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1. INTRODUCTION

In this booklet we shall discuss numerical methods for constrained opti-
mization problems. The description supplements the description of uncon-
strained optimization in Frandsen et al (1998). We consider a real function
of a vector variable which is constrained to satisfy certain conditions, specif-
ically a set of equality constraints and a set of inequality constraints.

Definition 1.1. Feasible region.A point x € R" is feasibleif it satis-
fies theequality constraints

ci(x)=0, i=1,...,r r>0
and theinequality constraints

ci(x) >0, i=r+1,...,m, m>r,

where thec; : R" — R are given.
The set of feasible points is denoted®yand called théeasible region

Notice that ifr =0, then we have no equality constraints, and # m we
have no inequality constraints.

A constrained minimizer gives a minimal value of the function while satis-
fying all constraints, ie

Definition 1.2. Global constrained minimizer. Find

x* = argminp f(x) ,
wheref : R" — R andP is given in Definition 1.1.

Here, f is the so-calleabjective functioror cost function
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Example 1.1. In R* consider the objective functiofi(z) = (z — 1)®. The
unconstrained minimizes g = 1 with f(z3) = 0. We shall look at the effect
of some simple constraints.
1°. With the constraint: >0, (r=0, m=1, c1(z) =z) we also find the con-
strained minimizer:™ = 1.
2° With the constraintz—2 > 0 the feasible region is the intervl = [2, oo],
andz™ =2 with f(z%) =1.
3° The inequality constraints given ky () =x—2 andcz(z) =3—x lead to
P =1[2,3] andzt =2.
4° If we have the equality constraifit-= = 0, then the feasible region consists
of one point only;? = {3}, and this point will be the minimizer.
5° Finally, 3—z >0, x—4 >0 illustrates that® may be empty, in which case
the constrained optimization problem has no solution. (]

In many constrained problems the solution is at the border of the feasible
region (as in case® —4° in Example 1.1). Thus a very important special
case is the set of points #a which satisfy some of the inequality constraints

to the limit, ie with equality. At such a poimte P the corresponding con-
straints are said to bective For practical reasons a constraint which is not
satisfied ak is also called active ai.

Definition 1.3. Active constraints. A constraintc,(x) > 0 is said to

be
activeatze R*  if ¢x(z) <0,

inactive atz € R" if ¢x(z) > 0.

The active setatz, A(z), is the set of indices of equality constraints
and active inequality constraints:

A(z)={1,...,r} UA(z)
where A(z) = {j€{r+1,...,m} | ¢;(z) <0}.

Thus, an inequality constraint which is inactivezdtas no influence on the
optimization problem in a neighbourhoodof
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Example 1.2. In case3° of Example 1.1 the constraint is active and:, is inactive
at the solution: ™. Here the active set is

AT =A@) ={1}. .

As in unconstrained optimization a global, constrained minimizer (Defini-
tion 1.2) can only be computed under special circumstances, like for in-
stance convexity of some of the functions. In some cases (including some
non-convex problems) methods of interval analysis can be applied to find a
global, constrained minimizer (see for instance Caprani et al (2002)).

In this booklet, however, we shall only discuss methods that determine a
local constrained minimizer. Such a method provides a function value which
is minimal inside a feasible neighbourhood, determined by > 0) :

Definition 1.4. Local constrained minimizer.Findx* € P so that
f(x*) < f(x) forallx € Pwith|x —x"|| <e.

Since the feasible regio®® is a closed set we have the following result
concerning constrained optimization.

Theorem 1.5. Assume that

0) The feasible regiof? is not empty

1) ¢ (i=1,...,m) are continuous for akk € P

2) fiscontinuous for alk € P

3) Pisbounded(3ICeR: |x|| < CforallxcP)

Then there exists (at least) one global, constrained minimizer.

If both the cost functionf and all constraint functions; are linear inx,

then we have a so-calledlimear optimization problem The solution of
such problems is treated in Nielsen (1999). In another important special
case all constraints are linear, afits a quadratic polynomial; this is called
aquadratic optimization problensee Chapter 3.

We conclude this introduction with two sections on important properties of
the functions involved in our problems.

1.1. Smoothness and Descent Directions 4

1.1. Smoothness and Descent Directions

In this booklet we assume that the cost function satisfies the following Tay-
lor smoothness condition,

f(x+h) = f(x) + h'g + th"Hh + O(||n]|*) (1.6a)

whereg is thegradient

of
8—1:1(x)
g =f'(x) = , (1.6b)
of
@(X)
andH is theHessian matrix
82
H = /(x) = [{ o (x)}} | (1.60)

Furthermore we assume that the feasible re¢tdmas a piecewise smooth
boundary. Specifically we request the constraint functions to satisfy the
following Taylor smoothness condition,

¢i(x+h) = ¢;(x) + h'a; + th" A;h 4 O(||h|?) (1.7a)

fori=1,...,m. Herea; and A; represent the gradient and the Hessian
matrix respectively,

a; = c¢/(x), A =c/(x). (1.7b)
Notice that even when (1.7) is true, the boundarfPahay contain points,

curves, surfaces (and other subspaces), where the boundary is not smooth,
eg points where more than one inequality constraint is active.

Example 1.3. We consider a two-dimensional problem with two inequality con-
straints,c1 (x) > 0 andea(x) > 0.
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Figure 1.1:Two inequality
constraints inR?.
The infeasible side is hatched.
In this and the following figures X

c1 means the sdtx | ¢1(x) = 0},
etc.
X

1

C1

In Figure 1.1 you see two curves with the points wher@ndc,, respectively,

is active, see Definition 1.3. The infeasible side of each curve is indicated by
hatching. The resulting boundary Bf (shown with thick line) is not smooth at

the point where both constraints are active. You can also see that at this point the
tangents of the two “active curves” form an angle which is less than (or equal to)
7, when measured inside the feasible region. This is a general property.

Next, we consider a three-dimensional problem with two inequality constraints.
Below, you see the active surfaces(x)=0 and c2(x)=0. As in the 2-
dimensional case we have marked the actual boundary of the feasible region
by thick line and indicated the infeasible side of each constraint by hatching. It

is seen that the intersection curve is a kink line in the boundary surface. Itis also
seen that the angle between the intersecting constraint surfaces is less than (or
equal to)r, when measured inside.

Figure 1.2:Two inequality
constraints inR>.

1.1. Smoothness and Descent Directions 6

The methods we present in this booklet are in essdaseent method it-
erative methods where we move from the present poskigma direction

h that provides a smaller value of the cost function. We must satisfy the
descent condition

f(x+h) < f(x). (1.8)

In Frandsen et al (1999) we have shown that the direction giving the fastest
local descent rate is tHateepest Descedirection

heg = —f'(x) . (1.9)
In the same reference we also showed that the hyperplane

H(x) = {x+u|u'f'(x) = 0} (1.10)
divides the space Rinto a “descent” (or “downhill”) half space and an

“uphill” half space.

A descent directioth is characterized by having a positive projection onto
the steepest descent direction,

h'hgg>0 <= h'f/(x)<0. (1.112)

Now consider the constraint functions. The equality constraifits) =

0 (i=1,...,r) and the boundary curves corresponding to dlaéve in-
equality constraints;; (x) > 0 satisfied with =", can be considered as level
curves or contourén = 2), respectively level surfaces or contour surfaces
(n>2), for these functions. We truncate the Taylor series (1.7) to

¢i(x+h) = ¢;(x) +h'a; + O(|n|?) (i=1,...,m).

From this it can be seen that the direction= c¢/(x)) is orthogonal to any
tangent to the contour at positien ie a; is a normal to the constraint curve
(surface) at the position.

Example 1.4. We continue the 2- and 3-dimensional considerations from Example
1.3, see Figure 1.3. At the position c¢; is an active and:- is an inactive
constraint, iec1 (x) =0 andca(x) >0 .
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The opposite is true at the positigncz(y) =0 andei (y) > 0.

At the two positions we have indicated the gradients of the active constraints.
They point into the interior o, the feasible region.

a

Figure 1.3:The gradients of the constraint functionsRi and R®
point into the feasible region.

At this early stage we want to emphasize that in a neighbourhood of a point at
the boundary ofP, properties of inactive constraints have no influence. =

1.2. Convexity

The last phenomenon to be described in this introducti@omvexity It is
essential for a theorem on uniqueness of a constrained global minimizer and
also for some special methods.

A setD (for instance the feasible regidP) is convex if the line segment
between two arbitrary points in the set is contained in the set:

Definition 1.12. Convexity of a set. The setD C R" is convex
if the following holds for arbitraryx,y €D , 6 € [0,1] and xy =
Ox + (1-0)y :

x9€D.

We also use the term convexity about functions:

1.2. Convexity

Definition 1.13. Convexity of a function. Assume thatD C R" is
convex. The functiory is convexon D if the following holds for arbi-
traryx,y €D, 0 € [0,1] andxy = Ox+ (1-0)y :

f(xo) <Of(x)+ (1-0)f(y) -

f is strictly convexon D if

f(xo) <0f(x)+ (1-0)f(y) -

Definition 1.14. Concavity of a function. Assume thatD C R" is
convex. The functiory is concave/strictly concaven D if — f is con-

vex/strictly convex orD.

In the figure we show a fxg)
strictly convex function between
two pointsx,y € D. The defini-
tion says thatf(xg), with xy =
Ox + (1-0)y, is below the secant

between the point§0, f(x)) and 0 1
(1, f(y)), and this holds for all

choices ofx andy in D. Figure 1.4:A strictly

convex function.

Definition 1.15. Convexity at a point. The functionf is convexat
x € Dif there exists: > 0 such that for arbitrary € D with | x—y|| <,
0€[0,1] and xp = Ox+ (1-0)y :

f(x0) <Of(x)+(1-0)f(y) -

f isstrictly convexatx € D if

fxg) <0f(x) + (1-0)f(y) -

Itis easy to prove the following results:
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Theorem 1.16. If D C R" is convex andf is twice differentiable on
D, then
1° fis convex orD

<= f"(x) is positive semidefinite for at € D
2°  fis strictly convex orD if
f"(x) is positive definite for alk € D

Theorem 1.17. First sufficient condition.If P is bounded and convex
and if f is convex orP, then

f has a unigue global minimizer iR .

Theorem 1.18.If f is twice differentiable ak € D, then
1° fisconvex atk €D

< f{”(x)is positive semidefinite

2° fis strictly convex ak € D if
f"(x) is positive definite

We finish this section with two interesting observations about the feasible
domainpP.

1) Letc¢; be an equality constraint. Take two arbitrary feasible paints
andy: ¢;(x)=¢;(y)=0. All points x4 on the line betweer andy must
also be feasible (cf Definition 1.12),

ci(0x+ (1-0)y) =0 forall 6€0,1].

Thusec; must be linear, and we obtain the surprising resul® i convex,

then all equality constraints are linear. On the other hand the set of points
satisfying a linear equality constraint must be convex. Therefore the feasible
domain of an equality constrained problems(ie m) is convex if and only

if all constraints are linear.

1.2. Convexity 10

2) Lete; be an inequality constraint. Assume thats concave on R. If
¢i(x) >0, ¢;(y) >0andé € [0, 1], then Definition 1.14 implies that

ci(0x+ (1-0)y) = 0 ci(x) + (1-0) ci(y)) = 0.

Thus, the set of points wherg is satisfied is a convex set. This means that
the feasible domaif® is convex if all equality constraints are linear and all
inequality constraints are concave.
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We shall progress gradually when we introduce the different aspects and

complications in the conditions for local, constrained minimizers (see Defi-
nition 1.4). We make the assumption that the feasible regignot empty
and that the cost functiofi and the constraint functions (i=1,...,m)

are smooth enough for the Taylor expansions (1.6) and (1.7) to hold.

First, we consider some special cases.

0) No equality constraints, no active inequality constraints

In Figure 2.1 we indicate the current positand the “downhill” halfspace
(cf (1.9) and (1.10)) in the two-dimensional case. The “uphill” side of the
dividing hyperplané is hatched.

hsd

Figure 2.1:Steepest descent direction and “downhill” halfspace.
In order to get a lower cost value we should move in a direckidn the

unhatched halfspace of descent directions. If the step is not too long then

the constraints of the problem are of no consequence.
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1) One equality constraint (no inequality constraintsiRin

In this case the feasible regio®, = {x | ¢1(x) =0}, is the curve shown
below. At a positiork we showhgg, the halfspace of descent directions, and
the constraint gradiemy, = c{(x), see (1.7b). Itis obvious thatif“slides

to the left” along the constraint curve, “pulled by the foieg”, we shall
get lower cost values and still remain feasible. Thlusannot be a local,
constrained minimizer.

af
he)

C

hsd

Figure 2.2:0ne equality constraint ilR?, ¢;(x) =0.
At x we have a feasible descent directiongtthere is none.

At the positionx the vectorshgsd) = —f'(xs) anda(ls) = c{(xs) are propor-
tional, ie they satisfy a relation of the form

héz) = -\ ags) — f'(xs) = Aeq(xs), (2.1)

where) is a scalar. This point may be a local, constrained minimizer. We
say thatxs is aconstrained stationary point

In conclusion: Any local, constrained minimizer must satisfy the equation
in (2.1) withA € R.

2) Two active inequality constraints (no equality constraintdin

Figure 2.5 illustrates this case. At positianboth constraints are active.
The pulling forcehgy shown indicates that the entire feasible region is on
the ascent side of the dividing plafté (defined in (1.10) and indicated in
Figure 2.5 by a dashed line). In this casés a local, constrained minimizer.
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Figure 2.5:Two inequality constraints
in R?, ¢;(x) > 0andcy(x) > 0.
At the intersection pointsg points
out of the feasible region.

Imagine that you turhsg around the poink (ie, you change the cost func-
tion f). As soon as the dividing plane intersects with the active part of one
of the borders, a feasible descent direction appears. The limiting cases are,
whenhgy is opposite to eithesi; or a,. The positionxs is said to be aon-
strained stationary poinif hgsd) is inside the angle formed bya; and—as,
or

b = 2 ald - xal) with A, X >0,

This is equivalent to

f/(XS) = )\1C1/(X5) + AQCQ/(XS) with )\1, /\2 Z 0. (22)

3) Strongly and weakly active constraints RA)

In Figure 2.6 we show one inequality constraint and the contours of a
guadratic function together witk,, its unconstrained minimizer. In the first
casex, is also a constrained minimizer, because the constrairgt inac-

tive. In the last casex, is not feasible and we have a constrained minimizer
x*, with f/(x*) # 0. We say that the constraintssrongly active

In the middle caseg¢; is active atx,,. Here we say that the constraint
is weakly active corresponding to\; =0 in (2.1) and (2.2) (because
f'(x,)=0).

2.1. Lagrangian Function 14

G
C G

¢1 is inactive c1 is weakly active c1 is strongly active

Figure 2.6:Contours of a quadratic function iR?;
one constrainte; (x) > 0.

In other words: if a constraint is weakly active, we can discard it without
changing the optimizer. This remark is valid both for inequality and equality
constraints.

2.1. The Lagrangian Function

The introductory section of this chapter indicated that there is an im-
portant relationship betweeg*, the gradient of the cost function, and
af (i=1,...,m) the gradients of the constraint functions, all evaluated at

a local minimizer. This has lead to the introduction of Lagrange’s Function:

Definition 2.3. Lagrange’s Function.Given the objective functiotf
and the constraints, i=1, ..., m. Lagrange’s function is defined by

L(x,\) = f(x) — Z Aici(x) .

The scalarg \;} are theLagrangian multipliers

The gradient of. with respect ta is denoted., and we see that

L (x,A) = f'(x) = ) Nic/(x). (2.4)
=1



15 2. LocAL, CONSTRAINED MINIMIZERS

By comparison with the formulae in the introduction to this chapter we see
that in all cases the necessary condition for a local, constrained minimizer
could be expressed in the forl, (xs,A) = 0 .

For an unconstrained optimization problem you may recall that the neces-
sary conditions and the sufficient condition for a minimizer involve the gra-
dientf’(x*) and the Hessian matrik”’(x*) of the cost function, see Theo-
rems 1.1, 1.2 and 1.5 in Frandsen et al (1999). In the next sections you will
see that the corresponding results for constrained optimization will involve
the gradient and the Hessian matrix (with respect)of the Lagrangian
function.

2.2. First Order Condition, Necessary Condition

First order conditions on local minimizers only consider first order partial
derivatives of the cost function and the constraint functions. With this re-
striction we can only formulate the necessary conditions; the sufficient con-
ditions also include second derivatives.

Our presentation follows Fletcher (1993), and we refer to this book for the
formal proofs, which are not always straight forward. The strategy is as
follows,

(1) Choose an arbitrary, feasible point.

(2) Determine a step which leads from this point to a neighbouring point,
which is feasible and has a lower cost value.

(3) Detect circumstances which make the above impossible.
(4) Prove that only the above circumstances can lead to failure in step (2).

First, we formulate, the so-called first ordé€arush—Kuhn—Tucker condi-
tions (KKT conditionsfor short):

2.2. First Order Condition 16

Theorem 2.5. First order necessary conditions. (KKT conditions)

Assume that
a) x*is alocal constrained minimizer gf(see definition 1.4).

b) either bl) all active constraints are linear,

or  b2)the gradients} = c¢/(x*) for all active
constraints are linearly independent.

Then there exist Lagrangian multipliefs\; }”" , (see definition 2.3)
such that

1° L/(x*,A") =0,
20 X >0, i=r+1,...,m,
3° Noe(x*)=0,i=1,...,m.

The formulation is very compact, and we therefore give some clarifying
remarks:

1°  This was exemplified in connection with (2.4).

2° Ay > 0 for all inequality constraints was exemplified in (2.2), and in
Appendix A we give a formal proof.

3° For an equality constraint (x*) =0, and\? can have any sign.
For an active inequality constraiat(x*) =0, andA} > 0.

For an inactive inequality constrainf(x*) >0, so we must have
Af =0, confirming the observation in Example 1.4, that these con-
straints have no influence on the constrained minimizer.

In analogy with unconstrained optimization we can introduce the following
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Corollary 2.6. Constrained stationary point

Xs IS feasible andxs, Ag) satisfy1°-3° in Theorem 2.5

0

Xg IS @ constrained stationary point

2.3. Second Order Conditions

The following example demonstrates that not only the curvature of the cost
function but also the curvatures of the constraint functions are involved in
the conditions for constrained minimizers.

Example 2.1. This example in R with one equality constrair(t- =m = 1) is due
to Fiacco and McCormick (1968). The cost function and constraint are

flx)= % ((ac1 — 1)2 +x§) , c1(x) = —x1 + B3 .

We consider this problem for three different values of the parantgteee Fig-
ure 2.7.

A

Figure 2.7:Contours off
and the constraint

—z1+Br3=0
for three values of.

2.3. Second Order Conditions 18

In all the casesxs = 0 is a constrained stationary point, see definition (2.6):
(¢, 2) = § (@1 = 1)* + 23) — X (~a1 + Bad)

Lo (x,\) = {“’1_1} - A{qu; L.(0,)) = {_10“} :

x2

Thus,(xs, As) = (0, 1) satisfy1°® in Theorem 2.5, ané°-3° are automatically
satisfied when the problem has equality constraints only.

Notice, thatf is strictly convexn R?.
For 8 =0 the feasible region is the,-axis. This together with the contours of

f(x) near origo tells us that we have a local, constrained minimiZes 0.

With 3= 1 the stationary poinks=0 is also a local, constrained minimizer,
x*=0. This can be seen by correlating the feasible parabola with the contours
of f aroundo.

Finally, for 3 =1 we get the rather surprizing result thai= 0 is a local, con-
strainedmaximizer. Inspecting the feasible parabola and the contours carefully,
you will discover that two local constrained minimizers have appeared around
x = [0.5, £0.7]". "

In Frandsen et al (2004) we derived the second order conditions for uncon-
strained minimizers. The derivation was based on the Taylor series (1.6) for
f(x*+h), and lead to conditions on the definiteness of the Hessian matrix
H,=f"(x,), wherex, is the unconstrained minimizer.

The above example indicates that we have to take into account also the cur-
vature of the active constrainta,’ = ¢/’ (x*) for i € A(x*).

The second order condition takes care of the situation where we move along
the edge of? from a stationary poink. Such a direction is calledfaasible
active direction

Definition 2.7. Feasible active direction. Let x€P. The nonzero
vectorh is afeasible active directioif

h'c/(x)=0
for all active constraints.
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Now we use the Taylor series to study the variation of the Lagrangian func- Theorem 2.11. Second order necessary condition.
tion. Suppose we are at a constrained stationary pgj@nd in the variation Assume that

we keep = As from Definition 2.6. Fromxs we move in a feasible active a) x* is alocal constrained minimizer fgf.
directionh, b) As b) in Theorem 2.5.

c) Allthe active constraints amrongly active

L(xst+h,As) = L(xs,As) + h'L/ (x5, A . ) o

(s o (1 ST S/)/ o(xs As) 5 Then there exists Lagrangian multipliefs; };" | (see Definition 2.3)

+3h Ly, (xs, A)h + O([|h|]) such that
= L(xs,As) + 3h' L, (x5, A)h + O(|h?) ,  (2.8) 1° Ly(x",A%) =0,

2° AN >0,i=r+1,...,m,
since(xs, As) satisfiesl® in Theorem 2.5. The fact thak is a constrained g 20 =T "
stationary point implies that als8® of Theorem 2.5 is satisfied, so that 3° A >0if ¢; isactivei=r+1,...,m,
L(xs, As) = f(xs). Sinceh is a feasible active direction, we obtain (again £ Ve (x*) = 0. ie1
using3° of Theorem 2.5), ic(x*)=0,i=1,...,m,

5° h'W+*h >0 for any feasible active directioh.

L(xsth,As) = f(xsth) = 37 A (xst-h) Here, W* = L, (x", \").
~ flxsth) = 07 A(ei(x0)+hT ¢ (x5))
= f(xs+h), (2.9) Theorem 2.12. Second order sufficient condition.
Assume that
and inserting this in (2.8) we get (for small valued|bf|) a) xsis alocal constrained stationary point (see Definition 2.6).
b) As b) in Theorem 2.5.
f(xs+h) ~ f(xs) + %hTWSh 7 (2.10a) c) As c) in Theorem 2.11. . . o
d) h"W*h > 0 for any feasible active directioh,
where the matridWs is given by whereW* =L/ (x*, A").
m Then
Ws = L” (xs,As) = £ (xs) — Z/\('S)C‘//(Xs) . (2.10b) Xs is a local constrained minimizer.
=1
For the proofs we refer to Fletcher (1993). There, you may also find a
This leads to the sufficient condition that the stationary peinis a local, treatment of the cases, where the gradients of the active constraints are not
constrained minimizer ih” Wsh > 0 for any feasible active directioh. linearly independent, and where some constraints are weakly active.

Since this condition is also necessary we can formulate the following two
second order conditions:
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Example 2.2. Continuing from Example 2.1 we find

" 10 0 0
o= ]2 0] -af0 8]

At the stationary poinks =0 we foundAs=1. Further, from Figure 2.7 and
Definition 2.7 we see thadi = [0 h2]" is the only feasible active direction, and
we get

h' L., (hs, As)h = (1 — 28)h3 .
This is positive ifg < % and Theorem 2.12 shows that in this case=-0 is a
local, constrained minimizer.

If 8> 1, thenh' L/, (hs, As)h < 0, contradictings® in Theorem 2.11; there-
fore xs= 0 cannot be a local, constrained minimizer whep- %

The limiting cases = % is not covered by the theorems. In order to investigate
it, higher order terms are needed in the Taylor expansiof.fat+h, As). =

Finally, we give the following theorem, whose proof can be found p 10 in
Madsen (1995):

Theorem 2.13. Third sufficient condition. Assume that

a) xsis alocal constrained stationary point (see Definition 2.6),
b) all active constraints are linear,

c) h"W*h > 0 for any feasible active directioh # 0.

Then
Xs IS a local constrained minimizer.

3. QUADRATIC OPTIMIZATION

We now start to introduce solution methods for different classes of opti-
mization problems with constraints. The fundamental class has linear cost
functions and also linear constraints. This class is cdiltegr optimization
problemsand is covered in Nielsen (1999).

The next class has a quadratic cost function and all the constraints are linear.
We call it

Definition 3.1. The quadratic optimization problem (QO).
Find

x* = argminp{q(x)},
where

q(x) = $x'Hx+g'x,

P = {xeR"|alx=10b;, i=1,...,r

alx>b;, i=r+l,...,m}.

The matrixH € R"*"™ and the vectorg, ay,...,a,, € R" are given. The
associated Lagrange function is

Lx,A) = x"THx+g'x - > N(ajx—b;), (3.2a)
=1
with the first and second order derivatives

L (x,A)=Hx+g-> Na;, LJ(xA\)=H. (3.2b)

=1

Throughout this chapter we have the assumptions
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Assumption 3.3. H is symmetric and positive definite.

(See Fletcher (1993) for methods for the cases where these simplifying as-
sumptions are not satisfied). Under Assumption 3.3 the problem is strictly
convex (Theorem 1.16). This ensures tiat) —-+oo when||x||—oo, irre-
spective of the direction. Thus we need not require the feasible région

be bounded. All the constraint functions are linear and this mBRkasvex.
Thus, in this case Theorem 1.17 leads to

Corollary 3.4. Under Assumption 3.3 the problem QO of Defini
tion 3.1 has a unique solution.

As in Chapter 2 we shall progress gradually with the different complications

of the methods, ending the chapter with a method for non-linear optimiza-
tion using iterations where each step solves a quadratic optimization prob-
lem, gradually approaching the properties of the non-linear cost function

and constraints.

Example 3.1. In Figure 3.1 you see the contours of a positive definite quadratic
in R%. If there are no constraints on the minimizer, we get the unconstrained

minimizer, indicated by, in the figure.
)

%

Figure 3.1:Contours
of a quadratic inR?
and its unconstrained
minimizerxy

1 [

The solution of the unconstrained quadratic optimization problem corre-
sponding to Definition 3.1 is found from the necessary condiif{x,) =0
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which is the following linear system of equations,
Hx,=-g. (3.5)

The solution is unique according to our assumptions.

3.1. Basic Quadratic Optimization

The basic quadratic optimization problem is the special case of Problem QO
(Definition 3.1) with only equality constraints, ie =r. We state it in the
form?)

Definition 3.6. Basic quadratic optimization problem (BQO)
Find

*

x" = argmin.p{q(x)},
where
¢(x) = ix'Hx+g'x, P={xeR"|ATx=b}.

The matrixA € R"*™ has the columng@\: ; = a; andb; is thejth
element inb € R™.

The solution can be found directly, namely by solving the linear system of
equations which express the necessary condition that the Lagrange function
L is stationary at the solution with respect to both of its vector variables
andA:

L/(x,A)=0: Hx+g—AXN=0,

3.7
Li(x,A)=0: ATx—-b=0. S
The first equation is the KKT condition, and the second expresses that the
constraints are satisfied at the solution. This linear system of equations has
the dimension(n+r)x(n+r), with » = m. Thus the solution requires
O((n+m)3) operations. We return to the solution of (3.7) in Section 3.3.

D In other presentations you may find the constraint equation formulatdckas b with
A = AT Hopefully this will not lead to confusion.
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3.2. General Quadratic Optimization

In the general case we have both equality constraints and inequality con-
straints in Problem 3.1, and we must use an iterative method to solve the
problem. If we knew which constraints are active at the solutibrwe
could set up a linear system like (3.7) and find the solution directly. Thus
the problem can be formulated as that of finding the activelget ).

We present a so-callegctive set methadEach iteratex is found via an
active set4 (corresponding to the constraints that should be satisfied with
“=", cf Definition 1.3). Ignoring the inactive constraints we consider the ba-
sic quadratic optimization problem with the equality constraints gived by

Definition 3.8. Current BQO problem (CBQO(.A))
Find
Xeq = argmir}cep{Q(X)} )
where
g(x) = 3x'Hx+g'x, P={xeR"'[ATx=Db}.

The matrixA € R"*? has the columna\: ; = a;, j€.Aandb€R?
has the corresponding valuestgf p is the number of elements iA.

We shall refer toCBQO(4) as a function (subprogram) that returns
(Xeq Aeg), the minimizer and the corresponding set of Lagrange multipli-
ers corresponding to the active sét Similar to the BQO they are found as
the solution to the following linear system of dimensiont-p) x (n+p):

Hx+g—-A\A=0,

ATx-b=0. (3:9)
In the iteration for solving Problem 3.1 all iterates are feasible. This means
that we have a feasible and an active setl at the beginning of each it-
eration. Now the CBQO (Definition 3.8) is solved. st violates some
constraint (ie some of the ignored inequality constraints), then the next it-
erate is that feasible point on the line frorto xeq which is closest toxeq,

and the new inequality constraint(s) becoming active is addet to
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If, on the other handxe, is feasible, then we are finished @€ = xeq)
provided that all Lagrange multipliers corresponding]taNre non-negative
(Theorem 2.13). If there is one or mokg < O for j €A (ie for active
inequality constraints), then one of the corresponding indices is dropped
from A before the next iteration.

Before formally defining the strategy in Algorithm 3.10 we illustrate it
through a simple example.

Example 3.2. We take a geometric view of a problem ir? Rvith 3 inequality
constraints. In Figure 3.2 we give the contours of the cost function and the
border lines for the inequalities. The infeasible side is hatched.

X

Figure 3.2:Contours of a quadratic optimization problemR?
with 3 inequality constraintsa) x > b;, i =1,2,3

The starting pointk = xg is feasible, and we defind = A(xo) = {1,2},
while the third constraint is inactive. The “pulling forchzq (=—q’(x0)) shows
that we should leave inequality no. 1. This corresponds to the fachthat 0.
Thus the next active seti$ = {2}. The solution to the the corresponding system
(2.13) isx = x3. This is feasible, but the “pulling force” tells us that we should
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loosen the only remaining constraint (corresponding4c< 0). Thus, the next
CBQO step will lead taxy, the unconstrained minimizer which is infeasible: It
satisfies constraints 1 and 2, but not 3. The next itesate, x» is found as the
intersection between the line frag to x, and the bordering line foa} x > bs.

Finally, a CBQO step fronx, with A = {3} givesx = x3. This is feasible and
by checking the contours of the cost function we see that we have come to the
solution,x™ = x3. Algebraically we see this from the fact thaf > 0. n

The strategy from this example is generalized in Algorithm 3.10.

Algorithm 3.10. General quadratic optimization

begin
X 1= Xq {1°}
A= A(x) {2°}
stop:= false
repeat

end

(Xeq» Aeg) := CBQO(A) cf Definition 3.8 and (3.9)
if xeqis infeasible

x := best feasible point on the line from to x.q {3°}
UpdateA {3°}
else

X 1= Xeq
L:={jeA| <0}
if £is empty

stop:= true {4°}
else

Remove an element af from A {5°}

until stop

We have the following remarks:

10

20

The initial pointxy must be feasible. How to find such a point is dis-
cussed in Section 3.3.

A holds the indices of current active constraints, cf Definition 1.3.
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3° The vectorxq satisfies the current active constraints, but some of the
inequality constraints that were ignoreids {r+1, ..., m} \.4A may be
violated atxeq. Let)V denote the set of indices of constraints violated
atxeq, V = {j € {r+1,...,m} | ajxeq < b;} . We shall choose the
best feasible point on the line betwee@ndxeg,

X=X+ t(Xeq— %), 0<t<1. (3.11a)

The value oft which makes constraint ng; active is given by
a;' x =b;, which is equivalent to

t; = (b; — a;'x)/a;" (Xeq—X) - (3.11b)

Sincex is feasible anckeq is optimal in CBQO, and since the objective
function is convex, the best feasible point on the line is the feasible
point closest toaxeq. This corresponds to

k =argmin.,, t; , (3.11¢)

The newx is found by (3.11a) witht = ¢, and the indeX is added to
A. If the minimum in (3.11c) is taken by several valuescdhen all of
these are added td.

4° Sincexeq is feasible and Lagrange multipliers corresponding to in-
equality constraints are nonnegativgq = x* solves the problem ac-
cording to Theorem 2.13.

5° If an active inequality constraint at the CBQO solution has a negative
Lagrange multiplier, then we can reduce the cost function by loosening
this constraint.

Finite termination. For each choiced of currently active constraints
CBQO has a unique minimizeteq. Each time an element df is removed
from A (see remark®) we havex = xqq and there is a strict decrease in
the objective function:g(xnew) < ¢(x). Since each new iterate satisfies
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q(xnew) < ¢(x) the strict decrease can only take place a finite number of
times because of the finite number of possible active.dets

Therefore we only drop a constraint a finite number of times, and thus cy-
cling cannot take place: The algorithm must stop after a finite number of
iterations.

3.3. Implementation Aspects

To start Algorithm 3.10 we need a feasible starting paint This is sim-
ple if m <n (the number of constraints is at most equal to the number of
unknown): We just solve

A'x=b, (3.12a)

with A € R"*™ having the columng;, i=1,...,m. If m <n, then this
system is underdetermined, and the solution has (at least) free param-
eters. For any choice of these the vectads feasible; all the constraints are
active.

If m > n, we cannot expect to find anwith all inequality constraints active.
Instead, we can use the formulation

A'x—s=b withs>0, (3.12b)

ands; =0 for the equality constraints. The problem of finding-athat sat-
isfies (3.12b) is similar to getting a feasible starting point for thersEX
method in Linear Optimization, see Section 4.4 in Nielsen (1999).

The most expensive part of the process is solution of the CBQO at each
iteration. The simplest approach would be to start from scratch for each
new A. Then the accumulated cost of the computations involved in the
solutions of (3.9) would b&((n+m)?) floating point operations per call of
CBQO. If constraint gradients are linearly independent then the number of
equality and active constraints cannot exceed n, and thus the work load is
O(n?) floating point operations per call of CBQO.

Considerable savings are possible when we note that eacA ngwabtained
from the previous either by deleting a column or by adding one or more new
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columns. First, we note that the matiik is used in all iteration steps. It
should be factorized once and for all, eg by Cholesky’s method, cf Appendix
A in Frandsen et al (2004),

H = CC',

whereC is lower triangular. This require@(n?) operations, and after this,
each H~'w” will then requireO(n?) operations.

The first equation in (3.9) can be reformulated to
x = H'(Ax—g), (3.13a)
and when we insert this in the second equation in (3.9), we get
(ATHTA)A = b+ ATH 1g. (3.13b)
Next, we can reformulate (3.13b) to
GA=b+A'd
with G = (C"'A)"(C7!A), d=H"'g.

This system is solved via the Cholesky factorization of glke matrix G

(p being the current number of active constraints). Wherhanges by
adding or deleting a column, it is possible to update this factorization in
O(n-p) operations, and the cost of each iteration step reduc@$:t6) op-
erations. For more details see pp 18-19 in Madsen (1995).

There are alternative methods for solving the system (3.9). Gill and Mur-
ray (1974) suggest to use ti@gR factorizatio® of the active constraint
matrix,

a-aly| e al|f] - e, (3.14)

whereQ is orthogonal an® is upper triangular. As indicated, we can split
Q into Qg € R™*? and Qy € R™*("~P), The orthogonality oiQ implies
that

2) see eg Chapter 2 in Madsen and Nielsen (2002) or Section 5.2 in Golub and Van
Loan (1996).
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QRQrR =T p)x(n—p) » QR QN = 0(1—p)xp » (3.15)
where the indices ohand0 are the dimensions of the matrix. The columns
of Q form an orthonormal basis of'Rand we can expressin the form

x = Qru + Qnv, uceRP, veR" P, (3.16)
Inserting (3.14) — (3.16) in the second equation of (3.9) we get

R'Q2(Qru+Qnv) = RTu = b.

This lower triangular system is solved by forward substitution. To find
(3.16) we multiply the first equation of (3.9) l§,; and get

QUH(Qru+ Quv) + Qg — QUQrRRA = 0,
and by use of the second identity in (3.15) this leads to

QuHQuv = —Qy (HQru +g) . (3.17)

The (n—p)x (n—p) matrix M = Q| HQy is symmetric and positive defi-
nite, and (3.17) can be solved via Cholesky factorizatioivbf Finally, A
can be computed from the first equation of (3.9):

QrAX = RA = Qi(Hx+g). (3.18)

We used (3.14) and (3.15) in the first reformulation, anslgiven by (3.16).
The system (3.18) is solved by back substitution.

There are efficient methods for updating the QR factorizatioA pfvhen

this matrix is changed because an index is added to or removed from the
active set, see eg Section 12.5 in Golub and van Loan (1996). This method
for solving the system (3.9) is advantageous i large,p > % n.

If the problem is large andparse ie most of the elements H and A are

zero, then both the above approaches tend to give matrices that are consid-
erably less sparse. In such cases it is recommended to solve (3.9) via the
so-calledaugmented system

% 2l --f8)
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Because of Assumption 3.3 the matrix is symmetric. It is not positive def-
inite, howeve?, but there are efficient methods for solving such systems,
where the sparsity is preserved better, without spoiling numerical stabil-
ity. It is also possible to handle the updating aspects efficiently; see eg
Duff (1993).

3.4. Sequential Quadratic Optimization

A number of efficient methods faron-linear optimizatiororiginate from
sequential quadratic optimizationThese methods are iterative methods
where each iteration step includes the solution of a general quadratic op-
timization problem.

First, we consider problems with equality constraints, only:
x* = argmin ., f(x) ,
P ={x€R" |c(x) =0} .

Here,c is the vector functior : R” — R", whoseith component is théh
constraint functior;.

(3.20)

The corresponding Lagrange’s function (Definition 2.3) is

L(x,A) = f(x) — A e(x) , (3.21a)
with the gradient
, LN ] f’(x)—JCTA}
Lo - [BEN] <[0T e
wherel.. is theJacobian matriof c,
61’ / /
o)y = 500 = Je=le{(0) - /)] . (3.210)
J

At a stationary pointks with correspondinghg we haveL’(xs, Ag) =0,
which includes that(x) = 0 (the constraints are satisfied) and

3 A necessary condition for a symmetric matrix to be positive definite is that all the diag-
onal elements are strictly positive.
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f'(x)—J.A=0,
which we recognize as a part of the KKT conditions (Theorem 2.5).

Thus we can reformulate problem (3.20) to a non-linear system of equa-
tions: Find(x*, A™) such that

L'(x,A)=0.
We can use Newton-Raphson’s method to solve this problem. In each itera-

tion step with current iteratex, A), we find the next iterate dx+h, A+n),
with the step determined by

V) ] = L),

whereL” is the total Hessian,
L7 — {L%m L%A} _ { W JCT]
L{, Ly, -J. 0
with
W =L/ (x,A) =f"(x) —>I_; \ic//(x) .

One Newton-Raphson step is
[ W —JJ} {h] _ {f’(x) —JCTA}
-J. 0 n —c(x) ’
x:=x+h; Ai=A+n,
an by elimination of; we obtain

[‘37 _fﬂ m - {f;@)] ’ (3.22)
x:=x+h.

What has this got to do with Quadratic Optimization? Quite a lot! Com-
pare (3.22) with (3.19). Since (3.19) gives the solutign\) to the CBQO,
(Definition 3.8), it follows that (3.22) gives the solutidnand the corre-
sponding Lagrange multiplier vectarto the following problem,

Find h = argmin, 5, {q(h)} (3.233)
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where
gh)=M"Wh+f'(x)' h

(3.23b)
Pin ={heR"|J:h+ c(x) =0}

Adding a constant tg makes no difference to the solution vector. If we
furthermore insert the value & then (3.23b) becomes
g(h) = $hTLY,(x, A\)h+ £'(x) h + f(x)

(3.23¢)
Pin = {he R" | J(h'f- C(X) = 0} .

By comparison with the Taylor expansions (1.6) and (1.7) we see that
if A = 0 theng(h) is a second order approximation fdx+h), and
J.h+c(x) is afirst order approximation &(x+h). In other words, (3.23)
represents a local QO (ie Quadratic Optimization) approximation to (3.20),
except for the fact thaf " (x) is replaced by, (x, A). However, using

L/, (x,A) provides faster convergence than using a quadratic approxima-
tion to f, which follows from this argument: It is shown above that solving
(3.23) and subsequently letting

x:=x+h

in the final stages of an iterative method for solving (3.20) corresponds to
applying the Newton-Raphson method to find a stationary point of the La-
grange functionl.. Under the usual regularity assumptions this provides
quadratic final convergence to the solution of (3.20). Udifigx) instead

of L”.(x,A) in the QO approximation would perturb the Newton-Raphson
matrix (except forx = 0, whereL.” (x,A) = £”(x)). Thus the quadratic
convergence would be prevented.

If the non-linear problem has both equality and inequality constraints,
x* = argminpf(x),
P ={x€R"|cj(x)=0, j=1,...,r (3.24)
cj(x) >0, j=r+1,...,m},

then we can still use (3.23) except that the feasible region has to be changed
accordingly. Thus the QO problem becomes
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Find h = argmin,.p, {q(h)}
g(h) = JhTL, (x, A h+£/(x) h + f(x) ,
Pin ={h€R" | ¢;(x) +¢/(x)"Th=0, j=1,...,7
¢j(x)+¢j(x)"Th >0, j=r+l,...,m}

(3.25)

In applications the demand for second derivatived(jfi(x, A)) can be an
obstacle, and we may have to use approximations to these. Another problem
with the method is that the quadratic model is good only for small values of
|Ih||. Therefore, when the currertis far away from the solution, it may be

a good idea to retain the direction bfbut reduce its length. In Section 4.2

we present a method whelg’ (x, A) is approximated by BFGS updating,
and where a line search is incorporated in order to make the convergence
robust also far from the solution.

Example 3.3. Consider the problem

fx) =zl +x5, P={x€R®|z] —x2—1=0} (3.26)
The cost function is a quadratic i but the constraint; (x) = 3 —22—1 is not
linear, so this is10t a quadratic optimization problem.
In Example 4.5 we solve this problem via a series of approximations of the form
f(x+8) ~q(8) = LW+ £'(x) 6 + f(x),
c(x+6) ~1(8) =ci(x) 6 + a1 (x) ,

1"

wheregq is the function of (3.23) wittL,, (x, A) replaced by an approximation
'W. This leads to the following subproblem,

Find h = argmir};e?,“n{q(é)}

3.27
Pin = {x€R?*|1(8) =0}. (3.27)

Let the first approximation for solving (3.26) correspondste-[1, 1]" and
‘W =1 Then
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q(8) =2+ 261 + 262 + 167 + 367
=1 +2°+1(02+2)7,
l(5)2—1+2(51—(52 .

The level curves of are concentric circles centereddat= [—2, —2]", and the
solutiond = h is the point, where one of these circles touches thel(ifig= 0,
see Figure 3.3a. The solutionhs= [ —0.8, —2.6]".

Using the line search to be described in Section 4.2 the next approximation is
x := x + ah = [0.620, —0.236]". This leads to the next quadratic approxima-
tion (3.27) with

cov [ 1239 [ 0943 —0.044
f(x)_{—o.472}’ W_[—0.044 2.014 |

1(8) = —0.380 + 1.2385; — b2

whereW is an updated approximation g, (x, A) (see Section 4.2). The con-
tours ofq are concentric ellipses centered-aW ' f’(x) = [—1.305, 0.206]"
(the unconstrained minimizer gf cf (3.5)).

Figure 3.3 shows the contours @f(full line) and f (dashed line) through the
points given byd =0 andd =h. In the second case we see that in the region
of interestq is a much better approximation gbthan in the first case. Notice
the difference in scaling and that each plot has the origin at the cutréittthe
pointx := x + ah ~ [0.702, —0.508]" we gete; (x) ~ 1.3-10~*. This value

is too small to be seen in Figure 3.3b.
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Figure 3.3:  Approximating quadratics and the constraint
Dotted line: f andc. Full line: ¢ andd

4. PENALTY AND SQO METHODS

There are several strategies on which to base methods for general con-
strained optimization. The first is callegquential linear optimizationin

each iteration step we solve a linear optimization problem where both cost

function and constraint functions are approximated linearly. This strategy

may be useful e.g. in large scale problems.

The next strategy isequential quadratic optimizatio(6Q0O). We intro-
duced this in Section 3.4, and in section 4.2 we shall complete the descrip-
tion, including features that make it practical and robust.

The third strategy could be calleskquential unconstrained optimization
(SUOQ). In each iteration step we solve an unconstrained optimization prob-
lem, with the cost function modified to induce or force the next iterate to be
feasible. The modification consists in addingemalty ternto the cost func-
tion. The penalty term is zero, if we are in the feasible region, and positive
if we are outside it. The following examples are due to Fletcher (1993).

Example 4.1. Find
argmin ., f(x), P ={xE€R’|ei(x) =0},
where

f(x) = —21 — 12, ci(x)=1—xf — 3.

It is easy to see, that the solutionk = %[1, 1" .
We penalize infeasible vectors by using the following function
plx,0) = (%) + 3o (a1 (x))”
whereo is a positive parameter. The penalty is zersiis in P, and positive
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otherwise. In the case= 0 we have an unconstrained and unbounded problem:
When the components of tend to infinity, f(x) tends to—oco. In Figure 4.1

we see the contours @f(x, 1), ¢(x, 10) ande(x, 100). Foro >0 we have a
minimizer x, and the figures indicate the desired convergence:— x* for

= N
N

oc=1 oc=10 o =100
Figure 4.1:Contours and minimizer ap(x, o)
x* andx, is marked by* and o, respectively

The figure indicates a very serious problem connected with SU@. As oo,

the valley aroundx, becomes longer and narrower making trouble for the
method used to find this unconstrained minimizer. Another way of expressing
this, is that the unconstrained problems become increasingly ill-conditiomed.

Example 4.2. Consider the same problem as before, except that ®ois an
inequality constraint: Find

argmin . f(x), P={x€R’|ci(x) >0},
where f andc; are given in Example 4.1. The feasible region is the interior of
the unit circle, and again the solutiors$ = %[1, 1]".

The penalty term should reflect that allfor which ¢;(x) > 0 are permissible,
and we can use

p(x,0) = f(x) + 30 (min{ex(x), 0})* , 020,

In Figure 4.2 we see the contours @fx, o) and their minimizers, for the
sameo-values as in Example 4.1.

All the x, are infeasible and seem to converge to the solution. We still have
the long narrow valleys and ill conditioned problems, wheis large. With in-
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oc=1 oc=10 o =100
Figure 4.2:Contours and minimizer op(x, o)
x* andx, is marked by* and o, respectively

equality constraints there is an extra difficulty with this penalty function: Inside
the feasible region the functiorfsandy have the same values and derivatives,
while this is not the case in the infeasible region. On the bordér @fhere the
solution is situated) there is a discontinuity in the second derivatiyg=fo),

and this disturbs line searches and descent directions which are based on inter-
polation, thus adding to the problems caused by the narrow valley. (]

It is characteristic for penalty methods, as indicated in the examples, that
(normally) all the iterates are infeasible with respect to (some of) the in-
equality constraints. Therefore they are also cadbetgrior point methods

In some cases the objective function is undefined in (part of) the infeasible
region. Then the use of exterior point methods becomes impossible. This
has lead to the class barrier methodghat force all the iterates to be feasi-
ble. To contrast them with penalty function methods they are caitedor

point methodgIPM).

The most widely used IPMs are based onlthgarithmic barrier function
We can illustrate it with a problem with one inequality constraint only,

x" =argminep f(x), P ={xER"|ci(x)>0}.
The corresponding barrier functiortis

(%, 1) = f(x) — p loger(x)

1w log” is the natural (or Naperian) logarithm.
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with the barrier parametery > 0. The logarithm is defined only fokx
strictly inside? (we confine ourselves to working with real numbers), and
sincelog ¢;(x) — —oo for ¢1(x)—0, we see that(x, ) — +oo for x
approaching the border @. However, wheru—0, the minimizerx,, of
»(x, 1) can approach a point at the border.

Methods based on barrier functions share some of the disadvantages of the
penalty function methods: As we approach the solution the intermediate
resultsx,, are minimizers situated at the bottom of valleys that are narrow,
ie x,, is the solution of an ill-conditioned (unconstrained) problem.

As indicated barrier methods are useful in problems where infeaside-

tors must not occur, but apart from this they may also be efficient in large
scale problems. In linear optimization a number of very efficient versions
have been developed during the 1990s, see eg Chapter 3 in Nielsen (1999).

We end this introduction by returning to the penalty functions used in Ex-
amples 4.1 and 44.2 and taking a look at the curvatures of the penalty func-
tion near the solutiox* andx,, the unconstrained minimizer gf(x, o).
Consider one inequality constraint as in Example 4.2, and assume that the
constraint isstrongly activeat the solutionf’(x*) £ 0. This shows that

PL(x",0) #0,
independent of, while the unconstrained minimizet, satisfies
pr(x5,0)=0.
Wheno—oo, x,—x*, but the difference in the gradients of(at x* and
X, ) remains constant, and thus the curvature goes to infinity. This dis-

crepancy is eliminated in the following method which was first introduced
by Powell (1969).

4.1. The Augmented Lagrangian Method

At first we consider the special case whemdy equality constraintsre
present:

P ={xeR"|c(x) =0},
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c being the vector function : R™ — R", whoseith component is théth
constraint functiorr;. At the end of this section we generalize the formula-
tion to include inequality constraints as well.

We have the following Lagrangian function (Definition 2.3),

L(x,A) = f(x) = ATe(x)
and introduce a penalty term as indicated at the beginning of this chapter.
Thus consider the followingugmented Lagrangian functién

p(x,X,0) = f(x) = Ae(x) + b0 c(x) c(x) . (4.1)

Notice that the discrepancy mentioned above has been relax&d=I\",
then the first order conditions in Corollary 2.6 and the fact tifat’) = 0
implies thatx* is a stationary point op:

P (xS A% 0)=0.
Furthermore, Fletcher has shown the existence of a finite nutéath
the property that itr > 7, thenx* is an unconstrained local minimizer of
o(x, A", o), ieif

Xa,o = argmin gn ©(x,A,0) , (4.2)
ther?)

Xy o =x" foral o>7. (4.3)

This means that the penalty parametatoes not have to go to infinity.

is sufficiently large and if we inseX™ (the vector of Lagrangian multipli-

ers at the solutiox*), then the unconstrained minimizer of the augmented
Lagrangian function solves the constrained problem. Thus the problem of
finding x* has been reduced — or rather changed — to that of findiing

We shall describe a method that uses the augmented Lagrangian function
to find the solution. The idea is to use the penalty term to get close to the

2) Remember that\" c(x) = 327 Aic;(x) and c(x) e¢(x) = 27, (¢i(x))2 .

3) In case of several local minimizers “argm)ipgn" is interpreted as the local uncon-
strained minimizer in the valley around".
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solutionx*, and then let the Lagrangian term provide the final convergence
by letting A approach\*. A rough sketch of the algorithm is

Choose initial values fok, o

repeat
Computex . (4.4)
UpdateX ando

until stopping criteria satisfied

The computation ok, . (for fixed A ando) is an unconstrained optimiza-
tion problem, which we deal with later. First, we concentrate on ideas for
updating(\, o) in such a way that stays limited and\—\*.

In the first iteration steps we ke@pconstant (ed\ = 0) and leto increase.
This should lead us close & as described for penalty methods at the start
of this chapter.

Next, we would like to keep fixed, o = o, , and vary\. Then

X) = argmin cgn ©(x, A, 05y )
and

P(A) = o(xx, A, 05y ) = Mingerr (X, A, gy )
are functions of\ alone. Assumey;, >a. Since
1° (A) is the minimal value ofy,
2°  the definition (4.1) combined wit(x*) = 0 shows that
p(x*, A, 0) = f(x*) forany (X, o),
3° (4.3) impliesx - = x*,

it follows that for anyA

PA) < p(x, A, 01y) = (x5, AT, o1y ) = (A7) (4.5)
Thus the Lagrangian multipliers at the solution i®eal maximizeffor ),
A" =argmax, () . (4.6)
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From the curreni we seek a step such that\+n ~ \*. In order to get a
guideline on how to choosg we look at the Taylor expansion far,

(A1) = YA) + 0" (A) + 30" " (A)n+ O(In])*)
= A —n'c—1n"Je (wl) " Iem+ O(Inll*),  (4.7)
wherec = c(x,), J. = J.(x,) is the Jacobian matrix defined in (3.21c), and
Pty = P (X2, A, 05, ). A proof of these expressions for the first and sec-

ond derivatives ofy can be found in Fletcher (1993). This expansion shows
that

n=—-aclxy), a>0

is a step in thesteepest ascent directiorAnother way to get this, and at
the same time providing a value for goes as follows: The vecter, is a
minimizer fory. Thereforep) (xx, A, o5, ) = 0, implying that

£/(xx) = Je(x2)[A — ogixe(x2)] = 0.
Combining this with the KKT condition (Theorem 2.5),
f/(x*) = J(x)A* =0,
and the assumption thag, ~ x*, we find

)\* ~\— O'ﬁXC(XA) . (48)

The right-hand side can be used for updathad-letcher (1993) shows that
under certain regularity assumptions (4.8) provides linear converjence
Faster convergence is obtained by applying Newton’s method to the nonlin-
ear problemy’(\) = 0,

A ~X+mn, where ¥"(AN)n=—-v¢'(A).

Notice, that this is equivalent to finding as a stationary point for the
quadratic model obtained by dropping the error t€nin||*) in (4.7). A
formula for+)” () is also given in (4.7). Inserting this we obtain

4) This means that in the limit we hayB\new — A*|| < K[|A — X*||, where
Anew = A — og, c(xx) and0 <k < 1.
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A*

12

A=) TN
= A= [T (o) T Telxa) - (4.9)

If the last expression of (4.9) is used for updathghen quadratic conver-

gence is obtained under certain regularity conditions, see Fletcher (1993).

Notice that if a Quasi-Newton method is used in the unconstrained opti-
mization for findingx, then an estimate of the inverse Hessfatf, )~! is
available.

Now we can present a specific example of an implementation of the algo-
rithm outlined in (4.4). The details of course could be chosen in many other
ways.

Algorithm 4.10. Augmented Lagrangian method
(Equality constraints only).
begin
k:=0; x:=x9; A:=Ag; 0:=o0g {1°}
Kprey := lle(x)]o {2°}
repeat
k:=k+1
X = argmin p(x, A, 0); K :=|c(X)]c {2°}
if (K < iKprev)
A := Updatéx, A, o) {3°}
Kprev =K
else
c: =100 {4°}
until K <eor k> knax
end

We have the following remarks:

1°  As mentioned earlier it is natural to start with the pure penalty method,
ie we letAg = 0. oo must be a positive number, one might eg start with
oo = 1. Xg is an initial estimate of the solution provided by the user.
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2° K is meant to measure, how well the constraints are satisfied, and is
used in the stopping criterion. A better measure (which can not be used
as long as\ = 0) is to takeK' = max; |\;¢;(x)].
x is the minimizer of an unconstrained optimization problem, to be
solved eg by one of the iterative methods given in Frandsen et al (2004).
We assume that it can exploit “warm starts” (since after the first few
iteration steps the new=x, , will be close to the previous one).

3° If K was reduced by 75% , thenis updated by means of (4.8) or (4.9).
Otherwise ...

4° ... we assume thatis too far fromx* and increase the penalty factor

ag.

Example 4.3. We illustrate Algorithm 4.10 with the following simple problem,
withn=2and r=m=1:
minimize f(x) = z? + 23
with the constraintc; (x) =0, ¢ (x) =2 —z2 — 1.
For hand calculation the following expressions are useful:
f/(x) = [21, 22217, Jo(x)=[221 -1],
ox, A o)=@i+23) A (-2 -1 +0- (a:% — T2 —1)2 ,
221 (1 = A+ o(z? —x2— 1))
202 + A — o027 —x2 — 1) } ’

201 (1-X\ — o(xa+1-32%)) —2011
—20x1 240 |

pilxA0) = |

ol (A 0) = [

We shall follow the iterations from the starting poirg =[1, 1]", Ao =0,
oo =2. We findere\,: |Cl (Xo) =1.

First step The augmented Lagrangian function is

Lp(x,)\70):(x%+x§)—0~(x§—wg—l)+l-(x%—x2—1)2 ,
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whose contours are shown below together with the minimizer,
x=[0, —0.5]".

Figure 4.3:Contours and minimizer op(x, 0, 2).
The constraint: (x) =0 is dashed

We get K = 0% 4 0.5 — 1| = 0.5 . Thus,K was reduced by less than 75 %
and therefore we enter thedse branch of Algorithm 4.10. The values for the
next iteration step ar& =0, o = 20.

Second stepThe augmented Lagrangian function is

©(x,0,20) = (27 +23) — 0 (z] —22 — 1) + 10 (27 — 22 — 1)2 :
There are two minimizers, and we assume that we find the minimizer with pos-
itive z1: x = [v/0.45, —0.50]", ¢1(x) = —0.05, thusK = 0.05. This makes
us enter théf  branch: we will update the Lagrange factor. The steepest ascent
method gives

A:i=0-20-(-0.05) =1,
and this is also the result from the Newton method. The details are left as an
exercise.

Third step
©(x,1,20) = (z7 +23) —1- (2§ —22— 1) +10- (m?—m—l)z ,

The minimizer isx = [1/0.5, —0.50]" ~ [0.70711, —0.50]" with K =0, so
the algorithm stops. It has found the exact solutibithe problemx™ = x, and
the corresponding Lagrangian multiplierd$ = 1, ie it is equal to the current
A-value. This exemplifies the comments on (4.3).

Below we give the contours of the augmented Lagrangian functions for steps two
and three.
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¢(x,0,20) ¢(x,1,20)
Figure 4.4:Contours and minimizers op(x,0,20) and
»(x, 1, 20), respectively.

The constraint; (x) =0 is dashed. .

We now turn to thegeneral casgwhere we have equality as well as inequal-
ity constraints,

4.1.1. An easy solution. A straight forward way to solve this problem
would be to use the method just described: Let a penalty method bring
us to the neighbourhood of a solution, and then simply consider the active

or near active constraints as equality constraints. Discard the rest of the
constraints (still keeping an eye on them, though, to observe whether they

remain inactive), and use one of the two methods for updating the vector of
Lagrange multipliers\.

The augmented Lagrangian function could be the following:
P(x, A, 0) = f(x) — )\Td(x) + %O’d(X)Td(X) ,
whered(x) is defined as follows
ci(x) ifie As(x),
L) { (x) it i€ As(x)

0 otherwise.
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Here, we have defined the approximate activesgix) by
As(x) = {1,...,7}uU{i| i>r and¢;(x)<d}, (4.11)

whered is a small positive number. Initially we could keep= 0 and
increaser until the approximate active set seems to have stabilized (eg by
being constant for two consecutive iterations). As long4ds) remains
constant we updata using (4.8) or (4.9) (discarding inactive constraints
and assuming that the active inequality constraints are numbered first). Oth-
erwise is set to0 ando is increased.

The algorithm might be outlined as follows:

Algorithm 4.12. Augmented Lagrangian method
(General problem, easy solution).

begin
A:=0; o:=o09
repeat
x 1= argmin.g(x, A, o)
if (stable active setl;(x))
A := Updatéx, A, o)

else
A=0; o:=10x%0
until sTop

end

Many alternatives for defining the active set could be considered. It might,
eg, depend on the values|of(x)|, i = 1, , ..., m. One disadvantage about
this type of definition is that a threshold value, like must be provided

by the user. This might be avoided by a technique like the one in Algo-
rithm 4.10 (and the following Algorithm 4.20).

4.1.2. A better solution. We change the inequality constraints £
r+1,...,m) into equality constraints by introducing so-callgldck vari-
ablesz;:
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Gri(x) >0 & {C””(X)_ng L i=1,...,m—r. (4.13)

Notice, that we have extended the number of variables, and still have in-
equality constraints. These are simple, however, and — as we shall see — the
slack variables can be eliminated.

Consider the augmented Lagrangian function corresponding to tepal-
ity constraints,

p(x,2,X,0) = f(x) =20 Nici(x) + 30 305 ci(x)?
- Ezir-i-l )‘i(ci(x) - Zi—r)
+%UZ?:T+1(C¢(X) - Zi—r)Q . (414)

For fixed X ando we wish to findx , andz, , that minimizey under the
constraintz , > 0. x, , minimizes the original problem provided thais
sufficiently large and is the vector of Lagrange multipliers at the solution.

At the minimizer & -,z ,,) €itherz; =0 (the constraint; > 0 is active) or

gw =0. Now, from (4.14) we see that
2

and equating this with zero we get_,. = ¢;(x) — % A; . Thus, the relevant
values for the slack variables are

zi—r = max{0, ¢;(x) — % Ait, di=r+l,...,m.
Inserting this in (4.14) will make disappear, and we obtain

p(x,X,0) = f(x) = ATd(x) + 3od(x)Td(x) (4.15a)
whered(x) hold the modified equality constraint functions given by

ci(x) if i<r orc(x)< LN
di(x) =1 | . o (4.15b)
~ i  otherwise

Thus, the augmented Lagrangian function for the generally constrained
problem is very similar to (4.1).
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Letting

P(A) = mingern ©(x, A, o7y ) = ©(Xa, A, 0y ) 5 (4.16)
the inequality (A) < (A™) corresponding to (4.5), can easily be shown
valid. ThusA* maximizesy sov’(A*) = 0.

Thesteepest asceiteration, corresponding to (4.8), is

Asa = A — oged(x)) - (4.17)
TheNewton iteratiorfor solvingty’ (A*) = 0, corresponding to (4.9), is

Anew = A+m, where " (AN)n=—-y'(\). (4.18)
Here the first and second order derivativeg cdre (see Fletcher (1993))

Y'(A) = —d(xy),

_ B (4.19)
v == |§ ] wih e =3I

In J we only consider the active constraints (first line in (4.15b)) and we
assume that these are numbered first. T®us ans by s matrix (wheres

is the number of active constraints), dnid the unit matrix in R* ™%,

Notice that if constraint numberis inactive at ,A) (last line in (4.15b))
then the value of); in (4.18) is—\;. Thus the i'th component oX,,.,, will

be0 which is consistent with remar¥ on Theorem 2.5.

The algorithm is given below. Essentially, it is identical with 4.10. We have
the following remarks:

1°  Asremarkl® to Algorithm 4.10.

2°  As remark2° to Algorithm 4.10, except fok: For active constraints
|d;(x)| is the deviation from;(x) to zero. For an inactive constraint,
|di(x)| = |\i/o| which becomes$) when X is updated. If this con-
straint is also inactive at the solution, th&h=0, see remarkd° on
Theorem 2.5; thus, also in this case the valiig is relevant for the
stopping criterion.
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Algorithm 4.20. Augmented Lagrangian method.
(General case).

begin
k:=0; x:=x0; A:=Ap; 0:=0p {1°}
Kprev:: [d(x)loo {2°}
repeat
k:=k+1
x = argminp(x, A, 0); K = [[d(x)]c {27}
if (K < iKprev)
:= Updatéx, A, o) {3°}
Kprey := Max(K, Kprey)
else
c:=10x0
until K <eork > knax
end

3° The updating ofA can be made by the steepest ascent formula
(4.17), which is efficient initially, or by Newton’s method (4.18),
which provides quadratic final convergence (under the usual regular-
ity conditions).

If a Quasi-Newton method is used to fisdat 3°, then an approximate

" (or (¢"")~1) is available and can be used in (4.19b). In this case we
do not obtain quadratic but superlinear convergence, which is almost as
good.

Algorithm 4.20 has proved to be robust and quite efficient in practice. Typ-
ically the solution is found after 3 — 10 runs through the repeat loop. In
Example 4.6 we report results of some test runs with the algorithm.
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4.2. The Lagrange-Newton Method

In Section 3.4 we formulated the problem of finding a local constrained
minimizer of f as a problem of finding a stationary point of the associated
Lagrangian function. Applying Newton’s method to this, we saw that each
step was equivalent to a quadratic optimization problem (QO). The next
Newton step gives rise to a new QO, and therefore the ndhaegange-
Newton method’and“sequential quadratic optimizationare more or less
synonymous. The shorter naf®QP” is also used because a quadratic
optimization problem is called‘@uadratic program” in older literature.

The ideas date back to the 1960s, but the first efficient implementations were
developed by Han (1976) and Powell (1977). Currently it is considered
as the most efficient method (except for problems with extremely simple
function evaluations (as all the problems in the examples of this booklet)).

We now complete the description of the method from Section 3.4 and in-
troduce features that improve the global performance of the method. This
includes soft line search with a special type of penalty function. We con-
clude the description with an update method for the Hessian matrix. This
actually makes the method a Quasi-Newton method see Chapter 5 in Frand-
sen et al (2004)) with good final (superlinear) convergence without having to
implement second derivatives, which would be needed with a true Newton’s
method (giving quadratic final convergence).

Summarizing (and slightly modifying) the description from Section 3.4, we
can state the SQP method in algorithmic form

Choosexy; x:=Xg

repeat
h := argmins_z q(9)
Find step parameter
X:=x+ ah

until stopping criteria satisfied

(4.21)

Hereq is a quadratic model of the cost function in the neighbourhoadl of

F(x+0) =~ q(8) = f(x) + 8" f'(x) + 16 W(x)9, (4.22a)
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and? is the feasible region

P={6€R"|d;(6) =0, i=1,...,r (4.22b)
di(8) >0, i=r+1,...,m},

corresponding to a linear model of the constraints
c(x+8) =~ d(d) = c(x) + J.(x)d , (4.22¢)

dc;
here(J.);; = —~, cf(3.21d).
where(J.);; axjc( )
We shall discuss the choice of the step parametar (4.21) and matrix
W (x) in (4.22a). First, however, let us consider the consequences of the

linearization (4.22c) of the constraint functions.

Example 4.4. We consider a problem in Rwith one inequality constraint
only, ¢i1(x) > 0. Figure 4.5 shows the border curve for the feasible region.

Figure 4.5:Border curve of
feasible regiong; (x) = 0.

The infeasible side is hatched X
1

We want to study the variation of the functien(x) around this border curve.
Figure 4.6a shows the surfage= ¢ (x), and in Figure 4.6b we have added the
tangent plane to this constraint surface at a point; (x)), wherec; (x) > 0.

The tangent plane corresponds to the linear approximation
c1(x+h) ~ k(x+h) = ¢1(x) + h' ¢ (x) .

We assume that; is strictly concave (so that the feasible region is convex, cf
Theorem 1.18). Then the tangent plane at any point is above the constraint
surface (except at the point of osculation), and a consequence is that the line
¥ (x+h) = 0 is completely outside the feasible region. This is illustrated in
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a

Figure 4.6:Variation of the constraint functioe; (x) near the border curve
c1(x) = 0 and the tangent plane at the poifit, ¢1 (x)), marked by a circle.

Figure 4.6b forx € P, and it is easily seen that alsaxfis infeasible ¢ (x) < 0),
then the liney(x+h) = 0 is completely outsidé®.

The properties described above are valid in general, except for cases, where the
concave function has a local maximizer betwaesnd the border curve. =

4.2.1. Choice of step lengtlax. The solutiorh to the quadratic optimization
problem in (4.21) satisfies all the linearized constraints, and, as shown in
the previous example, this may causeh to be infeasible with respect

to the true constraints. Also, i comes out too large, then the quadratic
model may be a poor approximation to the true variation of the cost function.
Therefore we make a line search similar to the soft line search described in
Section 2.5 of Frandsen et al (2004). The function considered in the line
search is a so-calle@xact penalty function®

m

m(y, 1) =f(y)+ZuiICi(X)l+ > psl minf0, ¢;(y)}|

(4.23

with g > |\ .

The penalty factors are chosenjas= || in the first iteration step, while

5) This penalty function is exact in the sense that the solutioof our problem minimizes
7 (y, p) for any p with o > 0.
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some conservatism is recommended in later steps,
pi = max{|A], 5(pi + [Ni])}- (4.24)
This is specially important for constraints that are active in one iteration step
and inactive in the next.
Powell has shown that the function
(o) = w(x+ah, p) fora >0, handy fixed,

hasm’(0) <0, so that a line search can lead to a peiftech, which is “bet-
ter” in terms of this measure. Also, even for moderate penalty, the minimizer
is exactly feasible.

The disadvantage of an exact penalty function is that it is not differentiable;
m(«) has kinks at the points where a constraifiikk+ah) passes the value
of zero; see Figure 4.7 below.

We also need a piecewise linear approximation (@),
m(a) = (a) = f(x) + ah'f'(x)
+ 222y kalei(x) + ahlef(x)]
+ 22y il min{0, ¢;(x) + ah’e{(x)}]
An example ofr(«) andy(«) is shown in Figure 4.7. Notice that(«) is
convex, and it also has kinks, situated differently from the kinks.of

y y =1(0) + 0.1Aa

I a
Figure 4.7:Line search functionr(«)
and its linear approximation)(«)

Similar to a “normal” soft line search, we accept a valueno$uch that
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the point(a, 7(«)) is below the dashed line indicated in Figure 4.7. The
slope of this line is 10% of the slope of the chord betwé@n)(0)) and

(1,4(1)), ie
A =y(1) —4(0)

=h"f'(x ZM|C¢

In this expression we have used the fact thélt) = h' f’(x) since the other
terms are zero foh € P. Note thath is downhill for f, and therefore\ is
guaranteed to be negative.

m

Z pi| min{0, ¢;(x)}|.  (4.25)

1=r+1

In each step of the line search algorithm we use a second order polynomial
P(t) to approximater(t) on the interval0, «]. The coefficients are deter-
mined so tha??(0) =7 (0), P'(0) = A, P(a) =n(«),
t2
P(t) =n(0) + At + (w(a) — 7(0) — Aa)?
If the coefficient tot? is positive, then this polynomial has a minimizgr
determined by’ () =0, or
—Aa?
2(m(a) — m(0) — Aa)

8= (4.26)

Now we can formulate the line search algorithm:

Algorithm 4.27. Penalty Line Search.

begin
a:=1; ComputeA by (4.25)
while 7(a) > 7(0) + 0.1A«
Computes by (4.26)
a := min{0.9«, max{g3, 0.1a} }

end

The expression for the new ensures that the algorithm does not get stuck
at the current value and, on the other hand, does not go to zero too fast. The
algorithm has been validated by experience.
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4.2.2. Choice ofW in (4.22). By comparison with the Taylor expansion
(1.6) an obvious choice 8V (x)=f"(x). However, the goal is to find a
minimizer for the Lagrangian functioh(x, A), and the description in Sec-
tion 3.4 shows that a more appropriate choice is

W(x) = L) .(x,A) = f"(x Z)\ ¢/ (x

We know from Theorem 2.11 that at the SO|utI(O{T, A¥) the Hessian ma-

trix satisfiesh' L, (x*, A*)h > 0 for all feasible directions. This does not
imply thatL)’ (x*, A*) is positive definite, but contributes to the theoretical
motivation for the following strategy that has proven successful: Start with
a positive definitdW (xq), egW (x¢) =1I. In each iteration step updaW/

so that it is positive definite, thus giving a well-defined descent direction.
The use of an updating strategy has the further benefit that we do not have
to supply second derivatives of the cost functjoand the constraint func-
tions{c;}.

A good updating strategy is the BFGS method discussed in Section 5.10 of
Frandsen et al (2004). Given the currdit= W (x) and the next iterate
xpew=X+ah. The change in the gradient of Lagrange’s function (with
respect tx) is

y = L (Xnew A) — L (x, A)
= £/ (xnew) — £/(x) = (Je(xnew) = Jo(x))" A (4.282)
We check the so-callecurvature condition
Y (Xnew—X) > 0. (4.28b)

If this is satisfied, theW is “positive definite with respect to the step di-
rectionh”, and so isW e, found by the BFGS formula,

1 1
Wiew= W + oh' yyy _HuuTi

where u= Wh .

(4.28¢)

If the curvature condition is not satisfied, then weWt,eyy=W.
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4.2.3. Stopping criterion. We use the following measure for the goodness
of the approximate solution obtainedsas= xyrey + oh,

n(x,A) = |q(ah) — f(x)]
+> Ailei(x)[+ Y [min{0, ¢;(x)} . (4.29)

i€B ieJ

As in Chapter 35 is the set of equality and active inequality constraints,
and.7 is the set of inactive inequality constraints. The first term measures
the quality of the approximating quadratic (4.22a) and the other terms mea-
sure how well the constraints are satisfied.

4.2.4. Summary. The algorithm can be summarized as follows. The pa-
rameterg andk,,.x must be set by the user.

Algorithm 4.30. Lagrange — Newton Method.

begin
x:=x9; W:=Wqy wu:=0; k:=0
repeat
k= k+1
Find (h, A) by Algorithm 3.10
Updatew by (4.24)

Find . by Algorithm 4.27
Xprev:=X; X:=X+ah
UpdateW by (4.28)
until n(x,A) <eork > kmnax
end

Example 4.5. We shall use the algorithm on the same problem as in Example 4.3,
minimize f(x) = z? + 23
with the constraintc; (x) =0, ci(x) =2 —z2 — 1,

and with the same starting pointy = [1, 1 }T. Further, we choos&V, =1.

4.2. Lagrange-Newton Method 60

We shall need the following expressions

2&71

£/(x) = {2@}, Je(x)=[201 —1],
q(0) = f(x) + 2(x101 + z202) + (w1151 + 2w126162 + w2252)
dl((S) = Cl( ) + 22101 — 02 .

The first model problem is
minimize ¢(8) = 2 4 26, + 282 + 0.567 + 0.567
subjectto di(d) = —1+25, —d2=0.

This was discussed in Example 3.3, where we found the mininlizes
[-0.8, —2.6}T. The corresponding Lagrange multiplieris= 0.6, and this
is also used as the first value for the penalty paramet€&igure 4.8 shows

m(a) = (1—.8a)° + (1-2.60)* 4 .6|(1—.82)> — (1—2.60) — 1| .

y

Figure 4.8:Penalty functionr ()
and linear approximation)(a).

The linear approximation is

Y(a)=2+a[—-38 —2.6}[2}+6|71+a 2.6
=2—-68a+.6/—1+al =26—-74a for0<a<
We see that\ = —7.4 and
(1) =2.984 > 2.6+ .1A-1=1.86.

2]
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We need to reduce, and use (4.26) to firfel

. 7.4
2(2.984 — 2.6 + 7.4)

m(a) = 0.667740 < 2.6 + .1Aa ~ 2.248 .

Thus, the line search is finished, and the next iterate is
Xnew = X + och = [0.619733, —0.235868]" .

To updateW we use (4.28) and find

B { —0.304214

=0475334 = a

0.943 —0.044

—0.044  2.014

The error estimate computed by (4.29)ix, A\) = 0.23, and the true errdtis
||Xnew — X*”oo = 0.26.

The second model problem is

minimize  ¢(d) = 0.440 4 1.23961 — 0.47202
+0.47162 — 0.0446, 82 + 1.0075%

subjectto di(d) = —0.380 + 1.23961 — d2 = 0.
According to Example 3.3 the solution is

(h,A) = ([0.0705507 ~0.202618]", 1.064025) :
and the penalty function with = A shows thatx = 1. We get

Xnew = [0.690283, —0.528487]"

N(Xnew, A) =~ 0.094 , ||Xnew — X" ||oo >~ 0.028 ,

0.908 0.250]

Wiew = {0.250 2.060

The results from the next iteration steps are

6) The computation in this example was performed with machine accuefaey 5-10~ 4,
but results are shown with at most 6 digits.

7) According to Example 4.3* = [1/0.5, —0.5].
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X, Ak Nk, Ak) | [k = x"[oo

[0.701733, —0.507702] | 1.011291 | 7.0-10~* 7.7-1077
[0.707111, —0.500023] | 1.000498 | 5.9-107° 2.3-107°
[0.707107, —0.500000] | 0.999990 | 8.2-107*° | 4.6.1078

Ot~ W] =

If we usee =102 in Algorithm 4.30, we are finished. The errors
{llxx — x"||oo } exhibit superlinear convergence. u

Example 4.6. In the table below we give some test results from Powell (1977). The

size of each problem is given in the first two columns. The next column gives the
number of elements iB(x*) and the number in parenthesis tells, how many of
these that are linear. The last two columns give the number of iterations and the
number of function calls needed to solve the problem to a desired accuracy of
10~5. For comparison we also give (in parenthesis) the corresponding numbers
for the augmented Lagrangian algorithm 4.20.

n | m | #B(x*) | Iterations| Fct. calls
31711 |5 @] 7 (30
51313 (0 6 (B)| 7 (37
5115 4 4] 4 @] 6 (39
50160 5 3] 2 (B)| 3 (64
1512011 (3) |16 (3)|17 (149)

Each function call involves one evaluation ffx) andf’(x).

For these examples the Lagrange—Newton method is clearly superior when the
number of function evaluations is used as a measure. However, the work load per
function evaluation may be much higher for the Lagrange—Newton method since
it involves many QP problems. This is especially important when the number of
variables and/or constraints is high.

In conclusion, we recommend the Lagrange-Newton method (SQP) when func-
tion evaluations are expensive, and the Augmented Lagrangian method when
function evaluations are cheap and we have many variables and constraints.
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APPENDIX

A. Karush—Kuhn—-Tucker Theorem

We shall prove propert2° in Theorem 2.5. Without loss of generality we
assume that the active inequality constraints are numbered first:
Equality constraints ¢;(x) =0, i =1,...,r
Active inequality constraints ¢;(x) =0, i = r+1,...,p
Inactive constraints ¢;(x) > 0, i = p+1,...,m.

The comments 08° in the theorem and the definition of the Lagrange func-
tion imply that1° has the form

p
f'(x)=> Na; with a; = c/(x). (A1)
=1

We shall prove that if one (or more) of tt{e\i}ip:r“ is negative, thex is
not a local, constrained minimizer:

For the sake of simplicity, assume that the gradigats,” , are linearly
independent and that, <0. Then we can decomposg, into v, its or-
thogonal projection on the subspace spannedd;}f;ll andh, which is
orthogonal to this subspace,

a,=v+h with a'h=0for i=1,...,p—1.
For small values ofjah|| we use the Taylor series (1.7) for the constraint
functions to see that
0 fori=1,...,p—1

¢;(x+ah) ~ ¢;(x)+ah’a; =
( ) () { ah™h for i=p

APPENDIX 64

This shows, that forv > 0 and sufficiently smallkk+ah is feasible. Further,
from the Taylor series (1.6) for the cost function and (A.1) we get

f(x+ah) ~ f(x)+ah'f'(x)

(2) + oh” (S0, Aa)

(z) +aAr,h™h |

showing thatf (x+ah) < f(x) for a > 0, since), < 0.

= f
=/

Thus, we have shown that at a local, constrained minimizer all the Lagrange
multipliers for inequality constraints are nonnegative. O



65

[EY

REFERENCES

REFERENCES

. C.G. Broyden (1967Quasi—Newton methods and their Application to
Function MinimizationMath. Comps.21, 368—-381.

. O. Caprani, K. Madsen and H.B. Nielsen (2002jerval Analysis
IMM, DTU. Available ashttp://www.imm.dtu.dk/courses/02611/IA.pdf

. I.S. Duff (1993):The Solution of Augmented Systems
Report RAL-93-084, Rutherford Appleton Laboratory.

. A.V. Fiarco and G.P. McCormick (1968)onlinear Programming
Wiley.

5. R. Fletcher (1993)Practical Methods of OptimizatigiWiley.
6. P.E. Frandsen, K. Jonasson, H.B. Nielsen and O. Tingleff (2004):

Unconstrained OptimizatignMM, DTU. Available as
http://www.imm.dtu.dk/courses/02611/uncon.pdf

. P.E. Gill and W. Murray (1974)Newton type methods for Linearly
Constrained Optimizatiom P.E. Gill and W. Murray (eds): “Numeri-
cal Methods for Constrained Optimization”, Academic Press.

. G. Golub and C.F. Van Loan (199@tatrix Computations3rd edition.
John Hopkins Press.

. S.P. Han (1976):Superlinearly Convergent Variable Metric Algo-
rithms for General Nonlinear Programming ProblenMath. Progrl1,
263-282.

REFERENCES 66

10.

11.

12.

13.

14,

15.

G.H. Kuhn and A.W. Tucker (1951)Nonlinear Programmingin
J. Neyman (ed) “Procedings of tB&4 Berkeley Symposion on Mathe-
matical Statistics and Probability”, pp 481-493, University of Califor-

nia Press.
K. Madsen (1995)0ptimering under bibetingels€m Danish),

IMM, DTU.

K. Madsen and H.B. Nielsen (2008upplementary Notes for

02611 Optimization and Data FittingMM, DTU. Available as
http://www.imm.dtu.dk/courses/02611/SN.pdf

H.B. Nielsen (1999)Algorithms for Linear OptimizationMM, DTU.
Available ashttp://www.imm.dtu.dk/courses/02611/ALO.pdf

M.J.D. Powell (1969)A Method for Nonlinear Constraints in Minimi-
zation Problemsin R. Fletcher (ed): "Optimization”, Academic Press.
M.J.D. Powell (1977)A Fast Algorithm for Nonlinearly Constrained
Optimization Calculationsin “Numerical Analysis, Dundee 1977”,
Lecture Notes in Mathemati&30, Springer.



67

active constraint, 2, 6
—set, 2, 18, 25, 31, 59

augmented Lagrange function, 42, 46

— — method, 45, 52, 62
—system, 31

back substitution, 31
basic QO, 24
BFGS updating, 35, 58

Capranietal, 3
CBQO, 25, 29
Cholesky factorization, 30
computational cost, 29
concave function, 8, 55
constrained minimizer, 3

— stationary point, 13, 17
constraint surface, 54
contours, 23, 26, 36f, 39, 47
convex function, 8, 28

—set, 7,10
cost function, 1, 15, 35, 38, 53
current BQO, 25
curvature condition, 58

descent condition, 6
— direction, 6, 58
Duff, 32

equality constraint, 1, 9, 12, 45
exact penalty function, 55
exterior point method, 40

INDEX

INDEX

factorization, 30
feasible active direction, 18

— descent direction, 13

—region, 1, 5, 10, 26, 34, 54

— starting point, 29
Fiacco, 17
Fletcher, 15, 20, 23, 38, 44, 51
forward substitution, 31
Frandsen et al, 6, 15, 18, 30,

46, 53, 55, 58

general quadratic optimization, 27
Gill, 30

Golub, 30f

gradient, 4, 14, 32, 58

Han, 53
Hessian matrix, 4, 15, 33, 58

ill-conditioned, 39

inactive constraint, 2, 59
inequality constraint, 1, 26, 39
interior point methods, 40
interval analysis, 3

Jacobian matrix, 32, 44, 46

Karush, 15, 63

kink, 56

KKT conditions, 15, 24, 33, 44
Kuhn, 15, 63

INDEX

Lagrange’s function, 14, 22,
32,42, 46, 53, 58
— multiplier, 14, 16, 20, 27, 60, 64
Lagrange-Newton method, 53, 62
level curves, 23, 26, 36f, 39, 47
line search, 55, 57, 61
linear constraint, 9
— convergence, 44
—model, 54
— optimization, 3, 29
logarithmic barrier function, 40

Madsen, 21, 30
McCormick, 17
model, 53f

— problem, 60
Murray, 30

necessary condition, 16, 20
Newton, 33, 44, 51ff, 59
Nielsen, 3, 29f, 41

objective function, 1, 15
orthogonal matrix, 30
orthonormal basis of R 31

penalty function, 55, 60

— line search, 57

— method, 43
positive definite, 9, 23, 32, 58
Powell, 41, 53, 56, 62
projection, 63

QO0, 22,34

QR factorization, 30

guadratic convergence, 34, 52, 53
— model, 53
— optimization, 3, 22

68

— program, 53
Quasi-Newton method, 45, 52f

Raphson, 33
robust convergence, 35

sequential linear optimization, 38
— quadratic optimization, 38, 53

SIMPLEX, 29

slack variables, 49

soft line search, 56

sparse matrix, 31

SQO, 38

SQP, 53, 59, 62

stationary point, 32

steepest ascent, 44, 51
—descent, 6, 11

strongly active, 13, 20, 41

sufficient condition, 9, 20f

SUO, 38

superlinear convergence, 52f, 62

Taylor expansion, 4, 6, 11,
34,44, 58, 63
total Hessian, 33
triangular matrix, 30
Tucker, 15, 63

unconstrained minimizer, 2, 13,

23f, 42
underdetermined system, 29
updating, 30ff, 35, 58, 61

Van Loan, 30f
violated constraint, 28

warm start, 46
weakly active constraint, 13, 20



