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Abstract. From a set of temporally separated scannings of the same
anatomical structure we wish to identify and analyze the growth in terms
of a metamorphosis. That is, we study the temporal change of shape
which may provide an understanding of the biological processes which
govern the growth process. We subdivide the growth analysis into growth
simulation, growth modelling, and �nally the growth analysis. In this
paper, we present results of growth simulation of the mandible from 3
scannings of the same patient in the age of 9 months, 21 months, and
7 years. We also present the �rst growth models and growth analyzes.
The ultimative goal is to predict/simulate human growth which would
be extremely useful in many surgical procedures.

1 Introduction

This paper presents a non-linear growth model which to a very good approxima-
tion interpolates the growth as seen on the humanmandible (the lower jaw). The
results comply with the existing 2D theory on mandibular growth [1]. These ex-
periments use a unique 4D data set containing three Computerized Tomography
(CT) scans1 of the same patient with Apert syndrom, but with normal mandibu-
lar development, taken at three ages (9 months, 21 months, and 7 years old).
In many situations, surgeons need information about the growth of the jaws,
particularly when performing pediatric cranio-facial surgery. After surgery, the
bones continue to grow, and therefore in order to optimize the intervention,
there is a need to predict/simulate growth. Also for basic understanding and
teaching, we have a need for these models. We subdivide the growth study into
growth simulation, growth modelling, and �nally the growth analysis. Growth
simulation is the data driven analysis, where we try to �t an (almost) arbitrary
model to the data. In growth modelling, we have a model and wish to evaluate
if the data �ts the model. When we are doing growth analysis, the process is

? This work is partly supported by the Danish Technical Research Council, registration
number 9600452

1 The scans were performed for diagnostic and treament planning purposes.
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that work will not preserve the overall shape. Thus, intermediate steps will not
necessarily look like mandibles. See �gure 2.

t=0 t=1 t=0 t=1

Fig. 2. Surface interpolation illustration to the left is a linear interpolation in position
of closest point. The top at t = 0 will disappear and at the same time a new top
will appear. To the right is a linear interpolation of shape feature positions such as
maximally curved points on the surface. Here, the top moves to the right over time.

In Section 2, we will give one de�nition of homologous points in terms of
the extremal mesh [15] (which are lines) and the di�erent types of ridge lines.
These homologous equivalent lines are matched, as described in Section 3. Since
this yields a very sparse vector �eld the interpolation becomes crucial and is
described in Section 4. In Section 5, we describe existing 2Dmodels of the growth
of the mandible, and use these models for a 3D growth modelling. In Section 6,
we extract properties of the modelled ow �elds such as the local amount of
resorption and deposition. Section 7 discusses our results and describes future
work.

2 Local Shape Features

The growth vector �eld links homologous points, or points of equivalent mor-

phology. In this section, we de�ne equivalence classes of points on a surface.
The local shape of a surface is totally characterized by the principal curvatures
k1; k2 (k1 > k2) and their derivatives in the coordinate system de�ned by the
principal directions (t1; t2) [6]. Since the bone topology is not changing in our

Fig. 3. The crest lines on the three smoothed mandibles at 9 months (left), 21 months
(middle), and 7 years old (right). The surfaces are translucent.

studies, we may model the growth process by a 3D di�eomorphism (a one-to-one



di�erential mapping). This corresponds to D'Arcy Thompson classical methods
of transformations [5]. The principal curvatures and directions will in general
change when exposed to this non-linear di�eomorphism, and cannot directly be
used for registration. However, certain shape singularities are stable in the sense
that they cannot be removed by an in�nitesimal perturbation [3]. Here, we give
a list of some stable shape features.

Shape feature De�nition Dimensionality
Umbilic point k1 = k2 0
Critical curvedness [11] @t1C = 0 ^ @t2C = 0, def: C = k2

1
+ k2

2
0

Extremal points @t1k1 = 0 ^ @t2k2 = 0 0
Parabolic line k1 = 0 _ k2 = 0 1
Ridge line (or extremal mesh) @t1k1 = 0 _ @t2k2 = 0 1
Crest line @t1k1 = 0 ^ @t2

1

k1 < 0, def: jk1j > jk2j 1

Sub-parabolic line [3] @t2k1 = 0 _ @t1k2 = 0 1

Shape features with dimension � 2 will not be discussed in this paper.
The ridge lines (or extremal mesh) can be partitioned into four types corre-

sponding to respectively maximumor minimumin k1 and k2. We use the maxima
in (the absolute value of) both k1 and k2.

The above mentioned shape features are all structurally stable, but even
though they can not be removed by in�nitesimal perturbations, they will in
general change topology under �nite perturbations.

We work with the extraction and matching of ridge lines in a scale-space set-
ting [10] (see the following section). Also the scale-space evolution of ridge lines
is not totally understod even though some aspects are covered in the literature
[4,7, 8]. Thus, theoretical issues are still to be clari�ed. However, by making a
matching which only accepts good matches (see the following section), we obtain
satisfying results. The crest lines of the mandibles can be seen in Figure 3.

3 Feature Matching

As features we will only consider the lines with maximally k1 (crest-lines) and
maximallyk2 (here, called k2-max lines) in the extremal mesh. The overall frame-
work follows the ideas of [14]. First we extract the crest lines and k2-max lines
for each dataset at scale 3.0 (matching scale) and 1.0 (localization scale). The
crest lines at scale 3.0 are registered pairwise (here, it means only the temporally
neighboring datavolumes), and initial vector �elds are calculated. The k2-max
lines are then deformed according the initial vector �elds and registered. From
the two sets of matches (one from the crest-lines, the other from the k2-max
lines) �nal vector �elds are calculated. This procedure is repeated for scale 1.0,
but the lines are initially deformed according to the the �nal vector �elds for
scale 3.0.

The steps in the registration are always the same. First moment-registration,
then two �rst order polynomial deformations, followed by two second order poly-
nomial deformations. Lastly a totally non-rigid deformation is applied (all points



on the lines move freely). For all the registration methods (including the non-
rigid) they must satisfy the restriction that the deformation must be a 3D dif-
feomorphism. See Figure 6 for an example of matches between two set of crest
lines at scale 3.0.

4 Flow Interpolation

The matching provides us with a very sparse set of vectors. This vector �eld must
be interpolated such as to yield a di�erentiable spatially dense �eld of spatio-
temporal deformation vectors: A di�eomorphism (that its, spatial the Jacobian
is nowhere vanishing).

We wish the interpolation to satisfy the following constraints: (i) approxima-
tion, (ii) regularity, (iii) shadowing, (iv) maximumprinciple. (i) The interpolated
vector �eld must approximate the data values well since localization of the fea-
tures are assumed relatively precise. (ii) In regions of missing features a smooth
solution must be created. We do assume a regular growth. (iii) The data must be
able of shadowing each other. That is, in a given direction only the nearest data
must be weighted. In this way, we avoid that features from the \other side" of a
thin structure inuence the local solution. (iv) The solution must not extend the
solution to values larger than the largest data value or smaller than the smallest
data value. We assume that the ridge lines also correspond to lines of extreme
growth.

We address this as a statistical inference problem. Assume that the covariance
function C(x; x0) is known. The covariance function expresses the covariance of
the vector �eld values in two points x and x0. Typically, the closer the points are,
the more correlated their data values are assumed to be. An interesting aspect
is that if this covariance de�nes a distribution of functions, and if C(x; x0) =
exp(�(jx� x0j=�)�), some well-known function classes appear with probability
1, for di�erent choices of �: � = 0 yields white noise, � 2]0; 2[ yields fractional
Brownian motions with � = 1 as the classical Brownian motion [12], while � = 2
(the Gaussian) yields C1 functions. Given the covariance function C(x; x0) and
an expression of the belief in data as the assumed variance of data values r2, we
can make a maximum likelihood estimation of f(x) as [16]

f(x) =
w(x;x)Q�1g(x)

w(x;x)Q�11
(1)

where w(x;x) is a vector containing wi = C(x; xi), and Q is a matrix containing
Qij = C(x1; x2) + r2�ij . The intuitive interpretation of the introduction of Q�1

is that, prior to the regularizations based on the covariance function, an inverse
�ltering is performed to make the samples uncorrelated. In terms of scale-space,
we might say that we have data given at some scale �. To interpolate, we �rst
perform a deblurring to scale zero, then interpolate and then blur back to the
current scale.

This method satis�es all criteria when � = 1 and r = 0 [13]. � can be
chosen freely, so as to adjust the smoothness of the interpolated vector �eld. In



Figure 4, the deformation of the mandible is shown as it is transported along
the deformation vector �eld.

Fig. 4. Result of deformations on the 7 years mandible using a second order polynomial
model (see section 5). The top left and right images are the deformation at 9 months and
21 months, respectively. The bottom right image is the original 7 years old mandible.

5 Growth Modelling

We have the general model g(�(x; y; z); t), g : R3 7! R3 (for �xed t), and the 3D
volumes vi(x; y; z), where �(x; y; z) is the parameters for g, and (x; y; z) de�nes
a point in R3. t is the time. i = f1; : : : ; ng. n is the total number of volumes.
ti is the time at the ith scan. We need to pick a reference volume, let's say vn.
All deformations will then be applied to this set, i.e. a simulated volume at time
t is given by ~vn(g(�(x; y; z); t); vn(x; y; z)) or ~vn(x; y; z; t) for short. We want to
solve the problem

�̂ = arg min
�

nX
i=1

"X
x;y;z

f~vn(x; y; z; ti)� vi(x; y; z; ti)g
2

#
(2)

Note, when having g(�(x; y; z); t), the actual deformation on the volume vn from
time tn to t, can always be made by a linear deformation (we just pick the straight



Fig. 5. Left: Mandibular tracing at three age stages (this is not the same patient as
for the CT scans) superimposed in a reference line in the corpus with reference to
natural structures. Middle: Curve for yearly rate of condylar growth. Both plots are
data from the same patient with a normal mandibular growth. Right: Mandibular growth
tracing superimposed by means of metallic implants, illustrating the yearly growth and
remodelling of the mandible and the eruption if the teeth, as seen in pro�le view. From
[1].

line between two homologous points in ~vn(x; y; z; t) and vn(x; y; z)). In general,
this leads to a non-linear optimization problem, but if we pick models, linear in
the parameters, regression analysis [9] can be used. Linear models

g(�(x; y; z); t) = �(x; y; z) � t (3)

have been used in previous work [2]. This model has the drawback that a point,
p, can only grow in the direction of the vector �(p). From Figure 5, it is obvious
that the growth of the mandible is not linear. The simplest non-linear model is
a polynomial model (with k � 2)

g(�(x; y; z); t) = tk�k + � � �+ t2�2 + t�1 + �0; � = [�k � � ��2 �1 �0] (4)

As seen from Figure 5, the growth speed is not constant, but this can be handled
by the model by re-parametrizing the time variable, t.

Because we only have three scans of the same patient, we can not go above the
second order model3 (k=2). A second order polynomial model is estimated using
the matches between scan one and two, and scan two and three. Interpolation
of the volumes is carried out by deforming the last scan (see Figure 4). Because
the calculation of the deformation �eld from one scan to the next scan is not
perfect, we have some model errors (even though the model itself doesn't have
any error) which are seen in Figure 7. Other possible models include logarithmic
spirals and power functions, known from the theory of growth [5] or spatially
constrained models.

3 This leads to a model error equal zero, because the number of parameters equals the
number of volumes.



6 Growth Analysis

The growth modelling is on its own also a growth analysis since residuals to
an over-constrained model may be used for validating the model. The growth
simulations, as we obtain it in Figure 4, can be used for a local characterization
of the growth. The model errors at 9 months are shown in Figure 7. Using
anatomical structures which are also spatially stable, a rigid registration of the
di�erent time instances of the bone can be obtained. In the mandible, the nerve
canal is known to be spatially stable, and can serve as an anchor for a rigid
registration. In this coordinate system, the spatio-temporal growth simulation
vector �eld can be used directly for estimation of the amount of surface resorption
and deposition. In Figure 8 we show the surface remodelling in terms of a color
coding of the mandible as respectively the remodelling (the local velocity vector
projected to the surface normal) and the speed of the homologous points. The
remodelling is consistent with earlier 2D studies on larger statistical material
[1]. Especially we see the expected large movement of the condyle.

7 Summary

We have simulated the growth of the mandible from 3 CT scans of the same
patient at ages 9 months, 21 months, and 7 years. The intermediate interpolated
time instances also exhibit shapes that clearly are \mandible shaped". This is
due to the strategy of interpolating in shape feature position instead of a simple
surface position interpolation [2]. The major errors in the simulations are found
in the region where teeth are appearing. In principle, they should a priori have
been removed from the mandible surfaces, as they are not part of the mandible
but separate objects, and the shape change can not be contributed to a surface
remodelling. The shape modelling in this paper has used simple second order
polynomial temporal models. They exhibit some inexpedient features inherent
for polynomial approximations. An example is a tendency to a contraction of
the two condyles towards each other if a time extrapolation is attempted. Since
the ultimate goal of a growth analysis and modelling is a prediction of the
shape of the craniofacial complex. Future work will be devoted to examination
of superior temporal models and validation on more datasets. Extension of the
feature matching from ridge lines to iso-surfaces, as mentioned in Figure 7, may
reduce errors. Also development of a skeletal growth atlas, which contains growth
models for all bones would be interesting.
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Comments on color images. Fig. 6: The �nal matches (lines in black) be-
tween two sets of crest lines. The crest lines on the 21 months and 7 years
mandible are red and green, respectively. It is seen that the condyles on the two
mandibles are matched together. For visual clarity only every eighth match is
shown. Fig. 7: The plots in the middle and right shows the frequency and accu-
mulated distribution of the distance errors (the distance errors are measured as
the minimal distances from the deformed surface to the original surface) between
the 9 months old mandible and the 7 years old mandible deformed to 9 months.
The mean error is 0.57mm, and 95% of the errors are less than 1.46mm. The
maximal error is 2.79mm. This should be compared to the size of the 7 years old
mandible whice is approximately (X;Y; Z) = (80mm; 100mm; 40mm). The left
surface is colored red when the error > 1:46mm, else white. When the surface
changes a lot the matching algorithm does not match with lines in the \holes"
of the surface, but are more likely to match with a line on the \top", therefor we
see the errors located at places with a lot of changes in the shape. If we applied a
surface to surface registration afterwards, the errors would be minimal. Fig. 8:
First row: The 7 years mandible colored with the local velocity vector projected
to the surface normal (left) and the length of the velocity vector (right). The
next row shows X (�rst two images), Y (next two images), and Z (last two im-
ages) components of the velocity vector (projection and length, respectively).
Read text in \Growth Analysis" for further explanation.



Fig. 6. See \Comments on color images".
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Fig. 7. See \Comments on color images".

Fig. 8. See \Comments on color images".


