

Example 1.4. We continue the 2- and 3-dimensional considerations from Example
1.3, see Figure 1.3. At the positionx c1 is an active andc2 is an inactive
constraint, iec1(x) = 0 andc2(x)> 0 .
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The opposite is true at the positiony, c2(y) = 0 andc1(y)> 0.

At the two positions we have indicated the gradients of the active constraints.
They point into the interior ofP, the feasible region.

c1

c2

x

a1y

a2

c2

c1

x

a1y

a2

Figure 1.3:The gradients of the constraint functions inIR2 andIR3

point into the feasible region.

At this early stage we want to emphasize that in a neighbourhood of a point at
the boundary ofP, properties of inactive constraints have no influence.

1.2. Convexity
The last phenomenon to be described in this introduction isconvexity. It is
essential for a theorem on uniqueness of a constrained global minimizer and
also for some special methods.

A setD (for instance the feasible regionP) is convex if the line segment
between two arbitrary points in the set is contained in the set:

Definition 1.12. Convexity of a set. The setD ⊆ IRn is convex
if the following holds for arbitrary x,y∈D , θ ∈ [0, 1] and xθ ≡
θx + (1−θ)y :

xθ ∈ D .

We also use the term convexity about functions:

1.2. Convexity 8

Definition 1.13. Convexity of a function. Assume thatD ⊆ IRn is
convex. The functionf is convexonD if the following holds for arbi-
traryx,y∈D, θ ∈ [0, 1] andxθ ≡ θx + (1−θ)y :

f(xθ) ≤ θf(x) + (1−θ)f(y) .

f is strictly convexonD if

f(xθ) < θf(x) + (1−θ)f(y) .

Definition 1.14. Concavity of a function. Assume thatD ⊆ IRn is
convex. The functionf is concave/strictly concaveonD if −f is con-
vex/strictly convex onD.

In the figure we show a

strictly convex function between

two pointsx,y∈D. The defini-

tion says thatf(xθ), with xθ ≡
θx + (1−θ)y, is below the secant

between the points
(
0, f(x)

)
and(

1, f(y)
)
, and this holds for all

choices ofx andy in D.

0 1 θ

f(x
θ
)

Figure 1.4:A strictly
convex function.

Definition 1.15. Convexity at a point. The functionf is convexat
x∈D if there existsε> 0 such that for arbitraryy∈D with ‖x−y‖<ε,
θ∈ [0, 1] and xθ ≡ θx + (1−θ)y :

f(xθ) ≤ θf(x) + (1−θ)f(y) .

f is strictly convexatx∈D if

f(xθ) < θf(x) + (1−θ)f(y) .

It is easy to prove the following results:
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Theorem 1.16. If D ⊆ IRn is convex andf is twice differentiable on
D, then
1◦ f is convex onD

⇐⇒ f ′′(x) is positive semidefinite for allx∈D
2◦ f is strictly convex onD if

f ′′(x) is positive definite for allx∈D

Theorem 1.17. First sufficient condition.If P is bounded and convex
and iff is convex onP, then

f has a unique global minimizer inP .

Theorem 1.18. If f is twice differentiable atx∈D, then
1◦ f is convex atx∈D

⇐⇒ f ′′(x) is positive semidefinite

2◦ f is strictly convex atx∈D if

f ′′(x) is positive definite

We finish this section with two interesting observations about the feasible
domainP.

1) Let ci be an equality constraint. Take two arbitrary feasible pointsx
andy: ci(x) = ci(y) = 0. All points xθ on the line betweenx andy must
also be feasible (cf Definition 1.12),

ci(θx + (1−θ)y) = 0 for all θ∈ [0, 1] .

Thusci must be linear, and we obtain the surprising result: IfP is convex,
then all equality constraints are linear. On the other hand the set of points
satisfying a linear equality constraint must be convex. Therefore the feasible
domain of an equality constrained problem (ier=m) is convex if and only
if all constraints are linear.

1.2. Convexity 10

2) Let ci be an inequality constraint. Assume thatci is concave on IRn. If
ci(x)≥ 0, ci(y)≥ 0 andθ∈ [0, 1], then Definition 1.14 implies that

ci(θx + (1−θ)y) ≥ θ ci(x) + (1−θ) ci(y)) ≥ 0 .

Thus, the set of points whereci is satisfied is a convex set. This means that
the feasible domainP is convex if all equality constraints are linear and all
inequality constraints are concave.
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We shall progress gradually when we introduce the different aspects and
complications in the conditions for local, constrained minimizers (see Defi-
nition 1.4). We make the assumption that the feasible regionP is not empty
and that the cost functionf and the constraint functionsci (i= 1, . . . ,m)
are smooth enough for the Taylor expansions (1.6) and (1.7) to hold.

First, we consider some special cases.

0) No equality constraints, no active inequality constraints

In Figure 2.1 we indicate the current positionx and the “downhill” halfspace
(cf (1.9) and (1.10)) in the two-dimensional case. The “uphill” side of the
dividing hyperplaneH is hatched.

hsd

x

Figure 2.1:Steepest descent direction and “downhill” halfspace.

In order to get a lower cost value we should move in a directionh in the
unhatched halfspace of descent directions. If the step is not too long then
the constraints of the problem are of no consequence.

2. LOCAL, CONSTRAINED MINIMIZERS 12

1) One equality constraint (no inequality constraints) inIR2

In this case the feasible region,P = {x | c1(x) = 0}, is the curve shown
below. At a positionx we showhsd, the halfspace of descent directions, and
the constraint gradient,a1 = c ′1(x), see (1.7b). It is obvious that ifx “slides
to the left” along the constraint curve, “pulled by the forcehsd”, we shall
get lower cost values and still remain feasible. Thusx cannot be a local,
constrained minimizer.

hsd

x

a1

c1

xs

hsd
(s)

a1
(s)

Figure 2.2:One equality constraint inIR2, c1(x) = 0.
At x we have a feasible descent direction; atxs there is none.

At the positionxs the vectorsh(s)
sd = −f ′(xs) anda(s)

1 = c ′1(xs) are propor-
tional, ie they satisfy a relation of the form

h(s)
sd = −λa(s)

1 ⇐⇒ f ′(xs) = λ c ′1(xs) , (2.1)

whereλ is a scalar. This point may be a local, constrained minimizer. We
say thatxs is aconstrained stationary point.

In conclusion: Any local, constrained minimizer must satisfy the equation
in (2.1) withλ∈ IR.

2) Two active inequality constraints (no equality constraints) inIR2

Figure 2.5 illustrates this case. At positionx both constraints are active.
The pulling forcehsd shown indicates that the entire feasible region is on
the ascent side of the dividing planeH (defined in (1.10) and indicated in
Figure 2.5 by a dashed line). In this case,x is a local, constrained minimizer.
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Figure 2.5:Two inequality constraints
in IR2, c1(x) ≥ 0 andc2(x) ≥ 0.
At the intersection point,hsd points
out of the feasible region.

c1

c2

x

hsd

a1
a2

Imagine that you turnhsd around the pointx (ie, you change the cost func-
tion f ). As soon as the dividing plane intersects with the active part of one
of the borders, a feasible descent direction appears. The limiting cases are,
whenhsd is opposite to eithera1 or a2. The positionxs is said to be acon-
strained stationary pointif h(s)

sd is inside the angle formed by−a1 and−a2,
or

h(s)
sd = −λ1a

(s)
1 − λ2a

(s)
2 with λ1, λ2 ≥ 0 .

This is equivalent to

f ′(xs) = λ1c ′1(xs) + λ2c ′2(xs) with λ1, λ2 ≥ 0 . (2.2)

3) Strongly and weakly active constraints (inIR2)

In Figure 2.6 we show one inequality constraint and the contours of a
quadratic function together withxu, its unconstrained minimizer. In the first
case,xu is also a constrained minimizer, because the constraintc1 is inac-
tive. In the last case,xu is not feasible and we have a constrained minimizer
x∗, with f ′(x∗) 6= 0. We say that the constraint isstrongly active.

In the middle case,c1 is active atxu. Here we say that the constraint
is weakly active, corresponding toλ1 = 0 in (2.1) and (2.2) (because
f ′(xu) = 0).

2.1. Lagrangian Function 14

xu

c1

c1 is inactive

xu

c1

c1 is weakly active

xu

c1

x*

c1 is strongly active

Figure 2.6:Contours of a quadratic function inIR2;
one constraint,c1(x)≥ 0.

In other words: if a constraint is weakly active, we can discard it without
changing the optimizer. This remark is valid both for inequality and equality
constraints.

2.1. The Lagrangian Function
The introductory section of this chapter indicated that there is an im-
portant relationship betweeng∗, the gradient of the cost function, and
a∗i (i= 1, . . . ,m) the gradients of the constraint functions, all evaluated at
a local minimizer. This has lead to the introduction of Lagrange’s Function:

Definition 2.3. Lagrange’s Function.Given the objective functionf
and the constraintsci, i= 1, . . . ,m. Lagrange’s function is defined by

L(x,λ) = f(x)−
m∑
i=1

λici(x) .

The scalars{λi} are theLagrangian multipliers

The gradient ofL with respect tox is denotedL ′x, and we see that

L ′x(x,λ) = f ′(x)−
n∑
i=1

λic ′i (x) . (2.4)
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By comparison with the formulae in the introduction to this chapter we see
that in all cases the necessary condition for a local, constrained minimizer
could be expressed in the formL ′x(xs,λ) = 0 .

For an unconstrained optimization problem you may recall that the neces-
sary conditions and the sufficient condition for a minimizer involve the gra-
dientf ′(x∗) and the Hessian matrixf ′′(x∗) of the cost function, see Theo-
rems 1.1, 1.2 and 1.5 in Frandsen et al (1999). In the next sections you will
see that the corresponding results for constrained optimization will involve
the gradient and the Hessian matrix (with respect tox) of the Lagrangian
function.

2.2. First Order Condition, Necessary Condition
First order conditions on local minimizers only consider first order partial
derivatives of the cost function and the constraint functions. With this re-
striction we can only formulate the necessary conditions; the sufficient con-
ditions also include second derivatives.

Our presentation follows Fletcher (1993), and we refer to this book for the
formal proofs, which are not always straight forward. The strategy is as
follows,

(1) Choose an arbitrary, feasible point.

(2) Determine a step which leads from this point to a neighbouring point,
which is feasible and has a lower cost value.

(3) Detect circumstances which make the above impossible.

(4) Prove that only the above circumstances can lead to failure in step (2).

First, we formulate, the so-called first orderKarush–Kuhn–Tucker condi-
tions(KKT conditionsfor short):

2.2. First Order Condition 16

Theorem 2.5. First order necessary conditions. (KKT conditions)

Assume that
a) x∗ is a local constrained minimizer off (see definition 1.4).

b) either b1) all active constraintsci are linear,

or b2) the gradientsa∗i = c ′i (x
∗) for all active

constraints are linearly independent.

Then there exist Lagrangian multipliers{λ∗i }
m
i=1 (see definition 2.3)

such that

1◦ L ′x(x∗,λ∗) = 0 ,

2◦ λ∗i ≥ 0, i= r+1, . . . ,m ,

3◦ λ∗i ci(x
∗) = 0, i= 1, . . . ,m .

The formulation is very compact, and we therefore give some clarifying
remarks:

1◦ This was exemplified in connection with (2.4).

2◦ λ∗i ≥ 0 for all inequality constraints was exemplified in (2.2), and in

Appendix A we give a formal proof.

3◦ For an equality constraintci(x∗) = 0, andλ∗i can have any sign.

For an active inequality constraintci(x∗) = 0, andλ∗i ≥ 0.

For an inactive inequality constraintci(x∗)> 0, so we must have

λ∗i = 0, confirming the observation in Example 1.4, that these con-

straints have no influence on the constrained minimizer.

In analogy with unconstrained optimization we can introduce the following
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Corollary 2.6. Constrained stationary point

xs is feasible and(xs,λs) satisfy1◦–3◦ in Theorem 2.5

m
xs is a constrained stationary point

2.3. Second Order Conditions
The following example demonstrates that not only the curvature of the cost
function but also the curvatures of the constraint functions are involved in
the conditions for constrained minimizers.

Example 2.1. This example in IR2 with one equality constraint(r=m= 1) is due
to Fiacco and McCormick (1968). The cost function and constraint are

f(x) = 1
2

(
(x1 − 1)2 + x2

2

)
, c1(x) = −x1 + βx2

2 .

We consider this problem for three different values of the parameterβ, see Fig-
ure 2.7.

Figure 2.7:Contours off
and the constraint

−x1 + βx2
2 = 0

for three values ofβ.
β = 0 β = 1/4 β = 1

1 x
1

−1

1

x
2

2.3. Second Order Conditions 18

In all the cases,xs = 0 is a constrained stationary point, see definition (2.6):

(x, λ) = 1
2

(
(x1 − 1)2 + x2

2

)
− λ

(
−x1 + βx2

2

)
,

L ′x(x, λ) =

[
x1 − 1
x2

]
− λ

[
−1

2βx2

]
; L ′x(0, λ) =

[
−1 + λ

0

]
.

Thus,(xs, λs) = (0, 1) satisfy1◦ in Theorem 2.5, and2◦–3◦ are automatically
satisfied when the problem has equality constraints only.

Notice, thatf is strictly convexin IR2.

For β= 0 the feasible region is thex2-axis. This together with the contours of
f(x) near origo tells us that we have a local, constrained minimizer,x∗= 0.

With β= 1
4

the stationary pointxs = 0 is also a local, constrained minimizer,

x∗= 0. This can be seen by correlating the feasible parabola with the contours
of f around0.

Finally, for β= 1 we get the rather surprizing result thatxs = 0 is a local, con-
strainedmaximizer. Inspecting the feasible parabola and the contours carefully,
you will discover that two local constrained minimizers have appeared around
x = [0.5, ±0.7]>.

In Frandsen et al (2004) we derived the second order conditions for uncon-
strained minimizers. The derivation was based on the Taylor series (1.6) for
f(x∗+h), and lead to conditions on the definiteness of the Hessian matrix
Hu = f ′′(xu), wherexu is the unconstrained minimizer.

The above example indicates that we have to take into account also the cur-
vature of the active constraints,A∗i = c ′′i (x∗) for i∈A(x∗).

The second order condition takes care of the situation where we move along
the edge ofP from a stationary pointx. Such a direction is called afeasible
active direction:

Definition 2.7. Feasible active direction. Let x∈P. The nonzero
vectorh is afeasible active directionif

h>c ′i (x) = 0

for all active constraints.
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Now we use the Taylor series to study the variation of the Lagrangian func-
tion. Suppose we are at a constrained stationary pointxs, and in the variation
we keepλ=λs from Definition 2.6. Fromxs we move in a feasible active
directionh,

L(xs+h,λs) = L(xs,λs) + h>L ′x(xs,λs)

+ 1
2
h>L ′′xx(xs,λs)h +O(‖h‖3)

= L(xs,λs) + 1
2
h>L ′′xx(xs,λs)h +O(‖h‖3) , (2.8)

since(xs,λs) satisfies1◦ in Theorem 2.5. The fact thatxs is a constrained
stationary point implies that also3◦ of Theorem 2.5 is satisfied, so that
L(xs,λs) = f(xs). Sinceh is a feasible active direction, we obtain (again
using3◦ of Theorem 2.5),

L(xs+h,λs) = f(xs+h)−
∑m
i=1 λ

(s)
i ci(xs+h)

' f(xs+h)−
∑m
i=1 λ

(s)
i (ci(xs)+h>c ′i (xs))

= f(xs+h) , (2.9)

and inserting this in (2.8) we get (for small values of‖h‖)

f(xs+h) ' f(xs) + 1
2
h>Wsh , (2.10a)

where the matrixWs is given by

Ws = L ′′xx(xs,λs) = f ′′(xs)−
m∑
i=1

λ(s)
i c ′′i (xs) . (2.10b)

This leads to the sufficient condition that the stationary pointxs is a local,
constrained minimizer ifh>Wsh > 0 for any feasible active directionh.
Since this condition is also necessary we can formulate the following two
second order conditions:
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Theorem 2.11. Second order necessary condition.
Assume that
a) x∗ is a local constrained minimizer forf .
b) As b) in Theorem 2.5.
c) All the active constraints arestrongly active.

Then there exists Lagrangian multipliers{λ∗i }
m
i=1 (see Definition 2.3)

such that

1◦ L ′x(x∗,λ∗) = 0 ,

2◦ λ∗i ≥ 0, i= r+1, . . . ,m ,

3◦ λ∗i > 0 if ci is active,i= r+1, . . . ,m ,

4◦ λ∗i ci(x
∗) = 0, i= 1, . . . ,m ,

5◦ h>W∗ h ≥ 0 for any feasible active directionh.

Here,W∗ = L ′′xx(x∗,λ∗).

Theorem 2.12. Second order sufficient condition.
Assume that
a) xs is a local constrained stationary point (see Definition 2.6).
b) As b) in Theorem 2.5.
c) As c) in Theorem 2.11.
d) h>W∗ h > 0 for any feasible active directionh,

whereW∗ = L ′′xx(x∗,λ∗).

Then
xs is a local constrained minimizer.

For the proofs we refer to Fletcher (1993). There, you may also find a
treatment of the cases, where the gradients of the active constraints are not
linearly independent, and where some constraints are weakly active.
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Example 2.2. Continuing from Example 2.1 we find

L ′′xx(x, λ) =

[
1 0
0 1

]
− λ

[
0 0
0 2β

]
.

At the stationary pointxs = 0 we foundλs = 1. Further, from Figure 2.7 and
Definition 2.7 we see thath = [0 h2]> is the only feasible active direction, and
we get

h>L ′′xx(hs, λs)h = (1− 2β)h2
2 .

This is positive ifβ < 1
2
, and Theorem 2.12 shows that in this casexs = 0 is a

local, constrained minimizer.

If β > 1
2
, thenh>L ′′xx(hs, λs)h < 0, contradicting5◦ in Theorem 2.11; there-

forexs = 0 cannot be a local, constrained minimizer whenβ > 1
2
.

The limiting caseβ = 1
2

is not covered by the theorems. In order to investigate
it, higher order terms are needed in the Taylor expansion forL(xs+h,λs).

Finally, we give the following theorem, whose proof can be found p 10 in
Madsen (1995):

Theorem 2.13. Third sufficient condition.Assume that
a) xs is a local constrained stationary point (see Definition 2.6),
b) all active constraints are linear,
c) h>W∗ h > 0 for any feasible active directionh 6= 0.

Then
xs is a local constrained minimizer.

3. QUADRATIC OPTIMIZATION

We now start to introduce solution methods for different classes of opti-
mization problems with constraints. The fundamental class has linear cost
functions and also linear constraints. This class is calledlinear optimization
problemsand is covered in Nielsen (1999).

The next class has a quadratic cost function and all the constraints are linear.
We call it

Definition 3.1. The quadratic optimization problem (QO).
Find

x∗ = argminx∈P{q(x)} ,
where

q(x) = 1
2
x>H x + g>x ,

P = {x∈ IRn | a>i x = bi , i= 1, . . . , r

a>i x ≥ bi , i= r+1, . . . ,m } .

The matrixH∈ IRn×n and the vectorsg,a1, . . . ,am ∈ IRn are given. The
associated Lagrange function is

L(x,λ) = 1
2
x>H x + g>x−

m∑
i=1

λi(a>i x− bi) , (3.2a)

with the first and second order derivatives

L ′x(x,λ) = Hx + g −
m∑
i=1

λiai, L ′′xx(x,λ) = H . (3.2b)

Throughout this chapter we have the assumptions
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Assumption 3.3. H is symmetric and positive definite.

(See Fletcher (1993) for methods for the cases where these simplifying as-
sumptions are not satisfied). Under Assumption 3.3 the problem is strictly
convex (Theorem 1.16). This ensures thatq(x)→+∞ when‖x‖→∞, irre-
spective of the direction. Thus we need not require the feasible regionP to
be bounded. All the constraint functions are linear and this makesP convex.
Thus, in this case Theorem 1.17 leads to

Corollary 3.4. Under Assumption 3.3 the problem QO of Defini-
tion 3.1 has a unique solution.

As in Chapter 2 we shall progress gradually with the different complications
of the methods, ending the chapter with a method for non-linear optimiza-
tion using iterations where each step solves a quadratic optimization prob-
lem, gradually approaching the properties of the non-linear cost function
and constraints.

Example 3.1. In Figure 3.1 you see the contours of a positive definite quadratic
in IR2. If there are no constraints on the minimizer, we get the unconstrained
minimizer, indicated byxu in the figure.

Figure 3.1:Contours
of a quadratic inIR2

and its unconstrained
minimizerxu

xu

x
1

x
2

The solution of the unconstrained quadratic optimization problem corre-
sponding to Definition 3.1 is found from the necessary conditionq ′(xu) = 0
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which is the following linear system of equations,

H xu = −g . (3.5)

The solution is unique according to our assumptions.

3.1. Basic Quadratic Optimization
The basic quadratic optimization problem is the special case of Problem QO
(Definition 3.1) with only equality constraints, iem= r. We state it in the
form1)

Definition 3.6. Basic quadratic optimization problem (BQO)
Find

x∗ = argminx∈P{q(x)} ,
where

q(x) = 1
2
x>H x + g>x , P = {x∈ IRn |A>x = b} .

The matrixA∈ IRn×m has the columnsA: ,j = aj andbj is thejth
element inb∈ IRm.

The solution can be found directly, namely by solving the linear system of
equations which express the necessary condition that the Lagrange function
L is stationary at the solution with respect to both of its vector variablesx
andλ:

L ′x(x,λ) = 0 : Hx + g −Aλ = 0 ,

L ′λ(x,λ) = 0 : A>x− b = 0 .
(3.7)

The first equation is the KKT condition, and the second expresses that the
constraints are satisfied at the solution. This linear system of equations has
the dimension(n+r)×(n+r), with r = m. Thus the solution requires
O((n+m)3) operations. We return to the solution of (3.7) in Section 3.3.

1) In other presentations you may find the constraint equation formulated asÃx = b with
Ã = A>. Hopefully this will not lead to confusion.
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3.2. General Quadratic Optimization
In the general case we have both equality constraints and inequality con-
straints in Problem 3.1, and we must use an iterative method to solve the
problem. If we knew which constraints are active at the solutionx∗ we
could set up a linear system like (3.7) and find the solution directly. Thus
the problem can be formulated as that of finding the active setA(x∗).

We present a so-calledactive set method. Each iteratex is found via an
active setA (corresponding to the constraints that should be satisfied with
“=”, cf Definition 1.3). Ignoring the inactive constraints we consider the ba-
sic quadratic optimization problem with the equality constraints given byA:

Definition 3.8. Current BQO problem (CBQO(A))
Find

xeq = argminx∈P{q(x)} ,
where

q(x) = 1
2
x>H x + g>x , P = {x∈ IRn |A>x = b} .

The matrixA∈ IRn×p has the columnsA: ,j = aj , j ∈A andb∈ IRp

has the corresponding values ofbj . p is the number of elements inA.

We shall refer toCBQO(A) as a function (subprogram) that returns
(xeq,λeq), the minimizer and the corresponding set of Lagrange multipli-
ers corresponding to the active setA. Similar to the BQO they are found as
the solution to the following linear system of dimension(n+p)×(n+p):

Hx + g −Aλ = 0 ,

A>x− b = 0 .
(3.9)

In the iteration for solving Problem 3.1 all iterates are feasible. This means
that we have a feasiblex and an active setA at the beginning of each it-
eration. Now the CBQO (Definition 3.8) is solved. Ifxeq violates some
constraint (ie some of the ignored inequality constraints), then the next it-
erate is that feasible point on the line fromx to xeq which is closest toxeq,
and the new inequality constraint(s) becoming active is added toA.
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If, on the other hand,xeq is feasible, then we are finished (iex∗ = xeq)
provided that all Lagrange multipliers corresponding toÃ are non-negative
(Theorem 2.13). If there is one or moreλj < 0 for j ∈Ã (ie for active
inequality constraints), then one of the corresponding indices is dropped
fromA before the next iteration.

Before formally defining the strategy in Algorithm 3.10 we illustrate it
through a simple example.

Example 3.2. We take a geometric view of a problem in IR2 with 3 inequality
constraints. In Figure 3.2 we give the contours of the cost function and the
border lines for the inequalities. The infeasible side is hatched.

xu

x
1

x
2

hsd

hsd

12

3

x2 x3

x1

x0

Figure 3.2:Contours of a quadratic optimization problem inIR2

with 3 inequality constraints, a>i x≥ bi, i= 1, 2, 3

The starting pointx = x0 is feasible, and we defineA ≡ A(x0) = {1, 2},
while the third constraint is inactive. The “pulling force”hsd (=−q ′(x0)) shows
that we should leave inequality no. 1. This corresponds to the fact thatλ1 < 0.
Thus the next active set isA= {2}. The solution to the the corresponding system
(2.13) isx = x1. This is feasible, but the “pulling force” tells us that we should
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loosen the only remaining constraint (corresponding toλ2 < 0). Thus, the next
CBQO step will lead toxu, the unconstrained minimizer which is infeasible: It
satisfies constraints 1 and 2, but not 3. The next iterate,x = x2 is found as the
intersection between the line fromx1 to xu and the bordering line fora>3 x≥ b3.

Finally, a CBQO step fromx2 with A= {3} givesx = x3. This is feasible and
by checking the contours of the cost function we see that we have come to the
solution,x∗ = x3. Algebraically we see this from the fact thatλ3 > 0.

The strategy from this example is generalized in Algorithm 3.10.

Algorithm 3.10. General quadratic optimization

begin
x := x0 {1◦}
A := A(x) {2◦}
stop:= false
repeat

(xeq,λeq) := CBQO(A) cf Definition 3.8 and (3.9)
if xeq is infeasible

x := best feasible point on the line fromx to xeq {3◦}
UpdateA {3◦}

else
x := xeq

L := {j ∈Ã | λj < 0}
if L is empty

stop:= true {4◦}
else

Remove an element ofL fromA {5◦}
until stop

end

We have the following remarks:

1◦ The initial pointx0 must be feasible. How to find such a point is dis-

cussed in Section 3.3.

2◦ A holds the indices of current active constraints, cf Definition 1.3.
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3◦ The vectorxeq satisfies the current active constraints, but some of the

inequality constraints that were ignored:j ∈ {r+1, . . . ,m} \Ãmay be

violated atxeq. Let V denote the set of indices of constraints violated

at xeq, V = {j ∈ {r+1, . . . ,m} | a>j xeq < bj} . We shall choose the

best feasible point on the line betweenx andxeq,

x̃ = x + t(xeq− x), 0<t< 1 . (3.11a)

The value of t which makes constraint no.j active is given by

aj
>x̃ = bj , which is equivalent to

tj = (bj − aj
>x)/aj

>(xeq−x) . (3.11b)

Sincex is feasible andxeq is optimal in CBQO, and since the objective

function is convex, the best feasible point on the line is the feasible

point closest toxeq. This corresponds to

k = argminj∈V tj , (3.11c)

The newx is found by (3.11a) witht= tk, and the indexk is added to

A. If the minimum in (3.11c) is taken by several values ofk then all of

these are added toA.

4◦ Sincexeq is feasible and Lagrange multipliers corresponding to in-

equality constraints are nonnegative,xeq = x∗ solves the problem ac-

cording to Theorem 2.13.

5◦ If an active inequality constraint at the CBQO solution has a negative

Lagrange multiplier, then we can reduce the cost function by loosening

this constraint.

Finite termination. For each choiceA of currently active constraints
CBQO has a unique minimizerxeq. Each time an element ofL is removed
from A (see remark5◦) we havex = xeq and there is a strict decrease in
the objective function:q(xnew) < q(x). Since each new iterate satisfies
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q(xnew)≤ q(x) the strict decrease can only take place a finite number of
times because of the finite number of possible active setsA.

Therefore we only drop a constraint a finite number of times, and thus cy-
cling cannot take place: The algorithm must stop after a finite number of
iterations.

3.3. Implementation Aspects
To start Algorithm 3.10 we need a feasible starting pointx0. This is sim-
ple if m≤n (the number of constraints is at most equal to the number of
unknown): We just solve

A>x = b , (3.12a)

with A∈ IRn×m having the columnsai, i= 1, . . . ,m. If m<n, then this
system is underdetermined, and the solution has (at least)n−m free param-
eters. For any choice of these the vectorx is feasible; all the constraints are
active.

If m>n, we cannot expect to find anx with all inequality constraints active.
Instead, we can use the formulation

A>x− s = b with s ≥ 0 , (3.12b)

andsi = 0 for the equality constraints. The problem of finding anx that sat-
isfies (3.12b) is similar to getting a feasible starting point for the SIMPLEX

method in Linear Optimization, see Section 4.4 in Nielsen (1999).

The most expensive part of the process is solution of the CBQO at each
iteration. The simplest approach would be to start from scratch for each
newA. Then the accumulated cost of the computations involved in the
solutions of (3.9) would beO((n+m)3) floating point operations per call of
CBQO. If constraint gradients are linearly independent then the number of
equality and active constraints cannot exceed n, and thus the work load is
O(n3) floating point operations per call of CBQO.

Considerable savings are possible when we note that each newA is obtained
from the previous either by deleting a column or by adding one or more new
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columns. First, we note that the matrixH is used in all iteration steps. It
should be factorized once and for all, eg by Cholesky’s method, cf Appendix
A in Frandsen et al (2004),

H = CC> ,

whereC is lower triangular. This requiresO(n3) operations, and after this,
each “H−1w” will then requireO(n2) operations.

The first equation in (3.9) can be reformulated to

x = H−1(Aλ− g) , (3.13a)

and when we insert this in the second equation in (3.9), we get

(A>H−1A)λ = b + A>H−1g . (3.13b)

Next, we can reformulate (3.13b) to

Gλ = b + A>d

with G = (C−1A)>(C−1A) , d = H−1g .

This system is solved via the Cholesky factorization of thep×p matrix G
(p being the current number of active constraints). WhenA changes by
adding or deleting a column, it is possible to update this factorization in
O(n·p) operations, and the cost of each iteration step reduces toO(n2) op-
erations. For more details see pp 18–19 in Madsen (1995).

There are alternative methods for solving the system (3.9). Gill and Mur-
ray (1974) suggest to use theQR factorization2) of the active constraint
matrix,

A = Q
[

R
0

]
=
[

QR QN
] [R

0

]
= QRR , (3.14)

whereQ is orthogonal andR is upper triangular. As indicated, we can split
Q into QR∈ IRn×p andQN ∈ IRn×(n−p). The orthogonality ofQ implies
that

2) See eg Chapter 2 in Madsen and Nielsen (2002) or Section 5.2 in Golub and Van
Loan (1996).
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Q>R QR = I(n−p)×(n−p) , Q>R QN = 0(n−p)×p , (3.15)

where the indices onI and0 are the dimensions of the matrix. The columns
of Q form an orthonormal basis of IRn, and we can expressx in the form

x = QRu + QNv, u∈ IRp, v∈ IRn−p . (3.16)

Inserting (3.14) – (3.16) in the second equation of (3.9) we get

R>Q>R (QRu + QNv) = R>u = b .

This lower triangular system is solved by forward substitution. To findv in
(3.16) we multiply the first equation of (3.9) byQ>N and get

Q>N H(QRu + QNv) + Q>N g −Q>N QRRλ = 0 ,

and by use of the second identity in (3.15) this leads to

Q>N HQN v = −Q>N (HQRu + g) . (3.17)

The(n−p)×(n−p) matrix M = Q>N HQN is symmetric and positive defi-
nite, and (3.17) can be solved via Cholesky factorization ofM. Finally,λ
can be computed from the first equation of (3.9):

Q>R Aλ = Rλ = Q>R (Hx + g) . (3.18)

We used (3.14) and (3.15) in the first reformulation, andx is given by (3.16).
The system (3.18) is solved by back substitution.

There are efficient methods for updating the QR factorization ofA, when
this matrix is changed because an index is added to or removed from the
active set, see eg Section 12.5 in Golub and van Loan (1996). This method
for solving the system (3.9) is advantageous ifp is large,p>∼

1
2 n.

If the problem is large andsparse, ie most of the elements inH andA are
zero, then both the above approaches tend to give matrices that are consid-
erably less sparse. In such cases it is recommended to solve (3.9) via the
so-calledaugmented system,[

H −A
−A> 0

] [
x
λ

]
= −

[
g
b

]
. (3.19)
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Because of Assumption 3.3 the matrix is symmetric. It is not positive def-
inite, however3), but there are efficient methods for solving such systems,
where the sparsity is preserved better, without spoiling numerical stabil-
ity. It is also possible to handle the updating aspects efficiently; see eg
Duff (1993).

3.4. Sequential Quadratic Optimization
A number of efficient methods fornon-linear optimizationoriginate from
sequential quadratic optimization. These methods are iterative methods
where each iteration step includes the solution of a general quadratic op-
timization problem.

First, we consider problems with equality constraints, only:

x∗ = argminx∈Pf(x) ,

P = {x∈ IRn | c(x) = 0} .
(3.20)

Here,c is the vector functionc : IRn 7→ IRr, whoseith component is theith
constraint functionci.

The corresponding Lagrange’s function (Definition 2.3) is

L(x,λ) = f(x)− λ>c(x) , (3.21a)

with the gradient

L ′(x,λ) =
[

L ′x(x,λ)
L ′λ(x,λ)

]
=
[

f ′(x)− Jc
>λ

−c(x)

]
, (3.21b)

whereJc is theJacobian matrixof c,

(Jc)ij =
∂ci
∂xj

(x) ⇐⇒ Jc = [c ′1(x) · · · c ′r(x)]> . (3.21c)

At a stationary pointxs with correspondingλs we haveL ′(xs,λs) = 0,
which includes thatc(x) = 0 (the constraints are satisfied) and

3) A necessary condition for a symmetric matrix to be positive definite is that all the diag-
onal elements are strictly positive.
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f ′(x)− Jc
>λ = 0 ,

which we recognize as a part of the KKT conditions (Theorem 2.5).

Thus we can reformulate problem (3.20) to a non-linear system of equa-
tions: Find(x∗,λ∗) such that

L ′(x,λ) = 0 .

We can use Newton-Raphson’s method to solve this problem. In each itera-
tion step with current iterate(x,λ), we find the next iterate as(x+h,λ+η),
with the step determined by

L′′(x,λ)
[

h
η

]
= −L ′(x,λ) ,

whereL′′ is the total Hessian,

L ′′ =
[

L ′′xx L ′′xλ
L ′′λx L ′′λλ

]
=
[

W −Jc
>

−Jc 0

]
with

W = L ′′xx(x,λ) = f ′′(x)−
∑r
i=1 λic

′′
i (x) .

One Newton-Raphson step is[
W −Jc

>

−Jc 0

] [
h
η

]
= −

[
f ′(x)− Jc

>λ
−c(x)

]
,

x := x + h; λ := λ+ η ,

an by elimination ofη we obtain[
W −Jc

>

−Jc 0

] [
h
λ

]
= −

[
f ′(x)
−c(x)

]
,

x := x + h .
(3.22)

What has this got to do with Quadratic Optimization? Quite a lot! Com-
pare (3.22) with (3.19). Since (3.19) gives the solution(x,λ) to the CBQO,
(Definition 3.8), it follows that (3.22) gives the solutionh and the corre-
sponding Lagrange multiplier vectorλ to the following problem,

Find h = argminh∈Plin
{q(h)} (3.23a)
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where

q(h) = 1
2
h>W h + f ′(x)>h

Plin = {h∈ IRn | Jch + c(x) = 0}
(3.23b)

Adding a constant toq makes no difference to the solution vector. If we
furthermore insert the value ofW then (3.23b) becomes

q(h) = 1
2
h>L ′′xx(x,λ) h + f ′(x)>h + f(x)

Plin = {h∈ IRn | Jch + c(x) = 0} .
(3.23c)

By comparison with the Taylor expansions (1.6) and (1.7) we see that
if λ = 0 then q(h) is a second order approximation tof(x+h), and
Jch+c(x) is a first order approximation toc(x+h). In other words, (3.23)
represents a local QO (ie Quadratic Optimization) approximation to (3.20),
except for the fact thatf ′′(x) is replaced byL ′′xx(x,λ). However, using
L ′′xx(x,λ) provides faster convergence than using a quadratic approxima-
tion to f , which follows from this argument: It is shown above that solving
(3.23) and subsequently letting

x := x + h

in the final stages of an iterative method for solving (3.20) corresponds to
applying the Newton-Raphson method to find a stationary point of the La-
grange functionL. Under the usual regularity assumptions this provides
quadratic final convergence to the solution of (3.20). Usingf ′′(x) instead
of L ′′xx(x,λ) in the QO approximation would perturb the Newton-Raphson
matrix (except forλ = 0, whereL ′′xx(x,λ) = f ′′(x)). Thus the quadratic
convergence would be prevented.

If the non-linear problem has both equality and inequality constraints,

x∗ = argminx∈Pf(x) ,

P = {x∈ IRn | cj(x) = 0 , j= 1, . . . , r
cj(x) ≥ 0 , j= r+1, . . . ,m} ,

(3.24)

then we can still use (3.23) except that the feasible region has to be changed
accordingly. Thus the QO problem becomes
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Find h = argminh∈Plin
{q(h)}

q(h) = 1
2
h>L ′′xx(x,λ) h + f ′(x)>h + f(x) ,

Plin = {h∈ IRn | cj(x) + c ′j(x)>h = 0 , j= 1, . . . , r

cj(x) + c ′j(x)>h ≥ 0 , j= r+1, . . . ,m}

(3.25)

In applications the demand for second derivatives (inL ′′xx(x,λ)) can be an
obstacle, and we may have to use approximations to these. Another problem
with the method is that the quadratic model is good only for small values of
‖h‖. Therefore, when the currentx is far away from the solution, it may be
a good idea to retain the direction ofh but reduce its length. In Section 4.2
we present a method whereL ′′xx(x,λ) is approximated by BFGS updating,
and where a line search is incorporated in order to make the convergence
robust also far from the solution.

Example 3.3. Consider the problem

f(x) = x2
1 + x2

2, P = {x∈ IR2 | x2
1 − x2 − 1 = 0} (3.26)

The cost function is a quadratic inx, but the constraintc1(x) =x2
1−x2−1 is not

linear, so this isnot a quadratic optimization problem.

In Example 4.5 we solve this problem via a series of approximations of the form

f(x+δ) ' q(δ) ≡ 1
2
δ>W δ + f ′(x)

>
δ + f(x),

c(x+δ) ' l(δ) ≡ c′1(x)
>
δ + c1(x) ,

whereq is the function of (3.23) withL ′′xx(x,λ) replaced by an approximation
W. This leads to the following subproblem,

Find h = argminδ∈Plin
{q(δ)}

Plin = {x∈ IR2 | l(δ) = 0} .
(3.27)

Let the first approximation for solving (3.26) correspond tox = [1, 1]> and
W = I. Then
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q(δ) = 2 + 2δ1 + 2δ2 + 1
2
δ2
1 + 1

2
δ2
1

= 1
2

(δ1 + 2)2 + 1
2

(δ2 + 2)2 ,

l(δ) =−1 + 2δ1 − δ2 .

The level curves ofq are concentric circles centered atδ = [−2, −2]>, and the
solutionδ = h is the point, where one of these circles touches the linel(δ) = 0,
see Figure 3.3a. The solution ish = [−0.8, −2.6 ]>.

Using the line search to be described in Section 4.2 the next approximation is
x := x + αh = [0.620, −0.236]>. This leads to the next quadratic approxima-
tion (3.27) with

f ′(x) =

[
1.239
−0.472

]
, W =

[
0.943 −0.044
−0.044 2.014

]
,

l(δ) = −0.380 + 1.238δ1 − δ2
whereW is an updated approximation toL ′′xx(x,λ) (see Section 4.2). The con-
tours ofq are concentric ellipses centered at−W−1f ′(x) = [−1.305, 0.206]>

(the unconstrained minimizer ofq, cf (3.5)).

Figure 3.3 shows the contours ofq (full line) and f (dashed line) through the
points given byδ= 0 andδ= h. In the second case we see that in the region
of interestq is a much better approximation tof than in the first case. Notice
the difference in scaling and that each plot has the origin at the currentx. At the
pointx := x +αh ' [ 0.702, −0.508 ]> we getc1(x) ' 1.3·10−4. This value
is too small to be seen in Figure 3.3b.



37 3. QUADRATIC OPTIMIZATION

h

δ
1

δ
2

2

c
1
 = 0

d
1
 = 0

a

2

h

δ
1

δ
2

0.5

0.5 c
1
 = 0

d
1
 = 0

b

Figure 3.3: Approximating quadratics and the constraint
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4. PENALTY AND SQO METHODS

There are several strategies on which to base methods for general con-
strained optimization. The first is calledsequential linear optimization: in
each iteration step we solve a linear optimization problem where both cost
function and constraint functions are approximated linearly. This strategy
may be useful e.g. in large scale problems.

The next strategy issequential quadratic optimization(SQO). We intro-
duced this in Section 3.4, and in section 4.2 we shall complete the descrip-
tion, including features that make it practical and robust.

The third strategy could be calledsequential unconstrained optimization
(SUO). In each iteration step we solve an unconstrained optimization prob-
lem, with the cost function modified to induce or force the next iterate to be
feasible. The modification consists in adding apenalty termto the cost func-
tion. The penalty term is zero, if we are in the feasible region, and positive
if we are outside it. The following examples are due to Fletcher (1993).

Example 4.1. Find

argminx∈P f(x) , P = {x∈ IR2 | c1(x) = 0} ,
where

f(x) = −x1 − x2 , c1(x) = 1− x2
1 − x2

2 .

It is easy to see, that the solution isx∗ = 1√
2
[1, 1]> .

We penalize infeasible vectors by using the following function

ϕ(x, σ) = f(x) + 1
2
σ· (c1(x))2 ,

whereσ is a positive parameter. The penalty is zero ifx is in P, and positive
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otherwise. In the caseσ= 0 we have an unconstrained and unbounded problem:
When the components ofx tend to infinity,f(x) tends to−∞. In Figure 4.1
we see the contours ofϕ(x, 1), ϕ(x, 10) andϕ(x, 100). Forσ> 0 we have a
minimizer xσ and the figures indicate the desired convergence:xσ → x∗ for
σ →∞.

X
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X
2

1

1

σ = 1

X
1

X
2

1

1

σ = 10

X
1

X
2

1

1

σ = 100
Figure 4.1:Contours and minimizer ofϕ(x, σ)

x∗ andxσ is marked by* ando, respectively

The figure indicates a very serious problem connected with SUO. Asσ → ∞,
the valley aroundxσ becomes longer and narrower making trouble for the
method used to find this unconstrained minimizer. Another way of expressing
this, is that the unconstrained problems become increasingly ill-conditioned.

Example 4.2. Consider the same problem as before, except that nowc1 is an
inequality constraint: Find

argminx∈P f(x) , P = {x∈ IR2 | c1(x) ≥ 0} ,
wheref andc1 are given in Example 4.1. The feasible region is the interior of
the unit circle, and again the solution isx∗ = 1√

2
[1, 1]> .

The penalty term should reflect that allx for which c1(x)≥ 0 are permissible,
and we can use

ϕ(x, σ) = f(x) + 1
2
σ (min{c1(x), 0})2 , σ ≥ 0 .

In Figure 4.2 we see the contours ofϕ(x, σ) and their minimizersxσ for the
sameσ-values as in Example 4.1.

All the xσ are infeasible and seem to converge to the solution. We still have
the long narrow valleys and ill conditioned problems, whenσ is large. With in-
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Figure 4.2:Contours and minimizer ofϕ(x, σ)

x∗ andxσ is marked by* ando, respectively

equality constraints there is an extra difficulty with this penalty function: Inside
the feasible region the functionsf andϕ have the same values and derivatives,
while this is not the case in the infeasible region. On the border ofP (where the
solution is situated) there is a discontinuity in the second derivative ofϕ(x, σ),
and this disturbs line searches and descent directions which are based on inter-
polation, thus adding to the problems caused by the narrow valley.

It is characteristic for penalty methods, as indicated in the examples, that
(normally) all the iterates are infeasible with respect to (some of) the in-
equality constraints. Therefore they are also calledexterior point methods.

In some cases the objective function is undefined in (part of) the infeasible
region. Then the use of exterior point methods becomes impossible. This
has lead to the class ofbarrier methodsthat force all the iterates to be feasi-
ble. To contrast them with penalty function methods they are calledinterior
point methods(IPM).

The most widely used IPMs are based on thelogarithmic barrier function.
We can illustrate it with a problem with one inequality constraint only,

x+ = argminx∈P f(x) , P = {x∈ IRn | c1(x) ≥ 0} .
The corresponding barrier function is1)

ϕ(x, µ) = f(x)− µ log c1(x) ,

1) “ log” is the natural (or Naperian) logarithm.
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with the barrier parameterµ> 0. The logarithm is defined only forx
strictly insideP (we confine ourselves to working with real numbers), and
sincelog c1(x) → −∞ for c1(x)→0, we see thatϕ(x, µ) → +∞ for x
approaching the border ofP. However, whenµ→0, the minimizerxµ of
ϕ(x, µ) can approach a point at the border.

Methods based on barrier functions share some of the disadvantages of the
penalty function methods: As we approach the solution the intermediate
resultsxµ are minimizers situated at the bottom of valleys that are narrow,
ie xµ is the solution of an ill-conditioned (unconstrained) problem.

As indicated barrier methods are useful in problems where infeasiblex vec-
tors must not occur, but apart from this they may also be efficient in large
scale problems. In linear optimization a number of very efficient versions
have been developed during the 1990s, see eg Chapter 3 in Nielsen (1999).

We end this introduction by returning to the penalty functions used in Ex-
amples 4.1 and 44.2 and taking a look at the curvatures of the penalty func-
tion near the solutionx∗ andxσ, the unconstrained minimizer ofϕ(x, σ).
Consider one inequality constraint as in Example 4.2, and assume that the
constraint isstrongly activeat the solution:f ′(x∗) 6= 0. This shows that

ϕ′x(x∗, σ) 6= 0 ,

independent ofσ, while the unconstrained minimizerxσ satisfies

ϕ′x(xσ, σ) = 0 .

Whenσ→∞, xσ→x∗, but the difference in the gradients ofϕ (at x∗ and
xσ) remains constant, and thus the curvature ofϕ goes to infinity. This dis-
crepancy is eliminated in the following method which was first introduced
by Powell (1969).

4.1. The Augmented Lagrangian Method
At first we consider the special case whereonly equality constraintsare
present:

P = {x∈ IRn | c(x) = 0} ,
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c being the vector functionc : IRn 7→ IRr, whoseith component is theith
constraint functionci. At the end of this section we generalize the formula-
tion to include inequality constraints as well.

We have the following Lagrangian function (Definition 2.3),

L(x,λ) = f(x)− λ>c(x) ,

and introduce a penalty term as indicated at the beginning of this chapter.
Thus consider the followingaugmented Lagrangian function2)

ϕ(x,λ, σ) = f(x)− λ>c(x) + 1
2
σ c(x)>c(x) . (4.1)

Notice that the discrepancy mentioned above has been relaxed: Ifλ = λ∗,
then the first order conditions in Corollary 2.6 and the fact thatc(x∗) = 0
implies thatx∗ is a stationary point ofϕ:

ϕ′x(x∗,λ∗, σ) = 0 .

Furthermore, Fletcher has shown the existence of a finite numberσ̂ with
the property that ifσ > σ̂, thenx∗ is an unconstrained local minimizer of
ϕ(x,λ∗, σ), ie if

xλ,σ = argminx∈IRn ϕ(x,λ, σ) , (4.2)

then3)

xλ∗,σ = x∗ for all σ > σ̂ . (4.3)

This means that the penalty parameterσ does not have to go to infinity. Ifσ
is sufficiently large and if we insertλ∗ (the vector of Lagrangian multipli-
ers at the solutionx∗), then the unconstrained minimizer of the augmented
Lagrangian function solves the constrained problem. Thus the problem of
findingx∗ has been reduced – or rather changed – to that of findingλ∗.

We shall describe a method that uses the augmented Lagrangian function
to find the solution. The idea is to use the penalty term to get close to the

2) Remember thatλ>c(x) =
∑m
i=1 λici(x) and c(x)>c(x) =

∑m
i=1(ci(x))2 .

3) In case of several local minimizers “argminx∈IRn ” is interpreted as the local uncon-
strained minimizer in the valley aroundx∗.
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solutionx∗, and then let the Lagrangian term provide the final convergence
by lettingλ approachλ∗. A rough sketch of the algorithm is

Choose initial values forλ, σ
repeat

Computexλ,σ
Updateλ andσ

until stopping criteria satisfied

(4.4)

The computation ofxλ,σ (for fixedλ andσ) is an unconstrained optimiza-
tion problem, which we deal with later. First, we concentrate on ideas for
updating(λ, σ) in such a way thatσ stays limited andλ→λ∗.
In the first iteration steps we keepλ constant (egλ= 0) and letσ increase.
This should lead us close tox∗ as described for penalty methods at the start
of this chapter.

Next, we would like to keepσ fixed,σ=σfix, and varyλ. Then

xλ = argminx∈IRn ϕ(x,λ, σfix)

and

ψ(λ) = ϕ(xλ,λ, σfix) = minx∈IRn ϕ(x,λ, σfix)

are functions ofλ alone. Assumeσfix > σ̂. Since

1◦ ψ(λ) is the minimal value ofϕ,

2◦ the definition (4.1) combined withc(x∗) = 0 shows that

ϕ(x∗,λ, σ) = f(x∗) for any(λ, σ),

3◦ (4.3) impliesxλ∗ = x∗,

it follows that for anyλ

ψ(λ) ≤ ϕ(x∗,λ, σfix) = ϕ(x∗,λ∗, σfix) = ψ(λ∗) . (4.5)

Thus the Lagrangian multipliers at the solution is alocal maximizerfor ψ,

λ∗ = argmaxλ ψ(λ) . (4.6)
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From the currentλ we seek a stepη such thatλ+η ' λ∗. In order to get a
guideline on how to chooseη we look at the Taylor expansion forψ,

ψ(λ+η) = ψ(λ) + η>ψ′(λ) + 1
2
η>ψ′′(λ)η +O(‖η‖3)

= ψ(λ)− η>c− 1
2
η>Jc (ϕ ′′xx)−1 J>c η +O(‖η‖3) , (4.7)

wherec = c(xλ), Jc = Jc(xλ) is the Jacobian matrix defined in (3.21c), and
ϕ ′′xx =ϕ ′′xx(xλ,λ, σfix). A proof of these expressions for the first and sec-
ond derivatives ofψ can be found in Fletcher (1993). This expansion shows
that

η = −α c(xλ) , α> 0

is a step in thesteepest ascent direction. Another way to get this, and at
the same time providing a value forα, goes as follows: The vectorxλ is a
minimizer forϕ. Thereforeϕ′x(xλ,λ, σfix) = 0, implying that

f ′(xλ)− Jc(xλ)[λ− σfixc(xλ)] = 0 .

Combining this with the KKT condition (Theorem 2.5),

f ′(x∗)− Jc(x∗)λ∗ = 0 ,

and the assumption thatxλ'x∗, we find

λ∗ ' λ− σfixc(xλ) . (4.8)

The right-hand side can be used for updatingλ. Fletcher (1993) shows that
under certain regularity assumptions (4.8) provides linear convergence4) .
Faster convergence is obtained by applying Newton’s method to the nonlin-
ear problemψ′(λ) = 0,

λ∗ ' λ+ η , where ψ′′(λ)η = −ψ′(λ) .

Notice, that this is equivalent to findingη as a stationary point for the
quadratic model obtained by dropping the error termO(‖η‖3) in (4.7). A
formula forψ′′(λ) is also given in (4.7). Inserting this we obtain

4) This means that in the limit we have‖λnew− λ∗‖ ≤ κ‖λ− λ∗‖, where
λnew = λ− σfixc(xλ) and0<κ< 1.



45 4. PENALTY AND SQO METHODS

λ∗ ' λ− [ψ′′(λ)]−1ψ′(λ)

= λ− [Jc (ϕ ′′xx)−1 J>c ]−1c(xλ) . (4.9)

If the last expression of (4.9) is used for updatingλ then quadratic conver-
gence is obtained under certain regularity conditions, see Fletcher (1993).
Notice that if a Quasi-Newton method is used in the unconstrained opti-
mization for findingxλ then an estimate of the inverse Hessian(ϕ ′′xx)−1 is
available.

Now we can present a specific example of an implementation of the algo-
rithm outlined in (4.4). The details of course could be chosen in many other
ways.

Algorithm 4.10. Augmented Lagrangian method
(Equality constraints only).

begin
k := 0; x := x0; λ := λ0; σ := σ0 {1◦}
Kprev := ‖c(x)‖∞ {2◦}
repeat
k := k+1
x := argminxϕ(x,λ, σ); K := ‖c(x)‖∞ {2◦}
if (K ≤ 1

4
Kprev)

λ := Update(x,λ, σ) {3◦}
Kprev := K

else
σ := 10 ∗ σ {4◦}

until K<ε or k >kmax

end

We have the following remarks:

1◦ As mentioned earlier it is natural to start with the pure penalty method,

ie we letλ0 = 0. σ0 must be a positive number, one might eg start with

σ0 = 1. x0 is an initial estimate of the solution provided by the user.
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2◦ K is meant to measure, how well the constraints are satisfied, and is

used in the stopping criterion. A better measure (which can not be used

as long asλ= 0) is to takeK = maxi |λici(x)|.

x is the minimizer of an unconstrained optimization problem, to be

solved eg by one of the iterative methods given in Frandsen et al (2004).

We assume that it can exploit “warm starts” (since after the first few

iteration steps the newx = xλ,σ will be close to the previous one).

3◦ If K was reduced by 75% , thenλ is updated by means of (4.8) or (4.9).

Otherwise . . .

4◦ . . . we assume thatx is too far fromx∗ and increase the penalty factor

σ.

Example 4.3. We illustrate Algorithm 4.10 with the following simple problem,
with n= 2 and r=m= 1:

minimize f(x) = x2
1 + x2

2

with the constraintc1(x) = 0 , c1(x) = x2
1 − x2 − 1 .

For hand calculation the following expressions are useful:

f ′(x) = [ 2x1, 2x2 ]>, Jc(x) =
[

2x1 −1
]
,

ϕ(x,λ, σ) = (x2
1 + x2

2)− λ · (x2
1 − x2 − 1) + σ ·

(
x2

1 − x2 − 1
)2

,

ϕ ′x(x,λ, σ) =

[
2x1(1− λ+ σ(x2

1 − x2 − 1))
2x2 + λ− σ(x2

1 − x2 − 1)

]
,

ϕ ′′xx(x,λ, σ) =

[
2x1(1−λ− σ(x2+1−3x2

1)) −2σx1

−2σx1 2 + σ

]
.

We shall follow the iterations from the starting pointx0 = [ 1, 1 ]>, λ0 = 0,
σ0 = 2. We findKprev= |c1(x0)|= 1.

First step: The augmented Lagrangian function is

ϕ(x,λ, σ) = (x2
1 + x2

2)− 0 · (x2
1 − x2 − 1) + 1 ·

(
x2

1 − x2 − 1
)2

,
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whose contours are shown below together with the minimizer,
x = [ 0, −0.5 ]>.

x
1

x
2 1

−1

−1

Figure 4.3:Contours and minimizer ofϕ(x, 0, 2).
The constraintc1(x) = 0 is dashed

We get K = |02 + 0.5 − 1| = 0.5 . Thus,K was reduced by less than 75 %
and therefore we enter theelse branch of Algorithm 4.10. The values for the
next iteration step areλ= 0, σ= 20.

Second step: The augmented Lagrangian function is

ϕ(x, 0, 20) = (x2
1 + x2

2)− 0 · (x2
1 − x2 − 1) + 10 ·

(
x2

1 − x2 − 1
)2

.

There are two minimizers, and we assume that we find the minimizer with pos-
itive x1: x = [

√
0.45, −0.50 ]>, c1(x) = −0.05, thusK = 0.05. This makes

us enter theif branch: we will update the Lagrange factor. The steepest ascent
method gives

λ := 0− 20 · (−0.05) = 1 ,

and this is also the result from the Newton method. The details are left as an
exercise.

Third step:

ϕ(x, 1, 20) = (x2
1 + x2

2)− 1 · (x2
1 − x2 − 1) + 10 ·

(
x2

1 − x2 − 1
)2

,

The minimizer isx = [
√

0.5, −0.50 ]> ' [ 0.70711, −0.50 ]> with K = 0, so
the algorithm stops. It has found the exact solutionof the problem,x∗= x, and
the corresponding Lagrangian multiplier isλ∗ = 1, ie it is equal to the current
λ-value. This exemplifies the comments on (4.3).

Below we give the contours of the augmented Lagrangian functions for steps two
and three.
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Figure 4.4:Contours and minimizers ofϕ(x, 0, 20) and
ϕ(x, 1, 20), respectively.
The constraintc1(x) = 0 is dashed.

We now turn to thegeneral case, where we have equality as well as inequal-
ity constraints,

P = {x∈ IRn | ci(x) = 0, i= 1, . . . , r

ci(x) ≥ 0, i= r+1, . . . ,m} .

4.1.1. An easy solution. A straight forward way to solve this problem
would be to use the method just described: Let a penalty method bring
us to the neighbourhood of a solution, and then simply consider the active
or near active constraints as equality constraints. Discard the rest of the
constraints (still keeping an eye on them, though, to observe whether they
remain inactive), and use one of the two methods for updating the vector of
Lagrange multipliersλ.

The augmented Lagrangian function could be the following:

ϕ̃(x,λ, σ) = f(x)− λ>d(x) + 1
2
σd(x)>d(x) ,

whered(x) is defined as follows

di(x) =

{
ci(x) if i∈Aδ(x) ,

0 otherwise.
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Here, we have defined the approximate active setAδ(x) by

Aδ(x) = {1, . . . , r} ∪ { i | i > r and ci(x) ≤ δ } , (4.11)

whereδ is a small positive number. Initially we could keepλ = 0 and
increaseσ until the approximate active set seems to have stabilized (eg by
being constant for two consecutive iterations). As long asA(x) remains
constant we updateλ using (4.8) or (4.9) (discarding inactive constraints
and assuming that the active inequality constraints are numbered first). Oth-
erwiseλ is set to0 andσ is increased.

The algorithm might be outlined as follows:

Algorithm 4.12. Augmented Lagrangian method
(General problem, easy solution).

begin
λ := 0; σ := σ0

repeat
x := argminxϕ̃(x,λ, σ)
if (stable active setAδ(x))
λ := Update(x,λ, σ)

else
λ := 0; σ := 10 ∗ σ

until STOP

end

Many alternatives for defining the active set could be considered. It might,
eg, depend on the values of|ci(x)|, i = 1, , ..., m. One disadvantage about
this type of definition is that a threshold value, likeδ, must be provided
by the user. This might be avoided by a technique like the one in Algo-
rithm 4.10 (and the following Algorithm 4.20).

4.1.2. A better solution. We change the inequality constraints (i =
r+1, . . . ,m) into equality constraints by introducing so-calledslack vari-
ableszi:
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cr+i(x) ≥ 0 ⇔
{
cr+i(x)− zi = 0

zi ≥ 0 , i= 1, . . . ,m−r . (4.13)

Notice, that we have extended the number of variables, and still have in-
equality constraints. These are simple, however, and – as we shall see – the
slack variables can be eliminated.

Consider the augmented Lagrangian function corresponding to them equal-
ity constraints,

ϕ(x, z,λ, σ) = f(x) −
∑r
i=1 λici(x) + 1

2
σ
∑r
i=1 ci(x)2

−
∑m
i=r+1 λi(ci(x)− zi−r)

+ 1
2
σ
∑m
i=r+1(ci(x)− zi−r)2 . (4.14)

For fixedλ andσ we wish to findxλ,σ andzλ,σ that minimizeϕ under the
constraintzλ,σ ≥0. xλ,σ minimizes the original problem provided thatσ is
sufficiently large andλ is the vector of Lagrange multipliers at the solution.

At the minimizer (xλ,σ,zλ,σ) eitherzi = 0 (the constraintzi≥ 0 is active) or
∂ϕ

∂zi
= 0. Now, from (4.14) we see that

∂ϕ

∂zi−r
= λi − σ(ci(x)− zi−r) ,

and equating this with zero we getzi−r = ci(x)− 1
σ
λi . Thus, the relevant

values for the slack variables are

zi−r = max{0, ci(x)− 1
σ
λi}, i= r+1, . . . ,m .

Inserting this in (4.14) will makez disappear, and we obtain

ϕ(x,λ, σ) = f(x)− λ>d(x) + 1
2
σd(x)>d(x) , (4.15a)

whered(x) hold the modified equality constraint functions given by

di(x) =

{
ci(x) if i ≤ r or ci(x) ≤ 1

σ λi
1
σ λi otherwise

. (4.15b)

Thus, the augmented Lagrangian function for the generally constrained
problem is very similar to (4.1).
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Letting

ψ(λ) = minx∈IRn ϕ(x,λ, σfix) = ϕ(xλ,λ, σfix) , (4.16)

the inequalityψ(λ) ≤ ψ(λ∗) corresponding to (4.5), can easily be shown
valid. Thusλ∗ maximizesψ soψ′(λ∗) = 0.

Thesteepest ascentiteration, corresponding to (4.8), is

λsa = λ− σfixd(xλ) . (4.17)

TheNewton iterationfor solvingψ′(λ∗) = 0, corresponding to (4.9), is

λnew = λ+ η , where ψ′′(λ)η = −ψ′(λ) . (4.18)

Here the first and second order derivatives ofψ are (see Fletcher (1993))

ψ′(λ) = −d(xλ) ,

ψ′′(λ) = −
[

G 0
0 1

σ I

]
with G = J̃c (ϕ′′xx)−1 J̃>c .

(4.19)

In J̃ we only consider the active constraints (first line in (4.15b)) and we
assume that these are numbered first. ThusG is ans by s matrix (wheres
is the number of active constraints), andI is the unit matrix in IRm−s.
Notice that if constraint numberi is inactive at (x,λ) (last line in (4.15b))
then the value ofηi in (4.18) is−λi. Thus the i’th component ofλnew will
be0 which is consistent with remark3◦ on Theorem 2.5.

The algorithm is given below. Essentially, it is identical with 4.10. We have
the following remarks:

1◦ As remark1◦ to Algorithm 4.10.

2◦ As remark2◦ to Algorithm 4.10, except forK: For active constraints

|di(x)| is the deviation fromci(x) to zero. For an inactive constraint,

|di(x)| = |λi/σ| which becomes0 whenλ is updated. If this con-

straint is also inactive at the solution, thenλ∗i = 0, see remark3◦ on

Theorem 2.5; thus, also in this case the value|di| is relevant for the

stopping criterion.
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Algorithm 4.20. Augmented Lagrangian method.
(General case).

begin
k := 0; x := x0; λ := λ0; σ := σ0 {1◦}
Kprev := ‖d(x)‖∞ {2◦}
repeat
k := k+1
x := argminxϕ(x,λ, σ); K := ‖d(x)‖∞ {2◦}
if (K ≤ 1

4
Kprev)

λ := Update(x,λ, σ) {3◦}
Kprev := max(K,Kprev)

else
σ := 10 ∗ σ

until K < ε or k > kmax

end

3◦ The updating ofλ can be made by the steepest ascent formula

(4.17), which is efficient initially, or by Newton’s method (4.18),

which provides quadratic final convergence (under the usual regular-

ity conditions).

If a Quasi-Newton method is used to findx at 3◦, then an approximate

ϕ′′ (or (ϕ′′)−1) is available and can be used in (4.19b). In this case we

do not obtain quadratic but superlinear convergence, which is almost as

good.

Algorithm 4.20 has proved to be robust and quite efficient in practice. Typ-
ically the solution is found after 3 – 10 runs through the repeat loop. In
Example 4.6 we report results of some test runs with the algorithm.
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4.2. The Lagrange-Newton Method
In Section 3.4 we formulated the problem of finding a local constrained
minimizer off as a problem of finding a stationary point of the associated
Lagrangian function. Applying Newton’s method to this, we saw that each
step was equivalent to a quadratic optimization problem (QO). The next
Newton step gives rise to a new QO, and therefore the names“Lagrange-
Newton method”and“sequential quadratic optimization”are more or less
synonymous. The shorter name“SQP” is also used because a quadratic
optimization problem is called a“quadratic program” in older literature.

The ideas date back to the 1960s, but the first efficient implementations were
developed by Han (1976) and Powell (1977). Currently it is considered
as the most efficient method (except for problems with extremely simple
function evaluations (as all the problems in the examples of this booklet)).

We now complete the description of the method from Section 3.4 and in-
troduce features that improve the global performance of the method. This
includes soft line search with a special type of penalty function. We con-
clude the description with an update method for the Hessian matrix. This
actually makes the method a Quasi-Newton method see Chapter 5 in Frand-
sen et al (2004)) with good final (superlinear) convergence without having to
implement second derivatives, which would be needed with a true Newton’s
method (giving quadratic final convergence).

Summarizing (and slightly modifying) the description from Section 3.4, we
can state the SQP method in algorithmic form

Choosex0; x := x0

repeat
h := argminδ∈P̃ q(δ)
Find step parameterα
x := x + αh

until stopping criteria satisfied

(4.21)

Hereq is a quadratic model of the cost function in the neighbourhood ofx,

f(x+δ) ' q(δ) = f(x) + δ>f ′(x) + 1
2
δ>W(x)δ, (4.22a)
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andP̃ is the feasible region

P̃ = {δ ∈ IRn | di(δ) = 0, i= 1, . . . , r

di(δ) ≥ 0, i= r+1, . . . ,m} ,
(4.22b)

corresponding to a linear model of the constraints

c(x+δ) ' d(δ) = c(x) + Jc(x)δ , (4.22c)

where(Jc)ij =
∂ci
∂xj

, cf (3.21d).

We shall discuss the choice of the step parameterα in (4.21) and matrix
W(x) in (4.22a). First, however, let us consider the consequences of the
linearization (4.22c) of the constraint functions.

Example 4.4. We consider a problem in IR2 with one inequality constraint
only, c1(x)≥ 0. Figure 4.5 shows the border curve for the feasible region.

Figure 4.5:Border curve of
feasible region,c1(x) = 0.
The infeasible side is hatched x

1

x
2

c
1
 = 0

We want to study the variation of the functionc1(x) around this border curve.
Figure 4.6a shows the surfacey = c1(x), and in Figure 4.6b we have added the
tangent plane to this constraint surface at a point(x, c1(x)), wherec1(x)> 0.

The tangent plane corresponds to the linear approximation

c1(x+h) ' κ(x+h) = c1(x) + h>c ′1(x) .

We assume thatc1 is strictly concave (so that the feasible region is convex, cf
Theorem 1.18). Then the tangent plane at any point is above the constraint
surface (except at the point of osculation), and a consequence is that the line
ψ(x+h) = 0 is completely outside the feasible region. This is illustrated in
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Figure 4.6:Variation of the constraint functionc1(x) near the border curve
c1(x) = 0 and the tangent plane at the point(x, c1(x)), marked by a circle.

Figure 4.6b forx∈P, and it is easily seen that also ifx is infeasible (c1(x)< 0),
then the lineψ(x+h) = 0 is completely outsideP.

The properties described above are valid in general, except for cases, where the
concave function has a local maximizer betweenx and the border curve.

4.2.1. Choice of step lengthα. The solutionh to the quadratic optimization
problem in (4.21) satisfies all the linearized constraints, and, as shown in
the previous example, this may causex+h to be infeasible with respect
to the true constraints. Also, ifh comes out too large, then the quadratic
model may be a poor approximation to the true variation of the cost function.
Therefore we make a line search similar to the soft line search described in
Section 2.5 of Frandsen et al (2004). The function considered in the line
search is a so-called“exact penalty function”5)

π(y,µ) = f(y) +
r∑
i=1

µi|ci(x)|+
m∑

i=r+1

µi|min{0, ci(y)}|

with µi ≥ |λi| .
(4.23)

The penalty factors are chosen asµ = |λ| in the first iteration step, while

5) This penalty function is exact in the sense that the solutionx∗ of our problem minimizes
π(y,µ) for anyµwith µ≥0.
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some conservatism is recommended in later steps,

µi := max{|λi|, 1
2
(µi + |λi|)} . (4.24)

This is specially important for constraints that are active in one iteration step
and inactive in the next.

Powell has shown that the function

π(α) = π(x+αh,µ) for α≥ 0, h andµ fixed ,

hasπ ′(0)< 0, so that a line search can lead to a pointx+αh, which is “bet-
ter” in terms of this measure. Also, even for moderate penalty, the minimizer
is exactly feasible.

The disadvantage of an exact penalty function is that it is not differentiable;
π(α) has kinks at the points where a constraintci(x+αh) passes the value
of zero; see Figure 4.7 below.

We also need a piecewise linear approximation toπ(α),

π(α) ' ψ(α) = f(x) + αh>f ′(x)

+
∑r
i=1 µi|ci(x) + αh>c ′i (x)|

+
∑m
i=r+1 µi|min{0, ci(x) + αh>c ′i (x)}|

An example ofπ(α) andψ(α) is shown in Figure 4.7. Notice thatψ(α) is
convex, and it also has kinks, situated differently from the kinks ofπ.

α1

y y = π(0) + 0.1∆α

y = π(α)

y = ψ(α)

Figure 4.7:Line search functionπ(α)
and its linear approximationψ(α)

Similar to a “normal” soft line search, we accept a value ofα such that
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the point(α, π(α)) is below the dashed line indicated in Figure 4.7. The
slope of this line is 10% of the slope of the chord between(0, ψ(0)) and
(1, ψ(1)), ie

∆ = ψ(1)− ψ(0)

= h>f ′(x)−
r∑
i=1

µi|ci(x)| −
m∑

i=r+1

µi|min{0, ci(x)}| . (4.25)

In this expression we have used the fact thatψ(1) = h>f ′(x) since the other
terms are zero forh∈ P̃. Note thath is downhill for f , and therefore∆ is
guaranteed to be negative.

In each step of the line search algorithm we use a second order polynomial
P (t) to approximateπ(t) on the interval[0, α]. The coefficients are deter-
mined so thatP (0) =π(0), P ′(0) = ∆, P (α) =π(α),

P (t) = π(0) + ∆t+ (π(α)− π(0)−∆α)
t2

α2
.

If the coefficient tot2 is positive, then this polynomial has a minimizerβ,
determined byP ′(β) = 0, or

β =
−∆α2

2(π(α)− π(0)−∆α)
. (4.26)

Now we can formulate the line search algorithm:

Algorithm 4.27. Penalty Line Search.

begin
α := 1; Compute∆ by (4.25)
while π(α) ≥ π(0) + 0.1∆α

Computeβ by (4.26)
α := min{0.9α, max{β, 0.1α} }

end

The expression for the newα ensures that the algorithm does not get stuck
at the current value and, on the other hand, does not go to zero too fast. The
algorithm has been validated by experience.
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4.2.2. Choice ofW in (4.22). By comparison with the Taylor expansion
(1.6) an obvious choice isW(x) = f ′′(x). However, the goal is to find a
minimizer for the Lagrangian functionL(x,λ), and the description in Sec-
tion 3.4 shows that a more appropriate choice is

W(x) = L ′′xx(x,λ) = f ′′(x)−
∑

λic ′′i (x) .

We know from Theorem 2.11 that at the solution(x∗,λ∗) the Hessian ma-
trix satisfiesh>L ′′xx(x∗,λ∗)h≥ 0 for all feasible directions. This does not
imply thatL ′′xx(x∗,λ∗) is positive definite, but contributes to the theoretical
motivation for the following strategy that has proven successful: Start with
a positive definiteW(x0), egW(x0) = I. In each iteration step updateW
so that it is positive definite, thus giving a well-defined descent direction.
The use of an updating strategy has the further benefit that we do not have
to supply second derivatives of the cost functionf and the constraint func-
tions{ci}.
A good updating strategy is the BFGS method discussed in Section 5.10 of
Frandsen et al (2004). Given the currentW = W(x) and the next iterate
xnew= x+αh. The change in the gradient of Lagrange’s function (with
respect tox) is

y = L ′x(xnew,λ)− L ′x(x,λ)

= f ′(xnew)− f ′(x)− (Jc(xnew)− Jc(x))> λ . (4.28a)

We check the so-calledcurvature condition,

y>(xnew− x) > 0 . (4.28b)

If this is satisfied, thenW is “positive definite with respect to the step di-
rectionh”, and so isWnew found by the BFGS formula,

Wnew = W +
1

αh>y
yy> − 1

h>u
uu> ,

where u = Wh .
(4.28c)

If the curvature condition is not satisfied, then we letWnew= W.
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4.2.3. Stopping criterion. We use the following measure for the goodness
of the approximate solution obtained asx = xprev + αh,

η(x,λ) = |q(αh)− f(x)|

+
∑
i∈B

λi|ci(x)|+
∑
i∈J
|min{0, ci(x)}| . (4.29)

As in Chapter 3,B is the set of equality and active inequality constraints,
andJ is the set of inactive inequality constraints. The first term measures
the quality of the approximating quadratic (4.22a) and the other terms mea-
sure how well the constraints are satisfied.

4.2.4. Summary. The algorithm can be summarized as follows. The pa-
rametersε andkmax must be set by the user.

Algorithm 4.30. Lagrange – Newton Method.

begin
x := x0; W := W0; µ := 0; k := 0
repeat
k := k+1
Find (h,λ) by Algorithm 3.10
Updateµ by (4.24)
Findα by Algorithm 4.27
xprev := x; x := x + αh
UpdateW by (4.28)

until η(x,λ) < ε or k > kmax

end

Example 4.5. We shall use the algorithm on the same problem as in Example 4.3,

minimize f(x) = x2
1 + x2

2

with the constraintc1(x) = 0 , c1(x) = x2
1 − x2 − 1 ,

and with the same starting point,x0 = [ 1, 1 ]>. Further, we chooseW0 = I.
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We shall need the following expressions

f ′(x) =

[
2x1

2x2

]
, Jc(x) =

[
2x1 −1

]
,

q(δ) = f(x) + 2(x1δ1 + x2δ2) + 1
2

(
w11δ

2
1 + 2w12δ1δ2 + w22δ

2
2

)
d1(δ) = c1(x) + 2x1δ1 − δ2 .

The first model problem is

minimize q(δ) = 2 + 2δ1 + 2δ2 + 0.5δ2
1 + 0.5δ2

1

subject to d1(δ) = −1 + 2δ1 − δ2 = 0 .

This was discussed in Example 3.3, where we found the minimizerh =
[−0.8, −2.6 ]>. The corresponding Lagrange multiplier isλ = 0.6, and this
is also used as the first value for the penalty parameterµ. Figure 4.8 shows

π(α) = (1−.8α)2 + (1−2.6α)2 + .6|(1−.8α)2 − (1−2.6α)− 1| .

Figure 4.8:Penalty functionπ(α)
and linear approximationψ(α).

α1

y

y = π(α)

y = ψ(α)

The linear approximation is

ψ(α) = 2 + α
[
−.8 −2.6

] [ 2
2

]
+ .6| − 1 + α

[
−.8 −2.6

] [ 2
−1

]
|

= 2− 6.8α+ .6| − 1 + α| = 2.6− 7.4α for 0 ≤ α ≤ 1 .

We see that∆ = −7.4 and

π(1) = 2.984 > 2.6 + .1∆ · 1 = 1.86 .
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We need to reduceα, and use (4.26) to find6)

β =
7.4

2(2.984− 2.6 + 7.4)
= 0.475334 = α ,

π(α) = 0.667740 < 2.6 + .1∆α ' 2.248 .

Thus, the line search is finished, and the next iterate is

xnew = x + αh = [ 0.619733, −0.235868 ]> .

To updateW we use (4.28) and find

y =

[
−0.304214
−2.471737

]
, ẏh ' 6.67 > 0 , Wnew'

[
0.943 −0.044
−0.044 2.014

]
.

The error estimate computed by (4.29) isη(x,λ) = 0.23, and the true error7) is
‖xnew− x∗‖∞ = 0.26.

The second model problem is

minimize q(δ) = 0.440 + 1.239δ1 − 0.472δ2
+0.471δ2

1 − 0.044δ1δ2 + 1.007δ2
1

subject to d1(δ) = −0.380 + 1.239δ1 − δ2 = 0 .

According to Example 3.3 the solution is

(h,λ) =
(

[ 0.070550, −0.292618 ]>, 1.064025
)
,

and the penalty function withµ=λ shows thatα= 1. We get

xnew = [ 0.690283, −0.528487 ]>

η(xnew,λ) ' 0.094 , ‖xnew− x∗‖∞ ' 0.028 ,

Wnew'
[

0.908 0.250
0.250 2.060

]
.

The results from the next iteration steps are

6) The computation in this example was performed with machine accuracyεM = 5·10−14,
but results are shown with at most 6 digits.

7) According to Example 4.3,x∗ = [
√

0.5, −0.5 ]>.
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k x>k λk η(xk, λk) ‖xk − x∗‖∞
3 [0.701733, −0.507702] 1.011291 7.0·10−4 7.7·10−4

4 [0.707111, −0.500023] 1.000498 5.9·10−5 2.3·10−5

5 [0.707107, −0.500000] 0.999990 8.2·10−10 4.6·10−8

If we useε= 10−8 in Algorithm 4.30, we are finished. The errors
{‖xk − x∗‖∞} exhibit superlinear convergence.

Example 4.6. In the table below we give some test results from Powell (1977). The
size of each problem is given in the first two columns. The next column gives the
number of elements inB(x∗) and the number in parenthesis tells, how many of
these that are linear. The last two columns give the number of iterations and the
number of function calls needed to solve the problem to a desired accuracy of
10−5. For comparison we also give (in parenthesis) the corresponding numbers
for the augmented Lagrangian algorithm 4.20.

n m #B(x∗) Iterations Fct. calls

3 7 1 (1) 5 (4) 7 (30)
5 3 3 (0) 6 (5) 7 (37)
5 15 4 (4) 4 (4) 6 (39)
5 16 5 (3) 2 (5) 3 (64)
15 20 11 (3) 16 (3) 17 (149)

Each function call involves one evaluation off(x) andf ′(x).

For these examples the Lagrange–Newton method is clearly superior when the
number of function evaluations is used as a measure. However, the work load per
function evaluation may be much higher for the Lagrange–Newton method since
it involves many QP problems. This is especially important when the number of
variables and/or constraints is high.

In conclusion, we recommend the Lagrange-Newton method (SQP) when func-
tion evaluations are expensive, and the Augmented Lagrangian method when
function evaluations are cheap and we have many variables and constraints.
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APPENDIX

A. Karush–Kuhn–Tucker Theorem

We shall prove property2◦ in Theorem 2.5. Without loss of generality we
assume that the active inequality constraints are numbered first:

Equality constraints :ci(x) = 0, i = 1, . . . , r

Active inequality constraints :ci(x) = 0, i = r+1, . . . , p

Inactive constraints :ci(x) > 0, i = p+1, . . . ,m .

The comments on3◦ in the theorem and the definition of the Lagrange func-
tion imply that1◦ has the form

f ′(x) =
p∑
i=1

λiai with ai = c ′i (x) . (A.1)

We shall prove that if one (or more) of the{λi} pi=r+1 is negative, thenx is
not a local, constrained minimizer:

For the sake of simplicity, assume that the gradients{ai} pi=1 are linearly
independent and thatλp< 0. Then we can decomposeap into v, its or-
thogonal projection on the subspace spanned by{ai}p−1

i=1 andh, which is
orthogonal to this subspace,

ap = v + h with ai
>h = 0 for i= 1, . . . , p−1 .

For small values of‖αh‖ we use the Taylor series (1.7) for the constraint
functions to see that

ci(x+αh) ' ci(x)+αh>ai =

{
0 for i= 1, . . . , p−1

αh>h for i= p
.
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This shows, that forα> 0 and sufficiently small,x+αh is feasible. Further,
from the Taylor series (1.6) for the cost function and (A.1) we get

f(x + αh) ' f(x) + αh>f ′(x)

= f(x) + αh> (
∑p
i=1 λiai)

= f(x) + αλph>h ,

showing thatf(x+αh) < f(x) for α> 0, sinceλp< 0.

Thus, we have shown that at a local, constrained minimizer all the Lagrange
multipliers for inequality constraints are nonnegative.



65 REFERENCES

REFERENCES

1. C.G. Broyden (1967):Quasi–Newton methods and their Application to

Function Minimization, Math. Comps.,21, 368–381.

2. O. Caprani, K. Madsen and H.B. Nielsen (2002):Interval Analysis,

IMM, DTU. Available ashttp://www.imm.dtu.dk/courses/02611/IA.pdf

3. I.S. Duff (1993):The Solution of Augmented Systems,

Report RAL-93-084, Rutherford Appleton Laboratory.

4. A.V. Fiarco and G.P. McCormick (1968):Nonlinear Programming,

Wiley.

5. R. Fletcher (1993):Practical Methods of Optimization, Wiley.

6. P.E. Frandsen, K. Jonasson, H.B. Nielsen and O. Tingleff (2004):

Unconstrained Optimization, IMM, DTU. Available as

http://www.imm.dtu.dk/courses/02611/uncon.pdf

7. P.E. Gill and W. Murray (1974):Newton type methods for Linearly

Constrained Optimizationin P.E. Gill and W. Murray (eds): “Numeri-

cal Methods for Constrained Optimization”, Academic Press.

8. G. Golub and C.F. Van Loan (1996):Matrix Computations, 3rd edition.

John Hopkins Press.

9. S.P. Han (1976):Superlinearly Convergent Variable Metric Algo-

rithms for General Nonlinear Programming Problems, Math. Progr.11,

263–282.

REFERENCES 66

10. G.H. Kuhn and A.W. Tucker (1951):Nonlinear Programmingin

J. Neyman (ed) “Procedings of the2nd Berkeley Symposion on Mathe-

matical Statistics and Probability”, pp 481–493, University of Califor-

nia Press.
11. K. Madsen (1995):Optimering under bibetingelser(in Danish),

IMM, DTU.
12. K. Madsen and H.B. Nielsen (2002):Supplementary Notes for

02611 Optimization and Data Fitting, IMM, DTU. Available as

http://www.imm.dtu.dk/courses/02611/SN.pdf

13. H.B. Nielsen (1999):Algorithms for Linear Optimization, IMM, DTU.

Available ashttp://www.imm.dtu.dk/courses/02611/ALO.pdf

14. M.J.D. Powell (1969):A Method for Nonlinear Constraints in Minimi-

zation Problems, in R. Fletcher (ed): ”Optimization”, Academic Press.

15. M.J.D. Powell (1977):A Fast Algorithm for Nonlinearly Constrained

Optimization Calculations, in “Numerical Analysis, Dundee 1977”,

Lecture Notes in Mathematics630, Springer.



67 INDEX

INDEX

active constraint, 2, 6
– set, 2, 18, 25, 31, 59

augmented Lagrange function, 42, 46
– – method, 45, 52, 62
– system, 31

back substitution, 31
basic QO, 24
BFGS updating, 35, 58

Caprani et al, 3
CBQO, 25, 29
Cholesky factorization, 30
computational cost, 29
concave function, 8, 55
constrained minimizer, 3

– stationary point, 13, 17
constraint surface, 54
contours, 23, 26, 36f, 39, 47
convex function, 8, 28

– set, 7, 10
cost function, 1, 15, 35, 38, 53
current BQO, 25
curvature condition, 58

descent condition, 6
– direction, 6, 58

Duff, 32

equality constraint, 1, 9, 12, 45
exact penalty function, 55
exterior point method, 40

factorization, 30
feasible active direction, 18

– descent direction, 13
– region, 1, 5, 10, 26, 34, 54
– starting point, 29

Fiacco, 17
Fletcher, 15, 20, 23, 38, 44, 51
forward substitution, 31
Frandsen et al, 6, 15, 18, 30,

46, 53, 55, 58

general quadratic optimization, 27
Gill, 30
Golub, 30f
gradient, 4, 14, 32, 58

Han, 53
Hessian matrix, 4, 15, 33, 58

ill-conditioned, 39
inactive constraint, 2, 59
inequality constraint, 1, 26, 39
interior point methods, 40
interval analysis, 3

Jacobian matrix, 32, 44, 46

Karush, 15, 63
kink, 56
KKT conditions, 15, 24, 33, 44
Kuhn, 15, 63

INDEX 68

Lagrange’s function, 14, 22,
32, 42, 46, 53, 58

– multiplier, 14, 16, 20, 27, 60, 64
Lagrange-Newton method, 53, 62
level curves, 23, 26, 36f, 39, 47
line search, 55, 57, 61
linear constraint, 9

– convergence, 44
– model, 54
– optimization, 3, 29

logarithmic barrier function, 40

Madsen, 21, 30
McCormick, 17
model, 53f

– problem, 60
Murray, 30

necessary condition, 16, 20
Newton, 33, 44, 51ff, 59
Nielsen, 3, 29f, 41

objective function, 1, 15
orthogonal matrix, 30
orthonormal basis of IRn, 31

penalty function, 55, 60
– line search, 57
– method, 43

positive definite, 9, 23, 32, 58
Powell, 41, 53, 56, 62
projection, 63

QO, 22, 34
QR factorization, 30
quadratic convergence, 34, 52, 53

– model, 53
– optimization, 3, 22

– program, 53
Quasi-Newton method, 45, 52f

Raphson, 33
robust convergence, 35

sequential linear optimization, 38
– quadratic optimization, 38, 53

SIMPLEX, 29
slack variables, 49
soft line search, 56
sparse matrix, 31
SQO, 38
SQP, 53, 59, 62
stationary point, 32
steepest ascent, 44, 51

– descent, 6, 11
strongly active, 13, 20, 41
sufficient condition, 9, 20f
SUO, 38
superlinear convergence, 52f, 62

Taylor expansion, 4, 6, 11,
34, 44, 58, 63

total Hessian, 33
triangular matrix, 30
Tucker, 15, 63

unconstrained minimizer, 2, 13,
23f, 42

underdetermined system, 29
updating, 30ff, 35, 58, 61

Van Loan, 30f
violated constraint, 28

warm start, 46
weakly active constraint, 13, 20


