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Chapter 1

Definition

The definition of a multivariate gaussian probability distribution can be stated
in several equivalent ways. A random vector X = [X1X2 . . . XN ] can be said to
belong to a multivariate gaussian distribution if one of the following statements
is true.

• Any linear combination Y = a1X1 + a2X2 + . . . + aNXN , ai ∈ R is a
(univariate) gaussian distribution.

• There exists a random vector Z = [Z1, . . . , ZM ] with components that are
independent and standard normal distributed, a vector µ = [µ1, . . . , µN ]
and an N-by-M matrix A such that X = AZ + µ.

• There exists a vector µ and a symmetric, positive semi-definite matrix Γ
such that the characteristic function of X can be written φx(t) ≡ 〈eitT X〉 =
eiµT t− 1

2 tT Γt.

Under the assumption that the covariance matrix Σ is non-singular, the prob-
ability density function (pdf) can be written as :

Nx(µ,Σ) =
1√

(2π)d|Σ| exp
(
−1

2
(x− µ)T Σ−1(x− µ)

)

= |2πΣ|− 1
2 exp

(
−1

2
(x− µ)T Σ−1(x− µ)

) (1.1)

Then µ is the mean value, Σ is the covariance matrix and | · | denote the
determinant. Note that it is possible to have multivariate gaussian distributions
with singular covariance matrix and then the above expression cannot be used
for the pdf. In the following, however, non-singular covariance matrices will be
assumed.

In the limit of one dimension, the familiar expression of the univariate gaussian
pdf is found.
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Nx(µ, σ2) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
=

1√
2πσ2

exp
(
−1

2
(x− µ)σ−2(x− µ)

)

(1.2)

Neither of them have a closed-form expression for the cumulative density func-
tion.

Symmetries

It is noted that in the one-dimensional case there is a symmetry in the pdf.
Nx(µ, σ2) which is centered on µ. This can be seen by looking at ”contour
lines”, i.e. setting the exponent − (x−µ)2

2σ2 = c. It is seen that σ determines the
width of the distribution.

In the multivariate case, it is similarly useful to look at− 1
2 (x− µ)T Σ−1(x− µ) = c.

This is a quadratic form and geometrically the contour curves (for fixed c) are hy-
perellipsoids. In 2D, this is normal ellipsoids with the form (x−x0

a )2 +(y−y0
b )2 =

r2, which gives symmetries along the principal axes. Similarly, the hyperellip-
soids show symmetries along their principal axes.

Notation: If a random variable X has a gaussian distribution, it is written as
X∼ N (µ,Σ). The probability density function of this variable is then given by
Nx(µ,Σ).
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Chapter 2

Functions of Gaussian
Variables

Linear transformation and addition of variables

Let A,B ∈ Mc·d and c ∈ Rd. Let X ∼ N (µx,Σx) and Y ∼ N (µy,Σy) be
independent variables. Then

Z = AX + BY + c ∼ N (Aµx + Bµy + c,AΣxAT + BΣyBT ) (2.1)

Transform to standard normal variables

Let X ∼ N (µ,Σ). Then

Z = Σ− 1
2 (X− µ) ∼ N (0,1) (2.2)

Note, that by Σ− 1
2 is actually meant a unique matrix, although in general

matrices with fractional exponents are not. The matrix that is meant can be
found from the diagonalisation into Σ = UΛUT = (UΛ

1
2 )(UΛ

1
2 )T where Λ

is the diagonal matrix with the eigenvalues of Σ and U is the matrix with the
eigenvectors. Then Σ− 1

2 = (UΛ
1
2 )−1 = Λ− 1

2 U−1.

In the one-dimensional case, this corresponds to the transformation of X ∼
N (µ, σ2) into Y = σ−1(X− µ) ∼ N (0, 1).

Addition

Let Xi ∼ N (µi,Σi), i ∈ 1, ..., N be independent variables. Then

N∑

i

Xi ∼ N (
N∑

i

µi,

N∑

i

Σi) (2.3)

Note: This is a direct implication of equation (2.1).
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Quadratic

Let Xi ∼ N (0, 1), i ∈ 1, ..., N be independent variables. Then

N∑

i

X2
i ∼ χ2

n (2.4)

Alternatively let X ∼ N (µx,Σx). Then

Z = (X− µ)T Σ−1(X− µ) ∼ χ2
n (2.5)

This is, however, the same thing since Z= X̃
T
X̃ =

∑N
i X̃i

2
, where X̃i are the

decorrelated components (see eqn. (2.2)).
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Chapter 3

Characteristic function and
Moments

The characteristic function of the univariate gaussian distribution is given by
φx(t) ≡ 〈eitX〉 = eitµ−σ2t2/2. The generalization to multivariate gaussian distri-
butions is

φx(t) ≡ 〈eitT X〉 = eiµT t− 1
2 tT Σt (3.1)

The pdf p(x) is related to the characteristic function.

p(x) =
1

(2π)d

∫

Rd

φx(t) e−itT xdt (3.2)

It is seen that the characteristic function is the inverse Fourier transform of the
pdf.

Moments of a pdf are generally defined as :

〈Xk1
1 Xk2

2 · · ·XkN

N 〉 ≡
∫

Rd

xk1
1 xk2

2 · · · xkN

N p(x) dx (3.3)

where 〈Xk1
1 Xk2

2 · · ·XkN

N 〉 is the k’th order moment, k = [k1, k2, . . . , kN ] (ki ∈ N)
and k = k1 + k2 + . . . + kN . A well-known example is the first order moment,
called the mean value µi (of variable Xi) - or the mean µ ≡ [µ1µ2 . . . µN ] of the
whole random vector X.

The k’th order central moment is defined as above, but with Xi replaced by
Xi − µi in equation (3.3). An example is the second order central moment,
called the variance, which is given by 〈(Xi − µi)2〉.
Any moment (that exists) can be found from the characteristic function [8]:
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〈Xk1
1 Xk2

2 · · ·XkN

N 〉 = (−j)k ∂kφx(t)
∂tk1

1 . . . ∂tkN

N

∣∣∣∣
t=0

(3.4)

where k = k1 + k2 + . . . + kN .

1. Order Moments

Mean µ ≡ 〈X〉 (3.5)

2. Order Moments

Variance cii ≡ 〈(Xi − µi)2〉 = 〈X2
i 〉 − µ2

i (3.6)

Covariance cij ≡ 〈(Xi − µi)(Xj − µj)〉 (3.7)

Covariance matrix Σ ≡ 〈(X− µ)(X− µ)T 〉 ≡ [cij ] (3.8)

3. Order Moments

Often the skewness is used.

Skew(X) ≡ 〈(Xi − 〈Xi〉)3〉
〈(Xi − 〈Xi〉)2〉 3

2
=

〈(Xi − µi)3〉
〈(Xi − µi)2〉 3

2
(3.9)

All 3. order central moments are zero for gaussian distributions and thus also
the skewness.

4. Order Moments

The kurtosis is (in newer literature) given as

Kurt(X) ≡ 〈(Xi − µi)4〉
〈(Xi − µi)2〉2 − 3 (3.10)

Let X ∼ N (µ,Σ). Then

〈(Xi − µi)(Xj − µj)(Xk − µk)(Xl − µl)〉 = cijckl + cilcjk + cikclj (3.11)

and

Kurt(X) = 0 (3.12)

N. Order Moments

Any central moment of a gaussian distribution can (fairly easily) be calculated
with the following method [3] (sometimes known as Wicks theorem).

Let X ∼ N (µ,Σ). Then
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• Assume k is odd. Then the central k’th order moments are all zero.

• Assume k is even. Then the central k’th order moments are equal to∑
(cijckl . . . cxz). The sum is taken over all different permutations of the k

indices, where it is noted that cij = cji. This gives (k− 1)!/(2k/2−1(k/2−
1)!) terms which each is the product of k/2 covariances.

An example is illustrative. The different 4. order central moments of X are found
with the above method to give

〈(Xi − µi)4〉 = 3c2
ii

〈(Xi − µi)3(Xj − µj)〉 = 3ciicij

〈(Xi − µi)2(Xj − µj)2〉 = ciicjj + 2c2
ij

〈(Xi − µi)2(Xj − µj)(Xk − µk)〉 = ciicjk + 2cijcik

〈(Xi − µi)(Xj − µj)(Xk − µk)(Xl − µl)〉 = cijckl + cilcjk + cikclj

(3.13)

The above results were found by seeing that the different permutations of the
k=4 indices are (12)(34), (13)(24) and (14)(23). Other permutations are equiv-
alents, such as for instance (32)(14) which is equivalent to (14)(23). When cal-
culating e.g. 〈(Xi − µi)2(Xj − µj)(Xk − µk)〉, the assignment (1 → i, 2 → i, 3 →
j, 4 → k) gives the terms ciicjk, cijcik and cijcik in the sum.

Calculations with moments

Let b ∈ Rc, A,B ∈ Mc·d. Let X and Y be random vectors and f and g vector
functions. Then

〈Af(X) + Bg(X) + b〉 = A〈f(X)〉+ B〈g(X)〉+ b (3.14)
〈AX + b〉 = A〈X〉+ b (3.15)

〈〈Y|X〉〉 ≡ E(E(Y|X)) = 〈Y〉 (3.16)

If Xi and Xj are independent then

〈XiXj〉 = 〈Xi〉〈Xj〉 (3.17)
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Chapter 4

Marginalization and
Conditional Distribution

4.1 Marginalization

Marginalization is the operation of integrating out variables of the pdf of a
random vector X. Assume that X is split into two parts (since the order-
ing of the Xi is arbitrary, this corresponds to any division of the variables),
X = [XT

1:cX
T
c+1:N ]T = [X1X2 . . . XcXc+1 . . . XN ]T . Let the pdf of X be p(x) =

p(x1, . . . , xN ), then :

p(x1, . . . , xc) =
∫
· · ·

∫

Rc+1:N
p(x1, . . . , xN ) dxc+1 . . . xN (4.1)

The nice part about gaussian distributions is that every marginal distribution
of a gaussian distribution is itself a gaussian. More specifically, let X be split
into two parts as above and X ∼ N (µ,Σ), then :

p(x1, . . . , xc) = p(x1:c) = N1:c(µ1:c,Σ1:c) (4.2)

where µ1:c = [µ1, µ2, . . . , µc] and

Σ1:c =




c11 c21 . . . cc1

c12 c22

...
...

. . .
...

cc1 . . . . . . ccc




In words, the mean and covariance matrix of the marginal distribution is the
same as the corresponding elements of the joint distribution.
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4.2. CONDITIONAL DISTRIBUTION

4.2 Conditional distribution

As in the previous, let X = [XT
1:cX

T
c+1:N ]T = [X1X2 . . . XcXc+1 . . . XN ]T be a

division of the variables into two parts. Let X ∼ N (µ,Σ) and use the notation
X = [XT

1:cX
T
c+1:N ]T = [XT

(1)X
T
(2)]

T and

µ =
(

µ(1)

µ(2)

)

and

Σ =
(

Σ11 Σ12

Σ21 Σ22

)

It is found that the conditional distribution p(x(1)|x(2)) is in fact again a gaus-
sian distribution and

X(1)|X(2) ∼ N (µ(1) + Σ12Σ−1
22 (x2 − µ(2)),Σ11 −Σ12Σ−1

22 ΣT
12) (4.3)
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Chapter 5

Tips and Tricks

5.1 Products

Consider the product Nx(µa,Σa) ·Nx(µb,Σb) and note that they both have x
as their ”random variable”. Then

Nx(µa,Σa) ·Nx(µb,Σb) = zcNx(µc,Σc) (5.1)

where Σc = (Σ−1
a + Σ−1

b )−1 and µc = Σc(Σ−1
a µa + Σ−1

b µb) and

zc = |2πΣaΣbΣ−1
c |− 1

2 exp
(
−1

2
(µa − µb)

T Σ−1
a ΣcΣ−1

b (µa − µb)
)

= |2π(Σa + Σb)|− 1
2 exp

(
−1

2
(µa − µb)

T (Σa + Σb)−1(µa − µb)
) (5.2)

In words, the product of two gaussians is another gaussian (unnormalized). This
can be generalised to a product of K gaussians with distributions Xk ∼ N (µk,Σk).

K∏

k=1

Nx(µk,Σk) = z̃ ·Nx(µ̃, Σ̃) (5.3)

where Σ̃ =
(∑K

k=1 Σ−1
k

)−1

and µ̃ = Σ̃
(∑K

k=1 Σ−1
k µk

)
=

(∑K
k=1 Σ−1

k

)−1 (∑K
k=1 Σ−1

k µk

)

and

z̃ =
|2πΣd| 12∏K

k=1 |2πΣk| 12
∏

i<j

exp
(
−1

2
(µi − µj)

T Bij(µi − µj)
)

(5.4)

where
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5.2. GAUSSIAN INTEGRALS

Bij = Σ−1
i

(
K∑

k=1

Σ−1
k

)−1

Σ−1
j (5.5)

5.2 Gaussian Integrals

A nice thing about the fact that products of gaussian functions are again a
gaussian function, is that it makes gaussian integrals easier to calculate since∫

Nx(µ̃, Σ̃)dx = 1. Using this with the equations (5.1) and (5.3) of the previous
section gives the following.

∫

Rd

Nx(µa,Σa) ·Nx(µb,Σb) dx =
∫

Rd

zcNx(µc,Σc) dx

= zc

(5.6)

Similarly,

∫

Rd

K∏

k=1

Nx(µk,Σk) dx = z̃ (5.7)

Equation (5.3) can also be used to calculate integrals such as
∫ |x|q (

∏
k Nx(µk,Σk)) dx

or similar by using the same technique as above.

5.3 Useful integrals

Let X ∼ N (µ,Σ) and a ∈ Rd an arbitrary vector. Then

〈eaTx〉 ≡
∫

Nx(µ,Σ)eaTxdx = eaT µ+ 1
2aT Σa (5.8)

From this expression, it is possible to find integrals such as
∫

exp(xT Ax +
aT x) dx. Another useful integral is

〈exT Ax〉 ≡
∫

Nx(µ,Σ)exT Axdx = |I− 2ΣA|− 1
2 e−

1
2 µT (Σ−2A−1)−1µ (5.9)

where A ∈Md·d is a non-singular matrix.

12



Bibliography

[1] T.W. Anderson, An introduction to multivariate statistical analysis. Wiley,
1984.

[2] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford University
Press, 1995.

[3] K. Triantafyllopoulos, “On the central moments of the multidimensional
Gaussian distribution,” The Mathematical Scientist, vol. 28, pp. 125–128,
2003.

[4] S. Roweis, “Gaussian Identities,” http://www.cs.toronto.edu/ roweis/notes.html.

[5] J. Larsen, “Gaussian Integrals,” Tech. Rep., http://isp.imm.dtu.dk/staff-
/jlarsen/pubs/frame.htm

[6] www.Wikipedia.org.

[7] www.MathWorld.wolfram.com

[8] P. Kidmose, “Blind Separation of Heavy Tail Signals,” Ph.d. Thesis,
http://isp.imm.dtu.dk/staff/kidmose/pk publications.html

13


