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Abstract. 

Canny (1986) suggested that an optimal edge detector should maximize both signal-to-noise ratio and 
localization, and he derived mathematical expressions for these criteria. Based on these criteria, he claimed that 
the optimal step edge detector was similar to a derivative of a gaussian. However, Canny’s work suffers from 
two problems. First, his derivation of localization criterion is incorrect. Here we provide a more acurate 
localization criterion and derive the optimal detector from it. Second, and more seriously, the Canny criteria 
yield an infinitely wide optimal edge detector. The width of the optimal detector can however be limited by 
considering the effect of the neighbouring edges in the image. If we do so, we find that the optimal step edge 
detector, according to the Canny criteria, is the derivative of an ISEF filter, proposed by Shen and Castan 
(1992).  

In addition, if we also consider detecting blurred (or non-sharp) gaussian edges of different widths, we find that 
the optimal blurred-edge detector is the above optimal step edge detector convolved with a gaussian. This 
implies that edge detection must be performed at multiple scales to cover all the blur widths in the image. We 
derive a simple scale selection procedure for edge detection, and demonstrate it in one and two dimensions.  

 

 

 

 

 

 

Note: This is a slightly improved version of the published article. A number of minor errors and clumsy 
expressions crept into that paper, as a result of the limited time given to authors by Springer (although they 
apparently give unlimited time to the reviewers). 
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1. Introduction  

Edges are projections of physical processes, such as changes of reflectance at object 
boundaries, or a changes of illumination. They are informative cues to the three dimensional 
structure of the world and, because of this, edge detection is a vital first step in many vision 
systems. Many edge detectors have been developed (see Peli and Malah (1982), Ziou and 
Tabbone (1998)), often from informal or ad hoc arguments. Canny (1986), in an influential 
paper, suggested that edge detectors should optimize two specific performance criteria. First, 
the edge detector should have a good signal-to-noise ratio, so that edges can be detected even 
when image quality is poor. Second, edge detectors should accurately localize the edges, to 
support subsequent visual processes that need a high degree of positional accuracy. Canny 
suggested that the optimal edge detector maximizes the product of signal-to-noise and 
localization. He also found it necessary to constrain the smoothness of the edge detector. The 
resulting constrained optimal filter was similar to a derivative of a gaussian.  
 

Unfortunately, Canny’s development of optimal edge detectors contains two significant 
problems. The first, lesser, problem is that Canny did not provide the correct expression for 
localization  (Tagare and deFigueiredo, 1990, Koplowitz and Greco, 1994). Here we provide 
a more accurate expression for edge localization. This new measure includes the filter 
smoothness, which explains why Canny found it necessary to constrain this. The second, 
bigger, problem is that the Canny criteria imply that the optimal edge detector is infinitely 
wide.  This renders the edge detector useless, because it will pick up an infinite amount of 
interference from other edges in the image. To solve this problem, we need to include the 
effects of the other edges on filter performance. This can be done by modelling the other 
edges in the image as a Brown noise stochastic process.  
 

When we do this, we find that the optimal edge detector is a derivative of an ISEF filter 
(Shen and Castan, 1992). In addition to providing the correct optimal edge detector for step 
edges, we also generalize the edge detection task to include detecting blurred edges of any 
width. When the noise in the image is low, the resultant algorithm is similar to a scheme 
proposed by Lindeberg (1998), but its optimality properties were not previously known. This 
optimal edge detection scheme is demonstrated in two dimensions.  

2. Canny’s Optimal Edge Detector. 

We begin by summarising Canny’s (1986) approach to edge detection. Consider a linear filter 
f(x) designed to detect an isolated step edge g(x), located at x=0, in white noise n(x). The filter 
response )(xh is given by  
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where hg(x) and hn(x) are the filter responses to edge and noise respectively. Edges are 
marked by peaks in the filter response h(x). The edge is detected by a peak in the filter 
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reponse, and in the absence of noise, hg(0) is the sole peak. The filter is zero outside the 
interval [-r, r].  
 

The signal to noise ratio of the filter is its response to the edge hg(0)  divided by the r.m.s. 
response to noise 2/12])0([ nhE , which is 
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where n0 is the r.m.s. amplitude of the noise.  
 

In noise, the peak response hg(x) will occur at some point xmax, different from zero. Ideally, 
however, the peak location should be close to 0. Canny defined the localization of the edge 
detector to be the reciprocal of the standard deviation of xmax about zero, namely 2/12

max ][ −xE . 
Near the true edge location, the filter response can be approximated by a Taylor expansion: 
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Since )0(gh  is a maximum, the derivative )0(gh′  is zero. Taking the derivative of Equation 
(3) with respect to x and substituting xmax gives 

))0()0(()0()( maxmax ngn hhxhxh ′′+′′+′=′   (4) 

Since )( maxxh  is a maximum, the derivative )( maxxh′  is zero. Solving Equation (4) for xmax 
gives  
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where both )0(nh′  and )0(nh ′′  are uncorrelated  zero-mean gaussian random variables when 
the noise is gaussian (Koplowitz and Greco, 1994). 
 

Canny assumed )0(nh ′′  =01,  so Equation (5) simplifies to 222
max )0(/])0([][ gn hhExE ′′′= , and 

the localization is then 
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The subscript C in )( fLC  indicates that this is Canny’s expression for localization.  
 

                                                 

1 To be precise, Canny’s assumption was that 22
max )]0([])([ nn hExhE ′≈′ , which is only guaranteed when 

0)( ≈′′ xhn . 
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Both )( fSNR  and )( fLC  are proportional to the ratio of edge amplitude A to noise 
amplitude n0. To obtain performance criteria that depend only on the filter, Canny defined Σ 
and ΛC as 

)()(   and   ),()(
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Both  Σ and ΛC  can be optimized simultaneously by finding a filter f which optimizes their 
product, 

)()()( fffOpt CΛΣ=   (8) 

Unfortunately, the optimizing filter produces multiple noise peaks in the vicinity of the edge, 
making it hard to decide which of the peaks is the edge.  
 

To lessen this problem, Canny constrained the average distance between the noise peaks to be 
greater than some fraction of the filter width. The average distance between noise peaks is 
proportional to 
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The quantity )( fZ is a measure of filter smoothness. The filter which maximized the product 
)( fOpt  subject to a constraint on )( fZ  was similar to a gaussian derivative (Canny 1986).  

3. Two Problems with Canny’s Edge Detector. 

It has been previously noticed  that Canny’s localization measure )( fLC  is incorrect (Tagare 
and deFigueiredo, 1990,  Koplowitz and Greco, 1994). In section 3.1 below we derive a more 
correct localization criterion, which incorporates the smoothness functional )( fZ  when the 
edge amplitude is small. This means it is no longer necessary to impose a constraint on )( fZ  
to get a good edge detection filter.  
 

It has not however been previously noticed that the optimal filter, according to Canny’s 
criteria, must be infinitely wide. In section 3.2, we show why this occurs. An infinitely wide 
filter is useless for edge detection in real images. In section 4, we suggest a solution to the 
infinite width problem, which leads us to a different form of optimal edge detector than that 
proposed by Canny. 

3.1 Canny’s Localization is Incorrect. 

Tagare and deFigueiredo (1990) and Koplowitz and Greco (1994) have noted that Canny’s 
assumption that )0(nh ′′ =0 is most likely wrong. By defining standardized normal random 
variables 2/12 ])0([/)0( nn hEhX ′′=  and 2/12 ])0([/)0( nn hEhY ′′′′= , Equation (5) can be written 
as 
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X and Y are uncorrelated if the noise n(x) is white gaussian noise. Note that 

)()(])0([/)0( 2/12 fZfLhEh Cng =′′′′   (11) 

so Equation (10) can be written as 
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For brevity, we will write Ω  for the product )()( fZfLC . The edge detector localization L(f) 
is then 
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This is Canny’s localization )( fLC  divided by the standard deviation of a ratio of normal 
random variables, ( ) 2/12 ])/([ YXE +ΩΩ . Unfortunately this ratio has an undefined first 
moment and infinite higher moments (Marsaglia 1965, Hinkley 1969), which makes the 
localization )( fL  zero. Apparently, then, it is impossible to localize a step edge! However, 
the infinite moments of the ratio )/( YX +ΩΩ  are due to a subset of events where the 
denominator )( Y+Ω  is close to zero (Marsaglia, 2006). These events most likely occur when 
the edge couldn’t be detected at all (because of noise), rather than being detected infinitely far 
from its true location.  
 

If we avoid these events by conditioning on a nonzero denominator, ε>+Ω || Y  for small ε, 
then the moments of the ratio )/( YX +ΩΩ  do exist  (Marsaglia, 2006). The first moment is 
zero. There is however no closed form for the second moment, but it can be estimated by 
Monte Carlo methods. Figure 1 shows Monte-Carlo estimates of ( ) 2/12 ])/([ −+ΩΩ YXE  
plotted as a function of Ω. A good approximation to these estimates is  
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This approximation is also plotted in Figure 1. 
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Figure 1. Monte Carlo estimates of 

( ) 2/12 ])/([ −+ΩΩ YXE  as a function of 

the parameter Ω. One Monte Carlo run 
consisted of 10,000 samples of the ratio 

)/( YX +ΩΩ  at a particular value of Ω , 

from which  ( ) 2/12 ])/([ −+ΩΩ YXE  is 

calculated. The circles are medians of 1000 

such runs at the same value of Ω. Medians 
were used to discount extreme values of the 

ratio )/( YX +ΩΩ . The number of 

samples is sufficient that repeated runs 
produce almost no change in the plotted 
estimates. The curve shows the 
approximation given by Equation (14). 

 
 
 

Substituting Equation (14) into Equation (13), and expanding the abbreviation Ω  gives  
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We can, as before, define an optimality measure in terms of )( fΣ  and )( fCΛ  as 
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Unlike Canny’s criterion, this still involves the edge-to-noise ratio 0/ nA  and the functional 
)( fZ . A set of optimal detectors for different 0/ nA  ratios is shown in Figure 2. Note that 

these are unconstrained optima; it is no longer necessary to impose a constraint on filter 
smoothness )( fZ . These are very similar to detectors derived by Canny for different 
constraints on )( fZ . 
 

The choice of optimal detector depends on the ratio 0/ nA , but we do not know what this is in 
advance. We can derive a compromise filter, which works reasonably well at all ratios, and 
Canny’s choice was a filter rather similar to the one for 0/ nA =1.33 in Figure 2. However, we 
will not commit to a choice here, as there is a more serious problem with Canny’s edge 
detector. 
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Figure 2. Optimal edge detectors for different edge to noise ratios 0/ nA . The topmost filter is the best for very 

low noise; the influence of the functional Z(f) here is minor. It is not a matched filter but is smoothed at either 

end because of the need to minimize the derivative at the boundary. The filters for high noise levels (bottom 

filter) begin to look like the low noise filters again, because performance at low noise levels is not much 

dependent on Z(f) either. 

 

3.2. The Optimal Edge Detector is Infinitely Wide. 

The width of the edge detection filter has so far been set at some arbitrary value r. It would be 
useful to have an optimality argument for choosing the best filter width;  indeed, without it, it 
is hard to claim that the filter at any particular width r is optimal. Canny (1986) argued that 
the signal-to-noise ratio )( fΣ  increases with filter width while the localization )( fCΛ  
decreases so that the product )()( ff CΛΣ  is constant. Thus all widths are equally good, and 
some other consideration must be used to select the appropriate width. However, the 
reduction in filter localization as width increases is a consequence of Canny’s constraint on 
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the filter smoothness )( fZ . He forced wider filters to be smoother than narrow filters, and 
this made localization poorer in the wider filters. When this constraint on filter smoothness is 
removed – as it can be thanks to the new formulation for localization given by Equation (15) 
– we find that wide optimal filters are as good as narrow ones for localization. 
 

Consider the filter in Figure 3(a). This can be widened to improve the signal to noise ratio 
while keeping localization constant. One way of doing this is by first locating nonzero peaks 
or plateaus in the filter (shown by circles in Figure 3(a)) and then stretching them out (Figure 
3(b)). Such peaks must always exist because the filter is odd, and is zero at the endpoints and 
the centre. The localization )( fLC of the stretched filter is unchanged because the added 
points all have a derivative )(xf ′  of zero, so they do not change the integrals in )( fLC . 
Equally, the introduction of points where )(xf ′  =0 does not change the numerator of )( fZ  
in Equation (9). The second derivative )(xf ′′  is unchanged except at the endpoints of the 
stretch (where it actually decreases), so the denominator of )( fZ  is likewise unaffected. 
Hence the localization )( fL  of the filter is unchanged because )( fLC  and )( fZ  are 
unchanged.  
 

)( fSNR is improved by this stretching process, intuitively because the stretched filter looks 
more like a step edge. Consider the stretched filter in Figure 3(b). For simplicity, let n0 = 1 
and g(x)=1 or -1. Let the maximum value of the filter itself be fmax, and let y be the total 
length of the plateau after stretching. The SNR for the stretched filter is  
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If stretching the filter increases the SNR, then the derivative of 2)( fSNR  with respect to y 
should be positive at y=0. The derivative is 
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and it will be positive when 
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∫>
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The fraction on the right hand side attains a maximum when )(xf  is a constant, say α, and it 
then has the value 1/α. However, if α=)(xf  then α=maxf , so the maximum value of the 
right hand side of the inequality is 1. We conclude that the derivative of SNR with respect to y 
is positive, and stretching the filter improves SNR. 
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Figure 3. This shows how a filter can be altered 

to improve SNR while keeping localization LC 

and smoothness, Z, constant. The upper filter is 

the original (narrow) filter. The peaks in the 

filter are identified by circles. These peaks are 

stretched out to form plateaus in (b). These 

plateaus do not affect localization and they 

increase signal-to-noise. 

 

 

Since the stretched filter has increased )( fSNR and unchanged )( fL , it has increased 
)( fOpt , from which it follows that the optimum filter must be infinitely wide2. This 

undesirable outcome is a consequence of the simplified edge model used so far. Canny’s edge 
detection filter is optimized to detect an isolated edge in white noise, and under those 
conditions, the optimum filter is indeed infinitely wide, because there are no other edges that 
might interfere with detection. In real images, though, an infinitely wide filter will integrate 
over infinitely many edges, and will obviously be useless at detecting any one edge in 
particular. The only principled way to solve this infinite-width problem is to change the edge 
model to account for neighbouring edges. We do this in the next section. 
 

4 Optimal Edge Detection in The Presence of Other E dges. 

In real applications we are interested in detecting one edge in the presence of many other 
edges. A wide edge detector will have better signal-to-noise ratio for a single edge, but will 
be more likely to overlap other edges than a narrow detector. If a filter overlaps other edges, 
they will interfere unpredictably with the detection of the edge we are interested in. In this 
respect the other edges behave like noise, and they can be modelled as a stochastic process.  
Images typically have a 2/1 ω  power spectrum, where ω  is the spatial frequency (Burton and 
Moorhead, 1987, Field 1987) which make them similar to Brown noise, albeit with a more 
interesting phase spectrum (Tadmor and Tolhurst, 1993). Given that the phase spectrum is 
unlikely to affect how the other edges interfere with detection of the edge we’re interested in, 

                                                 
2 This is different from the infinite filters of Deriche (1987)  or Sarkar and Boyer (1991),which have a finite 
second moment.  
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it is sufficient for our purposes to model the other edges as simple Brown noise. This Brown 
noise will be what limits the width of the edge detector.  

4.1 The Optimal Detector in Brown Noise. 

Suppose the Brown noise in the image has a power spectrum 22 /ωC . This is added to the 
white noise, with power spectrum 20n , to give a total noise power spectrum of 2

0
22 / nC +ω . 

With brown noise, the expressions for SNR, LC and Z are easier to handle in the Fourier 
domain. Corresponding to Equations (2), (6), and (9), these are: 
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Here, )(ωF  is the Fourier transform of the filter )(xf , and ωω /)( iAG −=  is the Fourier 
transform of  the step edge )(xg  with amplitude A. These expressions follow from Parseval’s 
theorem and the derivative theorem (Bracewell, 1986).  
 
Let )(ωW  be the filter with Fourier transform 

)()(
22

0
2

ωω
ω

ωω Bi
nC

i
W =

+
=   (21) 

which is the derivative operator ωi multiplied by a 1st-order Butterworth filter 
2/122

0
2 )()( −+= ωω nCB . This filter whitens the noise, because  1)/(|)(| 2

0
222 =+ nCW ωω . 

The edge detector )(ωF  can be factored into a product of the whitening filter )(ωW  and a 
post-whitening detector )(ωK , 

 )()()( ωωω KWF = .   (22) 

where )(ωK  is the Fourier transform of some filter )(xk . Since 0)0( =W , this factorization 
requires that 0)0( =F , which is satisfied since )(xf  is an odd filter. By substituting the 
product )()( ωω KW  for )(ωF , we can rewrite Equations (20) very simply in terms of the 
post-whitening detector )(ωK  as  
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where 22
0

2/)()()( ωωωω nCAGWGW +== is the Fourier transform of a whitened step 
edge, )(xgW . The optimality criterion for the post-whitening detector )(ωK  is thus  
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where as before  )()( KAKSNR Σ=  and )()( KAKL CC Λ= . Here we explicitly note the 
functional dependence of the optimality criterion on the edge amplitude A by writing it as 

),( AKOpt . Note that after whitening the noise amplitude is 1, so it can be dropped from 
Equation (24). However, the noise amplitude implicitly affects the shape and height of 

)(ωWG , and thus of )(KΣ  and )(KCΛ . 
 

The optimal detection filter )(ωK  maximizes ),( AKOpt . In addition, we have to require the 
spatial version of the filter )(xk  to be non-negative. This is because the whitened edge 

)(xgW  is entirely positive or entirely negative depending on the sign of the edge amplitude 
A3. If )(xk  has negative lobes, it would be impossible to determine whether a positive peak in 
the filter output was due to the overlap between a positive edge )(xgW and the positive centre 
of )(xk , or to a negative edge  )(xgW− which lines up with a negative part of )(xk . This 
constraint is necessary because without it the optimal detector )(xk does have wide negative 
regions at some values of edge amplitude A. 
 

When the edge amplitude A is large, ),( AKOpt  simplifies to )()( KK CΛΣ , and is maximized 
by the matched filter )()( ωω WGK =  (Canny, 1986). In this case, the edge detector )(ωF  is  

22
0

2
)()()(

ω
ωωωω
nC

i
GWF W +

==   (21) 

which, up to a multiplicative constant, corresponds to the spatial filter 

|)|)/(exp()()( 0 xnCxsignxf −=   (22) 

The width of the filter varies according to the ratio of white noise to brown noise. In the 
extreme case of C=0, the filter is an infinitely wide step edge, which is consistent with the 
infinitely wide filter found  in section 3.2. The other extreme, as n0 tends to zero, yields a 
derivative operator. 
 

The filter in equation (22) is identical to one previously suggested by Shen and Castan 
(1992). It is the derivative of an infinite symmetric exponential filter (ISEF), so we will refer 
to it as a DISEF filter. Shen and Castan (1992) derived the DISEF filter using an isolated 
edge model, like Canny, but used different, albeit related, optimality criteria. They also 
considered the problem of multiple edges, but they modelled the edges in an image by a 
random telegraph-signal (RTS), which switches randomly between two values. Under the 
RTS model, Shen and Castan derived the scale factor in the exponential of equation (22) as 

2
0

22 /4 nC+λ , where λ is the switching density, rather than 0/ nC . Shen (1995) further 
considers a sum-of-RTS’s edge model, more similar to the Brown noise model used here, but 
                                                 

3 The whitened edge )(xgW  is, to within a multiplicative constant, |)(|0 xAK , where )(xK n  is the 

modified Bessel function of the second kind of order n. If A is positive, 0)( >xgW  for all x. 
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this yields a complicated edge detection scheme. Despite these differences of detail, there is a 
remarkable convergence of results between the Canny approach used here and Shen and 
Castan’s edge detector. 

4.2 A Compromise Edge Detector. 

The DISEF filter of Equation (22) is only optimal for large edge amplitudes A. When A is 
smaller, the optimal post-whitening detector )(ωK  is not matched to the whitened edge. 
Figure 4 shows some examples of optimal post-whitening detectors in the spatial domain, 

)(xk , and their corresponding edge detectors )(xf , for different values of A. These result 
from numerical optimization of the spatial domain version of equation (24). The dependence 
of the detectors on the unknown amplitude A means it is impossible to find an edge detector 
which is universally optimal. We can nonetheless propose a compromise filter, which works 
reasonably well at all amplitudes A. A common characteristic of the detectors in Figure 4 is 
that they are all wider than the matched filter obtained when ∞=A . A good compromise 
edge detector might therefore be obtained by simply widening, or blurring, the matched filter 
slightly.  
 
 

 
 

Figure 4: (a) Plot of some optimal post-whitening detectors )(xk , for various values of edge amplitude A, 

given C=1 and n0=0.8. The thick lined profile is the matched detector. The wider detectors are for intermediate 

values of A. The plots are 30 pixels wide. (b) Plot of corresponding edge detectors )(xf , which are whitened 

versions of the detectors )(xk . The thick-lined edge detector is the DISEF filter (Equation 22) which 

corresponds to the matched post-whitening detector in (a). 

 

We need to define what we mean by a good compromise. Let AK  be the detector which 
maximizes ),( AKOpt  at some edge amplitude A. The matched detector (Equation 22) is ∞K . 
We wish to find a compromise detector K

)
 which is good in a minimax sense compared to all 

the optimal detectors AK . That is, we wish to find a detector K
)

 which minimizes the 
maximum loss 

{ }),(/),(sup AKOptAKOpt A
A

)
  (23) 
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In addition, we want to limit the loss for the compromise detector at high edge contrasts, 
namely ),(/),( ∞∞∞ KOptKOpt

)
, to a “reasonable” value, so that the compromise detector 

does not throw away too much performance when the edge has high contrast.  Finally, we 
would like the compromise filter to be mathematically simple. We restrict ourselves to filters 
K
)

 produced by convolving the matched filter ∞K  with a simple nonnegative smoothing 
function; a gaussian smoother was found to produce good results. Thus our compromise 
detector is given by 

22
0

22

2

/))(exp(

))(exp()(),(

ωωσ

ωσωσω

nC

KK

+−=

−= ∞

)

 (24) 

where σ is the smoothing parameter. The choice of compromise filter thus boils down to the 
choice of σ. 
 

Figure 5 compares the performance of a compromise filter to the optimal filter performance. 
Here, the noise parameters are set to C=1 and 0n =0.05 (for the top set of curves) or 0n =0.8 
(for the lower set of curves). The crosses show the performance of the matched filter, given 
by ),( AKOpt ∞ , for various values of A. The thick solid lines show ),( AKOpt A . Each point 
in this curve gives the performance of a different optimal filter AK . The thin line shows the 
performance of a compromise filter ),( AKOpt

)
. This filter is given by smoothing the matched 

filter for that 0/ nC  ratio by a small 3-point gaussian equal to [ 0.2221    0.5557    0.2221 ] ≅  
[2/9, 

5/9, 
2/9] . The optimal detector is no more than 85% better than this compromise detector, 

and the matched filter is no more than 40% better than it, while the compromise filter often 
greatly exceeds the matched filter’s performance. 
 
 
 

 
 

Figure 5. Performance of edge detectors at 

different noise levels. The brown noise was set to 

C=1. White noise density 0n was either 0.05 (top 

curves) or 0.8 (bottom curves). In each group of 

curves, the thick solid line shows the 

performance of the optimal detectors at different 

values of the ratio A. The crosses show the 

performance of the matched post-whitening filter 

∞K . The matched filter suffers a substantial loss 

of performance for some values of A. The thin 

line shows the performance of the best 

compromise filter, which is the matched filter 

convolved with a three-point gaussian. 
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To summarize, the best compromise edge detection algorithm in one dimension is as follows: 
 
Algorithm 1: 

1) Estimate C and 0n from the image, or use sensible presets. 

2) Convolve the image with a 3 point gaussian [2/9, 
5/9, 

2/9]  
3) Convolve the resultant blurred image with the DISEF filter 

|)|)/(exp()()( 0 xnCxsignxf −= .  

4) Positive-valued peaks or negative-valued troughs in the output of this filter represent 
edges, if they are strong enough. 

 

This edge detection scheme can be easily extended to two dimensions (although the 
optimality properties of this extension are unknown). To develop the 2D scheme, we can 
write the optimal 1D edge detector as a series of filters 

)}()}{()({

)()()(

3 ωωωω
ωωω

BiGB

WKF

=
=

 

where in the second line we have factored the whitening filter )(ωW  into the derivative ωi
and a Butterworth smoothing filter )(ωB , and the optimal post-whitening filter )(ωK  is 
factored into the product of a Butterworth filter (which is matched to the whitened edge) and 
the three point gaussian )(3 ωG . We can rearrange this to give 

)()()( 3
2 ωωωω GBiF =  

where 2)(ωB  is the ISEF filter. To extend the algorithm to two dimensions, we replace 
2)(ωB  and )(3 ωG  with their two-dimensional counterparts, and replace the derivative with 

the directional derivative. This yields the following algorithm: 
 
Algorithm 2: 

1) Estimate C and 0n from the image, or use sensible presets. 

2) Convolve the image rows, then the columns, with a 3 point gaussian  
[2/9, 

5/9, 
2/9]  

3) Convolve the resultant blurred image with the circularly symmetric ISEF filter 

))/(exp( 22
0 yxnC +− .  

4) Compute the directional derivatives in all directions. These can easily be computed 
from the direction derivatives along the rows and columns. 

5) Peaks in the output of this filter across space and derivative direction represent edges, 
if they are strong enough. It is usually necessary to use a hysteresis algorithm (Canny, 
1986) to sort these peaks into coherent edges. 

 

The performance of this algorithm is shown in Figure 7, middle panel. One can see that in the 
absence of significant noise, it appears to perform well. However, shadow edges are poorly 
represented.  



15 

5. Detecting Blurred Edges. 
Many edges are not step edges. Generally, softer or blurred edges are caused by defocus, self-
shadowing of a curved surface, or by shadow penumbrae (see e.g. Elder and Zucker 1998, 
Elder 1999). These various kinds of blurred edge can be modelled as a step edge blurred with 
a gaussian function,  

),(*)(),( σσ xgaussxgxg =   (25) 

where 222 2/))2/(exp(),( πσσσ xxgauss −=  is a unit gaussian distribution with width σ.  
A step edge is the limiting case of zero blur, i.e. g(x,0).  

5.1 The Optimal Detector for Blurred Edges 

Introducing blurred edges changes the expressions for )(KSNR  and )(KLC  in Equation (23) 
to the following: 

∫∫

∫∫
=

=

ωωωωωσωωω

ωωωωσωω

dKdKGaussGKL

dKdKGaussGKSNR

WC

W

222

2

|)(|)()},()({)(

|)(|)()},()({)(
 (26) 

Here ),( σωGauss  is the Fourier transform of ),( σxgauss  in Equation (25), and  
)},()({ σωω GaussGW  is the Fourier transform of the whitened gaussian edge. The product of 

)(KSNR  and )(KLC  is, as before, maximized by the matched filter 
),()(),( σωωσω GaussGK W= . Hence the optimal edge detector for a gaussian edge of width 

σ, ),( σωF ,  is given by 

),()()(),(
22

0
2

σω
ω

ωωωσω Gauss
nC

i
GWF W +

==   (27) 

which is just a blurred DISEF filter. The optimal spatial filter is then 

),(*|)|)/(exp()(),( 0 σσ xgaussxnCxsignxf −=   (28) 

where * denotes convolution. 
 

Each edge detector ),( σxf  is optimized for a particular edge blur, but will respond to edges 
with other blurs as well. How can we select the appropriate blur detector for the edge, given 
that we don’t know in advance what the blur is? When we restrict ourselves to  matched 
detectors, this problem is easily solved. Let ),( σxk be the spatial version of ),( σωK above, 
and let ),( σxh  be the detector output obtained by convolving ),( σxk  with the whitened 
signal. The detector output ),( σxh  forms a scale space representation of the input signal 
(Witkin, 1983). If we normalize the detector ),( σxk  so that 1),( 2

∫ =dxxk σ , then its 
expected response at any point is identical to the signal to noise ratio, )(kSNR . Hence a peak 
in the scale space ),( σxh is a local maximum of )(kSNR . This will also be a local maximum 
of )(kLC , since SNR and LC are maximized by the same matched filter (Canny, 1986).  The 
peak in the scale space ),( σxh  is therefore a local maximum of the product )()( kLkSNR C  
and identifies the locally optimal detector.  
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Figure 6. The top image shows an example of a signal with three gaussian edges, with widths of 1, 3 and 8 from 

left to right. One thousand such images were generated, with different noise samples, and the blurred-edge 

detection algorithm run on them. Each image was then convolved with a DISEF filter and gaussian blurs of 

different sizes to yield a scale space map h(x,σ). Strong peaks in the scale space indicate edges. The bottom 

image shows all the edges found in 1000 runs of the algorithm, given C=0.5 and n0=0.2. Most of the time, the 

edge is located within a few pixels of its true location, but identification of the blur is less accurate. In particular, 

there is a tendency to detect the edge at a finer scale than it really is. If we look at the example image, however, 

we can see that sometimes the added noise does make the edge (particularly the far right one) appear sharper 

than it is. Incidentally, in equivalent conditions human observers also seem to have this problem (May & 

Georgeson, 2007).  

 

The performance of this model in visualized in Figure 6. The top panel shows an example 
noisy edge.  The bottom panel shows all the local maxima (after thresholding to remove 
noise) accumulated over 1000 runs of the optimal scale-space edge detector described above, 
each with a different noise sample but the same set of edges. The position of the edges is 
fairly well estimated, but the blur less so.  
 

The matched scale-space detector described above takes on an interesting form when the 
white noise n0 is zero. In this case, the whitening operator is a simple derivative, and the 
whitened edge )(xgW  is an impulse function. The matched post-whitening detector is 

),(*)(),( σσ xgaussxgxk W= , which is simply ),( σxgauss . The norm of this is 

∫ = )2/(1),( 2 σπσ dxxgauss , hence ),(2),( 2/14/1 σσπσ xgaussxk =  is a normalized post-
whitening filter. Since whitening is simply a derivative operation, this means that the blurred 
edge detector is, to within a constant scaling, just 

),(),( 2/1 σσσ xgauss
dx

d
xf =   (30) 
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This is identical to Lindeberg’s (1998) edge detection scheme (also suggested for human 
edge perception by Georgeson et al. 2007), so these proposals can both be understood as 
optimal blurred edge detectors for minimal amounts of white noise.  

5.2 Two Dimensions 

As with step edges, the blurred edge detector can be extended to a 2D algorithm, in a similar 
way. The optimal one-dimensional detector ),( σωF for an edge of blur σ is given by 

2)(),(

)}()}{(),({

)(),(),(

ωσωω
ωωωσωλ

ωσωσω

BGaussi

BiBGauss

WKF

=
=
=

 

where ( ) 2/12|),(|
−

∫= ωσωλ dK is the normalization factor for the filter. For simplicity, the 
three-point gaussian used to make a compromise filter has been left out here. To extend this 
to two dimensions, we simply replace 2)(ωB  and ),( σωGauss  with their two-dimensional 
counterparts, and replace the derivative with the directional derivative. The appropriate 
normalization factor is trickier. At first sight it would seem  reasonable to use 

( ) 2/1

21
2

21 |),,(|
−

∫= ωωσωωλ ddK , where  1ω  and  2ω  are the row and column frequencies. 
However, this does not work well at all. The normalization is only appropriate along the 
direction of the derivative, since that is the only direction in which the post-whitening 
detector K  can be expected to  match the edge. Because of this, the appropriate normalization 
is one dimensional, 

2/1

2

2

1212 ),,(
−







= ∫ ∫ ωωσωωλ ddKD  

That is, we integrate along one dimension parallel to the edge, then square and integrate 
along the other dimension perpendicular to the edge4. This leads to Algorithm 3, for 2D 
blurred edge detection. 
 
Algorithm 3: 

1) Estimate C and 0n from the image, or use sensible presets. 

2) Convolve the image with the circularly symmetric ISEF filter ))/(exp( 22
0 yxnC +−

.  

3) For each scale σ, 
a. convolve the image with a two-dimensional gaussian ),,( σyxgauss . The 

convolution is then scaled by the normalization factor λ given above. 

b. Compute the directional derivatives in all directions θ. These can easily be 
computed from the direction derivatives along the rows and columns. 

                                                 
4 I’m not 100% sure this is the correct normalization, as it would depend on the model for the image in the 
vicinity of an edge.  
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4) Local peaks in the output of this filter across space (x,y), derivative direction θ, and 

scale σ, represent edges, if they are strong enough. It is necessary to use a hysteresis 
algorithm (Canny, 1986) to sort these peaks into coherent edges. 

 

The performance of this algorithm on a relatively noise free image is shown in Figure 7, right 
hand panel. Compared to the middle panel (Algorithm 2), which only detects step edges, we 
can see that Algorithm 3 correctly picks up the shadow edges. However, its performance in 
some other parts of the image is not as clean as the step edge algorithm. 
 
One useful feature of this edge detection model is its ability to cope with noise when the 
parameters of the whitening filter, C and 0n , are estimated from the image. This is shown in 
Figure 8. As the white noise increases, the smoothing provided by the Butterworth filter also 
increases. 
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Figure 8. The grey scale image in Figure 7, with added noise. The result of running Algorithm 3 on it is shown 

on the right panel. Visually, the noise has eliminated much of the detail in the image, but most of what remains 

is detected by the algorithm, and most of the noise can be rejected. 

6. Conclusion. 

Canny’s (1986) paper was a significant contribution to the methodology of edge detection. 
Prior to it, the actual performance criteria for edge detectors were rarely stated explicitly. 
After it, it is more or less impossible to propose an edge detector without reference to the 
Canny criteria. After such a major methodological advance, the issue of what an optimal edge 
detector actually looks like is perhaps less vital, although since we must use them, it is 
important to get it right. When we do so, we find that the optimal step edge detector is not 
similar to a derivative of a gaussian filter, but is instead the derivative of an exponential filter 
(DISEF) proposed by Shen and Castan (1992). In addition, once we have solved the optimal 
detector for step edges, it is relatively easy to extend to the task of detecting edges of 
different blurs. One remaining problem with the optimal detector proposed here is 
localization: the very complex localization criterion means that no one filter can be optimal at 
all edge contrasts.  
 

The ISEF filter is optimal when the noise has a power spectrum of the form 2
0

2 nC + . 
However, this sometimes is not the true form of the noise. For example, if the imaging device 
has poor optical quality (such as a cheap webcam, a CCTV camera, or the human eye), the 
optical blur will change the slope of the Brown noise. In this case, the whitening filter will 
change, and one must replace the ISEF filter with something else; namely, a filter with power 
spectrum 2|)(|)( ωω WK = , where the whitening filter )(ωW  changes with the image 
statistics. Thus the algorithms in this paper can be altered to adapt to image statistics. A 
procedure like this is potentially behind adaptation effects in human vision (e.g. Wainwright, 
1999, Webster & Georgeson, 2002). 
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Finally, the optimality of the edge detectors here was only shown for the 1D case. While the 
2D algorithms perform well, it is still an open problem what criteria should be used to 
develop optimal 2D detectors.  
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