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Abstract.

Canny (1986) suggested that an optimal edge detesttould maximize both signal-to-noise ratio and
localization, and he derived mathematical expressfor these criteria. Based on these criteriagliened that
the optimal step edge detector was similar to évadtve of a gaussian. However, Canny’s work suffisEom
two problems. First, his derivation of localizati@niterion is incorrect. Here we provide a more ratel
localization criterion and derive the optimal détedrom it. Second, and more seriously, the Cagoriteria
yield an infinitely wide optimal edge detector. TiMdth of the optimal detector can however be ladity
considering the effect of the neighbouring edgetheimage. If we do so, we find that the optimalpsedge
detector, according to the Canny criteria, is tleeivdtive of an ISEF filter, proposed by Shen arabta@n
(1992).

In addition, if we also consider detecting blur(ed non-sharp) gaussian edges of different widtresfind that
the optimal blurred-edge detector is the abovenugtistep edge detector convolved with a gaussiais T
implies that edge detection must be performed dtipiel scales to cover all the blur widths in tmeaige. We
derive a simple scale selection procedure for eldggection, and demonstrate it in one and two dimess

Note: This is a slightly improved version of the pubésharticle. A number of minor errors and clumsy
expressions crept into that paper, as a resulteofitnited time given to authors by Springer (althb they
apparently give unlimited time to the reviewers).



1. Introduction

Edges are projections of physical processes, ssclthanges of reflectance at object
boundaries, or a changes of illumination. Theyiafermative cues to the three dimensional
structure of the world and, because of this, edgeadtion is a vital first step in many vision
systems. Many edge detectors have been developedP@i and Malah (1982), Ziou and
Tabbone (1998)), often from informal or ad hoc anguts. Canny (1986), in an influential
paper, suggested that edge detectors should optimiz specific performance criteria. First,
the edge detector should have a good signal-teenmaiso, so that edges can be detected even
when image quality is poor. Second, edge detectoosild accurately localize the edges, to
support subsequent visual processes that needhadbimyee of positional accuracy. Canny
suggested that the optimal edge detector maximizesproduct of signal-to-noise and
localization. He also found it necessary to comstitae smoothness of the edge detector. The
resulting constrained optimal filter was similarat@lerivative of a gaussian.

Unfortunately, Canny’s development of optimal eddgtectors contains two significant
problems. The first, lesser, problem is that Cadiaynot provide the correct expression for
localization (Tagare and deFigueiredo, 1990, Kejiloand Greco, 1994). Here we provide
a more accurate expression for edge localizatidns hew measure includes the filter
smoothness, which explains why Canny found it resmgsto constrain this. The second,
bigger, problem is that the Canny criteria implattithe optimal edge detector is infinitely
wide. This renders the edge detector uselessubedawill pick up an infinite amount of

interference from other edges in the image. Toesthis problem, we need to include the
effects of the other edges on filter performandeisTcan be done by modelling the other
edges in the image as a Brown noise stochasti@psoc

When we do this, we find that the optimal edge deteis a derivative of an ISEF filter
(Shen and Castan, 1992). In addition to providimg ¢orrect optimal edge detector for step
edges, we also generalize the edge detection tasiclude detecting blurred edges of any
width. When the noise in the image is low, the ltest algorithm is similar to a scheme
proposed by Lindeberg (1998), but its optimalitggerties were not previously known. This
optimal edge detection scheme is demonstratedardtmensions.

2. Canny’s Optimal Edge Detector.

We begin by summarising Canny’s (1986) approaade detection. Consider a linear filter
f(X) designed to detect an isolated step ayfgk located ak=0, in white noisa(x). The filter
responsen(x) is given by

h(x) = Tg(x—t)f(t) dt++fn(x—t) f(t) dt

=hy (x) +h, (x)

(1)

where hy(x) and hy(x) are the filter responses to edge and noise régpc Edges are
marked by peaks in the filter respong&). The edge is detected by a peak in the filter



reponse, and in the absence of noig)) is the sole peak. The filter is zero outside th
interval [r, r].

The signal to noise ratio of the filter is its reape to the edgi,(0) divided by the r.m.s.
response to noisg[h, (0)*]*?, which is

+r

SNR(f) = ]rg(—x)f(x) dx/no [ £(0? ax 2)

-r

whereng is the r.m.s. amplitude of the noise.

In noise, the peak responisgx) will occur at some poinkmay different from zero. Ideally,
however, the peak location should be close to Ging€alefined the localization of the edge
detector to be the reciprocal of the standard dieviaf xmax about zero, nameB{x2_, ] "'
Near the true edge location, the filter responselbmaapproximated by a Taylor expansion:

h(x) = h(0) + xh' (0) + x2h" (0) /2

= h(0) + xh, (0) + X*h’ (0) /2 + xh,, (0) + X*h’ (0) /2 )

Since h, (0) is a maximum, the derivative; (0) is zero. Taking the derivative of Equation
(3) with respect tax and substitutingmax gives

h'(x b7 (0) + X (M (0) + 17 (0)) (4)

max) =

Since h(x
gives

) is a maximum, the derivativh'(x i zero. Solving Equation (4) fonax

max max

—h (0)

Xinax = W (5)

where bothh' (0)and h; (0) are uncorrelated zero-mean gaussian random \esiathen
the noise is gaussian (Koplowitz and Greco, 1994).

Canny assumedh? (C¥0', so Equation (5) simplifies t&[x2,,]= E[h; (0)*]/h (0)?, and
the localization is then

n; ©)
Elh, 07"

Le(f)= EEIEE d{ / o, [ 1097 ©)

-r

The subscrip€ in L. (f) indicates that this is Canny’s expression for liaesion.

! To be precise, Canny’s assumption was fBH0; (X, )] = E[h,(0)]?, which is only guaranteed when

h'(x) = 0.



Both SNR(f) and L.(f ) are proportional to the ratio of edge amplitulleto noise
amplitudeny. To obtain performance criteria that depend omithe filter, Canny defined
and/\c as

SNR(f):nﬁZ(f), and LC(f):nﬁ/\C(f) (7)

0 0

Both =~ and/Ac can be optimized simultaneously by finding aefilt which optimizes their
product,

Opt(f) =2(f)Ac(F) (8)

Unfortunately, the optimizing filter produces mple noise peaks in the vicinity of the edge,
making it hard to decide which of the peaks isdtge.

To lessen this problem, Canny constrained the geedétance between the noise peaks to be
greater than some fraction of the filter width. Tdneerage distance between noise peaks is
proportional to

_E[h;(o)2]1/2: +r ’ , +r . ,
Z(f)_—E[hg(o)Z]l,2 ij (X)2 dx _jrf (x)2 dx (9)

-r

The quantityZ(f)is a measure of filter smoothness. The filter whitdiximized the product
Opt(f) subject to a constraint an(f) was similar to a gaussian derivative (Canny 1986).

3. Two Problems with Canny’s Edge Detector.

It has been previously noticed that Canny’s |laadion measuréd.. (f Js incorrect (Tagare
and deFigueiredo, 1990, Koplowitz and Greco, 19B4%ection 3.1 below we derive a more
correct localization criterion, which incorporaté® smoothness functional(f) when the
edge amplitude is small. This means it is no lomgEressary to impose a constraintz( )

to get a good edge detection filter.

It has not however been previously noticed that dpb@amal filter, according to Canny’s
criteria, must be infinitely wide. In section 3\2e show why this occurs. An infinitely wide
filter is useless for edge detection in real imadgessection 4, we suggest a solution to the
infinite width problem, which leads us to a diffetdorm of optimal edge detector than that
proposed by Canny.

3.1 Canny’s Localization is Incorrect.

Tagare and deFigueiredo (1990) and Koplowitz anelc&r(1994) have noted that Canny’s
assumption that' ()0 is most likely wrong. By defining standardizedrmal random
variables X = h! (0)/ E[h/ (0)*]"* and Y =h!(0)/ E[h (0)*]"?, Equation (5) can be written
as



max

_( EIN, (0] X

B ( Elh; <0)21”2J h! (0)/ E[h; (0)°]"2 +Y
X

h! (0)/ E[hy (0)2]"2 +Y

(10)

= Z(f)

X andY are uncorrelated if the noiséx) is white gaussian noise. Note that
h; @)/ E[h (0)°1"% = Lo (F)Z(f) (11)

so Equation (10) can be written as

o =1 [ [L(f)Z(D)IX
" L (UL (D)Z()]+Y

(12)

For brevity, we will writeQ for the productL.(f)Z(f ) The edge detector localizatit(f)
is then
— 2 -1/2 _ QX ’ -1/2

L) = Bl = Lo(DE] 22 ) (13)
This is Canny’s localizatiorL. (f Hivided by the standard deviation of a ratio ofmal
random variables,E[(QX /(Q +Y))?]¥2. Unfortunately this ratio has an undefined first
moment and infinite higher moments (Marsaglia 198&kley 1969), which makes the
localization L(f) zero. Apparently, then, it is impossible to lozalia step edge! However,
the infinite moments of the rati@X /(Q +Y) are due to a subset of events where the
denominator(Q +Y) is close to zero (Marsaglia, 2006). These evermtst fikely occur when
the edge couldn’t be detected at all (because istpaather than being detected infinitely far
from its true location.

If we avoid these events by conditioning on a nomzEnominator| Q +Y |> ¢ for smallg,
then the moments of the ratf@X /(Q +Y) do exist (Marsaglia, 2006). The first moment is
zero. There is however no closed form for the séamoment, but it can be estimated by
Monte Carlo methods. Figure 1 shows Monte-Carlameges of E[(QX /(Q +Y))’] ™2
plotted as a function d®. A good approximation to these estimates is

E[(Q—Xj 172 = (0.5 1 arctar( Q- 32)] | (14)
Q+Y s 03

This approximation is also plotted in Figure 1.




1 ‘ ‘ Figure 1. Monte Carlo estimates of

E[(QX 1(Q +Y))2]_l/2 as a function of
0.8t the parameteR. One Monte Carlo run

Q consisted of 10,000 samples of the ratio

N;: 06! QX /(Q+Y) ata particular value of2 ,

& from which E[(QX /(Q +Y))*]™? is

§— 04} calculated. The circles are medians of 1000

Q}\_. such runs at the same valuetbfMedians

w 02! were used to discount extreme values of the
ratio QX /(Q +Y) . The number of

0 samples is sufficient that repeated runs

produce almost no change in the plotted
estimates. The curve shows the
approximation given by Equation (14).

Substituting Equation (14) into Equation (13), axganding the abbreviatiad gives

L(f) = Lc(f)(0.5+7—1_[arctarEL°(f)Zo(;)_B'ZD. (15)

We can, as before, define an optimality measuterms ofZ(f) andA.(f )as

Opt(f) =Z(f)AL(f )(O.5+71Tarctar{(A/ M)A\ (Of;Z( D= S'ZD | (16)

Unlike Canny’s criterion, this still involves thelge-to-noise ratioA/n, and the functional
Z(f). A set of optimal detectors for differet/ n, ratios is shown in Figure 2. Note that
these are unconstrained optima; it is no longeessary to impose a constraint on filter
smoothnessZ(f). These are very similar to detectors derived bywr@afor different
constraints orZ(f).

The choice of optimal detector depends on the ratia,, but we do not know what this is in

advance. We can derive a compromise filter, whicnka reasonably well at all ratios, and
Canny’s choice was a filter rather similar to tmedor A/n,=1.33 in Figure 2. However, we

will not commit to a choice here, as there is a enserious problem with Canny’s edge
detector.



Figure 2. Optimal edge detectors for different edge to amoigios A/ N, . The topmost filter is the best for very
low noise; the influence of the functiongff) here is minor. It is not a matched filter busimoothed at either
end because of the need to minimize the derivatvihe boundary. The filters for high noise levi@sttom
filter) begin to look like the low noise filters aig, because performance at low noise levels isnmath
dependent oi(f) either.

3.2. The Optimal Edge Detector is Infinitely Wide.

The width of the edge detection filter has so fserbset at some arbitrary valuét would be
useful to have an optimality argument for chooshegbest filter width; indeed, without it, it
is hard to claim that the filter at any particweidth r is optimal. Canny (1986) argued that
the signal-to-noise rati®(f) increases with filter width while the localizatiof\.(f)
decreases so that the prodagtf )A. (f is)constant. Thus all widths are equally good, and
some other consideration must be used to selectapipeopriate width. However, the
reduction in filter localization as width increasesa consequence of Canny’s constraint on



the filter smoothnesZ (). He forced wider filters to be smoother than narfdters, and
this made localization poorer in the wider filteWghen this constraint on filter smoothness is
removed — as it can be thanks to the new formuldbo localization given by Equation (15)
— we find that wide optimal filters are as goodchasrow ones for localization.

Consider the filter in Figure 3(a). This can be avidd to improve the signal to noise ratio
while keeping localization constant. One way ofrgpihis is by first locating nonzero peaks
or plateaus in the filter (shown by circles in Fig®(a)) and then stretching them out (Figure
3(b)). Such peaks must always exist because tiee il odd, and is zero at the endpoints and
the centre. The localizatioh. (f of) the stretched filter is unchanged because thkedd
points all have a derivativd '(x) of zero, so they do not change the integraldiff . )
Equally, the introduction of points wherg'(x) =0 does not change the numeratorZgff )

in Equation (9). The second derivatiié(x) is unchanged except at the endpoints of the
stretch (where it actually decreases), so the deraior of Z(f) is likewise unaffected.
Hence the localizationL(f) of the filter is unchanged becaude (f ahd Z(f) are
unchanged.

INR(f)is improved by this stretching process, intuitivelgcause the stretched filter looks
more like a step edge. Consider the stretched fiité&-igure 3(b). For simplicity, lety = 1
andg(x)=1 or -1. Let the maximum value of the filter ifsbe f., and lety be the total
length of the plateau after stretching. The SNRitierstretched filter is

Tf(wdx+ymw
%SNR( f)= +°r (17)
ijufdx+Wéﬂ

If stretching the filter increases tI8\R, then the derivative oBNR(f)? with respect toy
should be positive 3=0. The derivative is
2
1 9SNR(f)? [ £ ax [ 09 dx
- - f ——| (18)
4 ay

) ”*‘Xjf(><)2 dx ”*‘Xjf(><)2 dx

y=0
and it will be positive when

jf(x) dx

2 > fmax
j f(x)2 dx

(19)

The fraction on the right hand side attains a maxmwhen f (x) is a constant, sag, and it
then has the value &/ However, if f(x) =a then f__ =a, so the maximum value of the
right hand side of the inequality is 1. We concltiuizt the derivative dBNR with respect ty

is positive, and stretching the filter improv@sR.



Figure 3. This shows how a filter can be altered
to improve SNR while keeping localizatiof.¢
and smoothness, Z, constant. The upper filter is
the original (narrow) filter. The peaks in the
filter are identified by circles. These peaks are
stretched out to form plateaus in (b). These
plateaus do not affect localization and they
increase signal-to-noise.

Since the stretched filter has increas8dR(f)and unchanged.(f), it has increased
Opt(f), from which it follows that the optimum filter mu$e infinitely widé. This
undesirable outcome is a consequence of the siegpbkidge model used so far. Canny’s edge
detection filter is optimized to detect asolated edge in white noise, and under those
conditions, the optimum filter is indeed infinitelyide, because there are no other edges that
might interfere with detection. In real images,ugb, an infinitely wide filter will integrate
over infinitely many edges, and will obviously bseless at detecting any one edge in
particular. The only principled way to solve thidimite-width problem is to change the edge
model to account for neighbouring edges. We doithiee next section.

4 Optimal Edge Detection in The Presence of Other E  dges.

In real applications we are interested in detecong edge in the presence of many other
edges. A wide edge detector will have better sigmadoise ratio for a single edge, but will
be more likely to overlap other edges than a nadetector. If a filter overlaps other edges,
they will interfere unpredictably with the detectiof the edge we are interested in. In this
respect the other edges behave like noise, andctreype modelled as a stochastic process.
Images typically have & «w’ power spectrum, whem is the spatial frequency (Burton and
Moorhead, 1987, Field 1987) which make them sintitaBrown noise, albeit with a more
interesting phase spectrum (Tadmor and Tolhur@319Given that the phase spectrum is
unlikely to affect how the other edges interferéhwdetection of the edge we’re interested in,

2 This is different from the infinite filters of Diehe (1987) or Sarkar and Boyer (1991),which havigite
second moment.



it is sufficient for our purposes to model the othdges as simple Brown noise. This Brown
noise will be what limits the width of the edgeeldor.

4.1 The Optimal Detector in Brown Noise.

Suppose the Brown noise in the image has a poveatrspn C*/«w’. This is added to the
white noise, with power spectrumy, to give a total noise power spectrum®@f/w’ +n?.
With brown noise, the expressions 8XR, Lc andZ are easier to handle in the Fourier
domain. Corresponding to Equations (2), (6), andtf@se are:

SNR(F) = [ G(e)F () da)/\/ﬂ F(w) P (C?/a? +n?) dw

L. (F) :Ua)ZG(a))F(a)) ds{/\/jwz |F(w) P (C?/a? +m) dew (20)

2(F) = || IF(@)F (C*/ & +n?) doo/ [ | F(@)F (C*/ & +1?) deo

Here, F(a) is the Fourier transform of the filté(x), and G(«) = -iA/a is the Fourier
transform of the step edgg(x) with amplitudeA. These expressions follow from Parseval’s
theorem and the derivative theorem (Bracewell, 1986

Let W(«) be the filter with Fourier transform

W(w) = ——% =iaB(w) 1)
C*+n’w’
which is the derivative operatoric multiplied by a f-order Butterworth filter
B(w) = (C? + nZw®)™?. This filter whitens the noise, becaug®/ (w) | (C*/w* +n2) =1.
The edge detectoF () can be factored into a product of the whitenirigrfiw () and a
post-whitening detectoK («),

F(a) =W(a)K(w). (22)
where K(«) is the Fourier transform of some filtk(x) . SinceW (0) =0, this factorization
requires thatF (0) =0, which is satisfied sincef (x) is an odd filter. By substituting the

productW(«)K(a) for F(a), we can rewrite Equations (20) very simply in terof the
post-whitening detectoK (&) as

SNR(K) = [ Gy (&K (@) da)/,/ﬂ K(w) P dw
LC(K)=UaJZGW(a))K(a)) da{/\/jwzm(w)r dew (23)
Z(K) =Jjw2 K (@) P doof [ | K () P dew

where G, () =W(w)G(w) = A/4/C? +nZa/ is the Fourier transform of a whitened step
edge, g,, (x ) The optimality criterion for the post-whiteningtdctorK (&) is thus

10



Opt(K, A) = Z(K)A (K)( O.5+7£Tarctar{ AN (K)géK) - 32)} | (24)

where as before SNR(K) = AX(K) and L.(K) = AA.(K ). Here we explicitly note the
functional dependence of the optimality criteriom the edge amplitud& by writing it as
Opt(K,A). Note that after whitening the noise amplitudel jsso it can be dropped from
Equation (24). However, the noise amplitude imglcaffects the shape and height of
G, (w), and thus ofx(K) and A, (K ).

The optimal detection filteK (o) maximizesOpt(K, A) . In addition, we have to require the
spatial version of the filtek(x) to be non-negative. This is because the whiterdge e
0w (X) is entirely positive or entirely negative depempon the sign of the edge amplitude
A% If k(X) has negative lobes, it would be impossible tordeitee whether a positive peak in
the filter output was due to the overlap betweg@ositive edge,, (x and the positive centre
of k(x), or to a negative edge- g, (X which lines up with a negative part &{x). This
constraint is necessary because without it thenatdetectork(x) does have wide negative
regions at some values of edge amplitdde

When the edge amplitudkeis large,Opt (K, A) simplifies to Z(K)A.(K ), and is maximized
by the matched filteK (w) = G,, (w JCanny, 1986). In this case, the edge deteEi@r) is
_ _ lw
F(C()) _W(a))GVV (a)) - C2 + nzwz (21)

0

which, up to a multiplicative constant, correspotalthe spatial filter
f(x) = sign(x)exp(C/ny) | x]) (22)

The width of the filter varies according to theioabf white noise to brown noise. In the
extreme case d€=0, the filter is an infinitely wide step edge, whiis consistent with the
infinitely wide filter found in section 3.2. Thether extreme, ag, tends to zero, yields a
derivative operator.

The filter in equation (22) is identical to one ymisly suggested by Shen and Castan
(1992). It is the derivative of an infinite symmetexponential filter (ISEF), so we will refer
to it as a DISEF filter. Shen and Castan (1992)vddrthe DISEF filter using an isolated
edge model, like Canny, but used different, allvelated, optimality criteria. They also
considered the problem of multiple edges, but thedelled the edges in an image by a
random telegraph-signal (RTS), which switches ramigiobetween two values. Under the
RTS model, Shen and Castan derived the scale factbe exponential of equation (22) as
\J4A* +C?/nZ , whereA is the switching density, rather tha®/n,. Shen (1995) further
considers a sum-of-RTS’s edge model, more sindlah¢ Brown noise model used here, but

® The whitened edg@),, (X) is, to within a multiplicative constanAK , (| X |), where K (X) is the

modified Bessel function of the second kind of emldf A is positive, g, (X) > O for all x.

11



this yields a complicated edge detection schemspiiethese differences of detail, there is a
remarkable convergence of results between the Cappyoach used here and Shen and
Castan’s edge detector.

4.2 A Compromise Edge Detector.

The DISEF filter of Equation (22) is only optimairflarge edge amplitudes WhenA is
smaller, the optimal post-whitening detectii(«) is not matched to the whitened edge.
Figure 4 shows some examples of optimal post-wimitedetectors in the spatial domain,
k(x), and their corresponding edge detectd(x), for different values oA. These result
from numerical optimization of the spatial doma#rsion of equation (24). The dependence
of the detectors on the unknown amplitdleneans it is impossible to find an edge detector
which is universally optimal. We can nonethelesgppse a compromise filter, which works
reasonably well at all amplitudés A common characteristic of the detectors in Fegdiris
that they are all wider than the matched filteraid whenA = . A good compromise
edge detector might therefore be obtained by simpdiening, or blurring, the matched filter
slightly.

(a) (b)

Figure 4: (a) Plot of some optimal post-whitening detectéex) , for various values of edge amplitude
given C=1 andny=0.8. The thick lined profile is the matched detectThe wider detectors are for intermediate
values ofA. The plots are 30 pixels wide. (b) Plot of cormsling edge detector§ (X) , which are whitened
versions of the detector&(X). The thick-lined edge detector is the DISEF fil@quation 22) which
corresponds to the matched post-whitening detéctr).

We need to define what we mean by a good comprorhesteK, be the detector which
maximizesOpt (K, A) at some edge amplitude The matched detector (Equation 22Kis.

We wish to find a compromise detectidr which is good in a minimax sense compared to all
the optimal detectorK ,. That is, we wish to find a detectd€ which minimizes the
maximum loss

sudopt(K ,, A)/ Opt(K, A)} (23)

12



In addition, we want to limit the loss for the commise detector at high edge contrasts,
namely Opt(K_,,)/Opt(K, ), to a “reasonable” value, so that the compromisealor
does not throw away too much performance when tlge éas high contrast. Finally, we
would like the compromise filter to be mathematicaimple. We restrict ourselves to filters
K produced by convolving the matched filt&r, with a simple nonnegative smoothing
function; a gaussian smoother was found to prodymed results. Thus our compromise
detector is given by

K(w,0) =K, (w) exp(wo)?)

(24)
= exp(wo)?)/4C* +ntaf?

whereois the smoothing parameter. The choice of compserfiiter thus boils down to the
choice ofo.

Figure 5 compares the performance of a compronitse o the optimal filter performance.
Here, the noise parameters are set+d andn,=0.05 (for the top set of curves) af=0.8
(for the lower set of curves). The crosses showptréormance of the matched filter, given
by Opt(K,,,A), for various values oA. The thick solid lines shovdpt(K ,, A) . Each point
in this curve gives the performance of a differeptimal filter K. The thin line shows the
performance of a compromise filt&@pt(K, A . Jhis filter is given by smoothing the matched
filter for that C/n, ratio by a small 3-point gaussian equal to [ 012220.5557 0.2221[]
[?/s, °ls, %lg] . The optimal detector is no more than 85% bettan this compromise detector,
and the matched filter is no more than 40% beltan it, while the compromise filter often
greatly exceeds the matched filter's performance.

10" ‘ Figure 5. Performance of edge detectors at

different noise levels. The brown noise was set to
C=1. White noise densityl, was either 0.05 (top
curves) or 0.8 (bottom curves). In each group of

-
o

curves, the thick solid line shows the
performance of the optimal detectors at different
values of the ratioA. The crosses show the

Opif(filter,A)

-
o

performance of the matched post-whitening filter
K., . The matched filter suffers a substantial loss
of performance for some values Af The thin

line shows the performance of the best

10 10 10
A convolved with a three-point gaussian.

compromise filter, which is the matched filter
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To summarize, the best compromise edge detectymmidm in one dimension is as follows:

Algorithm 1.
1) EstimateC and n,from the image, or use sensible presets.

2) Convolve the image with a 3 point gaussidg /o, %/s]

3) Convolve the resultant blurred image with the DISIEEr
f(x) = sign(x)exp(C/ny) | x]).

4) Positive-valued peaks or negative-valued troughberoutput of this filter represent
edges, if they are strong enough.

This edge detection scheme can be easily extendetiva dimensions (although the
optimality properties of this extension are unknpwho develop the 2D scheme, we can
write the optimal 1D edge detector as a seriestefd

F(a) = K(e)W(a)
={B(w)G;(w)H iaB(w)}

where in the second line we have factored the wimtgfilter W(a) into the derivativei a

and a Butterworth smoothing filteB(«), and the optimal post-whitening filteK () is
factored into the product of a Butterworth filtevh(ich is matched to the whitened edge) and
the three point gaussiad,(w . We can rearrange this to give

F(w) =iaB(w)*G;(w)

where B(w)?® is the ISEF filter. To extend the algorithm to twlanensions, we replace
B(w)® and G,(w) with their two-dimensional counterparts, and repléhe derivative with
the directional derivative. This yields the followi algorithm:

Algorithm 2:
1) EstimateC and n,from the image, or use sensible presets.

2) Convolve the image rows, then the columns, withp@idt gaussian
[*1o, 1o, %1e]
3) Convolve the resultant blurred image with the dady symmetric ISEF filter

exp(-(C/ny)yx* +y?).

4) Compute the directional derivatives in all direaBoThese can easily be computed
from the direction derivatives along the rows antlimns.

5) Peaks in the output of this filter across spacedsmrivative direction represent edges,
if they are strong enough. It is usually necessanyse a hysteresis algorithm (Canny,
1986) to sort these peaks into coherent edges.

The performance of this algorithm is shown in Fegidr middle panel. One can see that in the
absence of significant noise, it appears to perfareil. However, shadow edges are poorly
represented.
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5. Detecting Blurred Edges.

Many edges are not step edges. Generally, softdumed edges are caused by defocus, self-
shadowing of a curved surface, or by shadow penaenfsee e.g. Elder and Zucker 1998,

Elder 1999). These various kinds of blurred edgelmmodelled as a step edge blurred with
a gaussian function,

9(x,0) = g(x) * gauss(x,0) (25)

where gauss(x,0) = exp(-x*/(20%))/~2rmo? is a unit gaussian distribution with width
A step edge is the limiting case of zero blur,g(&,0).

5.1 The Optimal Detector for Blurred Edges

Introducing blurred edges changes the expressmnSNR(K) and L. (K ) in Equation (23)
to the following:

NR(K) = j {G,, (w)Gauss(w, o)} K (w) da)/ J j | K (@) [ dew

(26)
L (K) = Uaf{@w(m)eauss(w, ON}K (@) dc«(/\/jwz | K (@) ]2 dw

Here Gauss(w,o0) is the Fourier transform ofgauss(x,o) in Equation (25), and
{G, (w)Gauss(w,0)} is the Fourier transform of the whitened gaussidge. The product of
NR(K) and L.(K) is, as before, maximized by the matched filter
K(w, 0) =G, (w)Gauss(w, o) . Hence the optimal edge detector for a gaussian etigedth

o, F(«,0), is given by

L“ Gauss(w, 0) 27)

F(w,0) =W(w)G,, () = T irie

which is just a blurred DISEF filter. The optimalagial filter is then
f(x,0) =sgn(x)exp(C/n,)| x])* gauss(x, o) (28)

where * denotes convolution.

Each edge detectof (x,0) is optimized for a particular edge blur, but wakpond to edges
with other blurs as well. How can we select therappate blur detector for the edge, given
that we don’t know in advance what the blur is? Whee restrict ourselves to matched
detectors, this problem is easily solved. kék, o) be the spatial version o («,0) above,
and let h(x,o) be the detector output obtained by convolviag, o) with the whitened
signal. The detector outpui(x,o) forms a scale space representation of the ingurtabi
(Witkin, 1983). If we normalize the detectdt(x,0) so thagrk(x,a)2 dx =1, then its
expected response at any point is identical tcsiipeal to noise ratio9NR(k) . Hence a peak
in the scale spach(x,0)is a local maximum ofSNR(k) . This will also be a local maximum
of L.(k), sinceSNR andLc are maximized by the same matched filter (Can8$6). The
peak in the scale spad€x,o) is therefore a local maximum of the prod@R(k)L.(k )
and identifies the locally optimal detector.
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scale

position

Figure 6. The top image shows an example of a signal witbetigaussian edges, with widths of 1, 3 and 8 from
left to right. One thousand such images were gésebravith different noise samples, and the bluedde
detection algorithm run on them. Each image was ttenvolved with a DISEF filter and gaussian blafs
different sizes to yield a scale space méxog). Strong peaks in the scale space indicate edges.bottom
image shows all the edges found in 1000 runs oftgerithm, givenC=0.5 andn,=0.2. Most of the time, the
edge is located within a few pixels of its truedtion, but identification of the blur is less acatigr. In particular,
there is a tendency to detect the edge at a foade shan it really is. If we look at the exampigage, however,
we can see that sometimes the added noise doesthwlegige (particularly the far right one) appdwarger
than it is. Incidentally, in equivalent conditiohsiman observers also seem to have this problem @&lay
Georgeson, 2007).

The performance of this model in visualized in Fegé. The top panel shows an example
noisy edge. The bottom panel shows all the locakima (after thresholding to remove
noise) accumulated over 1000 runs of the optimalesspace edge detector described above,
each with a different noise sample but the samefsetiges. The position of the edges is
fairly well estimated, but the blur less so.

The matched scale-space detector described abkge ten an interesting form when the
white noiseng is zero. In this case, the whitening operator snaple derivative, and the
whitened edgeg,, (X )is an impulse function. The matched post-whitendejector is
k(x,0) =g, (X * gauss(x,0), which is simply gauss(x,0). The norm of this is
_[gauss(x,a)z dx = 1/(2v 7o), hencek(x, o) = v21"* 0" ?gauss(x, o) is a normalized post-
whitening filter. Since whitening is simply a deative operation, this means that the blurred
edge detector is, to within a constant scaling, jus

f(x,0)=0c"? % gauss(x, o) (30)
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This is identical to Lindeberg’'s (1998) edge detecttscheme (also suggested for human
edge perception by Georgeson et al. 2007), so thegmsals can both be understood as
optimal blurred edge detectors for minimal amowftahite noise.

5.2 Two Dimensions

As with step edges, the blurred edge detector eaextended to a 2D algorithm, in a similar
way. The optimal one-dimensional deteckfw, o) for an edge of bluris given by

F(w,0) =K(a,0)W(w)
={AGauss(w, o) B(w)H iaB(w)}
= iaGauss(w, o) B(w)?

where A = (J'| K(w,o)| da))_llzis the normalization factor for the filter. For gheity, the
three-point gaussian used to make a compromise fiks been left out here. To extend this
to two dimensions, we simply repla®{w)®> and Gauss(«,o) with their two-dimensional
counterparts, and replace the derivative with tirectlonal derivative. The appropriate
normalization factor is trickier. At first sight iwould seem reasonable to use
A=\ K(w,w,0)F dwlda)z)_m, where a, and «, are the row and column frequencies.
However, this does not work well at all. The nonzetion is only appropriate along the
direction of the derivative, since that is the omlyection in which the post-whitening
detectorK can be expected to match the edge. Becausespftth appropriate normalization
is one dimensional,

Ay = (”J' K (w,,,0) da)l‘2 da)zj_ll2

That is, we integrate along one dimension pardfiethe edge, then square and integrate
along the other dimension perpendicular to the &d@kis leads to Algorithm 3, for 2D
blurred edge detection.

Algorithm 3:
1) EstimateC and n,from the image, or use sensible presets.

2) Convolve the image with the circularly symmetri€RSfilter exp(-(C/ny)/x* + y*)

3) For each scalg,
a. convolve the image with a two-dimensional gaussjauss(x, y,o). The
convolution is then scaled by the normalizationidad given above.

b. Compute the directional derivatives in all direos®. These can easily be
computed from the direction derivatives along twg and columns.

* I'm not 100% sure this is the correct normalizatias it would depend on the model for the imagéén
vicinity of an edge.
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4) Local peaks in the output of this filter acrosscspéx,y), derivative directiod, and
scaleg, represent edges, if they are strong enoughnkéessary to use a hysteresis
algorithm (Canny, 1986) to sort these peaks inteecent edges.

The performance of this algorithm on a relativedyse free image is shown in Figure 7, right
hand panel. Compared to the middle panel (Algori)mwhich only detects step edges, we
can see that Algorithm 3 correctly picks up thedsiva edges. However, its performance in
some other parts of the image is not as cleaneastép edge algorithm.

One useful feature of this edge detection modétsisbility to cope with noise when the
parameters of the whitening filte€, and n,, are estimated from the image. This is shown in
Figure 8. As the white noise increases, the smogtprovided by the Butterworth filter also
increases.
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Figure 7: The optimal 2D edge detector in action. The gmatesimage on the left is analyzed by the 2D stipealetector (Algorithm 2) in
the middle panel. This algorithm is good at detertnany edges, but fails when given a blurred eslgeh as the shadows. The right hand
panel shows the edges found by Algorithm 3. Theeestrple is colour coded red, green, cyan, purpia fiinest to coarsest scales. This
algorithm correctly identifies the shadow edgewal as some blurred grooves. In both panels, rtiege noise parameteCsand - were

estimated from the image.
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Figure 8. The grey scale image in Figure 7, with addedendisie result of running Algorithm 3 on it is shown
on the right panel. Visually, the noise has elirredamuch of the detail in the image, but most oaiwlemains
is detected by the algorithm, and most of the ncésebe rejected.

6. Conclusion.

Canny’s (1986) paper was a significant contributiorthe methodology of edge detection.

Prior to it, the actual performance criteria folgeddetectors were rarely stated explicitly.

After it, it is more or less impossible to propas® edge detector without reference to the
Canny criteria. After such a major methodologiahlance, the issue of what an optimal edge
detector actually looks like is perhaps less viddthough since we must use them, it is
important to get it right. When we do so, we fimattthe optimal step edge detector is not
similar to a derivative of a gaussian filter, balinstead the derivative of an exponential filter
(DISEF) proposed by Shen and Castan (1992). Irtiaddonce we have solved the optimal

detector for step edges, it is relatively easy xterd to the task of detecting edges of
different blurs. One remaining problem with the iom@tl detector proposed here is

localization: the very complex localization critamimeans that no one filter can be optimal at
all edge contrasts.

The ISEF filter is optimal when the noise has a @owpectrum of the fornC? +nZ.
However, this sometimes is not the true form ofrthese. For example, if the imaging device
has poor optical quality (such as a cheap webca@C &V camera, or the human eye), the
optical blur will change the slope of the Brown s®i In this case, the whitening filter will
change, and one must replace the ISEF filter vathething else; namely, a filter with power
spectrum K (w) =|W(w)|*, where the whitening filterW(«) changes with the image
statistics. Thus the algorithms in this paper canaltered to adapt to image statistics. A
procedure like this is potentially behind adaptatifects in human vision (e.g. Wainwright,
1999, Webster & Georgeson, 2002).
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Finally, the optimality of the edge detectors hewes only shown for the 1D case. While the
2D algorithms perform well, it is still an open ptem what criteria should be used to
develop optimal 2D detectors.

21



References.

Bracewell, R.N. (1986) The Fourier Transform arsdApplicationsMcGraw-Hill, New York.

Burton GJ, Moorhead IR (1987) Color and spatialcttire in natural scene&pplied Optics, 26 157-170
Canny, J (1986) A Computational Approach to EdgeeBten,|lEEE Trans. Patt. Anal. Image Proc. 8(6) 679-
698.

Deriche, R. (1987) Using Canny’s Criteria to DedRecursively Implemented Optimal Edge Detector,
International Journal of Comp. Vision, 1(2), 167-187

Elder, J & Zucker, S. (1998) Local Scale ContralEalge Detection and Blur EstimatidiEEE Trans. Patt.
Anal. Machine Intell. 20(7) 699-716

Elder, J (1999) Are Edges Incomplet&tternational Journal of Comp. Vision, 34, 97-122.

Field, D (1987) Relations between the statisticeaifiral images and the repsonse properties dtabcells,J.
Opt. Soc. Am. A 4 2379-2394

Georgeson, M. A., May, K. A., Freeman, T. C. A.H&sse, G. S. (2007). From filters to features: &esdace
analysis of edge and blur coding in human visimarnal of Vision, 7(13):7, 1-21,
http://journalofvision.org/7/13/7d0i:10.1167/7.13.7.

Hinkley D.V (1969). On the Ratio of Two Correlatddrmal Random Variable&iometrika, 56, 635—639.
Koplowitz, J & Greco, V (1994) On the Edge Locat®mor for Local maximum and Zero-Crossing Edge
Detectors)EEE Trans. Patt. Anal. Image Proc. 16(12) 1207-1212.

Lindeberg, T (1998) Edge Detection and Ridge Daiaavith Automatic Scale Selectiomternational Journal
of Comp. Vision, 30(2), 117--154.

Marsaglia G (1965) Ratios of Normal Variables aradiés of Sums of Uniform Variable3ournal of the
American Statistical Association, 60, 193—204.

Marsaglia, G (2006) Ratios of Normal Variablds,rnal of Satistical Software, 16(4) 1-10.

May, K. and Georgeson, M (2007) Blurred edges liaikt, and faint edges look shaiision Research 47
1705-1720

Peli, T. & Malah, D. (1982) A Study of Edge DetectiAlgorithms,Computer Graphics and Image Processing,
20, 1-21.

Petrou, M. & Kittler, J. (1991) Optimal Edge Detarst for Ramp Edge$EEE Transactions on Pattern Analysis
and Machine Intelligence, 13, 483-491

Sarkar, S. & Boyer, K.L. (1991) On Optimal Infiniteapulse Response Edge Detection FiltHEEE Trans.
Pattern Analysis Machine Intelligence, 13, 1154-1171

Shen, J & Castan, S. (1992) An optimal linear ojperfar step edge detectioBVGIP: Graphical Models and
Image Processing, 54, 112-133

Shen J (1995) Multi-Edge Detection by Isotropicd 2SEF CascaddRattern Recognition, 28, 1871-1885.
Tadmor, Y & Tolhurst, DJ (1993), Both the phase thredlamplitude spectrum may determine the appearaic
natural imagesyision Research, 33(1):141-145

Tagare, H & deFigueiredo, R (1990) On the LocaioraPerformance Measure and Edge DetectieBE
Trans. Patt. Anal. Image Proc. 12(12) 1186-1190.

Wainwright, M. J. (1999) Visual adaptation as ogatifimformation transmissioi/ision Research. 39, 3960—
3974

Webster, M.A. Georgeson, M. & Webster, S.M. (200Rural adjustments to image bliature Neuroscience,
5(9) 839-840

Witkin, A. P. (1983) Scale—space filterirfer,oceedings of the 8th International Joint Conference on Artificial
Intelligence, 1019-1022.

Ziou, D. & Tabbone, S. (1998) Edge Detection Teghas - An Overviewlnternational Journal of Pattern
Recognition and Image Analysis, 8, 537-559.

22



