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Summary

The subject of this thesis is modelling of fed-batch processes for the purpose of
state estimation and optimal control, the motivation being the shortcomings
of present industrial approaches to fed-batch process operation with respect to
achieving uniform operation and optimal productivity, and the resulting need
for development of an appropriate model-based approach to automatic ope-
ration capable of achieving these goals. A number of requirements for such
an approach are therefore listed, and a review of various approaches reported
in literature is given along with a discussion of their merits with respect to
meeting these requirements. This review indicates that it may be particularly
advantageous to use an approach incorporating continuous-discrete stochastic
state space models, which are models consisting of a set of stochastic differential
equations describing the dynamics of the system in continuous time and a set
of algebraic equations describing how measurements are obtained at discrete
time instants. This is due to the fact that such models combine the strengths of
first engineering principles models and data-driven models, neither of which are
ideally suited in their own right. Based on continuous-discrete stochastic state
space models, the main features of an overall framework for fed-batch process
modelling, state estimation and optimal control are therefore first established,
but since this framework incorporates modelling as well as experimental design
and state estimation and optimal control, attention is restricted to the model-
ling part, to facilitate which a grey-box modelling framework is proposed.

This framework is based on a grey-box modelling cycle, the idea of which is to
facilitate the development of models of fed-batch processes for the purpose of
state estimation and optimal control. This modelling cycle, which comprises
six different tasks, is the main result of the thesis, and much emphasis is put on
describing methods and tools to facilitate its individual tasks. In this regard,
particular emphasis is put on describing the extension of an existing para-
meter estimation method for continuous-discrete stochastic state space models
to make it more readily applicable to models of fed-batch processes and the
implementation of this method in a computer program called CTSM, and it
is shown that this program is superior, both in terms of quality of estimates
and in terms of reproducibility, to another program implementing a similar es-
timation method. Additional tools, implemented in MATLAB, which facilitate
other important tasks within the grey-box modelling cycle are also described,
and based on all of the individual tasks of the modelling cycle a grey-box
modelling algorithm that facilitates systematic iterative model improvement is
presented, and its key features and limitations are subsequently discussed.
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A particularly important such feature is that the methodology provided by
the grey-box modelling algorithm facilitates pinpointing of model deficiencies
based on information extracted from experimental data and subsequently al-
lows the structural origin of these deficiencies to be uncovered as well to provide
guidelines for model improvement. This is a very powerful feature not shared
by other approaches to grey-box modelling reported in literature, which rely
solely on the model maker to determine how to improve the model, and it
is therefore argued that, in this particular sense, the proposed methodology
is more systematic, which is a key result. However, like other approaches to
grey-box modelling, the proposed methodology is limited by the quality and
amount of available prior physical knowledge and experimental data, and a dis-
cussion of the implications of these limitations is also given. The performance
of the proposed methodology is demonstrated through a number of application
examples, based on which it is then argued that, although no rigorous proof of
convergence exists, the grey-box modelling algorithm may in fact converge for
certain simple systems, and that, in any case, the proposed methodology can
be applied to facilitate faster model development. A generalized version of the
grey-box modelling algorithm, which is not limited to modelling of fed-batch
processes for the purpose of state estimation and optimal control but can be
applied to model a variety of systems for different purposes, is also presented.



Resumé p̊a dansk

Emnet for denne afhandling er modellering af fed-batch processer med henblik
p̊a tilstandsestimering og optimal regulering, hvilket er motiveret af det faktum,
at aktuel industriel praksis for drift af fed-batch processer ikke er i stand til at
sikre et ensartet procesforløb og i særdeleshed ikke optimal produktivitet, samt
af det heraf afledte behov for udvikling af en passende modelbaseret metode til
automatisk drift, som er i stand til at opn̊a disse mål. Derfor opstilles en række
krav til en s̊adan metode, og en række metoder fra litteraturen gennemg̊as med
henblik p̊a at vurdere deres evne til at opfylde disse krav. Denne gennemgang
viser, at der med fordel kan benyttes en metode, som baserer sig p̊a kontinuert-
diskrete stokastiske tilstandsmodeller, dvs. modeller best̊aende af et sæt af
stokastiske differentialligninger, der beskriver systemets dynamik i kontinuert
tid, samt et sæt af algebraiske ligninger, der beskriver hvorledes der måles
p̊a systemet til diskrete tidspunkter. Dette skyldes, at s̊adanne modeller er i
stand til at kombinere fordelene ved rent deduktive henholdsvis rent induktive
modeller, hvoraf ingen i sig selv er helt ideelle. Baseret p̊a kontinuert-diskrete
stokastiske tilstandsmodeller opstilles derfor først rammerne for en overordnet
metode til modellering, tilstandsestimering og optimal regulering af fed-batch
processer, men da denne metode omfatter b̊ade modellering, eksperimentelt
design og tilstandsestimering og optimal regulering, begrænses fokus herefter
til modelleringsdelen, hvortil der foresl̊as en grey-box-modelleringsmetode.

Denne metode er baseret p̊a en grey-box-modeldannelsescyklus, som kan bruges
til opstilling af modeller af fed-batch processer med henblik p̊a tilstandsestime-
ring og optimal regulering. Denne modeldannelsescyklus, som best̊ar af seks
forskellige trin, er afhandlingens hovedresultat, og der lægges vægt p̊a at be-
skrive metoder og værktøjer, der kan bruges i forbindelse med hvert af disse
trin. Eksempelvis lægges der særlig vægt p̊a at beskrive udvidelsen af en ek-
sisterende metode til estimering af parametre i kontinuert-diskrete stokastiske
tilstandsmodeller, s̊aledes at den egner sig bedre til modeller af fed-batch pro-
cesser, samt p̊a implementeringen af denne metode i et computerprogram kaldet
CTSM, og det vises at dette program er væsentligt bedre, b̊ade med hensyn
til estimaternes kvalitet og med hensyn til reproducerbarhed, end et andet pro-
gram, der bygger p̊a en lignende metode. Værktøjer implementeret i MATLAB,
der kan bruges i forbindelse med andre trin i grey-box-modeldannelsescyklussen
beskrives ogs̊a, og baseret p̊a samtlige de enkelte trin præsenteres en grey-box-
modelleringsalgoritme, der kan bruges til systematisk iterativ forbedring af
modeller, og dennes egenskaber og begrænsninger diskuteres herefter kort.
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En særligt vigtig egenskab er, at grey-box-modelleringsalgoritmen bibringer
en metodik, der kan bruges til at lokalisere mangler i modeller ved hjælp af
information fra eksperimentelle data, hvorefter årsagen til disse mangler kan
afdækkes p̊a en måde, der giver et fingerpeg om, hvorledes modellen kan for-
bedres. Dette er en særdeles vigtig egenskab, som andre metoder til grey-box-
modellering fra litteraturen ikke besidder, idet de i stedet er helt afhængige af
brugerens evne til at foresl̊a modelforbedringer, hvorfor der kan argumenteres
for, at den her foresl̊aede metode i denne henseende er mere systematisk, hvilket
er et vigtigt resultat. P̊a linie med andre metoder til grey-box-modellering er
den her foresl̊aede metode dog begrænset af b̊ade mængden og kvaliteten af den
a priori viden og de eksperimentelle data, der er til r̊adighed, s̊a der gives ogs̊a
en diskussion af konsekvenserne heraf. Den foresl̊aede metodik illustreres via en
række anvendelseseksempler, p̊a basis af hvilke der argumenteres for, at grey-
box-modelleringsalgoritmen faktisk kan konvergere for visse simple systemer,
selvom der ikke findes noget stringent bevis for dette, samt for, at metodikken
under alle omstændigheder gør modelopstillingsarbejdet lettere. Der præsen-
teres desuden en generaliseret udgave af grey-box-modelleringsalgoritmen, som
ikke er begrænset til modellering af fed-batch processer med henblik p̊a til-
standsestimering og optimal regulering, men som kan bruges mere generelt til
modellering af en lang række systemer med henblik p̊a forskellige formål.
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1

Introduction

The purpose of this chapter is to motivate the work presented in this thesis,
state the objective of the work and give a brief overview of the most impor-
tant results. Since the primary focus of the work is on modelling of fed-batch
processes for the purpose of state estimation and optimal control, Section 1.1
is devoted to establishing some basic principles for such processes. Within
this section an introduction to modelling of fed-batch processes based on first
engineering principles is given along with an outline of the state of the art of
fed-batch process operation in industry. By means of a discussion of present
shortcomings of the latter the motivation is given in Section 1.2 in terms of an
expression of the need for an efficient approach to automatic fed-batch process
operation and a list of requirements for such an approach. A review of various
approaches reported in literature is also given along with a discussion of their
merits with respect to meeting these requirements. This review serves to further
motivate the work, the objective of which is stated in Section 1.3 in terms of
a proposal for an alternative approach in the form of an overall framework
for fed-batch process modelling, state estimation and optimal control based
on grey-box models. Attention is then restricted to the modelling part of this
framework, a description of which is also given, and based on this description,
an overview of the most important results is given in Section 1.4. Finally, an
outline of the contents of the remainder of the thesis is given in Section 1.5.

1.1 Preliminaries

Fed-batch processes are common in chemical industry, ranging from conven-
tional semi-batch reactors in the specialty chemicals industry to fed-batch
bioreactors in the biochemical and pharmaceutical industries, and they are
characterized by taking place in a closed vessel and by running for a finite
period of time or until a certain amount of product has been obtained. Du-
ring the entire course of a fed-batch run new reactants are continuously fed
to the vessel, but no products are taken out until the end, where the vessel is
emptied and the contents led to downstream processing equipment. Fed-batch
processing is often used when continuous processing is infeasible, the idea being
to maintain some level of continuity in production by repeating the process.



2 Introduction

1.1.1 Basic fed-batch process modelling

Within chemical engineering the derivation of mathematical process models
is traditionally based on first engineering principles, which means that model
development starts off from the general balance equation, i.e.:

Accumulation = Input + Generation - Output - Consumption (1.1)

which applies to mass, energy and other conserved quantities for all types of
processes and gives rise to a set of ordinary differential equations, i.e.:

dxt

dt
= f(xt,ut, t,θ) (1.2)

where t ∈ R is time, xt ∈ X ⊂R
n is a vector of balanced quantities, ut ∈ U ⊂R

m

is a vector of input variables and θ ∈ Θ ⊂ R
p is a vector of parameters, and

where, in the general case, f (·) ∈ R
n is a nonlinear function. In addition to the

above set of differential equations a number of implicit algebraic equations are
usually needed, e.g. in order to describe the thermodynamics of the process.

Models of fed-batch processes are often linear in the input variable(s), which
gives rise to a simpler set of ordinary differential equations, i.e.:

dxt

dt
= f(xt, t,θ) + g(xt, t,θ)ut (1.3)

where t ∈ [t0, tf ] ⊂ R is time, xt ∈ X ⊂ R
n is a vector of balanced quantities,

ut ∈ U ⊂ R
m is a vector of input variables and θ ∈ Θ ⊂ R

p is a vector of para-
meters, and where f(·) ∈ R

n and g(·) ∈ R
n×m are nonlinear functions.

A model of this type is described in the following example, and, whenever
possible, this simple model of a fed-batch fermentation process will be used to
illustrate important concepts throughout the remainder of this thesis.

Example 1.1 (A model of a fed-batch fermentation process)
This example describes a simple model of a fed-batch fermentation process. Figure 1.1
shows a sketch of the process with a stream of medium, which consists of water and
substrate, being fed to a stirred tank reactor containing fermentation broth, which
consists of water, substrate and biomass. The model describes growth of biomass on
a single substrate with Monod kinetics and substrate inhibition as follows:

dX

dt
= µ(S)X − FX

V
(1.4)

dS

dt
= −µ(S)X

Y
+

F (SF − S)

V
(1.5)

dV

dt
= F (1.6)

for t ∈ [t0, tf ], where X ( g
l
) is the biomass concentration, S ( g

l
) is the substrate

concentration, V (l) is the reactor volume, F ( l
h
) is the feed flow rate, Y = 0.5 is

a yield coefficient and SF = 10 g
l

is the feed concentration of substrate. t0 = 0h and
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F
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V

Figure 1.1. Simple sketch of a fed-batch bioreactor.

tf = 3.8h are initial and final times of a typical fed-batch run and µ(S) (h−1) is the
biomass growth rate, which can be represented by the following expression:

µ(S) = µmax
S

K2S2 + S + K1
(1.7)

where µmax = 1h−1, K1 = 0.03 g
l

and K2 = 0.5 l
g

are kinetic parameters. The para-
meter values used correspond to the values used by Kuhlmann et al. (1998). �

1.1.2 Fed-batch process operation

In industry fed-batch processes are repeated over and over again to maintain
some level of continuity in production. To ensure uniform product quality
and to ease the problem of overall scheduling in a plant with several pieces
of processing equipment in series or parallel, it is desirable to have similar
operating conditions every time a process is repeated. In other words one goal
of fed-batch processing is uniform operation. Another goal, and a goal which is
more difficult to achieve, is optimal productivity. The definition of productivity
depends on the particular process. It is usually a function of the amount of
product at the end of a run and the product quality and purity, but it may also
be a function of the utilization of reactants or the formation of biproducts.

Determining operating conditions, which ensure uniform operation and optimal
productivity, is very difficult, because it involves developing a sufficiently ac-
curate mathematical model of the process, stating a reasonable optimisation
problem and subsequently solving this problem. Three steps, which are all
difficult in their own right, but which together and along with the limitations
set by the fact that the real world is not ideal, pose a problem, which is al-
most impossible to solve. The best way to illustrate this is to give an example,
showing how the solution to a particular productivity maximization problem
can be used to determine the operating conditions for a fed-batch process in
an ideal world, and subsequently explain why this approach fails in practice.
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Example 1.2 (Optimal operation of the fermentation process)
The model described in Example 1.1 was used by Kuhlmann et al. (1998) in a simu-
lation study of optimisation of fed-batch fermentation processes, where the objective
was to optimize the production of biomass by manipulating the feed flow rate given
a set of fixed initial conditions and constraints on the reactor volume and the feed
flow rate. The present example illustrates how a relaxed version of this optimisation
problem with manipulable initial conditions and without constraints can be solved
analytically, as shown by Visser (1999). The problem can be stated as follows:

max
X0,S0,V0,

F (t) , t∈[t0 ,tf ]

V (tf )X(tf ) (1.8)

subject to:

dX

dt
= µ(S)X − FX

V
dS

dt
= −µ(S)X

Y
+

F (SF − S)

V
dV

dt
= F

,

X(t0) = X0

S(t0) = S0

V (t0) = V0

, t ∈ [t0, tf ] (1.9)

where:

µ(S) = µmax
S

K2S2 + S + K1
(1.10)

In other words, the problem is to determine the initial conditions and the open loop
feed flow rate trajectory that gives optimal productivity in terms of the amount of
biomass at the end of a run. By applying an appropriate variable transformation
and subsequently using Pontryagin’s maximum principle, or by simply applying the
intuitive argument that the productivity is maximized when the biomass growth rate
is maximized, the following condition for optimal operation can be obtained:

0 =
dµ(S)

dS
= µmax

K1 − K2S
2

(K2S2 + S + K1)
2
⇒ S =

√
K1

K2
= S∗ (1.11)

Assuming that the initial substrate concentration S0 = S∗ and by choosing the feed
flow rate in a way that makes dS

dt
= 0, S can be kept at S0 = S∗, i.e.:

0 =
dS

dt
= −µ(S0)X

Y
+

F (SF − S0)

V
⇒ F =

µ(S0)XV

Y (SF − S0)
(1.12)

This expression is inserted into the other two equations of the original model, i.e.:

dX

dt
= µ(S0)X − µ(S0)XV

Y (SF − S0)

X

V

dV

dt
=

µ(S0)XV

Y (SF − S0)

,
X(t0) = X0

V (t0) = V0

, t ∈ [t0, tf ] (1.13)

and by setting a = µ(S0) and b = µ(S0)
Y (SF −S0)

, the equation for X can be solved:

dX

dt
= aX − bX2

X =
aeatc

1 + beatc
, t ∈ [t0, tf ]

(1.14)
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with c = X0
a−bX0

, whereupon the equation for V can be solved as follows:

dV

dt
= bXV = b

aeatc

1 + beatc
V

V =
1 + beatc

1 + bc
V0 , t ∈ [t0, tf ]

(1.15)

By substituting these solutions back into the equation for the feed flow rate, i.e.:

F = bXV = b
aeatc

1 + beatc

1 + beatc

1 + bc
V0

= beatX0V0 , t ∈ [t0, tf ]

(1.16)

an analytical expression for the optimal feed flow rate trajectory can be obtained. �

The example above shows how the solution to a particular productivity maximi-
zation problem can be used to determine the operating conditions for a process
in an ideal world. However, the real world is not ideal, so in practice this
approach fails. More specifically, the approach relies on the assumption that
the model of the process is correct and that there are no disturbances. This
is due to the fact that the feed flow rate trajectory is an open loop trajectory
calculated off-line, meaning that no measures can be taken on-line to account
for the effects of mismatch between the model and the actual process and for
the effects of disturbances. In the real world fed-batch processes are always
affected by disturbances, and no model can ever capture all the characteristics
of a process. In other words an alternative approach, which is able to handle
model uncertainty and disturbances, is needed. An essential part of such an
approach is a feedback controller, which acts on measurements of process va-
riables, but because measurements can only be obtained at discrete points in
time, and because not all process variables can be measured, especially not
on-line, the approach must be able to handle discretely, partially observed
systems, and because the measurements that are available may be corrupted
with measurement noise, the approach must be able to handle this as well.

A number of such approaches have been presented in literature, and some have
even been successfully applied to laboratory scale processes. Unfortunately, in-
dustrial scale processes are more complicated and more difficult to control, e.g.
due to operational limitations such as unknown initial conditions and state and
input variable constraints, so very few of these approaches have been imple-
mented in industry. Today most fed-batch processes in industry are therefore
run by a human operator according to personal experience and rules of thumb,
and as a result operation is not always uniform and optimal productivity is
seldom obtained. More details about the state of the art of fed-batch process
operation are given by Bonvin (1998) and Srinivasan et al. (2002a,b).
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1.2 Motivation

From the discussion given in the previous section it is evident that there is a
need for an efficient approach to operation of fed-batch processes, which will
ensure uniform operation and optimal productivity in an automatic manner,
i.e. without requiring the intervention of a human operator. Such an approach
must be model-based and it must reflect the fact that fed-batch processes are
inherently nonlinear. Furthermore, it must be able to handle model uncer-
tainty and disturbances, even for discretely, partially observed systems with
measurement noise. Finally, it must be able to handle operational limitations
such as unknown initial conditions and state and input variable constraints.

The first step towards developing an approach that fulfills these objectives, is
to decide how to model fed-batch processes. Should modelling be based on first
engineering principles? Should it be data-driven? Or should it somehow be a
combination of both of these approaches? This is discussed in the following.

1.2.1 First engineering principles modelling

Models based on first engineering principles are intuitively appealing in the way
they are derived and in their ability to reflect the nonlinear nature of fed-batch
processes. Most of the work that has been presented in literature on automatic
operation of fed-batch processes is based on such models.

In early papers there was a tendency to assume ideal world conditions and
concentrate on calculating optimal open loop input trajectories. An example
by Visser (1999) of an analytical solution to a problem of this type has already
been given. For more complicated systems, where no analytical solution exists,
Cuthrell and Biegler (1989) have shown how to find a solution by applying
orthogonal collocation, formulating a nonlinear program (NLP) and solving
the NLP by applying successive quadratic programming (SQP). A detailed
overview of both anatytical and numerical solution methods for such batch
process optimisation problems is given by Srinivasan et al. (2002a).

More recently Ruppen et al. (1995) and Kuhlmann et al. (1998) have shown
how to account for model uncertainty when determining optimal open loop
input trajectories. An overview of these and similar methods for batch process
optimisation under uncertainty is given by Srinivasan et al. (2002b).

These methods still fail to account for disturbances, however, and because pre-
determined uncertainty bounds are assumed, there is a risk of obtaining overly
conservative input trajectories, but these problems can be solved by applying
feedback control along the input trajectories as shown by Kuhlmann et al.
(1998) and Visser (1999), and by using experimentally determined uncertainty
bounds. Unfortunately, the latter is difficult due to the nonlinear nature of
fed-batch processes, and both the former and the latter is complicated by the
fact that such processes are examples of discretely, partially observed systems.
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An alternative way to account for model uncertainty and disturbances that has
also been reported in literature, is to apply robust control along open loop input
trajectories determined without accounting for model uncertainty. It is very
difficult to apply nonlinear robust control directly, so a two-loop controller
with an inner-loop nonlinear linearizing controller and an outer-loop linear
robust controller is often used to account for the nonlinear nature of fed-batch
processes. Constructing a nonlinear linearizing controller involves complicated
analytical manipulations based on Lie algebra to determine an expression for
the nonlinear compensator, and evaluating the expression for the compensator
usually requires current values of all state variables, so, although nonlinear
observers can be designed to provide estimates of these for discretely, partially
observed systems, this approach is unsuitable for industrial scale processes.

Adaptive control provides yet another way to account for model uncertainty
and disturbances as shown by e.g. Dochain and Bastin (1988) and van Impe
and Bastin (1995). The idea is to use the information that is obtained when
determining open loop input trajectories to form model-independent heuristic
control objectives that can easily be fulfilled by applying nonlinear linearizing
control based on on-line state and parameter estimation. Unfortunately, relying
on nonlinear linearizing control, this approach is hardly suitable for industrial
scale processes either, but unlike the other approaches described here, it is able
to handle discretely, partially observed systems with measurement noise.

The above approaches to automatic operation of fed-batch processes based
on first engineering principles models all have obvious shortcomings. This in-
dicates that, although intuitively appealing, such models are not necessarily
adequate for modelling fed-batch processes for the purpose of automatic ope-
ration. Furthermore, first engineering principles models are time-consuming to
develop, because few systematic methods are available for making inferences
about the proper structure of such models, which can seldom be determined
completely from prior physical knowledge, and because the parameters of such
models can only be estimated from experimental data with parameter estima-
tion methods that tend to give biased and unreproducible results, because ran-
dom effects are absorbed into the parameter estimates. Data-driven models, for
which systematic methods for structural identification and more appropriate
parameter estimation methods are available, are therefore often used instead.

1.2.2 Data-driven modelling

Data-driven models are developed through identification experiments, usually
in the form of input-output models. In principle, data-driven models include
both nonparametric and parametric models and may be formulated in both
continuous and discrete time, but discrete time parametric models are by far
the most widely used, so for the purpose of the following discussion the term
“data-driven models” means discrete time parametric input-output models.
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Relying predominantly on data-based information and being sensitive to the
quality of this information, data-driven models are not as appealing as first
engineering principles models in terms of providing a consistent and physically
meaningful system description, but they are easier to use for fed-batch process
modelling, because their inherent input-output nature make them suitable for
discretely, partially observed systems with measurement noise, and because
their development through identification experiments allows statistical infor-
mation about model uncertainty to be obtained directly and non-conservatively.

Unfortunately, nonlinear data-driven models, which most adequately reflect the
nonlinear nature of fed-batch processes, are difficult and computationally bur-
densome to identify as discussed by Unbehauen (1996). Hence the amount of
work that has been presented in literature on automatic operation of fed-batch
processes with such models is not substantial. A larger amount of work has
been presented with linear data-driven models, particularly for the purpose of
monitoring but also for the purpose of automatic operation. A quite promi-
sing approach in this area has been proposed by Lee et al. (1999) and is based
on exploiting the repetitive nature of fed-batch processes by combining itera-
tive learning with a model predictive control (MPC) scheme for simultaneous
trajectory tracking and quality control. Explaining in more detail, how this ap-
proach works, is quite involved, but the general idea is to make a model from
run to run of the errors with respect to pre-determined reference trajectories
and use this model along with information from previous runs and measure-
ments from the current run to improve the performance of the current run. The
most considerable advantage of this approach is its ability to handle processes
with inherently nonlinear intra-run dynamics by instead modelling run-to-run
dynamics in a linear fashion. Good results have been reported by Lee et al.
(1999), showing the ability of this approach to improve the performance from
run to run by decreasing the errors. The only problem is that pre-determined
reference trajectories are needed. Such trajectories may be determined in two
different ways. They may be specified by a human operator according to per-
sonal experience and rules of thumb, in which case the approach will guarantee
uniform operation to a certain extent, but not optimal productivity. Alterna-
tively, to achieve this, the necessary reference trajectories may be determined
by solving an optimisation problem using a suitable intra-run model of the
process, but finding a data-driven model for this purpose is difficult, because
the model must be able to reflect the nonlinear nature of fed-batch processes.

Evaluating the usefulness of data-driven models, this is a serious drawback, as is
the lack of appeal in terms of providing a consistent and physically meaningful
system description as well as the sensitivity of data-driven models to the qua-
lity of the data-based information used for their development, because of the
substantial influence it may have on the solution to an optimisation problem if
the model being used is based on data obtained under non-optimal conditions,
and this all indicates that data-driven models are not necessarily adequate for
modelling fed-batch processes for the purpose of automatic operation either.
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1.2.3 Hybrid modelling

With the above discussion in mind, it seems natural to combine first engineering
principles modelling and data-driven modelling into a hybrid modelling scheme
that takes advantage of the strenghts of both, and a number of such schemes,
based on neural networks, have been developed within the last decade.

One of the first was proposed by Psichogios and Ungar (1992), who suggested
to use neural networks to model the state-dependence of certain parameters of
a first engineering principles model, e.g. the biomass growth rate in a model of
a fed-batch bioreactor. The objective of their work was to develop a modelling
scheme that was more flexible than classical parameter estimation schemes
and more efficient than purely data-driven modelling, and judging from their
simulation results, the proposed hybrid model performed very well in that
respect. More specifically, without having to know the specific parameterization
of the state-dependence of the biomass growth rate, and without having to train
the neural network that was used instead for very long, the hybrid model was
able to very accurately predict the evolution of the state variables.

Following the work by Psichogios and Ungar (1992) and work in the same area
by Su et al. (1993), a number of different applications of hybrid modelling with
neural networks have been reported, e.g. by Martinez and Wilson (1998), who
successfully applied hybrid modelling to the optimisation of a batch unit.

A considerable advantage of hybrid modelling with neural networks is that it
is relatively easy to use and therefore readily applicable to simple systems. For
more complicated systems, however, extensive training data sets may be needed
and determining a suitable model may be very time-consuming, particularly
if the model elements modelled with neural networks depend on unmeasured
state variables, or if the measurements are corrupted with noise. This in turn
stresses the need to find other modelling approaches that are more adequate
for modelling fed-batch processes for the purpose of automatic operation.

1.2.4 Grey-box modelling

One such approach, and another approach that provides an appealing trade-
off between first engineering principles modelling and data-driven modelling, is
grey-box modelling (Madsen and Melgaard, 1991; Melgaard and Madsen, 1993;
Bohlin and Graebe, 1995; Bohlin, 2001), which aims at developing stochastic
state space models consisting of a set of stochastic differential equations (SDE’s)
describing the dynamics of the system in continuous time and a set of discrete
time measurement equations. The key idea of grey-box modelling is to find
the simplest model for a given purpose, which is consistent with prior physi-
cal knowledge and not falsified by available experimental data. In the specific
approach by Bohlin and Graebe (1995) and Bohlin (2001), this is done by
formulating a sequence of hypothetical model structures of increasing complexi-
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ty and systematically expanding the model by falsifying incorrect hypotheses
through statistical tests based on the experimental data. A major advantage of
this approach is that by proper selection of these tests, models can be developed
with different properties, e.g. in terms of prediction capabilities, which means
that models can be designed specifically to serve a given purpose, including
automatic operation of fed-batch processes. A drawback is that it is an itera-
tive and inherently interactive approach, because it relies on the model maker
to formulate the hypothetical model structures to be tested, which poses the
problem that the model maker may run out of ideas for improvement before
a sufficiently accurate model is obtained. However, the advantages of grey-
box modelling seem to outweigh the drawbacks, for which reason this is the
approach that has been further pursued in the work presented in this thesis.

Grey-box models are designed to accomodate random effects and allow for
a decomposition of the noise affecting the system into a process noise term
and a measurement noise term. As a consequence of this prediction error
decomposition (PED), unknown parameters of such models can be estimated
from experimental data in a prediction error (PE) setting (Young, 1981) as is
the case for data-driven models, whereas for first engineering principles models
it can only be done in an output error (OE) setting (Young, 1981), which
tends to give biased and less reproducible results, because random effects are
absorbed into the parameter estimates. Furthermore, PE estimation allows
for subsequent application of a number of powerful statistical tools to provide
indications for possible model improvements. In fact, one of the key results of
the work presented in this thesis is that, by proper application of such tools,
grey-box modelling can be made more systematic and less reliant on the model
maker than in the approach by Bohlin and Graebe (1995) and Bohlin (2001).

1.3 Objective

As indicated in the previous section there is a need to find new modelling
approaches, which are suited for automatic operation of fed-batch processes
with the aim of achieving uniform operation and optimal productivity. The
work presented in this thesis focuses on this issue, and the objective of the
work has been to develop a systematic grey-box modelling framework for fed-
batch process modelling for the purpose of automatic operation. However,
because the models developed within this framework must be applicable in the
context of an appropriate overall framework for automatic operation, which
is able to fulfill the goals of uniform operation and optimal productivity, the
main features of such a framework have also been established. In the following
an overall framework for fed-batch process modelling, state estimation and
optimal control is therefore briefly outlined before attention is restricted to the
systematic grey-box modelling framework being proposed in this thesis.
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Figure 1.2. An overall framework for fed-batch process modelling, state estimation
and optimal control incorporating the proposed grey-box modelling framework.

1.3.1 Description of the overall framework

The overall framework is best described by considering Figure 1.2, which shows
the individual elements and how they are interrelated. Elements shown in grey
constitute tasks and elements shown in white constitute various items that
serve as input to or output from the individual tasks of the framework. The
first and most comprehensive of these tasks is the grey-box modelling cycle,
which constitutes the proposed grey-box modelling framework. A more detailed
outline of this framework is given later, but it serves to combine first engineering
principles modelling with data-driven modelling and therefore has two inputs in
the form of first engineering principles and experimental data, and the output
from the task is a continuous-discrete stochastic state space model, which serves
as input to the remaining tasks of the overall framework. A continuous-discrete
stochastic state space model consists of a continuous time system equation given
by a set of SDE’s and a discrete time measurement equation given by a set of
algebraic equations. The system equation can be formulated as follows:

dxt = f(xt,ut, t,θ)dt+ σ(xt,ut, t,θ)dωt (1.17)
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where t ∈ R is time, xt ∈ X ⊂ R
n is a vector of state variables, ut ∈ U ⊂ R

m

is a vector of input variables, θ ∈ Θ ⊂ R
p is a vector of parameters, f(·) ∈ R

n

and σ(·) ∈ R
n×n are nonlinear functions and {ωt} is an n-dimensional standard

Wiener process. The measurement equation can be formulated as follows:

yk = h(xk,uk, tk,θ) + ek (1.18)

where yk ∈ Y ⊂ R
l is a vector of output variables, h(·) ∈ R

l a nonlinear func-
tion and {ek} an l-dimensional white noise process with ek∈N(0,S(uk, tk,θ)).

Assumption no. 1. Since, as previously mentioned, models of fed-batch
processes are often linear in the input variable(s), it is assumed throughout the
remainder of this thesis that a simplified version of the general formulation can
be used. The simplified system equation can be formulated as follows:

dxt = (f(xt, t,θ) + g(xt, t,θ)ut)dt+ σ(ut, t,θ)dωt (1.19)

where t ∈ [t0, tf ] ⊂ R is time, xt ∈ X ⊂ R
n is a state vector, ut ∈ U ⊂ R

m is
an input vector, θ ∈ Θ ⊂ R

p is a vector of parameters, f(·) ∈ R
n, g(·) ∈ R

n×m

and σ(·) ∈ R
n×n are nonlinear functions and {ωt} is an n-dimensional standard

Wiener process. The measurement equation remains the same, i.e.:

yk = h(xk,uk, tk,θ) + ek (1.20)

where yk ∈ Y ⊂ R
l is a vector of output variables, h(·) ∈ R

l a nonlinear func-
tion and {ek} an l-dimensional white noise process with ek∈N(0,S(uk, tk,θ)).

Assumption no. 2. For the purpose of simplicity it is also assumed that addi-
tional implicit algebraic equations are not needed. As discussed in Chapter 5,
relaxation of this assumption is a very important possible topic for future work.

Having established what is meant by the continuous-discrete stochastic state
space model generated as an output from the grey-box modelling cycle, the
remaining tasks of the overall framework can be explained. The task labeled
experimental design deals with design of identification experiments, i.e. with
how to perform experiments on a given process in a way that provides optimal
information under given circumstances. The model serves as input to this task,
because experimental design is highly dependent on the model to be identified,
and the output from the task is experimental data, implying that performing
experiments is also a part of this task. The experimental data serve as input
to the grey-box modelling cycle, hereby closing the loop shown in Figure 1.2,
the idea of which is to indicate the possibility of repeatedly using the grey-box
modelling cycle and the experimental design task to iteratively improve the
quality of the model. This issue is outside the scope of the work presented in
this thesis, but it is a very important possible topic for future work, as discussed
in Chapter 5. Once the quality of the continuous-discrete stochastic state space
model is satisfactory, the state estimation and optimal control task can be
executed, and, by using the model as input, the idea of this task is to design
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Figure 1.3. The grey-box modelling cycle of the overall framework.

optimal multivariable control, e.g. MPC, with simultaneous state estimation to
achieve the goals of uniform operation and optimal productivity. As discussed in
more detail later, continuous-discrete stochastic state space models have several
attractive features in this regard, but the issue of developing specific methods
for optimal control with simultaneous state estimation based on such models is
outside the scope of the work presented in this thesis. Instead, this is another
very important possible topic for future work, as discussed in Chapter 5.

1.3.2 Description of the grey-box modelling cycle

Returning to the grey-box modelling cycle, which is the main topic of the re-
mainder of this thesis, it is best described by considering Figure 1.3, which
shows its individual elements and how they are interrelated. Again, elements
shown in grey constitute tasks and elements shown in white constitute various
input and output items that have already been described. The idea of the
first task, i.e. the model (re)formulation task, is to use first engineering prin-
ciples and all other relevant prior physical knowledge to construct an initial
continuous-discrete stochastic state space model, or at least to establish the
basic structure of such a model. In the parameter estimation task the idea
then is to estimate the parameters of this model from experimental data using
an appropriate parameter estimation method. On the basis of these estimates
and more experimental data, the idea of the residual analysis task then is to
perform cross-validation residual analysis to obtain information about the qua-
lity of the resulting model. Based on this information, the idea of the model
falsification or unfalsification task then is to determine whether or not the
model is sufficiently accurate for the purpose of state estimation and optimal
control. If this is the case, the model is said to be unfalsified with respect to
the available information and the model development procedure implied by the
grey-box modelling cycle can be terminated, wherupon the model can be used
as input to the state estimation and optimal control task. If, on the other hand,
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the model is falsified, the model development procedure must be repeated, and
the idea of the statistical tests task then is to use statistical tests to pinpoint
deficiencies within the model, if this possible. If this is the case, the idea of
the nonparametric modelling task then is to determine how to repair these
deficiencies by applying nonparametric methods and subsequently using the
resulting information to alter the model in accordance with available physical
knowledge. Hereby returning to the model re(formulation) task, the loop shown
in Figure 1.3 is closed, the idea of which is to indicate the possibility of itera-
tively improving the quality of the model given a fixed amount of experimental
data, until the model is unfalsified, or at least until no more information can
be extracted from the experimental data. In the latter case the model remains
falsified until more information becomes available, e.g. in the form of new ex-
perimental data obtained from specifically designed experiments, as discussed
above. The individual tasks of the grey-box modelling cycle are described in
much more detail in Chapter 2, where an algorithm for systematic iterative
model improvement based on the grey-box modelling cycle is also presented.

1.3.3 Justification for the overall framework

The following discussion serves to justify the overall framework for fed-batch
process modelling, state estimation and optimal control described in this section
as being a powerful alternative to the various other approaches to automatic
operation of fed-batch processes described in the previous section.

An advantage of the overall framework described here is that it combines first
engineering principles modelling with data-driven modelling in a way that re-
tains the intuitive appeal of first engineering principles models in terms of their
derivation and physical interpretability, and at the same time allows iterative
model improvement based on the principles of data-driven modelling, both with
a fixed amount of experimental data and in an iterative scheme that includes
experimental design and facilitates run-to-run updating of the model.

Moreover, the continuous-discrete stochastic state space model has a number
of attractive features of its own with respect to the requirements stated in the
previous section: It is able to reflect the nonlinear nature of fed-batch processes,
the SDE’s in the continuous time system equation (1.19) enables it to handle
uncertainty and disturbances through the diffusion term (the second term), and
the discrete time measurement equation (1.20) enables it to handle discretely,
partially observed systems with measurement noise in a sensible manner.

The overall framework described here also has the advantage of facilitating es-
timation of the parameters of the diffusion term of the system equation and
the noise term of the measurement equation, which in turn allows model uncer-
tainty, disturbances and measurement noise to be handled in a non-conservative
way, which is very important when subsequently using the model for state esti-
mation and optimal control. Continuous-discrete stochastic state space models
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are very easy to use for state estimation, and having estimated the parameters
of the diffusion term and the measurement noise term it is believed that bet-
ter estimates can be obtained than otherwise. Designing optimal multivariable
control based on such models is also believed to be relatively straightforward,
e.g. by means of MPC, which will allow operational limitations such as state
and input variable constraints to be taken into account as well. As mentioned,
a thorough investigation of these issues is outside the scope of the work pre-
sented in this thesis, and the discussion given here merely serves to justify the
efforts put into developing the proposed grey-box modelling framework.

1.4 Overview of results

The work presented in this thesis has been application-oriented in the sense
that, instead of rigorous theoretical developments, the primary focus has been
on development of the proposed grey-box modelling framework and in particu-
lar on the development of a number of simple methods and tools for facilitating
the individual tasks within the grey-box modelling cycle shown in Figure 1.3.

1.4.1 Methods

In terms of methods, the primary result is the grey-box modelling cycle as a
whole, because it provides a methodology for development of models of fed-
batch processes for the purpose of state estimation and optimal control.

A key feature in this regard is that the methodology facilitates systematic pin-
pointing of model deficiencies based on information extracted from experimen-
tal data and allows the structural origin of these deficiencies to be uncovered
as well to provide guidelines for model improvement. This is a very power-
ful feature not shared by other approaches to grey-box modelling reported in
literature, which rely solely on the model maker to determine how to improve
the model. In other words, the proposed methodology is more systematic and
less reliant on the model maker, which is a key result, as is the fact that this
methodology is not limited to modelling of fed-batch processes for the purpose
of state estimation and optimal control but can be generalized into a version
that can be applied to model a variety of systems for different purposes.

Another significant but much more technical result with respect to methods
is the extension of an existing parameter estimation method for continuous-
discrete stochastic state space models by Madsen and Melgaard (1991) and
Melgaard and Madsen (1993) to make it more readily applicable to models of
fed-batch processes. In particular the inability of the original method to handle
models with singular Jacobians has been remedied and the method has been
extended to allow estimation with multiple independent sets of experimental
data and to handle missing observations in a much more appropriate way.
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1.4.2 Tools

In terms of tools, the aforementioned parameter estimation method has been
implemented in a computer program called CTSM, which is based on a similar
program by Madsen and Melgaard (1991) and Melgaard and Madsen (1993)
called CTLSM. For ease of use this program has been equipped with a graphical
user interface, and for the purpose of computational efficiency the binary code
of the program has been optimized and prepared for shared memory parallel
computing. With respect to this program an important result is that it has
proven superior, both in terms of quality of estimates and in terms of repro-
ducibility, to another program implementing a similar estimation method by
Bohlin and Graebe (1995) and Bohlin (2001). In particular, more accurate
and more consistent estimates of the parameters of the diffusion term can be
obtained, which is important in the context of the grey-box modelling cycle.

A number of additional tools that facilitate other tasks within the grey-box
modelling cycle, e.g. residual analysis, statistical tests and nonparametric model-
ling, have also been developed. These have been implemented in MATLAB.

1.5 Outline

The remainder of the thesis falls in three parts: A number of ordinary chapters,
where rigorous mathematical details are omitted; a number of appendices,
where these details are given; and two appendices containing selected papers.

In Chapter 2 the individual elements of the grey-box modelling cycle are de-
scribed in detail and illustrated with examples, and a grey-box modelling al-
gorithm that facilitates systematic iterative model improvement based on these
elements is presented; Chapter 3 contains a number of examples of application
of this algorithm; the conclusions are presented in Chapter 4; and a discussion
of a number of possible topics for future work is given in Chapter 5.

In Appendix A a complete mathematical outline of the algorithms of the com-
puter program CTSM is given; Appendix B contains an outline of the mathe-
matical details of some statistical tests and residual analysis tools; and similar
key details of some nonparametric methods are outlined in Appendix C.

The paper included in Appendix D contains the comparison mentioned above
between CTSM and a program implementing a similar estimation method by
Bohlin and Graebe (1995) and Bohlin (2001); and in the paper included in
Appendix E a condensed outline of the grey-box modelling cycle and the cor-
responding algorithm is given with no particular emphasis on fed-batch process
modelling. There is significant overlap between these papers and other parts
of the thesis, but the papers also contain important additional results.
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Methodology

In this chapter an outline of the proposed grey-box modelling framework is
given by means of a description of the individual elements of the grey-box
modelling cycle shown in Figure 1.3 and the concepts, theories and methods
behind them. An algorithm for systematic iterative model improvement based
on this modelling cycle is also presented. Whenever possible, rigorous mathe-
matical details are omitted and instead given in the appropriate appendices.

2.1 Model (re)formulation

As discussed in Chapter 1, a key idea of grey-box modelling is to combine con-
ventional model development based on first engineering principles and prior
physical insights with statistical methods for structural identification, para-
meter estimation and model quality evaluation. This combination is facilitated
by the use of continuous-discrete stochastic state space models, and the first
element of the grey-box modelling cycle therefore deals with formulation of the
initial structure of such a model. More specifically, this is a two-step procedure,
where an ODE model is first derived from first engineering principles and then
translated into a continuous-discrete stochastic state space model.

Deriving an ODE model of a fed-batch process from first engineering principles
is a standard discipline, and, as shown in Section 1.1 (with the assumptions
made in Section 1.3), this gives rise to a model of the following type:

dxt

dt
= f(xt, t,θ) + g(xt, t,θ)ut (2.1)

where t ∈ [t0, tf ] ⊂ R is time, xt ∈ X ⊂R
n is a vector of state variables,

ut ∈ U ⊂R
m is a vector of input variables, θ ∈ Θ ⊂ R

p is a vector of para-
meters, and f(·) ∈ R

n and g(·) ∈ R
n×m are nonlinear functions.

Translating the ODE model into a continuous-discrete stochastic state space
model is also relatively straightforward, because it can be done by replacing
the ODE’s with appropriate SDE’s and adding a set of algebraic equations
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describing how measurements are obtained at discrete time instants. As shown
in Section 1.3, this gives rise to a model of the following type:

dxt = (f(xt, t,θ) + g(xt, t,θ)ut)dt+ σ(ut, t,θ)dωt (2.2)
yk = h(xk,uk, tk,θ) + ek (2.3)

where t ∈ [t0, tf ] ⊂ R is time, xt ∈ X ⊂ R
n is a state vector, ut ∈ U ⊂ R

m is
an input vector, yk ∈ Y ⊂ R

l is an output vector, θ ∈ Θ ⊂ R
p is a vector of

parameters, f(·) ∈ R
n, g(·) ∈ R

n×m, σ(·) ∈ R
n×n and h(·) ∈ R

l are nonlinear
functions, {ωt} is an n-dimensional standard Wiener process and {ek} is an
l-dimensional white noise process with ek ∈ N(0,S(uk, tk,θ)).

In principle, any parameterization of σ(·) can be used, but as shown in Sec-
tion 2.5 using a diagonal parameterization has the advantage of facilitating
pinpointing of model deficiencies, which is a key feature of the proposed grey-
box modelling framework. A diagonal parameterization is therefore also used
in the following example, which illustrates the above procedure for translating
an ODE model into a continuous-discrete stochastic state space model.

Example 2.1 (Re-formulating the model of the fermentation process)
This example illustrates how the fermentation process model described in Example 1.1
can be translated into a continuous-discrete stochastic state space model. First the
ODE’s of the model are replaced with SDE’s to give the system equation:

d

X
S
V

 =

 µ(S)X − F X
V

−µ(S)X
Y

+ F (SF −S)
V

F

dt +

σ11 0 0
0 σ22 0
0 0 σ33

dωt , t ∈ [t0, tf ] (2.4)

where σ11, σ22 and σ33 are noise parameters. All other parameters, state and input
variables are the same as in Example 1.1, and the biomass growth rate is given by:

µ(S) = µmax
S

K2S2 + S + K1
(2.5)

Then, assuming that all state variables can be measured directly at discrete time
instants, a set of algebraic equations is added to give the measurement equation:y1

y2

y3


k

=

X
S
V


k

+ ek , ek ∈ N(0, S) , S =

S11 0 0
0 S22 0
0 0 S33

 (2.6)

where y1, y2 and y3 are output variables. S11, S22 and S33 are noise parameters. �

As a matter of fact, the notation used for the SDE’s in (2.2) is ambiguous
unless a specific integral interpretation is given, so to resolve this issue and
to establish some basic theoretical concepts, the remainder of this section is
devoted to giving an introduction to SDE’s and how they can be applied.
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2.1.1 An introduction to SDE’s

The use of SDE’s is complicated by the advanced probability theory involved
and by the fact that ordinary rules of calculus cannot always be applied. The
following is therefore by no means a complete account of the theory behind
SDE’s but merely establishes the basic concepts. A much more detailed and
mathematically rigorous introduction is given by Øksendal (1998).

The basis for the development of an SDE is the desire to include a stochastic
part in an ODE to account for random effects. Starting from a simple ODE:

dxt

dt
= f(xt, t) , t ≥ 0 (2.7)

where xt ∈ R
n is a vector of state variables and f(·) ∈ R

n is a nonlinear func-
tion, a first attempt might be to simply add noise to the equation to yield:

dxt

dt
= f (xt, t) + σ(xt, t)wt , t ≥ 0 (2.8)

where σ(·) ∈ R
n×n is a nonlinear function and {wt} is a suitable stochastic

process. Using this approach dxt

dt becomes a random variable, and, if (2.8) is to
retain the state property of (2.7), where the rate of change of the state variables
is uniquely determined by their current values, the probability density of dxt

dt
must be uniquely determined by these values (Åström, 1970). This means that
the stochastic process {wt} must have the following properties:

• wt is independent of ws for t �= s.

• {wt} is stationary, i.e. E{wtw
T
t } <∞ for t ≥ 0.

• wt has zero mean for t ≥ 0, i.e. E{wt} = 0 for t ≥ 0.

but no “reasonable” such process exists1, because it cannot have continuous
paths (Øksendal, 1998). Thus (2.8) makes no sense (Åström (1970) argues
that dxt

dt cannot be expected to exist for a stochastic state space model) and an
alternative way of including noise is needed. As it turns out, a more successful
alternative is to subdivide the time interval [0, t] as follows:

0 = t0 < t1 < · · · < tj < · · · < tT−1 < tT = t (2.9)

and consider a discretized version of (2.8):

xj+1 − xj = f(xj , tj)∆tj + σ(xj , tj)wj∆tj , j = 0, . . . , T − 1 (2.10)

where xj = xtj , wj = wtj and ∆tj = tj+1 − tj , and then try to replace wj∆tj
with ∆ωj = ωj+1 − ωj , where {ωt} is a suitable stochastic process. The only

1As a matter of fact, it is possible to represent {wt} by means of a so-called generalized
white noise process, but this is not an ordinary stochastic process (Øksendal, 1998).
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such process with continuous paths is the standard Wiener process (Øksendal,
1998), which is a mathematical description of the physical process of Brownian
motion2. This process has the following important properties:

• ω0 = 0 w.p. 1.

• {ωt} has continuous paths.

• ωt is Gaussian for t ≥ 0.

• {ωt} has stationary independent increments.

• ωt has zero mean for t ≥ 0, i.e. E{ωt} = 0 for t ≥ 0.

An important consequence of these properties is that an increment ωt − ωs,
0 ≤ s < t, of a standard Wiener process has the following properties:

• ωt − ωs is Gaussian.

• E{ωt − ωs} = 0.

• V {ωt − ωs} = (t− s)I .

Returning to (2.10) and replacing wj∆tj with ∆ωj = ωj+1 − ωj, where {ωt}
is a standard Wiener process, the following result can be obtained:

xT = x0 +
T−1∑
j=0

f (xj , tj)∆tj +
T−1∑
j=0

σ(xj , tj)∆ωj (2.11)

and, by letting ∆tj → 0, the following integral notation can be used:

xt = x0 +
∫ t

0

f(xs, s)ds+
∫ t

0

σ(xs, s)dωs (2.12)

because it can be proven that the limit of the right-hand side of (2.11) exists if
an appropriate interpretation of the second integral is given (Øksendal, 1998).

There are, however, different such interpretations, which in the general case
yield different results. More specifically, to give an interpretation of the integral:∫ t

0

σ(xs, s)dωs (2.13)

it is defined as the limit, in a particular sense (Øksendal, 1998), of:

T−1∑
j=0

σ(x∗
j , t

∗
j )∆ωj =

T−1∑
j=0

σ(x∗
j , t

∗
j )(ωj+1 − ωj) , for T →∞ (2.14)

2Brownian motion refers to the characteristic, very irregular, motion of small particles
dispersed in a fluid, and was first discovered in 1827 by scottish botanist Robert Brown.
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where, depending on the particular choice of t∗j in the interval [tj , tj+1], different
interpretations can be obtained, which yield different results:

• Choosing the left end point of the interval, i.e. t∗j = tj , gives rise to the
so-called Itô stochastic integral.

• Choosing the middle of the interval, i.e. t∗j = tj+tj+1
2 , gives rise to the

so-called Stratonovich stochastic integral.

As argued by Jazwinski (1970), neither of the two stochastic integrals is “right”
nor “wrong”, because they are simply different definitions. In fact there is
an equivalent Itô integral for every Stratonovich integral3 and all results for
Stratonovich integrals have been proven with the theory for Itô integrals.

Unlike the Itô integral, which requires specialized stochastic calculus as shown
below, the Stratonovich integral has the advantage of adhering to the ordinary
rules of calculus in terms of facilitating integration by parts, variable substi-
tution and application of the chain rule. However, the Itô integral is defined
for a broader class of functions and has some nice mathematical properties not
possessed by the Stratonovich integral, which make it more appropriate for
filtering purposes (Jazwinski, 1970) and also for parameter estimation.

For this reason the Itô interpretation is used throughout this thesis. More
specifically, whenever the following shorthand notation is used:

dxt = f (xt, t)dt+ σ(xt, t)dωt , t ≥ 0 (2.15)

it means that xt is a solution to the corresponding integral equation:

xt = x0 +
∫ t

0

f(xs, s)ds+
∫ t

0

σ(xs, s)dωs (2.16)

where the second integral is an Itô integral. Furthermore, since the two terms
in (2.15) are commonly referred to as the drift term and the diffusion term
respectively, this terminology is adapted throughout the thesis as well.

2.1.2 Itô stochastic calculus

The Itô integral requires specialized stochastic calculus. In the following a few
important properties of Itô integrals and some rules from Itô stochastic calculus
are therefore given. A more thorough outline is given by Øksendal (1998).

Assuming that σ(s), σ1(s) and σ2(s) are functions satisfying appropriate con-
ditions (Øksendal, 1998), the following rules apply for Itô stochastic integrals:∫ b

a

σ(s)dωs =
∫ c

a

σ(s)dωs +
∫ b

c

σ(s)dωs (2.17)

3The two integrals actually coincide if σ(·) does not depend on xt (Øksendal, 1998).
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∫ b

a

ασ1(s) + βσ2(s)dωs = α

∫ b

a

σ1(s)dωs + β

∫ b

a

σ2(s)dωs (2.18)

where 0 ≤ a < c < b, α ∈ R and β ∈ R. Expectations of Itô integrals are very
important for many purposes and the following rules apply in this regard:

E

{∫ b

a

σ(s)dωs

}
= 0 (2.19)

E


(∫ b

a

σ(s)dωs

)(∫ b

a

σ(s)dωs

)T
 =

∫ b

a

E{σ(s)σ(s)T }ds (2.20)

E


(∫ b

a

σ1(s)dωs

)(∫ b

a

σ2(s)dωs

)T
 =

∫ b

a

E{σ1(s)σ2(s)T }ds (2.21)

where the second rule is called the Itô isometry and is particularly important
for filtering purposes (Jazwinski, 1970). Another very important rule is the so-
called Itô formula, which is an Itô integral version of the chain rule and applies
to a scalar function ϕ(xt, t), where xt is a solution to (2.15), as follows:

dϕ =
(
∂ϕ

∂t
+

∂ϕ

∂xT
t

f +
1
2
tr(σσT ∂2ϕ

∂xt∂xT
t

)
)
dt+

∂ϕ

∂xT
t

σdωt (2.22)

where the shorthand notation ϕ = ϕ(xt, t), f = f(xt, t) and σ = σ(xt, t) has
been applied. Based on the Itô formula, stochastic versions of the rule of
integration by parts and other standard rules can be derived (Øksendal, 1998).

2.1.3 Numerical solution of SDE’s

Analytical solutions to SDE’s are seldom available and numerical solution
methods are therefore needed in most cases. A detailed account of a varie-
ty of such methods is given by Kloeden and Platen (1992), and the following
is merely an introduction to some very simple discrete time approximation
methods for simulation of SDE’s, one of which is applied to generate the simu-
lated data sets used in the examples presented throughout this thesis.

A number of discrete time approximation methods are available, which are all
based on the stochastic Taylor expansion. The stochastic Taylor expansion
resembles the conventional Taylor expansion, but is based on repeated applica-
tion of the Itô formula. Different discrete time approximations with different
orders of convergence can be obtained by using different numbers of terms in the
stochastic Taylor expansion (Kloeden and Platen, 1992). The most simple of
these methods is the Euler scheme, which can be used to simulate the solution
to (2.15) by providing discrete time values xj , j = 0, . . . , T , as follows:

xj+1 = xj + f(xj , tj)∆tj + σ(xj , tj)∆ωj (2.23)
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where ∆tj = tj+1− tj is the discretization time interval and ∆ωj = ωtj+1− ωtj

is an N(0,∆tjI) increment of the standard Wiener process. The error of this
approximation is proportional to the square root of the size of the discretization
time interval, and the method is therefore said to be strongly convergent of the
order 0.5. An almost as simple scheme that is strongly convergent of the order
1.0 is the Milstein scheme, which, however, coincides with the Euler scheme if
the diffusion term is independent of the state variables. Due to the assumptions
made in Section 1.3 this is the case for the models considered in this thesis,
and the Euler scheme is therefore applied to generate simulated data sets for
the examples presented here. This is illustrated in the following example.

Example 2.2 (Generating data with the fermentation process model)
This example illustrates how the Euler scheme can be applied to simulate the solution
to the system equation of the re-formulated model of the fermentation process shown
in Example 2.1 to facilitate subsequent data generation with the complete continuous-
discrete stochastic state space model (by sampling from the simulated solution with
the measurement equation). Starting from appropriate initial states (X0, S0, V0), the
solution to the system equation of the model can be simulated as follows:

X
S
V


j+1

=

X
S
V


j

+


µ(Sj)Xj − FjXj

Vj

−µ(Sj)Xj

Y
+

Fj(SF −Sj)

Vj

Fj

∆tj +

σ11 0 0
0 σ22 0
0 0 σ33

∆ωj (2.24)

µ(Sj) = µmax
Sj

K2S2
j + Sj + K1

(2.25)

for j = 0, . . . , T , by using ∆tj =
tf

T
, ∆ωj ∈ N(0, ∆tjI) and appropriate values Fj for

the feed flow rate. Subsequently, a set of observations can be generated by sampling
from the simulated solution with the measurement equation:y1

y2

y3


k

=

X
S
V


k

+ ek , ek ∈ N(0, S) , S =

S11 0 0
0 S22 0
0 0 S33

 (2.26)

for k = 0, . . . , N . Using the initial states (X0, S0, V0) = (1, S∗, 1) and perturbed ver-
sions of the optimal feed flow rate trajectory determined in Example 1.2, a number
of such data sets (shown in Figures 2.1-2.3) are generated for subsequent use in other
examples. The parameter values used for this purpose are the deterministic parameter
values shown in Example 1.1 and the following noise parameter values:

• σ11 = σ22 = σ33 = 0, S11 = 0.01, S22 = 0.001, S33 = 0.01 (Figure 2.1).

• σ11 = σ22 = σ33 = 0.1, S11 = 0.01, S22 = 0.001, S33 = 0.01 (Figure 2.2).

• σ11 = σ22 = σ33 = 0.3162, S11 = 0.01, S22 = 0.001, S33 = 0.01 (Figure 2.3).

A discretization time interval corresponding to T = 10000 is used and every 100’th
value is sampled to give data sets containing 101 samples each (N = 101). �
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(b) Batch no. 2.

Figure 2.1. Batch data sets generated in Example 2.2 - first noise parameter set.
Solid staircase: Feed flow rate F ; dashed lines: Biomass measurements y1; dotted
lines: Substrate measurements y2; dash-dotted lines: Volume measurements y3.

2.1.4 Filtering theory

As shown by Jazwinski (1970), Itô SDE’s provide the basis for continuous-
discrete nonlinear filtering, which is an important topic within the proposed
grey-box modelling framework, because it involves determining estimates of the
state variables of a continuous time system from noisy discrete time observa-
tions of the output variables. More specifically, the general continuous-discrete
nonlinear filtering problem is based on a model of the following type:

dxt = f (xt, t)dt+ σ(xt, t)dωt , t ≥ 0 (2.27)
yk = h(xk, tk) + ek , k = 0, 1, . . . (2.28)

where xt ∈ R
n is a state vector, yk ∈ R

l is an output vector, {ωt} is an
n-dimensional standard Wiener process, {ek} is an l-dimensional white noise
process with ek ∈ N(0,Sk) and f(·) ∈ R

n, σ(·) ∈ R
n×n and h(·) ∈ R

l are non-
linear functions. If these functions satisfy appropriate conditions (Jazwinski,
1970), the Itô solution {xt} to the system equation of the model is a Markov
process and can be characterized by its probability density p(xt), t ≥ 0, the
evolution of which can be determined by solving the equation:

∂p

∂t
= −

n∑
i=1

∂(pfi)
∂xi

+
1
2

n∑
i=1

n∑
j=1

∂2(p(σσT )ij)
∂xi∂xj

(2.29)

for t ≥ 0 with initial condition p(x0). Here p is shorthand for p(xt), fi is the
i’th element of f(·) and (σσT )ij is the ij-element of σ(·)σ(·)T . This equation
is known as Kolmogorov’s forward equation or the Fokker-Planck equation and
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(b) Batch no. 2.

Figure 2.2. Batch data sets generated in Example 2.2 - second noise parameter set.
Solid staircase: Feed flow rate F ; dashed lines: Biomass measurements y1; dotted
lines: Substrate measurements y2; dash-dotted lines: Volume measurements y3.

is one of the two essential equations of continuous-discrete nonlinear filtering,
because it can also be used to describe the evolution between observations of
the probability density of interest for this problem, i.e.:

p(xt|Yk) = p(xt|yk,yk−1, . . . ,y1,y0) , t ∈ [tk, tk+1] (2.30)

which is the conditional probability density of xt given all observations avail-
able at time tk. The other essential equation of continuous-discrete nonlinear
filtering describes how the conditional probability density changes when a new
observation yk+1 is obtained and is based on Bayes’ rule:

p(xk+1|Yk+1) =
p(yk+1|xk+1)p(xk+1|Yk)∫

p(yk+1|ξ)p(ξ|Yk)dξ
(2.31)

where
∫
p(yk+1|ξ)p(ξ|Yk)dξ is simply p(yk+1|Yk) and:

p(yk+1|xk+1) =
exp

(− 1
2 (εT

k+1S
−1
k εk+1)

)√
det(Sk)

(√
2π
)l

(2.32)

where εk+1 = yk+1 − h(xk+1, tk+1). Altogether (2.29) and (2.31) provide the
analytical framework for solving the general continuous-discrete nonlinear fil-
tering problem in terms of probability densities. However, (2.29) can only be
solved explicitly in very simple cases, and numerical solution of this equation is
computationally prohibitive. Furthermore, a solution in terms of e.g. first and
second order moments is often more useful for practical purposes. As shown
by Jazwinski (1970), an analytical framework for obtaining a solution of this
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Figure 2.3. Batch data sets generated in Example 2.2 - third noise parameter set.
Solid staircase: Feed flow rate F ; dashed lines: Biomass measurements y1; dotted
lines: Substrate measurements y2; dash-dotted lines: Volume measurements y3.

type can also be established. Unfortunately, this solution is seldom computa-
tionally realizable either, because it depends on higher order moments as well
(Jazwinski, 1970). In the general case, approximations are therefore needed
to obtain a realizable filtering solution. A number of such approximations are
available (Jazwinski, 1970; Maybeck, 1982), one of which is the extended Kal-
man filter (EKF), which is applied within the parameter estimation method
of the proposed grey-box modelling framework (see Section 2.2). The EKF is
based on the ordinary Kalman filter, which, if the diffusion term is independent
of the state variables, provides an exact solution to the filtering problem for
linear systems, i.e. systems where the system equation consists of a set of linear
SDE’s and the measurement equation is also linear in the state variables.

2.1.5 Stochastic control theory

As shown by Åström (1970) models of the type (2.27)-(2.28), with additional
manipulable input variables, also provide the basis for stochastic optimal con-
trol with simultaneous state estimation. Approximate methods are also needed
to solve this problem in the general case, and only for linear systems, where
the separation theorem applies, an exact closed-form solution is available.

Developing specific methods for optimal control with simultaneous state estima-
tion is outside the scope of the work presented in this thesis and the topic
has merely been mentioned here to illustrate the power of continuous-discrete
stochastic state space models in terms of also facilitating such developments.
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2.2 Parameter estimation

The second element of the grey-box modelling cycle deals with estimation of the
unknown parameters of the continuous-discrete stochastic state space model in
(2.2)-(2.3) from experimental data. This is not only important in order to
find appropriate parameter values for the physically meaningful parameters
occuring in the drift term of the system equation, but also in order to assess
the uncertainty of the resulting model, which can be done by evaluating the
statistical significance of the parameters of the corresponding diffusion term
based on estimates of these. In particular, if a diagonal parameterization of
the diffusion term is used, estimation of the parameters of this term facilitates
pinpointing of model deficiencies as shown in Section 2.5. A parameter esti-
mation method is therefore needed, which allows simultaneous estimation of
all unknown parameters occuring in (2.2)-(2.3) based on experimental data.

Given the nature of fed-batch processes, which is reflected by the model in
(2.2)-(2.3), the estimation method must be able to handle nonlinear discretely,
partially observed systems with measurement noise and it must be applicable to
relatively large multivariate systems. Furthermore, it must be able to provide
a measure of the uncertainty of the individual parameter estimates in order
to facilitate subsequent application of statistical tests. Provided these primary
requirements are fulfilled, secondary requirements for the estimation method
are computational efficiency and ease of use. Finally, because several sets of
experimental data from separate batch runs are often available, a method that
allows use of multiple independent data sets for the estimation is preferred.

2.2.1 Maximum likelihood estimation

The properties of the model in (2.2)-(2.3) facilitate application of a probabilistic
estimation method such as maximum likelihood (ML). Given the observations:

YN = [yN , . . . ,yk, . . . ,y1,y0] (2.33)

ML estimates of the unknown parameters can be determined by finding the
parameters θ that maximize the likelihood function, i.e.:

L(θ;YN ) = p(YN |θ) (2.34)

which is simply the joint probability density of the observations YN given the
parameters θ. The likelihood function can also be written as follows:

L(θ;YN ) =

(
N∏

k=1

p(yk|Yk−1,θ)

)
p(y0|θ) (2.35)

where the rule P (A ∩B) = P (A|B)P (B) has been applied to form a product of
conditional probability densities. Given the initial probability density p(y0|θ),
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all subsequent conditional densities and hence the likelihood function can be de-
termined by solving a continuous-discrete nonlinear filtering problem, as shown
in Section 2.1. The parameter estimates can then be determined by maximizing
the likelihood function, e.g. by solving the optimisation problem:

min
θ∈Θ
{− ln (L(θ;YN ))} (2.36)

or the corresponding estimating equation:

SN (θ;YN ) =
d ln (L(θ;YN ))

dθ
= 0 (2.37)

but, unfortunately, neither approach is feasible in the general case, because
solving the continuous-discrete nonlinear filtering problem is computationally
prohibitive, and an alternative estimation method is therefore needed.

In a recent review paper, Nielsen et al. (2000a) have considered a number
of different parameter estimation methods for nonlinear discretely observed
Itô SDE’s, which all provide alternatives to the ML method described above,
either in terms of approximations or in terms of alternative formulations of
the problem. In the following a brief outline of these methods is given, and
they are evaluated in terms of their applicability for estimation of the unknown
parameters of the model in (2.2)-(2.3), before a specific method is selected.

2.2.2 Likelihood-based methods

The first group of methods considered by Nielsen et al. (2000a) are likelihood-
based methods, which are methods that seek to approximate the ML method
described above. In one method this is done by discretizing a likelihood func-
tion obtained by assuming that continuous observations are available, and in
another method it is done by computing the likelihood function for a discre-
tized version of the model. Neither of these methods apply to partially observed
systems nor allow measurement noise, however, and the former does not allow
estimation of the parameters of the diffusion term either. A somewhat more
powerful likelihood-based method, which applies to partially observed systems,
is a method based on Markov Chain Monte Carlo (MCMC) methodology, but,
unfortunately, this method does not allow measurement noise either.

2.2.3 Methods of moments

Another group of methods considered by Nielsen et al. (2000a) are methods
of moments, where parameter estimates are obtained by matching certain mo-
ment conditions for a discretized version of the model. These methods are less
computationally demanding than likelihood-based methods, because they are
based on moment conditions instead of complete probability densities. A num-
ber of different methods of moments are available, e.g. the Generalized Method
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of Moments (GMM), which, however, does not apply to partially observed sys-
tems nor allow measurement noise. The Efficient Method of Moments (EMM)
and the Indirect Inference (II) method are both extensions of the GMM, which
apply to partially observed systems but do not allow measurement noise either.

2.2.4 Estimating functions

A group of estimation methods that may be seen as an intermediate between
likelihood-based methods and methods of moments are estimating functions,
an introduction to the application of which for purposes not related to SDE’s is
given by Heyde (1997). In this context estimating functions provide a very gene-
ral framework for estimation, as it can be shown that this methodology encom-
passes ML (under certain conditions), least squares (LS), weighted least squares
(WLS) and a number of other methods. The idea of estimating functions is to
choose an appropriate function GN (·) ∈ R

r, r ∈ N, of the observations YN and
the unknown parameters θ, which satisfies the estimating equation:

GN (θ;YN ) = 0 (2.38)

and solve this equation for θ. An example of an estimating function is SN (·) in
(2.37), which, because it is the derivative of the logarithm of the likelihood func-
tion, is based on complete probability densities, but estimating functions need
in fact only be a function of certain moments. In particular, an estimating func-
tion of the so-called linear family, which can be viewed as a first order Taylor
expansion of SN (·), only requires first and second order moments, whereas an
estimating function of the so-called quadratic family (equivalent to a second
order Taylor expansion of SN (·)) requires higher order moments as well. A
major advantage of estimating functions is that precise mathematical state-
ments about how to choose these functions in an optimal way can be made by
maximizing the so-called Godambe information (Heyde, 1997), which provides
an optimal trade-off between bias and variance for the resulting estimator.

In the context of parameter estimation for nonlinear discretely observed SDE’s,
a number of methods based on estimating functions have been proposed, e.g.
the Martingale Estimating Functions (MEF’s) by Bibby and Sørensen (1995),
which are estimating functions of the linear family based on first and second
order conditional moments. These MEF’s do not allow estimation of the para-
meters of the diffusion term, but with the MEF’s proposed by Bibby and
Sørensen (1996), which are of the quadratic family and based on higher or-
der conditional moments as well, this is possible. Unfortunately, neither type
of MEF’s apply to partially observed systems nor allow measurement noise.

The Prediction-Based Estimating Functions (PEF’s) proposed by Sørensen
(1999), which are based on unconditional instead of conditional moments,
provide a way of handling partially observed systems but still do not allow
measurement noise. Nielsen et al. (2000b) have recently proposed an extension
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of the PEF’s to handle measurement noise, and, in principle, these Prediction-
Based Estimating Functions with Measurement noise (PEFM’s) are sufficiently
general to be applicable for estimation of the unknown parameters of the model
in (2.2)-(2.3). Unfortunately, the PEFM’s require that the measurement equa-
tion of the model can be expressed in terms of polynomials, which is not always
the case, and they are based on a large number of unconditional moments, the
determination of which easily becomes computationally prohibitive.

2.2.5 Filtering-based methods

A group of methods with greater application potential for estimation of the un-
known parameters of the model in (2.2)-(2.3) are filtering-based methods, which
seek to approximate the ML method described above by incorporating compu-
tationally realizable approximate solutions to the continuous-discrete nonlinear
filtering problem. In the general case, higher-order filters (Maybeck, 1982) are
needed, but since the diffusion term has been assumed to be independent of the
state variables, an approximation based on the EKF (Jazwinski, 1970) can be
applied. More specifically, since the SDE’s of the model are driven by a Wiener
process, and since increments of a Wiener process are Gaussian, it is reasonable
to assume that the conditional probability densities constituting the likelihood
function can be well approximated by Gaussian densities, which means that the
EKF can be applied. Using this argument, an estimation method incorporating
the EKF has been proposed by Madsen and Melgaard (1991) and Melgaard and
Madsen (1993), where, because the Gaussian density is completely characte-
rized by its mean and covariance, the likelihood function becomes:

L(θ;YN ) =

 N∏
k=1

exp
(
− 1

2εT
k R−1

k|k−1εk

)
√

det
(
Rk|k−1

) (√
2π
)l

 p(y0|θ) (2.39)

where εk = yk − ŷk|k−1, ŷk|k−1 = E{yk|Yk−1,θ} and Rk|k−1 = V {yk|Yk−1,θ}
can be computed recursively by means of the EKF. The assumption of Gaus-
sianity is only likely to hold for small sample times, and the validity of this
assumption should therefore be checked subsequent to the estimation, but as
shown in Section 2.3 this is straightforward, because several tools are available
for this purpose. An additional benefit of the EKF-based method by Mad-
sen and Melgaard (1991) and Melgaard and Madsen (1993) is that, if prior
information about the parameters is available in the form of a prior Gaus-
sian probability density function p(θ), Bayes’ rule can be applied to give an
improved estimate by forming the posterior probability density function:

p(θ|YN ) =
p(YN |θ)p(θ)

p(YN )
∝ p(YN |θ)p(θ) (2.40)

and subsequently finding the parameters that maximize this function, i.e. by
performing maximum a posteriori (MAP) estimation. Altogether, the EKF-
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based method fulfills the primary requirements stated in the beginning of this
section, because it is able to handle nonlinear discretely, partially observed
systems with measurement noise and applies to relatively large multivariate
systems, and because it provides a measure of the uncertainty of the individual
parameter estimates. Therefore this method has been selected for the para-
meter estimation part of the proposed grey-box modelling framework.

2.2.6 Implementation of the EKF-based method

As a part of the work presented in this thesis, the EKF-based method has
been further developed to make it more readily applicable for estimation of the
unknown parameters of the model in (2.2)-(2.3). In particular, because the
original method was unable to handle models with singular Jacobians, which
are very common in the context of fed-batch process modelling, an alternative
solution based on the singular value decomposition (SVD) has been developed,
and the method has been extended to allow the use of multiple independent
sets of experimental data for the estimation and to handle missing observations
in a much more appropriate way. The details of these developments are given
in Appendix A, which provides a complete mathematical outline of the algo-
rithms of the computer program CTSM, within which the extended method
has been implemented. CTSM, which is based on a similar computer pro-
gram by Madsen and Melgaard (1991) and Melgaard and Madsen (1993) called
CTLSM, has been equipped with a graphical user interface for ease of use, and
to increase the computational efficiency the binary code has been optimized
and prepared for shared memory parallel computing, as shown in Appendix A.

As discussed in Chapter 1, the use of continuous-discrete stochastic state space
models such as (2.2)-(2.3) facilitates estimation of unknown parameters in a
PE setting, which is generally more advantageous than estimation in an OE
setting. To illustrate this, a comparison between the method implemented
in CTSM, which is a PE estimation method, and a conventional OE esti-
mation method is given in Chapter 3. Furthermore, a comparison between
CTSM and a computer program implementing a similar estimation method
by Bohlin and Graebe (1995) and Bohlin (2001) is given in the paper included
in Appendix D. The purpose of this comparison has been to reveal some very
important differences between the two methods, which render the program by
Bohlin and Graebe (1995) and Bohlin (2001) inappropriate for estimation of the
parameters of the diffusion term and hence for application within the proposed
grey-box modelling framework. To illustrate the use of parameter estimation
in the context of this framework, a simple example is given in the following.

Example 2.3 (Parameter estimation for the fermentation process model)
This example illustrates the use of parameter estimation in the context of the pro-
posed grey-box modelling framework using a variant of the re-formulated model of the
fermentation process shown in Example 2.1 and data from Example 2.2. To illustrate
the possibility of using the proposed grey-box modelling framework for systematic
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iterative model improvement, it is assumed from now on that the true structure of
the growth rate is unknown, and µ(S) is therefore replaced by a constant µ to yield
a preliminary model with the following system equation:

d

X
S
V

 =

 µX − F X
V

−µX
Y

+ F (SF −S)
V

F

dt +

σ11 0 0
0 σ22 0
0 0 σ33

dωt , t ∈ [t0, tf ] (2.41)

and the following measurement equation:y1

y2

y3


k

=

X
S
V


k

+ ek , ek ∈ N(0, S) , S =

S11 0 0
0 S22 0
0 0 S33

 (2.42)

Using CTSM and the data set shown in Figure 2.1a, the estimates (and standard
deviations and t-scores) shown in Table 2.1 are obtained for this model. These results
will be used in subsequent examples, so further discussion is postponed. �

2.3 Residual analysis

The third element of the grey-box modelling cycle deals with obtaining in-
formation about the quality of the continuous-discrete stochastic state space
model in (2.2)-(2.3), once the unknown parameters have been estimated. An
important aspect in this regard is to investigate the prediction capabilities of
the model over a prediction horizon appropriate for its intended purpose, which
can be done by performing cross-validation and examining the corresponding
residuals. Residual analysis can be performed in a one-step-ahead prediction
setting (based on ŷk|k−1) as well as a pure simulation setting (based on ŷk|0),
and, depending on the intended purpose of the model, one may be more ap-
propriate than the other. In the context of the proposed grey-box modelling
framework, however, the pure simulation setting is the most important, as the

Parameter Estimate Standard deviation t-score Significant?

X0 9.6973E-01 3.4150E-02 28.3962 Yes
S0 2.5155E-01 3.1938E-02 7.8761 Yes
V0 1.0384E+00 1.8238E-02 56.9359 Yes
µ 6.8548E-01 2.2932E-02 29.8921 Yes

σ11 1.8411E-01 2.5570E-02 7.2000 Yes
σ22 2.2206E-01 3.4209E-02 6.4912 Yes
σ33 2.7979E-02 1.7943E-02 1.5594 No
S11 6.7468E-03 1.3888E-03 4.8580 Yes
S22 3.9131E-04 2.4722E-04 1.5828 No
S33 1.0884E-02 1.5409E-03 7.0633 Yes

Table 2.1. Estimation results. Model in (2.41)-(2.42) - data from Figure 2.1a.
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models being developed must be applicable for subsequent state estimation and
optimal control, where the latter requires models with good long-term predic-
tion capabilities. This is discussed in more detail in Section 2.4.

As shown in Appendix A, CTSM facilitates residual analysis in both settings
by allowing predictions (ŷk|k−1, k = 0, . . . , N , and ŷk|0, k = 0, . . . , N) to be
computed for a given set of cross-validation data by means of the EKF.

2.3.1 Performing residual analysis

The idea of residual analysis more specifically is to determine if the residuals
can be regarded as white noise, and a number of different methods can be
applied for this purpose (Brockwell and Davis, 1991; Holst et al., 1992).

For linear systems, one of the most powerful of these methods is to compute
and inspect the standard correlation functions, i.e. the sample autocorrelation
function (SACF) and the sample partial autocorrelation function (SPACF) of
the residuals and the sample cross-correlation function (SCCF) between the
residuals and the inputs, to detect if there are any significant lag dependencies,
as this indicates that the residuals cannot be regarded as white noise. More
details about the standard correlation functions are given in Appendix B.

For nonlinear systems, extensions of these functions have been proposed by
Nielsen and Madsen (2001a) in the form of the lag dependence function (LDF),
the partial lag dependence function (PLDF), the crossed lag dependence func-
tion (CLDF) and the nonlinear lag dependence function (NLDF), which are all
based on a close relation between correlation coefficients and the coefficients of
determination for regression models and extend to nonlinear systems by incor-
porating various nonparametric regression models. Unlike the standard corre-
lation functions, these functions can also detect certain nonlinear dependencies
and are therefore extremely useful for residual analysis within the proposed
grey-box modelling framework. More details about these functions are given
in Appendix B, and the following simple example illustrates their use.

Example 2.4 (Residual analysis for the fermentation process model)
This example illustrates the use of residual analysis for the preliminary fermenta-
tion process model shown in Example 2.3 subsequent to estimating the parameters.
Figure 2.4 shows cross-validation residual analysis results obtained using the data set
shown in Figure 2.1b. These results show that the pure simulation capabilities of the
model are poor, whereas its one-step-ahead prediction capabilities are quite good. �

As mentioned in Section 2.2 the Gaussianity assumption inherent to the EKF-
based parameter estimation method is only likely to hold for small sample times
and should be checked subsequent to the estimation. A number of tools are
available for this purpose (Holst et al., 1992; Bak et al., 1999), including the
above residual analysis tools. If, by applying these tools to residuals obtained
in a one-step-ahead prediction setting from the estimation data set, there are
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Figure 2.4. Cross-validation residual analysis results for the model in Example 2.3
with parameters in Table 2.1 using the validation data set shown in Figure 2.1b.
Top left: One-step-ahead prediction comparison (solid lines: Predicted values);
top right: Pure simulation comparison (solid lines: Simulated values); bottom left:
One-step-ahead prediction residuals, LDF and PLDF for y1, y2 and y3; bottom
right: Pure simulation residuals, LDF and PLDF for y1, y2 and y3.

no significant lag dependencies, this is an indication that the residuals can be
regarded as white noise and hence that the assumption is valid. If this is the
case, the statistical tests described in Section 2.5 can also be applied at this
point to provide information about the quality of the model in (2.2)-(2.3).

More specifically, it can be determined if some of the parameters of the model
are insignificant, indicating that the model is overly complex and that these
parameters may be eliminated. In practice, however, the Gaussianity assump-
tion is only likely to be valid if the structure of the model is appropriate, which
means that these tests should only be applied in the final stages of model de-
velopment. As discussed in much more detail in Section 2.5, applying these
tests to the parameters of the diffusion term nevertheless provides reasonable
indications, facilitating pinpointing of model deficiencies in early stages as well.
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2.4 Model falsification or unfalsification

The fourth element of the grey-box modelling cycle deals with determining
whether or not, based on the information about its quality obtained by per-
forming residual analysis, the model in (2.2)-(2.3) is sufficiently accurate to be
applied for state estimation and optimal control. If this is the case, the model is
said to be unfalsified with respect to the available information, and the model
development procedure implied by the grey-box modelling cycle can be ter-
minated. If not, the model is said to be falsified, and the model development
procedure must be repeated by returning to the model (re)formulation element
of the grey-box modelling cycle and altering the model in an appropriate way.

2.4.1 Evaluating model quality

In order to evaluate whether or not the model in (2.2)-(2.3) is sufficiently
accurate to be applied for state estimation and optimal control, an evaluation
of its prediction capabilities is essential. However, the specific degree of accu-
racy required is essentially an application-specific and therefore often subjective
measure, which means that, in general, this evaluation cannot be based on a
specific test. Ultimately, i.e. to achieve the highest possible degree of accuracy,
a test for whiteness of cross-validation residuals obtained in a pure simulation
setting can be used, because good long-term prediction capabilities are essential
for optimal control of fed-batch processes. More specifically, although develo-
ping methods for optimal control with simultaneous state estimation is outside
the scope of the work presented in this thesis, it is evident that for a model
of the type in (2.2)-(2.3) to be applicable for e.g. MPC, it must be able to
predict the future evolution of the system over wide ranges of state space,
because this methodology relies on long-term prediction. This also implies that,
ideally, none of the parameters of the diffusion term should be significant either,
because this means that significant parts of the variation in the experimental
data cannot be explained by the corresponding drift term, which it must if e.g.
MPC is to be applied, unless an alternative implementation is developed, which
takes the uncertainty implied by a significant diffusion term into account. In
any case, the model should not be overly complex either, so if the model has
insignificant parameters, it should be considered to eliminate some of them.

Example 2.5 (Evaluating the quality of the fermentation process model)
This example illustrates the procedure for evaluating model quality for the preli-
minary fermentation process model shown in Example 2.3 subsequent to estimating
the parameters. The residual analysis results obtained in Example 2.4 show that
the pure simulation capabilities of the model are poor by indicating that the corres-
ponding residuals cannot be regarded as white noise. This means that the model
cannot be applied for state estimation and optimal control, because good long-term
prediction capabilities are needed for the latter. Hence the model is falsified. �
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2.5 Statistical tests

The fifth element of the grey-box modelling cycle deals with detecting and
pinpointing deficiencies in the model in (2.2)-(2.3), if, based on the above eva-
luation of its quality, the model is falsified for the purpose of state estimation
and optimal control, and, as it turns out, the particular nature of the model
facilitates this task. More specifically, statistical tests for significance of the
individual parameters, particularly the parameters of the diffusion term, can
be applied. However, if the residual sequences obtained in the residual analysis
element of the grey-box modelling cycle can be regarded as stationary time
series, the residual analysis tools mentioned in Section 2.3 can also be applied
at this stage. More specifically, like the standard correlation functions, the
nonlinear extensions of these functions can be applied for structural identifi-
cation, e.g. to determine if more state variables are needed. A more elaborate
discussion of this particular topic is given by Nielsen and Madsen (2001a).

Applying statistical tests to determine the significance of individual parameters
is generally important in terms of investigating if the structure of a model is
appropriate. In principle, insignificant parameters are parameters that may be
eliminated, and the presence of such parameters is therefore an indication that
the model is overly complex. On the other hand, because of the particular na-
ture of the model in (2.2)-(2.3), where the diffusion term is included to account
for uncertainty, the presence of significant parameters in this term is an indi-
cation that the corresponding drift term is unable to explain significant parts
of the variation in the experimental data. This provides a measure that allows
model deficiencies to be detected. If a diagonal parameterization of the diffusion
term has been used, this even allows the deficiencies to be pinpointed in the
sense that deficiencies in specific elements of the drift term can be detected.

In terms of a specific test methodology, it is shown in Appendix A that, by the
central limit theorem, the EKF-based parameter estimation method discussed
in Section 2.2 provides parameter estimates that are asymptotically Gaussian,
and that it also provides an estimate of the corresponding covariance matrix,
on the basis of which tests for insignificance can be performed. In particular,
marginal t-tests can be performed to test the following hypothesis:

H0: θj = 0 (2.43)

against the corresponding alternative:

H1: θj �= 0 (2.44)

i.e. to test whether a specific parameter θj is insignificant or not. The test
quantity is the value of the parameter estimate divided by its standard devia-
tion, and under H0 this quantity is asymptotically t-distributed with a number
of degrees of freedom that equals the total number of observations minus the
number of parameters that have been estimated. More details about this test
are given in Appendix B, and the following is a simple example of its use.
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Example 2.6 (Marginal t-tests for the fermentation process model)
This example illustrates the use of marginal t-test for parameter insignificance for
the preliminary fermentation process model shown in Example 2.3 subsequent to
obtaining the estimation results shown in Table 2.1. This table also includes t-scores
computed from the estimates and their standard deviations, indicating that, on a 5%
level, only one of the parameters of the diffusion term is insignificant, i.e. σ33. That
σ11 and σ22 are both significant is an indication that there is significant variation in
the experimental data, which cannot be explained by the corresponding elements of
the drift term, in turn indicating that these elements may be deficient. �

Due to correlations between the individual parameter estimates, a series of
marginal tests of the above type cannot be used to test the hypothesis that a
subset of the parameters θ∗ ⊂ θ are simultaneously insignificant:

H0: θ∗ = 0 (2.45)

against the alternative that they are not:

H1: θ∗ �= 0 (2.46)

Hence a test that takes correlations into account must be used instead, e.g.
a likelihood ratio test, a Lagrange multiplier test or a test based on Wald’s
W -statistic (Holst et al., 1992). Under H0 the test quantities for these tests all
have the same asymptotic χ2-distribution with a number of degrees of freedom
that equals the number of parameters subjected to the test (Holst et al., 1992),
but in the context of the proposed grey-box modelling framework the test based
on Wald’s W -statistic has the advantage that no re-estimation of the paramet-
ers is required. More details about this test are also given in Appendix B.

Strictly speaking, the above tests should only be applied if the Gaussianity
assumption mentioned in Section 2.2 is valid, which is only likely to be the
case in the final stages of model development, where the structure of the model
is appropriate, as discussed in Section 2.3. Nevertheless, the corresponding test
results can be used to provide reasonable indications in early stages as well.

2.5.1 Pinpointing model deficiencies

If a diagonal parameterization of the diffusion term of the model in (2.2)-(2.3)
has been used, the measure mentioned above for detecting model deficiencies
can be used to pinpoint these deficiencies as well, in the sense that deficiencies
in specific elements of the drift term can be detected. More specifically, the
presence of significant parameters in a given diagonal element of the diffusion
term is an indication that the corresponding element of the drift term may
be deficient, in turn suggesting that some of the phenomena occuring in this
term may be inappropriately modelled. With this information at hand, it
may be possible, by using physical insights, to subsequently select a specific
suspect phenomenon for further investigation, whereupon the proposed grey-
box modelling framework provides means to confirm if this suspicion is true.
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More specifically, suspect phenomena are typically reaction rates, heat and
mass transfer rates and similar complex dynamic phenomena, all of which can
usually be described using functions of the state variables, i.e.:

rt = ϕ(xt,θ) (2.47)

where rt symbolizes the phenomenon of interest and ϕ(·) ∈ R is the nonlinear
function used to describe it. This means that the suspicion that ϕ(·) is inappro-
priate can be confirmed by estimating the parameters of a re-formulated version
of the model and performing statistical tests to determine the significance of
the parameters of the diffusion term of this model. In the re-formulated version
of the model rt is included as an additional state variable as follows:

dx∗
t = (f∗(x∗

t , t,θ) + g∗(x∗
t , t,θ)ut)dt+ σ∗(ut, t,θ)dω∗

t (2.48)
yk = h(x∗

k,uk, tk,θ) + ek (2.49)

where x∗
t = [xT

t rt]T is an augmented state vector, σ∗(·) ∈ R
(n+1)×(n+1) is a

nonlinear function, {ω∗
t } is an (n+ 1)-dimensional standard Wiener process

and f∗(·) ∈ R
n+1 and g∗(·) ∈ R

(n+1)×m are functions defined as follows:

f∗(x∗
t , t,θ) =

(
f (xt, t,θ)
∂ϕ(xt,θ)

∂xt

dxt

dt

)
(2.50)

g∗(x∗
t , t,θ) =

(
g(xt, t,θ)

0

)
(2.51)

If, upon estimating the unknown parameters of this model using a diagonal
parameterization of the diffusion term, there are significant parameters in the
particular diagonal element, which corresponds to rt, this is a strong indication
that ϕ(·) is in fact inappropriate and hence confirms the suspicion.

A particularly simple and very important special case of the above formulation
is obtained if ϕ(·) has been assumed to be constant, in which case the partial
derivative in (2.50) is zero and any variation in rt must be explained by the
corresponding diagonal element of the diffusion term. This in turn means that,
if the parameters of this diagonal element are significant, this is an indication
that ϕ(·) is not constant. This is illustrated in the following example.

Example 2.7 (Pinpointing deficiencies in the fermentation process model)
This example illustrates the procedure for pinpointing model deficiencies for the pre-
liminary fermentation process model shown in Example 2.3. The information obtained
in Example 2.6 indicates that the first two elements of the drift term of this model may
be deficient, and, since both of these elements depend on µ, this is a possible suspect
for being deficient. To confirm this suspicion, the model is therefore re-formulated
with µ as an additional state variable, which gives the following system equation:

d

X
S
V
µ

 =


µX − F X

V

−µX
Y

+ F (SF −S)
V

F
0

dt +


σ11 0 0 0
0 σ22 0 0
0 0 σ33 0
0 0 0 σ44

dωt , t ∈ [t0, tf ] (2.52)
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where, because µ has been assumed to be constant in Example 2.3, the last element
of the drift term is zero. The measurement equation remains as in Example 2.3, i.e.:y1

y2

y3


k

=

X
S
V


k

+ ek , ek ∈ N(0, S) , S =

S11 0 0
0 S22 0
0 0 S33

 (2.53)

Using CTSM and the same data set as in Example 2.3, the estimates (and standard
deviations and t-scores) shown in Table 2.2 are obtained for this model. By performing
marginal t-tests for parameter insignificance, it is revealed that, on a 5% level, only
one of the parameters of the diffusion term is now significant, and because this is
precisely the σ44 parameter corresponding to the equation for µ, the suspicion that µ
is deficient is confirmed. More specifically, this is an indication that there is significant
variation in µ and hence falsifies the constant assumption made in Example 2.3. �

2.6 Nonparametric modelling

The sixth element of the grey-box modelling cycle deals with determining how
to alter the model in (2.2)-(2.3) if it is falsified for the purpose of state estima-
tion and optimal control and therefore needs to be improved by repeating the
model development procedure implied by the grey-box modelling cycle. More
specifically, the idea is to obtain nonparametric estimates of unknown func-
tional relations and subsequently make inferences from these estimates to re-
pair model deficiencies. The methods discussed in this section therefore require
that specific model deficiencies have been pinpointed as shown in Section 2.5.

2.6.1 Estimating unknown functional relations

If a specific model deficiency has been pinpointed in the sense that it has been
indicated that there is significant variation in the additional state variable rt

Parameter Estimate Standard deviation t-score Significant?

X0 1.0239E+00 4.9566E-03 206.5723 Yes
S0 2.3282E-01 1.1735E-02 19.8405 Yes
V0 1.0099E+00 3.8148E-03 264.7290 Yes
µ0 7.8658E-01 2.4653E-02 31.9061 Yes
σ11 2.0791E-18 1.4367E-17 0.1447 No
σ22 1.1811E-30 1.6162E-29 0.0731 No
σ33 3.1429E-04 2.0546E-04 1.5297 No
σ44 1.2276E-01 2.5751E-02 4.7674 Yes
S11 7.5085E-03 9.9625E-04 7.5368 Yes
S22 1.1743E-03 1.6803E-04 6.9887 Yes
S33 1.1317E-02 1.3637E-03 8.2990 Yes

Table 2.2. Estimation results. Model in (2.52)-(2.53) - data from Figure 2.1a.
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of the model in (2.48)-(2.49), which cannot be explained by the corresponding
element of the drift term, this is a strong indication that the function ϕ(·) used
to describe the phenomenon represented by rt is inappropriate, i.e.:

ϕ(xt,θ) �= ϕtrue(xt,θ) (2.54)

where ϕtrue(·) ∈ R is the “true” function. To repair this particular model defi-
ciency a better estimate of ϕtrue(·) must therefore be obtained, i.e.:

ϕ̂(xt,θ) ≈ ϕtrue(xt,θ) (2.55)

where ϕ̂(·) ∈ R is an appropriate function. As a first step towards obtaining
a parametric expression for ϕ̂(·) it turns out that a nonparametric estimate
can be used. As shown in Appendix A, CTSM allows state estimates x̂∗

k|k,
k = 0, . . . , N , from the model in (2.48)-(2.49) to be computed for a given data
set by means of the EKF. This means that a set of corresponding values of
estimates of rt and xt can be obtained, provided that x∗

t is observable. On
the basis of these values a nonparametric estimate of the functional relation
between rt and (a subset of) xt can be obtained and plotted to visualize the
structure of ϕtrue(·), and based on this visualization it may subsequently be
possible to determine an appropriate parametric expression for ϕ̂(·). Several
univariate as well as multivariate nonparametric estimation methods are avail-
able (Hastie et al., 2001). For univariate methods the problem is to obtain an
estimate of the function f(·) ∈ R in a model of the following type:

Y = f(X) + e , e ∈ N(0, σ2) (2.56)

based on a set of observations of a response variable Y and a single predictor
variable X . Examples of such methods are piecewise polynomial smoothers,
splines, kernel smoothers and wavelets, where the latter are well-suited for
modelling discontinuities. Equivalently, the problem for multivariate methods
is to estimate the function f(·) ∈ R in a model of the following type:

Y = f(X) + e , e ∈ N(0, σ2) (2.57)

based on a set of observations of a response variable Y and a vector X of
several predictor variables X1, . . . , Xp. Examples of such methods are multidi-
mensional splines, multidimensional kernel smoothers, additive models, regres-
sion trees, neural networks, Multivariate Adaptive Regression Splines (MARS)
and Multiple Additive Regression Trees (MART). Of these, additive models
are particularly simple, because they are based on the assumption that the
contributions from the individual predictor variables are additive4, i.e.:

Y = α+
p∑

j=1

fj(Xj) + e , e ∈ N(0, σ2) (2.58)

4The assumption of additive contributions does not necessarily limit the ability of additive
models to provide estimates of non-additive functional relations, because functions of more
than one predictor variable, e.g. X1X2, can be included as predictor variables as well.
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where α is a constant, which means that the contributions fj(·)∈R, j = 1, . . . , p,
can be estimated separately by applying univariate methods in a recursive man-
ner using the backfitting algorithm (Hastie and Tibshirani, 1990). Additive
models also have the advantage of not suffering from the curse of dimensio-
nality, which tends to render nonparametric estimation methods infeasible in
higher dimensions. For this reason, and because the results obtained with such
models are particularly easy to visualize by means of plots of estimates of the
individual contributions fj(·), j = 1, . . . , p, with associated confidence intervals,
additive models are preferred in the context of the proposed grey-box modelling
framework. More specifically, since additive models may incorporate different
univariate methods, additive models incorporating kernel smoothers are pre-
ferred, where the latter choice is due to the ease with which these can be imple-
mented and to the fact that kernel smoothers only have one tuning parameter
(the bandwidth) that must be selected. More details about kernel smoothers
and additive models and related issues such as bandwidth optimisation and
computation of bootstrap confidence intervals are given in Appendix C.

2.6.2 Making inferences from the estimates

Using additive models, the variation in rt can be decomposed into the variation
that can be attributed to each of (a subset of) the state variables (or each of a
number of functions of more than one state variable) in turn, and the result can
be visualized by means of plots of estimates of the individual contributions with
associated confidence intervals. In this manner, it may be possible to reveal
the structure of the “true” function ϕtrue(·) and get an idea how to formulate
an appropriate parametric expression for an estimate ϕ̂(·) of this function. In
particular, it may be possible to determine which state variables have significant
influence on the “true” function and which have not, and it may even be possible
to determine how to model this influence with a parametric model. If the latter
cannot be inferred directly from the nonparametric estimate by using physical
insights, applying parametric curvefitting in a trial-and-error setting to find a
good approximation to the nonparametric result is straightforward. In either
case, valuable information can be obtained about how to alter the model in an
appropriate way when the model development procedure is repeated. The use
of nonparametric modelling is illustrated in the following simple example.

Example 2.8 (Improving the fermentation process model)
This example illustrates how nonparametric modelling can be used to determine how
to alter the preliminary fermentation process model shown in Example 2.3 by re-
pairing the model deficiency pinpointed in Example 2.7. The information obtained in
Example 2.7 falsifies the assumption of constant µ made in Example 2.3, so to obtain
a better estimate of the “true” function describing µ, state estimates X̂k|k, Ŝk|k, V̂k|k
and µ̂k|k, k = 0, . . . , N , are computed from the model shown in Example 2.7 by using
CTSM and the data sets shown in Figure 2.1, and by means of these an additive
model can be fitted. It is reasonable to assume that µ does not depend on V , so only
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Figure 2.5. Partial dependence plots of µ̂k|k vs. X̂k|k and Ŝk|k obtained by ap-
plying additive model fitting using locally-weighted linear regression (tri-cube
kernels with optimal nearest neighbour bandwidths determined using 5-fold cross-
validation). Solid lines: Estimates; dotted lines: 95% bootstrap confidence inter-
vals computed from 1000 replicates (see Appendix C for details).

estimates of X and S are included in this model, which gives the results shown in
Figure 2.5 in the form of partial dependence plots with associated bootstrap intervals.

From these plots it can be inferred that µ does not depend significantly on X (the
estimate is almost constant over the range of X values), whereas there is a significant
dependence on S (the estimate varies significantly over the range of S values). This
result in turn suggests that the constant assumption made in Example 2.3 should
be replaced with an assumption of µ being a function of S. More specifically, this
function should comply with the functional relation revealed in Figure 2.5b. To a
person with experience in fermentation process modelling, this functional relation is
indicative of a growth rate that can be described by Monod kinetics with substrate
inhibition (which is exactly the description used in Example 2.2 to generate the data
sets mentioned above). In other words, a better (and in fact correct) estimate of the
“true” function describing µ can be inferred directly in this particular case. �

The above is an example of how, by fitting an additive model, a nonparametric
estimate of the functional relation between rt and (a subset of) the state variab-
les can be obtained and visualized, and the example demonstrates that, based
on this visualization, it can be determined that rt depends on only one of the
state variables in this case. The example also demonstrates how an appropriate
parametric expression for this dependence can subsequently be inferred. How-
ever, due to correlation effects, the latter may not be equally straightforward
if rt depends on more than one of the state variables. More specifically, since
additive models assume that the contributions from the individual predictor
variables are additive, an actual dependence on e.g. the product between two
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predictor variables or a fraction between them may be incorrectly interpreted
as separate dependences on both of these variables, unless proper precautions
are taken, e.g. by including the particular product or fraction as a predictor
variable as well. Correlation effects and their implications are discussed in more
detail in the application examples given in Chapter 3, which involve more com-
plicated functional relations than the one in the above example. Based on
experience gained from these application examples, some guidelines have been
established to further systematize the use of nonparametric modelling in the
context of the proposed grey-box modelling framework. They are given here:

1. Given a set of estimates of rt and xt, start by excluding the variables in
xt, which can be assumed not to influence rt. Then fit an additive model
of rt vs. the remaining variables in xt, where these variables are included
as single predictors, i.e. a simultaneous fit of Y vs. X1, X2, etc.

2. Based on this result, exclude the variables in xt, which do not seem to
have any influence on rt. If necessary, fit a new additive model of rt vs.
the remaining variables in xt, where these variables are again included
as single predictors, i.e. a simultaneous fit of Y vs. X1, X2, etc.

3. Use this result to determine if rt depends on more than one of the variab-
les in xt. If so, fit new additive models, where, one at a time, products
and fractions of these variables are included as predictors instead of the
variables themselves, i.e. separate fits of Y vs. X1X2, X1

X2
, X2

X1
, etc.

Using these guidelines does not guarantee that sufficient information is obtained
to make proper inferences about the “true” function describing rt, but the
application examples given in Chapter 3 have shown that these rules of thumb
may be very useful in practice. In the third step, the separate inclusion of
products and fractions instead of, and not along with, the variables themselves
has been found necessary to ensure convergence of the backfitting algorithm.

2.7 Summary of the grey-box modelling cycle

The nonparametric modelling element described in Section 2.6 closes the loop
shown in Figure 1.3 and thus completes the grey-box modelling cycle. As
discussed in Section 1.3 the idea of the grey-box modelling cycle is to allow
the quality of a model of a fed-batch process to be iteratively improved, until
the model is unfalsified for the purpose of state estimation and optimal control
with respect to the available information, or at least until no more information
can be extracted from the available experimental data, in which case the model
remains falsified until more experimental data becomes available. The methods
behind the individual elements of the grey-box modelling cycle, which have been
the focus of this chapter, facilitate this iterative procedure and can therefore
be summarized in the form of an algorithm for systematic iterative model
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improvement. This grey-box modelling algorithm has a number of key features,
which make it very powerful in comparison with other approaches to grey-box
modelling reported in literature, but it also has certain limitations. These key
features and limitations are discussed after presenting the algorithm.

2.7.1 A grey-box modelling algorithm

Based on the individual elements of the grey-box modelling cycle, the following
algorithm for systematic iterative model improvement for the purpose of state
estimation and optimal control of fed-batch processes can be established:

1. Use first engineering principles and physical insights to derive an initial
model structure in the form of an ODE model (see Section 2.1).

2. Translate the ODE model into a continuous-discrete stochastic state space
model using a diagonal parameterization of the diffusion term to facilitate
pinpointing of model deficiencies (see Section 2.1).

3. Estimate the unknown parameters of the model from experimental data
with the EKF-based parameter estimation method (see Section 2.2).

4. Obtain information about the quality of the resulting model by perfor-
ming cross-validation residual analysis (see Section 2.3).

5. Evaluate the obtained quality information to determine if the model is
sufficiently accurate to be applied for subsequent state estimation and
optimal control. If unfalsified, terminate model development. If falsified,
proceed with model development (see Section 2.4).

6. Try to pinpoint specific model deficiencies by applying statistical tests and
by re-formulating the model with additional state variables and repeating
the estimation and test procedures (see Section 2.5).

7. If specific model deficiencies can be pinpointed, obtain state estimates
from the re-formulated model and use additive models to obtain plots of
appropriate estimates of functional relations (see Section 2.6).

8. Alter the model according to the estimated functional relations combined
with physical insights and repeat from Step 3 (see Section 2.6).

The basic idea behind this grey-box modelling algorithm is to iteratively im-
prove the quality of the model by systematically pinpointing and repairing
model deficiencies, until a model is obtained, which is unfalsified for the purpose
of state estimation and optimal control with respect to the available informa-
tion. However, since the EKF-based parameter estimation method discussed
in Section 2.2 is used within this algorithm, a final calibration of the parame-
ters may be needed at this point. More specifically, the EKF-based method
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(estimation in a PE setting) tends to emphasize the one-step-ahead predic-
tion capabilities of the model, which means that, because a model with good
long-term prediction capabilities is needed for optimal control, e.g. by means of
MPC, the parameters should be re-calibrated with an estimation method that
emphasizes the pure simulation capabilities of the model (estimation in an OE
setting). This should, however, only be done, if it is reasonable to assume that
the diffusion term is no longer significant. This is discussed in more detail in
the comparison between PE and OE estimation given in Chapter 3. The use
of the grey-box modelling algorithm is illustrated in the following example.

Example 2.9 (Developing an unfalsified fermentation process model)
This example illustrates how the grey-box modelling algorithm can be used to de-
velop an unfalsified model from the preliminary fermentation process model shown in
Example 2.3. In Examples 2.3-2.8 the first seven steps of the first iteration through
the algorithm have already been illustrated, and it has been determined that, to
improve its quality, the model should be altered in accordance with the functional
relation between µ and S revealed in Figure 2.5b, which is indicative of a growth
rate that can be described by Monod kinetics with substrate inhibition. Altering the
preliminary model to reflect this in Step 8 gives a model with the system equation:

d

X
S
V

 =

 µ(S)X − F X
V

−µ(S)X
Y

+ F (SF −S)
V

F

dt +

σ11 0 0
0 σ22 0
0 0 σ33

dωt , t ∈ [t0, tf ] (2.59)

where µ(S) is given by:

µ(S) = µmax
S

K2S2 + S + K1
(2.60)

and the measurement equation:y1

y2

y3


k

=

X
S
V


k

+ ek , ek ∈ N(0, S) , S =

S11 0 0
0 S22 0
0 0 S33

 (2.61)

Returning to Step 3 for the second iteration through the algorithm, and using CTSM
and the same data set as in Example 2.3, the estimates (and standard deviations and
t-scores) shown in Table 2.3 are obtained. To obtain information about the quality
of the resulting model, cross-validation residual analysis is performed in Step 4 as
shown in Figure 2.6, and the results of this analysis show that both the one-step-
ahead prediction capabilities and the pure simulation capabilities of the altered model
are very good, which is indicated by the fact that the residuals can all be regarded
as white noise. Moving to Step 5, the model is thus unfalsified for the purpose
of state estimation and optimal control with respect to the available information,
and the model development procedure can be terminated. However, since marginal
t-tests for parameter insignificance (see Table 2.3) show that, on a 5% level, there
are now no significant parameters in the diffusion term, which is confirmed by a test
for simultaneous insignificance based on Wald’s W -statistic, the parameters of the
model should ideally be re-calibrated at this point with an estimation method that
emphasizes the pure simulation capabilities of the model, but this is omitted. �
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Figure 2.6. Cross-validation residual analysis results for the model in Example 2.9
with parameters in Table 2.3 using the validation data set shown in Figure 2.1b.
Top left: One-step-ahead prediction comparison (solid lines: Predicted values);
top right: Pure simulation comparison (solid lines: Simulated values); bottom left:
One-step-ahead prediction residuals, LDF and PLDF for y1, y2 and y3; bottom
right: Pure simulation residuals, LDF and PLDF for y1, y2 and y3.

Parameter Estimate Standard deviation t-score Significant?

X0 1.0148E+00 1.0813E-02 93.8515 Yes
S0 2.4127E-01 9.4924E-03 25.4177 Yes
V0 1.0072E+00 8.7723E-03 114.8168 Yes

µmax 1.0305E+00 1.7254E-02 59.7225 Yes
K1 3.7929E-02 4.1638E-03 9.1092 Yes
K2 5.4211E-01 2.4949E-02 21.7286 Yes
σ11 2.3250E-10 2.1044E-07 0.0011 No
σ22 1.4486E-07 7.9348E-05 0.0018 No
σ33 3.2842E-12 3.6604E-09 0.0009 No
S11 7.4828E-03 1.0114E-03 7.3982 Yes
S22 1.0433E-03 1.4331E-04 7.2804 Yes
S33 1.1359E-02 1.6028E-03 7.0867 Yes

Table 2.3. Estimation results. Model in (2.59)-(2.61) - data from Figure 2.1a.
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The paper included in Appendix E contains a condensed outline of the material
presented in this chapter with a generalized version of the grey-box modelling
algorithm presented here. This generalized version is not limited to modelling
of fed-batch processes for the purpose of state estimation and optimal control
but can be applied to model a variety of systems for different purposes. In this
paper a case study extending the examples presented here is also given, and this
case study demonstrates that the algorithm can also be successfully applied,
when all state variables of a model cannot be measured directly. Additional
examples of the application of the algorithm are given in Chapter 3.

2.7.2 Key features and limitations

A key feature of the grey-box modelling algorithm and thus of the proposed
grey-box modelling framework as a whole is the possibility of systematically
pinpointing and repairing model deficiencies. This is a very powerful feature not
shared by other approaches to grey-box modelling reported in literature, e.g.
the approach by Bohlin and Graebe (1995) and Bohlin (2001). As mentioned
in Section 1.2 the idea of that approach also is to find the simplest model for a
given purpose (not necessarily state estimation and optimal control of fed-batch
processes), which is consistent with prior physical knowledge and not falsified
by available experimental data, and this is done by formulating a sequence
of hypothetical model structures of increasing complexity and systematically
expanding the model by falsifying incorrect hypotheses through statistical tests
based on the experimental data. However, as discussed by Bohlin (2001), a
drawback of this approach is that it relies on the model maker to formulate the
hypothetical model structures to be tested, which poses the problem that the
model maker may run out of ideas for improvement before a sufficiently accurate
model is obtained. This problem can be avoided with the framework proposed
here due to the feature mentioned above, because it allows the model maker
to formulate new hypotheses in an intelligent manner based on information
extracted from experimental data. In other words, the proposed framework
relies less on the model maker, and, in this particular sense, is more systematic
than the approach by Bohlin and Graebe (1995) and Bohlin (2001).

The proposed grey-box modelling framework is, however, not independent of
the model maker, and if the model maker is unable to select specific suspect
phenomena for further investigation when model deficiencies have been indi-
cated, it is not possible to pinpoint and subsequently repair these deficiencies
either. Moreover, like other approaches to grey-box modelling, the performance
of the proposed framework is limited by the quality and amount of available
prior physical knowledge and experimental data. If there is insufficient prior
physical knowledge available to establish an initial model structure, it may not
be worthwhile to use this approach as opposed to a data-driven modelling ap-
proach, and if the available experimental data is insufficiently informative or if
the available measurements render certain subsets of the state variables of the
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system unobservable, parameter identifiability may be seriously affected. Be-
cause the procedure for pinpointing model deficiencies relies on estimates of the
parameters of the diffusion term and because the procedure for subsequently
repairing these deficiencies requires that the state variables of the system are
observable, the reliability of these procedures may be affected as well. In par-
ticular, a situation may occur, where the model is falsified, but where none of
the parameters of the diffusion term appear to be significant and pinpointing
a specific model deficiency is impossible. A situation may also occur, where
the model is falsified and the significance of certain parameters of the diffusion
term have allowed a specific deficiency to be pinpointed, but where appropriate
estimates of functional relations cannot be obtained to indicate how to repair
this deficiency. Both situations imply that a point has been reached, where
the model cannot be further improved with the available information. In addi-
tion to stressing the need for developing appropriate methods for experimental
design to ensure that sufficient information is obtained, which is, however,
outside the scope of the work presented in this thesis, this raises a very impor-
tant question. More specifically, assuming that a “true” model exists, where
all state variables are observable, and that the available experimental data is
sufficiently informative to ensure that all parameters are identifiable, will the
grey-box modelling algorithm then converge to yield the “true” model? In the
general case, no rigorous proof of such convergence exists, but the examples
presented throughout this chapter have demonstrated that the algorithm may
in fact converge for certain simple systems, and the application examples given
in Chapter 3 provide additional evidence to support this conclusion.



3

Application examples

In this chapter a number of application examples are given to demonstrate the
strengths of the proposed grey-box modelling framework. The first example
only focuses on the parameter estimation element of the grey-box modelling
cycle, whereas the rest focus on the cycle as a whole and on the related al-
gorithm for systematic iterative model improvement presented in Chapter 2.

3.1 A comparison of PE and OE estimation

As discussed in Chapter 1, the use of continuous-discrete stochastic state space
models facilitates the combination of modelling based on prior physical insights
with statistical methods for structural identification, parameter estimation and
model quality evaluation, which is a key advantage of grey-box modelling. An
important aspect in this regard is the fact that continuous-discrete stochas-
tic state space models provide a decomposition of the noise affecting the sys-
tem into a process noise term (the diffusion term) and a measurement noise
term. This facilitates estimation of unknown parameters in a PE setting, which
tends to give less biased and more reproducible results than estimation in an
OE setting, which is the most commonly used methodology for estimation of
parameters in continuous time systems. More specifically, the advantages of
PE estimation methods such as the one used within the proposed grey-box
modelling framework are due to the fact that process noise can be explicitly
accounted for, whereas for OE estimation methods it cannot and is therefore
absorbed into the parameter estimates, resulting in significant bias.

To demonstrate the advantages of PE estimation over OE estimation in the
presence of process noise and to further discuss the implications, a comparison
of the two methods is given here. The PE estimation method used for the com-
parison is the estimation method used within the proposed grey-box modelling
framework and has already been thoroughly discussed in Chapter 2 along with
the implementation of this method within the computer program CTSM, a
detailed account of which is given in Appendix A. The OE estimation method
used for the comparison is a standard nonlinear least squares (NLS) method
applied to an ODE model (Bard, 1974), and this method has been implemented
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in MATLAB. Within this method, the system equation is given as follows:

dxt

dt
= f (xt,ut, t,θ) , t ∈ [t0, tN ] (3.1)

and the corresponding measurement equation is given as follows:

yk = h(xk,uk, tk,θ) + ek (3.2)

where yk is a vector of output variables and {ek} is a white noise process. In
other words, the model resembles the continuous-discrete stochastic state space
model, except for the fact that the SDE’s of the system equation have been
replaced with ODE’s. Given a sequence of measurements y0, y1, . . . , yk, . . . ,
yN , the objective function for standard NLS can be written as follows:

Φ =
N∑

k=0

(yk − ŷk|0)
T (yk − ŷk|0) (3.3)

where ŷk|0 is determined by solving the ODE’s of the system equation and
subsequently applying the measurement equation for a given set of initial con-
ditions x0 and parameter values θ. The parameter estimates are determined
by minimizing this function using a nonlinear optimisation algorithm. To avoid
numerical approximation, e.g. by means of a set of finite differences, the gra-
dient of the objective function can be computed as follows (Bard, 1974):

∂Φ
∂θT

=
N∑

k=0

∂((yk − ŷk|0)T (yk − ŷk|0))

∂θT

=
N∑

k=0

∂((yk − ŷk|0)
T (yk − ŷk|0))

∂ŷT
k|0

Dŷk|0
DθT

= −2
N∑

k=0

(yk − ŷk|0)
T
Dŷk|0
DθT

(3.4)

where:

Dŷk|0
DθT

=
Dh(xk,uk, tk,θ)

DθT

=
∂h(xk,uk, tk,θ)

∂θT
+
∂h(xk,uk, tk,θ)

∂xT
k

∂xk

∂θT

(3.5)

and where ∂xk

∂θT =
(

∂xt

∂θT

)
t=tk

satisfies the following set of ODE’s:

d

dt

(
∂xt

∂θT

)
=

∂

∂θT

(
dxt

dt

)
=
Df (xt,ut, t,θ)

DθT

=
∂f(xt,ut, t,θ)

∂θT
+
∂f(xt,ut, t,θ)

∂xT
t

∂xt

∂θT
, t ∈ [t0, tN ]

(3.6)
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These are the so-called sensitivity equations, which can be solved along with
the ODE’s of the model to yield the gradient of the objective function. Initial
conditions for solving these equations can be found as follows (Bard, 1974):(

∂xt

∂θT

)
t=t0

=
∂x0

∂θT
(3.7)

The comparison of this OE estimation method and the PE estimation method
of the proposed grey-box modelling framework is given in the following example.

Example 3.1 (A comparison of PE and OE estimation)
This example serves to demonstrate the advantages of PE estimation over OE esti-
mation in the presence of process noise. The estimation problem considered is that
of estimating the parameters µmax and K1 (K2 is fixed at its true value to ensure
convergence of the OE estimation method applied) and the initial conditions X0, S0

and V0 in the fermentation process model described in Example 1.1 using the data sets
in Figures 2.1-2.3, which have been generated with the continuous-discrete stochastic
state space model described in Example 2.1 using different levels of process noise.

For the PE estimation part of the comparison, the estimation method implemented in
CTSM is applied using a model structure similar to the one described in Example 2.1,
where, because additional diffusion term and measurement noise term parameters are
also estimated in this case, the complete parameter vector can be written as follows:

θ =
[
X0 S0 V0 µmax K1 σ11 σ22 σ33 S11 S22 S33

]T
(3.8)

For the OE estimation part of the comparison, the standard NLS method described
above is applied using a model structure where the system equation is given by:

d

dt

X
S
V

 =

 µ(S)X − F X
V

−µ(S)X
Y

+ F (SF −S)
V

F

 , t ∈ [t0, tf ] (3.9)

where the biomass growth rate µ(S) is given as follows:

µ(S) = µmax
S

K2S2 + S + K1
(3.10)

and where the corresponding measurement equation is given by:y1

y2

y3


k

=

X
S
V


k

+ ek (3.11)

where y1, y2 and y3 are output variables and {ek} is a white noise process. The
objective function is given by (3.3) and the parameter vector can be written as follows:

θ =
[
X0 S0 V0 µmax K1

]T
(3.12)
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The gradient of the objective function, which is given by (3.4), is particularly simple
to compute in this specific case, because of the following set of identities:

∂h(xk, uk, tk, θ)

∂θT
= 0

∂h(xk, uk, tk, θ)

∂xT
k

= I

(3.13)

which makes (3.5) identical to the solution to the sensitivity equations, i.e.:

d

dt

(
∂xt

∂θT

)
=

∂f (xt, ut, t, θ)

∂θT
+

∂f (xt, ut, t, θ)

∂xT
t

∂xt

∂θT
, t ∈ [t0, tf ] (3.14)

where:

∂f (xt, ut, t, θ)

∂θT
=


0 0 0 S

K2S2+S+K1
X − µmaxS

(K2S2+S+K1)2
X

0 0 0 − S
K2S2+S+K1

X
Y

µmaxS
(K2S2+S+K1)2

X
Y

0 0 0 0 0


∂f (xt, ut, t, θ)

∂xT
t

=


µ(S) − F

V
K1−K2S2

(K2S2+S+K1)2
X F X

V 2

−µ(S)
Y

− K1−K2S2

(K2S2+S+K1)2
X
Y

− F
V

−F (SF −S)

V 2

0 0 0


(3.15)

Initial conditions for solving these equations are given as follows in this case:(
∂xt

∂θT

)
t=t0

=

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

 (3.16)

The results of the comparison are shown in Tables 3.1-3.3 in the form of estimates
of the parameters and initial states. Uncertainty information in terms of standard
deviations of the estimates is not given, because, unlike with the PE estimation
method, such information is difficult to obtain with the OE estimation method. As
a result, the performance of the two methods can only be compared in terms of bias.

Parameter True value PE estimate OE estimate PE estimate OE estimate
X0 1.0000E+00 1.0095E+00 1.0148E+00 9.8576E-01 9.9595E-01
S0 2.4490E-01 2.3835E-01 2.4431E-01 2.4760E-01 2.3894E-01
V0 1.0000E+00 1.0040E+00 1.0092E+00 1.0137E+00 1.0160E+00

µmax 1.0000E+00 1.0022E+00 9.9852E-01 1.0092E+00 1.0184E+00
K1 3.0000E-02 3.1629E-02 3.1412E-02 3.2624E-02 3.6663E-02
σ11 0.0000E+00 3.6100E-07 - 8.3976E-06 -
σ22 0.0000E+00 4.7385E-07 - 1.9310E-05 -
σ33 0.0000E+00 7.5881E-14 - 1.1389E-06 -
S11 1.0000E-02 7.5248E-03 - 9.2502E-03 -
S22 1.0000E-03 1.0636E-03 - 8.1408E-04 -
S33 1.0000E-02 1.1388E-02 - 8.3280E-03 -

Table 3.1. Comparison of PE estimation (CTSM) and OE estimation (standard
NLS) for the data sets in Figure 2.1. Left: Batch no. 1, right: Batch no. 2.
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The results in Table 3.1 correspond to the data sets in Figure 2.1, where no process
noise is present, and show that in this case the two methods perform equally well in
the sense that reasonably unbiased estimates of all parameters and initial states are
obtained with both methods. The results in Table 3.2 correspond to the data sets in
Figure 2.2, where a moderate level of process noise has been used, and these results
show that, although some of the PE estimates seem to be biased as well, the OE
estimates are now more biased. Finally, the results in Table 3.3, which correspond to
the data sets in Figure 2.3, where a high level of process noise has been used, confirm
this tendency and show that the OE estimates are now significantly more biased. �

The advantages of PE estimation over OE estimation in the presence of process
noise imply that, unless it is reasonable to assume that significant process noise
is not present, PE estimation should be used, because this gives significantly
less biased estimates of the unknown parameters. Moreover, PE estimation pro-
vides means to obtain uncertainty information in terms of standard deviations
of the estimates and facilitates the use of a number of the powerful statistical
tools for model quality evaluation and subsequent model improvement which
are integral parts of the proposed grey-box modelling framework. However, as
discussed in Chapter 2, PE estimation tends to emphasize the one-step-ahead
prediction capabilites of the model, because this method essentially minimizes
a sum of squared one-step-ahead prediction errors. OE estimation, on the
other hand, minimizes a sum of squared pure simulation errors and therefore
tends to emphasize the pure simulation capabilities of the model. Thus, if it
is reasonable to assume that significant process noise is not present, and if the
model must have good long-term prediction capabilities, which is essential if it
is to be used for optimal control of a fed-batch process, e.g. by means of MPC,
OE estimation should be used for the final calibration of the parameters of the
model. For this purpose, the standard NLS method described above may be
used, possibly incorporating a weighting scheme to ensure proper scaling of the
individual variables, although this is not as straigtforward as with the PE esti-
mation method implemented in CTSM, where this is achieved automatically.

Parameter True value PE estimate OE estimate PE estimate OE estimate
X0 1.0000E+00 1.0647E+00 9.8903E-01 1.0213E+00 1.0050E+00
S0 2.4490E-01 2.8830E-01 9.7122E-02 2.2395E-01 2.1622E-01
V0 1.0000E+00 9.8870E-01 8.4471E-01 1.0196E+00 1.0360E+00

µmax 1.0000E+00 1.0126E+00 9.3045E-01 1.0043E+00 1.0208E+00
K1 3.0000E-02 3.8748E-02 2.0000E-14 6.4524E-02 6.7207E-02
σ11 1.0000E-01 1.0828E-01 - 1.5974E-06 -
σ22 1.0000E-01 1.2294E-01 - 8.2424E-02 -
σ33 1.0000E-01 7.7399E-02 - 9.8385E-02 -
S11 1.0000E-02 8.4982E-03 - 8.9795E-03 -
S22 1.0000E-03 9.3489E-04 - 1.0258E-03 -
S33 1.0000E-02 9.5192E-03 - 8.6510E-03 -

Table 3.2. Comparison of PE estimation (CTSM) and OE estimation (standard
NLS) for the data sets in Figure 2.2. Left: Batch no. 1, right: Batch no. 2.
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3.2 A case with a complex deficiency

The performance of the proposed grey-box modelling framework has already
been demonstrated by means of the examples given in Chapter 2, which illu-
strate the individual elements of the grey-box modelling cycle as well as the cor-
responding algorithm for systematic iterative model improvement for a simple
example. To further demonstrate the performance of the proposed framework,
a somewhat more complicated example is considered in the following.

Example 3.2 (A case with a complex deficiency)
This example demonstrates the performance of the proposed grey-box modelling
framework for a fed-batch fermentation process represented by a simulation model
that describes growth of biomass on two different substrates with multiple Monod
kinetics and inhibition by one of the substrates. The model is given as follows:

dX

dt
= µ(S1, S2)X − FX

V
(3.17)

dS1

dt
= −Y1µ(S1, S2)X +

F (SF,1 − S1)

V
(3.18)

dS2

dt
= −Y2µ(S1, S2)X +

F (SF,2 − S2)

V
(3.19)

dV

dt
= F (3.20)

for t ∈ [t0, tf ], where X ( g
l
) is the biomass concentration, S1 ( g

l
) and S2 ( g

l
) are

concentrations of the two substrates, V (l) is the reactor volume, F ( l
h
) is the feed

flow rate, Y1 = 2 and Y2 = 0.1 are yield coefficients and SF,1 = 10 g
l

and SF,2 ( g
l
) are

feed concentrations of the two substrates. t0 = 0h and tf = 3.8h are initial and final
times of a typical fed-batch run and µ(S1, S2) (h−1) is the biomass growth rate, i.e.:

µ(S1, S2) = µmax
S1

K12S2
1 + S1 + K11

S2

S2 + K2
(3.21)

where µmax = 1h−1, K11 = 0.03 g
l
, K12 = 0.5 l

g
and K2 = 0.06 g

l
are kinetic parame-

ters. In order to generate data from this model by perturbing the feed flow rate along

Parameter True value PE estimate OE estimate PE estimate OE estimate
X0 1.0000E+00 9.5255E-01 8.4096E-01 1.0808E+00 1.3441E+00
S0 2.4490E-01 2.3878E-01 4.5647E-02 2.0078E-01 9.0551E-01
V0 1.0000E+00 9.8120E-01 1.2504E+00 1.1813E+00 1.6106E+00

µmax 1.0000E+00 9.6795E-01 8.8212E-01 1.0341E+00 7.9587E-01
K1 3.0000E-02 3.1606E-02 1.9189E-02 4.4851E-02 6.2200E-12
σ11 3.1623E-01 3.1715E-01 - 2.7136E-01 -
σ22 3.1623E-01 2.7524E-01 - 3.8652E-01 -
σ33 3.1623E-01 2.5364E-01 - 3.9257E-01 -
S11 1.0000E-02 7.9042E-03 - 1.0219E-02 -
S22 1.0000E-03 1.2357E-03 - 1.5330E-04 -
S33 1.0000E-02 8.4691E-03 - 9.7136E-03 -

Table 3.3. Comparison of PE estimation (CTSM) and OE estimation (standard
NLS) for the data sets in Figure 2.3. Left: Batch no. 1, right: Batch no. 2.
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an appropriate trajectory, an optimal such trajectory is first determined by solving a
specific productivity maximization problem, which can be stated as follows:

max
X0,S10,S20,V0,
F (t) , t∈[t0 ,tf ]

V (tf )X(tf ) (3.22)

subject to the above model equations. In other words, the problem is to determine
the initial conditions and the open loop feed flow rate trajectory that gives optimal
productivity in terms of the amount of biomass at the end of a run. By applying an
appropriate variable transformation and subsequently using Pontryagin’s maximum
principle, the following conditions for optimal operation can be obtained:

0 =
∂µ(S1, S2)

∂S1
= µmax

K11 − K12S
2
1

(K12S2
1 + S1 + K11)

2

S2

S2 + K2
⇒ S1 =

√
K1

K2
= S∗

1

0 =
∂µ(S1, S2)

∂S2
= µmax

S1

K12S2
1 + S1 + K11

K2

(S2 + K2)
2
⇒ S2 → ∞

(3.23)

The latter condition is not practically realizable, so µ(S1, S2) can only be maximized
with respect to S1. Assuming that the initial concentration S10 = S∗

1 and by choosing
the feed flow rate in a way that makes dS1

dt
= 0, S1 can be kept at S10 = S∗

1 , i.e.:

0 =
dS1

dt
= −Y1µ(S10, S20)X +

F (SF,1 − S10)

V
⇒ F =

Y1µ(S10, S20)XV

(SF,1 − S10)
(3.24)

This expression is inserted into two of the other equations of the original model, i.e.:

dX

dt
= µ(S10, S20)X − Y1µ(S10, S20)XV

(SF,1 − S10)

X

V

dV

dt
=

Y1µ(S10, S20)XV

(SF,1 − S10)

,
X(t0) = X0

V (t0) = V0

, t ∈ [t0, tf ] (3.25)

and by setting a = µ(S10, S20) and b = Y1µ(S10,S20)

(SF,1−S10)
, the equation for X can be solved:

dX

dt
= aX − bX2

X =
aeatc

1 + beatc
, t ∈ [t0, tf ]

(3.26)

with c = X0
a−bX0

, whereupon the equation for V can be solved as follows:

dV

dt
= bXV = b

aeatc

1 + beatc
V

V =
1 + beatc

1 + bc
V0 , t ∈ [t0, tf ]

(3.27)

By substituting these solutions back into the equation for the feed flow rate, an
analytical expression for the optimal feed flow rate trajectory can be obtained, i.e.:

F = bXV = b
aeatc

1 + beatc

1 + beatc

1 + bc
V0

= beatX0V0 , t ∈ [t0, tf ]

(3.28)
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Figure 3.1. Data set no. 1 for Example 3.2. Top: X, S1, S2. Bottom: V , F , SF,2.

Using perturbed versions of this feed flow rate trajectory (along with low frequency
perturbation in SF,2), two data sets (shown in Figures 3.1-3.2) are generated by means
of stochastic simulation using the Euler scheme (see Example 2.2). For this purpose a
re-formulated version of the model is applied, which has the following system equation:

d


X
S1

S2

V

 =


µ(S1, S2)X − F X

V

−Y1µ(S1, S2)X +
F (SF,1−S1)

V

−Y2µ(S1, S2)X +
F (SF,2−S2)

V

F

dt +


σ11 0 0 0
0 σ22 0 0
0 0 σ33 0
0 0 0 σ44

dωt (3.29)

where t ∈ [t0, tf ], and the following measurement equation:
y1

y2

y3

y4


k

=


X
S1

S2

V


k

+ ek , ek ∈ N(0, S) , S =


S11 0 0 0
0 S22 0 0
0 0 S33 0
0 0 0 S44

 (3.30)

The specific initial state values applied are (X0, S10, S20, V0) = (1, S∗
1 , 1

2
S∗

1 , 1), and the
parameter values applied are the deterministic parameter values mentioned above,
the diffusion term parameter values σ11 = σ22 = σ33 = σ44 = 0 and the measurement
noise term parameter values S11 = 0.01, S22 = 0.001, S33 = 0.001 and S44 = 0.01. A
discretization time interval corresponding to 1

10000
of tf is used and every 100’th value

is sampled (see Example 2.2) to give data sets containing 101 samples each.

Using the generated data sets, the performance of the grey-box modelling cycle and
the corresponding algorithm for systematic iterative model improvement is now illu-
strated by assuming that an initial model structure corresponding to (3.29)-(3.30) is
available, where the true structure of the biomass growth rate µ(S1, S2) is unknown.
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Figure 3.2. Data set no. 2 for Example 3.2. Top: X, S1, S2. Bottom: V , F , SF,2.

This is a reasonable assumption, because a model of this type can easily be formulated
by applying mass balances to derive an ODE model and by translating this model into
a continuous-discrete stochastic state space model with a diagonal parameterization
of the diffusion term, which is also straightforward. Steps 1 and 2 of the algorithm
have thus been completed to yield a model with the following system equation:

d


X
S1

S2

V

 =


µX − F X

V

−Y1µX +
F (SF,1−S1)

V

−Y2µX +
F (SF,2−S2)

V

F

dt +


σ11 0 0 0
0 σ22 0 0
0 0 σ33 0
0 0 0 σ44

dωt (3.31)

where t ∈ [t0, tf ], and where, because the true structure of the biomass growth rate is
unknown, a constant growth rate µ has been assumed. The measurement equation of
the model is equivalent to (3.30). In Step 3 of the algorithm, the unknown parame-
ters of the model are estimated using CTSM and the data set in Figure 3.1, which
gives the results shown in Table 3.4. To evaluate the quality of the resulting model
in terms of its prediction capabilities, cross-validation residual analysis is performed
in Step 4, and, since the intended purpose of the model is assumed to be applica-
tion for subsequent state estimation and optimal control, which requires a model
with good long-term prediction capabilities, only pure simulation residual analysis is
performed, cf. Figure 3.3. The results of this analysis show that the model has poor
pure simulation capabilities and thus falsify the model for the purpose of optimal
control in Step 5, which means that the model development procedure implied by
the grey-box modelling cycle must be repeated by re-formulating the model. Step 6
of the algorithm, which deals with pinpointing of model deficiencies, is therefore
applied. Table 3.4 includes t-scores for performing marginal tests for insignificance of
the individual parameters. On a 5% level, these show that only σ44 is insignificant.
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Figure 3.3. Pure simulation cross-validation residual analysis results for the model
in (3.31) and (3.30) with parameters in Table 3.4 using the validation data set
shown in Figure 3.2. Top-down: y1, y2, y3 and y4. Left-right: Pure simulation
comparison (solid lines: Simulated values), residuals, LDF and PLDF.

Parameter Estimate Standard deviation t-score Significant?

X0 9.8928E-01 4.0081E-02 24.6819 Yes
S10 2.4057E-01 8.3171E-02 2.8925 Yes
S20 1.4383E-01 3.6991E-02 3.8882 Yes
V0 9.9274E-01 1.0085E-02 98.4370 Yes

µmax 6.1743E-01 7.6554E-03 80.6534 Yes
σ11 4.3756E-02 2.1532E-02 2.0321 Yes
σ22 8.1328E-02 1.4821E-02 5.4872 Yes
σ33 3.7169E-02 1.7445E-02 2.1306 Yes
σ44 1.5274E-06 1.8520E-05 0.0825 No
S11 7.8047E-03 1.2265E-03 6.3632 Yes
S22 9.5065E-04 1.7527E-04 5.4239 Yes
S33 1.1190E-03 2.0934E-04 5.3457 Yes
S44 1.1593E-02 1.6556E-03 7.0025 Yes

Table 3.4. Estimation results. Model in (3.31) and (3.30) - data from Figure 3.1.
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The fact that the remaining parameters of the diffusion term are all significant, in-
dicates that the corresponding elements of the drift term may be incorrect. These
elements all depend on µ, which means that µ is an obvious model deficiency suspect,
so to investigate this further, the model is re-formulated with µ as an additional state
variable, which yields a model with the following system equation:

d


X
S1

S2

V
µ

 =



µX − F X
V

−Y1µX +
F (SF,1−S1)

V

−Y2µX +
F (SF,2−S2)

V

F
0

dt +


σ11 0 0 0 0
0 σ22 0 0 0
0 0 σ33 0 0
0 0 0 σ44 0
0 0 0 0 σ55

dωt (3.32)

where t ∈ [t0, tf ], and where the last element of the drift term is zero, because µ
has been assumed to be constant. The measurement equation remains equivalent to
(3.30). Estimating the unknown parameters of this model using CTSM and the same
data set as before, gives the results shown in Table 3.5, and inspection of the t-scores
for marginal tests for insignificance now show that, of the parameters of the diffusion
term, only σ55 is significant. This indicates that there is substantial variation in µ
and thus confirms the suspicion that µ is deficient. Moving to Step 7 of the algorithm,
nonparametric modelling can now be applied to determine how to improve the model.

Using the re-formulated model in (3.32) and (3.30) and the parameter estimates in
Table 3.5, state estimates X̂k|k, Ŝ1,k|k, Ŝ2,k|k, V̂k|k, µ̂k|k, k = 0, . . . , N , are computed
with CTSM from the data sets shown in Figures 3.1-3.2 and an additive model is
fitted to reveal the true structure of the function describing µ by means of estimates
of functional relations between µ and the original state variables. It is reasonable
to make the assumption that µ does not depend on V , so only functional relations
between µ̂k|k and X̂k|k, Ŝ1,k|k and Ŝ2,k|k are estimated, which gives the results shown
in Figure 3.4. These plots indicate that µ̂k|k does not depend on X̂k|k, but is highly

Parameter Estimate Standard deviation t-score Significant?

X0 1.0043E+00 1.2949E-02 77.5607 Yes
S10 2.4473E-01 1.2938E-02 18.9150 Yes
S20 1.2464E-01 5.1975E-03 23.9802 Yes
V0 9.9527E-01 8.5839E-03 115.9467 Yes
µ0 5.9384E-01 3.9559E-02 15.0115 Yes
σ11 2.2203E-06 9.1593E-06 0.2424 No
σ22 1.8052E-06 7.3434E-06 0.2458 No
σ33 2.4187E-07 1.0447E-06 0.2315 No
σ44 5.8310E-11 3.6366E-10 0.1603 No
σ55 5.3179E-02 1.4390E-02 3.6955 Yes
S11 7.4298E-03 1.0513E-03 7.0673 Yes
S22 1.1182E-03 1.7492E-04 6.3928 Yes
S33 1.3616E-03 1.8904E-04 7.2027 Yes
S44 1.1529E-02 1.5798E-03 7.2978 Yes

Table 3.5. Estimation results. Model in (3.32) and (3.30) - data from Figure 3.1.
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Figure 3.4. Partial dependence plots of µ̂k|k vs. X̂k|k, Ŝ1,k|k and Ŝ2,k|k obtained by
applying additive model fitting using locally-weighted linear regression (tri-cube
kernels with optimal nearest neighbour bandwidths determined using 5-fold cross-
validation). Solid lines: Estimates; dotted lines: 95% bootstrap confidence inter-
vals computed from 1000 replicates (see Appendix C for details).

dependent on Ŝ1,k|k and slightly less dependent on Ŝ2,k|k. Because of the apparent
dependence on more than one variable, further investigations are needed to rule out
the possibility that this is caused by an actual dependence on e.g. the product of
these variables or a fraction between them, but performing such investigations shows
that this does not seem to be the case here. Instead, since the apparent dependence
on more than one variable may be due to other types of correlations as well, only the
strongest dependence, i.e. the dependence on Ŝ1,k|k, is taken into account. In Step 8
of the algorithm, the model is therefore re-formulated by replacing the assumption
of constant µ with an assumption of µ being a function of S1 that complies with the
functional relation revealed in Figure 3.4b. This relation is indicative of a biomass
growth rate that is governed by Monod kinetics and strongly inhibited by the first
substrate, which makes it reasonable to assume the following functional form:

µ(S1) = µmax
S1

K12S2
1 + S1 + K11

(3.33)

and hence the following system equation:

d


X
S1

S2

V

 =


µ(S1)X − F X

V

−Y1µ(S1)X +
F (SF,1−S1)

V

−Y2µ(S1)X +
F (SF,2−S2)

V

F

dt +


σ11 0 0 0
0 σ22 0 0
0 0 σ33 0
0 0 0 σ44

dωt (3.34)

where t ∈ [t0, tf ]. The measurement equation remains equivalent to (3.30). Returning
to Step 3 of the algorithm, the unknown parameters of the new model are estima-
ted using CTSM and the data set in Figure 3.1, which gives the results shown in
Table 3.6, and in Step 4 the quality of the resulting model is evaluated by performing
cross-validation residual analysis, cf. Figure 3.5. The results of this analysis show
that the new model has poor pure simulation capabilities as well, and in Step 5 of
the algorithm this model is therefore also falsified for the purpose of optimal control.
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Figure 3.5. Pure simulation cross-validation residual analysis results for the model
in (3.34) and (3.30) with parameters in Table 3.6 using the validation data set
shown in Figure 3.2. Top-down: y1, y2, y3 and y4. Left-right: Pure simulation
comparison (solid lines: Simulated values), residuals, LDF and PLDF.

Parameter Estimate Standard deviation t-score Significant?

X0 9.7252E-01 1.5610E-02 62.3021 Yes
S10 2.4155E-01 7.0201E-02 3.4409 Yes
S20 1.4480E-01 4.2272E-02 3.4254 Yes
V0 9.9031E-01 1.1358E-02 87.1905 Yes

µmax 6.8920E-01 1.6226E-01 4.2476 Yes
K11 8.7882E-03 4.2577E-02 0.2064 No
K12 1.8640E-01 2.8336E-01 0.6578 No
σ11 2.4387E-07 1.2018E-05 0.0203 No
σ22 6.1827E-02 1.9015E-02 3.2514 Yes
σ33 4.0159E-02 1.7820E-02 2.2536 Yes
σ44 1.7596E-09 8.0415E-08 0.0219 No
S11 7.8187E-03 1.1953E-03 6.5411 Yes
S22 1.0090E-03 1.8316E-04 5.5091 Yes
S33 1.0998E-03 2.0803E-04 5.2868 Yes
S44 1.1499E-02 1.6922E-03 6.7953 Yes

Table 3.6. Estimation results. Model in (3.34) and (3.30) - data from Figure 3.1.
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In other words, the new model does not seem to provide significant improvement in
terms of prediction capabilities in comparison with the original model. Before Step 6
of the algorithm, which deals with pinpointing of model deficiencies, is applied, statis-
tical tests are therefore performed to investigate if the replacement of the assumption
of a constant biomass growth rate µ with the assumption of µ(S1) in (3.33) has in
fact been insignificant. Table 3.6 includes t-scores for performing marginal tests for
insignificance of the individual parameters, which show that, on a 5% level, neither
K11 nor K12 is significant. If this is indeed the case, meaning that these parameters
may be eliminated by setting them equal to zero, (3.33) reduces to µ(S1) = µmax,
which is equivalent to an assumption of constant µ, and hence proves that the new
model is not significantly different from the original. However, because these two
marginal tests do not take correlations into account, such inference cannot be made.
Instead a test based on Wald’s W -statistic is performed to test the hypothesis:

H0:

(
K11

K12

)
=

(
0
0

)
(3.35)

against the corresponding alternative:

H1:

(
K11

K12

)
�=
(

0
0

)
(3.36)

i.e. to test whether the two parameters are simultaneously insignificant or not. The
test quantity can be computed from the t-scores for the two parameters and the
relevant part of the corresponding correlation matrix as follows (see Appendix B):

W (K̂11, K̂12) =
[
0.2064 0.6578

] [ 1 0.9930
0.9930 1

]−1 [
0.2064
0.6578

]
= 14.74 (3.37)

The critical area for a test on a 5% level is W (K̂11, K̂12) > χ2(2)0.95 = 5.991. In
other words, the H0 hypothesis is rejected, which means that, simultaneously, the
two parameters are significant. This proves that the new model is in fact significantly
different from the original and indicates that the S1-dependent part of the expres-
sion for the biomass growth rate should be retained. Moving on with Step 6 of the
algorithm, the t-scores included in Table 3.6 show that two of the parameters of the
diffusion term are significant, i.e. σ22 and σ33, and this indicates that the correspon-
ding elements of the drift term may be incorrect. These elements both depend on
µ(S1), which is thus a candidate for being deficient. To investigate this further, the
model should therefore be re-formulated with µ(S1) as an additional state variable.
However, prior analysis (see Figure 3.4) has shown potential dependence of the bio-
mass growth rate on both S1 and S2 and the above analysis has indicated that the
already modelled S1-dependence should be retained. Therefore, only µmax is included
as an additional state variable to yield a model with the following system equation:

d


X
S1

S2

V
µmax

=



µ(S1)X − F X
V

−Y1µ(S1)X +
F (SF,1−S1)

V

−Y2µ(S1)X +
F (SF,2−S2)

V

F
0

dt +


σ11 0 0 0 0
0 σ22 0 0 0
0 0 σ33 0 0
0 0 0 σ44 0
0 0 0 0 σ55

dωt (3.38)



3.2. A case with a complex deficiency 63

where t ∈ [t0, tf ], and where the last element of the drift is zero, because µmax has
been assumed to be constant. The measurement equation remains equivalent to
(3.30). Estimating the unknown parameters of this model using CTSM and the
same data set as before, gives the results shown in Table 3.7, and inspection of the
t-scores for marginal tests for insignificance now show that, of the parameters of the
diffusion term, only σ55 is significant. This indicates that there is substantial variation
in µmax and thus confirms the suspicion that µmax is deficient. Moving to Step 7 of
the algorithm, nonparametric modelling can now be applied to improve the model.

Using the re-formulated model in (3.38) and (3.30) and the parameter estimates
in Table 3.7, state estimates X̂k|k, Ŝ1,k|k, Ŝ2,k|k, V̂k|k, µ̂max,k|k, k = 0, . . . , N , are
computed with CTSM from the data sets shown in Figures 3.1-3.2 and an additive
model is fitted to reveal the true structure of the function describing µmax by means
of estimates of functional relations between µmax and the original state variables. It
is reasonable to assume that µmax does not depend on V , so only functional relations
between µ̂max,k|k and X̂k|k, Ŝ1,k|k and Ŝ2,k|k are estimated, which gives the results
shown in Figure 3.6. These plots resemble the plots in Figure 3.4 by indicating
that µ̂max,k|k is independent of X̂k|k but highly dependent on Ŝ1,k|k and slightly less
dependent on Ŝ2,k|k, and further investigations indicate that the apparent dependence
on more than one variable does not seem to be caused by an actual dependence on
e.g. the product of these variables or a fraction between them. More likely, this
dependence is due to the fact that some of the variations in the already modelled S1-
dependent part of the expression for the biomass growth rate are absorbed into µmax

(note that the estimates of K11 and K12 have changed from Table 3.6 to Table 3.7).

Thus assuming that the dependence on Ŝ1,k|k has already been adequately accounted
for, only the dependence on Ŝ2,k|k is therefore taken into account. In Step 8 of
the algorithm, the model is therefore re-formulated by replacing the assumption of

Parameter Estimate Standard deviation t-score Significant?

X0 1.0039E+00 2.0273E-02 49.5186 Yes
S10 2.4453E-01 1.4719E-02 16.6136 Yes
S20 1.2458E-01 7.1382E-03 17.4524 Yes
V0 9.9489E-01 1.9002E-02 52.3575 Yes

µmax,0 6.1176E-01 6.6621E-02 9.1828 Yes
K11 3.0850E-14 4.3363E-11 0.0007 No
K12 1.0826E-01 9.4352E-02 1.1475 No
σ11 9.9716E-07 4.2966E-04 0.0023 No
σ22 1.4180E-06 6.9594E-04 0.0020 No
σ33 1.2599E-05 4.9623E-03 0.0025 No
σ44 2.5428E-14 2.8508E-11 0.0009 No
σ55 4.8391E-02 1.3997E-02 3.4573 Yes
S11 7.4332E-03 1.2088E-03 6.1493 Yes
S22 1.1189E-03 3.1452E-04 3.5574 Yes
S33 1.3631E-03 2.5160E-04 5.4178 Yes
S44 1.1514E-02 1.4838E-03 7.7602 Yes

Table 3.7. Estimation results. Model in (3.38) and (3.30) - data from Figure 3.1.



64 Application examples

1 1.5 2 2.5 3 3.5
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

X
t|t

µ m
ax

,t|
t

(a) µ̂max,k|k vs. X̂k|k.
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(c) µ̂max,k|k vs. Ŝ2,k|k.

Figure 3.6. Partial dependence plots of µ̂max,k|k vs. X̂k|k, Ŝ1,k|k and Ŝ2,k|k ob-
tained by applying additive model fitting using locally-weighted linear regression
(tri-cube kernels with optimal nearest neighbour bandwidths determined using
5-fold cross-validation). Solid lines: Estimates; dotted lines: 95% bootstrap con-
fidence intervals computed from 1000 replicates (see Appendix C for details).

constant µmax with an assumption of µmax being a function of S2 that complies with
the functional relation revealed in Figure 3.6c. The increasing tendency in this plot is
indicative of a functionality that can be described by an expression of the Monod type
(this may be percieved as conjecture but is supported by the fact that bioprocesses
are often governed by kinetics of this type), which makes it reasonable to assume the
following functional form for the complete expression for the biomass growth rate:

µ(S1, S2) = µmax
S1

K12S2
1 + S1 + K11

S2

S2 + K2
(3.39)

and hence the following system equation:

d


X
S1

S2

V

 =


µ(S1, S2)X − F X

V

−Y1µ(S1, S2)X +
F (SF,1−S1)

V

−Y2µ(S1, S2)X +
F (SF,2−S2)

V

F

dt +


σ11 0 0 0
0 σ22 0 0
0 0 σ33 0
0 0 0 σ44

dωt (3.40)

where t ∈ [t0, tf ]. The measurement equation remains equivalent to (3.30). Retur-
ning to Step 3 of the algorithm, the unknown parameters of the new model are esti-
mated using CTSM and the data set in Figure 3.1, which gives the results shown in
Table 3.8, and in Step 4 the quality of the resulting model is evaluated by performing
cross-validation residual analysis, cf. Figure 3.7. The results of this analysis show that
the model has significantly better pure simulation capabilities than the previously
analyzed models. More specifically, the y1, y3 and y4 residuals can be regarded as
white noise, and the y2 pure simulation comparison is much better than with the
previously analyzed models. However, there seems to be some non-random variation
still left in the y2 residuals. Depending on the specific degree of accuracy required,
which is essentially an application-specific and therefore often subjective measure, the
model may thus be falsified for the purpose of optimal control in Step 5, meaning that
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the model development procedure must be repeated by re-formulating the model, but
this is assumed not to be the case. Furthermore, all information available in the data
set used for estimation has been exhausted in the context of the proposed grey-box
modelling framework, because a model has been developed where the diffusion term
is insignificant1, which means that model deficiencies can no longer be systematically
pinpointed. Moreover, the true model in (3.29)-(3.30) has been recovered. �

The above example demonstrates the performance of the proposed grey-box
modelling framework for a model with a more complex deficiency than the one
used in the examples given in Chapter 2. In particular, the example demon-
strates that a deficiency caused by an incorrectly modelled function of more
than one variable can also be repaired by applying the methods of the proposed
grey-box modelling cycle and the corresponding algorithm for systematic itera-
tive model improvement. However, the example also demonstrates that model
development may be much more complicated in such cases due to correlation
effects, which may lead to misinterpretation of results in the sense that, unless
proper precautions are taken, variations in some variables may be incorrectly
interpreted as variations in other variables, which may limit the performance
of the proposed framework by increasing the number of iterations through the
modelling cycle needed to develop a model with sufficient accuracy.

1Inspection of the t-scores for marginal tests for insignificance (Table 3.8) suggest that,
on a 5% level, there are no significant parameters in the diffusion term, which is confirmed
by a test for simultaneous insignificance based on Wald’s W -statistic. A final calibration of
the remaining model parameters should therefore ideally be performed at this stage, using
an estimation method that emphasizes the pure simulation capabilities of the model.

Parameter Estimate Standard deviation t-score Significant?

X0 1.0093E+00 1.1575E-02 87.1990 Yes
S10 2.3284E-01 9.3650E-03 24.8631 Yes
S20 1.2352E-01 5.4266E-03 22.7616 Yes
V0 9.9461E-01 8.8033E-03 112.9807 Yes

µmax 1.0421E+00 6.5420E-02 15.9301 Yes
K11 3.8553E-02 1.0952E-02 3.5200 Yes
K12 5.5257E-01 8.8254E-02 6.2611 Yes
K2 6.3228E-02 7.5480E-03 8.3768 Yes
σ11 1.7046E-06 1.8305E-05 0.0931 No
σ22 7.1101E-10 1.4125E-08 0.0503 No
σ33 1.9722E-10 4.7941E-09 0.0411 No
σ44 5.2778E-10 1.0034E-08 0.0526 No
S11 7.4408E-03 1.0405E-03 7.1511 Yes
S22 1.0342E-03 1.5105E-04 6.8471 Yes
S33 1.3603E-03 2.0785E-04 6.5443 Yes
S44 1.1519E-02 1.5025E-03 7.6665 Yes

Table 3.8. Estimation results. Model in (3.40) and (3.30) - data from Figure 3.1.
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Figure 3.7. Pure simulation cross-validation residual analysis results for the model
in (3.40) and (3.30) with parameters in Table 3.8 using the validation data set
shown in Figure 3.2. Top-down: y1, y2, y3 and y4. Left-right: Pure simulation
comparison (solid lines: Simulated values), residuals, LDF and PLDF.

3.3 A case with multiple deficiencies

To demonstrate the performance of the proposed grey-box modelling framework
for a model with multiple deficiencies, the following example is considered.

Example 3.3 (A case with multiple deficiencies)
This example demonstrates the performance of the proposed grey-box modelling
framework for a fed-batch fermentation process represented by a simulation model
that describes growth of biomass and formation of a single product (penicillin) from
a single substrate. The model is given as follows (Bajpai and Reuss, 1981):

dX

dt
= α(S, X)X − FX

V
(3.41)

dS

dt
= −α(S, X)X

YX
− θ(S)X

YP
− MXX +

F (SF − S)

V
(3.42)

dP

dt
= θ(S)X − KP − FP

V
(3.43)
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Figure 3.8. Data set no. 1 for Example 3.3. Top: X, S, P . Bottom: V , F .

dV

dt
= F (3.44)

for t ∈ [t0, tf ], where X ( g
l
) is the biomass concentration, S ( g

l
) is the substrate

concentration, P ( g
l
) is the product concentration, V (l) is the reactor volume, F ( l

h
)

is the feed flow rate, YX = 0.47 and YP = 1.2 are yield coefficients and SF = 400 g
l

is the substrate feed concentration. MX = 0.029h−1 represents a constant specific
maintenance demand of the cells and K represents a constant first-order decay rate
for the product. t0 = 0h and tf = 150h are initial and final times of a typical fed-
batch run and α(S, X) (h−1) and θ(S) (h−1) are the biomass growth rate and the
product formation rate respectively, i.e. (Bajpai and Reuss, 1981):

α(S, X) = αmax
S

S + K1X

θ(S) = θmax
S

K22S2 + S + K21

(3.45)

where αmax = 0.11h−1, K1 = 0.006, θmax = 0.004h−1 , K21 = 0.0001 g
l

and K22 = 10 l
g

are kinetic parameters. In order to generate data from this model by perturbing the
feed flow rate along an appropriate trajectory, an optimal such trajectory is first
determined by solving a productivity maximization problem equivalent to the one
treated by Visser (1999). This problem can be stated as follows:

max
F (t) , t∈[t0,tf ]

P (tf ) (3.46)

subject to the model equations and constraints on the maximum biomass and sub-
strate concentrations and on the feed flow rate, using the initial conditions X0 = 1 g

l
,

S0 = 0.5 g
l

(Visser (1999) uses 0.2 g
l
), P0 = 0 g

l
and V0 = 250l. In other words, the

problem is to determine the open loop feed flow rate trajectory that gives optimal
productivity in terms of the product concentration at the end of a run.
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Figure 3.9. Data set no. 2 for Example 3.3. Top: X, S, P . Bottom: V , F .

The above maximization problem is solved in a manner similar to the one used by Vis-
ser (1999), and, by using perturbed versions of the resulting feed flow rate trajectory,
two data sets (shown in Figures 3.8-3.9) are generated by means of stochastic simu-
lation using the Euler scheme (see Example 2.2). For this purpose a re-formulated
version of the model is applied, which has the following system equation:

d


X
S
P
V

=


α(S, X)X − F X

V

−α(S,X)X
YX

− θ(S)X
YP

−MXX+ F (SF −S)
V

θ(S)X − KP − F P
V

F

dt +


σ11 0 0 0
0 σ22 0 0
0 0 σ33 0
0 0 0 σ44

dωt (3.47)

where t ∈ [t0, tf ], and the following measurement equation:
y1

y2

y3

y4


k

=


X
S
P
V


k

+ ek , ek ∈ N(0, S) , S =


S11 0 0 0
0 S22 0 0
0 0 S33 0
0 0 0 S44

 (3.48)

The parameter values applied are the deterministic parameter values mentioned above,
the diffusion term parameter values σ11 = σ22 = σ33 = σ44 = 0 and the measurement
noise term parameter values S11 = 1, S22 = 0.01, S33 = 0.1 and S44 = 1. A discretiza-
tion time interval corresponding to 1

150000
of tf is used and every 100’th value is

sampled (see Example 2.2) to give data sets containing 151 samples each.

Using the generated data sets, the performance of the grey-box modelling cycle and
the corresponding algorithm for systematic iterative model improvement is now illu-
strated by assuming that an initial model structure corresponding to (3.47)-(3.48) is
available, where the true structure of the biomass growth rate α(S, X) as well as the
true structure of the product formation rate θ(S) are unknown. In other words, it is
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assumed that Steps 1 and 2 of the algorithm, which deal with derivation of an ODE
model from first engineering principles and translation of this model into a continuous-
discrete stochastic state space model with a diagonally parameterized diffusion term,
have been completed to yield a model with the following system equation:

d


X
S
P
V

 =


αX − F X

V

−αX
YX

− θX
YP

− MXX + F (SF −S)
V

θX − KP − F P
V

F

dt +


σ11 0 0 0
0 σ22 0 0
0 0 σ33 0
0 0 0 σ44

dωt (3.49)

where t ∈ [t0, tf ], and where, because the true structures of the biomass growth rate
and the product formation rate are unknown, constant rates α and θ have been
assumed. The measurement equation of the model is equivalent to (3.48). In Step 3 of
the algorithm, the unknown parameters of the model are estimated using CTSM and
the data set in Figure 3.8, which gives the results shown in Table 3.9. To evaluate the
quality of the resulting model in terms of its prediction capabilities, cross-validation
residual analysis is performed in Step 4, and, since the intended purpose of the model
is assumed to be application for subsequent state estimation and optimal control,
which requires a model with good long-term prediction capabilities, only pure simu-
lation residual analysis is performed, cf. Figure 3.10. The results of this analysis
show that the model has very poor pure simulation capabilities and thus falsify the
model for the purpose of optimal control in Step 5, which means that the model
development procedure implied by the grey-box modelling cycle must be repeated
by re-formulating the model. Step 6 of the algorithm, which deals with pinpointing
of model deficiencies, is therefore applied. Table 3.9 includes t-scores for performing
marginal tests for insignificance of the individual parameters, and, on a 5% level,
these show that, of the parameters of the diffusion term, only σ44 is insignificant.

Parameter Estimate Standard deviation t-score Significant?

X0 1.4894E+00 1.4340E+00 1.0387 No
S0 2.5616E-01 1.2743E+00 0.2010 No
P0 5.3776E-11 1.8798E-08 0.0029 No
V0 2.5009E+02 7.5880E-02 3295.9283 Yes
α 6.9525E-03 2.4324E-03 2.8583 Yes
θ 1.8263E-03 2.9069E-04 6.2828 Yes

MX 2.8732E-02 5.7193E-03 5.0236 Yes
K 5.1610E-03 3.3556E-03 1.5380 No
σ11 1.1527E+00 1.0547E-01 10.9296 Yes
σ22 1.3718E+00 8.7977E-02 15.5927 Yes
σ33 5.8930E-02 2.2987E-02 2.5636 Yes
σ44 7.5747E-08 7.6491E-06 0.0099 No
S11 2.9803E-01 1.2588E-01 2.3675 Yes
S22 2.5004E-15 7.4715E-13 0.0033 No
S33 8.6803E-02 1.3321E-02 6.5164 Yes
S44 9.0304E-01 9.6043E-02 9.4025 Yes

Table 3.9. Estimation results. Model in (3.49) and (3.48) - data from Figure 3.8.
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Figure 3.10. Pure simulation cross-validation residual analysis results for the model
in (3.49) and (3.48) with parameters in Table 3.9 using the validation data set
shown in Figure 3.9. Top-down: y1, y2, y3 and y4. Left-right: Pure simulation
comparison (solid lines: Simulated values), residuals, LDF and PLDF.

The fact that the remaining parameters of the diffusion term are all significant, in-
dicates that the corresponding elements of the drift term may be incorrect. These
elements all depend on α and θ, which means that these are possible model deficiency
suspects. Because the σ11 and σ22 parameters of the diffusion term, which correspond
to α-dependent elements of the drift term, are more significant than σ33, which cor-
responds to a purely θ-dependent element of the drift term, α is investigated first by
re-formulating the model with α as an additional state variable as follows:

d


X
S
P
V
α

=



αX − F X
V

−αX
YX

− θX
YP

−MXX+ F (SF −S)
V

θX − KP − F P
V

F
0

dt +


σ11 0 0 0 0
0 σ22 0 0 0
0 0 σ33 0 0
0 0 0 σ44 0
0 0 0 0 σ55

dωt (3.50)

where t ∈ [t0, tf ], and where the last element of the drift term is zero, because α has
been assumed to be constant. The measurement equation corresponding to the above
system equation remains equivalent to (3.48). Estimating the unknown parameters
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(a) α̂k|k vs. X̂k|k.
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(b) α̂k|k vs. Ŝk|k.

Figure 3.11. Partial dependence plots of α̂k|k vs. X̂k|k and Ŝk|k obtained by ap-
plying additive model fitting using locally-weighted linear regression (tri-cube ker-
nels with optimal nearest neighbour bandwidths determined using 5-fold cross-
validation). Solid lines: Estimates; dotted lines: 95% bootstrap confidence inter-
vals computed from 1000 replicates (see Appendix C for details).

of this model using CTSM and the same data set as before, gives the results shown
in Table 3.10, and inspection of the t-scores for marginal tests for insignificance now
show that, of the parameters of the diffusion term, only σ33 and σ55 are significant.

Parameter Estimate Standard deviation t-score Significant?

X0 1.1669E+00 2.2699E-01 5.1409 Yes
S0 4.6705E-01 9.6849E-02 4.8225 Yes
P0 2.3566E-10 1.3486E-06 0.0002 No
V0 2.5011E+02 7.8001E-02 3206.4513 Yes
α0 9.3196E-02 2.0777E-02 4.4855 Yes
θ 1.8418E-03 3.0702E-04 5.9990 Yes

MX 2.7945E-02 2.8819E-04 96.9703 Yes
K 5.2749E-03 3.5005E-03 1.5069 No
σ11 4.7313E-25 3.1238E-21 0.0002 No
σ22 2.3911E-21 4.7886E-17 0.0000 No
σ33 5.9890E-02 2.4851E-02 2.4099 Yes
σ44 1.1942E-13 3.3076E-10 0.0004 No
σ55 6.0596E-03 8.7587E-04 6.9184 Yes
S11 7.8432E-01 8.8697E-02 8.8427 Yes
S22 6.4526E-02 1.4364E-02 4.4922 Yes
S33 9.0063E-02 1.3188E-02 6.8290 Yes
S44 9.1818E-01 1.0553E-01 8.7008 Yes

Table 3.10. Estimation results. Model in (3.50) and (3.48) - data from Figure 3.8.
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Figure 3.12. Independent kernel estimates of the dependence between α̂k|k and
X̂k|kŜk|k, X̂k|k/Ŝk|k and Ŝk|k/X̂k|k obtained by applying locally-weighted linear
regression (tri-cube kernels with optimal nearest neighbour bandwidths obtained
with 5-fold cross-validation). Solid lines: Estimates; dotted lines: 95% bootstrap
confidence intervals computed from 1000 replicates (see Appendix C for details).

The fact that σ55 is significant, indicates that there is substantial variation in α and
thus confirms the suspicion that α is deficient. Moving to Step 7 of the algorithm,
nonparametric modelling can now be applied to determine how to improve the model.

Using the re-formulated model in (3.50) and (3.48) and the parameter estimates in
Table 3.10, state estimates X̂k|k, Ŝk|k, P̂k|k, V̂k|k, α̂k|k, k = 0, . . . , N , are computed
with CTSM from the data sets shown in Figures 3.8-3.9 and an additive model is
fitted to reveal the true structure of the function describing α by means of estimates
of functional relations between α and the original state variables. It is assumed that
α does not depend on P and V , so only functional relations between α̂k|k and X̂k|k
and Ŝk|k (with negative values removed) are estimated, which gives the results shown
in Figure 3.11. These plots indicate that α̂k|k depends slightly on both X̂k|k and
Ŝk|k, and because of the apparent dependence on more than one variable, further
investigations are needed to rule out the possibility that this is caused by an actual
dependence on e.g. the product of these variables or a fraction between them.

Figure 3.12 shows independent kernel estimates of the dependence between α̂k|k and
the product X̂k|kŜk|k and the fractions X̂k|k/Ŝk|k and Ŝk|k/X̂k|k respectively. These
plots show that neither X̂k|kŜk|k nor X̂k|k/Ŝk|k describe the variations in α̂k|k parti-
cularly well, whereas Ŝk|k/X̂k|k provides a much better description. More specifically,
the functional relation revealed in Figure 3.12c is indicative of a functionality that
can be described by an expression of the Monod type in the variable S/X , i.e.:

α(
S

X
) = αmax

S
X

S
X

+ K1

(3.51)

which is equivalent to the following expression in the original variables S and X:

α(S, X) = αmax
S

S + K1X
(3.52)
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In Step 8 of the algorithm, it is therefore reasonable to re-formulate the model by
replacing the assumption of constant α with an assumption of α being described by
this expression, which yields a model with the following system equation:

d


X
S
P
V

=


α(S, X)X − F X

V

−α(S,X)X
YX

− θX
YP

−MXX+ F (SF −S)
V

θX − KP − F P
V

F

dt +


σ11 0 0 0
0 σ22 0 0
0 0 σ33 0
0 0 0 σ44

dωt (3.53)

where t ∈ [t0, tf ]. The measurement equation remains equivalent to (3.48). Retur-
ning to Step 3 of the algorithm, the unknown parameters of the new model are
estimated using CTSM and the data set in Figure 3.8, which gives the results shown
in Table 3.11, and in Step 4 the quality of the resulting model is evaluated by per-
forming cross-validation residual analysis, cf. Figure 3.13. The results of this analysis
show that the new model has significantly better pure simulation capabilities than the
previously analyzed model. More specifically, the y1 and y4 residuals can be regarded
as white noise, and the y2 and y3 pure simulation comparisons are much better than
with the previously analyzed model. However, there seems to be a little non-random
variation still left in the y2 and y3 residuals, and, depending on the specific degree
of accuracy required, this model may therefore also be falsified for the purpose of
optimal control in Step 5 of the algorithm. Assuming that this is the case, the model
development procedure must be repeated by re-formulating the model, and Step 6,
which deals with pinpointing of model deficiencies, is therefore applied. The t-scores
included in Table 3.11 show that one of the parameters of the diffusion term is sig-
nificant, i.e. σ33, and this indicates that the corresponding element of the drift term
may be incorrect. This element depends on θ, which is thus a candidate for being de-

Parameter Estimate Standard deviation t-score Significant?

X0 9.8702E-01 1.4390E-02 68.5902 Yes
S0 4.6596E-01 3.7383E-02 12.4646 Yes
P0 7.4709E-09 3.2743E-07 0.0228 No
V0 2.5009E+02 7.6073E-02 3287.4706 Yes

αmax 1.0968E-01 4.5201E-04 242.6492 Yes
K1 5.8609E-03 4.6530E-04 12.5960 Yes
θ 1.8030E-03 2.9919E-04 6.0263 Yes

MX 2.7947E-02 2.7507E-04 101.6025 Yes
K 4.9048E-03 3.6378E-03 1.3483 No
σ11 1.2391E-08 3.4938E-07 0.0355 No
σ22 5.9098E-07 1.2459E-05 0.0474 No
σ33 6.0986E-02 2.4815E-02 2.4576 Yes
σ44 1.1148E-09 3.6180E-08 0.0308 No
S11 7.9785E-01 9.7841E-02 8.1546 Yes
S22 9.1256E-03 1.0735E-03 8.5006 Yes
S33 9.0496E-02 1.4242E-02 6.3540 Yes
S44 9.3088E-01 1.0865E-01 8.5679 Yes

Table 3.11. Estimation results. Model in (3.53) and (3.48) - data from Figure 3.8.
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Figure 3.13. Pure simulation cross-validation residual analysis results for the model
in (3.53) and (3.48) with parameters in Table 3.11 using the validation data set
shown in Figure 3.9. Top-down: y1, y2, y3 and y4. Left-right: Pure simulation
comparison (solid lines: Simulated values), residuals, LDF and PLDF.

ficient. That this may be the case is supported by the above residual analysis results,
which show that the y2 and y3 residuals, which correspond to state variables with
θ-dependent drift term elements, still contain a little non-random variation. How-
ever, to avoid jumping to conclusions, the suspicion that θ is deficient is investigated
further by re-formulating the model with θ as an additional state variable as follows:

d


X
S
P
V
θ

=



α(S, X)X − F X
V

−α(S,X)X
YX

− θX
YP

−MXX+ F (SF −S)
V

θX − KP − F P
V

F
0

dt+


σ11 0 0 0 0
0 σ22 0 0 0
0 0 σ33 0 0
0 0 0 σ44 0
0 0 0 0 σ55

dωt (3.54)

where t ∈ [t0, tf ], and where the last element of the drift term is zero, because θ has
been assumed to be constant. The measurement equation corresponding to the above
system equation remains equivalent to (3.48). Estimating the unknown parameters
of this model using CTSM and the same data set as before, gives the results shown
in Table 3.12, and inspection of the t-scores for marginal tests for insignificance now
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show that, of the parameters of the diffusion term, only σ55 is significant. This
indicates that there is substantial variation in θ and thus confirms the suspicion that
θ is deficient. Moving to Step 7 of the algorithm, nonparametric modelling can now
be applied in an attempt to determine how to improve the model, if this is possible.

Using the re-formulated model in (3.54) and (3.48) and the parameter estimates in
Table 3.12, state estimates X̂k|k, Ŝk|k, P̂k|k, V̂k|k, θ̂k|k, k = 0, . . . , N , are computed
with CTSM from the data sets shown in Figures 3.8-3.9 and an additive model is
fitted to reveal the true structure of the function describing θ by means of estimates
of functional relations between θ and the original state variables. It is assumed that
θ does not depend on P and V , so only functional relations between θ̂k|k and X̂k|k
and Ŝk|k (with negative values removed) are estimated, which gives the results shown
in Figure 3.14. Apart from a slightly decreasing tendency in the plot of θ̂k|k vs. Ŝk|k,
these plots do not provide much useful information due to the low degree of varia-
tion in θ̂k|k (θ̂k|k also seems to depend on X̂k|k, but in a rather complicated manner,
and further investigations indicate that the apparent dependence on more than one
variable does not seem to be caused by an actual dependence on e.g. the product
of these variables or a fraction between them). Nevertheless, this tendency may be
interpreted as an indication of inhibition of product formation at high substrate con-
centrations, which makes it reasonable to replace the assumption of constant θ with
an assumption of θ being a function of S that can be described with Monod kinetics
(this may be percieved as conjecture but is supported by the fact that bioprocesses
are often governed by kinetics of this type) and substrate inhibition, i.e.:

θ(S) = θmax
S

K22S2 + S + K21
(3.55)

Parameter Estimate Standard deviation t-score Significant?

X0 9.8971E-01 1.4320E-02 69.1130 Yes
S0 4.6288E-01 3.6571E-02 12.6572 Yes
P0 4.7897E-28 8.0233E-25 0.0006 No
V0 2.5009E+02 8.1135E-02 3082.4156 Yes
θ0 9.8568E-04 5.3409E-04 1.8455 No

αmax 1.0966E-01 4.1399E-04 264.8811 Yes
K1 5.8465E-03 4.1862E-04 13.9659 Yes
MX 2.7793E-02 3.0794E-04 90.2557 Yes
K 7.8619E-03 5.2358E-03 1.5016 No
σ11 1.0126E-15 7.9983E-13 0.0013 No
σ22 4.2047E-07 7.1777E-05 0.0059 No
σ33 1.4257E-04 1.5702E-03 0.0908 No
σ44 6.5830E-06 5.5897E-04 0.0118 No
σ55 9.6323E-05 3.7177E-05 2.5909 Yes
S11 7.9247E-01 8.6839E-02 9.1257 Yes
S22 9.1355E-03 9.7903E-04 9.3312 Yes
S33 1.0249E-01 1.1763E-02 8.7128 Yes
S44 9.2910E-01 1.0127E-01 9.1743 Yes

Table 3.12. Estimation results. Model in (3.54) and (3.48) - data from Figure 3.8.
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Figure 3.14. Partial dependence plots of θ̂k|k vs. X̂k|k and Ŝk|k obtained by ap-
plying additive model fitting using locally-weighted linear regression (tri-cube ker-
nels with optimal nearest neighbour bandwidths determined using 5-fold cross-
validation). Solid lines: Estimates; dotted lines: 95% bootstrap confidence inter-
vals computed from 1000 replicates (see Appendix C for details).

This replacement of assumptions yields a model with the following system equation:

d


X
S
P
V

=


α(S, X)X − F X

V

−α(S,X)X
YX

− θ(S)X
YP

−MXX+ F (SF −S)
V

θ(S)X − KP − F P
V

F

dt +


σ11 0 0 0
0 σ22 0 0
0 0 σ33 0
0 0 0 σ44

dωt (3.56)

where t ∈ [t0, tf ]. The measurement equation remains equivalent to (3.48). Retur-
ning to Step 3 of the algorithm, the unknown parameters of the new model are esti-
mated using CTSM and the data set in Figure 3.8, which gives the results shown in
Table 3.13, and in Step 4 the quality of the resulting model is evaluated by performing
cross-validation residual analysis, cf. Figure 3.15. The results of this analysis show
that the model has better pure simulation capabilities than the previously analyzed
model. In particular, the y3 pure simulation comparison has improved. Nevertheless,
there still seems to be a little non-random variation left in the y2 and y3 residuals,
and depending on the specific degree of accuracy required, the new model may there-
fore also be falsified for the purpose of optimal control in Step 5, meaning that the
model development procedure must be repeated by re-formulating the model, but
this is assumed not to be the case. Furthermore, all information available in the data
set used for estimation has been exhausted in the context of the proposed grey-box
modelling framework, because a model has been developed where the diffusion term
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is insignificant2, which means that model deficiencies can no longer be systematically
pinpointed. Moreover, the true model in (3.47)-(3.48) has been recovered. �

The above example demonstrates the performance of the proposed grey-box
modelling framework for a model with multiple deficiencies. In particular, the
example demonstrates that, if a model has multiple deficiencies, these can be
repaired one at a time by applying the methods of the proposed grey-box mo-
delling cycle and the corresponding algorithm for systematic iterative model
improvement in a successive manner. Furthermore, the example demonstrates
that a deficiency caused by an incorrectly modelled function of more than one
variable can sometimes be repaired in a single step, if, unlike in the previous
example, this function is a simple function of e.g. the product of these va-
riables or a fraction between them. However, the example also demonstrates
that, if the degree of variation in key variables is insufficient, systematic model
development may not be possible. In other words, the example demonstrates
that the performance of the proposed framework is limited by the information
content of the data sets used for model development. This stresses the need
for developing methods for experimental design that can be applied along with

2Inspection of the t-scores for marginal tests for insignificance (Table 3.13) suggest that,
on a 5% level, there are no significant parameters in the diffusion term, which is confirmed
by a test for simultaneous insignificance based on Wald’s W -statistic. A final calibration of
the remaining model parameters should therefore ideally be performed at this stage, using
an estimation method that emphasizes the pure simulation capabilities of the model.

Parameter Estimate Standard deviation t-score Significant?

X0 9.8164E-01 1.3211E-02 74.3033 Yes
S0 4.5540E-01 3.6173E-02 12.5896 Yes
P0 6.9569E-26 1.1431E-21 0.0001 No
V0 2.5009E+02 8.3471E-02 2996.1921 Yes

αmax 1.0998E-01 4.0924E-04 268.7277 Yes
K1 5.6799E-03 4.2219E-04 13.4536 Yes

θmax 9.9755E-03 8.4511E-05 118.0383 Yes
K21 9.9640E-03 1.3710E-04 72.6766 Yes
K22 1.6124E+01 1.4822E+00 10.8786 Yes
MX 2.7717E-02 1.3169E-04 210.4657 Yes
K 7.7384E-03 8.3263E-04 9.2939 Yes
σ11 6.8050E-17 6.4282E-13 0.0001 No
σ22 8.8487E-09 2.7909E-05 0.0003 No
σ33 1.4428E-06 2.0700E-03 0.0007 No
σ44 1.6264E-06 2.2635E-03 0.0007 No
S11 7.9829E-01 8.8955E-02 8.9741 Yes
S22 9.1150E-03 9.9032E-04 9.2041 Yes
S33 1.4798E-01 1.7056E-02 8.6761 Yes
S44 9.2911E-01 1.0322E-01 9.0014 Yes

Table 3.13. Estimation results. Model in (3.56) and (3.48) - data from Figure 3.8.
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Figure 3.15. Pure simulation cross-validation residual analysis results for the model
in (3.56) and (3.48) with parameters in Table 3.13 using the validation data set
shown in Figure 3.9. Top-down: y1, y2, y3 and y4. Left-right: Pure simulation
comparison (solid lines: Simulated values), residuals, LDF and PLDF.

the proposed grey-box modelling framework to ensure that a maximum of in-
formation is obtained, given the specific circumstances, in terms of operational
limitations, under which experiments can be performed for a given fed-batch
process, but this is outside the scope of the work presented in this thesis.
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Conclusion

The primary focus of the work presented in this thesis has been on modelling
of fed-batch processes for the purpose of state estimation and optimal control.

The motivation for focusing on this issue have been the shortcomings of present
industrial approaches to operation of fed-batch processes with respect to achie-
ving uniform operation and optimal productivity and the resulting need for
development of an appropriate model-based approach to automatic operation
capable of achieving these goals. A number of requirements for such an ap-
proach have been listed and a review of various approaches reported in litera-
ture has been given along with a discussion of their merits with respect to
meeting these requirements. This review has indicated that an approach incor-
porating continuous-discrete stochastic state space models may be particularly
advantageous, because such models combine the strengths of first engineering
principles models and data-driven models, neither of which seem fully adequate
for modelling fed-batch processes for the purpose of achieving uniform opera-
tion and optimal productivity. In particular, developing first engineering prin-
ciples models is time-consuming, because few systematic methods are available
for making inferences about the proper structure of such models, which can sel-
dom be determined completely from prior physical knowledge. Furthermore,
the parameters of such models can only be estimated from experimental data by
using OE estimation methods, which has been demonstrated through a simple
comparison to give more biased and less reproducible results in the presence
of significant process noise than the PE estimation methods, which can be ap-
plied for data-driven models. On the other hand, data-driven models, for which
systematic methods for structural identification are also available, are not as
intuitively appealing as first engineering principles models in terms of providing
a consistent and physically meaningful system description. Continuous-discrete
stochastic state space models combine the strengths of both model types by al-
lowing first engineering principles to be applied and prior physical knowledge to
be incorporated, while providing a decomposition of the noise affecting the sys-
tem into a process noise term and a measurement noise term, which facilitates
PE estimation and subsequent application of powerful statistical tools.

Based on continuous-discrete stochastic state space models, the main features
of an overall framework for fed-batch process modelling, state estimation and
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optimal control have been established. This framework incorporates modelling
as well as experimental design and state estimation and optimal control, but in
the work presented in this thesis attention has been restricted to the modelling
part, to facilitate which a grey-box modelling framework has been proposed.

This framework is based on a grey-box modelling cycle, the idea of which is to
facilitate the development of models of fed-batch processes for the purpose of
state estimation and optimal control. The modelling cycle comprises six dif-
ferent tasks: Model (re)formulation, where the idea is to use first engineering
principles and all other relevant prior physical knowledge to construct an initial
continuous-discrete stochastic state space model; parameter estimation, where
the idea is to estimate the parameters of this model from available experimental
data; residual analysis, where the idea is to perform cross-validation residual
analysis to obtain information about the quality of the resulting model; model
falsification or unfalsification, where the idea is to use this information to de-
termine if the model is sufficiently accurate to be used for state estimation and
optimal control; statistical tests, where, if the model is falsified for this purpose
with respect to the available information, the idea is to pinpoint deficiencies
within the model, if this is possible; and nonparametric modelling, where the
idea is to determine how to repair these deficiencies by altering the model when
afterwards returning to the model (re)formulation task to complete the cycle.

The grey-box modelling cycle is the main result of the work presented in this
thesis, and much emphasis has been put on developing simple methods and
tools to facilitate its individual tasks. A significant result in this regard is the
extension of an existing parameter estimation method for continuous-discrete
stochastic state space models by Madsen and Melgaard (1991) and Melgaard
and Madsen (1993) to make it more readily applicable to models of fed-batch
processes and the implementation of this method in a computer program called
CTSM. As part of these developments, the inability of the original estimation
method to handle models with singular Jacobians has been remedied and the
method has been extended to allow estimation with multiple independent sets
of experimental data and to handle missing observations in a much more appro-
priate way. With respect to CTSM, which is based on a similar program by
Madsen and Melgaard (1991) and Melgaard and Madsen (1993) called CTLSM,
the program has been equipped with a graphical user interface for ease of use,
and for the purpose of computational efficiency the binary code of the program
has been optimized and prepared for shared memory parallel computing. An
important result with respect to this program is that it has proven superior,
both in terms of quality of estimates and in terms of reproducibility, to an-
other program implementing a similar estimation method by Bohlin and Graebe
(1995) and Bohlin (2001). In particular, more accurate and more consistent
estimates of the parameters of the diffusion term can be obtained, which is im-
portant in the context of the proposed grey-box modelling framework. A num-
ber of additional tools that facilitate other tasks within the grey-box modelling
cycle have also been developed and implemented in MATLAB, and based on all
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of the individual tasks of the modelling cycle a grey-box modelling algorithm
that facilitates systematic iterative model improvement has been presented.

A key feature of the methodology provided by the grey-box modelling cycle and
the corresponding algorithm is that it facilitates pinpointing of model deficien-
cies based on information extracted from experimental data and subsequently
allows the structural origin of these deficiencies to be uncovered as well to
provide guidelines for model improvement. The procedure for pinpointing
model deficiencies is based on the fact that estimation of the parameters of the
diffusion term provides a measure of the uncertainty of the corresponding drift
term. This means that, if a diagonal parameterization is used, the uncertainty
of a particular element of the drift term can be assessed, and, by proper re-
formulation of the model, suspicions of deficiencies in particular parts of such
terms, e.g. parts describing dynamic phenomena such as reaction rates and
heat and mass transfer rates, can be confirmed as well. Once such specific
deficiencies have been confirmed, the same model can be used to obtain state
estimates, on the basis of which nonparametric estimates of unknown or incor-
rectly modelled functional relations can be obtained and visualized, whereby
the structural origin of these deficiencies can be uncovered and the model sub-
sequently improved. This is a very powerful feature not shared by other ap-
proaches to grey-box modelling reported in literature, e.g. the approach by
Bohlin and Graebe (1995) and Bohlin (2001), which relies solely on the model
maker to determine how to improve the model. In this particular sense, the
methodology proposed here is therefore more systematic, which is a key result.

The performance of the proposed methodology has been demonstrated through
a number of application examples, the most simple of which has demonstrated
that, in a case where all state variables are measured directly, a deficiency
caused by an incorrectly modelled function of a single state variable can easi-
ly be pinpointed and its structural origin subsequently uncovered. A similar
example, where the particular state variable occuring in the incorrectly mo-
delled function causing the deficiency is not measured, has demonstrated that
the same is also possible in cases where all state variables cannot be measured
directly. Additional examples have demonstrated that the proposed methodo-
logy allows deficiencies caused by incorrectly modelled functions of more than
one state variable to be handled as well, either in a single step, which may
be possible if the incorrectly modelled function depends on e.g. the product of
these variables or a fraction between them, or in a stepwise manner. Finally,
it has been demonstrated that the methodology can be successfully applied
in cases with multiple deficiencies as well. However, the application examples
have also demonstrated that the proposed methodology has certain limitations.

Like other approaches to grey-box modelling, the performance of the proposed
methodology is limited by the quality and amount of available prior physical
knowledge and experimental data. More specifically, there may be insufficient
prior physical knowledge available to establish an initial model structure, in
which case it may not be worthwhile to use this approach as opposed to a
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data-driven modelling approach. With respect to the available experimental
data, it may be insufficiently informative or the available measurements may
render certain subsets of the state variables of the system unobservable, in
which case parameter identifiability may be seriously affected. The procedure
for pinpointing model deficiencies relies on estimates of the parameters of the
diffusion term and the procedure for subsequently uncovering the structural
origin of these deficiencies requires that the state variables of the system are
observable, which means that the reliability of these procedures may be af-
fected as well. Another obvious limitation with regards to these procedures is
that the model maker may be unable to select specific phenomena for further
investigation when model deficiencies have been indicated, which is an impor-
tant prerequisite for using these procedures. In other words, although much less
reliant on, the proposed methodology is not independent of the model maker.

An important question with respect to the proposed methodology is the matter
of whether or not a guarantee of convergence can be given. More specifically,
assuming that a “true” model exists, where all state variables are observable,
and that the available experimental data is sufficiently informative to ensure
that all parameters are identifiable, will the grey-box modelling algorithm then
converge to yield the “true” model? In the general case, no rigorous proof of
such convergence exists, but the application examples have demonstrated that
the algorithm may in fact converge for certain simple systems. In any case, the
proposed methodology can be applied to facilitate faster model development.

In conclusion, the work presented in this thesis has resulted in the development
of a systematic grey-box modelling framework, which, through novel procedures
for pinpointing and subsequently uncovering the structural origin of model de-
ficiencies, facilitates the development of fed-batch process models which are
suitable for subsequent state estimation and optimal control with the aim of
achieving uniform operation and optimal productivity. As an additional result,
a generalized version of the grey-box modelling framework, which can be ap-
plied to model a variety of systems for different purposes, has been developed.
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Suggestions for future work

During the course of the work presented in this thesis a number of related
problems have presented themselves, the treatment of which has been outside
the scope of the work. Some of the most important of these are summarized
in the following in the form of a number of possible topics for future work.

A very important such topic relates to the relaxation of the assumption made
in Chapter 1 concerning additional implicit algebraic equations. This is clearly
not a valid assumption in many practical cases and efforts should be made to
extend the proposed grey-box modelling framework to be able to handle models
with such equations as well, preferably in a way that allows the uncertainty of
these equations to be assessed in order to be able to detect deficiencies in these
as well. This is, however, not an easy task, as it is believed to require the use
of stochastic differential algebraic equations (SDAE’s), the theory of which is
not very well developed, particularly not with respect to the associated filtering
problem that must be solved in order to apply a parameter estimation method
similar to the EKF-based method used in the work presented in this thesis.

Being a part of the overall framework for fed-batch process modelling, state
estimation and optimal control established in Chapter 1 but otherwise outside
the scope of the work presented here, experimental design is an obvious topic
for future work. This is emphasized by the fact that the EKF-based method
used for estimating the parameters of the model and the procedures for pin-
pointing and subsequently uncovering the structural origin of model deficiencies
are all highly dependent on the quality and amount of available experimental
data. To be more specific, efforts should be made to develop a systematic ap-
proach to the design of identification experiments, which ensures that sufficient
information is obtained for the proposed grey-box modelling framework to be
applicable. Considering the fact that the models being developed are to be used
for subsequent state estimation and optimal control, where the latter requires
good long-term prediction capabilities, it is evident that such an approach must
ensure that data covering wide ranges of state space is obtained, but it should
also reflect the fact that experiments on industrial scale processes are often
expensive and should hence aim to minimize the amount of experimentation
needed to obtain sufficient information. In this regard, it may be worthwhile
to investigate whether using one normal batch (where operation is regular) and
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one faulty batch (where something goes wrong and operation is irregular) of
standard operational data provides sufficient information, the idea being that,
by using one of each, a relatively wide range of state space is covered.

Likewise being a part of the overall framework established in Chapter 1 but
otherwise outside the scope of the work presented here, another obvious topic
for future work is the development of specific methods for optimal control with
simultaneous state estimation based on continuous-discrete stochastic state
space models. Such a method should be able to handle operational limitations
such as state and input variable constraints, for which reason MPC is an obvious
candidate, perhaps with simultaneous state estimation based on the EKF, be-
cause of the possibility of using optimal values for the parameters of the diffu-
sion term and the measurement noise term provided by the likewise EKF-based
parameter estimation method used in the work presented here. Alternatively, a
method based on stochastic dynamic programming could be developed, which
would allow the uncertainty implied by a possibly significant diffusion term to
be handled in an appropriate way. This is, however, less straightforward.



Appendices





A

CTSM

In this appendix a complete mathematical outline of the algorithms of the
computer program CTSM is given. CTSM is an abbreviation of Continuous
Time Stochastic Modelling and is based on a similar computer program by
Madsen and Melgaard (1991) and Melgaard and Madsen (1993) called CTLSM.

CTSM provides features for parameter estimation in continuous-discrete sto-
chastic state space models and, by allowing uncertainty information to be com-
puted and validation data to be generated, the program also facilitates a num-
ber of other tasks within the grey-box modelling cycle described in Chapter 2.

A.1 Parameter estimation

The primary feature in CTSM is estimation of parameters in continuous-
discrete stochastic state space models on the basis of experimental data.

A.1.1 Model structures

CTSM differentiates between three different model structures for continuous-
discrete stochastic state space models as outlined in the following.

A.1.1.1 The nonlinear model

The most general of these model structures is the nonlinear (NL) model, which
can be described by the following equations:

dxt = f (xt,ut, t,θ)dt+ σ(ut, t,θ)dωt (A.1)
yk = h(xk,uk, tk,θ) + ek (A.2)

where t ∈ R is time, xt ∈ X ⊂ R
n is a vector of state variables, ut ∈ U ⊂ R

m

is a vector of input variables, yk ∈ Y ⊂ R
l is a vector of output variables,

θ ∈ Θ ⊂ R
p is a vector of parameters, f(·) ∈ R

n, σ(·) ∈ R
n×n and h(·) ∈ R

l

are nonlinear functions, {ωt} is an n-dimensional standard Wiener process and
{ek} is an l-dimensional white noise process with ek ∈ N(0,S(uk, tk,θ)).
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A.1.1.2 The linear time-varying model

A special case of the nonlinear model is the linear time-varying (LTV) model,
which can be described by the following equations:

dxt = (A(xt,ut, t,θ)xt + B(xt,ut, t,θ)ut) dt+ σ(ut, t,θ)dωt (A.3)
yk = C(xk,uk, tk,θ)xk + D(xk,uk, tk,θ)uk + ek (A.4)

where t ∈ R is time, xt ∈ X ⊂ R
n is a state vector, ut ∈ U ⊂ R

m is an input
vector, yk ∈ Y ⊂ R

l is an output vector, θ ∈ Θ ⊂ R
p is a vector of parameters,

A(·) ∈ R
n×n, B(·) ∈ R

n×m, σ(·) ∈ R
n×n, C(·) ∈ R

l×n and D(·) ∈ R
l×m are

nonlinear functions, {ωt} is an n-dimensional standard Wiener process and
{ek} is an l-dimensional white noise process with ek ∈ N(0,S(uk, tk,θ)).

A.1.1.3 The linear time-invariant model

A special case of the linear time-varying model is the linear time-invariant
(LTI) model, which can be described by the following equations:

dxt = (A(θ)xt + B(θ)ut) dt+ σ(θ)dωt (A.5)
yk = C(θ)xk + D(θ)uk + ek (A.6)

where t ∈ R is time, xt ∈ X ⊂ R
n is a state vector, ut ∈ U ⊂ R

m is an input
vector, yk ∈ Y ⊂ R

l is an output vector, θ ∈ Θ ⊂ R
p is a vector of parameters,

A(·) ∈ R
n×n, B(·) ∈ R

n×m, σ(·) ∈ R
n×n, C(·) ∈ R

l×n and D(·) ∈ R
l×m are

nonlinear functions, {ωt} is an n-dimensional standard Wiener process and
{ek} is an l-dimensional white noise process with ek ∈ N(0,S(θ)).

A.1.2 Parameter estimation methods

CTSM allows a number of different methods to be applied to estimate the
parameters of the above model structures as outlined in the following.

A.1.2.1 Maximum likelihood estimation

Given a particular model structure, maximum likelihood (ML) estimation of
the unknown parameters can be performed by finding the parameters θ that
maximize the likelihood function of a given sequence of measurements y0, y1,
. . . , yk, . . . , yN . By introducing the notation:

Yk = [yk,yk−1, . . . ,y1,y0] (A.7)

the likelihood function is the joint probability density:

L(θ;YN ) = p(YN |θ) (A.8)
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or equivalently:

L(θ;YN ) =

(
N∏

k=1

p(yk|Yk−1,θ)

)
p(y0|θ) (A.9)

where the rule P (A ∩B) = P (A|B)P (B) has been applied to form a product
of conditional probability densities. In order to obtain an exact evaluation of
the likelihood function, the initial probability density p(y0|θ) must be known
and all subsequent conditional densities must be determined by successively
solving Kolmogorov’s forward equation and applying Bayes’ rule (Jazwinski,
1970), but this approach is computationally infeasible in practice. However,
since the diffusion terms in the above model structures do not depend on the
state variables, a simpler alternative can be used. More specifically, a method
based on Kalman filtering can be applied for LTI and LTV models, and an
approximate method based on extended Kalman filtering can be applied for
NL models. The latter approximation can be applied, because the stochastic
differential equations considered are driven by Wiener processes, and because
increments of a Wiener process are Gaussian, which makes it reasonable to
assume, under some regularity conditions, that the conditional densities can be
well approximated by Gaussian densities. The Gaussian density is completely
characterized by its mean and covariance, so by introducing the notation:

ŷk|k−1 = E{yk|Yk−1,θ} (A.10)

Rk|k−1 = V {yk|Yk−1,θ} (A.11)

and:
εk = yk − ŷk|k−1 (A.12)

the likelihood function can be written as follows:

L(θ;YN ) =

 N∏
k=1

exp
(
− 1

2εT
k R−1

k|k−1εk

)
√

det(Rk|k−1)
(√

2π
)l

 p(y0|θ) (A.13)

where, for given parameters and initial states, εk and Rk|k−1 can be computed
by means of a Kalman filter (LTI and LTV models) or an extended Kalman filter
(NL models) as shown in Sections A.1.3.1 and A.1.3.2 respectively. Further
conditioning on y0 and taking the negative logarithm gives:

− ln (L(θ;YN |y0)) =
1
2

N∑
k=1

(
ln(det(Rk|k−1)) + εT

k R−1
k|k−1εk

)

+
1
2

(
N∑

k=1

l

)
ln(2π)

(A.14)

and ML estimates of the parameters (and optionally of the initial states) can
now be determined by solving the following nonlinear optimisation problem:

θ̂ = arg min
θ∈Θ
{− ln (L(θ;YN |y0))} (A.15)
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A.1.2.2 Maximum a posteriori estimation

If prior information about the parameters is available in the form of a prior
probability density function p(θ), Bayes’ rule can be applied to give an im-
proved estimate by forming the posterior probability density function:

p(θ|YN ) =
p(YN |θ)p(θ)

p(YN )
∝ p(YN |θ)p(θ) (A.16)

and subsequently finding the parameters that maximize this function, i.e. by
performing maximum a posteriori (MAP) estimation. A nice feature of this
expression is the fact that it reduces to the likelihood function, when no prior
information is available (p(θ) uniform), making ML estimation a special case
of MAP estimation. In fact, this formulation also allows MAP estimation on a
subset of the parameters (p(θ) partly uniform). By introducing the notation1:

µθ = E{θ} (A.17)
Σθ = V {θ} (A.18)

and:
εθ = θ − µθ (A.19)

and by assuming that the prior probability density of the parameters is Gaus-
sian, the posterior probability density function can be written as follows:

p(θ|YN ) ∝
 N∏

k=1

exp
(
− 1

2εT
k R−1

k|k−1εk

)
√

det(Rk|k−1)
(√

2π
)l

 p(y0|θ)

×exp
(− 1

2εT
θ Σ−1

θ εθ

)√
det(Σθ)

(√
2π
)p

(A.20)

Further conditioning on y0 and taking the negative logarithm gives:

− ln (p(θ|YN ,y0)) ∝
1
2

N∑
k=1

(
ln(det(Rk|k−1)) + εT

k R−1
k|k−1εk

)

+
1
2

((
N∑

k=1

l

)
+ p

)
ln(2π)

+
1
2

ln(det(Σθ)) +
1
2
εT

θ Σ−1
θ εθ

(A.21)

and MAP estimates of the parameters (and optionally of the initial states) can
now be determined by solving the following nonlinear optimisation problem:

θ̂ = argmin
θ∈Θ
{− ln (p(θ|YN ,y0))} (A.22)

1In practice Σθ is specified as Σθ = σθRθσθ , where σθ is a diagonal matrix of the prior
standard deviations and Rθ is the corresponding prior correlation matrix.
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A.1.2.3 Using multiple independent data sets

If, instead of a single sequence of measurements, multiple consecutive, but
yet separate, sequences of measurements, i.e. Y1

N1
, Y2

N2
, . . . , Yi

Ni
, . . . , YS

NS
,

are available, a similar estimation method can be applied by expanding the
expression for the posterior probability density function to the general form:

p(θ|Y) ∝
 S∏

i=1

 Ni∏
k=1

exp
(
− 1

2 (εi
k)T (Ri

k|k−1)−1εi
k

)
√

det(Ri
k|k−1)

(√
2π
)l

 p(yi
0|θ)


×exp

(− 1
2εT

θ Σ−1
θ εθ

)√
det(Σθ)

(√
2π
)p

(A.23)

where:
Y = [Y1

N1
,Y2

N2
, . . . ,Yi

Ni
, . . . ,YS

NS
] (A.24)

and where the individual sequences of measurements are assumed to be stochas-
tically independent. This formulation allows MAP estimation on multiple data
sets, but, as special cases, it also allows ML estimation on multiple data sets
(p(θ) uniform), MAP estimation on a single data set (S = 1) and ML estimation
on a single data set (p(θ) uniform, S = 1). Further conditioning on:

y0 = [y1
0,y

2
0, . . . ,y

i
0, . . . ,y

S
0 ] (A.25)

and taking the negative logarithm gives:

− ln (p(θ|Y,y0)) ∝ 1
2

S∑
i=1

Ni∑
k=1

(
ln(det(Ri

k|k−1)) + (εi
k)T(Ri

k|k−1)
−1εi

k

)

+
1
2

((
S∑

i=1

Ni∑
k=1

l

)
+ p

)
ln(2π)

+
1
2

ln(det(Σθ)) +
1
2
εT

θ Σ−1
θ εθ

(A.26)

and estimates of the parameters (and optionally of the initial states) can now
be determined by solving the following nonlinear optimisation problem:

θ̂ = arg min
θ∈Θ
{− ln (p(θ|Y,y0))} (A.27)

A.1.3 Filtering methods

CTSM computes the innovation vectors εk (or εi
k) and their covariance matri-

ces Rk|k−1 (or Ri
k|k−1) recursively by means of a Kalman filter (LTI and LTV

models) or an extended Kalman filter (NL models) as outlined in the following.
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A.1.3.1 Kalman filtering

For LTI and LTV models εk (or εi
k) and Rk|k−1 (or Ri

k|k−1) can be computed
for a given set of parameters θ and initial states x0 by means of a continuous-
discrete Kalman filter, i.e. by means of the output prediction equations:

ŷk|k−1 = Cx̂k|k−1 + Duk (A.28)

Rk|k−1 = CP k|k−1C
T + S (A.29)

the innovation equation:
εk = yk − ŷk|k−1 (A.30)

the Kalman gain equation:

Kk = P k|k−1C
T R−1

k|k−1 (A.31)

the updating equations:

x̂k|k = x̂k|k−1 + Kkεk (A.32)

P k|k = P k|k−1 −KkRk|k−1K
T
k (A.33)

and the state prediction equations:

dx̂t|k
dt

= Ax̂t|k + But , t ∈ [tk, tk+1[ (A.34)

dP t|k
dt

= AP t|k + P t|kAT + σσT , t ∈ [tk, tk+1[ (A.35)

where the following shorthand notation applies in the LTV case:

A = A(x̂t|k−1,ut, t,θ) , B = B(x̂t|k−1,ut, t,θ)
C = C(x̂k|k−1,uk, tk,θ) , D = D(x̂k|k−1,uk, tk,θ)

σ = σ(ut, t,θ) , S = S(uk, tk,θ)
(A.36)

and the following shorthand notation applies in the LTI case:

A = A(θ) , B = B(θ)
C = C(θ) , D = D(θ)
σ = σ(θ) , S = S(θ)

(A.37)

Initial conditions for the Kalman filter are x̂t|t0 = x0 and P t|t0 = P 0, which
may either be pre-specified or estimated along with the parameters as a part
of the overall problem (see Section A.1.3.4). In the LTI case, and in the LTV
case, if A, B, C, D, σ and S are assumed constant between samples2, (A.34)

2In practice the time interval t ∈ [tk, tk+1[ is subsampled for LTV models, and A, B, C,
D, σ and S are evaluated at each subsampling instant to provide a better approximation.
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and (A.35) can be replaced by their discrete time counterparts, which can be
derived from the solution to the stochastic differential equation:

dxt = (Axt + But) dt+ σdωt , t ∈ [tk, tk+1[ (A.38)

i.e. from:

xtk+1 = eA(tk+1−tk)xtk
+
∫ tk+1

tk

eA(tk+1−s)Busds+
∫ tk+1

tk

eA(tk+1−s)σdωs (A.39)

which yields:

x̂k+1|k = E{xtk+1 |xtk
} = eA(tk+1−tk)x̂k|k +

∫ tk+1

tk

eA(tk+1−s)Busds (A.40)

P k+1|k = E{xtk+1x
T
tk+1
|xtk
} = eA(tk+1−tk)P k|k

(
eA(tk+1−tk)

)T

+
∫ tk+1

tk

eA(tk+1−s)σσT
(
eA(tk+1−s)

)T

ds
(A.41)

where the following shorthand notation applies in the LTV case:

A = A(x̂k|k−1,uk, tk,θ) , B = B(x̂k|k−1,uk, tk,θ)
C = C(x̂k|k−1,uk, tk,θ) , D = D(x̂k|k−1,uk, tk,θ)

σ = σ(uk, tk,θ) , S = S(uk, tk,θ)
(A.42)

and the following shorthand notation applies in the LTI case:

A = A(θ) , B = B(θ)
C = C(θ) , D = D(θ)
σ = σ(θ) , S = S(θ)

(A.43)

In order to be able to use (A.40) and (A.41), the integrals of both equations
must be computed. For this purpose the equations are rewritten to:

x̂k+1|k = eA(tk+1−tk)x̂k|k +
∫ tk+1

tk

eA(tk+1−s)Busds

= eAτsx̂k|k +
∫ tk+1

tk

eA(tk+1−s)B (α(s− tk) + uk) ds

= Φsx̂k|k +
∫ τs

0

eAsB (α(τs − s) + uk) ds

= Φsx̂k|k −
∫ τs

0

eAssdsBα +
∫ τs

0

eAsdsB (ατs + uk)

(A.44)
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and:

P k+1|k = eA(tk+1−tk)P k|k
(
eA(tk+1−tk)

)T

+
∫ tk+1

tk

eA(tk+1−s)σσT
(
eA(tk+1−s)

)T

ds

= eAτsP k|k
(
eAτs

)T
+
∫ τs

0

eAsσσT
(
eAs

)T
ds

= ΦsP k|kΦ
T
s +

∫ τs

0

eAsσσT
(
eAs

)T
ds

(A.45)

where τs = tk+1 − tk and Φs = eAτs , and where:

α =
uk+1 − uk

tk+1 − tk (A.46)

has been introduced to allow assumption of either zero order hold (α = 0) or
first order hold (α �= 0) on the inputs between sampling instants. The matrix
exponential Φs = eAτs can be computed by means of a Padé approximation
with repeated scaling and squaring (Moler and van Loan, 1978). However,
both Φs and the integral in (A.45) can be computed simultaneously through:

exp
([−A σσT

0 AT

]
τs

)
=
[
H1(τs) H2(τs)

0 H3(τs)

]
(A.47)

by combining submatrices of the result3 (van Loan, 1978), i.e.:

Φs = HT
3 (τs) (A.48)

and: ∫ τs

0

eAsσσT
(
eAs

)T
ds = HT

3 (τs)H2(τs) (A.49)

Alternatively, this integral can be computed from the Lyapunov equation:

ΦsσσT ΦT
s − σσT = A

∫ τs

0

eAsσσT
(
eAs

)T
ds

+
∫ τs

0

eAsσσT
(
eAs

)T
dsAT

(A.50)

but this approach has been found to be less feasible. The integrals in (A.44)
are not as easy to deal with, especially if A is singular. However, this problem
can be solved by introducing the singular value decomposition (SVD) of A, i.e.
UΣV T, transforming the integrals and subsequently computing these.

3Within CTSM the specific implementation is based on the algorithms of Sidje (1998).
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The first integral can be transformed as follows:

∫ τs

0

eAssds = U

∫ τs

0

UT eAsUsdsUT = U

∫ τs

0

eÃssdsUT (A.51)

and, if A is singular, the matrix Ã = ΣV T U = UT AU has a special structure:

Ã =
[
Ã1 Ã2

0 0

]
(A.52)

which allows the integral to be computed as follows:

∫ τs

0

eÃssds =
∫ τs

0

(
Is+

[
Ã1 Ã2

0 0

]
s2 +

[
Ã1 Ã2

0 0

]2
s3

2
+ · · ·

)
ds

=
∫ τs

0

(
Is+

[
Ã1 Ã2

0 0

]
s2 +

[
Ã

2

1 Ã1Ã2

0 0

]
s3

2
+ · · ·

)
ds

=

[∫ τs

0
eÃ1ssds

∫ τs

0
Ã

−1

1

(
eÃ1s − I

)
sÃ2ds

0 I
τ2

s

2

]

=

[[
Ã

−1

1 eÃ1s
(
Is− Ã

−1

1

)]τs

0
0

Ã
−1

1

[
Ã

−1

1 eÃ1s
(
Is− Ã

−1

1

)
− I s2

2

]τs

0
Ã2

I
τ2

s

2

]

=

[
Ã

−1

1

(
−Ã

−1

1

(
Φ̃

1

s − I
)

+ Φ̃
1

sτs

)
0

Ã
−1

1

(
Ã

−1

1

(
−Ã

−1

1

(
Φ̃

1

s − I
)

+ Φ̃
1

sτs

)
− I

τ2
s

2

)
Ã2

I
τ2

s

2

]

(A.53)

where Φ̃
1

s is the upper left part of the matrix:

Φ̃s = UTΦsU =

[
Φ̃

1

s Φ̃
2

s

0 I

]
(A.54)

The second integral can be transformed as follows:

∫ τs

0

eAsds = U

∫ τs

0

UT eAsUdsUT = U

∫ τs

0

eÃsdsUT (A.55)
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and can subsequently be computed as follows:∫ τs

0

eÃsds =
∫ τs

0

(
I +

[
Ã1 Ã2

0 0

]
s+

[
Ã1 Ã2

0 0

]2
s2

2
+ · · ·

)
ds

=
∫ τs

0

(
I +

[
Ã1 Ã2

0 0

]
s+

[
Ã

2

1 Ã1Ã2

0 0

]
s2

2
+ · · ·

)
ds

=

[∫ τs

0
eÃ1sds

∫ τs

0
Ã

−1

1

(
eÃ1s − I

)
Ã2ds

0 Iτs

]

=

[[
Ã

−1

1 eÃ1s
]τs

0
Ã

−1

1

[
Ã

−1

1 eÃ1s − Is
]τs

0
Ã2

0 Iτs

]

=

[
Ã

−1

1

(
Φ̃

1

s − I
)

Ã
−1

1

(
Ã

−1

1

(
Φ̃

1

s − I
)
− Iτs

)
Ã2

0 Iτs

]

(A.56)

Depending on the specific singularity of A (see Section A.1.3.3 for details on
how this is determined in CTSM) and the particular nature of the inputs,
several different cases are possible as shown in the following.

General case: Singular A, first order hold on inputs

In the general case, the Kalman filter prediction can be calculated as follows:

x̂j+1 = Φsx̂j −U

∫ τs

0

eÃssdsUT Bα + U

∫ τs

0

eÃsdsUT B (ατs + uj) (A.57)

with:∫ τs

0

eÃsds =

[
Ã

−1

1

(
Φ̃

1

s − I
)

Ã
−1

1

(
Ã

−1

1

(
Φ̃

1

s − I
)
− Iτs

)
Ã2

0 Iτs

]
(A.58)

and:∫ τs

0

eÃssds =

[
Ã

−1

1

(
−Ã

−1

1

(
Φ̃

1

s − I
)

+ Φ̃
1

sτs

)
0

Ã
−1

1

(
Ã

−1

1

(
−Ã

−1

1

(
Φ̃

1

s − I
)

+ Φ̃
1

sτs

)
− I

τ2
s

2

)
Ã2

I
τ2

s

2

] (A.59)

Special case no. 1: Singular A, zero order hold on inputs

The Kalman filter prediction for this special case can be calculated as follows:

x̂j+1 = Φsx̂j + U

∫ τs

0

eÃsdsUT Buj (A.60)
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with:∫ τs

0

eÃsds =

[
Ã

−1

1

(
Φ̃

1

s − I
)

Ã
−1

1

(
Ã

−1

1

(
Φ̃

1

s − I
)
− Iτs

)
Ã2

0 Iτs

]
(A.61)

Special case no. 2: Nonsingular A, first order hold on inputs

The Kalman filter prediction for this special case can be calculated as follows:

x̂j+1 = Φsx̂j −
∫ τs

0

eAssdsBα +
∫ τs

0

eAsdsB (ατs + uj) (A.62)

with: ∫ τs

0

eAsds = A−1 (Φs − I) (A.63)

and: ∫ τs

0

eAssds = A−1
(−A−1 (Φs − I) + Φsτs

)
(A.64)

Special case no. 3: Nonsingular A, zero order hold on inputs

The Kalman filter prediction for this special case can be calculated as follows:

x̂j+1 = Φsx̂j +
∫ τs

0

eAsdsBuj (A.65)

with: ∫ τs

0

eAsds = A−1 (Φs − I) (A.66)

Special case no. 4: Identically zero A, first order hold on inputs

The Kalman filter prediction for this special case can be calculated as follows:

x̂j+1 = x̂j −
∫ τs

0

eAssdsBα +
∫ τs

0

eAsdsB (ατs + uj) (A.67)

with: ∫ τs

0

eAsds = Iτs (A.68)

and: ∫ τs

0

eAssds = I
τ2
s

2
(A.69)
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Special case no. 5: Identically zero A, zero order hold on inputs

The Kalman filter prediction for this special case can be calculated as follows:

x̂j+1 = x̂j +
∫ τs

0

eAsdsBuj (A.70)

with: ∫ τs

0

eAsds = Iτs (A.71)

A.1.3.2 Extended Kalman filtering

For NL models εk (or εi
k) and Rk|k−1 (or Ri

k|k−1) can be computed for a given
set of parameters θ and initial states x0 by means of a continuous-discrete
extended Kalman filter, i.e. by means of the output prediction equations:

ŷk|k−1 = h(x̂k|k−1,uk, tk,θ) (A.72)

Rk|k−1 = CP k|k−1C
T + S (A.73)

the innovation equation:
εk = yk − ŷk|k−1 (A.74)

the Kalman gain equation:

Kk = P k|k−1C
T R−1

k|k−1 (A.75)

the updating equations:

x̂k|k = x̂k|k−1 + Kkεk (A.76)

P k|k = P k|k−1 −KkRk|k−1K
T
k (A.77)

and the state prediction equations:

dx̂t|k
dt

= f (x̂t|k,ut, t,θ) , t ∈ [tk, tk+1[ (A.78)

dP t|k
dt

= AP t|k + P t|kAT + σσT , t ∈ [tk, tk+1[ (A.79)

where the following shorthand notation has been applied4:

A =
∂f

∂xt

∣∣∣∣
x=x̂k|k−1,u=uk,t=tk,θ

, C =
∂h

∂xt

∣∣∣∣
x=x̂k|k−1,u=uk,t=tk,θ

σ = σ(uk, tk,θ) , S = S(uk, tk,θ)

(A.80)

4Within CTSM the code needed to evaluate the Jacobians is generated through analytical
manipulation using a method based on the algorithms of Speelpenning (1980).
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Initial conditions for the extended Kalman filter are x̂t|t0 = x0 and P t|t0 = P 0,
which may either be pre-specified or estimated along with the parameters as
a part of the overall problem (see Section A.1.3.4). Being a linear filter, the
extended Kalman filter is sensitive to nonlinear effects, and the approximate
solution obtained by solving (A.78) and (A.79) may be too crude (Jazwinski,
1970). Moreover, the assumption of Gaussian conditional densities is only
likely to hold for small sample times. To provide a better approximation, the
time interval [tk, tk+1[ is therefore subsampled, i.e. [tk, . . . , tj , . . . , tk+1[, and
the equations are linearized at each subsampling instant. This also means that
direct numerical solution of (A.78) and (A.79) can be avoided by applying the
analytical solutions to the corresponding linearized propagation equations:

dx̂t|j
dt

= f (x̂j|j−1,uj , tj,θ) + A(x̂t − x̂j) + B(ut − uj), t ∈ [tj , tj+1[ (A.81)

dP t|j
dt

= AP t|j + P t|jA
T + σσT , t ∈ [tj , tj+1[ (A.82)

where the following shorthand notation has been applied5:

A =
∂f

∂xt

∣∣∣∣
x=x̂j|j−1,u=uj ,t=tj ,θ

, B =
∂f

∂ut

∣∣∣∣
x=x̂j|j−1,u=uj ,t=tj ,θ

σ = σ(uj , tj ,θ) , S = S(uj , tj ,θ)

(A.83)

The solution to (A.82) is equivalent to the solution to (A.35), i.e.:

P j+1|j = ΦsP j|jΦ
T
s +

∫ τs

0

eAsσσT
(
eAs

)T
ds (A.84)

where τs = tj+1 − tj and Φs = eAτs . The solution to (A.81) is not as easy to
find, especially if A is singular. Nevertheless, by simplifying the notation, i.e.:

dx̂t

dt
= f + A(x̂t − x̂j) + B(ut − uj) , t ∈ [tj , tj+1[ (A.85)

and introducing:

α =
uj+1 − uj

tj+1 − tj (A.86)

to allow assumption of either zero order hold (α = 0) or first order hold (α �= 0)
on the inputs between sampling instants, i.e.:

dx̂t

dt
= f + A(x̂t − x̂j) + B(α(t− tj) + uj − uj) , t ∈ [tj , tj+1[ (A.87)

5Within CTSM the code needed to evaluate the Jacobians is generated through analytical
manipulation using a method based on the algorithms of Speelpenning (1980).
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and by introducing the singular value decomposition (SVD) of A, i.e. UΣV T ,
a solvable equation can be obtained as follows:

dx̂t

dt
= f + UΣV T (x̂t − x̂j) + Bα(t− tj)

UT dx̂t

dt
= UT f + UT UΣV T UUT (x̂t − x̂j) + UT Bα(t− tj)

dzt

dt
= UT f + ΣV T U(zt − zj) + UT Bα(t− tj)

dzt

dt
= f̃ + Ã(zt − zj) + B̃α(t− tj) , t ∈ [tj , tj+1[

(A.88)

where the transformation zt = UT x̂t has been introduced along with the vector
f̃ = UT f and the matrices Ã = ΣV T U = UT AU and B̃ = UT B. Now, if A
is singular, the matrix Ã has a special structure:

Ã =
[
Ã1 Ã2

0 0

]
(A.89)

which makes it possible to split up the previous result in two distinct equations:

dz1
t

dt
= f̃1 + Ã1(z1

t − z1
j ) + Ã2(z2

t − z2
j) + B̃1α(t− tj), t ∈ [tj , tj+1[

dz2
t

dt
= f̃2 + B̃2α(t− tj), t ∈ [tj , tj+1[

(A.90)

which can then be solved one at a time for the transformed variables. Solving
the equation for z2

t , with the initial condition z2
t=tj

= z2
j , yields:

z2
t = z2

j + f̃2(t− tj) +
1
2
B̃2α(t− tj)2 , t ∈ [tj , tj+1[ (A.91)

which can then be substituted into the equation for z1
t to yield:

dz1
t

dt
= f̃1 + Ã1(z1

t − z1
j) + Ã2

(
f̃2(t− tj) +

1
2
B̃2α(t− tj)2

)
+ B̃1α(t− tj) , t ∈ [tj , tj+1[

(A.92)

Introducing, for ease of notation, the constants:

E =
1
2
Ã2B̃2α , F = Ã2f̃2 + B̃1α , G = f̃1 − Ã1z

1
j (A.93)

and the standard form of a linear inhomogenous ordinary differential equation:

dz1
t

dt
− Ã1z

1
t = E(t− tj)2 + F (t− tj) + G , t ∈ [tj , tj+1[ (A.94)
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gives the solution:

z1
t = eÃ1t

(∫
e−Ã1t

(
E(t−tj)2+F (t−tj)+G

)
dt+ c

)
, t ∈ [tj , tj+1[ (A.95)

which can be rearranged to:

z1
t = −Ã

−1

1

(
I(t− tj)2 + 2Ã

−1

1 (t− tj) + 2Ã
−2

1

)
E

− Ã
−1

1

((
I(t− tj) + Ã

−1

1

)
F + G

)
+ eÃ1tc , t ∈ [tj , tj+1[

(A.96)

Using the initial condition z1
t=tj

= z1
j to determine the constant c, i.e.:

z1
j = −Ã

−1

1

(
2Ã

−2

1 E + Ã
−1

1 F + G
)

+ eÃ1tj c

c = e−Ã1tj

(
Ã

−1

1

(
2Ã

−2

1 E + Ã
−1

1 F + G
)

+ z1
j

) (A.97)

the solution can be rearranged to:

z1
t = −Ã

−1

1

(
I(t− tj)2 + 2Ã

−1

1 (t− tj) + 2Ã
−2

1

)
E

− Ã
−1

1

((
I(t− tj) + Ã

−1

1

)
F + G

)
+ eÃ1(t−tj)

(
Ã

−1

1

(
2Ã

−2

1 E + Ã
−1

1 F + G
)

+ z1
j

)
, t ∈ [tj , tj+1[

(A.98)

which finally yields:

z1
j+1 = −Ã

−1

1

((
Iτ2

s + 2Ã
−1

1 τs + 2Ã
−2

1

)
E +

(
Iτs + Ã

−1

1

)
F + G

)
+ Φ̃

1

s

(
Ã

−1

1

(
2Ã

−2

1 E + Ã
−1

1 F + G
)

+ z1
j

)
= −Ã

−1

1

((
Iτ2

s + 2Ã
−1

1 τs + 2Ã
−2

1

) 1
2
Ã2B̃2α

)
− Ã

−1

1

((
Iτs + Ã

−1

1

)(
Ã2f̃2 + B̃1α

)
+
(
f̃1 − Ã1z

1
j

))
+ Φ̃

1

s

(
Ã

−1

1

(
2Ã

−2

1

1
2
Ã2B̃2α + Ã

−1

1

(
Ã2f̃2 + B̃1α

)))
+ Φ̃

1

s

(
Ã

−1

1

(
f̃1 − Ã1z

1
j

)
+ z1

j

)
= z1

j − Ã
−1

1

(
1
2
Ã2B̃2ατ

2
s +

(
Ã

−1

1 Ã2B̃2α+Ã2f̃2+B̃1α
)
τs

)
+
(
Φ̃

1

s − I
)

Ã
−2

1

(
Ã

−1

1 Ã2B̃2α + Ã2f̃2 + B̃1α + Ã1f̃1

)
= z1

j −
1
2
Ã

−1

1 Ã2B̃2ατ
2
s − Ã

−1

1

(
Ã

−1

1 Ã2B̃2α+Ã2f̃2+B̃1α
)
τs

+ Ã
−1

1

(
Φ̃

1

s − I
)(

Ã
−1

1

(
Ã

−1

1 Ã2B̃2α+Ã2f̃2+B̃1α
)

+ f̃1

)

(A.99)
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and:

z2
j+1 = z2

j + f̃2τs +
1
2
B̃2ατ

2
s (A.100)

where Φ̃
1

s is the upper left part of the matrix:

Φ̃s = UTΦsU =

[
Φ̃

1

s Φ̃
2

s

0 I

]
(A.101)

and where the desired solution in terms of the original variables x̂j+1|j can be
found by applying the reverse transformation x̂t = Uzt.

Depending on the specific singularity of A (see Section A.1.3.3 for details on
how this is determined in CTSM) and the particular nature of the inputs,
several different cases are possible as shown in the following.

General case: Singular A, first order hold on inputs

In the general case, the extended Kalman filter solution is given as follows:

z1
j+1|j = z1

j|j −
1
2
Ã

−1

1 Ã2B̃2ατ
2
s

− Ã
−1

1

(
Ã

−1

1 Ã2B̃2α+Ã2f̃2+B̃1α
)
τs

+ Ã
−1

1

(
Φ̃

1

s − I
)(

Ã
−1

1

(
Ã

−1

1 Ã2B̃2α+Ã2f̃2+B̃1α
)

+ f̃1

) (A.102)

and:

z2
j+1|j = z2

j|j + f̃2τs +
1
2
B̃2ατ

2
s (A.103)

where the desired solution in terms of the original variables x̂j+1|j can be found
by applying the reverse transformation x̂t = Uzt.

Special case no. 1: Singular A, zero order hold on inputs

The solution to this special case can be obtained by setting α = 0, which yields:

z1
j+1|j = z1

j|j − Ã
−1

1 Ã2f̃2τs + Ã
−1

1

(
Φ̃

1

s − I
)(

Ã
−1

1 Ã2f̃2 + f̃1

)
(A.104)

and:
z2

j+1|j = z2
j|j + f̃2τs (A.105)

where the desired solution in terms of the original variables x̂j+1|j can be found
by applying the reverse transformation x̂t = Uzt.
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Special case no. 2: Nonsingular A, first order hold on inputs

The solution to this special case can be obtained by removing the SVD depen-
dent parts, i.e. by replacing z1

t , Ã1, B̃1 and f̃1 with xt, A, B and f respec-
tively, and by setting z2

t , Ã2, B̃2 and f̃2 to zero, which yields:

x̂j+1|j = x̂j|j −A−1Bατs + A−1 (Φs − I)
(
A−1Bα + f

)
(A.106)

Special case no. 3: Nonsingular A, zero order hold on inputs

The solution to this special case can be obtained by removing the SVD depen-
dent parts, i.e. by replacing z1

t , Ã1, B̃1 and f̃1 with xt, A, B and f respec-
tively, and by setting z2

t , Ã2, B̃2 and f̃2 to zero and α= 0, which yields:

x̂j+1|j = x̂j|j + A−1 (Φs − I)f (A.107)

Special case no. 4: Identically zero A, first order hold on inputs

The solution to this special case can be obtained by setting A to zero and
solving the original linearized state propagation equation, which yields:

x̂j+1|j = x̂j|j + fτs +
1
2
Bατ2

s (A.108)

Special case no. 5: Identically zero A, zero order hold on inputs

The solution to this special case can be obtained by setting A to zero and α = 0
and solving the original linearized state propagation equation, which yields:

x̂j+1|j = x̂j|j + fτs (A.109)

Numerical ODE solution as an alternative

The subsampling-based solution framework described above provides a better
approximation to the true state propagation solution than direct numerical
solution of (A.78) and (A.79), because it more accurately reflects the true
time-varying nature of the matrices A and σ in (A.79) by allowing these to
be re-evaluated at each subsampling instant. To provide an even better ap-
proximation and to handle stiff systems, which is not always possible with
the subsampling-based solution framework, an option has been included in
CTSM for applying numerical ODE solution to solve (A.78) and (A.79) si-
multaneously6, which ensures intelligent re-evaluation of A and σ in (A.79).

6The specific implementation is based on the algorithms of Hindmarsh (1983), and to be
able to use this method to solve (A.78) and (A.79) simultaneously, the n-vector differential
equation in (A.78) has been augmented with an n × (n + 1)/2-vector differential equation
corresponding to the symmetric n × n-matrix differential equation in (A.79).
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Iterated extended Kalman filtering

The sensitivity of the extended Kalman filter to nonlinear effects not only
means that the approximation to the true state propagation solution provided
by the solution to the state prediction equations (A.78) and (A.79) may be too
crude. The presence of such effects in the output prediction equations (A.72)
and (A.73) may also influence the performance of the filter. An option has
therefore been included in CTSM for applying the iterated extended Kalman
filter (Jazwinski, 1970), which is an iterative version of the extended Kalman
filter that consists of the modified output prediction equations:

ŷi
k|k−1 = h(ηi,uk, tk,θ) (A.110)

Ri
k|k−1 = CiP k|k−1C

T
i + S (A.111)

the modified innovation equation:

εi
k = yk − ŷi

k|k−1 (A.112)

the modified Kalman gain equation:

Ki
k = P k|k−1C

T
i (Ri

k|k−1)
−1 (A.113)

and the modified updating equations:

ηi+1 = x̂k|k−1 + Kk(εi
k −Ci(x̂k|k−1 − ηi)) (A.114)

P k|k = P k|k−1 −Ki
kRi

k|k−1(K
i
k)T (A.115)

where:

Ci =
∂h

∂xt

∣∣∣∣
x=ηi,u=uk,t=tk,θ

(A.116)

and η1 = x̂k|k−1. The above equations are iterated for i = 1, . . . ,M , where M
is the maximum number of iterations, or until there is no significant difference
between consecutive iterates, whereupon x̂k|k = ηM is assigned. This way, the
influence of nonlinear effects in (A.72) and (A.73) can be reduced.

A.1.3.3 Determination of singularity

Computing the singular value decomposition (SVD) of a matrix is a computa-
tionally expensive task, which should be avoided if possible. Within CTSM
the determination of whether or not the A matrix is singular and thus whether
or not the SVD should be applied, therefore is not based on the SVD itself,
but on an estimate of the reciprocal condition number, i.e.:

κ̂−1 =
1

|A||A−1| (A.117)

where |A| is the 1-norm of the A matrix and |A−1| is an estimate of the 1-norm
of A−1. This quantity can be computed much faster than the SVD, and only
if its value is below a certain threshold (e.g. 1e-12), the SVD is applied.
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A.1.3.4 Initial states and covariances

In order for the (extended) Kalman filter to work, the initial states x0 and their
covariance matrix P 0 must be specified. Within CTSM the initial states may
either be pre-specified or estimated by the program along with the parameters,
whereas the initial covariance matrix is calculated as P 0 = PsσσT , where σ
corresponds to the first sample and Ps is a pre-specified scaling factor.

A.1.3.5 Factorization of covariance matrices

The (extended) Kalman filter may be numerically unstable in certain situa-
tions. The problem arises when some of the covariance matrices, which are
known from theory to be symmetric and positive definite, become non-positive
definite because of rounding errors. Consequently, careful handling of the co-
variance equations is needed to stabilize the (extended) Kalman filter. Within
CTSM, all covariance matrices are therefore replaced with their square root
free Cholesky decompositions (Fletcher and Powell, 1974), i.e.:

P = LDLT (A.118)

where P is the covariance matrix, L is a unit lower triangular matrix and D
is a diagonal matrix with dii > 0, ∀i. Using factorized covariance matrices, all
of the covariance equations of the (extended) Kalman filter can be handled by
means of the following equation for updating a factorized matrix:

P̃ = P + GDgG
T (A.119)

where P̃ is known from theory to be both symmetric and positive definite
and P is given by (A.118), and where Dg is a diagonal matrix and G is a
full matrix. Solving this equation amounts to finding a unit lower triangular
matrix L̃ and a diagonal matrix D̃ with d̃ii > 0, ∀i, such that:

P̃ = L̃D̃L̃
T

(A.120)

and for this purpose a number of different methods are available, e.g. the
method described by Fletcher and Powell (1974), which is based on the modified
Givens transformation, and the method described by Thornton and Bierman
(1980), which is based on the modified weighted Gram-Schmidt orthogonali-
zation. Within CTSM the specific implementation of the (extended) Kalman
filter is based on the latter, and this implementation has been proven to have
a high grade of accuracy as well as stability (Bierman, 1977).

Using factorized covariance matrices also facilitates easy computation of those
parts of the objective function (A.26) that depend on determinants of co-
variance matrices. This is due to the following identities:

det(P ) = det(LDLT ) = det(D) =
∏

i

dii (A.121)
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A.1.4 Data issues

Raw data sequences are often difficult to use for identification and parameter
estimation purposes, e.g. if irregular sampling has been applied, if there are
occasional outliers or if some of the observations are missing. CTSM also
provides features to deal with these issues, and this makes the program flexible
with respect to the types of data that can be used for the estimation.

A.1.4.1 Irregular sampling.

The fact that the system equation of a continuous-discrete stochastic state
space model is formulated in continuous time makes it easy to deal with ir-
regular sampling, because the corresponding state prediction equations of the
(extended) Kalman filter can be solved over time intervals of varying length.

A.1.4.2 Occasional outliers

The objective function (A.26) of the general formulation (A.27) is quadratic
in the innovations εi

k, and this means that the corresponding parameter esti-
mates are heavily influenced by occasional outliers in the data sets used for the
estimation. To deal with this problem, a robust estimation method is applied,
where the objective function is modified by replacing the quadratic term:

νi
k = (εi

k)T (Ri
k|k−1)

−1εi
k (A.122)

with a threshold function ϕ(νi
k), which returns the argument for small values

of νi
k, but is a linear function of εi

k for large values of νi
k, i.e.:

ϕ(νi
k) =

{
νi

k , νi
k < c2

c(2
√
νi

k − c) , νi
k ≥ c2

(A.123)

where c > 0 is a constant. The derivative of this function with respect to εi
k is

known as Huber’s ψ-function (Huber, 1981) and belongs to a class of functions
called influence functions, because they measure the influence of εi

k on the
objective function. Several such functions are available, but Huber’s ψ-function
has been found to be most appropriate in terms of providing robustness against
outliers without rendering optimisation of the objective function infeasible.

A.1.4.3 Missing observations.

The algorithms of the parameter estimation methods described above also make
it easy to handle missing observations, i.e. to account for missing values in the
output vector yi

k, for some i and some k, when calculating the terms:

1
2

S∑
i=1

Ni∑
k=1

(
ln(det(Ri

k|k−1)) + (εi
k)T (Ri

k|k−1)
−1εi

k

)
(A.124)
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and:
1
2

((
S∑

i=1

Ni∑
k=1

l

)
+ p

)
ln(2π) (A.125)

in (A.26). To illustrate this, the case of extended Kalman filtering for NL
models is considered, but similar arguments apply in the case of Kalman fil-
tering for LTI and LTV models. The usual way to account for missing or
non-informative values in the extended Kalman filter is to formally set the cor-
responding elements of the measurement error covariance matrix S in (A.73)
to infinity, which in turn gives zeroes in the corresponding elements of the in-
verted output covariance matrix (Rk|k−1)−1 and the Kalman gain matrix Kk,
meaning that no updating will take place in (A.76) and (A.77) corresponding
to the missing values. This approach cannot be used when calculating (A.124)
and (A.125), however, because a solution is needed which modifies both εi

k,
Ri

k|k−1 and l to reflect that the effective dimension of yi
k is reduced. This is

accomplished by replacing (A.2) with the alternative measurement equation:

yk = E (h(xk,uk, tk,θ) + ek) (A.126)

where E is an appropriate permutation matrix, which can be constructed from
a unit matrix by eliminating the rows that correspond to the missing values
in yk. If, for example, yk has three elements, and the one in the middle is
missing, the appropriate permutation matrix is given as follows:

E =
[
1 0 0
0 0 1

]
(A.127)

Equivalently, the equations of the extended Kalman filter are replaced with the
following alternative output prediction equations:

ŷk|k−1 = Eh(x̂k|k−1,uk, tk,θ) (A.128)

Rk|k−1 = ECP k|k−1C
T ET + ESET (A.129)

the alternative innovation equation:

εk = yk − ŷk|k−1 (A.130)

the alternative Kalman gain equation:

Kk = P k|k−1C
T ET R

−1

k|k−1 (A.131)

and the alternative updating equations:

x̂k|k = x̂k|k−1 + Kkεk (A.132)

P k|k = P k|k−1 −KkRk|k−1K
T

k (A.133)
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The state prediction equations remain the same, and the above replacements
in turn provide the necessary modifications of (A.124) to:

1
2

S∑
i=1

Ni∑
k=1

(
ln(det(R

i

k|k−1)) + (εi
k)T (R

i

k|k−1)
−1εi

k

)
(A.134)

whereas modifying (A.125) amounts to a simple reduction of l for the particular
values of i and k with the number of missing values in yi

k.

A.1.5 Optimisation issues

CTSM uses a quasi-Newton method based on the BFGS updating formula and
a soft line search algorithm to solve the nonlinear optimisation problem (A.27).
This method is similar to the one described by Dennis and Schnabel (1983),
except for the fact that the gradient of the objective function is approximated
by a set of finite difference derivatives. In analogy with ordinary Newton-
Raphson methods for optimisation, quasi-Newton methods seek a minimum of
a nonlinear objective function F(θ): R

p → R, i.e.:

min
θ
F(θ) (A.135)

where a minimum of F(θ) is found when the gradient g(θ) = ∂F(θ)
∂θ satisfies:

g(θ) = 0 (A.136)

Both types of methods are based on the Taylor expansion of g(θ) to first order:

g(θi + δ) = g(θi) +
∂g(θ)
∂θ
|θ=θi δ + o(δ) (A.137)

which by setting g(θi + δ) = 0 and neglecting o(δ) can be rewritten as follows:

δi = −H−1
i g(θi) (A.138)

θi+1 = θi + δi (A.139)

i.e. as an iterative algorithm, and this algorithm can be shown to converge to
a (possibly local) minimum. The Hessian H i is defined as follows:

Hi =
∂g(θ)
∂θ
|θ=θi (A.140)

but unfortunately neither the Hessian nor the gradient can be computed expli-
citly for the optimisation problem (A.27). As mentioned above, the gradient
is therefore approximated by a set of finite difference derivatives, and a secant
approximation based on the BFGS updating formula is applied for the Hes-
sian. It is the use of a secant approximation to the Hessian that distinguishes
quasi-Newton methods from ordinary Newton-Raphson methods.
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A.1.5.1 Finite difference derivative approximations

Since the gradient g(θi) cannot be computed explicitly, it is approximated by
a set of finite difference derivatives. Initially, i.e. as long as ||g(θ)|| does not
become too small during the iterations of the optimisation algorithm, forward
difference approximations are used, i.e.:

gj(θi) ≈ F(θi + δjej)−F(θi)
δj

, j = 1, . . . , p (A.141)

where gj(θi) is the j’th component of g(θi) and ej is the j’th basis vector. The
error of this type of approximation is o(δj). Subsequently, i.e. when ||g(θ)||
becomes small near a minimum of the objective function, central difference
approximations are used instead, i.e.:

gj(θi) ≈ F(θi + δjej)−F(θi − δjej)
2δj

, j = 1, . . . , p (A.142)

because the error of this type of approximation is only o(δ2j ). Unfortunately,
central difference approximations require twice as much computation (twice the
number of objective function evalutions) as forward difference approximations,
so to save computation time forward difference approximations are used ini-
tially. The switch from forward differences to central differences is effectuated
for i > 2p if the line search algorithm fails to find a better value of θ.

The optimal choice of step length for forward difference approximations is:

δj = η
1
2 θj (A.143)

whereas for central difference approximations it is:

δj = η
1
3 θj (A.144)

where η is the relative error of calculating F(θ) (Dennis and Schnabel, 1983).

A.1.5.2 The BFGS updating formula

Since the Hessian Hi cannot be computed explicitly, a secant approximation
is applied. The most effective secant approximation Bi is obtained with the
so-called BFGS updating formula (Dennis and Schnabel, 1983), i.e.:

Bi+1 = Bi +
yiy

T
i

yT
i si
− Bisis

T
i Bi

sT
i Bisi

(A.145)

where yi = g(θi+1)− g(θi) and si = θi+1 − θi. Necessary and sufficient con-
ditions for Bi+1 to be positive definite is that Bi is positive definite and that:

yT
i si > 0 (A.146)
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This last demand is automatically met by the line search algorithm. Further-
more, since the Hessian is symmetric and positive definite, it can also be written
in terms of its square root free Cholesky factors, i.e.:

Bi = LiDiL
T
i (A.147)

where Li is a unit lower triangular matrix and Di is a diagonal matrix with
di

jj > 0, ∀j, so, instead of solving (A.145) directly, Bi+1 can be found by
updating the Cholesky factorization of Bi as shown in Section A.1.3.5.

A.1.5.3 The soft line search algorithm

With δi being the secant direction from (A.138) (using Hi = Bi obtained from
(A.145)), the idea of the soft line search algorithm is to replace (A.139) with:

θi+1 = θi + λiδ
i (A.148)

and choose a value of λi > 0 that ensures that the next iterate decreases F(θ)
and that (A.146) is satisfied. Often λi = 1 will satisfy these demands and
(A.148) reduces to (A.139). The soft line search algorithm is globally conver-
gent if each step satisfies two simple conditions. The first condition is that the
decrease in F(θ) is sufficient compared to the length of the step si = λiδ

i, i.e.:

F(θi+1) < F(θi) + αg(θi)T si (A.149)

where α ∈ ]0, 1[. The second condition is that the step is not too short, i.e.:

g(θi+1)T si ≥ βg(θi)T si (A.150)

where β ∈ ]α, 1[. This last expression and g(θi)T si < 0 imply that:

yT
i si =

(
g(θi+1)− g(θi)

)T
si ≥ (β − 1)g(θi)T si > 0 (A.151)

which guarantees that (A.146) is satisfied. The method for finding a value of
λi that satisfies both (A.149) and (A.150) starts out by trying λi = λp = 1. If
this trial value is not admissible because it fails to satisfy (A.149), a decreased
value is found by cubic interpolation using F(θi), g(θi), F(θi + λpδ

i) and
g(θi + λpδ

i). If the trial value satisfies (A.149) but not (A.150), an increased
value is found by extrapolation. After one or more repetitions, an admissible
λi is found, because it can be proved that there exists an interval λi ∈ [λ1, λ2]
where (A.149) and (A.150) are both satisfied (Dennis and Schnabel, 1983).

A.1.5.4 Constraints on parameters

In order to ensure stability in the calculation of the objective function in (A.26),
simple constraints on the parameters are introduced, i.e.:

θmin
j < θj < θmax

j , j = 1, . . . , p (A.152)
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These constraints are satisfied by solving the optimisation problem with respect
to a transformation of the original parameters, i.e.:

θ̃j = ln

(
θj − θmin

j

θmax
j − θj

)
, j = 1, . . . , p (A.153)

A problem arises with this type of transformation when θj is very close to one
of the limits, because the finite difference derivative with respect to θj may
be close to zero, but this problem is solved by adding an appropriate penalty
function to (A.26) to give the following modified objective function:

F(θ) = − ln (p(θ|Y,y0)) + P (λ,θ,θmin,θmax) (A.154)

which is then used instead. The penalty function is given as follows:

P (λ,θ,θmin,θmax) = λ

 p∑
j=1

|θmin
j |

θj − θmin
j

+
p∑

j=1

|θmax
j |

θmax
j − θj

 (A.155)

for |θmin
j | > 0 and |θmax

j | > 0, j = 1, . . . , p. For proper choices of the Lagrange
multiplier λ and the limiting values θmin

j and θmax
j the penalty function has no

influence on the estimation when θj is well within the limits but will force the
finite difference derivative to increase when θj is close to one of the limits.

Along with the parameter estimates CTSM computes normalized (by multi-
plication with the estimates) derivatives of F(θ) and P (λ,θ,θmin,θmax) with
respect to the parameters to provide information about the solution. The de-
rivatives of F(θ) should of course be close to zero, and the absolute values
of the derivatives of P (λ,θ,θmin,θmax) should not be large compared to the
corresponding absolute values of the derivatives of F(θ), because this indicates
that the corresponding parameters are close to one of their limits.

A.1.6 Performance issues

Solving optimisation problems of the general type in (A.27) is a computatio-
nally intensive task. The binary code within CTSM has therefore been opti-
mized for maximum performance on all supported platforms, i.e. Linux, Solaris
and Windows. On Solaris systems CTSM also supports shared memory pa-
rallel computing using the OpenMP Application Program Interface (API).

More specifically, the finite difference derivative approximations used to ap-
proximate the gradient of the objective function can be computed in parallel,
and Figure A.1 shows the performance benefits of this approach in terms of
reduced execution time and demonstrates the resulting scalability of the pro-
gram for the bioreactor example used in Chapter 2. In this example there are
11 unknown parameters, and in theory using 11 CPU’s should therefore be
most optimal. Nevertheless, using 12 CPU’s seems to be slightly better, but
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Figure A.1. Performance (execution time vs. no. of CPU’s) and scalability (no. of
CPU’s vs. no. of CPU’s) of CTSM when using shared memory parallel computing.
Solid lines: CTSM values; dashed lines: Theoretical values (linear scalability).

this may be due to the inherent uncertainty of the determination of execution
time. The apparently non-existing effect of adding CPU’s in the interval 6-10
is due to an uneven distribution of the workload, since in this case at least one
CPU performs two finite difference computations, while the others wait.

A.2 Other features

Secondary features of CTSM include computation of various statistics and
facilitation of residual analysis through validation data generation.

A.2.1 Various statistics

Within CTSM an estimate of the uncertainty of the parameter estimates is
obtained by using the fact that by the central limit theorem the estimator in
(A.27) is asymptotically Gaussian with mean θ and covariance:

Σθ̂ = H−1 (A.156)

where the matrix H is given by:

{hij} = −E
{

∂2

∂θi∂θj
ln (p(θ|Y,y0))

}
, i, j = 1, . . . , p (A.157)

and where an approximation to H can be obtained from:

{hij} ≈ −
(

∂2

∂θi∂θj
ln (p(θ|Y,y0))

)∣∣∣
θ=θ̂

, i, j = 1, . . . , p (A.158)
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which is the Hessian evaluated at the minimum of the objective function, i.e.
Hi|θ=θ̂. As an overall measure of the uncertainty of the parameter estimates,
the negative logarithm of the determinant of the Hessian is computed, i.e.:

− ln
(
det

(
Hi|θ=θ̂

))
(A.159)

The lower the value of this statistic, the lower the overall uncertainty of the
parameter estimates. A measure of the uncertainty of the individual parameter
estimates is obtained by decomposing the covariance matrix as follows:

Σθ̂ = σθ̂Rσθ̂ (A.160)

into σθ̂, which is a diagonal matrix of the standard deviations of the parameter
estimates, and R, which is the corresponding correlation matrix.

The asymptotic Gaussianity of the estimator in (A.27) also allows marginal
t-tests to be performed to test the hypothesis:

H0: θj = 0 (A.161)

against the corresponding alternative:

H1: θj �= 0 (A.162)

i.e. to test whether a given parameter θj is marginally insignificant or not.
The test quantity is the value of the parameter estimate divided by the stan-
dard deviation of the estimate, and under H0 this quantity is asymptotically
t-distributed with a number of degrees of freedom DF that equals the total
number of observations minus the number of estimated parameters, i.e.:

zt(θ̂j) =
θ̂j

σθ̂j

∈ t(DF) = t

((
S∑

i=1

Ni∑
k=1

l

)
− p

)
(A.163)

where, if there are missing observations in yi
k for some i and some k, the

particular value of l is reduced with the number of missing values in yi
k. The

critical region for a test on significance level α is given as follows:

zt(θ̂j) < t(DF)α
2
∨ zt(θ̂j) > t(DF)1−α

2
(A.164)

and to facilitate these tests, CTSM computes zt(θ̂j) as well as the probabilities:

P
(
t<−|zt(θ̂j)| ∧ t>|zt(θ̂j)|

)
(A.165)

for j = 1, . . . , p. Figure A.2 shows how these probabilities should be interpreted
and illustrates their computation via the following relation:

P
(
t<−|zt(θ̂j)| ∧ t>|zt(θ̂j)|

)
= 2

(
1− P (t < |zt(θ̂j)|)

)
(A.166)
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Figure A.2. Illustration of computation of P (t<−|zt(θ̂j)| ∧ t>|zt(θ̂j)|) via (A.166).

with P (t < |zt(θ̂j)|) obtained by approximating the cumulative probability den-
sity of the t-distribution t(DF) with the cumulative probability density of the
standard Gaussian distribution N(0, 1) using the test quantity transformation:

zN(θ̂j) = zt(θ̂j)
1− 1

4DF√
1 + (zt(θ̂j))2

2DF

∈ N(0, 1) (A.167)

The cumulative probability density of the standard Gaussian distribution is
computed by approximation using a series expansion of the error function.

A.2.2 Validation data generation

To facilitate e.g. residual analysis, CTSM can also be used to generate vali-
dation data, i.e. state and output predictions corresponding to a given input
data set, using either one-step-ahead prediction or pure simulation.

A.2.2.1 One-step-ahead prediction data generation

The one-step-ahead state and output predictions that can be generated are
x̂k|k−1, x̂k|k and ŷk|k−1 corresponding to each time instant tk in the input
data set. The predictions are generated by the (extended) Kalman filter.

A.2.2.2 Pure simulation data generation

The pure simulation state and output predictions that can be generated are
x̂k|0, and ŷk|0 corresponding to each time instant tk in the input data set. The
predictions are generated by the (extended) Kalman filter without updating.



B

Statistical tests and
residual analysis tools

In this appendix an outline of the mathematical details of the statistical tests
and residual analysis tools applied within the grey-box modelling cycle de-
scribed in Chapter 2 is given. Some of the statistical tests are incorporated
in CTSM (see Appendix A) and some have been implemented in MATLAB,
whereas the residual analysis tools have all been implemented in MATLAB.

B.1 Statistical tests

The idea of the statistical tests applied within the grey-box modelling cycle
is to make inferences about the parameters of continuous-discrete stochastic
state space models. These tests are therefore based on the properties of the
parameter estimates provided by CTSM, and as shown in Appendix A these
estimates are asymptotically Gaussian with the following mean and covariance:

E{θ̂} = θ (B.1)

V {θ̂} = Σθ̂ = σθ̂Rσθ̂ (B.2)

where the covariance matrix Σθ̂ is approximated by the inverse of the Hessian
evaluated at the minimum of the objective function. This covariance matrix
can be decomposed into a diagonal matrix σθ̂ of the standard deviations of the
individual parameter estimates and the corresponding correlation matrix R.

B.1.1 Marginal tests

As shown in Appendix A the asymptotic Gaussianity property also allows
marginal t-tests to be performed to test the hypothesis that a given para-
meter θj is insignificant (H0: θj = 0) against the alternative that it is not
(H1: θj �= 0), but this is actually just a special case of a more general test.
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Indeed, marginal t-tests can be performed to test the more general hypothesis:

H0: θj = θ0j (B.3)

against the corresponding alternative:

H1: θj �= θ0j (B.4)

i.e. to test whether a given parameter θj has a specific value θ0j or not. The test
quantity can be computed from the parameter estimate θ̂j and the standard
deviation of the estimate σθ̂j

in the following way:

zt(θ̂j) =
θ̂j − θ0j
σθ̂j

(B.5)

Under H0 this quantity is asymptotically t-distributed with a number of degrees
of freedom DF that equals the total number of observations minus the number
of estimated parameters as shown in Appendix A, i.e.:

zt(θ̂j) ∈ t(DF) (B.6)

and the critical region for a test on significance level α is given as follows:

zt(θ̂j) < t(DF)α
2
∨ zt(θ̂j) > t(DF)1−α

2
(B.7)

B.1.2 Simultaneous tests

Due to correlations between the individual parameter estimates, a series of
marginal tests cannot be used to make inferences about several parameters
simultaneously. Instead a test based on a statistic that takes correlations into
account must be used. One such statistic, which is also based on the property
of asymptotic Gaussianity, is Wald’s W -statistic (Kotz and Johnson, 1985),
which can be applied to test the following general hypothesis:

H0: g(θ) = 0 (B.8)

against the corresponding alternative:

H1: g(θ) �= 0 (B.9)

i.e. to test whether the restriction given by the k-dimensional vector function
g(·) is satistied or not. The W -statistic can be computed in the following way:

W (g(θ̂)) = (g(θ̂))T
(
g′(θ̂)Σθ̂(g′(θ̂))T

)−1

g(θ̂) (B.10)

where:
g′(θ̂) =

∂g(θ)
∂θ
|θ=θ̂ (B.11)
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Under H0 this quantity is asymptotically χ2-distributed with a number of
degrees of freedom k that equals the dimension of the restriction, i.e.:

W (g(θ̂)) ∈ χ2(k) (B.12)

and the critical region for a test on significance level α is given as follows:

W (g(θ̂)) > χ2(k)1−α (B.13)

As a very important special case, a test based on Wald’s W -statistic can be
used to test the hypothesis that a given subset of the parameters θ∗ ⊂ θ are
simultaneously insignificant (H0: θ∗ = 0) against the alternative that they are
not (H1: θ∗ �= 0). In this case the W -statistic can be computed as follows:

W (θ̂∗) = θ̂
T

∗ Σ−1

θ̂∗
θ̂∗ (B.14)

where θ̂∗ ⊂ θ̂ is the subset of the parameter estimates subjected to the test
and Σθ̂∗ is the covariance matrix of these estimates. This covariance matrix
can be computed from the full covariance matrix as follows:

Σθ̂∗ = EΣθ̂ET (B.15)

where E is an appropriate permutation matrix, which can be constructed from
a unit matrix by eliminating the rows corresponding to parameter estimates
not subjected to the test. This W -statistic can also be computed as follows:

W (θ̂∗) = (zt(θ̂∗))T R−1
∗ zt(θ̂∗) (B.16)

where zt(θ̂∗) is a vector of marginal t-test quantities corresponding to the para-
meter estimates subjected to the test and R∗ is the corresponding correlation
matrix, which can be computed from the full correlation matrix as follows:

R∗ = ERET (B.17)

In either case the W -statistic corresponding to this special case is asymptoti-
cally χ2-distributed under H0 with dim(θ̂∗) degrees of freedom.

B.2 Residual analysis tools

The idea of the residual analysis tools applied within the grey-box model-
ling cycle is to investigate the prediction capabilities of continuous-discrete
stochastic state space models by examining residuals computed from valida-
tion data sets generated by CTSM, and, as shown in Appendix A, such data
sets can be generated using either one-step-ahead prediction or pure simulation.
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B.2.1 Standard tools

One of the most widely used methods for residual analysis is to compute and
plot for an appropriate number of lags the standard correlation functions, i.e.:

• the sample autocorrelation function (SACF),

• the sample partial autocorrelation function (SPACF),

• and the sample cross-correlation function (SCCF),

which measure the correlation between current values of the residuals and
lagged values of the residuals (SACF and SPACF) or the inputs (SCCF).

It must be noted that, although these tools are very well suited for investigating
prediction capabilities, they can only be applied to stationary and equidistant
time series of the residuals and inputs, unless proper precautions are taken.

B.2.1.1 Sample autocorrelation function

The sample autocorrelation function (SACF) of a stationary and equidistant
time series {x1, . . . , xN} measures the correlation between current and lagged
values of the underlying stochastic process {Xt} and is defined as follows:

ρ̂(k) =
γ̂(k)
γ̂(0)

, −N < k < N (B.18)

where γ̂(·) is the sample autocovariance function, which is defined as follows:

γ̂(k) =
1
N

N−k∑
t=1

(xt+k − x)(xt − x) , 0 ≤ k < N (B.19)

γ̂(k) = γ̂(−k) , −N < k ≤ 0 (B.20)

where:

x =
1
N

N∑
t=1

xt (B.21)

The SACF ρ̂(·) is an asymptotically unbiased estimate of the true autocorre-
lation function ρ(·) (Brockwell and Davis, 1991) and can therefore be used to
perform marginal tests for all k of the following hypothesis:

H0: ρ(k) = 0 (B.22)

against the corresponding alternative:

H1: ρ(k) �= 0 (B.23)
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Under H0 the test quantity ρ̂(k) is asymptotically N(0, 1
N ), and the critical

region for a test on significance level α is given as follows:

ρ̂(k) < N(0,
1
N

)α
2
∨ ρ̂(k) > N(0,

1
N

)1−α
2

(B.24)

This means that the test can easily be performed for a range of values of k
simultaneously by plotting the SACF for the appropriate range and comparing
with horizontal lines at the appropriate critical values. More complete details
about the SACF are given by Brockwell and Davis (1991).

B.2.1.2 Sample partial autocorrelation function

The sample partial autocorrelation function (SPACF) of a stationary and equi-
distant time series {x1, . . . , xN} measures the correlation between current and
lagged values of the underlying stochastic process {Xt}, adjusted for correla-
tions with intermediate values, and is defined as follows:

β̂(k) = φ̂kk , 1 ≤ k < N (B.25)

where φ̂kk can be determined from values of the SACF as follows:
ρ̂(0) ρ̂(1) · · · ρ̂(k − 1)
ρ̂(1) ρ̂(0) · · · ρ̂(k − 2)

...
...

. . .
...

ρ̂(k − 1) ρ̂(k − 2) · · · ρ̂(0)



φ̂k1

φ̂k2

...
φ̂kk

 =


ρ̂(1)
ρ̂(2)

...
ρ̂(k)

 , k ≥ 1 (B.26)

The SPACF β̂(·) is an asymptotically unbiased estimate of the true partial
autocorrelation function β(·) (Brockwell and Davis, 1991) and can therefore be
used to perform marginal tests for all k of the following hypothesis:

H0: β(k) = 0 (B.27)

against the corresponding alternative:

H1: β(k) �= 0 (B.28)

Under H0 the test quantity β̂(k) is again asymptotically N(0, 1
N ), and the

critical region for a test on significance level α is given as follows:

β̂(k) < N(0,
1
N

)α
2
∨ β̂(k) > N(0,

1
N

)1−α
2

(B.29)

Using a similar approach as the one described above for the SACF, this test
can therefore easily be performed graphically for a range of values of k. More
details about the SPACF are given by Brockwell and Davis (1991).



120 Statistical tests and residual analysis tools

B.2.1.3 Sample cross-correlation function

The sample cross-correlation function (SCCF) between two stationary and equi-
distant time series {xi,1, . . . , xi,N} and {xj,1, . . . , xj,N}measures the correlation
between current values of the underlying stochastic process {Xi,t} and lagged
values of the underlying stochastic process {Xj,t} and is defined as follows:

ρ̂ij(k) =
γ̂ij(k)√

γ̂ii(0)γ̂jj(0)
, −N < k < N (B.30)

where γ̂ij(k) are elements of the multivariate sample autocovariance function:

Γ̂(k) =


1
N

∑N−k
t=1 (xt+k − x)(xt − x)T , 0 ≤ k < N − 1

1
N

∑N
t=−k+1(xt+k − x)(xt − x)T , −N + 1 ≤ k < 0

(B.31)

where:

xt = [xi,t xj,t]T (B.32)

and:

x =
1
N

N∑
t=1

xt (B.33)

The SCCF ρ̂ij(·) is an asymptotically unbiased estimate of the true cross-
correlation function ρij(·) (Brockwell and Davis, 1991) and can therefore be
used to perform marginal tests for all k of the following hypothesis:

H0: ρij(k) = 0 (B.34)

against the corresponding alternative:

H1: ρij(k) �= 0 (B.35)

If either {Xi,t} or {Xj,t} is a white noise process or if pre-whitening of one or
both of these processes is used (Brockwell and Davis, 1991), the test quantity
ρ̂ij(k) is again asymptotically N(0, 1

N ) under H0, and the critical region for a
test on significance level α is given as follows:

ρ̂ij(k) < N(0,
1
N

)α
2
∨ ρ̂ij(k) > N(0,

1
N

)1−α
2

(B.36)

Using a similar approach as the one described above for the SACF, this test
can therefore easily be performed graphically for a range of values of k. More
details about the SCCF are given by Brockwell and Davis (1991).
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B.2.2 Advanced tools

The standard tools for residual analysis measure the degree of linear depen-
dency and therefore fail to detect certain nonlinear dependencies, but as shown
by Nielsen and Madsen (2001a) generalized tools can be used instead, i.e.:

• the lag dependence function (LDF),

• the partial lag dependence function (PLDF),

• the crossed lag dependence function (CLDF),

• and the nonlinear lag dependence function (NLDF),

which are all based on the close relation between correlation coefficients and
values of the coefficients of determination for regression models but extend from
linear to nonlinear systems by incorporating nonparametric regression.

As well as for the standard tools, it must be noted that these tools can only be
applied to stationary and equidistant time series of the residuals and inputs.

B.2.2.1 Lag dependence function

The lag dependence function (LDF), which is a generalization of the SACF, is
based on the equivalence1 between the squared correlation coefficient between
the stochastic variables Y and Xk, which is defined as follows:

ρ2
0(k) =

V {Y } − V {Y |Xk}
V {Y } (B.37)

and the coefficient of determination of a linear regression of a series of obser-
vations of Y on a series of observations of Xk, i.e.:

R2
0(k) =

SS0 − SS0(k)

SS0
(B.38)

where SS0(k) is the sum of squares of the residuals from the regression and:

SS0 =
N∑

i=1

(yi − 1
N

N∑
i=1

yi)2 (B.39)

For a time series {x1, . . . , xN} of observations of a stationary process {Xt},
the squared SACF at lag k is equivalent to the squared correlation coefficient
ρ2
0(k) between Xt and Xt−k, and it can therefore be closely approximated by

the corresponding value of R2
0(k) obtained from a linear regression of observa-

tions of Xt on observations of Xt−k. By replacing the linear regression with a
1R2

0(k)
is the ML estimate of ρ2

0(k)
when Gaussianity is assumed.
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nonparametric estimate of the conditional mean fk(x) = E{Xt|Xt−k = x}, the
LDF can be defined as a straightforward extension of the SACF as follows:

LDF(k) = sign(f̂k(b)− f̂k(a))
√
R̃2

0(k) , 1 ≤ k < N (B.40)

where a and b are the minimum and maximum over the range of observations
and R̃2

0(k) is the corresponding value of the coefficient of determination, i.e.:

R̃2
0(k) =

SS0 − S̃S0(k)

SS0
(B.41)

where S̃S0(k) is the sum of squares of the appropriate residuals. The sign in
the above definition is included to provide information about the average slope
of the nonparametric estimate of the conditional mean. This estimate can
be computed by using a nonparametric smoothing technique, e.g. basic kernel
smoothing or locally-weighted regression (see Appendix C for details).

Being an extension of the SACF, the LDF can be interpreted as being, for each
k, the part of the overall variation in the observations of Xt, which can be
explained by the observations of Xt−k. Like the SACF, the LDF can therefore
be used to perform tests of correlation for a range of values of k simultaneously
by plotting the LDF for the appropriate range and comparing with appropriate
confidence limits. These limits must be calculated by means of a bootstrap
method (Nielsen and Madsen, 2001a) in this case, because they depend on the
characteristics of the particular nonparametric smoothing technique used.

B.2.2.2 Partial lag dependence function

The partial lag dependence function (PLDF), which is a generalization of the
SPACF, is based on the equivalence2 between the squared partial correlation
coefficient between the stochastic variable (Y |X1, . . . , Xk−1) and the stochastic
variable (Xk|X1, . . . , Xk−1), which is defined as follows:

ρ2
(0k)|(1,...,k−1) =

V {Y |X1, . . . , Xk−1} − V {Y |X1, . . . , Xk}
V {Y |X1, . . . , Xk−1} (B.42)

and the following coefficient of determination:

R2
(0k)|(1,...,k−1) =

SS0(1,...,k−1) − SS0(1,...,k)

SS0(1,...,k−1)
(B.43)

where SS0(1,...,k−1) is the sum of squares of the residuals from a linear regression
of a series of observations of Y on a series of observations of (X1, . . . , Xk−1)
and SS0(1,...,k) is the sum of squares of the residuals from a linear regression of
a series of observations of Y on a series of observations of (X1, . . . , Xk).

2R2
(0k)|(1,...,k−1)

is the ML estimate of ρ2
(0k)|(1,...,k−1)

when Gaussianity is assumed.
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For a time series {x1, . . . , xN} of observations of a stationary process {Xt}, the
squared SPACF at lag k is equivalent to the squared partial correlation coef-
ficient ρ2

(0k)|(1,...,k−1) between the stochastic variable (Xt|Xt−1, . . . , Xt−(k−1))
and the stochastic variable (Xt−k|Xt−1, . . . , Xt−(k−1)). It can therefore be
closely approximated by the value of R2

(0k)|(1,...,k−1) obtained from a linear re-
gression of observations of Xt on observations of (Xt−1, . . . , Xt−(k−1)) and a
linear regression of observations of Xt on observations of (Xt−1, . . . , Xt−k), i.e.
by fitting the following set of auto-regressive models:

Xt = φj0 + φj1Xt−1 + · · ·+ φjjXt−j + et , j = k − 1, k (B.44)

By replacing the set of auto-regressive models with a set of additive models:

Xt = fj0 + fj1(Xt−1) + · · ·+ fjj(Xt−j) + et , j = k − 1, k (B.45)

where each fji is estimated nonparametrically (see Appendix C for details), the
PLDF can be defined as a straightforward extension of the SPACF as follows:

PLDF(k) = sign(f̂kk(b)− f̂kk(a))
√
R̃2

(0k)|(1,...,k−1) , 1 ≤ k < N (B.46)

where a and b are again the minimum and maximum over the observations and
R̃2

(0k)|(1,...,k−1) is the corresponding coefficient of determination, i.e.:

R̃2
(0k)|(1,...,k−1) =

S̃S0(1,...,k−1) − S̃S0(1,...,k)

S̃S0(1,...,k−1)

(B.47)

where S̃S0(1,...,k−1) and S̃S0(1,...,k) are the sums of squares of the appropriate
residuals. Again, the sign in the above definition is included to provide infor-
mation about the average slope of the nonparametric estimates.

Being an extension of the SPACF, the PLDF can be interpreted as being,
for each k, the relative decrease in one-step-ahead prediction variation when
including Xt−k as an extra predictor. Thus, like the SPACF, the PLDF can be
used to graphically perform tests of partial correlation for a range of values of
k, using a similar approach as for the LDF to compute confidence limits.

B.2.2.3 Crossed lag dependence function

The crossed lag dependence function (CLDF), which is a generalization of the
SCCF, is defined analogously to the LDF as follows:

CLDF(k) = sign(f̂k(b)− f̂k(a))
√
R̃2

0(k) , 1 ≤ k < N (B.48)

where the estimate of the conditional mean fk(x) = E{Xt|Xt−k = x} is re-
placed with an estimate of the conditional mean fk(x) = E{Xi,t|Xj,t−k = x}.
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Being a generalization of the SCCF, the CLDF is a measure of the degree
of dependency between current values of one time series and lagged values of
another time series. Thus, like the SCCF, the CLDF can be used to graphically
perform tests of cross-correlation for a range of values of k, using a similar
approach as the one mentioned above for the LDF to compute confidence limits.

B.2.2.4 Nonlinear lag dependence function

The SACF is a measure of the degree of linear dependency between current and
lagged values of a time series and the LDF is an extension, which measures the
degree of both linear and nonlinear dependency. A measure of the degree
of strictly nonlinear dependency is provided by the nonlinear lag dependence
function (NLDF), which is defined analogously to the LDF as follows:

NLDF(k) = sign(f̂k(b)− f̂k(a))
√
R̃2

0(k) , 1 ≤ k < N (B.49)

where the term SS0 in the definition of R̃2
0(k) is replaced with the sum of squares

SS0(k) of the residuals from a linear regression of a series of observations of Xt

on a series of observations of Xt−k, i.e.:

R̃2
0(k) =

SS0(k) − S̃S0(k)

SS0(k)
(B.50)

The NLDF can be used to graphically perform tests of strictly nonlinear cor-
relation for a range of values of k. A discussion of how to compute confidence
limits for this type of test and more details about all of the lag dependence
functions in general is given by Nielsen and Madsen (2001a).



C

Nonparametric methods

In this appendix an outline of the mathematical details of the nonparametric
methods applied within the grey-box modelling cycle described in Chapter 2
is given. These methods, which have all been implemented in MATLAB, are
applied for computing the lag dependence functions used for residual analysis
(see Appendix B) and for nonparametric modelling of functional relations.

C.1 Kernel smoothing

The core nonparametric method is univariate kernel smoothing, which is a
method that uses a training data set (x,y) = {xk, yk}Nk=1 of observations of a
predictor variableX and a response variable Y to compute a smoothed estimate
of the response variable for a given value of the predictor variable.

More specifically, univariate kernel smoothing assumes the following relation-
ship between the response variable and the predictor variable:

Y = f(X) + e , e ∈ N(0, σ2) (C.1)

and essentially uses the training data set to compute the conditional mean:

ŷ0 = f̂(x0) = E{Y |X = x0} (C.2)

for a given value x0 of the predictor variable. This section outlines some of the
details of univariate kernel smoothing. More information can be found in the
books of Hastie and Tibshirani (1990) and Hastie et al. (2001).

C.1.1 Basic kernel smoothing

The simplest kernel smoother is the Nadaraya-Watson kernel weighted average,
which can be computed as follows for a single value x0 of the predictor variable:

ŷ0 =
∑N

k=1Kλ( |xk−x0|
λ )yk∑N

k=1Kλ( |xk−x0|
λ )

(C.3)
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Figure C.1. Various kernel functions. Solid line: Box; dotted line: Triangular; Solid
line: Tri-cube; dashed line: Epanechnikov; dotted line: Gaussian.

where ŷ0 is the fit and Kλ is a kernel function with bandwidth λ. The kernel
function is a symmetric weight function that assigns weights to observations
close to x0. Several such functions are available as shown in Figure C.1, e.g.:

• the box kernel:

Kλ(x) =
{

1
2 , |x| ≤ 1
0 , otherwise (C.4)

• the triangular kernel:

Kλ(x) =
{

1− |x| , |x| ≤ 1
0 , otherwise (C.5)

• the tri-cube kernel:

Kλ(x) =
{

(1 − x3)3 , |x| ≤ 1
0 , otherwise (C.6)

• the Epanechnikov kernel:

Kλ(x) =
{

3
4 (1 − x2) , |x| ≤ 1

0 , otherwise (C.7)

• and the Gaussian kernel:

Kλ(x) =
1√
2π

exp(−x
2

2
) (C.8)
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Figure C.2. Graphical illustration of how the Nadaraya-Watson kernel weighted
average is computed. Solid vertical line: predictor value of interest; dotted curve:
Tri-cube kernel with λ = 1 (re-scaled); dash-dotted horizontal line: Local average;
asterisk: Local fit; solid curve: Overall fit; dashed curve: True curve.

The Gaussian kernel is the only one of these kernels that does not have compact
support, which simply means that it is the only one that is unbounded.

In the more general case of a vector x = {xi}Nfit
i=1 of values of the predictor

variable, the kernel weighted average can be computed as follows:

ŷ = Sy (C.9)

where ŷ = {ŷi}Nfit
i=1 is a vector of the corresponding fits and S is the smoother

matrix, which is given by the following element entries:

{sij} =
Kλ( |xj−xi|

λ )∑N
k=1Kλ( |xk−xi|

λ )
, i = 1, . . . , Nfit , j = 1, . . . , N (C.10)

If the fit is computed for the exact predictor values in the training data set, the
smoother matrix is a square matrix. Moreover, if a kernel that has compact
support is used, the smoother matrix is often sparse, so to reduce the storage
requirements for this matrix as well as the otherwise extensive computational
load associated with the linear operation in (C.9), the specific implementation
of basic kernel smoothing in MATLAB is based on a sparse matrix format.

Figure C.2 is a graphical illustration of how the Nadaraya-Watson kernel weigh-
ted average is computed: Kernel weights (dotted curve) are assigned to obser-
vations (dots) close to the predictor value of interest (indicated with a solid
vertical line) to compute the local average over the range of the kernel function
(dash-dotted horizontal line). Only the value at the particular predictor value



128 Nonparametric methods

(indicated with an asterisk) is used, however, and by repeating the procedure
for several predictor values a smoothed curve (solid curve) that approximates
the true curve (dashed curve) can be constructed. More information about the
basics of kernel smoothing is given by Hastie and Tibshirani (1990).

C.1.2 Locally-weighted regression

The Nadaraya-Watson kernel weighted average essentially fits a constant locally
and as argued by Hastie et al. (2001) this approach may give severe bias,
particularly on the boundaries of the range of predictor values in the training
data set, but the bias can be removed by instead fitting a polynomial locally.

This approach is called locally-weighted regression and the corresponding fit
can be computed as follows for a single value x0 of the predictor variable:

ŷ0 = α̂(x0) +
d∑

j=1

β̂j(x0)x
j
0 (C.11)

where α̂(x0) and β̂j(x0), j = 1, . . . , d, are computed by solving the following
locally-weighted d’th order polynomial regression problem:

min
α,β1,...,βd

N∑
k=1

Kλ(
xk − x0

λ
)

yk − α+
d∑

j=1

βjx
j
k

2

(C.12)

In the more general case of a vector x = {xi}Nfit
i=1 of values of the predictor

variable the locally-weighted regression fit can be computed as follows:

ŷ = Sy (C.13)

where ŷ = {ŷi}Nfit
i=1 is a vector of the corresponding fits and S is the smoother

matrix, which is given by the following row entries:

{si} =
[
1 xi · · · xd

i

] (
BT W (xi)B

)−1

BT W (xi) , i = 1, . . . , Nfit (C.14)

where:

B =


1 x1 · · · xd

1

1 x2 · · · xd
2

...
...

. . .
...

1 xN · · · xd
N

 (C.15)

and:

W (xi) =


Kλ( |x1−xi|

λ ) 0 · · · 0
0 Kλ( |x2−xi|

λ ) · · · 0
...

...
. . .

...
0 0 · · · Kλ( |xN−xi|

λ )

 (C.16)
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Figure C.3. Graphical illustration of how the locally-weighted linear regression fit is
computed. Solid vertical line: predictor value of interest; dotted curve: Tri-cube
kernel with λ = 1 (re-scaled); dash-dotted line: Local linear regression result;
asterisk: Local fit; solid curve: Overall fit; dashed curve: True curve.

If the fit is computed for the exact predictor values in the training data set, the
smoother matrix is also a square matrix in this case. Likewise, the smoother
matrix is also often sparse in this case, so to reduce the storage requirements for
this matrix as well as the otherwise extensive computational load associated
with the linear operation in (C.13), the specific implementation of locally-
weighted regression in MATLAB is also based on a sparse matrix format.

Figure C.3 is a graphical illustration of how the locally-weighted regression fit
is computed in the linear case: Kernel weights (dotted curve) are assigned to
observations (dots) close to the predictor value of interest (indicated with a
solid vertical line) to compute the local linear regression result over the range
of the kernel function (dash-dotted line). Again, only the value at the par-
ticular predictor value (indicated with an asterisk) is used, and by repeating
the procedure for several predictor values a smoothed curve (solid curve) that
approximates the true curve (dashed curve) can be constructed. More infor-
mation about locally-weighted regression is given by Hastie et al. (2001).

C.1.3 Bandwidth issues

In order to apply locally-weighted regression, three choices must be made. The
kernel function must be selected, the order of the local polynomial must be
chosen, and the bandwidth of the kernel must be determined. The kernel
function and the order of the local polynomial usually have much less impact
on the resulting fit than the bandwidth. This is due to the fundamental bias-
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variance trade-off in kernel smoothing (Hastie and Tibshirani, 1990), which
means that small bandwidths give small bias but large variance whereas large
bandwidths, on the other hand, give small variance but large bias.

Actually, determining the bandwidth of the kernel is a two-step procedure, be-
cause it involves a choice of the type of bandwidth as well as its size. There are
two different types of kernel bandwidths: Metric bandwidths and nearest neigh-
bour bandwidths. Metric bandwidths are fixed-size bandwidths, which remain
constant over the entire range of predictor values in the training data set, i.e.
λ = c, where c is a constant. Nearest neighbour bandwidths, on the other hand,
are variable-size bandwidths, which adapt to the local density of the predictor
values in the training data set by adjusting to encompass a fixed number K of
nearest neighbours to the predictor value of interest, i.e. λ = |xK − x0|, where
xK is the K’th closest xk to x0. Because of this construction, nearest neighbour
bandwidths can only be used with kernel functions that have compact support.

Given a particular type of bandwidth, its size, i.e. c or K, must somehow be
determined to give a result that trades off bias and variance in an appropriate
way. Hastie and Tibshirani (1990) discuss this extensively and suggest one of
the following approaches: Calibration based on the effective degrees of freedom
of the smoother, or optimisation based on an estimate of the prediction error.

The effective degrees of freedom of a smoother is defined as the trace of the
smoother matrix when computing the fit for all predictor values in the training
data set, i.e. tr(S), and this quantity can be used to determine the bandwidth
by iteratively calibrating the amount of smoothing. This interactive approach
is not necessarily optimal, so automatic bandwidth optimisation is preferred.

Automatic bandwidth optimisation seeks to find the bandwidth that mini-
mizes a given estimate of the prediction error. A number of such estimates are
discussed by Hastie et al. (2001). The simplest and most generally applicable
of these is the so-called cross-validation (CV) statistic, which may be defined
in one of two different ways, depending on the data available for validation.

If a separate validation data set (xval,yval) = {xval,i, yval,i}Nval
i=1 of correspon-

ding values of the predictor variable and the response variable is available, the
optimal size of the bandwidth can be determined in the following way:

λ̂ = arg min
λ

CV(λ) = argmin
λ

1
Nval

Nval∑
i=1

(yval,i − ŷi)
2 (C.17)

where ŷi is the fit for xval,i computed with a given value of λ from the training
data set. This formulation can be used for metric bandwidths, i.e. to determine
c, as well as for nearest neighbour bandwidths, i.e. to determine K.

If a separate validation data set is not available the optimal size of the band-
width can be determined by means of k-fold cross-validation on the training
data set. With this method the training data set is divided into k distinct
groups (e.g. by assigning every k’th observation in the sorted data set to the
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same group to obtain similar densities in all groups), the fit is computed for
each predictor value in the first group using the data from the other groups,
the corresponding contribution to the cross-validation statistic is computed and
the procedure is repeated for all groups. This way the entire training data set
is used for validation as well as for training, but overfitting is avoided. To
formalize this, the optimal size of the bandwidth can be determined by k-fold
cross-validation on the training data set in the following way:

λ̂ = arg min
λ

CV(λ) = arg min
λ

1
N

N∑
i=1

(
yi − ŷ−κ(i)

i

)2

(C.18)

where ŷ−κ(i)
i is the fit for xi computed with a given value of λ from the training

data set without the observations indexed by the function κ(i), which returns
the indices of all observations in the group containing (xi, yi). This formulation
can also be used for metric as well as for nearest neighbour bandwidths.

Kernel smoothers are linear smoothers, which means that the fit can be com-
puted through a linear operation as in (C.9) or (C.13) by means of the smoother
matrix, which, if the fit is computed for all predictor values in the training data
set, is a square matrix. This can be utilized to derive a closed-form version
of the above k-fold cross-validation statistic, which can be computed from a
single fit on the entire training data set, and which in turn allows the optimal
size of the bandwidth to be determined in the following way:

λ̂ = argmin
λ

CV(λ) = arg min
λ

1
N

N∑
i=1

(
yi +

∑
j∈κ(i) sij(yj − yi)− ŷi

1−∑
j∈κ(i) sij

)2

(C.19)

where ŷi is the fit for xi computed with a given value of λ from the entire
training data set, and where sij is an element of the corresponding smoother
matrix. Strictly speaking, this closed-form formulation can only be used for
metric bandwidths, because of the fact that, for nearest neighbour bandwidths,
the removal of one or more points implied by the formulation affects the local
density of the predictor values to which such bandwidths adapt.

C.1.4 Confidence intervals

To provide an assessment of the uncertainty of a kernel smoother, approximate
confidence intervals can be computed by means of the nonparametric bootstrap
as discussed by Hastie et al. (2001). The idea of this method is to create a
number of new data sets of the same size as the original training data set by
randomly drawing (with replacement) observations from the training data set
and then compute the fit for all of the new data sets and use the information
gathered from this to construct pointwise confidence intervals.

More specifically, if B new data sets or bootstrap samples are created, the same
kernel smoother as was applied to compute the nominal fit on the original
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Figure C.4. Example of a locally-weighted linear regression fit (tri-cube kernel with
optimal nearest neighbour bandwidth determined using 5-fold cross-validation)
with 95% confidence limits computed from 1000 bootstrap replicates. Solid curve:
Nominal fit; dotted curves: 95% confidence limits; dashed curve: True curve.

training data set is applied to each of the bootstrap samples in turn to produce
a total of B bootstrap replicates of the fit for all predictor values of interest,
whereupon the particular replicates corresponding to the appropriate percen-
tiles of the total set of replicates (2.5 and 97.5 for 95% confidence intervals) are
found and plotted along with the nominal fit as shown in Figure C.4.

C.2 Additive models

Another important nonparametric method is additive model fitting, which is
a method that uses a training data set (x1, . . . ,xp,y) = {x1k, . . . , xpk, yk}Nk=1

of observations of several predictor variables X1, . . . , Xp and a single response
variable Y to compute a smoothed estimate of the response variable for a given
set of values of the predictor variables. In other words, additive model fitting
is a multivariate nonparametric smoothing method. Several such methods are
available (Hastie et al., 2001), but additive model fitting has the particular ad-
vantage that it circumvents the curse of dimensionality, which tends to render
such methods infeasible in higher dimensions (Hastie et al., 2001).

More specifically, additive model fitting assumes the following relationship
between the response variable Y and the predictor variables X1 . . . , Xp:

Y = α+
p∑

j=1

fj(Xj) + e , e ∈ N(0, σ2) (C.20)
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and essentially uses the training data set to compute the conditional mean:

ŷ0 = α̂+
p∑

j=1

f̂j(xj0) = E{Y |X1 = x10, . . . , Xp = xp0} (C.21)

for a given set of values x10, . . . , xp0 of the predictor variables, which can be
done by applying the so-called backfitting algorithm. This section outlines the
details of this algorithm and discusses a number of other important aspects of
additive model fitting. More information about this topic can be found in the
books of Hastie and Tibshirani (1990) and Hastie et al. (2001).

C.2.1 The backfitting algorithm

The idea of the backfitting algorithm for fitting additive models is to com-
pute the constant α̂ and then recursively adjust each of the predictor variable
contributions f̂j(xj0) one at a time until they remain unchanged.

The constant α̂ is computed as the average of the values of the response variable
in the training data set and the predictor variable contributions f̂j(xj0) are
computed by repeatedly applying a univariate nonparametric smoother to re-
siduals computed by subtracting the constant α̂ and the other predictor variable
contributions from the values of the response variable. Applying univariate ker-
nel smoothers to fit each of the predictor variable contributions and assuming
that the overall fit is to be computed for the exact sets of predictor values in
the training data set, this can be formalized as follows:

1. Set α̂ = 1
N

∑N
k=1 yk and initialize f̂ j(xj) = 0, j = 1, . . . , p.

2. Compute for j = 1, . . . , p:

f̂ j(xj) = Sj

y − α̂−
∑
i�=j

f̂ i(xi)

 (C.22)

f̂ j(xj)← f̂ j(xj)− 1
N

N∑
k=1

f̂j(xjk) (C.23)

3. Repeat 2 until f̂ j(xj), j = 1, . . . , p, change less than a given threshold.

4. Compute the overall fit:

ŷ = α̂+
p∑

j=1

f̂ j(xj) (C.24)
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where f̂ j(xj) = {f̂j(xjk)}Nk=1 is a vector of the contributions from the pre-
dictor variable xj to the resulting overall fit ŷ = {ŷk}Nk=1 and Sj is the cor-
responding smoother matrix, which can be computed by applying one of the
kernel smoothers discussed in Section C.1.1 and Section C.1.2. The correc-
tion in (C.23), which forces the individual contributions to average zero over
the training data set, is introduced to prevent the lack of convergence of the
backfitting algorithm that may otherwise result (Hastie et al., 2001).

C.2.2 Bandwidth issues

Relying on kernel smoothers to fit the contributions from the individual pre-
dictor variables and thus requiring appropriate selection of a set of bandwidths,
the bandwidth issues discussed for kernel smoothers in Section C.1.3 are also
important for additive model fitting. In principle, the same arguments apply
with respect to the importance of appropriately choosing both the type and
the size of the bandwidths, but the problem is a bit more complex in this
case, because of the multivariate nature of additive models, especially with
respect to using automatic bandwidth optimisation. Ideally, all bandwidths
should be determined simultaneously by solving a multiple bandwidth optimi-
sation problem based on an appropriate cross-validation statistic in an outer
loop surrounding the entire backfitting algorithm, but this approach renders
additive model fitting extremely slow. Alternatively, the individual bandwidths
could be determined separately by solving a set of single bandwidth optimisa-
tion problems based on k-fold cross-validation on the training data set in each
backfitting iteration, but this approach also renders additive model fitting very
slow, especially if a substantial number of backfitting iterations are needed.

A more feasible alternative is to determine the individual bandwidths sepa-
rately by solving a set of such single bandwidth optimisation problems once
and for all in the first backfitting iteration. This approach may seem very
crude, but in fact the results obtained are only slightly different from the re-
sults obtained using bandwidth optimisation in all backfitting iterations.

C.2.3 Confidence intervals

The nonparametric bootstrap discussed for kernel smoothers in Section C.1.4
can also be applied to provide an assessment of the uncertainty of an additive
model fit in the form of approximate confidence intervals. Ideally a number of
bootstrap samples of the same size as the training data set should be drawn, the
backfitting algorithm should be re-applied to all of these using the same kernel
smoothers for the individual predictor variables as were applied to compute
the nominal fit, and the information gathered from this should be used to
construct pointwise confidence intervals. This approach is very slow, however,
especially if many backfitting iterations are needed. A much faster alternative
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Figure C.5. Example of an additive model fit on three predictor variables using
locally-weighted linear regression (tri-cube kernels with optimal nearest neighbour
bandwidths determined using 5-fold cross-validation) with 95% confidence limits
computed from 1000 bootstrap replicates. Solid curves: Nominal fits; dotted
curves: 95% confidence limits; dashed curves: True curves.

is to wait until the backfitting algorithm has converged and then apply the non-
parametric bootstrap to each of the kernel smoothers used for the individual
predictor variables. In other words separate sets of bootstrap samples are crea-
ted for each predictor variable from the appropriate backfitting residuals, and
the same kernel smoothers as were applied to compute the nominal fits in the
last backfitting iteration are applied to produce separate sets of bootstrap repli-
cates and the particular replicates corresponding to the appropriate percentiles
are found and plotted along with the nominal fits as shown in Figure C.5.
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D

Paper no. 1

The paper1 included in this appendix is related to the parameter estimation
element of the grey-box modelling cycle described in Chapter 2 and focuses on
methods for parameter estimation in continuous-discrete stochastic state space
models in general. The paper contains a condensed outline of the algorithms
of CTSM as well as a comparison between this program and a program by
Bohlin and Graebe (1995) and Bohlin (2001) implementing a similar estimation
method. This comparison reveals some important differences between the two
methods, which render the program by Bohlin and Graebe (1995) and Bohlin
(2001) inappropriate for estimation of the parameters of the diffusion term and
hence for application within the proposed grey-box modelling framework.

1The paper has been submitted for publication in Automatica.
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Abstract

An efficient and flexible parameter estimation scheme for grey-box models in
the sense of systems of nonlinear discretely, partially observed Itô stochastic
differential equations with measurement noise is presented along with a cor-
responding software implementation. The estimation scheme is based on the
extended Kalman filter and features maximum likelihood as well as maximum a
posteriori estimation on multiple independent data sets, including irregularly
sampled data sets and data sets with occasional outliers and missing observa-
tions. The software implementation is compared to an existing software tool
and proves to have superior estimation performance both in terms of quality of
estimates and in terms of reproducibility. In particular, the new tool provides
more accurate and consistent estimates of the parameters of the diffusion term.

Keywords: Grey-box models; parameter estimation; stochastic differential
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D.1 Introduction

The development of various methods for advanced model-based control (Clarke
et al., 1987a,b; Bitmead et al., 1990; Muske and Rawlings, 1993; Allgöwer and
Zheng, 2000) and recent advances in sensor technology allowing these methods
to be applied to an increasing number of complex physical, chemical and bio-
logical systems has rendered the development of high quality models for such
systems very important. In particular, since a model must be able to predict
the future evolution of the system to be controlled, it must capture the inhe-
rently nonlinear behaviour of many such systems and it must provide means to
accommodate noise in the form of process noise due to approximation errors
or unmodelled inputs and measurement noise due to imperfect measurements.

White-box models, derived from first principles, are often able to satisfy the
former requirement but fail to satisfy the latter, whereas black-box models, de-
veloped with methods for system identification (Ljung, 1987; Söderström and
Stoica, 1989), satisfy the latter but often fail to satisfy the former. Stochastic
state space models or grey-box models, which consist of a set of stochastic
differential equations (SDE’s) describing the dynamics of the system in con-
tinuous time and a set of discrete time measurement equations, provide a way
of combining the advantages of both model types by allowing prior physical
knowledge to be incorporated and statistical methods for parameter estima-
tion to be applied. Bohlin and Graebe (1995) even argue that such models
provide a natural framework for modelling dynamic systems. Apart from the
work by Bohlin and Graebe (1995) and earlier work by some of the authors
of the present paper, mathematical modelling of dynamic systems based on
SDE’s has received limited attention in the control and system identification
communities since Jazwinski (1970) and Åström (1970). This is evident from
a series of review papers on the state of the art of identification of continuous
time models (Young, 1981; Unbehauen and Rao, 1990, 1998). However, owing
to the many potential benefits of grey-box models, it is the opinion of the
authors of the present paper that the topic deserves much more attention.

Particular benefits of grey-box models as opposed to black-box models include
the fact that physical knowledge and other prior information can be incorpo-
rated directly. This typically yields models with fewer and physically mea-
ningful parameters, which are valid over much wider ranges of state space. As
opposed to white-box models parameter estimation in grey-box models tends
to give more reproducible results and less bias, because random effects due to
process and measurement noise are not absorbed into the parameter estimates
but specifically accounted for by the diffusion term and the measurement noise
term. Furthermore, simultaneous estimation of the parameters of these terms
as well in turn provides an estimate of the uncertainty of the model, upon
which further model development can be based. In particular, estimates of the
parameters of the diffusion term can be used to assess the quality of a model
(Kristensen et al., 2001), to discriminate between different models (Kristensen
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et al., 2002a), and to pinpoint model deficiencies and subsequently uncover
their structural origin (Kristensen et al., 2002c). Thus, obtaining accurate and
consistent estimates of the parameters of the diffusion term is very important.

The focus of the present paper is on estimation of unknown parameters in
grey-box models in general, and the primary aim of the paper is to present an
efficient and flexible scheme for performing the estimation and a software imple-
mentation of this scheme. A similar parameter estimation scheme and software
tool has been presented by Bohlin and Graebe (1995), and a secondary aim
of the paper is to outline how the two schemes differ and to demonstrate how
these differences influence estimation performance. An important result is that
the new tool provides more accurate and consistent estimates of the parameters
of the diffusion term. The remainder of the paper is organized as follows: The
mathematical basis of the estimation scheme is presented in Section D.2 and the
software implementation is described in Section D.3. The differences between
the estimation scheme presented here and the one by Bohlin and Graebe (1995)
are outlined in Section D.4, where the influence on estimation performance is
also demonstrated by means of simulation results. These results are discussed
in Section D.5 and the conclusions of the paper are given in Section D.6.

D.2 Mathematical basis

This section contains a condensed outline of the mathematics behind the pro-
posed parameter estimation scheme and of the algorithms of the corresponding
software implementation (see Section D.3). A complete outline of the proposed
estimation scheme is given by Kristensen et al. (2002d).

D.2.1 General model structure

Adapting the terminology of Bohlin and Graebe (1995), the term grey-box
model will be used throughout this paper as an acronym for a model consisting
of nonlinear discretely partially observed SDE’s with measurement noise, i.e.:

dxt = f (xt,ut, t,θ)dt+ σ(ut, t,θ)dωt (D.1)
yk = h(xk,uk, tk,θ) + ek (D.2)

where t ∈ R is time, xt ∈ X ⊂ R
n is a vector of state variables, ut ∈ U ⊂ R

m

is a vector of input variables, yk ∈ Y ⊂ R
l is a vector of output variables,

θ ∈ Θ ⊂ R
p is a vector of parameters, f(·) ∈ R

n, σ(·) ∈ R
n×n and h(·) ∈ R

l

are nonlinear functions, {ωt} is an n-dimensional standard Wiener process and
{ek} is an l-dimensional white noise process with ek ∈ N (0,S(uk, tk,θ)).

Remark 1. SDE’s may be interpreted in the sense of either Stratonovich
or Itô, but since the Stratonovich interpretation is less suitable for parameter
estimation (Jazwinski, 1970; Åström, 1970), the Itô interpretation is adapted.
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Remark 2. The diffusion term in (D.1) is assumed to be independent of the
state variables, because this renders parameter estimation more feasible, but,
as shown by Nielsen and Madsen (2001b), a transformation may be applied for
a restricted class of systems with such dependences or level effects, allowing
application of the proposed estimation scheme to such systems as well.

D.2.2 Parameter estimation methods

D.2.2.1 Maximum likelihood estimation

Given the model structure in (D.1)-(D.2) maximum likelihood (ML) estimates
of the unknown parameters can be determined by finding the parameters θ
that maximize the likelihood function of a given sequence of measurements y0,
y1, . . . , yk, . . . , yN . By introducing the notation:

Yk = [yk,yk−1, . . . ,y1,y0] (D.3)

the likelihood function is the joint probability density:

L(θ;YN ) = p(YN |θ) (D.4)

or equivalently:

L(θ;YN ) =

(
N∏

k=1

p(yk|Yk−1,θ)

)
p(y0|θ) (D.5)

where the rule P (A ∩B) = P (A|B)P (B) has been applied to form a product
of conditional densities. In order to obtain an exact evaluation of the like-
lihood function, a general nonlinear filtering problem must be solved. Thus
the initial probability density p(y0|θ) must be known and all subsequent con-
ditional densities must be determined by successively solving Kolmogorov’s
forward equation and applying Bayes’ rule (Jazwinski, 1970). In practice, this
approach is computationally infeasible, however, and an alternative is needed.
Nielsen et al. (2000a) have recently reviewed the state of the art with respect to
parameter estimation in discretely observed Itô SDE’s and in the general case of
higher-order partially observed systems with measurement noise they conclude
that only methods based on approximate nonlinear filters provide a compu-
tationally feasible solution to the problem. However, since the diffusion term
in (D.1) has been assumed to be independent of the state variables, a simpler
alternative can be used. More specifically, since the SDE’s in (D.1) are driven
by a Wiener process, and since increments of a Wiener process are Gaussian, it
is reasonable to assume, under some regularity conditions, that the conditional
densities can be well approximated by Gaussian densities, which means that
a method based on the extended Kalman filter (EKF) can be applied. The
assumption can (and should) be checked subsequent to the estimation (Holst



D.2. Mathematical basis 143

et al., 1992; Bak et al., 1999). The Gaussian density is completely characterized
by its mean and covariance, so by introducing the notation:

ŷk|k−1 = E{yk|Yk−1,θ} (D.6)

Rk|k−1 = V {yk|Yk−1,θ} (D.7)

and:
εk = yk − ŷk|k−1 (D.8)

the likelihood function becomes:

L(θ;YN ) =

 N∏
k=1

exp
(
− 1

2εT
k R−1

k|k−1εk

)
√

det
(
Rk|k−1

) (√
2π
)l

 p(y0|θ) (D.9)

and the parameter estimates can be determined by further conditioning on y0

and solving the following nonlinear optimisation problem:

θ̂ = arg min
θ∈Θ
{− ln (L(θ;YN |y0))} (D.10)

For each set of parameters θ in the optimisation, the innovations εk and their
covariances Rk|k−1 are computed recursively by means of the EKF, which con-
sists of the output prediction equations:

ŷk|k−1 = h(x̂k|k−1,uk, tk,θ) (D.11)

Rk|k−1 = CP k|k−1C
T + S (D.12)

the innovation equation:
εk = yk − ŷk|k−1 (D.13)

the Kalman gain equation:

Kk = P k|k−1C
T R−1

k|k−1 (D.14)

the updating equations:

x̂k|k = x̂k|k−1 + Kkεk (D.15)

P k|k = P k|k−1 −KkRk|k−1K
T
k (D.16)

and the state prediction equations:

dx̂t|k
dt

= f (x̂t|k,ut, t,θ) , t ∈ [tk, tk+1[ (D.17)

dP t|k
dt

= AP t|k + P t|kAT + σσT , t ∈ [tk, tk+1[ (D.18)
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In the above equations the following shorthand notation has been applied:

A =
∂f

∂xt
|x̂k|k−1,uk,tk

, C =
∂h

∂xt
|x̂k|k−1,uk,tk

σ = σ(uk, tk,θ) , S = S(uk, tk,θ)
(D.19)

Initial conditions for the EKF are x̂t|t0 = x0 and P t|t0 = P 0, which can either
be pre-specified or estimated as a part of the overall problem. Being a linear
filter, the EKF is sensitive to nonlinear effects, and the approximate solution
obtained by solving (D.17)-(D.18) may be too crude (Jazwinski, 1970). More-
over, the assumption of Gaussian conditional densities is only likely to hold for
small sample times (and should thus be checked subsequent to the estimation
(Holst et al., 1992; Bak et al., 1999)). To provide a better approximation, the
time interval [tk, tk+1[ is therefore subsampled, i.e. [tk, . . . , tj , . . . , tk+1[, and
the equations are linearized at each subsampling instant. This also means
that direct numerical solution of (D.17)-(D.18) can be avoided by applying the
analytical solutions to the corresponding linearized propagation equations:

dx̂t|j
dt

= f0 + A(x̂t − x̂j) + B(ut − uj) , t ∈ [tj , tj+1[ (D.20)

dP t|j
dt

= AP t|j + P t|jA
T + σσT , t ∈ [tj , tj+1[ (D.21)

where the following shorthand notation has been applied:

A =
∂f

∂xt
|x̂j|j−1,uj ,tj

, B =
∂f

∂ut
|x̂j|j−1,uj ,tj

f0 = f (x̂j|j−1,uj , tj ,θ) , σ = σ(uj , tj ,θ)
(D.22)

The analytical solutions to (D.20)-(D.21) are:

x̂j+1|j = x̂j|j + A−1 (Φs − I)f0 +
(
A−1 (Φs − I)− Iτs

)
A−1Bα (D.23)

P j+1|j = ΦsP j|jΦ
T
s +

∫ τs

0

eAsσσT eAT sds (D.24)

where τs = tj+1 − tj and Φs = eAτs , and where:

α =
uj+1 − uj

tj+1 − tj (D.25)

has been introduced to allow assumption of either zero order hold (α = 0) or
first order hold (α �= 0) on the inputs between sampling instants. The matrix
exponential Φs = eAτs can be computed by means of a Padé approximation
with repeated scaling and squaring (Moler and van Loan, 1978). However,
both Φs and the integral in (D.24) can be computed simultaneously through:

exp
([−A σσT

0 AT

]
τs

)
=
[
H1(τs) H2(τs)

0 H3(τs)

]
(D.26)
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by combining submatrices of the result (van Loan, 1978), i.e.:

Φs = HT
3 (τs) (D.27)

and: ∫ τs

0

eAsσσT eAT sds = HT
3 (τs)H2(τs) (D.28)

Remark 3. The solution (D.23) to (D.20) is undefined if A is singular, but
by introducing a coordinate transformation based on the SVD of A a solution
to (D.20) can also be found for singular A (Kristensen et al., 2002d).

D.2.2.2 Maximum a posteriori estimation

If prior information about the parameters is available in the form of a prior
probability density function p(θ), Bayes’ rule can be applied to give an im-
proved estimate by forming the posterior probability density function:

p(θ|YN ) =
p(YN |θ)p(θ)

p(YN )
∝ p(YN |θ)p(θ) (D.29)

and subsequently finding the parameters that maximize this function, i.e. by
performing maximum a posteriori (MAP) estimation. Assuming that the prior
probability density of the parameters is Gaussian, and by introducing:

µθ = E{θ} (D.30)
Σθ = V {θ} (D.31)

and:
εθ = θ − µθ (D.32)

the posterior probability density function becomes:

p(θ|YN ) ∝
 N∏

k=1

exp
(
− 1

2εT
k R−1

k|k−1εk

)
√

det
(
Rk|k−1

) (√
2π
)l

 p(y0|θ)

× exp
(− 1

2εT
θ Σ−1

θ εθ

)√
det (Σθ)

(√
2π
)p

(D.33)

and the parameter estimates can now be determined by further conditioning
on y0 and solving the following nonlinear optimisation problem:

θ̂ = argmin
θ∈Θ
{− ln (p(θ|YN ,y0))} (D.34)

Remark 4. If no prior information is available (with p(θ) uniform), this
formulation reduces to the ML formulation in (D.10), and MAP estimation
can thus be seen as a generalization of ML estimation. In fact, the formulation
also allows for MAP estimation on a subset of the parameters (with p(θ) partly
uniform). Altogether, this increases the flexibility of the estimation scheme.
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D.2.2.3 Using multiple independent data sets

If, instead of a single sequence of measurements, multiple consecutive, but
yet separate, sequences of measurements, i.e. Y1

N1
, Y2

N2
, . . . , Yi

Ni
, . . . , YS

NS
,

are available, a similar estimation method can be applied by expanding the
expression for the posterior probability density function to the general form:

p(θ|Y) ∝

 S∏
i=1

 Ni∏
k=1

exp
(
− 1

2 (εi
k)T (Ri

k|k−1)
−1εi

k

)
√

det
(
Ri

k|k−1

) (√
2π
)l

 p(yi
0|θ)


× exp

(− 1
2εT

θ Σ−1
θ εθ

)√
det (Σθ)

(√
2π
)p

(D.35)

where:
Y = [Y1

N1
,Y2

N2
, . . . ,Yi

Ni
, . . . ,YS

NS
] (D.36)

and assuming the individual sequences to be stochastically independent. The
parameter estimates can now be determined by further conditioning on:

y0 = [y1
0,y

2
0, . . . ,y

i
0, . . . ,y

S
0 ] (D.37)

and applying nonlinear optimisation to find the minimum of the negative loga-
rithm of the resulting posterior probability density function, i.e.:

θ̂ = arg min
θ∈Θ
{− ln (p(θ|Y,y0))} (D.38)

Remark 5. If only one sequence of measurements is available (S = 1), this
formulation reduces to the MAP formulation in (D.34), and it can therefore be
seen as a generalization of the MAP formulation for multiple independent data
sets, which further increases the flexibility of the estimation scheme.

D.2.3 Data issues

Raw data sequences are often difficult to use for identification and parameter
estimation purposes, e.g. if irregular sampling has been applied, if there are
occasional outliers or if some of the observations are missing. The software
implementation of the proposed estimation scheme (see Section D.3) also pro-
vides features to deal with these issues, and these features make it very flexible
with respect to the types of data that can be used for the estimation.

D.2.3.1 Irregular sampling

The fact that the system equation (D.1) is formulated in continuous time makes
it easy to deal with irregular sampling, because the corresponding state predic-
tion equations of the EKF can be solved over time intervals of varying length.
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D.2.3.2 Occasional outliers

The objective function (D.35) of the general formulation in (D.38) is quadratic
in the innovations εi

k, and this means that the corresponding parameter esti-
mates are heavily influenced by occasional outliers in the data sets used for the
estimation. To deal with this problem a robust estimation method is applied,
where the objective function is modified by replacing the quadratic term:

νi
k = (εi

k)T (Ri
k|k−1)

−1εi
k (D.39)

with a threshold function ϕ(νi
k), which returns the argument for small values

of νi
k, but is a linear function of εi

k for large values of νi
k, i.e.:

ϕ(νi
k) =

{
νi

k , νi
k < c2

c(2
√
νi

k − c) , νi
k ≥ c2

(D.40)

where c > 0 is a constant. The derivative of this function with respect to εi
k is

a so-called influence function known as Huber’s ψ-function (Huber, 1981).

D.2.3.3 Missing observations

The algorithms within the proposed estimation scheme make it easy to handle
missing observations, i.e. to account for missing values in the output vector yi

k

when calculating, for some i and some k, the term:

κi
k =

exp
(
− 1

2 (εi
k)T (Ri

k|k−1)
−1εi

k

)
√

det
(
Ri

k|k−1

) (√
2π
)l

(D.41)

in (D.35). The usual way to account for missing or non-informative values in
the EKF is to set the corresponding elements of the covariance matrix S in
(D.12) to infinity, which in turn gives zeroes in the corresponding elements of
(Rk|k−1)−1 and the Kalman gain matrix Kk, meaning that no updating will
take place in (D.15) and (D.16) corresponding to the missing values. This
approach cannot be used for calculating (D.41), however, because a solution
is needed which modifies εi

k and Ri
k|k−1 to reflect that the effective dimension

of yi
k is reduced due to the missing values. This is accomplished by replacing

(D.2) with the alternative measurement equation:

yk = E (h(xk,uk, tk,θ) + ek) (D.42)

where E is an appropriate permutation matrix, which can be constructed from
a unit matrix by eliminating the rows that correspond to the missing values
in yk. If, for example, yk has three elements, and the one in the middle is
missing, the appropriate permutation matrix is given as follows:

E =
[
1 0 0
0 0 1

]
(D.43)
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Equivalently, the regular equations of the EKF are replaced with the following
alternative output prediction equations:

ŷk|k−1 = Eh(x̂k|k−1,uk, tk,θ) (D.44)

Rk|k−1 = ECP k|k−1C
T ET + ESET (D.45)

the alternative innovation equation:

εk = yk − ŷk|k−1 (D.46)

the alternative Kalman gain equation:

Kk = P k|k−1C
T ET R

−1

k|k−1 (D.47)

and the alternative updating equations:

x̂k|k = x̂k|k−1 + Kkεk (D.48)

P k|k = P k|k−1 −KkRk|k−1K
T

k (D.49)

The state prediction equations remain the same, and, with l being l minus the
number of missing values in yi

k, this provides the necessary modifications of
(D.41) to yield the following alternative term in (D.35):

κi
k =

exp
(
− 1

2 (εi
k)T (R

i

k|k−1)−1εi
k

)
√

det
(
R

i

k|k−1

) (√
2π
)l

(D.50)

D.2.4 Optimisation issues

To solve the nonlinear optimisation problem (D.38) a quasi-Newton method
based on the BFGS updating formula and a soft line search algorithm is applied
within the software implementation of the proposed estimation scheme (see
Section D.3). This method is similar to the one presented by Dennis and
Schnabel (1983), except for the fact that the gradient of the objective function
here is approximated by a set of finite difference derivatives. During the initial
iterations of the optimisation algorithm, forward differences are used, but as
the minimum of the objective function is approached the algorithm shifts to
central differences in order to reduce the error of the approximation.

In order to ensure stability in the calculation of the objective function in (D.38),
simple constraints on the parameters are introduced, i.e.:

θmin
j < θj < θmax

j , j = 1, . . . , p (D.51)

These constraints are satisfied by solving the optimisation problem with respect
to a transformation of the original parameters, i.e.:

θ̃j = ln

(
θj − θmin

j

θmax
j − θj

)
, j = 1, . . . , p (D.52)
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A problem arises with this type of transformation when θj is very close to one
of the limits, because the finite difference derivative with respect to θj may
be close to zero, but this problem is solved by adding an appropriate penalty
function to (D.38) to give the following modified objective function:

F(θ) = − ln (p(θ|Y,y0)) + P (λ,θ,θmin,θmax) (D.53)

which is used instead. The penalty function is given as follows:

P (λ,θ,θmin,θmax) = λ

 p∑
j=1

|θmin
j |

θj − θmin
j

+
p∑

j=1

|θmax
j |

θmax
j − θj

 (D.54)

for |θmin
j | > 0 and |θmax

j | > 0, j = 1, . . . , p. For proper choices of the Lagrange
multiplier λ and the limiting values θmin

j and θmax
j the penalty function has no

influence on the estimation when θj is well within the limits but will force the
finite difference derivative to increase when θj is close to one of the limits.

D.2.5 Uncertainty of parameter estimates

Essential outputs of any statistical parameter estimation scheme include an
assessment of the uncertainty of the estimates and quantities facilitating sub-
sequent statistical tests. Within the software implementation of the proposed
estimation scheme (see Section D.3), an estimate of the uncertainty of the para-
meter estimates is obtained by using the fact that by the central limit theorem
the estimator in (D.38) is asymptotically Gaussian with mean θ and covariance:

Σθ̂ = H−1 (D.55)

where the matrix H is given by:

{hij} = −E
{

∂2

∂θi∂θj
ln (p(θ|Y,y0))

}
, i, j = 1, . . . , p (D.56)

and where an approximation to H can be obtained from:

{hij} ≈ −
(

∂2

∂θi∂θj
ln (p(θ|Y,y0))

)∣∣∣
θ=θ̂

, i, j = 1, . . . , p (D.57)

which is the Hessian evaluated at the minimum of the objective function. To
obtain a measure of the uncertainty of the individual parameter estimates, the
covariance matrix is decomposed as follows:

Σθ̂ = σθ̂Rσθ̂ (D.58)

into σθ̂, which is a diagonal matrix of the standard deviations of the parameter
estimates, and R, which is the corresponding correlation matrix.
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D.2.6 Statistical tests

The asymptotic Gaussianity of the estimator in (D.38) also allows marginal
t-tests to be performed to test the hypothesis:

H0: θj = 0 (D.59)

against the corresponding alternative:

H1: θj �= 0 (D.60)

i.e. to test whether a given parameter θj is marginally insignificant or not.
The test quantity is the value of the parameter estimate divided by the stan-
dard deviation of the estimate, and under H0 this quantity is asymptotically
t-distributed with a number of degrees of freedom that equals the total number
of observations minus the number of estimated parameters, i.e.:

zt(θ̂j) =
θ̂j

σθ̂j

∈ t

((
S∑

i=1

Ni∑
k=1

l

)
− p

)
(D.61)

where, if there are missing observations in yi
k for some i and some k, l is replaced

with the appropriate value of l. To facilitate these tests, zt(θ̂j), j = 1, . . . , p,
are computed along with the following probabilities:

P
(
t<−|zt(θ̂j)| ∧ t>|zt(θ̂j)|

)
, j = 1, . . . , p (D.62)

D.3 Software implementation

The parameter estimation scheme presented in Section D.2 has been imple-
mented in a software tool called CTSM, which is available for both Linux,
Solaris and Windows platforms (Kristensen et al., 2002d).

D.3.1 Features

Within the graphical user interface of CTSM, unknown parameters of model
structures of the general type in (D.1)-(D.2) can be estimated using the methods
presented in Section D.2. Once a model structure has been set up within the
graphical user interface, the program analyzes the model equations to deter-
mine the symbolic names of the parameters and displays them to allow the
user to specify which parameters to fix, which to estimate, and how each para-
meter should be estimated (ML or MAP). The program automatically gene-
rates and compiles the FORTRAN-code needed to perform the estimation,
including the code for obtaining the Jacobians needed for linearization of the
nonlinear equations (through analytical manipulation of the FORTRAN-code
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Figure D.1. Performance of CTSM when using shared memory parallelization.
Solid lines: CTSM values; dashed lines: Theoretical values (linear scalability).

in a pre-compiler to avoid numerical approximation). After specifying which
data sets to use, the program determines the parameter estimates and displays
them along with the statistics mentioned in Section D.2. The program is very
flexible with respect to the data sets that can be used for the estimation, be-
cause the features presented in Section D.2 for dealing with irregular sampling,
occasional outliers and missing observations have all been implemented as well.

D.3.2 Shared memory parallelization

Estimating parameters in grey-box models is a computationally demanding task
in general, and the estimation scheme presented in Section D.2 is no exception
in this regard. On Solaris systems CTSM therefore supports shared memory
parallelization using the OpenMP application program interface (API). More
specifically, the finite difference derivatives of the objective function, which
constitute the gradient approximation, can be computed in parallel.

Figure D.1 shows the performance benefits of this approach in terms of reduced
execution time and demonstrates the scalability of the program for a small
problem with 11 unknown parameters. The apparently non-existing effect of
adding CPU’s in the interval 6-10 is due to an uneven distribution of the
workload (at least one CPU performs two finite difference computations, while
the others wait), while for 11 and more CPU’s the distribution is optimal.
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D.4 Comparison with another software tool

A parameter estimation scheme rather similar to the one presented here and an
associated software tool has previously been presented by Bohlin and Graebe
(1995). There are, however, a number of very important differences between
the two schemes, and this section is therefore devoted to outlining these diffe-
rences and demonstrating their influence on the estimation performance of the
corresponding software tools through comparative simulation studies.

As mentioned in Section D.3 the estimation scheme presented here has been
implemented in a stand-alone tool called CTSM. The original tool incorpora-
ting the scheme of Bohlin and Graebe (1995) was called IdKit, but has been
further developed into a more extensive tool called MoCaVa (Bohlin, 2001),
which runs under MATLAB. Apart from parameter estimation, MoCaVa fa-
cilitates other important tasks within grey-box model development, e.g. model
validation, and is superior to CTSM in that respect. The latter only allows
state and output predictions to be computed based on a given data set, whereas
the former has various test and visualization features that allow a given model
to be tested on another data set or against other models using the same data
set. In fact, the essence of MoCaVa is the ability to iteratively develop unfal-
sified models by means of such techniques, or, more specifically, by means of a
method based on the stepwise forward inclusion rule and a modified likelihood
ratio statistic (Bohlin and Graebe, 1995; Bohlin, 2001). However, for the pur-
pose of the following comparison with CTSM, only parameter estimation will
be considered, because this constitutes a fundamental information generating
task, upon which subsequent model development can often be based.

D.4.1 Mathematical and algorithmic differences

Although very similar in terms of parameter estimation algorithms, there are
some distinct differences between MoCaVa and CTSM. Generally, MoCaVa
has more restrictions and uses more crude approximations than CTSM in order
to reduce the computational burden at the expense of accuracy. The differences
between the two tools are outlined in much more detail in the following.

D.4.1.1 General model structure

With respect to the general model structure, MoCaVa is less flexible than
CTSM, primarily with respect to the diffusion term and the measurement
noise term. Within IdKit the following class of models was allowed:

dxt = f(xt,ut, t,θ)dt+ σ(t,θ)dωt (D.63)
yk = h(xk,uk, tk,θ) + ek (D.64)
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where ek ∈ N (0,S(tk,θ)), i.e. almost the same class of models as in CTSM,
but within MoCaVa this class has been restricted to the following:

dxt = f (xt,ut, t,θ)dt (D.65)
yk = h(xk,uk, tk,θ) + ek (D.66)

where ek ∈ N (0,S(θ)) and S is a diagonal matrix. In other words, no diffusion
term is allowed and there are more restrictions on the parameterization of the
measurement noise term, which substantially limits flexibility. However, by
instead allowing some of the input variables to be modelled as disturbances
and by providing a library of generic disturbance models some of the flexibility
has been retained. Indeed, Bohlin (2001) argues that moderately significant
diffusion may be approximated quite well by a low-pass filtered white noise
disturbance with a bandwidth that is slightly below the Nyquist frequency.

D.4.1.2 Parameter estimation methods

With respect to parameter estimation methods, both programs provide a ML
estimation setup, but MoCaVa neither provides a MAP estimation setup nor
allows estimation on multiple data sets as is the case with CTSM. Further-
more, the specific implementations of the ML estimation setup differ, although
both programs rely on the same assumption of Gaussianity of the innovations
and use the EKF to compute them. This is due to some important differences
in the implementations of the EKF. MoCaVa uses an approach very similar
to the linearization-based approach in CTSM, but without subsampling and
with a more crude first order Taylor approximation to the matrix exponential,
and, because diffusion terms are not allowed in the general model structure
in MoCaVa, it suffices to compute the exponential of a much simpler matrix
than in CTSM. Altogether, these differences reduce the computational load,
but at the expense of accuracy. Even more importantly, like the original IdKit
program, MoCaVa obtains the Jacobians needed for linearization of the non-
linear equations by making finite difference approximations around a reference
trajectory obtained by applying the EKF without updating. Thus the original
equations are not linearized at points corresponding to the current state esti-
mates, but at points along a deterministic reference trajectory. This is a very
important difference from CTSM, which renders IdKit and hence MoCaVa
unsuitable for estimation of parameters in systems with significant diffusion
(Bohlin and Graebe, 1995; Bohlin, 2001) as demonstrated below.

D.4.1.3 Data issues

In terms of flexibility with respect to the types of data that can be used for the
estimation, the two programs are almost equivalent. The only important dif-
ference is that MoCaVa does not incorporate any outlier robustness features,
but relies on the user to remove outliers prior to the estimation.
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D.4.1.4 Optimisation issues

There are also some important differences between the two programs with re-
spect to optimisation method. CTSM uses a quasi-Newton method based on
the BFGS updating formula for the Hessian and a soft line search algorithm,
whereas MoCaVa uses a modified Newton-Raphson method, where the Hes-
sian is approximated by applying a specific statistical assumption (Bohlin,
2001). Both programs use finite differences to approximate the gradient of the
objective function, but MoCaVa only uses forward differences, while CTSM
shifts from forward to central differences as the minimum is approached.

D.4.1.5 Uncertainty of parameter estimates

As opposed to CTSM, where an assessment of the uncertainty of the parameter
estimates is obtained in terms of standard deviations of the estimates and their
correlation matrix, no such information is obtained directly in MoCaVa.

D.4.1.6 Statistical tests

CTSM features simple marginal t-tests for significance of the individual para-
meters, whereas MoCaVa provides no such information at all.

D.4.2 Comparative simulation studies

In the following some of the effects of the differences between MoCaVa and
CTSM are demonstrated with estimation results from two simulation examples.

D.4.2.1 Example 1: Nonlinear (NL) model

The first example considered is a simple model of a fed-batch bioreactor. The
system equation of this model is given in the following way:

d

XS
V

=


µ(S)X − FX

V

−µ(S)X
Y + F (SF −S)

V

F

dt +

σ11 0 0
0 σ22 0
0 0 σ33

dωt (D.67)

where X is the biomass concentration, S is the substrate concentration, V is
the volume, F is the feed flow rate, Y = 0.5 is a yield coefficient and SF = 10
is the feed concentration. The growth rate µ(S) is given as follows:

µ(S) = µmax
S

K2S2 + S +K1
(D.68)
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(c) Strong diffusion.

Figure D.2. Simulated data sets for the fed-batch bioreactor model in Example 1.
Solid staircase: F ; dashed lines: y1; dotted lines: y2; dash-dotted lines: y3.

where µmax, K1 and K2 = 0.5 are kinetic parameters. The corresponding
measurement equation of the model is given in the following way:y1y2

y3


k

=

XS
V


k

+ ek , ek ∈ N(0,S) , S =

S11 0 0
0 S22 0
0 0 S33

 (D.69)

Using the true parameter and initial state values shown in Tables D.1-D.3
three different sets of data (101 samples each) were generated by stochastic
simulation using the simple Euler scheme (Kloeden and Platen, 1992):

1. A data set with no diffusion (Figure D.2a).

2. A data set with weak diffusion (Figure D.2b).

3. A data set with strong diffusion (Figure D.2c).

Two sets of sparse versions of the same data sets were also generated by remo-
ving all y2 measurements and subsequently all but every 10’th y1 measurement.

D.4.2.2 Example 2: Linear time-invariant (LTI) model

The second example considered is a simple second order lumped parameter
model of the heat dynamics of a wall with the following system equation:

d

(
T1

T2

)
= (

− 1
G1

(
1

H1
+ 1

H2

)
1

G1H2

1
G2H2

− 1
G2

(
1

H2
+ 1

H3

)(T1

T2

)

+
[ 1

G1H1
0

0 1
G2H3

](
Te

Ti

)
)dt+

[
σ11 0
0 σ22

]
dωt

(D.70)
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(b) With diffusion.

Figure D.3. Simulated data sets for the lumped parameter wall heat dynamics
model in Example 2. Solid lines: Ti; dashed lines: Te; dotted lines: qi.

where T1 is the outer wall temperature, T2 is the inner wall temperature, Te

is the outdoor temperature, Ti is the indoor temperature, and G1, G2, H1,
H2 and H3 are parameters of the second order thermal network describing the
wall. The measurement equation of the model is given as follows:

(qi)k =
[
0 − 1

H3

] (T1

T2

)
k

+
[
0 1

H3

](Te

Ti

)
k

+ ek , ek ∈ N(0, S) (D.71)

Using the true parameter and initial state values shown in Tables D.4-D.5 two
different sets of data (719 samples each) were again generated by stochastic
simulation using the simple Euler scheme (Kloeden and Platen, 1992):

1. A data set without diffusion (Figure D.3a).

2. A data set with diffusion (Figure D.3b).

D.4.2.3 Quality of estimates

The first issue addressed in the comparison of the estimation performance of
MoCaVa and CTSM is quality of estimates. A comparison of different esti-
mators with respect to quality should ideally include an assessment of both
bias and variance. However, since MoCaVa does not directly produce any in-
formation about the uncertainty of the parameter estimates, the two programs
can only be compared in terms of bias. Tables D.1-D.3 show estimation re-
sults from both programs for the NL case in Example 1 using the data sets
shown in Figure D.2. For the estimation in MoCaVa the diffusion term was
approximated by a lowpass filtered white noise disturbance with a bandwidth of
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Parameter True value CTSM MoCaVa

X0 1.0000E+00 1.0081E+00 9.9187E-01
S0 2.4495E-01 2.5160E-01 2.3371E-01
V0 1.0000E+00 1.0007E+00 9.9533E-01
µmax 1.0000E+00 1.0104E+00 1.0143E+00
K1 3.0000E-02 3.4177E-02 3.7176E-02
σ11 0.0000E+00 6.8942E-06 9.9095E-03
σ22 0.0000E+00 4.2411E-07 9.9727E-03
σ33 0.0000E+00 5.1325E-07 9.7394E-03
S11 1.0000E-02 9.0855E-03 8.6565E-03
S22 1.0000E-03 9.7370E-04 9.4740E-04
S33 1.0000E-02 9.4517E-03 8.9991E-03

Table D.1. Estimation results. Example 1 - Data in Figure D.2a.

Parameter True value CTSM MoCaVa

X0 1.0000E+00 9.8615E-01 9.9193E-01
S0 2.4495E-01 2.3800E-01 2.3159E-01
V0 1.0000E+00 9.7733E-01 1.0694E+00
µmax 1.0000E+00 9.9694E-01 9.5656E-01
K1 3.0000E-02 3.1506E-02 2.7128E-02
σ11 1.0000E-01 1.1782E-01 3.0813E-01
σ22 1.0000E-01 7.8251E-02 1.0167E-02
σ33 1.0000E-01 6.2429E-02 1.0025E-02
S11 1.0000E-02 8.0729E-03 9.2114E-03
S22 1.0000E-03 9.2753E-04 1.2410E-03
S33 1.0000E-02 9.3570E-03 1.2237E-02

Table D.2. Estimation results. Example 1 - Data in Figure D.2b.

Parameter True value CTSM MoCaVa

X0 1.0000E+00 9.6106E-01 9.5386E-01
S0 2.4495E-01 2.3457E-01 1.0003E-01
V0 1.0000E+00 9.9349E-01 1.0368E+00
µmax 1.0000E+00 9.7142E-01 9.0460E-01
K1 3.0000E-02 3.2600E-02 1.9886E-02
σ11 3.1623E-01 3.2500E-01 1.1169E+00
σ22 3.1623E-01 2.8063E-01 1.0046E-02
σ33 3.1623E-01 2.6078E-01 5.5165E-01
S11 1.0000E-02 7.7174E-03 9.9452E-03
S22 1.0000E-03 1.1618E-03 1.1330E-02
S33 1.0000E-02 8.3037E-03 1.5597E-02

Table D.3. Estimation results. Example 1 - Data in Figure D.2c.
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10 rad/h (the Nyquist frequency is about 13.2 rad/h). The estimation results
show that the estimates obtained with CTSM are less biased, in particular
the estimates of the parameters of the diffusion term, some of which are an
order of magnitude off in MoCaVa. Furthermore, the inability of MoCaVa
to correctly estimate these parameters seems to introduce additional bias in the
estimates of the other parameters for data sets with significant diffusion. Si-
milar results have been obtained for the two sets of sparse versions of the same
data sets. Tables D.4-D.5 show estimation results for the LTI case in Example 2
using the data sets shown in Figure D.3. For the estimation in MoCaVa the
diffusion term was approximated by a lowpass filtered white noise disturbance
with a bandwidth of 0.4 rad/h (the Nyquist frequency is 0.5 rad/h). In this case
more similar estimates are obtained, except for the estimates of the parameters
of the diffusion term, where MoCaVa again gives more bias.

Parameter True value CTSM MoCaVa

T10 1.3200E+01 1.3134E+01 1.3271E+01
T20 2.5300E+01 2.5330E+01 2.5571E+01
G1 1.0000E+02 1.0394E+02 1.0189E+02
G2 5.0000E+01 4.9320E+01 4.9266E+01
H1 1.0000E+00 9.6509E-01 9.8904E-01
H2 2.0000E+00 2.0215E+00 1.9965E+00
H3 5.0000E-01 5.0929E-01 5.0929E-01
σ11 0.0000E+00 4.2597E-08 8.3838E-03
σ22 0.0000E+00 1.4278E-09 5.1542E-03
S 1.0000E-02 1.0330E-02 1.0019E-02

Table D.4. Estimation results. Example 2 - Data in Figure D.3a.

Parameter True value CTSM MoCaVa

T10 1.3200E+01 1.9541E+01 1.4851E+01
T20 2.5300E+01 2.5360E+01 2.5580E+01
G1 1.0000E+02 1.0718E+02 7.6394E+01
G2 5.0000E+01 5.3125E+01 5.4272E+01
H1 1.0000E+00 1.9902E+00 1.4285E+00
H2 2.0000E+00 9.0621E-01 1.9034E+00
H3 5.0000E-01 5.0844E-01 5.1010E-01
σ11 1.0000E-01 1.7791E-01 1.0206E-02
σ22 1.0000E-01 1.4951E-01 1.4089E-01
S 1.0000E-02 9.4965E-03 3.2529E-02

Table D.5. Estimation results. Example 2 - Data in Figure D.3b.
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D.4.2.4 Reproducibility

The second issue addressed in the comparison of the estimation performance of
the two programs is reproducibility in terms of the sensitivity of the results to
variations in initial values for the optimisation. Tables D.6-D.7 show estimation
results from CTSM and MoCaVa respectively for the NL case corresponding
to Table D.1 using four different sets of initial values. The initial values used
are the true values shown in Table D.1, except for the values of the parameters
of the diffusion term, which have been varied, ([1, 0.1, 0.01, 0.001]). The estima-
tion results show that MoCaVa is much more sensitive than CTSM towards
variations in initial values, particularly with respect to the parameters of the
diffusion term. Tables D.8-D.9 show equivalent estimation results for the LTI
case corresponding to Table D.4. The initial values used in this case are the
true values shown in Table D.4, except for the values of the parameters of the
diffusion term, which have again been varied ([1, 0.1, 0.01, 0.001]). Note that

Parameter Result 1 Result 2 Result 3 Result 4

X0 1.0081E+00 1.0081E+00 1.0081E+00 1.0086E+00
S0 2.5160E-01 2.5160E-01 2.5160E-01 2.5205E-01
V0 1.0007E+00 1.0007E+00 1.0007E+00 1.0006E+00
µmax 1.0104E+00 1.0104E+00 1.0104E+00 1.0107E+00
K1 3.4178E-02 3.4177E-02 3.4177E-02 3.4289E-02
σ11 2.7167E-08 6.5411E-06 6.8942E-06 3.0674E-04
σ22 3.5673E-06 8.7657E-18 4.2411E-07 5.9732E-05
σ33 1.1250E-07 5.0250E-09 5.1325E-07 1.6944E-04
S11 9.0855E-03 9.0855E-03 9.0855E-03 9.0844E-03
S22 9.7371E-04 9.7370E-04 9.7370E-04 9.7068E-04
S33 9.4517E-03 9.4517E-03 9.4517E-03 9.4239E-03

Table D.6. CTSM reproducibility. Example 1 - Data in Figure D.2a.

Parameter Result 1 Result 2 Result 3 Result 4

X0 9.8736E-01 9.8528E-01 9.9187E-01 9.9247E-01
S0 2.5036E-01 2.3963E-01 2.3371E-01 2.3351E-01
V0 1.0027E+00 9.9632E-01 9.9533E-01 9.9527E-01
µmax 1.0230E+00 1.0213E+00 1.0143E+00 1.0134E+00
K1 3.7723E-02 3.7639E-02 3.7176E-02 3.7035E-02
σ11 1.4692E-01 6.2238E-02 9.9095E-03 9.9963E-04
σ22 1.5229E-01 7.7283E-02 9.9727E-03 1.0000E-03
σ33 1.2476E-01 5.8497E-02 9.7394E-03 1.0022E-03
S11 8.2961E-03 8.4638E-03 8.6565E-03 8.6720E-03
S22 9.0169E-04 9.3558E-04 9.4740E-04 9.4002E-04
S33 8.7933E-03 8.8285E-03 8.9991E-03 9.0133E-03

Table D.7. MoCaVa reproducibility. Example 1 - Data in Figure D.2a.
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for the first set of initial values, MoCaVa was not able to converge. Again
the estimation results show that MoCaVa is more sensitive than CTSM, and
again particularly with respect to the parameters of the diffusion term.

D.5 Discussion

The results presented in Section D.4 show that the software tool presented in
Section D.3 for estimation of parameters in grey-box models (CTSM) gene-
rally performs well. In particular it performs significantly better than the
one presented by Bohlin (2001) (MoCaVa) due to a number of algorithmic
differences between the two programs, which have been pointed out.

In terms of quality of estimates, CTSM gives less bias than MoCaVa, espe-
cially with respect to the parameters of the diffusion term. It may be argued
that this is due to the approximation used in MoCaVa, because the diffusion
term cannot be modelled explicitly, and hence that a comparison should have

Parameter Result 1 Result 2 Result 3 Result 4

T10 1.3134E+01 1.3134E+01 1.3134E+01 1.3134E+01
T20 2.5330E+01 2.5330E+01 2.5330E+01 2.5330E+01
G1 1.0394E+02 1.0394E+02 1.0394E+02 1.0395E+02
G2 4.9320E+01 4.9320E+01 4.9320E+01 4.9320E+01
H1 9.6509E-01 9.6509E-01 9.6509E-01 9.6506E-01
H2 2.0215E+00 2.0215E+00 2.0215E+00 2.0215E+00
H3 5.0929E-01 5.0929E-01 5.0929E-01 5.0929E-01
σ11 2.1538E-19 8.7694E-11 4.2597E-08 8.8565E-06
σ22 3.4939E-08 5.5784E-08 1.4278E-09 3.0702E-07
S 1.0330E-02 1.0330E-02 1.0330E-02 1.0330E-02

Table D.8. CTSM reproducibility. Example 2 - Data in Figure D.3a.

Parameter Result 1 Result 2 Result 3 Result 4

T10 - 1.3070E+01 1.3271E+01 1.3168E+01
T20 - 2.5577E+01 2.5571E+01 2.5567E+01
G1 - 1.0270E+02 1.0189E+02 1.0373E+02
G2 - 4.9277E+01 4.9266E+01 4.9312E+01
H1 - 9.5979E-01 9.8904E-01 9.6833E-01
H2 - 2.0277E+00 1.9965E+00 2.0180E+00
H3 - 5.0935E-01 5.0929E-01 5.0929E-01
σ11 - 2.2435E-02 8.3838E-03 9.9907E-04
σ22 - 7.9109E-03 5.1542E-03 1.0036E-03
S - 9.9315E-03 1.0019E-02 1.0224E-02

Table D.9. MoCaVa reproducibility. Example 2 - Data in Figure D.3a.
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been made with the original IdKit program by Bohlin and Graebe (1995), but
this program is not readily available. Furthermore, Bohlin and Graebe (1995)
argue that IdKit cannot be expected to work properly for models with signi-
ficant diffusion, so the differences in results from CTSM may be due to the
construction of the algorithms after all. The specific algorithmic differences
affecting the quality of the estimates are the more crude approximations made
in MoCaVa in order to reduce the computational burden.

With respect to the quality of the estimates of the parameters of the diffusion
term, it is particularly important that the EKF implementation in CTSM
uses analytical Jacobians obtained at current values of the state estimates,
whereas MoCaVa uses numerical Jacobians obtained at state values along
a deterministic reference trajectory. This becomes particularly evident when
comparing the results from the nonlinear model with the results from the linear
time-invariant model. In the nonlinear case, CTSM performs significantly
better than MoCaVa, whereas the two programs perform almost equally well
in the linear time-invariant case, where the Jacobians are equal.

In terms of reproducibility, CTSM is less sensitive to initial values and hence
gives more consistent results, which is most likely due to the gradient and
Hessian approximations being more crude in the optimisation algorithm within
MoCaVa. Evidence to support this conclusion is the fact that similar results
have been obtained using data from a nonlinear as well as a linear time-invariant
system without diffusion, indicating that the result is independent of the system
type and of the diffusion term approximation mentioned above.

In the general context of providing support for systematic grey-box model de-
velopment, MoCaVa is superior to CTSM, because of the additional fea-
tures included to facilitate various model development tasks. In this context
it may also be argued that the improvement in speed obtained through the
approximations made in MoCaVa is an advantage, but unfortunately this im-
provement comes at the price of accuracy and consistency, particularly for the
estimates of the parameters of the diffusion term. For applications where these
are used directly, e.g. to assess the quality of a model (Kristensen et al., 2001),
to discriminate between models (Kristensen et al., 2002a) or to pinpoint model
deficiencies (Kristensen et al., 2002c), one cannot afford to pay this price.

D.6 Conclusion

An efficient and flexible scheme for parameter estimation in stochastic grey-box
models has been presented. The estimation scheme is based on the extended
Kalman filter and features maximum likelihood as well as maximum a posteriori
estimation on multiple independent data sets, including irregularly sampled
data sets and data sets with occasional outliers and missing observations.
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A software tool implementing the estimation scheme has also been presented
and a comparison with an existing tool has indicated that the new tool has
superior estimation performance both in terms of quality of estimates and in
terms of reproducibility. In particular, the new tool provides more accurate
and consistent estimates of the parameters of the diffusion term.
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Paper no. 2

The paper1 included in this appendix gives a condensed outline of the material
presented in Chapter 2 in a more general context than modelling of fed-batch
processes for the purpose of state estimation and optimal control. To be more
specific, generalized versions of the grey-box modelling cycle and the corres-
ponding algorithm are presented for modelling a variety of systems for different
purposes. For illustration, the paper contains an extended version of the fed-
batch bioreactor modelling example given in Chapter 2, which demonstrates
that the proposed grey-box modelling framework can also be successfully ap-
plied, when all state variables of a model cannot be measured directly.

1The paper has been submitted for publication in Computers and Chemical Engineering.
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Abstract

A systematic framework for improving the quality of continuous time models
of dynamic systems based on experimental data is presented. The framework
is based on an interplay between stochastic differential equation modelling,
statistical tests and nonparametric modelling and provides features that allow
model deficiencies to be pinpointed and the structural origin of these deficien-
cies to be uncovered. More specifically, the proposed framework can be used
to obtain estimates of unknown functional relations, in turn allowing unknown
or inappropriately modelled phenomena to be uncovered. In this manner the
framework permits systematic iterative model improvement. The performance
of the proposed framework is illustrated with an example involving a dynamic
model of a fed-batch bioreactor, where it is shown how an inappropriately mo-
delled biomass growth rate can be uncovered and a proper functional relation
inferred. A key point illustrated with this example is that functional relations
involving variables that cannot be measured directly can also be uncovered.

Keywords: Model improvement; stochastic differential equations; parameter
estimation; statistical tests; nonparametric modelling; bioreactor modelling.
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E.1 Introduction

Dynamic process models are used in many areas of chemical engineering and
for many different purposes. Dynamic model development is therefore inhe-
rently purpose-driven in the sense that the required accuracy of a model, in
terms of prediction capabilities, depends on its intended application. More
specifically, models intended for open-loop applications such as process simula-
tion and optimisation, where long-term prediction capabilities are important,
must be more accurate than models intended for closed-loop applications such
as standard feedback control, where only short-term prediction capabilities are
needed. However, to be more accurate, a model must be more complex, which
means that it will be more difficult and time-consuming to develop. Finding a
suitable model for a given purpose thus involves a trade-off between required
model accuracy and affordable model complexity (Raisch, 2000).

For open-loop applications, ordinary differential equation (ODE) models or
white-box models developed from first engineering principles and prior physical
insights are typically used. Models of this type are often very detailed, because
they must be able to capture nonlinear effects in order to be valid over wide
ranges of state space, and, as a consequence, developing such models may be
difficult and time-consuming. Indeed, the corresponding model development
procedure is by no means guaranteed to converge, and few tools for making
inferences about the proper structure of such models are available.

For closed-loop applications, much simpler input-output models or black-box
models developed from experimental data with methods for time series analysis
(Box and Jenkins, 1976) and system identification (Ljung, 1987; Söderström
and Stoica, 1989) can often be used. Models of this type only have to be valid for
a small range of state space, typically close to a constant operating point, which
means that nonlinear effects can be neglected, making model development much
faster. Furthermore, well-developed tools for structural identification of such
linear models are available and the corresponding model development procedure
is guaranteed to converge provided that certain conditions of identifiability of
parameters and persistency of excitation of inputs are fulfilled.

Model-based optimizing control of batch and fed-batch processes, e.g. by means
of nonlinear model predictive control (MPC) (Allgöwer and Zheng, 2000), re-
presents a borderline case between open-loop and closed-loop applications,
where neither of the above modelling approaches is ideally suited. On one
hand, a model is needed, which is sufficiently accurate to be used for long-term
prediction over wide ranges of state space, but on the other hand, the afford-
able model complexity is low due to the extreme importance of time-to-market
issues in the biochemical, pharmaceutical and specialty chemicals industries,
where batch and fed-batch processes are most commonly used.

A methodology that provides an appealing trade-off between the white-box
and black-box approaches is grey-box modelling (Madsen and Melgaard, 1991;
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Melgaard and Madsen, 1993; Bohlin and Graebe, 1995; Bohlin, 2001), where
the key idea is to find the simplest model for a given purpose, which is consis-
tent with prior physical knowledge and not falsified by available experimental
data. In the approach by Bohlin and Graebe (1995) and Bohlin (2001) this
is done by formulating a sequence of hypothetical model structures of increa-
sing complexity and systematically expanding the model by falsifying incorrect
hypotheses through statistical tests based on the experimental data. In this
manner models can be developed, which have almost the same validity range
as white-box models, but it can be done in a less time-consuming manner and
the models being developed are guaranteed not to be overly complex.

Grey-box models are stochastic state space models consisting of a set of sto-
chastic differential equations (SDE’s) (Øksendal, 1998) describing the dyna-
mics of the system in continuous time and a set of discrete time measurement
equations. A considerable advantage of such models as opposed to white-box
models is that they are designed to accommodate random effects. In particular,
grey-box models allow for a decomposition of the noise affecting the system
into a process noise term and a measurement noise term. As a consequence of
this prediction error decomposition (PED), unknown parameters of grey-box
models can be estimated from experimental data in a prediction error (PE)
setting (Young, 1981), whereas for white-box models it can only be done in an
output error (OE) setting (Young, 1981), which tends to give biased and less
reproducible results, because random effects are absorbed into the parameter
estimates, particularly if the model structure is inappropriate. Furthermore,
PE estimation allows for a number of powerful statistical tools to be applied
to provide indications for possible improvements to the model structure.

Grey-box modelling as presented by Bohlin and Graebe (1995) and Bohlin
(2001) is an iterative and inherently interactive procedure, because it relies on
the model maker to formulate the specific hypothetical model structures to be
tested to improve the model. As pointed out by Bohlin (2001) this poses the
problem that the model maker may run out of ideas for improvement before a
sufficiently accurate model is obtained, which means that he or she may have
to resort to using black-box models for filling the gaps in the model.

In the present paper a grey-box modelling framework is proposed, which relies
less on the model maker. Within this framework specific model deficiencies can
be pinpointed and their structural origin can be uncovered, which provides the
model maker with valuable information about how to formulate new hypotheses
to improve the model. This clearly speeds up the iterative model development
procedure, and, as an additional benefit, also prevents the model maker from
having to resort to using black-box models for filling the gaps in the models,
when all prior physical knowledge is exhausted. The key to obtaining informa-
tion about how to improve the model is the ability of the proposed framework
to provide estimates of unknown functional relations, allowing unknown or
inappropriately modelled phenomena to be uncovered. These estimates are ob-
tained by making use of the PED and other properties of stochastic state space
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models along with nonparametric modelling. The integration of nonparametric
modelling with conventional grey-box modelling into a systematic framework
for model improvement is the key contribution of this paper. The remainder
of the paper is organized as follows: In Section E.2 the details of the proposed
framework are outlined and in Section E.3 an example that illustrates its per-
formance is presented. In Section E.4 a discussion of some important results is
given and in Section E.5 the conclusions of the paper are presented.

E.2 Methodology

In this section the details of the proposed grey-box modelling framework are
outlined. The overall framework is shown in Figure E.1 in the form of a model-
ling cycle, which shows the individual steps of the model development pro-
cedure. A key idea of grey-box modelling is to use all relevant prior physical
knowledge, for which reason the first step within the modelling cycle is model
(re)formulation based on first engineering principles, where the idea is to for-
mulate an initial model structure (first modelling cycle iteration) or make modi-
fications to this structure (subsequent iterations). The second step within the
modelling cycle is parameter estimation, where the idea is to estimate unknown
parameters of the model from available experimental data, and the third step
is residual analysis, where the idea is to evaluate the quality of the resulting
model by means of cross-validation. The fourth step within the modelling cycle
is the important step of model falsification or unfalsification, which deals with
whether or not, based on the available information, the model is sufficiently
accurate to serve its intended purpose. If the model is unfalsified, the model
development procedure can be terminated, but if the model is falsified, the
modelling cycle must be repeated by re-formulating the model. A key feature
of the proposed framework is that, in the latter case, the PED and other pro-
perties of stochastic state space models can be exploited to facilitate the task
at hand. More specifically, the statistical tests of the fifth step within the mo-
delling cycle can be applied to provide indications of which parts of the model
that are deficient, and the nonparametric modelling techniques of the sixth step
can be applied to provide estimates of the functional relations needed to repair
these deficiencies to improve the model. In the remainder of this section the
individual steps are described in more detail and an algorithm for systematic
model improvement based on the proposed modelling cycle is presented.

E.2.1 Model (re)formulation

In the first step of the proposed grey-box modelling cycle, the idea is to for-
mulate an initial model structure. This is a two-step procedure, because it
involves derivation of a standard ODE model from first engineering principles
and translation of the ODE model into a stochastic state space model consisting
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Figure E.1. The proposed grey-box modelling cycle. Boxes in grey illustrate tasks
and boxes in white illustrate inputs to and outputs from the modelling cycle.

of a set of SDE’s and a set of discrete time measurement equations. Deriving an
ODE model from first engineering principles is a standard discipline for most
chemical engineers and yields a model of the following type:

dxt

dt
= f(xt,ut, t,θ) (E.1)

where t ∈ R is time, xt ∈ R
n is a vector of balanced quantities or state variab-

les, ut ∈ R
m is a vector of input variables and θ ∈ R

p is a vector of possibly
unknown parameters, and where f (·) ∈ R

n is a nonlinear function. Translating
the ODE model into a stochastic state space model is also relatively straightfor-
ward, because it can be done by replacing the ODE’s with SDE’s and adding a
set of algebraic equations describing how measurements are obtained at discrete
time instants. This yields a model of the following type:

dxt = f (xt,ut, t,θ)dt+ σ(ut, t,θ)dωt (E.2)
yk = h(xk,uk, tk,θ) + ek (E.3)

where t ∈ R is time, xt ∈ R
n is a vector of state variables, ut ∈ R

m is a vector
of input variables, yk ∈ R

l is a vector of measured output variables, θ ∈ R
p is a

vector of possibly unknown parameters, f(·) ∈ R
n, σ(·) ∈ R

n×n and h(·) ∈ R
l

are nonlinear functions, {ωt} is an n-dimensional standard Wiener process and
{ek} is an l-dimensional white noise process with ek ∈ N (0,S(uk, tk,θ)).

The first term on the right-hand side of (E.2) is called the drift term and is
a deterministic term equivalent to the term on the right-hand side of (E.1),
whereas the second term on the right-hand side of (E.2) is called the diffusion
term and is a stochastic term included to accommodate random effects due
to e.g. approximation errors or unmodelled phenomena. A detailed account of
the theory behind SDE’s is given by Øksendal (1998). The diffusion term is
the key to the proposed procedure for systematic model improvement, because
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estimation of the parameters of this term from experimental data provides
a measure of model uncertainty. The translation of the ODE model into a
stochastic state space model does not affect the parameters of the drift term,
which means that their physical interpretability is preserved.

Remark 1. The standard Wiener process {ωt}, which drives the SDE’s in
(E.2), is a continuous stochastic process, which has stationary and independent
time increments that are Gaussian and have zero mean and a covariance that
is equal to the size of the time increment (Jazwinski, 1970).

Remark 2. The notation used in (E.2) is shorthand for the corresponding
integral interpretation and is ambiguous unless a specific integral interpretation
is given. SDE’s may be interpreted in the sense of Stratonovich or in the sense
of Itô (Jazwinski, 1970), but since the Stratonovich interpretation is unsuitable
for parameter estimation (Åström, 1970), the Itô interpretation is adapted.

E.2.2 Parameter estimation

In the second step of the proposed modelling cycle the idea is to estimate the
unknown parameters of the stochastic state space model (E.2)-(E.3) from ex-
perimental data. The solution to (E.2) is a Markov process, and an estimation
scheme based on probabilistic methods can therefore be applied. A brief outline
of the scheme used within the proposed framework is given in the following. A
much more detailed account is given by Kristensen et al. (2002b).

E.2.2.1 Maximum likelihood (ML) estimation

Given a sequence of measurements y0, y1, . . . , yk, . . . , yN , ML estimates of
the unknown parameters in (E.2)-(E.3) can be determined as the parameters
θ that maximize the likelihood function, i.e. the joint probability density:

L(θ;YN ) = p(YN |θ) = p(yN ,yN−1, . . . ,y1,y0|θ) (E.4)

or equivalently:

L(θ;YN ) =

(
N∏

k=1

p(yk|Yk−1,θ)

)
p(y0|θ) (E.5)

where the rule P (A ∩B) = P (A|B)P (B) has been applied to form a product
of conditional probability densities. In order to obtain an exact evaluation of
the likelihood function, a general nonlinear filtering problem must be solved
(Jazwinski, 1970), but this is computationally infeasible in practice. However,
since the increments of the standard Wiener process {ωt} driving the SDE’s in
(E.2) are Gaussian, it is reasonable to assume that the conditional probability
densities in (E.5) can be well approximated by Gaussian densities. As a con-
sequence, a method based on the much simpler extended Kalman filter (EKF)
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can be applied (Kristensen et al., 2002b). The Gaussian density is completely
characterized by its mean and covariance, so by introducing the notation:

ŷk|k−1 = E{yk|Yk−1,θ} (E.6)

Rk|k−1 = V {yk|Yk−1,θ} (E.7)

and:
εk = yk − ŷk|k−1 (E.8)

the likelihood function becomes:

L(θ;YN ) =

 N∏
k=1

exp
(
− 1

2εT
k R−1

k|k−1εk

)
√

det
(
Rk|k−1

) (√
2π
)l

 p(y0|θ) (E.9)

and the parameter estimates can be determined by further conditioning on y0

and solving the following nonlinear optimisation problem:

θ̂ = arg min
θ∈Θ
{− ln (L(θ;YN |y0))} (E.10)

where, for each set of parameters θ in the optimisation, εk and Rk|k−1 are
computed recursively by means of the EKF (Kristensen et al., 2002b).

Remark 3. The validity of the Gaussianity assumption can (and should) be
checked subsequent to the estimation (Holst et al., 1992; Bak et al., 1999).

E.2.2.2 Maximum a posteriori (MAP) estimation

If prior information about the parameters is available in the form of a prior
probability density function p(θ), Bayes’ rule can be applied to give an im-
proved estimate by forming the posterior probability density function:

p(θ|YN ) =
p(YN |θ)p(θ)

p(YN )
∝ p(YN |θ)p(θ) (E.11)

and subsequently finding the parameters that maximize this function, i.e. by
performing MAP estimation. By assuming that the prior probability density
of the parameters is Gaussian, and by introducing the notation:

µθ = E{θ} (E.12)
Σθ = V {θ} (E.13)

and:
εθ = θ − µθ (E.14)



172 A Method for Systematic Improvement of Stochastic Grey-Box Models

the posterior probability density function becomes:

p(θ|YN ) ∝
 N∏

k=1

exp
(
− 1

2εT
k R−1

k|k−1εk

)
√

det
(
Rk|k−1

) (√
2π
)l

 p(y0|θ)

× exp
(− 1

2εT
θ Σ−1

θ εθ

)√
det (Σθ)

(√
2π
)p

(E.15)

and the parameter estimates can now be determined by further conditioning
on y0 and solving the following nonlinear optimisation problem:

θ̂ = argmin
θ∈Θ
{− ln (p(θ|YN ,y0))} (E.16)

Remark 4. If no prior information is available (p(θ) uniform), this formulation
reduces to the ML formulation in (E.10), and it can therefore be seen as a
generalization of the ML formulation. In fact, this formulation also allows for
MAP estimation on a subset of the parameters (p(θ) partly uniform).

E.2.2.3 Using multiple independent data sets

If multiple consecutive, but stochastically independent, sequences of measure-
ments Y1

N1
, Y2

N2
, . . . , Yi

Ni
, . . . , YS

NS
, are available, a similar estimation method

can be applied by expanding the posterior probability density function to:

p(θ|Y) = p(θ|Y1
N1
,Y2

N2
, . . . ,Yi

Ni
, . . . ,YS

NS
]) ∝ S∏

i=1

 Ni∏
k=1

exp
(
− 1

2 (εi
k)T (Ri

k|k−1)−1εi
k

)
√

det
(
Ri

k|k−1

) (√
2π
)l

 p(yi
0|θ)


× exp

(− 1
2εT

θ Σ−1
θ εθ

)√
det (Σθ)

(√
2π
)p

(E.17)

and the parameter estimates can now be determined by further conditioning on
y0 = [y1

0,y
2
0, . . . ,y

i
0, . . . ,y

S
0 ] and solving the nonlinear optimisation problem:

θ̂ = arg min
θ∈Θ
{− ln (p(θ|Y,y0))} (E.18)

Remark 5. If only one sequence of measurements is available (S = 1), this
formulation reduces to the MAP formulation in (E.16), and it can therefore be
seen as a generalization of this formulation for multiple independent data sets.

Kristensen et al. (2002b) give details about the estimation scheme used within
the proposed framework, e.g. with respect to solving the nonlinear optimisation
problem (E.18) and to robustness towards outliers and missing observations.



E.2. Methodology 173

E.2.3 Residual analysis

In the third step of the proposed modelling cycle, the idea is to evaluate the
quality of the model once the unknown parameters have been estimated.

An important aspect in assessing the quality of the model is to investigate
its prediction capabilities by performing cross-validation and examining the
corresponding residuals. Depending on the intended application of the model
this should be done in either a one-step-ahead prediction setting (closed-loop
applications) or in a pure simulation setting (open-loop applications). In either
case a number of different methods can be applied (Holst et al., 1992).

One of the most powerful of these methods is to compute and inspect the
sample autocorrelation function (SACF) and the sample partial autocorrelation
function (SPACF) (Brockwell and Davis, 1991) of the residuals to detect if they
can be regarded as white noise or if there are significant lag dependencies, i.e.
correlations between current and lagged values of the residuals, as this indicates
that the prediction capabilities of the model are not perfect.

Nielsen and Madsen (2001a) recently presented extensions of these linear tools
to nonlinear systems in the form of the lag dependence function (LDF) and
the partial lag dependence function (PLDF), which are based on a close rela-
tion between correlation coefficients and the coefficients of determination for
regression models. This relation allows for an extension to nonlinear systems
by incorporating various nonparametric regression models.

Remark 6. Being an extension of the SACF, the LDF can be interpreted as
being, for each lag k, the part of the overall variation in the observations of Xt

from a stochastic process {Xt}, which can be explained by the observations of
Xt−k. Likewise, being an extension of the SPACF, the PLDF can be interpreted
as being, for each lag k, the relative decrease in one-step-ahead prediction
variation when including Xt−k as an extra predictor.

Unlike the SACF and the SPACF, the LDF and the PLDF can also detect cer-
tain nonlinear lag dependencies and are therefore extremely useful for residual
analysis within the proposed framework. More details about these and other
similar tools are given by Nielsen and Madsen (2001a).

Remark 7. If the Gaussianity assumption mentioned in Section E.2.2 is valid,
the statistical tests described in Section E.2.5 can also be applied in the eva-
luation of the quality of the model. However, the assumption is only likely to
be valid, if the structure of the model is appropriate, which means that these
tests should only be applied in the final stages of model development.

E.2.4 Model falsification or unfalsification

In the fourth step of the proposed modelling cycle, the idea is to determine
whether or not, based on the information obtained in the previous step, the
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model is sufficiently accurate to serve its intended purpose. This essentially
involves a completely subjective decision by the model maker, addressing the
trade-off between required model accuracy and affordable model complexity for
the particular application. Nevertheless, a few guidelines can be given.

For models intended for closed-loop applications such as standard feedback
control, where only short-term prediction capabilities are important, whiteness
of cross-validation residuals obtained in a one-step-ahead prediction setting is
a good indication of sufficient model accuracy. On the other hand, for models
intended for open-loop applications such as process simulation and optimisa-
tion, where long-term prediction capabilities are important, whiteness of cross-
validation residuals obtained in a pure simulation setting is a very good such
indication. However, sufficient information may not be available to achieve
this, which means that the model maker may have to settle for less.

If, with respect to the available information, the model is unfalsified for its
intended purpose, the model development procedure can be terminated. If, on
the other hand, the model is falsified, the modelling cycle must be repeated
by re-formulating the model. In the latter case, the properties of the model in
(E.2)-(E.3) facilitate the task at hand, however, as shown in the following.

E.2.5 Statistical tests

In the fifth step of the proposed modelling cycle, which is only needed if the
model has been falsified and therefore needs to be improved, the idea is to apply
statistical tests to provide indications of which parts of the model that are
deficient. The statistical tests needed for this purpose are tests for significance
of the individual parameters, particularly the parameters of the diffusion term.

Remark 8. If the residual sequences obtained in the third step of the modelling
cycle can be regarded as stationary time series, the residual analysis tools
mentioned in Section E.2.3 can also be applied in the analysis of possibilities
for model improvement. More specifically, like the SACF and the SPACF, the
LDF and the PLDF can be applied for structural identification (Nielsen and
Madsen, 2001a), e.g. to determine if more state variables are needed.

An estimate of the uncertainty of the individual parameter estimates can be
obtained by using the fact that by the central limit theorem the estimator in
(E.18) is asymptotically Gaussian with mean θ and covariance:

Σθ̂ = H−1 (E.19)

where the matrix H is given by:

{hij} = −E
{

∂2

∂θi∂θj
ln (p(θ|Y,y0))

}
, i, j = 1, . . . , p (E.20)



E.2. Methodology 175

and where an estimate of H can be obtained from:

{hij} ≈ −
(

∂2

∂θi∂θj
ln (p(θ|Y,y0))

)∣∣∣
θ=θ̂

, i, j = 1, . . . , p (E.21)

which is the Hessian evaluated at the minimum of the objective function. To
obtain a measure of the uncertainty of the individual parameter estimates, the
covariance matrix can be decomposed as follows:

Σθ̂ = σθ̂Rσθ̂ (E.22)

into σθ̂, which is a diagonal matrix of the standard deviations of the parameter
estimates, and R, which is the corresponding correlation matrix.

The asymptotic Gaussianity of the estimator in (E.18) also allows marginal
t-tests to be performed to test the hypothesis:

H0: θj = 0 (E.23)

against the corresponding alternative:

H1: θj �= 0 (E.24)

i.e. to test whether a given parameter θj is marginally insignificant or not.
The test quantity is the value of the parameter estimate divided by the stand-
ard deviation of the estimate, and under H0 this quantity is asymptotically
t-distributed with a number of degrees of freedom that equals the total number
of observations minus the number of estimated parameters, i.e.:

zt(θ̂j) =
θ̂j

σθ̂j

∈ t

((
S∑

i=1

Ni∑
k=1

l

)
− p

)
(E.25)

Due to correlations between the individual parameter estimates, a series of
such marginal tests cannot be used to test the hypothesis that a subset of the
parameters, θ∗ ⊂ θ, are simultaneously insignificant:

H0: θ∗ = 0 (E.26)

against the alternative that they are not:

H1: θ∗ �= 0 (E.27)

Hence a test that takes correlations into account must be used instead, e.g.
a likelihood ratio test, a Lagrange multiplier test or a test based on Wald’s
W -statistic (Holst et al., 1992). Under H0 the test quantities for these tests
all have the same asymptotic χ2-distribution with a number of degrees of free-
dom that equals the number of parameters subjected to the test (Holst et al.,
1992), but in the context of the proposed framework the test based on Wald’s
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W -statistic has the advantage that no re-estimation of the parameters is re-
quired, because it can simply be computed in the following way:

W (θ̂∗) = θ̂
T

∗ Σ−1

θ̂∗
θ̂∗ ∈ χ2

(
dim(θ̂∗)

)
(E.28)

where θ̂∗ ⊂ θ̂ is the subset of the parameter estimates subjected to the test
and Σθ̂∗ is the covariance matrix of these estimates. This covariance matrix
can be computed from the full covariance matrix as follows:

Σθ̂∗ = EΣθ̂ET (E.29)

where E is a permutation matrix constructed from a unit matrix by eliminating
the rows that correspond to parameter estimates not subjected to the test.

Remark 9. Strictly speaking, these tests should only be applied if the Gaus-
sianity assumption mentioned in Section E.2.2 is valid, which is only likely to
be the case in the final stages of model development, where the structure of
the model is appropriate. Nevertheless, the corresponding test results can be
used to provide reasonable indications for model improvement.

The above tests for insignificance provide the necessary framework for obtai-
ning indications of which parts of the model that are deficient. In principle,
insignificant parameters are parameters that may be eliminated, and, generally,
the presence of such parameters is therefore an indication that the model is
overparameterized. On the other hand, because of the particular nature of
the model in (E.2)-(E.3), where the diffusion term is included to account for
random effects due to e.g. approximation errors or unmodelled phenomena,
the presence of significant parameters in the diffusion term is an indication
that the corresponding drift term may be incorrect, which in turn provides an
uncertainty measure that allows model deficiencies to be detected. If, instead of
the general parameterization of the diffusion term indicated in (E.2), a diagonal
parameterization is used, this also allows the deficiencies to be pinpointed in
the sense that deficiencies in specific elements of the drift term can be detected.

E.2.5.1 Pinpointing model deficiencies

If a diagonal parameterization of the diffusion term in (E.2) is used, the presence
of significant parameters in a given diagonal element is an indication that the
corresponding element of the drift term may be incorrect. This is valuable
information for the model maker, as it indicates that some of the inherent
phenomena of this term may be inappropriately modelled. If, by using physical
insights, the model maker is able to subsequently select a specific phenomena
model for further analysis, the proposed framework also provides means to
confirm the suspicion that this model is inappropriate, if it is in fact true.
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Typical suspect phenomena models include models of reaction rates, heat and
mass transfer rates and similar complex dynamic phenomena, all of which can
usually be described using functions of the state and input variables, i.e.:

rt = ϕ(xt,ut,θ) (E.30)

where rt symbolizes the phenomenon of interest and ϕ(·) ∈ R is the nonlinear
function used by the model maker to describe it. To confirm the suspicion that
ϕ(·) is inappropriate, the parameter estimation step must be repeated with a
re-formulated version of the model in (E.2)-(E.3) to give new statistical infor-
mation. More specifically, if rt is isolated by including it in the re-formulated
model as an additional state variable, i.e.:

dx∗
t = f∗(x∗

t ,ut, t,θ)dt+ σ∗(ut, t,θ)dω∗
t (E.31)

yk = h(x∗
k,uk, tk,θ) + ek (E.32)

where x∗
t = [xT

t rt]T , σ∗(·) ∈ R
(n+1)×(n+1) and {ω∗

t } is an (n+ 1)-dimensional
standard Wiener process and where:

f∗(x∗
t ,ut, t,θ) =

(
f (xt,ut, t,θ)

∂ϕ(xt,ut,θ)
∂xt

dxt

dt + ∂ϕ(xt,ut,θ)
∂ut

dut

dt

)
(E.33)

the presence of significant parameters in the corresponding diagonal element of
the expanded diffusion term is a strong indication that ϕ(·) is inappropriate.

Remark 10. A particularly simple but nevertheless very important special
case of the above formulation is obtained if ϕ(·) is assumed to be constant, in
which case the partial derivatives in (E.33) are both zero and any variation in
rt must be explained by the corresponding diagonal element of the expanded
diffusion term, which in turn means that if the parameters of this diagonal
element are significant, this is an indication that ϕ(·) is not constant.

E.2.6 Nonparametric modelling

In the sixth step of the proposed modelling cycle, which can only be used if
specific model deficiencies have been pinpointed as described above, the idea is
to uncover the structural origin of these deficiencies. The procedure for accom-
plishing this is based on a combination of the applicability of stochastic state
space models for state estimation and the ability of nonparametric regression
methods to provide visualizable estimates of unknown functional relations.

E.2.6.1 Estimating unknown functional relations

Using the re-formulated model in (E.31)-(E.32) and the corresponding para-
meter estimates, state estimates x̂∗

k|k, k = 0, . . . , N , can be obtained for a given
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set of experimental data by applying the EKF. In particular, since the inappro-
priately modelled phenomenon rt is included as an additional state variable in
this model, estimates r̂k|k, k = 0, . . . , N , can be obtained, which in turn faci-
litates application of nonparametric regression to provide estimates of possible
functional relations between rt and the state and input variables.

Several nonparametric regression techniques are available (Hastie et al., 2001),
but in the context of the proposed framework, additive models (Hastie and
Tibshirani, 1990) are preferred, because fitting such models circumvents the
curse of dimensionality, which tends to render nonparametric regression in-
feasible in higher dimensions, and because results obtained with such models
are particularly easy to visualize, which is also important.

Remark 11. Additive models are nonparametric extensions of linear regres-
sion models and are fitted by using a training data set of observations of several
predictor variables X1, . . . , Xn and a single response variable Y to compute a
smoothed estimate of the response variable for a given set of values of the pre-
dictor variables. This is done by assuming that the contributions from each of
the predictor variables are additive and can be fitted nonparametrically using
the backfitting algorithm (Hastie and Tibshirani, 1990).

Using additive models, the variation in rt can be decomposed into the variation
that can be attributed to each of the state and input variables in turn, and the
result can be visualized by means of partial dependence plots with associated
bootstrap confidence intervals (Hastie et al., 2001). In this manner it may be
possible to reveal the true structure of the function describing rt, i.e.:

rt = ϕtrue(xt,ut,θ) (E.34)

which in turn provides the model maker with valuable information about how
to re-formulate the model for the next modelling cycle iteration. Needless to
say, this should be done in accordance with physical insights.

Remark 12. The assumption of additive contributions does not necessarily
limit the ability of additive models to reveal non-additive functional relations
involving more than one predictor variable, since, by proper processing of the
training data set, functions of more than one predictor variable, e.g. X1X2, can
be included as predictor variables as well (Hastie and Tibshirani, 1990).

E.2.7 An algorithm for systematic model improvement

In the following the methodologies from the various steps of the proposed mo-
delling cycle are summarized in the form of an algorithm for systematic model
improvement given a pre-specified purpose of the model:

1. Use first engineering principles and physical insights to derive an initial
model structure in the form of an ODE model (see Section E.2.1).
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2. Translate the ODE model into a stochastic state space model using a
diagonal parameterization of the diffusion term (see Section E.2.1).

3. Estimate the parameters of the model from available experimental data
using ML or MAP estimation (see Section E.2.2).

4. Evaluate the quality of the resulting model by performing residual ana-
lysis on cross-validation data (see Section E.2.3).

5. Determine if the model is sufficiently accurate to serve its intended pur-
pose. If unfalsified, terminate model development. If falsified, proceed
with model development (see Section E.2.4).

6. Try to pinpoint specific model deficiencies by applying statistical tests and
by re-formulating the model with additional state variables and repeating
the estimation and test procedures (see Section E.2.5).

7. If specific model deficiencies can be pinpointed, use state estimation and
nonparametric modelling to uncover their structural origin by obtaining
appropriate estimates of functional relations (see Section E.2.6).

8. Re-formulate the model according to the estimated functional relations
and physical insights and repeat from Step 3 (see Section E.2.6).

This algorithm can be applied to develop new as well as to improve existing
models of dynamic systems for a variety of purposes. More specifically, models
can be developed with emphasis on short-term as well as long-term prediction
capabilities, i.e. models intended for closed-loop as well as open-loop applica-
tions. However, as further discussed in Section E.4, the algorithm is not gua-
ranteed to converge, especially not if insufficient prior information is available
or if the quality and amount of available experimental data is limited.

In particular, a situation may occur, where the model is falsified, but where
none of the parameters of the diffusion term appear to be significant and pin-
pointing a specific model deficiency is impossible. A situation may also occur,
where the model is falsified and the significance of certain parameters of the
diffusion term have allowed a specific deficiency to be pinpointed, but where
the structural origin of the deficiency cannot be uncovered. In the context of
the proposed framework, both situations imply that a point has been reached,
where the model cannot be further improved with the available information.

Remark 13. The estimation methods described in Section E.2.2 (estimation
in a PE setting) tend to emphasize the one-step-ahead prediction capabilities
of the model and are therefore not ideal for models intended for open-loop
applications. Nevertheless, these methods should be used in the development
of such models as well, because of the possibility of using the tools described
above for improving the structure of the model, if necessary, which would other-
wise not be possible. Once an appropriate model structure has been obtained
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(ultimately corresponding to an insignificant diffusion term), the parameters
should then be re-calibrated with an estimation method that emphasizes the
pure simulation capabilities of the model (estimation in an OE setting).

E.3 Example: Modelling a fed-batch bioreactor

To illustrate the performance of the proposed framework in terms of improving
the quality of an existing model, a simple simulation example is considered in
the following. The process considered is a fed-batch bioreactor, where the true
model used for simulation of the process is given in the following way:

dX

dt
= µ(S)X − FX

V
(E.35)

dS

dt
= −µ(S)X

Y
+
F (SF − S)

V
(E.36)

dV

dt
= F (E.37)

where X is the biomass concentration, S is the substrate concentration, V is
the volume, F is the feed flow rate, Y = 0.5 is the yield coefficient of biomass,
SF = 10 is the feed concentration of substrate, and µ(S) is the biomass growth
rate, which is described by Monod kinetics with substrate inhibition, i.e.:

µ(S) = µmax
S

K2S2 + S +K1
(E.38)

where µmax = 1, K1 = 0.03 and K2 = 0.5. Using (X0, S0, V0) = (1, 0.2449, 1)
as initial states, simulation data sets from two batch runs (101 samples each)
are generated by perturbing the feed flow rate along a pre-determined trajec-
tory and subsequently adding Gaussian measurement noise to the appropriate
variables using the noise levels mentioned beneath Figure E.2.

In the following it is assumed that the model to be developed is to be used for an
open-loop application, where long-term prediction capabilities are important,
and that the model maker has been able to set up an initial model structure
corresponding to (E.35)-(E.37) but is unaware of the true structure of µ(S)
given in (E.38). In terms of available measurements, two different cases are
considered: A full state information case, where it is assumed that all state
variables can be measured, and a partial state information case, where it is
assumed that only the biomass and the volume can be measured.

E.3.1 Case 1: Full state information

The available sets of experimental data for the full state information case are
shown in Figure E.2. Using these data sets it will now be illustrated how the



E.3. Example: Modelling a fed-batch bioreactor 181

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

t

(a) Batch no. 1.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

t

(b) Batch no. 2.

Figure E.2. The two batch data sets available for case 1. Solid staircase: Feed
flow rate F ; dashed lines: Biomass measurements y1 (with N(0, 0.01) noise);
dotted lines: Substrate measurements y2 (with N(0, 0.001) noise); dash-dotted
lines: Volume measurements y3 (with N(0, 0.01) noise)).

proposed modelling cycle can be used to improve the initial model set up by
the model maker. In this particular case only two iterations of the modelling
cycle are needed. In the general case more iterations may be needed.

E.3.1.1 First modelling cycle iteration

Model formulation

The first iteration of the modelling cycle starts with the model formulation step,
where it is assumed that the model maker has been able to set up an initial
model structure corresponding to (E.35)-(E.37), which is then translated into
a stochastic state space model with the following system equation:

d

XS
V

=

 µX − FX
V

−µX
Y + F (SF −S)

V

F

dt +

σ11 0 0
0 σ22 0
0 0 σ33

dωt (E.39)

and the following measurement equation:y1y2
y3


k

=

XS
V


k

+ ek , ek ∈ N(0,S) , S =

S11 0 0
0 S22 0
0 0 S33

 (E.40)

where, because the true structure of µ(S) given in (E.38) is unknown, a constant
biomass growth rate µ has been assumed. As recommended above, a diagonal
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parameterization of the diffusion term in the system equation has been used to
allow model deficiencies to be pinpointed if the model is falsified.

Parameter estimation

As the next step, the unknown parameters of the model in (E.39)-(E.40)
are estimated by means of the ML method using the data from batch no. 1
(Figure E.2a), which gives the results shown in Table E.1.

Residual analysis

Evaluating the quality of the resulting model as the next step, cross-validation
residual analysis is performed as shown in Figure E.3. This analysis shows
that the model does a poor job in pure simulation, particularly for y1 and y2,
whereas its one-step-ahead prediction capabilities are quite good.

Model falsification or unfalsification

Moving to the model falsification or unfalsification step, the poor pure simula-
tion capabilities falsify the model for its intended purpose, which means that
the modelling cycle must be repeated by re-formulating the model.

Statistical tests

To obtain information about how to re-formulate the model in an intelligent
way, model deficiencies should be pinpointed. Table E.1 also includes t-scores
for performing marginal tests for insignificance of the individual parameters,
which show that, on a 5% level, only one of the parameters of the diffusion
term is insignificant, i.e. σ33, whereas σ11 and σ22 are both significant, which

Parameter Estimate Standard deviation t-score Significant?

X0 9.6973E-01 3.4150E-02 28.3962 Yes
S0 2.5155E-01 3.1938E-02 7.8761 Yes
V0 1.0384E+00 1.8238E-02 56.9359 Yes
µ 6.8548E-01 2.2932E-02 29.8921 Yes

σ11 1.8411E-01 2.5570E-02 7.2000 Yes
σ22 2.2206E-01 3.4209E-02 6.4912 Yes
σ33 2.7979E-02 1.7943E-02 1.5594 No
S11 6.7468E-03 1.3888E-03 4.8580 Yes
S22 3.9131E-04 2.4722E-04 1.5828 No
S33 1.0884E-02 1.5409E-03 7.0633 Yes

Table E.1. Estimation results. Model in (E.39)-(E.40) - data from Figure E.2a.
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Figure E.3. Cross-validation residual analysis results for the model in (E.39)-(E.40)
with parameters in Table E.1 using the data from batch no. 2 (Figure E.2b). Top
left: One-step-ahead prediction comparison (solid lines: Predicted values); top
right: Pure simulation comparison (solid lines: Simulated values); bottom left:
One-step-ahead prediction residuals, LDF and PLDF for y1, y2 and y3; bottom
right: Pure simulation residuals, LDF and PLDF for y1, y2 and y3.

indicates that the first two elements of the drift term may be incorrect. These
elements both depend on µ and a skilled model maker, who knows how difficult
it is to model complex dynamic phenomena such as biomass growth, would
immediately suspect µ to be deficient. To avoid jumping to conclusions, the
suspicion should be confirmed, which is done by first re-formulating the model
with µ as an additional state variable, which yields the system equation:

d

XS
V
µ

=


µX − FX

V

−µX
Y + F (SF −S)

V

F
0

dt +


σ11 0 0 0
0 σ22 0 0
0 0 σ33 0
0 0 0 σ44

dωt (E.41)

where, because µ has been assumed to be constant, the last element of the drift
term is zero. The measurement equation is the same as in (E.40). Estimating
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Figure E.4. Partial dependence plots of µ̂k|k vs. X̂k|k and Ŝk|k. Solid lines: Esti-
mates; dotted lines: 95% bootstrap confidence intervals (1000 replicates).

the parameters of this model, using the same data set as before, gives the
results shown in Table E.2, and inspection of the t-scores for marginal tests
for insignificance now show that, of the parameters of the diffusion term, only
σ44 is significant on a 5% level. This in turn indicates that there is substantial
variation in µ and thus confirms the suspicion that µ is deficient.

Nonparametric modelling

Having pinpointed µ as being deficient, nonparametric modelling can be ap-
plied as the next step to uncover the structural origin of the deficiency. Using

Parameter Estimate Standard deviation t-score Significant?

X0 1.0239E+00 4.9566E-03 206.5723 Yes
S0 2.3282E-01 1.1735E-02 19.8405 Yes
V0 1.0099E+00 3.8148E-03 264.7290 Yes
µ0 7.8658E-01 2.4653E-02 31.9061 Yes
σ11 2.0791E-18 1.4367E-17 0.1447 No
σ22 1.1811E-30 1.6162E-29 0.0731 No
σ33 3.1429E-04 2.0546E-04 1.5297 No
σ44 1.2276E-01 2.5751E-02 4.7674 Yes
S11 7.5085E-03 9.9625E-04 7.5368 Yes
S22 1.1743E-03 1.6803E-04 6.9887 Yes
S33 1.1317E-02 1.3637E-03 8.2990 Yes

Table E.2. Estimation results. Model in (E.41) and (E.40) - data from Figure E.2a.
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the re-formulated model in (E.41) and (E.40) and the parameter estimates in
Table E.2, state estimates X̂k|k, Ŝk|k, V̂k|k, µ̂k|k, k = 0, . . . , N , are obtained by
means of the EKF and an additive model is fitted to reveal the true structure of
the function describing µ by means of estimates of functional relations between
µ and the state and input variables. It is reasonable to assume that µ does not
depend on V and F , so only functional relations between µ̂k|k and X̂k|k and
Ŝk|k are estimated, which gives the results shown in Figure E.4 in the form of
partial dependence plots with associated bootstrap confidence intervals. These
plots indicate that µ̂k|k does not depend on X̂k|k, but is highly dependent on
Ŝk|k, which in turn suggests to replace the assumption of constant µ with an
assumption of µ being a function of S, when the model is re-formulated for the
next iteration of the modelling cycle. More specifically, this function should
somehow comply with the functional relation revealed in Figure E.4b.

E.3.1.2 Second modelling cycle iteration

Model re-formulation

To a skilled model maker with experience in bioreactor modelling, the func-
tional relation revealed in the partial dependence plot between µ̂k|k and Ŝk|k
in Figure E.4 is a clear indication that the growth of biomass is governed by
Monod kinetics and inhibited by substrate, which in the first step of the second
iteration of the modelling cycle makes it possible to re-formulate the model in
(E.39)-(E.40) accordingly to yield the following system equation:

d

XS
V

=

 µ(S)X − FX
V

−µ(S)X
Y + F (SF −S)

V

F

dt +

σ11 0 0
0 σ22 0
0 0 σ33

dωt (E.42)

where µ(S) is given by the true structure in (E.38). The measurement equation
of course remains unchanged and is therefore the same as in (E.40).

Parameter estimation

As the next step, estimation of the unknown parameters of the re-formulated
model using the same data set as before gives the results shown in Table E.3.

Residual analysis

Evaluating the quality of the resulting model is the next step. Cross-validation
residual analysis is therefore performed as shown in Figure E.5, and the results
of this analysis show that the one-step-ahead prediction capabilities as well as
the pure simulation capabilities of the re-formulated model are very good.
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Figure E.5. Cross-validation residual analysis results for the model in (E.42) and
(E.40) with parameters in Table E.3 using the data from batch no. 2 (Figure E.2b).
Top left: One-step-ahead prediction comparison (solid lines: Predicted values);
top right: Pure simulation comparison (solid lines: Simulated values); bottom left:
One-step-ahead prediction residuals, LDF and PLDF for y1, y2 and y3; bottom
right: Pure simulation residuals, LDF and PLDF for y1, y2 and y3.

Parameter Estimate Standard deviation t-score Significant?

X0 1.0148E+00 1.0813E-02 93.8515 Yes
S0 2.4127E-01 9.4924E-03 25.4177 Yes
V0 1.0072E+00 8.7723E-03 114.8168 Yes

µmax 1.0305E+00 1.7254E-02 59.7225 Yes
K1 3.7929E-02 4.1638E-03 9.1092 Yes
K2 5.4211E-01 2.4949E-02 21.7286 Yes
σ11 2.3250E-10 2.1044E-07 0.0011 No
σ22 1.4486E-07 7.9348E-05 0.0018 No
σ33 3.2842E-12 3.6604E-09 0.0009 No
S11 7.4828E-03 1.0114E-03 7.3982 Yes
S22 1.0433E-03 1.4331E-04 7.2804 Yes
S33 1.1359E-02 1.6028E-03 7.0867 Yes

Table E.3. Estimation results. Model in (E.42) and (E.40) - data from Figure E.2a.
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Model falsification or unfalsification

Moving to the model falsification or unfalsification step, the re-formulated
model is thus unfalsified for its intended purpose with respect to the available
information, and the model development procedure can now be terminated,
but, since the intended purpose of the model is to use it for an open-loop ap-
plication, the parameters should ideally be re-calibrated at this point2 with
an estimation method that emphasizes the pure simulation capabilities of the
model. However, this is outside the scope of the present paper.

E.3.2 Case 2: Partial state information

To illustrate that the proposed modelling cycle can also be successfully applied
when only a subset of the state variables can be measured, the previous example
is repeated with the assumption that only the biomass and the volume can
be measured. The available sets of experimental data for this partial state
information case are shown in Figure E.6. Otherwise, the same assumptions
apply with respect to the intended purpose of the model and the availability
of an initial model structure, where the biomass growth rate is unknown.

E.3.2.1 First modelling cycle iteration

Model formulation

The first iteration of the modelling cycle again starts with the model formula-
tion step, where it is assumed that the model maker has been able to set up
an initial model structure corresponding to (E.35)-(E.37), which is translated
into a stochastic state space model with the following system equation:

d

XS
V

=

 µX − FX
V

−µX
Y + F (SF −S)

V

F

dt +

σ11 0 0
0 σ22 0
0 0 σ33

dωt (E.43)

and the following modified measurement equation:(
y1
y2

)
k

=
(
X
V

)
k

+ ek , ek ∈ N(0,S) , S =
[
S11 0
0 S22

]
(E.44)

where a constant biomass growth rate µ has once again been assumed, because
the true structure of µ(S), which is given in (E.38), is unknown.

2Inspection of the t-scores for marginal tests for insignificance (Table E.3) suggest that,
on a 5% level, there are no significant parameters in the diffusion term, which is confirmed
by a test for simultaneous insignificance based on Wald’s W -statistic.
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Figure E.6. The two batch data sets available for case 2. Solid staircase: Feed flow
rate F ; dashed lines: Biomass measurements y1 (with N(0, 0.01) noise); dash-
dotted lines: Volume measurements y2 (with N(0, 0.01) noise)).

Parameter estimation

Estimating the unknown parameters of the model in (E.43)-(E.44) using the
data from batch no. 1 (Figure E.6a) gives the results shown in Table E.4.

Residual analysis

Evaluating the quality of the resulting model, the cross-validation residual ana-
lysis results in Figure E.7 show that the model does a poor job in pure simu-
lation, whereas its one-step-ahead prediction capabilities are quite good.

Parameter Estimate Standard deviation t-score Significant?

X0 9.6230E-01 1.2996E-02 74.0451 Yes
V0 1.0272E+00 2.1417E-02 47.9641 Yes
µ 6.8730E-01 2.1875E-02 31.4198 Yes

σ11 1.8846E-01 3.9179E-02 4.8104 Yes
σ22 8.7290E-03 1.8577E-03 4.6989 Yes
σ33 1.7391E-02 1.5107E-02 1.1512 No
S11 6.7225E-03 1.0795E-03 6.2273 Yes
S22 1.1078E-02 1.5137E-03 7.3184 Yes

Table E.4. Estimation results. Model in (E.43)-(E.44) - data from Figure E.6a.
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Figure E.7. Cross-validation residual analysis results for the model in (E.43)-(E.44)
with parameters in Table E.4 using the data from batch no. 2 (Figure E.6b). Top
left: One-step-ahead prediction comparison (solid lines: Predicted values); top
right: Pure simulation comparison (solid lines: Simulated values); bottom left:
One-step-ahead prediction residuals, LDF and PLDF for y1 and y2; bottom right:
Pure simulation residuals, LDF and PLDF for y1 and y2.

Model falsification or unfalsification

Again the model is falsified for its intended purpose by the poor pure simu-
lation capabilities, and the modelling cycle must therefore be repeated by re-
formulating the model, once its deficiencies have been pinpointed.

Statistical tests

Table E.4 also includes t-scores for performing marginal tests for insignificance
of the individual parameters, and, as in the full state information case, these
show that, on a 5% level, only σ33 is insignificant, whereas the other parameters
of the diffusion term are both significant. This indicates that the first two
elements of the drift term may be incorrect, and hence that µ is a possible
suspect for being deficient. To confirm this suspicion the model is first re-
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Figure E.8. Partial dependence plots of µ̂k|k vs. X̂k|k and Ŝk|k. Solid lines: Esti-
mates; dotted lines: 95% bootstrap confidence intervals (1000 replicates).

formulated with µ as an additional state variable to yield the system equation:

d

XS
V
µ

=


µX − FX

V

−µX
Y + F (SF −S)

V

F
0

dt +


σ11 0 0 0
0 σ22 0 0
0 0 σ33 0
0 0 0 σ44

dωt (E.45)

and the same measurement equation as in (E.44). The parameters of this
model are then estimated using the same data set as before to give the results
shown in Table E.5, and inspection of the t-scores again show that only σ44 is
now significant on a 5% level, which in turn indicates that there is substantial
variation in µ and thus confirms the suspicion that µ is deficient.

Parameter Estimate Standard deviation t-score Significant?

X0 1.0069E+00 2.1105E-02 47.7095 Yes
V0 1.0250E+00 2.7800E-02 36.8687 Yes
µ0 8.1305E-01 1.2223E-01 6.6516 Yes
σ11 8.5637E-05 5.5485E-05 1.5434 No
σ22 8.2654E-03 8.5005E-03 0.9723 No
σ33 1.5241E-02 2.4948E-02 0.6109 No
σ44 1.4751E-01 4.5181E-02 3.2648 Yes
S11 7.7509E-03 1.1338E-03 6.8362 Yes
S22 1.1118E-02 1.5652E-03 7.1033 Yes

Table E.5. Estimation results. Model in (E.45) and (E.44) - data from Figure E.6a.
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Nonparametric modelling

The structural origin of the deficiency can again be uncovered by using the
re-formulated model in (E.45) and (E.44) and the parameter estimates in
Table E.5 to obtain state estimates X̂k|k, Ŝk|k, V̂k|k, µ̂k|k, k = 0, . . . , N , and
by fitting an additive model to reveal the true structure of the function de-
scribing µ. Assuming again that µ does not depend on V and F , the partial
dependence plots shown in Figure E.8 are obtained. In this case there seems
to be a dependence between µ̂k|k and both X̂k|k and Ŝk|k. However, since the
dependence on Ŝk|k is much stronger than the dependence on X̂k|k, this again
suggests to replace the assumption of constant µ with an assumption of µ being
a function of S when the model is re-formulated for the next iteration.

E.3.2.2 Second modelling cycle iteration

Model re-formulation

Although less obvious, the functional relation revealed in the partial depen-
dence plot between µ̂k|k and Ŝk|k in Figure E.8, is again an indication to a
skilled model maker that the growth rate of biomass can be appropriately
described with Monod kinetics and substrate inhibition, which allows the model
to be re-formulated to yield the following system equation:

d

XS
V

=

 µ(S)X − FX
V

−µ(S)X
Y + F (SF −S)

V

F

dt +

σ11 0 0
0 σ22 0
0 0 σ33

dωt (E.46)

where µ(S) is given by the true structure in (E.38), while the measurement
equation remains unchanged and is therefore the same as in (E.44).

Parameter estimation

Estimating the unknown parameters of the re-formulated model using the same
data set as before gives the results shown in Table E.6.

Residual analysis

Examining the cross-validation residual analysis results shown in Figure E.9,
there still seems to be some non-random variation left in the cross-validation
data set that is not explained by the model. This may be attributed to the
fact that the data set used for parameter estimation and the cross-validation
data set cover different ranges of state space, which, because only partial state
information is available, the model is more sensitive to in this case.
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Figure E.9. Cross-validation residual analysis results for the model in (E.46) and
(E.44) with parameters in Table E.6 using the data from batch no. 2 (Figure E.6b).
Top left: One-step-ahead prediction comparison (solid lines: Predicted values);
top right: Pure simulation comparison (solid lines: Simulated values); bottom
left: One-step-ahead prediction residuals, LDF and PLDF for y1 and y2; bottom
right: Pure simulation residuals, LDF and PLDF for y1 and y2.

Model falsification or unfalsification

In principle, although the results obtained with the re-formulated model are
much better than those obtained with the initial model, the re-formulated

Parameter Estimate Standard deviation t-score Significant?

X0 1.0137E+00 1.6790E-02 60.3759 Yes
V0 1.0118E+00 1.1571E-02 87.4443 Yes

µmax 1.0679E+00 1.4353E-01 7.4405 Yes
K1 4.1664E-02 3.2800E-02 1.2702 No
K2 6.3372E-01 1.8116E-01 3.4980 Yes
σ11 6.8577E-11 2.2270E-08 0.0031 No
σ22 7.9677E-06 1.1223E-03 0.0071 No
σ33 1.4241E-07 2.6577E-05 0.0054 No
S11 7.4094E-03 1.0986E-03 6.7447 Yes
S22 1.1364E-02 1.6193E-03 7.0174 Yes

Table E.6. Estimation results. Model in (E.46) and (E.44) - data from Figure E.6a.
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model is thus falsified for its intended purpose, and the modelling cycle should
be repeated by re-formulating the model again. However, in the context of
the proposed framework, all information available in the data set used for
estimation has been exhausted, because a model has been developed where the
diffusion term is insignificant3. In other words it is not possible to pinpoint
any model deficiencies directly, because these deficiencies are only revealed
by the cross-validation data set and not by the data set used for estimation.
Ideally, the parameters of the model should thus be re-estimated using the
cross-validation data set as well before re-formulating the model, but this takes
away the possibility of easily evaluating the quality of the resulting model
through cross-validation, unless more data is obtained. A discussion of possible
ways to resolve this issue is outside the scope of the present paper.

E.4 Discussion

The example presented in the previous section illustrates the strength of the
proposed grey-box modelling framework in terms of facilitating systematic
model improvement. A key feature in this regard is the ability to pinpoint
and subsequently uncover the structural origin of model deficiencies by means
of estimates of unknown functional relations, and another key result is that this
is also possible in situations where all process variables cannot be measured.

More specifically, the full state information case demonstrates that a high qua-
lity estimate of the functional relation between the unmeasured biomass growth
rate and the measured substrate concentration can easily be obtained, and the
partial state information case demonstrates that a similar estimate, of lower
quality, can be obtained without measuring the substrate concentration.

The lower quality of the estimate obtained in the partial state information case
is due to the fact that the performance of the proposed framework is limited by
the quality and amount of available experimental data, in the sense that, if the
available data is insufficiently informative, e.g. due to large measurement noise,
or if the available measurements render certain subsets of the state variables of
the system unobservable, parameter identifiability and hence the reliability of
the proposed methods for pinpointing and uncovering the structural origin of
model deficiencies is affected. Experimental design and selection of appropriate
measurements are therefore key issues that must also be addressed in model
development, but these are outside the scope of the present paper.

The performance of the proposed grey-box modelling framework is also limi-
ted by the quality and amount of available prior information, and if there
is insufficient information to establish an initial model structure, it may not
be worthwhile to use this approach as opposed to a black-box modelling ap-

3Inspection of the t-scores for marginal tests for insignificance (Table E.6) suggest that,
on a 5% level, there are no significant parameters in the diffusion term, which is confirmed
by a test for simultaneous insignificance based on Wald’s W -statistic.
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proach. Furthermore, the model maker must be able to determine the specific
phenomenon causing a pinpointed model deficiency in order to uncover its
structural origin, and this may not always be possible either.

If, however, sufficient prior information and experimental data is available, the
proposed framework is very powerful as a tool for systematic model improve-
ment. In particular, it relies less on the model maker than other approaches to
grey-box modelling (Bohlin and Graebe, 1995; Bohlin, 2001) and also prevents
him or her from having to resort to using black-box models for filling gaps in
the model. This is due to the fact that estimates of unknown functional rela-
tions can be obtained and visualized directly. The proposed framework may be
seen as a grey-box model generalization of the well-developed methodologies for
identification of linear black-box models (Box and Jenkins, 1976; Ljung, 1987;
Söderström and Stoica, 1989). However, unlike in the linear case, where con-
vergence is guaranteed if certain conditions of identifiability of parameters and
persistency of excitation of inputs are fulfilled, no rigorous proof of convergence
exists for the framework proposed here. Nevertheless, the example presented
in the previous section demonstrates that the proposed framework can be used
to obtain valuable information to facilitate faster model development.

E.5 Conclusion

A systematic framework for improving the quality of continuous time models of
dynamic systems based on experimental data has been presented. The proposed
grey-box modelling framework is based on an interplay between stochastic dif-
ferential equation modelling, statistical tests and nonparametric modelling and
provides features that allow model deficiencies to be pinpointed and the struc-
tural origin of these deficincies to be uncovered to improve the model. A key
result in this regard is that the proposed framework can be used to obtain non-
parametric estimates of unknown functional relations, which allows unknown
or inappropriately modelled phenomena to be uncovered and proper parametric
expressions to be inferred from the estimated functional relations.

The performance of the proposed framework has been illustrated with an
example involving a dynamic model of a fed-batch bioreactor, where it has
been shown how an inappropriately modelled biomass growth rate can be un-
covered and a proper parametric expression inferred. A key point illustrated
with this example is that reasonable estimates of functional relations involving
only variables that cannot be measured directly can also be obtained.



Abbreviations

API Application program interface
CLDF Crossed lag dependence function
CPU Central processing unit
CV Cross-validation
CTSM Continuous Time Stochastic Modelling
EKF Extended Kalman filter
EMM Efficient Method of Moments
GMM Generalized Method of Moments
II Indirect Inference
LDF Lag dependence function
LTI Linear time-invariant
LTV Linear time-varying
LS Least squares
MARS Multivariate Adaptive Regression Splines
MART Multiple Additive Regression Trees
MAP Maximum a posteriori
MCMC Markov Chain Monte Carlo
MEF Martingale Estimating Function
ML Maximum likelihood
MPC Model predictive control
NL Nonlinear
NLDF Nonlinear lag dependence function
NLP Nonlinear program
NLS Nonlinear least squares
ODE Ordinary differential equation
OE Output error
PE Prediction error
PED Prediction error decomposition
PEF Prediction-Based Estimating Function
PEFM Prediction-Based Estimating Function with Measurement noise
PLDF Partial lag dependence function
SACF Sample autocorrelation function
SCCF Sample cross-correlation function
SDAE Stochastic differential algebraic equation
SDE Stochastic differential equation
SPACF Sample partial autocorrelation function
SQP Sequential quadratic programming
SVD Singular value decomposition
WLS Weighted least squares
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cess Optimization. Ph.D. thesis, École Polytechnique Fédérale De Lausanne,
Lausanne, Switzerland.

Young, P. C. (1981). Parameter Estimation for Continuous-Time Models - A
Survey. Automatica, 17(1), 23–39.

Øksendal, B. (1998). Stochastic Differential Equations - An Introduction with
Applications . Springer-Verlag, Berlin, Germany, fifth edition.
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