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Summary v

Summary

The thesis addresses the thermodynamics involved when describing the properties of

solutions of amino acids and dipeptides. Furthermore, it presents the solubility measurements

of two dipeptides (glycylglycine and glycyl-L-alanine) in aqueous salt solutions and electrode

potential measurements of the same two dipeptides in aqueous NaCl solutions.

Chapter 1 is an introduction to the chemistry of amino acids and dipeptides. It presents the

principles of the Bjerrum diagram and the isoelectric point of a polyvalent compound. The

industrial and medical use of amino acids is briefly touched.

Chapter 2 is the main thermodynamic chapter where most of the required properties are

presented and defined. The schism of defining the activity coefficient at infinite dilution in a

non-binary mixture is pointed out as well as the alternative types of concentration scales.

In Chapter 3 the four most common types for experimental methods for determination of

solvent or solute activity are described by using the thermodynamic properties of the

proceeding chapter.

Chapter 4 focuses on the thermodynamics of electrochemistry and is based on the principles

of Chapter 2. As an example experimental data obtained on a so-called Harned cell is

presented.

Chapter 5 presents the results of the experimental work carried out during the sabbatical,

namely the solubility of glycylglycine and glycyl-L-alanine in aqueous NaCl, Na2SO4, and

(NH4)2SO4 solutions - and electrode potential measurements with ISE's of solutions

containing NaCl and the two dipeptides mentioned above.

Chapter 6 presents the basis for the so-called McMillan-Mayer framework in relation to

statistical thermodynamics and in relation to the usual (Lewis-Randall) framework.

In Chapter 7, the osmotic equilibrium and limitations of the van't Hoff equation are examined.

In Chapter 8, the continuum concept is described and related to the McMillan-Mayer

framework. Different types of electrolyte models are presented: Debye-Hückel, extended

UNIQUAC, and HS-MSA. The usually approach to model solubility data is presented.
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In Chapter 9, the modelling results of the extended UNIQUAC model on binary and ternary

aqueous solutions containing amino acid are presented. The solubility prediction of the

extended UNIQUAC model commented. Furthermore, an analysis of the behaviour of the HS-

MSA model in electrolyte solutions is carried out and commented.

Chapter 10 is giving an overview of the extent of the database created during this project.

Chapter 11 is a conclusion, summarising the results achieved during this project.

Three appendices are included: one on Euler's theorem, one on equilibrium, and one on

electrostatics.
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Resumé på dansk

Afhandlingen omhandler den termodynamik, der er involveret, når man skal beskrive

egenskaberne af opløsninger af aminosyrer og dipeptider. Ydermere præsenteres opløse-

lighedsmålinger af to dipeptider (glycylglycin og glycyl-L-alanin) i vandige salt-opløsninger

og målinger af elektrode-potentialer af de samme to dipeptider i vandig NaCl opløsninger.

Kapitel 1 er en introduktion til aminosyrer og dipeptiders kemi. Det præsenterer principperne

ved Bjerrum-diagrammerne og det isoelektriske punkt af et fler-valent stof. Den industrielle

og medicinale brug af aminosyrer er kort berørt.

Kapitel 2 er det centrale termodynamiske kapitel, hvor de fleste af de krævede egenskaber er

præsenteret og defineret. Skismaet ved definitionen af aktivitetskoefficienten ved uendelig

fortynding i en ikke-binær blanding er belyst, ligeledes som alternative koncentrationsskalaer.

I Kapitel 3 er de fire mest almindelige typer af eksperimentelle metoder til bestemmelse af

aktiviteten af opløsningsmidlet eller det opløste stof beskrevet af hjælp af de termodynamiske

egenskaber fra det foregående kapitel.

Kapitel 4 fokuserer på termodynamikken i elektrokemien og er baseret på principperne fra

Kapitel 2. Som et eksempel er eksperimentelle data fra en såkaldt Harned-celle præsenteret.

Kapitel 5 præsenterer resultaterne af det eksperimentelle arbejde, som er udført under det

eksterne forskningsophold, nemlig opløseligheden af glycylglycin og glycyl-L-alanin i vandig

NaCl, Na2SO4 og (NH4)2SO4 opløsninger - og målinger af elektrode-potentialer med

ionselektive elektroder i opløsninger indeholdende NaCl og de to ovennævnte dipeptider.

Kapitel 6 præsenterer grundlaget for det såkaldte McMillan-Mayer framework i relation til

statistisk termodynamik og i relation til det sædvanlige (Lewis-Randall) framework.

I Kapitel 7 forklares den osmotiske ligevægt og begrænsningerne af van't Hoff-ligningen.

I Kapitel 8 beskrives kontinuum-konceptet og relateres til McMillan-Mayer framework'et.

Forskellige typer af elektrolyt-modeller er præsenterede: Debye-Hückel, udvidet UNIQUAC

og HS-MSA. Den sædvanlige måde, hvorpå opløselighedsdata modelleres, er præsenteret.

I Kapitel 9 præsenteres modelleringsresultaterne fra den udvidede UNIQUAC-model på

binære og ternære vandige opløsninger indeholdende aminosyre. Den udvidede UNIQUAC-
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models forudsagte opløseligheder er kommenteret. Ydermere er der udført en analyse af

forløbet af HS-MSA-modellen i elektrolyt-opløsninger og kommenteret.

Kapitel 10 giver et overblik over omfanget af den database, som er skabt i løbet af projektet.

Kapitel 11 er en konklusion, der opsummerer de opnåede resultater.

Tre appendices er inkluderede: ét om Euler's theorem, ét om ligevægt og ét om elektrostatik.
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Introduction to the Chemistry of Amino Acids 1

1. Introduction to the Chemistry of Amino Acids

Amino acids are found in all living organisms on Earth. Also in meteorites traces of amino

acids have been discovered, Jakubke and Jeschkeit (1982). But despite their universal

presence, their structure and their behaviour are not equally widespread. This chapter gives an

introduction to the chemistry of amino acids and its purpose is to present some of the

fundamental properties of amino acids.

1.1 Structure of amino acids

From a chemical viewpoint an amino acid is a base as well as an acid; i.e. it consists both of

an amino group and a carboxylic group. The amino acid is therefore an ampholyte since it can

react both as a base and as an acid. The most common amino acids are the α-amino acids,

which are amino acids where the amino group is located at the α-carbon atom of the

carboxylic group as shown in Figure 1.1. The α-carbon atom (usually) has hydrogen and a

side chain at the last two sites.

H2N C COOH

H

R

α

Figure 1.1: Basic structure of an α-amino acid.

If also the side chain is hydrogen, the compound is the simplest of amino acids, namely

glycine, as presented in Figure 1.2.

H2N C COOH

H

H

Figure 1.2: Glycine - the simplest α-amino acid.

Among the α-amino acids, it is only glycine that does not have a chiral α-carbon atom since

two of the neighbouring groups are hydrogen. However, in nature more than 180 different

amino acids are encountered (Jakubke and Jeschkeit, 1982). Twenty of these are denoted
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natural amino acids (or primary protein amino acids), of which 19 are α-amino acids and one

is a cyclic α-amino acid (proline). These are presented in Table 1.1 on page 9. The reason for

naming them 'natural' is that they are the building blocks of those proteins encountered in

nature. Two amino acids linked together by a peptide bond are called a dipeptide, which is

shown in Figure 1.3. Continuing this process of dehydration will eventually lead to the

formation of protein. By convention, peptides of molecular weight up to 10,000 are known as

polypeptides and above that as proteins, Morrison and Boyd (1992).

H2N CHR C OH

O

N CHR COOHH

H
1 2+

21
H2N CHR C

O H

COOHCHRN
– H2O

Figure 1.3: The principle of dehydration of two amino acids forming a dipeptide.

Contrary to plants and some microorganisms, animals and humans are only capable of

synthesising 10 of the 20 naturally occurring amino acids. The rest must be included in the

diet; these amino acids are classified as essential. An asterisk in Table 1.1 marks these

essential amino acids.

The naturally occurring amino acids all have trivial names. The names are related to either the

material from which the amino acid was isolated for the first time, the method applied to

isolated them, or a structural resemblance to known compounds (Jakubke and Jeschkeit,

1982). The naming of dipeptides is based on the trivial names of the amino acids. The

dipeptide is written with the amino group on the left and the carboxyl group on the right, and

then the dipeptide is named according to the sequence of the amino acids, read from left to

right. Two dipeptides are shown at the end of Table 1.1.

1.2 Stereochemistry

Because of the chirality of the α-carbon atom the amino acids exist in two enantiomers. These

mirror images are able to rotate polarised light. They are said to be optically active. An amino

acid that rotates the light clockwise (+) is denoted D, and anti-clockwise (–) L. The DL-

notation is experimentally based, only. All naturally occurring amino acids have the same

direction of rotation as L-(–)-glyceraldehyde, Morrison and Boyd (1992), see Figure 1.4.
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C

CHO

HHO

CH2OH

C

COOH

HH2N

R

Figure 1.4: Projections of L-glyceraldehyde and an L-amino acid, respectively. The groups vertically attached to

the central carbon atom are pointing away from the observer and those groups attached horizontally are pointing

towards the observer.

1.3 The influence of pH

Amino acids have a higher solubility in polar solvents (e.g. water, ammonia) than in non-

polar solvents (e.g. ethanol, methanol, acetone), Jakubke and Jeschkeit (1982). The reason for

this is the equilibrium

H2N COOH

R H

+H3N COO

R H

AA AA
±

–

Figure 1.5: Equilibrium of the uncharged species AA and the zwitterion AA±.

which is a reaction that lies far to the right in polar solvents. The gain in energy is 44.8 - 51.5

kJ / mole (Jakubke and Jeschkeit, 1982). AA± is the amino acid in the so-called zwitterionic

form. The German word Zwitter means hybrid or hermaphrodite. The unchanged amino acid,

AA, will have a dipolar moment due to the two functional groups. The zwitterion do not have

a dipole, but on the other hand nor is it an ion since its ionic groups are not entitled to move

freely. In Anglo-Saxon literature the zwitterion is sometimes referred to as the dipolar ion.

Furthermore, the amino acid is capable of assuming a cationic and an anionic form.

Depending on the side chain there might be even more ionic configurations. For the naturally

occurring amino acids the pKa-values for the amino group are approximately 1.8 - 2.8 (CRC

Handbook of Chemistry and Physics, 78th Edition). Consequently, the amino acid will be fully

protonised at low pH (pH < 1). In the other end of the acidity scale (pH > 13) the amino acid

will be stripped of all acidic hydrogen since the pKa-values for the carboxylic group are 8.9 -

10.6.

Assuming ideal solution theory (see Chapter 2. Basic Thermodynamics) all dissociation

reactions arisen from one amino acid can, generally, be written as eq. (1.1).
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Am = Am–1 + H+

]A[

]H][A[
K

m

1m
c
1

+−

=

(1.1)

Am – (n–1) = Am – n + H+

]A[

]H][A[
K

)1n(m

nm
c
n −−

+−

=

where n is the number dissociation reactions (there are n + 1 species of any given amino acid),

m is the maximum number of positive charge on the amino acid, and c
jK is the equilibrium

constant for the dissociation of reaction j based on molarities. The unit of c
jK is mole per litre.

Greenstein and Winitz (1961) presented tables listing the apparent pK'a values of many amino

acids. The apparent K'j values are identical to the dissociation constants c
jK as defined in eq.

(1.1) except that it is the proton activity instead of the proton concentration. Therefore the K'j

values are dimensionless. However, under the present assumptions (ideal solution) K' is equal

to Kc. Greenstein and Winitz (p. 482) state that for all practical purposes, the apparent K'

values may be employed with nearly equal validity in eq. (1.1).

In total there are n equations (n dissociation reactions, eq. (1.1)) to describe 2n + 1 unknowns,

[Am], …, [Am–n], [H+], and c
n

c
0 K...,,K ). Specifying the dissociation constants and the pH the

problem is feasible. In order to have dimensionless concentrations the relative concentration

of any given species k of the amino acid is introduced

T

km

k c

]A[ −

=α for k = 0, …, n (1.2)

where cT is the total concentration of the amino acid given by

=

−=
n

0i

im
T ]A[c (1.3)

Because of eq. (1.3) the concentration of the products of the n dissociation reactions are

rewritten as

]H[

]A[K
]A[

mc
11m

+
− =

(1.4)

]H[

]A[K
]A[

)1n(mc
nnm

+

−−
− =
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All the concentrations are then expressed by means of the dissociation constants, the

concentration of hydrogen, and the concentration of Am.

]H[

]A[K
]A[

mc
11m

+
− =

� � (1.5)

n

mc
n

c
2

c
1nm

]H[

]A[KKK
]A[ +

− = �

These expressions for concentrations, eq. (1.5), are then inserted in eq. (1.3) to determine cT.

1K,K]H[
]H[

]A[

K
]H[

1
1]A[

K
]H[

]A[
]A[c

c
0

n

0i

i

0j

c
j

in
n

m

n

1i

i

1j

c
ji

m

n

1i

i

1j

c
ji

m
m

T

≡��
�

�
��
�

�
=

��
�

�
��
�

�
+=

+=

� ∏

� ∏

� ∏

= =

−+
+

= =
+

= =
+

(1.6)

Note that for the sake of simplicity c
0K has been defined as unity. With eq. (1.6) the relative

concentration for any given species k of the amino acid is expressed as a function of pH and

the dissociation constants.

� ∏

∏

� ∏

∏

∏

= =

−+

=

−+

= =

−+

=
+

+

=
++

==

==α

n

0i

i

0j

c
j

i

k

0j

c
j

k

n

0i

i

0j

c
j

in

k

0j

c
j

k

n

k

0j

c
jk

m

T

m
k

c
k

c
2

c
1

T

c
k

K]H[

K]H[

K]H[

K

]H[

]H[

K
]H[

]A[

c

1
]A[

]H[

KKK

c

1
),pH(

�
K

(1.7)

One way of illustrating the relative concentrations of any polyfunctional compound is the so-

called Bjerrum diagram as shown in Figure 1.6.
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Figure 1.6: The Bjerrum diagram of glycine. The relative concentrations of cation, zwitterion, and anion as a

function of pH. The dotted line is at the isoelectric point, pI = 5.97. The pK'a values are 2.34 and 9.60 of

Greenstein and Winitz, 1961.

The pK'a values are graphically represented in Figure 1.6 as the intercepts between cation and

zwitterion, pH = 2.34, and between zwitterion and anion, pH = 9.60.

1.4 The isoelectric point

The isoelectric point is defined as the pH where the number of the positively charged ions

(cations) of the amino acid is equal to the number of the negatively charged ions (anions). So

the net charge of all the species of the ampholyte are zero. "Historically, this (the isoelectric

point) is defined as the point at which an amphoteric electrolyte when subjected in a solution

to a source of direct current will move towards neither positive nor negative pole", Greenstein

and Winitz, p. 482; their reference is W.B. Hardy, Proceedings of the Royal Society

(London), B, 66, 110 (1900). Writing up a charge balance at the isoelectric point gives

0)km(

or,0)nm())1n(m(

...)mm(...)1m(m

n

0k
k

nm1n

m10

=α⋅−

=α⋅−+α⋅−−+
+α⋅−++α⋅−+α⋅

�
=

−− (1.8)

Inserting eq. (1.7) and assuming that the proton concentration is not zero gives

0K]H[)km(
n

0k

k

0j

c
j

k
iso =⋅−� ∏

= =

−+ (1.9)
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Note that eq. (1.9) is independent of the total amino acid concentration. Consequently, the

isoelectric point is a property that is specific for each compound. Solving eq. (1.9) for glycine

gives an isoelectric point of 5.97. In the case of glycine, the isoelectric point is more like an

isoelectric band between pH 5 and pH 7 as shown in Figure 1.6.

Having the relative concentrations of the species of the amino acid the net charge znet of the

molecule is easily deducted.

),pH()km(),pH(z c
n

0k
k

c
net KK �

=

α⋅−= (1.10)

From eq. (1.10) it is seen that the net charge is a function of pH and dissociation constants

wherefore Figure 1.7 shows the average charge of a glycine solution as a function of pH. It is

clearly observed that glycine is a divalent amino acid since it has two equivalence points.

0 2 4 6 8 10 12 14
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

pH

ch
ar

ge

pK
a

pI

pK
a

Figure 1.7: The average charge of glycine as function of pH. This is almost an equivalent to a titration curve.

Both the pK'a values and the isoelectric point, pI, are shown.

When a given amount of an amino acid is dissolved in pure water, the pH will begin to

approach the pH of the isoelectric point, pI, as shown in Figure 1.8. If the amount of amino

acid was not sufficient to reach the pI, the pH of the solution will be somewhere between pH

= 7 (that of pure water) and pH = pI.
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Figure 1.8: The pH as a function of molarity of glycine.

By comparing the Bjerrum diagram, Figure 1.6, and Figure 1.8 we can see that the only

configuration of glycine present in any glycine - water solution will be the neutral zwitterion -

whatever the amino acid concentration.

For some of the amino acids with functional groups in the side chain, e.g. aspartic acid, the

zwitterionic form will not be the only form present at pI as shown in Figure 1.9. At the

isoelectric point only 80% of the aspartic acid is in the zwitterionic configuration. In these

cases it will be inappropriate to treat the amino acid solution as if the solution contained the

zwitterionic form, only.
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Figure 1.9: The Bjerrum diagram of aspartic acid. The relative concentrations of cation (Asp+), zwitterion

(Asp±), and anions (Asp– and Asp– –) as a function of pH. The dotted line is at the isoelectric point, pI = 2.77. The

pK'a values are 1.88, 3.65, and 9.60 (Greenstein and Winitz, 1961).
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1.5 The use of amino acids

Amino acids have a broad spectrum of applications. One of the main uses of amino acids is as

an additive in the food industry, e.g. glycine is used for sweet jams and salted vegetables,

sauce, vinegar and fruit juice. The reason is that the taste of the naturally occurring amino

acids is categorised as either bitter or sweet, Barrett (1985), p.8. As previously mentioned the

naturally occurring amino acids are L-enantiomer but changing the configuration to the D-

enantiomer gives a sweeter taste. Furthermore, interactions between amino acids and sugar

can give rise to pleasant odours. An example is proline and glucose that together produce an

odour of newly baked bread, Barrett (1985), p.8.

The other major use of amino acids is as buffers or acid correctors. Glycine is used as such in

wine and soft beverage. Likewise glycine also finds use as an anti-oxidant in e.g. cream and

cheese. Because glycine also retains the reproduction of bacteria, e.g. E. coli., is used as an

antiseptic agent for fish flakes.

Glycine is medically used in amino acid injection solution as nutritional infusion and as a raw

material for making L-Dopa, a pharmaceutical for treating Parkinson's disease.

In the fertiliser industry glycine is used as a solvent for removing CO2. Glycine is also an

intermediate in the production of pesticides.

The application of a number chemical compounds and pharmaceuticals are given on the

internet at the address http://www.gtamart.com/mart/products/chemical/zhitgaa.htm.

Table 1.1: Most chemicals have a three-dimensional structure and to visualise that in the two-

dimensional space calls for a projection. In organic chemistry the Fisher projection is

designed to accomplish just that. The two groups to the left and right of the α carbon atom are

pointing out of the plane towards the observer whereas the other two groups are pointing into

the plane away from the observer.

Fisher projection

C

COOH

H2N H

R

= C

COOH

H2N H

R
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The amino acids are sometimes divided into four subsections: non-polar, polar, acidic, and

basic amino acids.

Non-polar amino acids (hydrophobic)

C

COOH

H2N H

H

C

COOH

H2N H

CH3

C

COOH

HH2N
C

COOH

HH2N C

COOH

HH2N

glycine L-alanine L-valine*
L-leucine*

L-isoleucine*

C

COOH

HH2N
C

COOH

HH2N

N

H

C

COOH

HN
H C

COOH

HH2N

S

L-phenylalanine*
L-tryptophan*

L-proline L-methionine*

Polar amino acids (hydrophilic)

C

COOH

HH2N

NH2

O

C

COOH

HH2N

NH2O

C

COOH

HH2N

HO

L-asparagine L-glutamine L-tyrosine

HS

C

COOH

HH2N

HO

C

COOH

HH2N

HO

C

COOH

HH2N

L-cysteine L-serine L-threonine*
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Acidic amino acids

C

COOH

HH2N

OH

O

C

COOH

HH2N

OHO

L-aspartic acid L-glutamic acid

Basic amino acids

C

COOH

HH2N

N

NH

H

NH2

C

COOH

HH2N

NH2

C

COOH

HH2N

N
N

H

L-arginine*
L-lysine*

L-histidine*

Two dipeptides

H2N
N

O

OH

H O

H2N
N

O

OH

H O

CH3

glycylglycine glycyl-L-alanine

* essential amino acids

Now having the basic knowledge of the structure and behaviour of amino acids the attention

is turned to the thermodynamics. This is necessary in order to describe - in detail - the

chemical behaviour of amino acid solutions.
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2. Basic Thermodynamics

The purpose of this chapter is to derive the thermodynamic properties that will be used in this

thesis. The philosophy of this derivation is to begin by defining the residual property and then

define one ideal and one real solution. The rest of the properties are derived from these

definitions.

2.1 States

The state of a system is usually described by one of the following two sets of variables

(T,P,n) or (T,V,n). It is possible to describe the state of a system by specifying another set of

variables, but these two are the most common ones. Among the variables there is a distinction

between intensive and extensive variables. The latter variables are additive, e.g. volume, mole

numbers, contrary to the former variables, e.g. temperature and pressure. Each intensive

variable has a conjugated extensive variable; entropy and temperature, volume and pressure,

mole and chemical potential, Michelsen and Mollerup (2000), p. 6.

The distinction between intensive and extensive variables is essential when dealing - for

instance - with the Gibbs-Duhem equation, see Appendix A, which states
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where M is a state function, a is the vector of intensive variables, and b is the vector of

extensive variables. A property M can be can by the state (T,P,n) and by the state (T,V,n).

The Gibbs-Duhem equation will look different for these two states due to the fact the second

variable is intensive and extensive, respectively, in the two state descriptions,
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and
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2.2 The residual property of the Gibbs energy

A property M at the state (T,P,n) can be expressed by two terms

M(T,P,n) = M*(T,P,n) + Mr(T,P,n) (2.4)

where M*(T,P,n) is the property M as a hypothetical ideal gas at the state (T,P,n). The

difference between the property M at the state (T,P,n) and M*(T,P,n) is called the residual

property of M, Mr(T,P,n).

2.3 Pure phase

A pure phase is a phase that consists of one species, only. Therefore, the state of a pure phase

is specified by (T,P,n) or (T,V,n). (Note that n is a scalar and not a vector).

The residual Gibbs energy of a pure phase at the state (T,P,n) is written as Gr(T,P,n). The unit

of Gr(T,P,n) is joules, J. The molar residual Gibbs energy of the pure phase, gr(T,P), has the

unit joules per mole, J/mole. Note that this property does not depend on the mole number -

but only on temperature and pressure. As a consequence we have

)P,T(gn)n,P,T(G rr ⋅= (2.5)

The partial molar residual Gibbs energy of a pure phase at the state (T,P,n) is called the

residual chemical potential of a pure phase, μr(T,P). This property has the unit of joules per

moles, J/mole. By definition it is independent of the mole number.

)P,T(g
n

)P,T(gn

n

)n,P,T(G
)P,T(G)P,T( r
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P,T

r
rr =��
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⋅∂=��
�
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��
�

�
∂

∂≡=μ (2.6)

2.4 The one species in the pure phase

Logically, the properties of the pure phase are identical to those of the one species i forming

that phase. Therefore the residual Gibbs energy of species i in a pure phase, the molar residual

Gibbs energy of species i in a pure phase, and the residual chemical potential of species i in a

pure phase are denoted by a subscript i, Gi
r(T,P,ni), gi

r(T,P), and μi
r(T,P), respectively. Eq.

(2.5) is valid as eq. (2.7)
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)P,T(gn)n,P,T(G r
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r
i ⋅= (2.7)

and as a consequence one has
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Utilising eq. (2.4) the chemical potential of the species i in a pure phase at the state (T,P,ni) is

)P,T()P,T()P,T( r
i

*
ii μ+μ=μ (2.9)

where )P,T(*
iμ is the (hypothetical) chemical potential of the pure species i as an ideal gas at

T and P. This potential is achieved as
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where Po is an arbitrarily chosen set point pressure. The phase is treated as an ideal gas

wherefore we make use of the ideal gas law

solutionspureforRTnPVornRTPV i== (2.11)

so eq. (2.10) is rewritten as

oi

P

P

i
i

o*
ii

*
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RTn
)n,P,T(G)n,P,T(G

o
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=− �
(2.12)

Since the set point pressure is constant, the second term on the left-hand side is only a

function of temperature

)T(n)n,P,T(G o
iii

o*
i μ= (2.13)

Inserting eq. (2.13) into eq. (2.12) and formulate the corresponding (hypothetical) Helmholtz

energy of the pure species i as an ideal gas one has
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The (hypothetical) chemical potential of pure species i as an ideal gas is then
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(2.15)

This is the chemical potential of a pure phase treated as an ideal gas at T and P. One, then,

postulates that the chemical of a pure phase treated as a real gas is

o
io

ii P

)P,T(f
lnRT)T()P,T( +μ=μ (2.16)

Thus defining fugacity fi at T and P. The residual chemical potential of the pure phase of

species i is expressed in terms of its fugacity

)P,T(lnRT
P

)P,T(f
lnRT)P,T( i

ir
i ϕ==μ (2.17)

where ϕi(T,P) by definition is the fugacity coefficient at T and P of species i in the pure phase.

2.5 Mixture

A mixture is a phase that consists of more than one species. Therefore, the state of a mixture

is specified by (T,P,n) or (T,V,n).

The residual Gibbs energy, of a mixture, at the state (T,P,n) is written as Gr(T,P,n). The unit

of Gr(T,P,n) is joules, J. The molar residual Gibbs energy of the mixture, gr(T,P,n), has the

unit joules per mole, J/mole. Even though gr(T,P,n) depends on the vector of the mole

numbers, it is independent of the total number of moles; it is only dependent of the

composition of the mixture. So it would have been appropriate to give gr in terms of (T,P,x)
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instead, but this gives some disadvantages in regards to molar derivatives. x is the vector of

the mole fractions.

2.6 Species in the mixture

The unit of the molar residual chemical potential of species i in the mixture is still joules per

mole. It should be stressed that μi
r(T,P,n) is not dependent on the total number of moles but

dependent on the composition of the mixture, x.

Utilising eq. (2.4) the chemical potential of the species i in a mixture at the state (T,P,n) is

),P,T(),P,T(),P,T( r
i

*
ii nnn μ+μ=μ (2.19)

where ),P,T(*
i nμ is the (hypothetical) chemical potential of species i in the mixture treated as

an ideal gas at the state (T,P,n). This potential is achieved by postulating that the

(hypothetical) Helmholtz energy treated as an ideal gas is
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in analogy to eq. (2.14). The potential is
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when applying the ideal gas law, PV = nRT
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i
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lnRT)T(),P,T( +μ=μ n (2.22)

Since a chemical potential is a molar derivative, see Appendix A eq. (A.5), we have

� μ=
i

*
ii

* ),P,T(n),P,T(G nn (2.23)

For consistency eq. (2.22) is inserted into eq. (2.23) and the relation A = G – PV is used, and

eq. (2.20) reappears. Finally, one postulates that the chemical potential of a species i in a real

mixture is

o
io

ii P

),P,T(f̂
lnRT)T(),P,T(

n
n +μ=μ (2.24)
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where ),P,T(f̂ i n is the fugacity of species i in the mixture at the state (T,P,n). As a

consequence, the fugacity coefficient of species i in the mixture, ),P,T(ˆ i nϕ is defined by

),P,T(ˆlnRT
xP

),P,T(f̂
lnRT),P,T( i

i

ir
i n

n
n ϕ==μ (2.25)

Note that by subtracting eq. (2.15) from eq. (2.22), i.e. the two (hypothetical) chemical

potentials of species i (ideal gas), one will arrive at the most often used description of an ideal

solution, eq. (2.29).

2.7 Reference state

Since the chemical potential is a state function (independent of the way of integration, exact

differential), one can choose the set point arbitrarily.

A reference state is arbitrary by definition. Choosing a reference state of species i in a system

as the state where T and P are identical to those of the system and where species i is the only

one, μi(T,P), the difference between the chemical potential of species i in the system and its

reference is
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Defining the activity of species i as
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nn
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one has from eq. (2.26)

),P,T(alnRT)P,T(),P,T( iii nn +μ=μ (2.28)

This is the chemical potential of species i at the state (T,P,n) in a real solution or a non-ideal

solution.
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2.8 Ideal solution

Besides defining the real solution, the ideal solution must also be defined. There is no unique

definition of an ideal solution. However, normally the ideal solution is regarded as a solution

without interactions among the species. Consequently, the ideal solution is based on pure

component properties and the composition of the solution.

μi
id(T,P,n) = μi(T,P) + RT ln xi . (2.29)

The chemical potential of the ideal solution is denoted by superscript id. By defining the ideal

solution by setting the activities equal to the mole fractions, one obtains a convenient state;

the ideal gas will be an ideal solution - but not vice versa. Other concentration scales (e.g.

molalities and molarities) are equally valid but the subsequent excess properties will differ

from those derived in this work.

2.9 Definition of the activity coefficient

A real solution approaches the ideal solution when the system is approaching the limit where

species i is the only one.
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1x ii
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nn (2.30)

It follows from eqs. (2.27) and (2.30) that the activity is unity in this limit. Furthermore, the

activity coefficient is defined from eq. (2.27) as
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In the same limit (eq. (2.30)) the activity coefficient of species i is unity

1),P,T(lim i
1xi

=γ
→

n (2.32)

2.10 The excess property of the Gibbs energy

As a residual property is defined as the difference between the real property and the

(hypothetical) property as an ideal gas, eq. (2.4), so is the excess property defined as the

difference between the real property and the property as an ideal solution
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ME(T,P,n) = M(T,P,n) – Mid(T,P,n) (2.33)

In case of the Gibbs energy one has
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Inserting eqs. (2.28) and (2.29) in eq. (2.34)
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The unit of GE is joules, J. The molar excess Gibbs energy gE has the unit of joules per mole,

and is independent of the total number of moles, but dependent on the composition. Since ln i

is a molar property, it follows that
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Eq. (2.36) is the way of achieving the activity coefficient once a gE model has been presented.

One way of testing the correctness of a proposed model follows from the corollary of Euler's

theorem, given in Appendix A.

0
nn

),P,T(G
n

i n,P,Tki

E2

i

k,ij

=��
�

�
��
�

�
∂∂

∂�
≠

n
(2.37)

Since the order of differentiation is immaterial, eq. (2.37) is split into
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Eq. (2.38) is an appropriate test for the consistency of the second molar derivative of a gE

model.
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2.11 The reference state for the asymmetric activity coefficient

In some cases it is more convenient to replace the pure component reference state in eq. (2.28)

by a reference state that includes the partial molar excess Gibbs energy at infinite dilution.

Adding and subtracting this term gives

∞
∞

γ
γ+γ+μ=μ

i

ii
iii

x
lnRTlnRT)P,T(),P,T( n (2.39)

where i
∞ is the activity coefficient of species i at infinite dilution. Consequently, the

reference state in eq. (2.39) is

∞γ+μ=μ ii
ref
i lnRT)P,T( (2.40)

For a binary mixture the concept of the infinite dilution is unequivocal; as x1 approaches zero

x2 approaches unity. But for systems consisting of more than two components several

possibilities arise as to define the activity coefficient at infinite dilution. Here, three manners

to define the infinite dilution are discussed.

1. Constant composition reference. Let ni approach zero while all other mole numbers are

kept constant. This definition leads to an asymmetric activity coefficient of species i that

approaches unity as ni approaches zero

),P,T(lim)0n,,P,T( i
0n

ii
i

nn γ==γ
→

∞ nj≠i constant (2.41)

The advantage of this definition is that it is straightforward. The drawback, however, is

that the reference state depends on the composition of all other components present, eq.

(2.40).

2. Mixed solvent reference. For this definition it is essential to distinguish between solutes

and solvents. Solvents are components that are miscible in all proportions at the system's

temperature and pressure. The activity coefficient at infinite dilution of solute i is then

defined as the activity coefficient when the concentrations of all solutes approach zero

while the mole numbers of all solvent components are kept constant.

),P,T(lim)0,,P,T( i
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solutesi
solutes

nnn
n
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→

∞ nsolvents constant (2.42)

This definition has the advantage that addition of solutes does not change i
∞. However, the

reference state is still dependent on the solvent composition. Therefore, the phase

behaviour of the solvent system as a function of the temperature, the pressure, and the

composition has to be known in order to avoid artefacts due to phase splits.
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3. One reference solvent. In this definition one of the solvents is chosen as the reference

solvent. The activity coefficient of component i at infinite dilution in the pure reference

solvent i
∞ is then defined as

),P,T(lim)1x,P,T( i
1x

rsi
rs

nγ==γ
→

∞ (2.43)

where subscript rs denotes the reference solvent. In this manner i
∞ is independent of all

changes in the system's composition. Moreover i
∞ is equal to the activity coefficient at

infinite dilution in the binary mixture, )P,T(bin,
rs,i

∞γ which is only a function of temperature,

pressure, and the specified reference solvent.

Assuming water as the reference solvent allows the use of thermodynamic tables of the

Gibbs energy of formation, the enthalpy of formation, etc, for solutes. The reference state

of these tables is commonly the infinite dilution in water. A drawback of this definition is,

however, the fact that the solvent interactions are not taken into account (vanishing solvent

effect). This can be illustrated by considering a binary mixture of a solid or a salt dissolved

in water. The definition of the activity coefficient at infinite dilution for the salt, s
∞, is

unequivocal since water is logically chosen as the reference solvent. If a small amount of

water is replaced by ethanol, s
∞ stays the same. Even if more water is replaced by ethanol

until a solvent system is obtained, which only consists of ethanol and no water, s
∞ is not

changing. This definition does not recognise that the solvent properties have changed

completely. The solvent in the physical sense is ethanol but in the thermodynamic sense it

is still water, which is no longer present. In other words a truly hypothetical reference.

The definitions of the infinite dilution in sections 1. and 2. require a gE-model to describe a

change in the reference state. If such a model were available, there would be no need for the

asymmetric normalisation. Either way, there are advantages and disadvantages in using

asymmetric activity coefficients.

In this work, the activity coefficient at infinite dilution is defined by eq. (2.43). The

asymmetric activity coefficient is then by definition

)P,T(

),P,T(
),P,T(~

bin,
rs,i

i
rs,i ∞γ

γ≡γ n
n . (2.44)
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Eq. (2.44) shows that the asymmetric activity coefficient ),P,T(~
rs,i nγ is normalised such that

it is unity in the pure reference solvent, only. If a third component is present, the limit of the

activity coefficient at infinite dilution is no longer 1. Consequently, the reference state of the

chemical potential is

)P,T(lnRT)P,T()P,T(~ bin,
rs,iirs,i

∞γ+μ=μ (2.45)

This reference state is a function not only of temperature and pressure but also of the nature of

the pure reference solvent, since the activity coefficient at infinite dilution is not the same in

different solvents. When an asymmetric activity coefficient is used, the equivalent of eq.

(2.28) is

irs,irs,ii xlnRT),P,T(~lnRT)P,T(~),P,T( +γ+μ=μ nn (2.46)

2.12 The reference state for the molality activity coefficient

Concentrations given as molalities mi are commonly used in electrolyte solutions. The

molality is defined as the number of moles of solute per kg of solvent. To convert from mole

fractions to molalities the following identity is used

solvent
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ii
i x

m
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1000

Mn
n

n

n
x ==== (2.47)

where ni is the moles of solute, n the total number of moles in the solution, nsolvent is the moles

of solvent, Msolvent is the molecular mass of the solvent (g/mole), mi is the molality of the

solute, xsolvent is the mole fractions of the solvent, and m0 is the molality of the pure solvent.

Inserting eq. (2.47) into eq. (2.46) together with eq. (2.44) gives the following expression

0

i
solventrs,i

bin,
rs,iii m

m
xlnRT),P,T(~lnRT)P,T(lnRT)P,T(),P,T( +γ+γ+μ=μ ∞ nn (2.48)

In electrochemistry, the chemical potential of a solute - and not for the solvent - is often

written as

i
m
i

m,ref
ii mlnRT γ+μ=μ (2.49)

However, it is worth noting that it is only possible to take the logarithm of the product i
mmi

when the product is dimensionless. The superscript m indicates that the solute concentrations

are in moles per kg of solvent. To be conform with eq. (2.48) the reference state in eq. (2.49)

has to be
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0
bin,

rs,ii
m,ref

i mlnRT)P,T(lnRT)P,T( −γ+μ=μ ∞ (2.50)

while the molality activity coefficient i
m has to be

solventrs,i
m
i x),P,T(~ ⋅γ=γ n (2.51)

which is a rather peculiar expression for an activity coefficient. If molalities are used, it is

more appropriate to use following definition

0

im
irs,ii m

m
lnRT)P,T(~),P,T( γ+μ=μ n (2.52)

and thus preserving )P,T(~
rs,iμ of eq. (2.45) as the reference state chemical potential which has

a well-defined physical significance.

2.13 The reference state for the molarity activity coefficient

Another concentration unit that is often encountered in aqueous solution chemistry is

molarity, moles per litre, c. Expressing the activity of a species by the product of its molarity

and an 'molarity activity coefficient'

i
c
i

c,ref
ii clnRT ⋅γ+μ=μ (2.53)

This has some peculiar consequences in regards to the reference state. The relation between

the mole fraction and the molarity of a species i is
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total
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i
i c

c

n

V

V

n

n

n
x =⋅== (2.54)

Inserting eq. (2.54) into eq. (2.46) together with eq. (2.44) gives the following expression

0

i
rs,i

bin,
rs,iii c

c
lnRT),P,T(~lnRT)P,T(lnRT)P,T(),P,T( +γ+γ+μ=μ ∞ nn (2.55)

Conforming eq. (2.55) to eq. (2.53) gives a reference state chemical potential

0
bin,

rs,ii
c,ref

i clnRT)P,T(lnRT)P,T( −γ+μ=μ ∞ (2.56)

However, the product of ci i has to be dimensionless in order to be able to take the logarithm.

This results in a rather strange activity coefficient. Instead the chemical potential should be

expressed as

0

i
rs,irs,ii c

c
),P,T(~lnRT)P,T(~),P,T( ⋅γ+μ=μ nn (2.57)

in which case the reference chemical potential remains physical sensible, eq. (2.45).
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This concludes the chapter on the basic thermodynamics. Now one has the tools to describe

the experimental methods for determining the activity of the solvent in a thermodynamic

consistent way. This is the topic for the next chapter.
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3. Thermodynamics of Experimental Methods

The experimental data of amino acid that are found in the literature are mostly isopiestic

measurements and electrode potential measurements. The former experimental method is

presented in this chapter. The isopiestic method is a method that is based on a reference,

which has been experimentally determined by the use of other experimental methods (vapour

pressure measurements and freezing point depression). It is these (reference) methods and the

isopiestic method itself that is the topic of this chapter. The electrode potential method is

presented in the next chapter of electrochemistry.

3.1 The thermodynamics of vapour pressure measurements

Vapour pressure measurements are essentially measurements of pressure differences, ΔP,

between two systems at constant temperature T. Figure 3.1 is a schematic drawing of this

method.

P

P1 P2

T

I II

Figure 3.1: A schematic drawing of an experimental set-up for vapour pressure measurements. The compartment

on the left (I) is containing a pure solvent liquid phase that is at equilibrium with a pure solvent vapour phase at a

vapour pressure P1. The compartment on the right (II) is containing one solvent - solute liquid phase that is at

equilibrium with a vapour phase of pure solvent at a vapour pressure P2. There is only an infinitesimal amount of

vapour in the compartment II in order to avoid too great an evaporation of solvent and consequently an unknown

solute concentration in the liquid phase.
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The vapour pressure of the pure solvent, P1, is (nearly) always known at the given temperature

so with the measurement of ΔP, the vapour pressure of the solvent-solute solution, P2, is

easily determined. It is assumed that the solute is involatile.

Since both phases in compartment I are pure and at equilibrium at a vapour pressure P1, the

solvent fugacity, fw, will be same in the two phases. This is known as the isofugacity criterion,

)P,T(f)P,T(f 1
L
w1

V
w = (3.1)

where V denotes the vapour phase and L the liquid phase.

In compartment II, a pure vapour phase (V) and a solvent-solute liquid phase (L) are at

equilibrium at a vapour pressure of P2. The difference in chemical potentials of the two phases

is
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From eq. (2.17) one can express the pressure ratio as
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From the isofugacity criterion in eqs. (3.1) and (3.2)
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(3.4)

Pressure adjustment of L
wf from P1 to P2, in order to obtain the activity at P2.
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where L
wv is the molar volume of pure liquid water. Eq. (3.5) is inserted in eq. (3.4)
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The way that the activity is determined in eq. (3.6) indirectly sets the reference state as the

state (T,P2).

3.2 Simplifications on the vapour pressure measurements

The usual assumptions are that the two fugacity coefficients )P,T( 2
V
wϕ and )P,T( 1

V
wϕ are

identical and that the partial molar volume is pressure independent. The modified expression

for the activity is then

��
�

�
��
�

�
−⋅= )PP(

RT

v
exp

P

P
),P,T(a 12

L
w

1

2
2

L
w n (3.7)

at the state (T,P2,n). So a series of measurements will almost certainly have a new reference

for each data point since P2 is changing. An almost similar experimental method is the

osmotic pressure measurements. The thermodynamic description of this method is given in

Chapter 7. Osmotic Equilibrium.

3.3 The thermodynamics of freezing point depression measurements

Freezing point depression measurements are essentially measurements of temperature

differences, ΔT, between two systems. Figure 3.2 is a schematic drawing of this method.
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T0 , P0

I II

T2 , P2

Figure 3.2: A schematic drawing of the experimental set-up for freezing point depression measurements. The cup

on the left (I) is only containing solvent - in a solid phase and a liquid phase at equilibrium at a temperature T0

and a pressure P0. The other cup (II) only differs from cup I by having a solute in the liquid phase as well. The

solid phase and the liquid phase of cup II are at equilibrium at a temperature T2 and a pressure P2.

The influence of the pressure on the freezing point is not great and is only given in order to

complete the picture.

Since cup I is only containing the pure solvent, one has isofugacity of the solvent.
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w00

S
w = (3.8)

where S denotes the solid phase and L the liquid phase.

In the other cup, cup II, a pure solid phase (S) and a solvent-solute liquid phase (L) are at

equilibrium at a temperature T2 and a pressure P2. The chemical potentials of the solvent in

two phases are subtracted from each other
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In order to obtain the activity of the solvent the fugacity on the left-hand side of eq. (3.9) has

to refer to the liquid phase. Therefore the left-hand side is temperature and pressure adjusted

to the reference state (T0,P0).
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where S,r
wh is the residual molar enthalpy of the pure solid solvent and S

wv is the molar volume

of the pure solid solvent. At the reference state (T0,P0) eq. (3.8) is valid. Doing the same

adjustments on the liquid phase from the reference state to the state (T2,P2) gives
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where L,r
wh is the residual molar enthalpy of the pure liquid solvent and L

wv is the molar

volume of the pure liquid solvent. Inserting eqs. (3.8) and (3.11) into eq. (3.10) gives
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where SLL
S MMM −=Δ is a property of fusion. Inserting eq. (3.12) into eq. (3.9) gives
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The way that the activity is determined in (3.13) indirectly sets the reference state as the state

(T2,P2). Again we note that the reference will most probably change in a series of

measurements due to changing T and P.

3.4 Simplifications on freezing point depression methods

The usual assumptions are that w
L
ShΔ is temperature independent and the pressure is constant.

The modified expression for the activity is then
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where Δ = T0 – T2. Since T0 >> Δ > 0 and w
L
ShΔ > 0 (for water it is 6.008 kJ/mole, Aktins, p.

936), the logarithmic activity will be negative according to eq. (3.14). This is also what is

expected.

3.5 Boiling point elevation

There is a third experimental method by which the solvent activity is determined, namely the

boiling point elevation. The thermodynamics of the boiling point elevation measurements are

in principle the same as the freezing point depression measurements - except that w
L
ShΔ is

replaced by w
V
LhΔ− in eq. (3.14) where T0 then is the boiling temperature of the pure solvent

and Δ is the temperature elevation, Twith solute – T0.

3.6 The thermodynamics of isopiestic measurements

It is based on obtaining equilibrium between a number of subsystems (or cups each containing

a solvent - solute phase) in a common atmosphere. There is only one common solvent in all

the subsystems and this solvent is also the only volatile compound. In one of the subsystems

the solvent activity is known as a function of concentration, i.e. the reference system. This

makes the isopiestic method a relative method; it is based on results from other experiments.

ref sample 1

P

sample 2

...

Figure 3.3: A schematic drawing of the general experimental set-up for isopiestic measurements. The cup on the

left (ref) is the reference system where the solvent activity is known as a function of concentration. The other

cups (sample 1, sample 2, …) contain solvent - solute solutions. When equilibrium is reached, the concentrations

of the all cups have to be determined.
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In the literature the solvent activity of both the reference system as well as the sample are

often given in terms of osmotic coefficients, φ. The practical osmotic coefficient is defined as

solutes-i,
mM

aln

i iiw

w

�ν
−=φ (3.15)

where aw is the solvent activity, Mw is molar mass of the solvent, i is the stoichiometric

coefficients of the solutes when dissociated, and mi is the molalities of the undissociated

solutes.

When the osmotic coefficients are given both for the reference system and the sample, these

are related as
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The reason for using the osmotic coefficient is that the solvent activity is usually very close to

unity at low solute concentrations. By this definition one gets a more detailed information on

the solvent activity.

Traditionally, sodium chloride, potassium chloride, and sucrose have been used as reference

systems because the water activities in these aqueous solutions are well established. However,

these solvent activities are derived from the two methods presented in this chapter, vapour

pressure and freezing point depression. A third experimental method is also used as a basis for

the references and that is the osmotic pressure measurements, which is presented in Chapter 7.

Osmotic Equilibrium.

Another experimental method is the potentiometric method by which the activities of

electrolytes are determined. The next chapter presents the theory of electrochemistry and the

principles of the Harned cell. At the end of the next chapter the relativity of experimental
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methods, i.e. how they are dependent on the results obtained by other experiments, is

discussed.
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4. Electrochemistry

Electrode potential measurements are an essential part of the experimental data available on

amino acids and peptides as mentioned in the introduction to the previous chapter. In order to

connect the electrochemistry to the basic thermodynamics – at times the two subjects seem to

be disconnected in the literature – this chapter on electrochemistry is given. The Nernst

equation is derived from a purely thermodynamic starting point, the internal energy, in

consistency with the basic thermodynamics presented in Chapter 2.

Once the fundamentals of the electrochemistry are clear, it enables one to describe the

experimental methods by which the activities of electrolytes are obtained. Two such methods

are measurements on a Harned cell and measurements using ion-selective electrodes, see

Chapter 5.

4.1 Electrochemical equilibrium

In electrochemistry, the internal energy U is given by the state (S, V, n, q) where q is the

charge and therefore has the unit of coulomb, C. All variables given are extensive properties

so the internal energy is
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(4.1)

The last term on the right-hand side of eq. (4.1) is due to the work done when a particle of

charge qi is moved into an electric potential, Φ. In general, all work terms should be added in

eq. (4.1), such as ΣiσiAi for surface tension, ig⋅mi for gravity. From the definitions of Gibbs

energy and enthalpy

PVUH,TSHG +≡−≡ (4.2)

one has
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It is observed that the Gibbs energy now includes a second term. Normally, this term is not

included since the systems considered are restricted to a system without any electrical

influences. The so-called electrochemical potential, μi
elec is defined as

�� Φ+μ=μ
i

iii
i
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ii qnn (4.4)

For a single species i the electrochemical potential is
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ii
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qnn
(4.5)

The ratio between the charge and the matter (qi/ni) is usually referred to by the Faraday

constant which is defined as the elementary charge times Avogadro's number, F = e ⋅ NA =

96,485 C/mole. The hydrogen ion or proton has the charge of + e and the molar charge of + e

⋅ NA. The molar charge is, therefore, equally well expressed as + F. In general, the molar

charge of a species i is given as zi⋅F where zi is the ratio between a given molar charge and the

molar charge of a proton, H+. Eq. (4.5) is rewritten to the more familiar form of

Φ+μ=μ Fzii
elec
i (4.6)

Observe, that if Φ > 0 and species i is a cation (zi > 0), the electrochemical potential will be

greater than the chemical potential and thus energetically a less favourable state. On the other

hand, a negative electric potential results in an energetically more favourable state.

The total differential of eq. (4.1)
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(4.7)

where the Gibbs-Duhem equation (Appendix A) is
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wherefore one has
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The total differential of the Gibbs energy, eq. (4.3), is
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As previously described the charge qi is equal to ziniF, so at constant T and P, eq. (4.10)

reduces to
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The amount of species i that reacts will be νi dξ where νi is the stoichiometric coefficients.

( )� ξΦ+μν=
i

iii dFzdG (4.12)

At equilibrium, one has (see Appendix B)

( )� Φ+μν=
i

iii Fz0 (4.13)

4.2 Equilibrium of an electrochemical cell

An electrochemical cell is characterised by having an anode and a cathode. The reactions at

both electrodes are written as reduction reactions, i.e. the electron is a reactant, νe < 0.

ox + | νe | e– → red (4.14)

These reactions are also called the two half-cell reactions. The cell reaction (i.e. the reaction

of the cell) is obtained by subtracting the half-cell reaction at the anode from that at the

cathode. At the cathode at equilibrium the following is valid
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and equally at the anode
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In order to maintain electroneutrality νe must be the same at both electrodes. Subtracting the

molar Gibbs energy of the anode from that of the cathode consequently gives
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All the ions (zi and zj ≠ 0) experience the same electric potential; that of the solution, ΦS, so

eq. (4.17) is
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where ΔΦcell is the electric potential difference of the cell. Due to electroneutrality the total

charge at the cation is equal to that of the anion. Consequently, the third term on the right-

hand side of eq. (4.18) is zero. Furthermore, the first two terms are the sum of the chemical

potentials of the cell reaction.

celle
i

cell
i

cell
i F0 ΔΦν−μν=� (4.19)

The figure νe is always negative since the electrons are reactants in a reduction. To eliminate

any confusion regarding the sign convention of the stoichiometric coefficient for the electron

eq. (4.19) is reformulated
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celle
i

cell
i

cell
i F||0 ΔΦν+μν=� (4.20)

where | νe | is the numerical value of the stoichiometric coefficient for the electron. It is

noticed that the electric potential difference is also an intensive property as the electric

potential is, i.e. independent of the extent of reaction.

4.3 The electric potential in an electrochemical cell

The electric potential difference is also called the zero-current electrode potential of the cell

(Ecell) or in short the electrode potential. An older notation for the electrode potential is

electromotive force, emf. This is misleading since a force has the unit of newton and the

electrode potential that of volt.

Substituting the electric potential difference by the electrode potential in eq. (4.19) a familiar

relation emerges

celle
i

cell
i

cell
i EF|| ν−=μν� (4.21)

or if the stoichiometric coefficient of the electron is regarded signless

EFe
i

ii ν−=μν� (4.22)

It is worth noting that due to the convention of achieving the cell reaction, (and thus defining

the electrode potential of the cell) gives a positive electrode potential for any spontaneous

reaction since the sum of the chemical potentials is negative for such a spontaneous reaction.

It is from this fundamental relation between the summation of chemical potentials and the

electrode potential of a cell that experimental measurements of electrode potentials of a given

cell are applicable to determine the activity coefficients. However, it is necessary that the

reaction is reversible in order to obtain equilibrium, zero-current electrode potential. That is

the electrodes have to be reversible - and if not the measurements obtained are not at

equilibrium.
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4.4 The Nernst equation

When the expression for the chemical potential eq. (2.28) is inserted into eq. (4.22), the well-

known Nernst equation emerges
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Since the activity coefficient is defined as eq. (2.31), eq. (4.23) is
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where E(T,P) is the reference electrode potential which is only a function of temperature and

pressure.

4.5 The reference electrode potential for the asymmetric activity coefficient

The Nernst equation, eq. (4.24), is based in activity coefficients of the symmetric convention.

When the activity coefficients are changed to the asymmetric convention the reference state is

changed, too.
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where by definition )P,T(E~ rs is a reference electrode potential when the asymmetrical activity

coefficient is applied,
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As discussed earlier in Chapter 2. Basic Thermodynamics the infinite dilution limit of an

activity coefficient is unequivocal in a binary mixture, only. Inserting eqs. (2.47) and (2.51)

into eq. (4.25) gives eq. (4.27) describing the electrode potential of the cell
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where by definition Em is a reference electrode potential when the concentrations are on a

molality basis,
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RT
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E(T,P) and )P,T(E~ rs have the unit of electrode potential, namely volt; Em does not.

4.6 Harned cell

A specific type of electrochemical elements has been named after H.S. Harned who pioneered

in the field of electrochemistry and electrochemical cells (Harned and Åkerlöf, 1926; Harned

and Owen, 1930a-b; and Harned and Hamer, 1933). A Harned cell is a cell without liquid

junction (salt bridge). The schematic design of this cell is

(Anode) (Cathode)
Pt | H2 (g) | H+

(aq) , Cl– (aq) | AgCl (s) , Ag (s) (4.29)

where the concentration of hydrochloric acid is known. Sometimes the cathode is a calomel

electrode, instead. The cell reaction, by definition, is

½H2 (g) + AgCl (s) → H+
(aq) + Cl–

(aq) + Ag (s) (4.30)
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The stoichiometric coefficient of the electron is one. Assuming the solid silver/silver chloride

electrode is pure, the Nernst equation for the Harned cell becomes
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If the gas phase only consists of hydrogen, then the activity of H2 (g) will be unity
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and the electrode potential of the cell will be
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Eq. (4.33) implies that the reference electrode potential Ecell(T,P) is indeed a hypothetical

property. It is impossible that both activities are unity. That would imply that each of the

components should have a mole fraction of one - and that would violate the principle of

electroneutrality. The only way that one can measure Ecell(T,P) would be if the product of the

activities incidental should be unity.

From the definition of the activity coefficient, eq. (2.31), eq. (4.33) is equally well represented

by

),P,T(),P,T(xxln
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RT
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ClHClHcellcell nnn −+−+ γγ−= (4.34)

To facilitate the nomenclature the ionic mean activity coefficient γ± and the corresponding

mole fraction is x± are defined as

),P,T(lnln
i

ii n� γν=γν ± and �ν=ν ±
i

iixx (4.35)

where ν is the sum of the stoichiometric coefficients in question, νi. In the case of the Harned

cell the electrode potential of the cell is then

±±γ−= xln
F

RT2
)P,T(E),P,T(E cellcell n (4.36)

As a simple check it is seen that in the limit x± 0 that the electrochemical potential of the

cell is approaching infinity, which is in accordance with the observed, as shown in Figure 4.1.
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Figure 4.1: The measured electrode potential of a Harned cell as a function of the mole fraction of x±. The

experimental data are from Harned and Ehlers, 1932 and 1933. The temperature is 298.15 K and the pressure is 1

atm.

The provisional standard potential, E' as it is suggested by Pitzer (1991, pp. 158) is eq. (4.33)

rearranged so that the known variables are on left-hand side of the equality sign and the

unknown on the right-hand side.
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It is noted that eq. (4.38) is in accordance with eq. (4.26) and that )P,T(E
~

rs will have a finite

value. At low concentrations the Debye-Hückel equation or more correctly a function in that

mathematical form, is a good approximation to the activities. As a consequence the

provisional standard potential has the mathematical form
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where I is the ionic strength (given as ½ xizi
2). That this is the case (at low concentrations) is

shown in Figure 4.2.
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Figure 4.2: The provisional standard potential as a function of logarithm of x±. The data points are those of

Figure 4.1. The fitted curve is eq. (4.39).

In the presented case the estimated value of )P,T(E
~

rs,cell is 0.0163V. This is not in agreement

with what one can find in a table listing standard electrode potentials. The reason why this is

so, is that these tabulated standard electrode potentials are derived from a different basis; the

molality basis. The conversion from the asymmetric convention to the molality reference

potential is an artefact of another way of defining an activity coefficient, the so-called

molality based activity coefficient or activity coefficient on molal scale. From the

thermodynamic theory and eq. (4.28) we have the 'molality reference potential' given as

kg
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rs,cell
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M
ln
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RT2
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Since the solvent in the presented case is water, Msolvent = 18.01528 g/mole, this 'molality

reference potential' is 0.223 "V". This is exactly what one finds in the tables. However, the

unit is physically unwise since it involves the logarithm of (kg/mole).

4.7 Discussion on the relativity of experimental methods

In principle, all measurements are relative since they are related to a set point, e.g.

temperature is often related to the temperature at which water melts or to the temperature
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where all motion stops; the magnitude of the potential energy of mechanics depends on an

arbitrarily chosen reference height. However, some set points are more logically chosen than

others are. For instance, the absolute temperature is defined by referring to the temperature at

which all motion stops as the set point and is then called absolute temperature and denoted

kelvin.

Vapour pressure measurements, osmotic pressure measurements, freezing point depression,

and boiling point elevation are experimental methods, by which the solvent activity is

determined. However, the solvent activity is only determined by these four methods if the

solvent molar volume, the solvent molar enthalpy of fusion, and the solvent molar enthalpy of

evaporation are known. These solvent properties are usually determined quite precisely and

therefore the four above mentioned experimental methods could be regarded as so-called

'absolute' experimental methods.

Contrary to these 'absolute' experimental methods, the isopiestic method is a 'relative' method.

The solvent activity of the reference solution has been calculated from vapour pressure

measurements, osmotic pressure measurements, or freezing point measurements as a function

of the reference solute concentration (Smith and Smith, 1937).

The ionic mean activity coefficient of the Harned cell is only determined if the reference

electrode potential of the cell is known. The reference electrode potentials that are tabulated in

the literature are determined by the procedure sketched in Section 4.6. This only gives the

ionic mean asymmetric activity coefficient, which is relative to the activity coefficient at

infinite dilution. One way to circumvent the problem of the unknown reference electrode

potential of a given cell is presented in Section 5.2.6. The idea is to observe the changes in the

ionic mean activity coefficient - instead of its absolute value.
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5. Experimental Results

During the project a number of experiments were carried out at the Kluyver Laboratory at the

Delft University of Technology. The procedures and the results of the experimental work are

presented in this chapter. The chapter is divided into two parts: the first part addresses the

solubility of the two dipeptides (glycylglycine and glycyl-L-alanine) in aqueous salt solutions

and the densities of these solutions. The second part is concerned with the electrode potential

measurements of aqueous NaCl - dipeptide solutions.

5.1 Densities, mixing volumes, and solubilities of dipeptides

Since the 1930's the experimental determination of the phase behaviour of systems containing

proteins, dipeptides, and amino acids, has received a considerable amount of attention,

(McMeekin et al., 1935; Cohn and Edsall, 1943; Nozaki and Tanford, 1963, 1965; Needham

et al., 1971; Orella and Kirwan, 1989; Jin and Chao, 1992; Gude et al., 1996a, 1996b;

Khoshkbarchi and Vera, 1997; Coen et al., 1997; Pradhan and Vera, 1998; and Rudolph et al.,

2001). The 13 references quoted are a minor selection among the vast number of data

available.

Experimental data is essential in the development, design, and modelling of separation

process. Traditionally, thermodynamic models have not been widely used in the

biotechnological industry as is the case in the chemical industry, but it is becoming more

prevalent because of the increasing demand for computer aided design and optimisation of

processes.

Density and solubility measurements of dipeptides in solution are properties that may

contribute to a better understanding of their thermodynamic behaviour in solution and

eventually the behaviours of polypeptides and proteins. Traditionally, the dry mass method

(McMeekin et al., 1935; Nozaki and Tanford, 1963, 1965) has been used to determine the

solubility of amino acids and peptides. However, in this work a spectroscopic method was

used.

Glycylglycine is the simplest of all possible peptides since it consists only of the amino acid,

glycine. Glycyl-L-alanine differs from glycylglycine by having a methyl group on the α-
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carbon instead of hydrogen. The salts are NaCl, Na2SO4, and (NH4)2SO4; salts most often

used in industrial separation processes.

5.1.1 Materials

Glycylglycine (> 99 % purity) and glycyl-L-alanine (> 98 % purity, [α]D
24 = –59.7° (in 0.5 N

HCl)) were purchased from Bachem A.G. (Bubendorf, Switzerland). Sodium chloride (NaCl,

≥ 99.5 % purity) was obtained from J.T. Baker (Deventer, The Netherlands). Sodium sulphate

(Na2SO4, > 99 %, extra pure) and ammonium sulphate ((NH4)2SO4, ≥ 99.5 % purity) were

obtained from Merck (Darmstadt, Germany). The water was cleaned in a milli-Q system from

Millipore to a conductivity of 0.06 μS⋅cm–1.

5.1.2 Experimental procedure

The solubility of the dipeptide in aqueous electrolyte solutions at various salt concentrations

as well as in pure water was determined experimentally. The salt solutions were prepared

gravimetrically by use of a Mettler Toledo AG204 DeltaRange (Greifensee, Switzerland)

balance with a resolution of ± 0.1 mg. The salt concentrations range from 0.1 molal to

saturation for solutions containing NaCl, from 0.1 to 1.0 molal for the Na2SO4 and (NH4)2SO4

solutions. The dipeptide was added in abundant to the salt solutions to ensure saturation. The

solutions were stirred for 18 to 24 hours at 298.15 K (± 0.1 K) in a thermostated water bath

(Thermomix 1419, B. Braun, Germany). After equilibration samples were taken with a

syringe with an attached 0.20 μm filter (Schleicher & Schuell GmbH, Dassel, Germany). The

densities of the solutions at 298.15K were determined on a density meter (Density meter

DMA 48, AP Paar - Austria, accuracy ± 10–4 g/cm³ for 0.5 - 1.5 g/cm³). The density meter

was calibrated by water and ethanol at 298.15 K. Prior to spectroscopic analysis, the samples

were diluted gravimetrically.

5.1.3 Analysis of the dipeptide

The dipeptide concentration was analysed by UV spectrophotometry (Varian DMS 90 UV

visual spectrophotometer) at a wave length of 210 nm. Calibration curves for the dipeptide
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were determined in pure water. Preliminary experiments showed that, at this wave length, the

influence of the salt on the absorption was insignificant. The samples were diluted in different

proportions. The glycylglycine samples were diluted gravimetrically by a factor of 2000 or

2400. The glycyl-L-alanine samples were diluted gravimetrically by a factor of 10,000 or

12,000. In order to exclude the possibility of unrecognised degradation of the dipeptide some

samples randomly chosen were analysed by HPLC. No degradation was observed.

5.1.4 Analysis of the NaCl concentration

For NaCl molalities less than 5 it was assumed that no salt precipitates when the solution was

saturated with dipeptide. Consequently, the salt concentrations in the solutions were not

analysed. For higher concentrations, 5 molal to saturation, it was likely that the solubility of

NaCl might have been influenced by the presence of the dipeptide. Therefore, the sodium

concentration in the liquid sample was determined by flame atomic absorption spectroscopy

(flame-AAS, Perkin-Elmer 1100B) to detect the sodium content in the solution. A dilution

factor of 8000 was required. The relative error of this method is in general 3-5%.

Besides the successful sodium determination by flame-AAS, determinations of the chloride

content were carried out as well. The analysis was done by an absorption technique, the so-

called Dr. Lange CADAS 50S Spektralphotometer. The principle of this analysis is the

following. The Dr. Lange company (Dr. Bruno Lange GmbH & Co. KG) that produces the

photometer also supplies different test tubes containing specific reagents. A volumetric

specified amount of the solution of the unknown chloride content is applied to a test tube. In

the case of the chloride analysis the following reaction is occurring

2 Cl– + Hg(SCN)2 <=>> HgCl2 + 2 SCN–

FeX3 + 3 SCN– —> Fe(SCN)3 + 3 X–

where FeX3 represents iron(III) salts - not specified by the manufacturer. The iron(III)

thiocyanate complexes are colouring the solution in the test tubes brownish. The photometer

is then measuring the absorbance of the solution and calculates the chloride content. The

result is given on the display of the photometer. This analysis is relatively appealing.

However, it has some shortcomings. The concentration range in which the test tubes are

applicable is very low < 70 mg Cl– / L, which is comparable with the flame-AAS.
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Furthermore, the effect of the amount of chloride added seems to be ignored; the guidelines

only say that 1 mL should be added. Whether that is 0.9 or 1.1 mL is not addressed. Last but

not least, the effect of the temperature. The test tubes containing the reagents must be kept at

< 5 °C, but when the chloride solution is applied and the test tube is placed in the photometer,

the temperature should be ambient (15-25 °C). However, the temperature dependence on the

iron(III) thiocyanate complex seems to be quite significant since the chloride readings are

fluctuating by approximately 2%. This is a high precision, but the accuracy is not always

acceptable, i.e. a determination of the NaCl solubility in water gives more than 7 molal, while

the literature value is 6.14 molal. Out of curiosity the 'chloride' content of the 'pure' test tubes

was measured before the chloride solution was added. The readings were never zero, but

around 2 mg Cl– / L. A calibration tube supplied by the Dr. Lange company was used to

calibrate the photometer. I would not recommend this technique to determine the chloride

content but I would rely on the flame-AAS determination of sodium.

5.1.5 Results and discussion

The density of the saturated dipeptide solution, the calculated volume expansion by dissolving

the dipeptide in water, and the solubility of the dipeptide in pure water are given in Tables 5.1

and 5.2. The calculated volume expansion is given as cm³ per kg of pure water. The average

and sample standard deviation, s, is also given (Skoog et al., 1992). The volume expansion

when dissolving a solute in water ΔmixV is calculated as the difference between the volume of

the solution V and the volume of water Vw.

wmix VVV −=Δ (5.1)

When the volume expansion is calculated per kg of water, then the volume of water is

w
w

g1000
V

ρ
= (5.2)

where ρw is the density of water. The volume of a solution containing 1 kg of water is

solution

solutes
ssMmg1000

V
ρ

+
=

�
(5.3)
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where ms is the molality of the solute, Ms is the molar mass of the solute, and ρsolution is the

density of the solution.

To ease the readability the Tables 5.1 - 5.11 are placed at the end of this chapter. The values

in Tables 5.1 and 5.2 show that by saturating water with glycylglycine the volume increases

by 138 cm³ per kg of water whereas for glycyl-L-alanine the volume increase is 465 cm³ per

kg of water. This huge volume expansion reduces the density of the saturated solution to a

specific gravity of 1.157 only.

Tables 5.3 - 5.5 show the measured densities of the salt solutions, data available in the

literature (CRC Handbook of Chemistry and Physics, 78th Ed., 1997-1998 and 62nd Ed., 1981-

1982) at 293 K, the correlation of Söhnel and Novontý (1985) at 298 K, and the calculated

volume expansion when the salt is dissolved in 1 kg of water. The volume expansions when

dissolving NaCl and Na2SO4 are similar whereas (NH4)2SO4 gives rise to a much larger

volume expansion.

Tables 5.6 - 5.11 show the measured densities of the salt - dipeptide - water solutions, the

solubilities, and the calculated volume expansions when dissolving salt + dipeptide in 1 kg of

water. Experimental results of the solubility of glycyl-L-alanine in NaCl in the range of 2-5

molal have been disregarded due to an experimental error.

When dissolving salt + glycylglycine in 1 kg of water the volume expansions range between

140 and 240 cm³ whereas it ranges from 470 to 540 cm³ for dissolving salt + glycyl-L-alanine.

The approximate volume expansion by dissolving salt and dipeptide in 1 kg water is

0
SS,dipeptidesaltdipeptidesalt S

S
VVV

0=+ Δ+Δ=Δ (5.4)

where S is the solubility of the dipeptide in the salt solution and S0 is the solubility in pure

water. This relationship is within 5-10 % of the experimentally determined volume expansion.

The results in Tables 5.6 - 5.11 show that the solubility of the glycylglycine increases

moderately with increasing salt concentration. The solubility of glycyl-L-alanine show a

minor or no salting-in effect at low salt concentrations and a moderate salting-out effect at

higher salt concentrations in NaCl and Na2SO4, and in (NH4)2SO4 the solubility is almost

constant. Similar results were observed for some amino acids investigated by Carta, 1998.
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As presented in the next chapter the activity coefficient of the dipeptides in NaCl solutions

(ranging from 0.1 to 1.0 molal NaCl) relative to the activity coefficient of the dipeptide in

pure water has been determined. The results show that the activity coefficient ratio of

glycylglycine at saturation decreases with increasing salt concentration whereas the activity

coefficient ratio of glycyl-L-alanine increases slightly with increasing salt concentration.

Given this and the assumption that the standard state of the precipitate is invariant one would

expect a salting-in of glycylglycine and a minor salting-out of glycyl-L-alanine.

The solubility of NaCl in pure water is 6.14 molal (Clarke and Glew, 1985) and saturation

with glycylglycine does not reduce the salt solubility whereas the solubility limit is reduced

by 17% when saturated with glycyl-L-alanine.

Authors
Solubility of glycylglycine
(mol / kg water)

This work 1.74
McMeekin et al., 1935 1.72
Smith and Smith, 1940c 1.87
Nozaki and Tanford, 1963, 1965 1.76; 1.72
Conio et al., 1973 1.91
Bruskov and Klimov, 1973 1.74
Gekko, 1981 1.72

Table 5.12: The solubility of glycylglycine in pure water at 298.15 K.

The solubility data of glycylglycine in pure water determined spectroscopically are compared

with data available in the literature in Table 5.12. The data from the literature were all

determined by the dry weight method. There is a good agreement between the literature data

and the results of this work. Neither the solubility of glycylglycine nor of glycyl-L-alanine in

aqueous electrolyte solutions have been reported in the literature. The solubility of glycyl-L-

alanine is more than twice that of glycylglycine which is in agreement with an investigation

(Sijpkes et al., 1994) of the solubility of cyclic dipeptides, cyclo(glycylglycine) and

cyclo(glycyl-L-alanine). The solubilities of these dipeptides are 0.15 and 0.56 molal,

respectively.

The reason why the solubilities of the cyclic dipeptides are significantly lower than non-cyclic

ones could be because they are unchanged in a highly polar solvent. It could be interesting to
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investigate whether or not the trend of the solubility of cyclic dipeptides is similar in a non-

polar solvent such as ethanol.

The pH values of the solutions were not measured but a saturated dipeptide - water solution

will have a pH value corresponding to the isoelectric point, i.e. 5.65 for glycylglycine and

5.70 for glycyl-L-alanine where the dipeptide is a zwitterion. The influence of the carbon

dioxide from the air was considered since the dipeptide solutions had a buffer effect, see

Figures 5.2a and 5.2b. Furthermore, the samples were capped during the equilibration time.

ρglycylglycine Solubility ΔmixV
(g/cm³) (mol / kg H2O) (cm³ / kg H2O)
1.0759 1.72 138
1.0778 1.81 147
1.0785 1.75 138
1.0782 1.73 136
1.0773 1.71 135
1.0778 1.72 136

Average 1.0776 1.74 138
s 0.0009 0.04 5.3
Table 5.1: The density of a saturated glycylglycine - water solution, the solubility of glycylglycine in water, and
the volume expansion by dissolving glycylglycine in water at 298.15K.

ρglycyl-L-alanine Solubility ΔmixV
(g/cm³) (mol / kg H2O) (cm³ / kg H2O)
1.1568 4.79 467
1.1568 4.74 458
1.1564 4.77 465
1.1562 4.78 466
1.1584 4.74 458
1.1573 4.88 477

Average 1.1570 4.78 465
s 0.0008 0.05 6.9
Table 5.2: The density of a saturated glycyl-L-alanine - water solution, the solubility of glycyl-L-alanine in water,
and the volume expansion by dissolving glycyl-L-alanine in water at 298.15K.
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NaCl
Reference
293.15K
ρNaCl

Reference
298.15K
ρNaCl

Measured
298.15K
ρNaCl

ΔmixV

(mol/kg H2O) (g / cm³) (g / cm³) (g / cm³) (cm³ / kg H2O)
0.1003 1.0024 1.0012 1.0012 1.8
0.2012 1.0065 1.0054 1.0045 4.4
0.4041 1.0146 1.0136 1.0124 8.3
0.5071 1.0187 1.0176 1.0173 9.3
0.6082 1.0227 1.0216 1.0210 11.4
0.8151 1.0307 1.0296 1.0291 15.2
0.9182 1.0346 1.0335 1.0330 17.2
1.0217 1.0386 1.0374 1.0370 19.1

Table 5.3: Measured and tabulated values of the density of NaCl - water solutions and the volume expansion by
dissolving NaCl in water at 298.15K. The reference at 293.15K is CRC Handbook of Chemistry and Physics,
78th Ed., 1997-1998, and the reference at 298.15K is Söhnel and Novotný, 1985.

Na2SO4

Reference
293.15K
ρNa2SO4

Reference
298.15K
ρNa2SO4

Measured
298.15K
ρNa2SO4

ΔmixV

(mol/kg H2O) (g / cm³) (g / cm³) (g / cm³) (cm³ / kg H2O)
0.1003 1.0107 1.0098 1.0119 – 0.5
0.1735 1.0197 1.0189 1.0202 1.6
0.2012 1.0231 1.0223 1.0240 1.7
0.3524 1.0414 1.0405 1.0429 4.0
0.5054 1.0591 1.0583 1.0606 7.7
0.6078 1.0708 1.0700 1.0724 10.2
0.8146 1.0941 1.0930 1.0956 15.5
1.0241 1.1171 1.1156 1.1186 21.2

Table 5.4: Measured and tabulated values of the density of Na2SO4 - water solutions and the volume expansion
by dissolving Na2SO4 in water at 298.15K. The reference at 293.15K is CRC Handbook of Chemistry and
Physics, 78th Ed., 1997-1998, and the reference at 298.15K is Söhnel and Novotný, 1985.

(NH4)2SO4

Reference
293.15K
ρ(NH4)2SO4

Reference
298.15K
ρ(NH4)2SO4

Measured
298.15K
ρ(NH4)2SO4

ΔmixV

(mol/kg H2O) (g / cm³) (g / cm³) (g / cm³) (cm³ / kg H2O)
0.1012 1.0061 1.0052 1.0072 3.3
0.2028 1.0137 1.0129 1.0145 9.3
0.4095 1.0287 1.0278 1.0294 21.2
0.5150 1.0360 1.0351 1.0365 27.6
0.6217 1.0432 1.0422 1.0436 34.1
0.8411 1.0574 1.0562 1.0574 48.0
0.9524 1.0642 1.0630 1.0644 54.9
1.0652 1.0710 1.0697 1.0712 62.1

Table 5.5: Measured and tabulated values of the density of (NH4)2SO4 - water solutions and the volume
expansion by dissolving (NH4)2SO4 in water at 298.15K. The reference at 293.15K is CRC Handbook of
Chemistry and Physics, 62nd Ed., 1981-1982, and the reference at 298.15K is Söhnel and Novotný, 1985.
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NaCl ρsat’d sol. Solubility Average ΔmixV
(mol/kg H2O) (g / cm³) (mol/kg H2O) (cm³ / kg H2O)

0.1003 1.0807 1.73 140
1.0825 1.76

0.2012 1.0841 1.74 144
1.0869 1.80

0.4041 1.0856 1.80 157
1.0943 1.83

0.5071 1.0984 1.85 156
1.0985 1.84

0.6082 1.1024 1.87 160
1.1021 1.85

0.8151 1.1098 1.87 165
1.1095 1.89

0.9182 1.1130 1.88 168
1.1129 1.88

1.0217 1.1163 2.10 183
1.1162 1.89

2.0436 1.98
3.0061 1.97
3.9870 2.01
4.9859 2.07
5.5928 2.10
5.6093 2.12
5.6202 2.08
5.6300 2.10

Table 5.6: The density of NaCl - glycylglycine - water solutions, the solubility of glycylglycine in NaCl - water
solutions, and the volume expansion by dissolving NaCl plus glycylglycine in water at 298.15K.
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Na2SO4 ρsat’d sol. Solubility Average ΔmixV
(mol/kg H2O) (g / cm³) (mol/kg H2O) (cm³ / kg H2O)

0.1003 1.0920 1.84 147
1.0914 1.82

0.1735 1.1042 1.89 153
1.1042 1.85

0.2012 1.1213 1.91 155
1.1201 1.88

0.3524 1.1005 2.01 167
1.0996 1.94

0.5054 1.1376 2.11 176
1.1376 1.97

0.6078 1.1478 2.09 180
1.1469 2.00

0.8146 1.1669 2.03 182
1.1665 2.00

1.0241 1.1860 2.07 192
1.1850 2.03

Table 5.7: The density of Na2SO4 - glycylglycine - water solutions, the solubility of glycylglycine in Na2SO4 -
water solutions, and the volume expansion by dissolving Na2SO4 plus glycylglycine in water at 298.15K.

(NH4)2SO4 ρsat’d sol. Solubility Average ΔmixV
(mol/kg H2O) (g / cm³) (mol/kg H2O) (cm³ / kg H2O)

0.1012 1.0878 1.82 150
1.0868 1.81

0.2028 1.0958 1.89 161
1.0951 1.87

0.4095 1.1102 2.00 184
1.1093 1.98

0.5150 1.1169 2.05 194
1.1155 2.01

0.6217 1.1237 2.07 203
1.1223 2.05

0.8411 1.1344 2.12 221
1.1331 2.07

0.9524 1.1401 2.12 229
1.1389 2.08

1.0652 1.1452 2.14 238
1.1439 2.10

Table 5.8: The density of (NH4)2SO4 - glycylglycine - water solutions, the solubility of glycylglycine in
(NH4)2SO4 - water solutions, and the volume expansion by dissolving (NH4)2SO4 plus glycylglycine in water at
298.15K.
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NaCl ρsat’d sol. Solubility Average ΔmixV
(mol/kg H2O) (g / cm³) (mol/kg H2O) (cm³ / kg H2O)

0.1003 1.1577 4.82 469
1.1577 4.73

0.2012 1.1592 4.88 476
1.1600 4.74

0.4041 1.1637 4.80 476
1.1638 4.74

0.6082 1.1675 4.71 471
1.1676 4.67

0.8151 1.1710 4.68 475
1.1713 4.68

1.0217 1.1757 4.73 481
1.1749 4.62

5.3123 (saturation) 3.86
5.3365 (saturation) 3.91

Table 5.9: The density of NaCl - glycyl-L-alanine - water solutions, the solubility of glycyl-L-alanine in NaCl -
water solutions, and the volume expansion by dissolving NaCl plus glycyl-L-alanine in water at 298.15K.

Na2SO4 ρsat’d sol. Solubility Average ΔmixV
(mol/kg H2O) (g / cm³) (mol/kg H2O) (cm³ / kg H2O)

0.1003 1.1631 4.98 494
1.1646 4.98

0.1735 1.1693 4.77 470
1.1707 4.77

0.2012 1.1687 4.80 475
1.1692 4.80

0.6078 1.1936 4.56 464
1.1952 4.56

0.8146 1.2055 4.47 463
1.2067 4.47

1.0241 1.2173 4.34 458
1.2188 4.34

Table 5.10: The density of Na2SO4 - glycyl-L-alanine - water solutions, the solubility of glycyl-L-alanine in
Na2SO4 - water solutions, and the volume expansion by dissolving Na2SO4 plus glycyl-L- alanine in water at
298.15K.
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(NH4)2SO4 ρsat’d sol. Solubility Average ΔmixV
(mol/kg H2O) (g / cm³) (mol/kg H2O) (cm³ / kg H2O)

0.1012 1.1601 4.81 482
1.1620 4.91

0.2028 1.1631 4.79 487
1.1667 4.91

0.4095 1.1698 4.81 503
1.1715 4.90

0.6217 1.1758 4.81 518
1.1783 4.87

0.8411 1.1820 4.78 529
1.1838 4.81

1.0652 1.1878 4.75 542
1.1899 4.78

Table 5.11: The density of (NH4)2SO4 - glycyl-L-alanine - water solutions, the solubility of glycyl-L-alanine in
(NH4)2SO4 - water solutions, and the volume expansion by dissolving (NH4)2SO4 plus glycyl-L-alanine in water
at 298.15K.
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5.2 Electrode potential measurements of NaCl - dipeptide - water

Experimental determination of activity coefficients of amino acids, peptides, and proteins in

solution is a prerequisite to develop thermodynamic models describing the phase behaviour in

bioprocesses. Three methods commonly used to determine the solvent activity in biological

systems are freezing point depression (Pitzer, 1991, pp. 17-19), vapour pressure (Pitzer, 1991,

pp. 214-220) and isopiestic methods (Pitzer, 1991, p. 241). The solute activity can only be

obtained indirectly by means of the Gibbs-Duhem equation. For systems containing more

than two components, a solute and a solvent, only the solvent activity is accessible by these

methods. The freezing point depreciation has frequently been used for systems containing

amino acids (Roth, 1903; Hoskins et al., 1930; Frankel, 1930; Lewis, 1931; Cann, 1932;

Scatchard and Prentiss 1934a, 1934b, Lilley and Scott, 1976b), whereas the vapour pressure

method has seldom been used (Kuramochi et al., 1997), as it requires a very high precision in

measuring the pressure. The principle of the isopiestic method is to equilibrate two solutions

in a common atmosphere where the solvent is the only volatile component and one of the

solutions serves as the reference solution where the activity of the solvent is known. At

equilibrium the solvent activity in the two solutions is identical. This method has been used

extensively to determine activity coefficients in aqueous amino acid solutions (Smith and

Smith, 1937, 1940a-c; Richards, 1938; Robinson and Sinclair, 1934; Anslow, 1933;

Robinson, 1952; Hutchens et al., 1963; Bower and Robinson, 1965; Schrier and Robinson,

1971, 1974; Lilley and Scott, 1976a; Bonner, 1981, 1982; Kuramochi et al., 1996). A

thermodynamic description of the isopiestic method is given in Chapter 3. The

Thermodynamics of Experimental Methods.

Another way to determine the activity coefficient of an electrolyte in a binary solution is to

measure the electrode potential. The electrode potential is directly affected by all species

present in the solution. Khoshkbarchi and Vera (1996) review applications of different

electrochemical cells used prior to 1995. Only recently, reliable ion-selective electrodes have

become available and applied in salt - amino acid - water systems (Khoshkbarchi and Vera,

1996a-c; Khoshkbarchi et al., 1997, Soto-Campos et al., 1997, 1998). The solute activity

coefficient was obtained by means of the cross-differential equation. In this investigation two

ion-selective electrodes have been used to determine the activity coefficients of glycylglycine

and glycyl-L-alanine in aqueous sodium chloride solutions.
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5.2.1 Materials

The materials are identical to those of Section 5.1.1.

5.2.2 Experimental procedure

The experimental set-up comprises of a sodium ion-selective and a chloride ion-selective

electrode (ISE) which measure the electrode potential of NaCl in a NaCl - dipeptide - water

solution. The experimental set-up resembles that of Haghtalab and Vera (1991). When the

chloride ISE is used as reference electrode for the sodium ISE, the liquid-junction potential

can be eliminated (Haghtalab and Vera, 1991). The ion-selective electrodes (315-75 C

Sodium Electrode) and (301-75 Chloride Mono) were from Sentek (Braintree, Essex, UK).

The ISE's were immersed in a solution contained in a U-shaped glass tube and connected to a

digital voltmeter (Metrohm - 654 pH Meter, error = ± 5⋅10–5 V + 1 digit, resolution = 0.1 mV)

from Metrohm, (Herisau, Switzerland). The dimensions of the U-tube were a height of 102

mm and an inner diameter of 14 mm. The radius of the bend was equal to the diameter of the

tube. The position of and the distance between the electrodes relative to the U-tube were kept

constant. The U-tube was placed in a thermostatically controlled water bath (Lauda RM6,

Königshofen, Germany) at 298.15 ± 0.1 K. Magnetic stirrers agitated both the water bath and

the solution in the U-tube.

Salt solutions ranging from 0.1 to 1.0 molal were prepared gravimetrically by the use of a

Mettler Toledo AG204 DeltaRange (Greifensee, Switzerland) balance with a resolution of ±

0.1 mg. The water was cleaned in a milli-Q water system from Millipore to a conductivity of

0.06 μS⋅cm–1.

A volume of approximately 3 mL of the salt solution (mass known) was nearly saturated with

dipeptide (mass known). After dissolving the peptide the solution was put in the U-tube and

the ISE's were immersed and the electrode potential was observed. When the electrode

potential became constant the value was taken down. The sample was then diluted (mass

known) with the salt solution whereby the salt molality was kept constant whereas the

dipeptide molality decreased. Measurements were performed at NaCl molalities up to 1 molal.
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5.2.3 Theory

Each ISE only allows specified ions to penetrate its membrane. For the two half cells the

reduction reactions can be written as

1nCle)s(ISECl

1n)s(ISENaeNa

e

e
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(5.5)

where ne is the number of moles of electrons transferred per mole of reaction. The electrode

potentials of the two half cells are according to the Nernst equation
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where Ei
* is the reduction potential when the activity ratio is unity. Defining the activities as

shown in Chapter 2, eq. (2.27), Ei
* is the hypothetical reduction potential when all

components are pure, and thus only a function of temperature and pressure.

5.2.4 The reference electrode potential for the symmetric activity coefficient

The electrode potential of a galvanic cell (Ecell > 0) is
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where Eref is the reference electrode potential
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It is assumed that the product of the ISE activities is constant. However, it might be possible

that the presence of another solute might effect the ISE activities as discussed in paragraph
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5.2.7. E and Eref refer to the electrode potential and the reference electrode potential of the

cell, respectively. With ai = xi γi, eq. (5.7) becomes

)xx(ln
F

RT
EE

ClNaClNa

ref
−+−+ γγ+= (5.9)

Defining the mole fractions and the activity coefficient of the salt (NaCl) as

−+ =≡± ClNa
xxx (5.10)

and

−+ γ+γ≡γ ± ClNa
lnlnln2 (5.11)

the electrode potential is
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F
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where Eref is the reference electrode potential.

The advantage of expressing the electrode potential as shown in eq. (5.12) instead of the

commonly used molality based expression, as discussed in Chapter 4. Electrochemistry, is

that the reference electrode potential Eref, is independent of the concentrations of the non-ionic

species present. Consequently, Eref remains constant even though dipeptide is added to the salt

- water solution.

The works of Harned and Åkerlöf (1926), Harned and Owen (1930a-b), Harned and Hammer

(1933), Smith and Smith (1942), and Owens and King (1943) all use cells without liquid

junction, the so-called Harned cells (see Chapter 4. Electrochemistry). The goal of these

works was the determination of the dissociation constants of weak acids and bases, e.g. amino

acids. The electrodes of these works were predominately hydrogen and silver chloride

electrodes or sometimes mercury chloride electrodes; i.e. not ion-selective electrodes.

Consequently, the activity product in the Nernst equation consists of all ionic species in the

solution. This was solved by assuming the values of activity coefficients and by knowing the

concentrations (molalities) and then solve for the dissociation constant by extrapolation to

infinite dilution. This method obviously demands that the values of activity coefficients are

known, so one can solve for the dissociation constants. That these constants then sometimes
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are used - in other works - to determine the very same activity coefficients will of course lead

to an excellent agreement between experimental results and those found in the literature.

5.2.5 The pH of the solutions

In a ternary system of NaCl - dipeptide - water more than three species are present. The

electrolyte dissociates fully and the dipeptide is capable of forming three species: a cation, a

zwitterion, and an anion. Finally, water autoprotolyses itself to H+ (or H3O
+) and OH–.

However, some of the species will be present in very small amounts. The apparent pKa values

of glycylglycine are 3.12 and 8.17 and of glycyl-L-alanine 3.15 and 8.25 (Greenstein and

Winitz, 1961). The isoelectrical point of glycylglycine pI is 5.65 and for glycyl-L-alanine pI is

5.7. pH of an aqueous dipeptide solution depends on the concentration of the dipeptide. The

NaCl - water system has a pH of approximately pH 7, and upon addition of dipeptide pH

declines rapidly to a pH close to the isoelectrical point of the dipeptide as depicted in Figures

5.1a and 5.1b. If one calculates the Bjerrum diagram (Skoog et al., 1992, p. 258) of the

dipeptide, assuming the solution is ideal, one will observe that more than 99% of the

dipeptide will be present in its zwitterionic form because pH equals pI when the dipeptide

concentration exceeds 10 mM. Because of this the amount of dipeptide cations and anions are

negligible as shown in Figures 5.2a and 5.2b. Furthermore, it is not expectable that a change

of the H3O
+ concentration from ~10–7 M to ~10–5.7 M has a significant effect on γ±.

5.2.6 Data reduction

The difference in the electrode potentials between the ternary system of salt - dipeptide -

water and the binary system of salt - water gives the ratio of the salt activity coefficients
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and finally
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The right-hand side of eq. (5.14) can easily be evaluated from the experimentally determined

electrode potentials. Some authors have used an experimentally estimated slope instead of the

Nernstian slope. This is addressed later in paragraph 5.2.7. In eq. (5.14) all additive constant

potentials, e.g. the boundary potential or the asymmetry potential cancel because they are

similar in the binary and the ternary system. In order to determine the activity coefficients of

the dipeptides in NaCl - water solutions we must fit the activity coefficient ratio in eq. (5.14)

and use the cross-differential equation to estimate the corresponding activity coefficient ratio

of the dipeptide. The following empirical expression fits the activity coefficient ratio in eq.

(5.14) quite well. A denotes dipeptide and ± salt.
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where zi is either the mole fraction xi = ni/ntotal or the molar solute-solvent ratio yi = ni/nw in

the ternary mixture wherefore f(zA = 0) = 0. Since the solutions are diluted, the total mole

number is almost equal to the mole number of water and, consequently, xi and yi are almost

identical. Using the independent variables x or y give approximately identical sample standard

deviations, wherefore, due to the facilitation of the mathematics involved when evaluation the

cross-differential, we use y. The parameters and the sample standard deviations of the

estimates are given in Table 5.13.

Glycylglycine Glycyl-L-alanine
a1 – 41.3160 – 31.0537
b1 106.8204 80.4917
b2 770.8665 165.9538
c1 – 5.3985 1.4654
c2 106.9840 15.7241
d1 51.7459 1.5088
s 0.0031 0.0078

Table 5.13: Parameters in eq. (5.15) and sample standard deviation s of the estimate.

With the parameters estimated, eq. (5.15) does not have any inflection points at constant salt

molality since the second derivative with respect to yA is always positive whatever the salt

concentration. Consequently, at each salt molality, eq. (5.15) is only capable of producing one

extremum, a minimum. Figures 5.3 and 5.4 show the logarithm of the ratio of the activity
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coefficients of the electrolyte in the ternary system to the binary electrolyte - water system as

function of the dipeptide molality at various constant salt molalities. The effect of adding

dipeptide to the NaCl - H2O system is stronger at low salt concentration than at higher salt

concentration. Eq. (5.15) correlates the activity coefficient ratio of the electrolyte in the

ternary and the binary system reasonably.

The asymmetric activity coefficient of salt in pure water (Clarke and Glew, 1985) can

empirically be correlated as
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The salt activity coefficient at infinite dilution in pure water bin,
w,

∞
±γ is a function of temperature

and pressure, only. Note that the chosen reference solvent is water so the subscript rs (from

the Chapter 2. Basic Thermodynamics) is replaced by w. The parameters and the sample

standard deviation of the estimate are given in Table 5.14.

NaCl
A – 8.5462
B 9.4329
C 6.5537
D 13.9653

s 9.14⋅10–5

Table 5.14: Parameters for eq. (5.16) and sample standard deviation s of the estimate.

If we add eq. (5.16), the logarithm of the asymmetric salt activity coefficient in pure water, to

eq. (5.14), the logarithm of the ratio of the activity coefficients of the electrolyte in the ternary

system to the binary electrolyte - water system, the result is the logarithm of the ratio of the

salt activity coefficient in the ternary system to the salt activity coefficient at infinite dilution

in pure water
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Figures 5.5 and 5.6 show the activity coefficients of salt in the electrolyte - dipeptide - water

solutions at constant salt molalities in proportion to the activity coefficient of salt at infinite

dilution in pure water as a function of dipeptide concentration. The change of the electrolyte

activity coefficient caused by adding dipeptide is most pronounced at low salt concentration.



Experimental Results 66

Another way of illustrating the same effect is to depict the same activity coefficient ratio at

constant dipeptide molality as a function of salt concentration, as shown in Figures 5.7 and

5.8. It is noted that the top line is the asymmetric activity coefficient of NaCl in pure water

which is only one that is zero at infinite dilution.

Since one does not know terln ±γ but only bin,
w,

ter lnln ∞
±± γ−γ , one can calculate the reference

electrode potential Eref of the cell except for a constant of bin,
w,lnF/RT2 ∞

±γ , only.
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where the electrode potential wE
~

is defined as

bin,
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ref
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The estimated reference potential wE
~

is 337 mV for the glycylglycine system and 338 mV for

the glycyl-L-alanine system. Ideally, wE
~

should have been identical since it is independent of

the mixture composition and a function of Eref and bin,
w,

∞
±γ of the salt, only. The results are

shown in Figures 5.9 and 5.10. To get maximum sensitivity when fitting the ternary activity

coefficients one has to use eq. (5.14) and not eq. (5.18).

The activity coefficient of the dipeptide are calculated from the activity coefficient of the

electrolyte using the cross-differential equation (equivalent to Maxwell's equations) - readily

obtained from any homogeneous differentiable function (Bjerrum, 1923)
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Since ln γ±
bin is independent of nA,

A
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Combining eqs. (5.20) and (5.21) the activity coefficient ratio of the dipeptide can be obtained

by integration
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Differentiating the fitting function eq. (5.15) with respect to the nA and subsequently

integrating it with respect to n± gives the function g which is merely a mathematical

representation of eq. (5.22).
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Figures 5.11 and 5.12 show the resulting activity coefficient ratios of the dipeptides as a

function of the salt concentration at constant dipeptide molality. The change of the activity

coefficient ratio of the dipeptide is most pronounced at low concentrations of both solutes.

Close to saturation glycyl-L-alanine shows salting-in.

Ellerton et al. (1964) and Smith (1940c) have published experimental activity coefficients

(asymmetric convention) of the dipeptides in water at concentrations less than 1 mole per kg

of water. Adding the logarithm of this asymmetric activity coefficient to eq. (5.22), the

outcome is the logarithm of the activity coefficient of the dipeptide in proportion to bin,
w,A

∞γ in

water. Figures 5.13 and 5.14 show the activity coefficients of the two dipeptides in dipeptide -

salt - water solutions at constant dipeptide molalities in proportion to the activity coefficient

of the dipeptide at infinite dilution in pure water in dependence of the salt concentration.

Figures 5.15 and 5.16 show plots of the activity coefficient ratio in dependence of the molal

concentration of the dipeptide. The intersections with the ordinate axis display the activity

coefficients of the dipeptide at infinite dilution in the salt - water solution.

To form a general view over the result three-dimensional plots of the activity coefficient of

the dipeptide in proportion to the that of the dipeptide at infinite dilution (in pure water) are

presented in Figures 5.17 and 5.18.



Experimental Results 68

5.2.7 The experimental slope and the Nernstian slope in the Nernst equation

Vera and co-workers (Khoshkbarchi and Vera, 1996a-c; Khoshkbarchi et al., 1997, Soto-

Campos et al., 1997, 1998) have used experimentally estimated slopes instead of the

Nernstian slope, 2RT/F, in the Nernst equation. The reference electrode potentials and slopes

are determined from the electrode potentials measured for the binary electrolyte - water

system. The intercepts, S
wE

~
, and the slopes, S, in eq. (5.24) are fitted to the experimental

electrode potentials using activities available in literature Clarke and Glew (1985) and

Zemaitis et al., 1986. The literature standards are based on the methods such as freezing point

depression, vapour pressure, and the isopiestic method.

)~xln(SE
~

E w,
S
w ±± γ⋅+= (5.24)

In this work, the intercept and slope determined in such a manner are 330.6 mV and 50.08

mV, respectively, with a correlation coefficient of 0.997. Using the slope S instead of the

Nernstian slope corresponds to making the reference electrode potential a function of the salt

concentration in the Nernst equation.
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Where the additional electrode potential add
wE

~
is

)~xln(
F

RT2
S)x(E

~
w,NaCl
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w ±± γ�

�
�

�
�
� −= (5.26)

Consequently, the concentration dependent reference electrode potential can be compared to

the residuals, res

)~xln(
F

RT2
Eres w,±± γ−= (5.27)

which have been estimated from the experimental measurements and w,
~
±γ from Clarke and

Glew (1985). Figure 5.19 shows a comparison of res and the corresponding add
w

S
w E

~
E
~ + as a

function of the salt concentration.

Although there is some scattering of the experimental data, it can be concluded that

( add
w

S
w E

~
E
~ + ) as a function of the salt concentration describes the experimental data better than
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using a constant ∞E of approximately 337 mV. Defining α as the ratio of the slope S and the

Nernstian slope

F/RT2

S=α , (5.28)

gives an α value of 0.97. However, in this work the Nernstian slope has been used because it

makes the data reduction independent of the choice of w,
~
±γ . If the data are recalculated using

S determined from the data of Clarke and Glew (1985) as the reference for w,
~
±γ , the estimated

results change by only 3% which we consider to be less than the experimental uncertainty.

The deviation from the Nernstian slope cannot be explained by uncertainties in the

temperature but could be due to concentration dependent variations in the ISE activities or

some neglected potentials across the ISE membranes.
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Figure 5.19: A comparison of the residuals, res, defined in eq. (5.27), �, and add
w

S
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5.2.8 Discussion

The two ternary mixtures investigated in this work have not been investigated previously.

However, Khoshkbarchi and Vera (1996a) have published results of the systems NaCl -

glycine - H2O and NaCl - DL-alanine - water. These two amino acids are the building blocks
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of the two dipeptides investigated in this work. The activity coefficient ratios of NaCl (ternary

to binary) as a function of the amino acid concentration resemble those of the corresponding

salt - dipeptide - water systems, i.e. increasing the salt concentration increases the activity

coefficient ratio of the electrolyte. In order to compare this work with the work of

Khoshkbarchi and Vera (1996a) some conversions of their data have to be performed due to

the fact that their reference state depends on the solute concentration. Khoshkbarchi and Vera

(1996a) have defined the activity coefficient on a molality basis as shown in eq. (A.19).

Consequently, the logarithmic ratio of the mole fraction of water in the ternary and the binary

solutions must be subtracted from the activity coefficients published in Khoshkbarchi and

Vera (1996a).

The NaCl activity coefficient ratios at two different compositions of NaCl and amino acid or

dipeptide are listed in Table 5.15. The figures in Table 5.15 show that the amino acids have

less effect on the activity coefficient ratio of NaCl than the dipeptides. It is noted that the

presence of DL-alanine has the least effect on the electrolyte activity coefficient ratio.

��
�

�
��
�

�
γ
γ

±

±
bin

ter

ln glycine* DL-alanine* glycylglycine glycyl-L-alanine

0.1 molal NaCl
1.0 molal A

–0.09 –0.05 –0.18 –0.15

1.0 molal NaCl
0.1 molal A

–0.15 –0.06 –0.36 –0.34

Table 5.15: The activity coefficient ratio of NaCl in solutions containing amino acid or dipeptide (A). *Results

from the Khoshkbarchi and Vera (1996a)

5.2.9 Conclusion

The thermodynamic theory of ion-selective electrodes (ISE's) has been presented. The

experimental method is similar to the one suggested and applied by Haghtalab and Vera

(1991). The experimental procedure to determine activity coefficients of the salt in the ternary

systems, NaCl - glycylglycine - H2O, and NaCl - glycyl-L-alanine - H2O, was tested, and has

proven to be suitable to determine the effect that the salt has on the activity coefficient of a

non-electrolyte in a salt - water solution. Furthermore, if the activity coefficient of the non-

electrolyte in the binary aqueous system is available, the activity coefficient of the non-
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electrolyte in the ternary system in proportion to the activity coefficient of the non-electrolyte

at infinite dilution in pure water can be determined. This ratio displays the effect the

electrolyte has on the non-electrolyte.
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Figure 5.1a: pH as a function of glycylglycine molarity at 298.15 K.
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Experimental Results 75

-0.50

-0.45

-0.40

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.0 0.2 0.4 0.6 0.8 1.0 1.2

mole NaCl

ln
γ ±

te
r
/ γ

±in
f,

bi
n

0.0 mole GG

1.0 mole GG
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Figure 5.11: The activity coefficient of glycylglycine (GG) in salt - water at constant GG molalities in proportion

to the activity coefficient of GG in water at 298.15 K. 0.0 mole GG corresponds to GG infinite diluted. All mole
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Figure 5.12: The activity coefficient of glycyl-L-alanine (GA) in salt - water at constant GA molalities in

proportion to the activity coefficient of GA in water at 298.15 K. 0.0 mole GA corresponds to GA infinite

diluted. All mole numbers are per kg of water.
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Figure 5.13: The activity coefficient of glycylglycine (GG) in salt - water at constant GG molalities in proportion

to the activity coefficient of GG at infinite dilution in pure water at 298.15 K. 0.0 mole GG corresponds to GG

infinite diluted. All mole numbers are per kg of water.
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Figure 5.14: The activity coefficient of glycyl-L-alanine (GA) in salt - water at constant GA molalities in

proportion to the activity coefficient of GA at infinite dilution in pure water at 298.15 K. 0.0 mole GA

corresponds to GA infinite diluted. All mole numbers are per kg of water.
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Figure 5.15: The activity coefficient of glycylglycine (GG) in salt - water at constant salt molalities in proportion

to the activity coefficient of GG at infinite dilution in pure water at 298.15 K. All mole numbers are per kg of

water.
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Figure 5.16: The activity coefficient of glycyl-L-alanine (GA) in salt - water at constant salt molalities in

proportion to the activity coefficient of GA at infinite dilution in pure water at 298.15 K. All mole numbers are

per kg of water.
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proportion to the activity coefficient of GA at infinite dilution in pure water at 298.15 K. All mole numbers are
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6. Statistical Mechanics

This chapter and the succeeding one are written in order to explain how the so-called

McMillan-Mayer framework is related to the usual (Lewis-Randall) framework. The level of

description in the McMillan-Mayer framework is different from the usual one since it -

instead of the usual state description (T,P,n) or (T,V,n) - is using (T,V,n\n0,μ0) where n0 is the

solvent mole number and μ0 is the solvent chemical potential. The notation n\n0 means the

vector [n1, n2, n3, …], that is all mole numbers except n0. But there is some apparent

confusion on how the McMillan-Mayer level of description is related to the classical one -

wherefore Chapters 6 and 7 address this question.

Chapter 6 gives a statistical mechanical description of the modified excess Helmholtz energy,

and its relation to the usual thermodynamic properties, e.g. activity coefficient. Chapter 7

focuses on the relation between the McMillan-Mayer framework and the osmotic pressure.

For a far more thorough insight into the field of statistical mechanics and statistical

thermodynamics one should consult e.g. Hill, 1962 and McQuarrie, 1976. What is presented

in this chapter and the next chapter is far from covering the entire area of statistical

mechanics.

The energy of a system is usually given by means of its Gibbs energy, its Helmholtz energy,

or its internal energy. All of these energies can be expressed by statistical mechanics. For

instance, the Helmholtz energy is the characteristic thermodynamic function of the canonical

ensemble. An ensemble is a (vast) collection of systems, each of which is described by the

same independent variables.

6.1 The canonical ensemble

Consider a container separated into a finite (large) number of cells or systems each having the

same number of molecules (of each species) and the same volume. At equilibrium each and

every cell has the same temperature since the walls separating the cells are heat conducting

but impermeable. The ensemble of systems is described by three independent variables:

temperature T, volume V, and molecular numbers N. The energies of the species in each

system are not identical wherefore the ensemble energy has to be evaluated by statistical
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mechanics, McQuarrie pp. 35. From a canonical ensemble is the Helmholtz energy is

achieved by

),V,T(QlnkTA N−= (6.1)

where Q(T,V,N) is the canonical partition function. The differential of the Helmholtz energy

is

�μ+−−=
i

i
m
i dNdVpdTSdA (6.2)

where μi
m is the molecular chemical potential which is equal to μi ⋅ NA. As a consequence of

eq. (6.2) the canonical ensemble is uniquely described by the state (T,V,N).

6.2 The grand canonical ensemble

Like the canonical ensemble a grand canonical ensemble can be imagined by considering a

container divided into a finite (large) number of cells or systems. The cell walls are still heat

conducting but this time permeable to the molecules. The ensemble is described by three

independent variables: temperature T, volume V, and molecular chemical potential μμμμm of each

species. The partition function for this ensemble is
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m
iim ),V,T(Q

kT

N
exp),V,T( Nμμμμ (6.3)

where S is the total number of species. The energy corresponding to the grand canonical

ensemble is pV

),V,T(lnkTpV mΞ= (6.4)

The differential of pV is

� μ++=
i

m
iidNdVpdTS)pV(d (6.5)

Note, that adding eqs. (6.2) and (6.5) will give the differential of the Gibbs function.
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6.3 Semi-grand canonical ensemble

A semi-grand canonical ensemble is derived from the canonical ensemble. The mole number

of the solvent (in the canonical ensemble) is replaced by its chemical potential. The semi-

grand canonical partition function is denoted Ψ(T, V, N\N0, μ0
m). This semi-grand canonical

partition function is given by both McQuarrie (1976), p. 66 and Haynes and Newman (1998).

The relations between the semi-grand canonical partition function and those of the canonical

and grand canonical ensembles are

μΨ
μ
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1 SN N

m
00

S
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m
iim

00 ),N\,V,T(
kT

N
exp),N\,V,T( NN (6.6)

and
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N
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0N

m
00m

00 NN
μ=μΨ (6.7)

By inserting eq. (6.7) into eq. (6.6), the partition function for the grand canonical ensemble is

achieved, eq. (6.3). The theory of fluctuation (McQuarrie, p. 63) states that if N (the total

number of molecules) is large enough then there will be an average number of solvent

molecules, 0N . This average will be the only one that effectively counts in the summation

wherefore eq. (6.7) is equally well represented by

)V,T,N,...,N,N(Q
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N
exp),N\,V,T( S10

m
00m

00

μ=μΨ N (6.8)

The characteristic thermodynamic function of the partition function Ψ is then

)V,T,N,...,N,N(QlnkTN),N\,V,T(lnkT S10
m
00

m
00 −μ−=μΨ− N (6.9)

Inserting eq. (6.1) into eq. (6.9) gives

),V,T(An),N\,V,T(lnkT 00
m
00 NN +μ−=μΨ− (6.10)

where μ0 is the molar chemical potential of the solvent (J/mole) and n0 is the number of moles

of solvent. The corresponding energy of this semi-grand canonical ensemble is denoted as a

modified Helmholtz energy, B.

)V,T,N,...,N,(lnkT)V,T,n,...,n,(B S10S10 μΨ−=μ (6.11)
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Strictly speaking B is not a Helmholtz energy at all - modified or not. It is worth noting that B

is only indirectly dependent on the number of solvent molecules. The direct solvent - solute

interaction is deactivated. From eq. (6.10) the relation between the modified Helmholtz

energy and the Helmholtz energy is

)V,T,(An)V,T,n\,(B 0000 nn +μ−=μ (6.12)

Normally, the chemical potential of the solvent is unknown and the interchange of

frameworks is impossible.

As demonstrated it is important to remember which properties that are dependent and which

that are independent in the McMillan-Mayer framework. Table 6.1 shows the independent and

the dependent variables in the ideal and the real systems in the McMillan-Mayer framework.

Independent variables Dependent variables

Ideal system T, V, n \ n0, μ0 Pid, n0
id

Real system T, V, n \ n0, μ0 P, n0

Table 6.1: Relation between the dependency of the variable in the McMillan-Mayer framework and the type of

system.

The modified Helmholtz energy is related to the Helmholtz energy - and vice versa - through

differential equations, eqs. (6.14) and (6.15). The starting point is the differential of the

modified Helmholtz energy as given in eq. (6.12) is
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Differentiating eq. (6.13) with respect to μ0 at constant T, V, and n\n0 gives –n0. Substituting

this into eq. (6.12)
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gives an expression for the Helmholtz energy once the modified Helmholtz energy is known.

Conversely, B is obtained from A via eq. (6.2) since the chemical potential of the solvent is

molar derivative of A with respect to n0 when T, V, and the rest of the mole number kept

constant.

0n\,V,T0
000 n

A
n),V,T(A),n\,V,T(B

n

nn ��
�

�
��
�

�
∂
∂−=μ (6.15)

Eq. (6.15) states that having an expression for the Helmholtz energy makes it fairly simple to

calculate the modified Helmholtz energy.

6.4 McMillan-Mayer

The statistical mechanical background for the McMillan-Mayer framework is not always

presented with the greatest clarity. One of the reasons for this is that the 1945 article of

McMillan and Mayer is difficult to follow. But they do quite clear state that the framework is

equal to that of an imperfect gas where the vacuum has been replaced by a solvent (McMillan

and Mayer, 1945). This is identical to the continuum concept presented in Chapter 8.

Modelling Electrolyte Systems.

Furthermore, McMillan and Mayer (1945) say that "The equations for the osmotic pressure

are developed and found to be entirely analogous to those for pressure of an imperfect gas".

This is in agreement with Simonin's statement (1996): "An important feature of the

McMillan-Mayer description level is that the thermodynamic functions are calculated at

constant solvent chemical potential". That is, if the solvent chemical potential is that of the

pure solvent, then the pressure of the solution will be P° + Π, where P° is the vapour pressure

of the pure solvent and Π is the osmotic pressure, see Chapter 7. Osmotic Equilibrium. In

other words the state of a McMillan-Mayer description is equivalent to the description of an

osmotic equilibrium, i.e. the solvent chemical potential is constant. Whether it is the solvent

chemical potential of the pure solvent or not is not essential. The solvent chemical potential is

still an independent variable in the McMillan-Mayer framework.
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6.5 Derivation of the excess modified Helmholtz energy, BE

If a thermodynamic model can not be related to the fundamental functions such as the Gibbs

energy or the Helmholtz energy and obey the Gibbs-Duhem equation, the application of that

model is purely mathematical and is of no scientific use. One has merely produced a very

advanced fitting function that most properly could be replaced by a simple polynomial fitting

function. The modified Helmholtz energy obtained from statistical mechanics (6.12) is

00

0000

nPV),P,T(G

n),V,T(A),n\,V,T(B

μ−−=
μ−=μ

n

nn
(6.16)

Logically, the modified Helmholtz energy of an ideal solution is defined as

[ ]id0000
id nPV),P,T(G),n\,V,T(B μ−−≡μ nn (6.17)

Since independent variables cannot be regarded as either ideal or real, the volume and the

solvent chemical potential are identical to those of the real solution; hence one has

id
00

id andVV μ=μ= (6.18)

and consequently

[ ] 0
id
0

idid
00

id nVP),P,T(G),n\,V,T(B μ−−=μ nn (6.19)

However, the solvent mole number is a dependent variable and hence different in the two

cases.
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where iV is the partial molar volume and vi is the molar volume.

The Gibbs energy of the ideal solution at Pid and n0
id in relation to that at P and n0 is
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where Vid is considered pressure independent and μ0
id is independent of solvent mole number

as a consequence of the framework definition, that states that μ0
id is constant. Inserting eq.

(6.21) into eq. (6.19) gives the final definition of the ideal solution
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The resulting excess energy BE(T, V, n \ n0, μ0) is given by subtracting eq. (6.22) from eq.

(6.16)
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There is no difference between BE(T, V, n \ n0, μ0) and GE(T, P, n). Differentiate GE(T, P, n)

with respect to ni at constant temperature, pressure, and mole numbers of the remaining

species, gives
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The total differential of BE is achieved by
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which is analogous to eq. (6.13). Applying eq. (6.25) for the differentiation in eq. (6.24) gives
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As mentioned earlier in this chapter "an important feature of the McMillan-Mayer description

level is that the thermodynamic functions are calculated at constant solvent chemical

potential.", Simonin (1996). Consequently, eq. (6.26) is reduced to

i
EMM

ii VPlnRTlnRT −γ=γ (6.27)

This is the same expression as Haynes and Newman concluded (1998). The following chapter

will focus on what the physical significance of PE is.
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7. Osmotic Equilibrium

7.1 Osmotic pressure

Osmotic equilibrium is an equilibrium between two compartments: the first one (denoted I) is

filled by pure solvent and the second one (denoted II) by a solution of a composition of n. The

two compartments are only separated by a semi-permeable membrane that only allows the

solvent to pass.

I II

Figure 7.1: A schematic representation of an osmotic equilibrium. A compartment I without solutes and a

compartment II with solutes divided by a membrane that only allows the solvent to penetrate.

There will be a pressure difference between the two compartments of a magnitude Π, the

osmotic pressure. At equilibrium the chemical potential of the solvent will be the same in both

compartments.
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In order to determine the osmotic pressure a pressure adjustment in compartment I from P° to

P° + Π is done.
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<vw> is an average molar volume of the solvent between the pressures P° and P° + Π. The

solvent chemical potential in compartment II is

),P,T(alnRT)P,T(),P,T( II
w

II
w

II
w nn Π+°+Π+°μ=Π+°μ (7.3)

Inserting eqs. (7.2) and (7.3) into eq. (7.1) gives
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The molar volume of the pure solvent is

w

w
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V
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Another way of determining the osmotic pressure is to pressure adjust the right-hand side of

eq. (7.1) instead.
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where >< wV is the average partial molar volume of the solvent from P° to P° + Π.

Furthermore, the chemical potential ),P,T(II
w n°μ can be expanded
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Equalising eqs. (7.1) and (7.7) gives
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Eqs. (7.4) and (7.8) are both valid at any solute concentration. If the solvent activity is defined

as xw ⋅ γw(T,P,n) and the model for the activity coefficient is indifferent to pressure, it follows

that the average molar volume of the solvent is equal to the average partial molar volume of

the solvent, and as a consequence the osmotic pressure is defined by eq. (7.4) only. Contrary

to >< wV the molar volume of the solvent is usually a known property.
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7.2 Ideal solution

In an ideal solution the solvent activity is often set equal to the solvent mole fraction, aw = xw,

as discussed in Chapter 2. Basic Thermodynamics, page 19. Furthermore, the solvent molar

volume is considered to be independent of pressure. This implies that eq. (7.4) is rewritten as

)x1ln(
RT

v
0 S

id
w −+Π= (7.9)

where xS is the total mole fraction of salt and Πid is the ideal osmotic pressure. One could

equally easy arrived at eq. (7.9) from eq. (7.8) since the partial molar volume in an ideal

solution is the molar volume and the solvent activity is 1 – xS. A virial expansion of the ideal

osmotic pressure in the concentration scale of molarities is

�
≥

+=Π
2j

j
SjS cBRTRTc (7.10)

where B are the virial coefficients (Hill, p. 345).

7.3 Dilute ideal solution

Taking eq. (7.9) one step further is to consider a dilute ideal solution xS << 1.

s
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Furthermore, the molar volume of the solvent, eq. (7.5), will be

total

total
w n

V
v = (7.12)

Inserting eq. (7.12) into eq. (7.11) produces the equation of van't Hoff and the definition of

the ideal osmotic pressure at dilute solution, Πo
id.

RTcs
id
o ≡Π (7.13)

where cS is total molarity of the solutes. The van't Hoff equation is therefore only valid for

dilute ideal solutions. At low solute concentrations the higher order terms of eq. (7.10) will be

vanishing and the van't Hoff equation will appear.
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7.4 Osmotic coefficients

In the usual (Lewis-Randall) framework the osmotic coefficient, φLR, is defined as

w
s

wLR aln
x

x−=φ (7.14)

where xw is the solvent mole fraction and aw is the solvent activity (Atkins (1992), p. 186 and

Pitzer (1991), p. 12). For a dilute solution the osmotic coefficient can be expressed as the ratio

of the osmotic pressure of the real solution and the ideal osmotic pressure. Considering eq.

(7.4) for a dilute solution and inserting eq. (7.14) would give
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which relative to the osmotic pressure of a dilute ideal solution, eq. (7.13), gives the osmotic

coefficient for a dilute solution.

In the McMillan-Mayer framework, the osmotic coefficient, φMM, is defined as the ratio of the

real osmotic pressure and the ideal osmotic pressure, Simonin (1999).

id
MM

Π
Π=φ (7.16)

The difference between the real and the ideal osmotic pressure is logically denoted the excess

osmotic pressure, i.e. the osmotic pressure difference between what is defined as the ideal

solution and the actual, real solution.

Eid Π+Π=Π (7.17)

Inserting eq. (7.17) into eq. (7.16) gives

id

E
MM 1

Π
Π+=φ (7.18)

In case that the solution considered is an ideal solution, the osmotic coefficient φMM is unity

since an excess property must be zero in an ideal solution.
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7.5 Dilute solution

A dilute solution is characterised by having all the solutes at a low concentration and the

solvent approaching unity (in terms of mole fractions). Often when dilute solutions are

considered, there is a tendency to replace the ideal osmotic pressure in eq. (7.18) by the van't

Hoff equation, Friedman (1972). However, this is only valid when one is considering a dilute

ideal solution and then the osmotic coefficient, φMM, is unity. A dilute solution is not an ideal

solution and hence the solute activity coefficient is not unity. In fact, the activity coefficient

usually has its greatest gradient at low concentrations. This is obvious when comparing the

electrode potential measurements at high and low concentration in Chapter 5. Experimental

Results.

However, the solvent activity coefficient in a dilute solution is for any practical purpose unity.

7.6 Dilute solution having solvent activity coefficient of unity

Assuming that the solvent activity coefficient is unity at dilute solution, the van't Hoff

equation can be applied in eq. (7.18)
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This is in accordance with McQuarrie (pp. 337) if one considers the excess osmotic pressure

as "der elektrische Zusatzdruck" that Debye and Hückel (1923) present.

Using the same assumptions (dilute solute, unit solvent activity coefficient), an often-

encountered relation between the Lewis-Randall and McMillan-Mayer framework is derived.

By inserting eq. (7.11) into the expression for the osmotic coefficient, eq. (7.14), one has an

expression for the osmotic coefficient of a dilute solution, φo
LR.
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where Πo is the osmotic pressure in the dilute solution. Substituting RT by the van't Hoff

equation and utilise the definition of φMM, eq. (7.16)
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This is the same limit that Simonin (1999) and Lee (2000) have for the conversion between

the two frameworks. It is worth noting that in the limit where the solvent is almost pure (xw =

1) - and where the solution is definitively ideal - both osmotic coefficients are unity. That the

Lewis-Randall osmotic coefficient φLR is unity can be proofed from the definition, eq. (7.14).
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7.7 Excess pressure

Having defined the osmotic pressure and the osmotic coefficients (both in the Lewis-Randall

and the McMillan-Mayer framework) one can return to eq. (6.27) where an excess pressure,

PE, appears. An excess property is per definition the difference between the property of the

real solution and that of the ideal solution.

PE = P – Pid (7.23)

Since the solvent chemical potential is kept constant in the McMillan-Mayer framework, the

difference between the real and the ideal solution is conceptually comparable to an osmotic

equilibrium. The osmotic pressure Π is defined as the difference between the real pressure, P,

and the pressure of the pure solvent, P°.

Π = P – P° (7.24)
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However, in the McMillan-Mayer description level, the ideal phase is not a pure solvent

phase, but the real solution treated ideally, i.e. γi = 1. So the pressure difference (between the

real and the ideal solution) is not the osmotic pressure, but rather the excess pressure of eq.

(7.23). The pressure P is eliminated from eq. (7.24) by eq. (7.23)

Π = PE + Pid – P° (7.25)

The last two terms of eq. (7.25) could be interpreted as an ideal osmotic pressure, Πid, in

analogy to eq. (7.24).

Π = PE + Πid (7.26)

Eq. (7.26) is indirectly defining an excess osmotic pressure that is identical to PE and could be

regarded as the non-ideality correction of the osmotic pressure.

7.8 Dilute solutions with unit solvent activity

For dilute solutions where the solvent activity is approximately unity, the last term of eq.

(7.26) could be replaced by the van't Hoff equation

RTcP So
E
o −Π= (7.27)

and eq. (7.16) rearranged to

MM
oSo RTc φ=Π (7.28)

This is in accordance with Friedman (1972), Simonin (1996), and McQuarrie (1976) for the

osmotic coefficient in the McMillan-Mayer description level dilute solutions. Eliminating Πo

in eq. (7.27) by eq. (7.28) gives an expression for the excess pressure in a dilute solution as
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Inserting eq. (7.29) into eq. (6.27)
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Simonin (1999) does not have the last term of eq. (7.30). But if PE and Π were identical, the

last term of eq. (7.30) would vanish. Simonin (1999) has based his work on that of Friedman

(1972), in which there are some unfortunate descriptions of the frameworks.

7.9 Friedman

One of the often-cited articles in the field of the McMillan-Mayer framework is an article by

Friedman (1972). This article describes the LR framework by using a state (T, P, m) where m

is the vector of the molalities of the solutes. But by specifying a molality vector, the energy of

the state is only described as a molar property, since it is only the composition of the state that

is given. It is impossible to calculate the total energy of that state without the knowing the

total number of moles. Normally, the composition is given in terms of mole numbers and

hence the state is unequivocally described.

In the description of the MM framework Friedman is using a state (T, Po, c) where Po is the

pressure of the pure solvent in equilibrium with solution and c is the vector of solute

molarities. This state description differs from the one given in the previous Chapter 6.

Statistical Mechanics at two points. The first point is that Friedman specifies a pressure. The

semi-canonical ensemble responsible for the modified Helmholtz energy B is not specified by

a pressure at all, eq. (6.12). The second point is that the molarity is used instead of mole

numbers of the solutes, the total volume, and the chemical potential of the solvent. As is the

case for Friedman's LR description the energy of the specified state is 'only' a molar energy -

and not the total energy.

Furthermore, Friedman defines an 'excess Helmholtz energy per unit volume', Aexcess, as an

integration of the difference in osmotic pressures Π – cSRT from zero solutes to the real

solution. This implies that the assumption for this energy function is a dilute ideal solution

because then the van't Hoff equation is valid.
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It should be emphasised that Aexcess is not a traditional excess Helmholtz energy but a defined

energy function and the working equations of Friedman are only valid where the van't Hoff

equation is valid. By application of eq. (7.27), eq. (7.31) is rewritten into
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Inserting eq. (7.29) into eq. (7.31)
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one obtains precisely the expression for that 'excess Helmholtz energy per unit volume' which

is given by Friedman (1972). The 'excess Helmholtz energy per unit volume' of Friedman is

not based on a statistical mechanical background as the modified Helmholtz energy B is. This

lack of sound background and the fact that Friedman's equations only are valid for dilute

solutions makes his results limited and not generally applicable.
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8. Modelling Electrolyte Systems

In this chapter the Debye-Hückel theory will be derived as Debye and Hückel did, and then

compared with the approach implied by McQuarrie. A few of the 'electrolyte' gE terms

inspired by the Debye-Hückel theory are presented as well. Furthermore one electrolyte gE

model (the extended UNIQUAC model) and one continuum concept based model (the HS-

MSA model) are presented and the most-often used approach towards modelling of solubility

data is sketched.

8.1 An simple explanation of the continuum concept

Consider a very dilute solution of water and fully dissociated sodium chloride. Since the

amount of water molecules is much greater than the total amount of sodium and chloride ions,

it is reasonable to regard water (the solvent) as a dielectric continuum - contrary to individual

molecules. The ions are still regarded as individual spheres. The NaCl solution has to be

electrical neutral overall; the number of protons equals that of electrons. If one chooses the

reference of the system to that where all the 'ions' are uncharged, then all the 'ions' can be

regarded as atoms which then again can be regarded as spheres. The Debye-Hückel theory

deals with the charging-up of this reference system to the real solution.

8.2 The Debye-Hückel theory and derivatives

The 1923 work of Debye and Hückel is one of the first theoretical papers on electrolytes that

deals with the continuum concept. The basis of the concept is to regard a continuum in which

spheres are located. This is a simplified representation of a very dilute solution where the

solvent is regarded as the continuum and the ions as the spheres.

The Debye-Hückel theory only concerns the energetic of charging-up a system. In other

words, there has to be an uncharged system of molecules that needs to be charged. When

Debye and Hückel (1923) mentioned the classical term in the internal energy function, it is

the difference between the real (or actual) internal energy and that of charging-up the system.

"Die Rechnungen, welche in Folgenden auszuführen sind, unterscheiden sich von den

klassischen durch Berücksichtigung der elektrischen Ionenwirkungen. Dementsprechend
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zerlegen wir U in zwei Bestandteile, einen klassischen Anteil Uk und eine elektrische

Zusatzenergie Ue: U = Uk + Ue". Translated: The calculations, which are carried out

subsequently, differ from the classical ones by consideration of the influence of the ions.

Because of that we give U in two terms, a classical term Uk and an electrical additional energy

Ue: U = Uk + Ue. (Debye and Hückel (1923), pp. 187)

If a Debye-Hückel model is used without any additional configurational models, the

modelling is limited to (very) dilute solutions and the configurational contribution of the

molecules has to be negligible.

The continuum is characterised by its dielectric constant or permittivity. For a polar solvent

such as water the relative permittivity εr is 78.54 at 25°C whereas an organic solvent such as

ethanol has a relative permittivity of 24.30 at 25°C (CRC 78th, p. 8-115). The dielectric

constant of a continuum is thus ε = εrε0 where ε0 is the dielectric constant of vacuum.

The relative permittivity is in the following considered to be independent of the system's

temperature, volume, and composition. However, this is a simplification since there exist a

number of quantitative relations for the relative permittivity and the electric properties of the

solvent. One of these is the Debye equation (Atkins, 1992)
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r (8.1)

where n0 is the mole number of the solvent, a is the polarizability (unit C²m²/J), and μ is the

electric dipole moment (unit C⋅m).

The starting point for the Debye-Hückel theory is the Poisson equation

ε
ρ−=Φ∇2 (8.2)

where Φ is the electric potential (unit volt, V), is the volumetric charge density (unit

coulomb per volume, C/m³), and ε is the dielectricity of continuum (unit C²/(J⋅m)).

The work required to move a cation of charge z+e (where e is the elementary charge) towards

the electric potential Φ is z+e⋅Φ; for an anion of charge z–e the work is z–e⋅Φ. Furthermore,

Debye and Hückel assume that the ionic distribution follows the Boltzmann principle,

wherefore the volumetric charge density can be expressed as



Modelling Electrolyte Systems 101

�

�

�
�
�

�
�
� Φ−=

�
�
�

�
�
� Φ−=ρ

i
iii

i
iiiA

RT

F
zexpczF

kT
zexpczN

e
e

(8.3)

where F is Faraday constant and ci is the molarity of ionic species i. Inserting eq. (8.3) into the

Poisson equation yields a differential equation, the Poisson-Boltzmann equation. Normally,

eq. (8.3) is linearised
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(8.4)

and the linearised Poisson-Boltzmann equation is obtained
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where κ is the Debye (shielding) length, which has the unit of reciprocal metre. The solution

of eq. (8.5) is

rr e
r
'A

e
r
A

)r( κκ− +=Φ (8.6)

Obviously, A' must be zero since Φ has to be zero at an infinite great distance

re
r
A

)r( κ−=Φ (8.7)

In the Debye-Hückel theory the ion i is regarded as a sphere of radius ai. The radius ai is not

the ionic radius but the closest distance that any other ion can approach the ion in question,

the so-called Annäherungsabstand, the distance of closest approach, Debye and Hückel (1923,

p. 192). The electric potential at distances greater than ai is given by eq. (8.7). The inside of

this ionic sphere is regarded as a continuum of a given permittivity and the charge is regarded

as a point charge placed at the origin. The electric potential inside the ionic sphere is given by

B
r

1

4

z
)r( i +

πε
=Φ e

(8.8)
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The expression of an electric potential is presented in the Appendix C on Electrostatics, eq.

(C.8). The additional term B is a constant background electric potential. The boundary

conditions of the model described by eqs. (8.7) and (8.8) are that both Φ and its gradient are

continuous at r = ai. The solution is given by the two constants
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The potential energy per molecule is given by the product of the charge and the background

electric potential, B, accordingly to Debye and Hückel, p. 193.
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Consequently, the total electrostatic (internal) energy is given by
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The unit of Uelec is joule. The Helmholtz energy is related to the internal energy by
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at constant volume and composition. The total electrostatic Helmholtz energy (unit joule)

becomes
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The volume change due to the charging-up is so insignificant that Aelec approximates the

electrostatic Gibbs energy (Debye-Hückel, p. 188). "Mit Rücksicht darauf aber, daß die

Kompressibilität des Wassers so gering ist, daß 20 Atm. nur eine relative Volumänderung von

0,001 hervorrufen, kann für die meisten Anwendenungen der elektrischen Zusatz zu V (als

Funktion von p und T) vernachlässig werden". Translated: Because of the small

compressibility of water (a pressure of 20 atmospheres only gives a relative volume change of

0.001), the volume change (as a function of pressure and temperature) due to charging-up is

for the most cases negligible. So by assuming the PV work to be insignificant one has the

Debye-Hückel electrostatic Gibbs energy.
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The activity coefficient of any ionic species j is determined as the molar derivative of eq.

(8.15) at constant temperature and pressure.
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where jV is the partial molar volume of species j,
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Eq. (8.16) reduces when the partial molar volume of an ion is assumed to be much less than

that the total volume
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It is noted that � γ
j

elec
jj ),P,T(lnnRT n is not Gelec,DH(T,P,n) due to the assumption of the

insignificant partial molar volume relative to the total volume.

At very dilute solutions the function χj is almost constantly unity and if all radii are assumed

identical, the activity coefficient of the ionic species is
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where I is the ionic strength
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and the ADH parameter or the Debye-Hückel parameter is

3
A

3

DH )RT(2
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N4
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and has the units of m3/2⋅mol–1/2. For a continuum of water at 298.15K ADH = 3.7084⋅10–2

m3/2⋅mol–1/2. Eq. (8.20) is the end result of Debye and Hückel (1923) for the activity

coefficient of an ionic species in an infinitely diluted solution. The expression is valid up to

approximately 0.01 M, (Thomsen, 1997). As presented Debye and Hückel have not assumed

that the distances of closest approach are identical in order to derive an expression for the

activity coefficient, eq. (8.19).

However, instead of assuming that the PV work of the charging process and the partial molar

volumes relative to the total volume are negligible as Debye and Hückel did, the correct
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electrostatic Gibbs is obtainable from the expression of Aelec, eq. (8.13), in two different ways

(McQuarrie, pp. 336).

The first way of deriving the electrostatic Gibbs energy is given by

V),V,T(P),V,T(A),V,T(G elecelecelec nnn += (8.23)

where Pelec is the electrostatic pressure due to the charging process which is derived as
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Eqs. (8.13) and (8.24) are inserted into eq. (8.23) and the Gelec(T,V,n) is determined
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By comparing eqs. (8.15) and (8.25) it is obvious that Debye and Hückel's assumptions only

are valid if σi << χi. But σi and χi are of the same order of magnitude.

The other way of deriving the electrostatic Gibbs energy involves the electrostatic chemical

potentials which are the molar derivative of Aelec(T,V,n) at constant T and V.
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where
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which is a simpler expression than eq. (8.18) since eq. (8.27) is the derivative of κ at constant

V. The electrostatic Gibbs energy is then calculated as
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which is identical to eq. (8.25). The total Gibbs energy of the solution is given by

G = Go + Gelec (8.29)

where Go is the Gibbs energy of the uncharged system and the excess Gibbs energy of the

solution is
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where Go
id is the Gibbs energy of the ideal uncharged system. There is no ideal electrostatic

Gibbs energy since the charging process is immaterial. From eq. (8.30) it follows that
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which implicitly gives the activity coefficient of an ionic species
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which is identical to eq. (8.19). The two assumptions of Debye and Hückel are that 1: the PV

work of the charging process is negligible and 2: the partial molar volumes of the ions are

insignificant relative to the total volume. However, both of these assumptions are equivalent
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of ignoring the partial molar volume of the ions - and the following paragraph will show that

these assumptions are unnecessary.

In principle, the deviation of the logarithmic activity coefficient of Debye and Hückel, eq.

(8.16), is given by eq. (8.34).
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But since Debye and Hückel implicitly say that iV is zero, and consequently eq. (8.16)

reduces to eq. (8.19). However, it is not necessary to assume anything about iV , since eq.

(8.34) is
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Therefore the expression for the activity coefficient derived as Debye and Hückel did it (two

assumptions and end up as eq. (8.19)) is equivalent to the procedure implied by McQuarrie

which does not include any assumptions, eq. (8.33).

In order for the consistency of the model to be fulfilled the electrostatic chemical potentials

obtained from Gelec(T,V,n) have to be identical to the those obtained from Aelec(T,V,n).

Therefore the electrostatic Gibbs energy is differentiated by nj at constant T, P, and n to check

that the result is identical to the electrostatic chemical potential.
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Eq. (8.23) is inserted in eq. (8.36), which then is evaluated
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Since the state is given by (T,V,n), the pressure is to be regarded as a function of T, V, and n.

Therefore the total differential of the pressure is
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The differentiation considered, eq. (8.36), is at constant pressure (dP = 0) and temperature (dT

= 0), so one has that the molar derivative of eq. (8.38) is
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Eq. (8.39) is applied in eq. (8.37) whereby the molar derivative of the electrostatic Gibbs

energy at constant temperature, pressure, and composition is equal to the chemical potential.
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The result of the differentiation, eq. (8.40), shows that there is internal consistency of the

model.
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In order to simplify the expression of the activity coefficient eq. (8.33), the distances of

closest approach, ai, are assumed identical for all ions. This reduces the expression to the so-

called extended Debye-Hückel equation
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where ADH is the same as given by eq. (8.22) and the b parameter

RT

F2
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2

ε
= (8.42)

which has the units of m3/2⋅mol–1/2. All the state descriptions given so far in this chapter have

either been (T,V,n) or (T,P,n). But the mole number of the solvent is not explicitly given in

any of the equations, i.e. the vector n is strictly speaking only a vector of n\n0. In order for the

state description to be complete, it is required that the solvent mole number is included (a

Lewis-Randall level of description) or the solvent chemical potential (a McMillan-Mayer

level of description). Since the Debye-Hückel theory regards the solvent as a continuum, it

would be natural to assume that the Debye-Hückel theory is conceived at a McMillan-Mayer

level of description. But the theory does not mention the chemical potential of the solvent,

and hence it is not a complete description. As a consequence the derivation of the chemical

potential of the solvent (the continuum) is not possible without an additional assumption

regarding the solvent mole number or the solvent chemical potential.

8.3 Electrostatic gE model terms

To achieve a complete description Fowler and Guggenheim (1949) constructed an excess

Gibbs energy model, which they based on an expression similar to eq. (8.41) except that the
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ionic strength was replaced by a 'molal' ionic strength, Im, and the distance of closest approach

was assumed the same for all ions.
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where the 'molal' ionic strength is
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Consequently, the b parameter has to redefined as bm
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where dw is the pure solvent density. The bm parameter has the units of kg1/2⋅mol–1/2. In this

work the value of bm is 1.5 kg1/2⋅mol–1/2. This is in accordance with the work of Thomsen

(1997) which is the basis for the modelling with the Fowler-Guggenheim model in this work.

The integration of ln γj with respect to nj gives the excess Gibbs energy and thus
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where nw is the mole number of solvent and Mw is the molar mass of the solvent (kg/mole).

This model is valid up to approximately 0.1 molal, (Thomsen, 1997). Notice that where

Debye and Hückel present a Gibbs energy for the charging process, Fowler and Guggenheim

present an excess Gibbs energy model. That is, Fowler and Guggenheim's model includes the

solvent; it is possible to differentiate the excess Gibbs energy and obtain the activity

coefficient of the solvent.
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Furthermore, Fowler and Guggenheim use a molality based ionic strength; the model has to

include the density of the solvent. The addition of an uncharged compound, a non-solvent, to

an electrolyte solution would not have an effect according to eq. (8.46).
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However, the addition of a non-electrolyte will at least dilute the electrolyte solution and

hence the charge density. The Poisson-Boltzmann equation states that a change in the charge

density will change the electric potential and eventually the excess Gibbs energy. Concluding

that the model of Fowler and Guggenheim is insensitive to uncharged species since the

molalities of the electrolytes are not affected by the uncharged species.

In 1980, Pitzer derived a generalised model also originating from the work of Debye and

Hückel. Unlike Fowler and Guggenheim, Pitzer defines the ionic strength as

�=
i

2
iix zx

2

1
I (8.48)

where xi includes water. Since the ionic strength, eq. (8.48), is affected by the amount of

uncharged species present, this definition of the ionic strength seems more reasonable than the

definition of eq. (8.44), where the ionic strength is indifferent to the amount of uncharged

species.
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where dw is the density of the solvent, Mw is the molar mass of the solvent, ρ is a 'closest

approach' parameter (and has a value of 8.94), and the sum includes all species, neutral as

well as ions (Pitzer, 1980). The Bromley model (Bromley, 1973) is an electrolyte model that

calculates the mean ionic activity coefficient of aqueous salt solution based on single

parameter B. The model is based on the Debye-Hückel equation plus two additional terms that

both are functions of the ionic strength alone.
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where dw is the density of the pure solvent, Im is the molal ionic strength, and B is an

estimated parameter significant for each salt. These parameters are tabulated by Bromley,

1973. This model is in comparison with the Debye-Hückel equation valid up to 6 molal. The

reason for Bromley to include a first order polynomial function of the ionic strength in eq.

(8.50) is because of experimental evidence that such a relation exists: "Inspection of the

curves of Figure 22-8 in Pitzer and Brewer's revision (1961) of Lewis and Randall's
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Thermodynamics led this author to believe that the curves are linear in I and approach

constant values at large I.", Bromley, 1973.

Recently, modifications to the original Bromley electrolyte model have been published

(Borge et al., 1996a-b, and Raposo et al., 1999). The modifications are to regard the ionic

strength as a volumetric property (mole per litre) and use a mixing rule for the B parameter

given the cations and anions. Based on these modifications the model is now applicable up to

9 molal. However, both Bromley models lack any temperature dependence; the B parameters

are only estimated at 298 K.

The Poisson-Boltzmann equation can of course be solved numerically. If only radial

dimension is considered, the numerical solution and the approximate one of the linearised

Poisson-Boltzmann equation are identical (McQuarrie, p. 332). This is illustrated by Figure

8.1. The Poisson-Boltzmann equation is solved by an ordinary differential equation solver

provided by MATLAB, ode45.m.
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Figure 8.1: The electric potential as a function of the radial distance from the centre of an ion. The distance of

closest approach a, der Annäherungsabstand, is arbitrarily chosen as a = 10 Å, the concentration is cNaCl = 0.01

M, and the temperature is 298.15 K. The distance of closest approach is indicated by o, the Poisson-Boltzmann

equation by —, and the linearised Poisson-Boltzmann equation by - -.
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8.4 Electrolyte gE models

As mentioned previously a Debye-Hückel model needs configurational terms from another

model in order to describe other solutions than very dilute ones. Examples of those additional

terms are gE models. The three classical gE models NRTL, UNIFAC, and UNIQUAC all have

electrolyte versions where a Debye-Hückel-like term is added to the classical gE model in

order to account for the ionic behaviour. These modified models are called the electrolyte

NRTL, UNIFAC + DH, and the extended UNIQUAC, respectively.

The electrolyte NRTL model was presented by Chen and Evans (1986). This gE model

consists of two terms, a long-range interaction contribution (Pitzer-Debye-Hückel formula,

described by Pitzer, 1980) and a short-range interaction contribution where the original NRTL

formula as described by Renon and Prausnitz (1968) is slightly modified by Chen and Evans

(1986). The modification is that the ionic species are contributing differently to the excess

Gibbs energy than the non-ionic species. The electrolyte NRTL model has been extended by a

third term (Chen et al., 1989). The additional term is the Born term which accounts for the

effects of mixed solvents. (There are no further comments to this model.)

The modified UNIFAC model (Larsen et al., 1987) plus a Debye-Hückel-like term have been

used to model the activity coefficients of amino acids and antibiotics (Pinho et al. (1996), Fiol

et al. (1995), Gupta and Heidemann (1990), and Kuramochi et al. (1996a-b, 1997)). The

strength of the UNIFAC model is that it in principle is a predictive model once the

contributing groups have been determined. In the case of amino acids, Pinho et al. (1996)

have determined the groups significant of zwitterionic amino acids, e.g. the carboxylate group

(-COO–) and the α-amino group (-CH2NH3
+). However, all these charged 'new' groups are

identical to the already conventional uncharged groups, (-COOH and -CH2NH2, respectively).

The extended UNIQUAC model of Sander et al. (1986) is made up of two parts; a usual

UNIQUAC contribution as presented by Abrams and Prausnitz (1975) and the Debye-Hückel-

like contribution of Fowler and Guggenheim, eq. (8.46).

In turn, the UNIQUAC model itself consists of two terms, a combinatorial (enthalpic) and a

residual (entropic) term, eqs. (8.51) and (8.52), respectively.
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where Z is the lattice co-ordination number which normally is set to a value of 10, the

variable
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=φ
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is the volume fraction, ri is the volume parameter of component i, the variable

�
=θ

j jj

ii
i qx

qx
(8.54)

is the surface area fraction, qi is the surface area parameter of component i, and interaction

energy differences

0UUand,UUU,UUU jjiijjijijiijiji =Δ=Δ−=Δ−=Δ (8.55)

It is noted that ΔUji is not identical to ΔUij. The results of the application of the extended

UNIQUAC model are given in Chapter 9. Modelling results.

8.5 The HS-MSA model

As mentioned in the introduction of this chapter there are two types of frameworks. This

section describes a model that is fully based in the McMillan-Mayer framework.

The model considered consists of two parts: a configurational term and an electrostatic term.

The configurational term is the hard-sphere term (HS) of Mansoori et al. (1971) and the

electrostatic term is the mean spherical approximation term (MSA) of Blum and Høye (1977).

This model is identical to that presented by Simonin et al. (1996). For consistency, the

combined model is named the HS-MSA model in this work.

When the solvent is treated as a dielectric continuum and not molecularly, the model is called

a primitive model. Consequently, a non-primitive model does treat all components

molecularly. These hard spheres have neither a charge nor a dipole moment. Furthermore, the

hard spheres are assumed to have different sizes.
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The 'excess' MSA Helmholtz energy, ΔAMSA, as it is presented by Simonin et al., 1996, is

given by

π
Γ+Δ=Δ
3kT

U
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A 3MSAMSA

(8.56)

where the 'excess' MSA internal energy is
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where σi is the diameter of species i. The reason for writing ΔA and 'excess' is that it is

relative to the dielectric continuum. This description level is called the McMillan-Mayer

framework (Simonin et al., 1996) and is further described in Chapter 6. Statistical mechanics.

The three properties η, Ω, and Δ are defined by eqs. (8.58) - (8.60). It is worth noting that η is

zero when all the ionic diameters are identical due the overall charge balance.
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The screening parameter Γ must satisfy the closure equation
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For comparison the Debye length of eq. (8.4) is rewritten as
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It is worth noting that for identical radii (η = 0) the parameters Γ and κ are interrelated as

222 )1(4 κ=σΓ+Γ (8.63)
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The hard-sphere term, as it is given by Simonin et al., 1996, is identical to the expression of

Mansoori et al., 1971.
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where

� σρπ=
k

n
kkn 6

X (8.65)

where k is the number density. Originally, the hard-sphere model (Mansoori et al., 1971) is

not a primitive model, but it is treated as such by the HS-MSA model. The HS-MSA model is

designed to describe the behaviour of electrolyte solutions. Furthermore, the cation diameters

and the dielectric constant are made functions of the solute concentration by Simonin et al.,

1996, as shown in eqs. (9.9) and (9.10). The argument of Simonin et al. (1996) for applying a

concentration dependent cation diameter is the hydration of the cation. However, they are

regarding the solvent as a dielectric continuum, which is equivalent to regard the solvent as

inert. Nonetheless, they permit the solvent to react molecularly with the cation (hydration).

This is a contradiction in terms. The reason for a concentration dependent dielectric constant

has an experimental foundation. Helgeson et al. (1981) have correlated experimental

determined dielectric constants as a function of the 'molal' ionic strength.

Additionally, Simonin (1999) has suggested to model non-electrolytes by an additional van

der Waals contribution to account for the short-range interactions (dipole-dipole interactions).

Khoshkbarchi and Vera (1996d) presented a model where the hard-sphere term of Mansoori et

al., 1971, was the reference and perturbation terms were added (dispersion, dipole-dipole,

dipole-induced dipole, and angle-average charge - dipole). Amino acids have relatively high

dipoles. Furthermore, the electrostatic term of Blum and Høye (1977) was added for

electrolytes. However, the contributions of the additional terms are very scarce (except that of

dispersion), so for any practical purposes these terms should be omitted. This model is known

as the perturbed hard-sphere model with mean spherical approximation. This model has been

simplified so it only consists of two perturbation terms besides the hard-sphere term

(Khoshkbarchi and Vera, 1996e). These two terms account for the dispersion (Lennard-Jones)

and the dipole-dipole interaction (angle-average Keesom). This simplified model is made for

non-electrolyte solutions and is consequently without a long-ranging electrostatic term.
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However, the concept of describing a system with the solvent as a reference seems to have

some shortcomings. By definition the interactions between solvent and solutes are eliminated

because of the choice of having the solvent as a dielectric continuum.

When Hill (1962), p. 327, gives an expression for the hard-sphere activity coefficient for a

continuum model in terms of virial coefficients, he approximates the dilute solution by a gas

mixture since that is the idea of the McMillan-Mayer level of description. The hard-sphere

term presented by Hill, like that of Khoshkbarchi and Vera (1996d), is deprived of any direct

interactions between the solvent and the solute. In fact, all primitive model terms must be. (In

a gas mixture there is nothing called a solvent. That is a major difference between a gas

mixture and a dilute solution). Consequently, a hard-sphere term in a primitive model is not a

classical model as mentioned by Debye and Hückel. From a physical viewpoint, it seems

unfortunate to formulate a model that does not include solvent - solute interactions.

The results of the HS-MSA model are given in Chapter 9. Modelling results.

8.6 Modelling of solubility

Many attempts have been made to model the solubility of amino acids (Chen et al. (1989),

Peres and Macedo (1994), Pinho et al. (1994), Fiol et al. (1995), Gupta and Heidemann

(1990), Nass (1988), and Kuramochi et al. (1996a-b)). The approach has almost been the

same as well. Firstly, the activity coefficient model is tuned by estimating the activity

coefficients of the amino acids at different concentrations but at constant temperature (298 K).

The activity coefficients most often used are those tabulated by Fasman (1976). Secondly, the

tuned activity coefficient model is then used to model the solubility of the amino acids as a

function of temperature. Fasman (1976) also gives most of the solubilities. They are

calculated by the correlations derived by Dalton and Schmidt (1933 and 1935) who have

correlated the logarithmic solubilities of a number of amino acids as a second order

polynomial function of the temperature.

2

AA
TCTBAxln ++=± (8.66)

where A, B, and C are adjustable parameters. The temperature range is 273 - 373 K. An

evident shortcoming of this procedure is that the model tuning is done at 298 K but the

modelling of the solubility is done over a much wider temperature range.
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In order to model the solubility, the equilibrium constant K of dissolving the amino acid has

to be known.

AA (s) = AA± (aq)
)aq(AA

aK ±= (8.67)

The equilibrium constant is usually correlated by eq. (8.68)
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where A, B, and C are adjustable parameters. The form of the correlation originates from
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where ΔG and ΔH are the change in Gibbs energy and the change in enthalpy due to the

reaction. The fact that the Gibbs energy is interrelated with the equilibrium constant

KlnRTG −=Δ (8.70)

gives by inserting eq. (8.70) into eq. (8.69) the so-called Gibbs-Helmholtz equation
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or in the integral form
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where To is the reference temperature. The temperature derivative of the enthalpy at constant

pressure is by definition the heat capacity, ΔCp.
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Assuming a constant heat capacity will result in the following expression for the equilibrium

constant
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where eq. (8.74) has the same form as eq. (8.68).

If the amino acid solution is assumed ideal (γi = 1), the correlation for the equilibrium

constant is able to describe the solubility curve, eq. (8.66), (a second order polynomial

function of the temperature), since
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where Tr is a reference temperature, chosen such that
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Using the series expansion of the natural logarithm
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In this way the logarithmic equilibrium constant K can be modelled by a second order

polynomial function - like to the logarithm of the solubility. That is why the correlation for

the equilibrium constant is capable of correlating the solubility of an ideal solution. However,

the activity coefficient model makes up for the small discrepancies between the two

expressions. Or in other words: the equilibrium constant correlation has three adjustable
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parameters that are fitted so that the activity coefficient model can describe the solubility

curve.
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9. Modelling Results

The purpose of this chapter is to impart the experience gained in this project of how the

extended UNIQUAC model is describing binary and ternary systems containing amino acids

or peptides and how the behaviour of a continuum concept based model, the HS-MSA model,

is performing in an electrolyte system. Both models are applied as they were described in the

previous chapter, 8. Modelling Electrolyte Systems.

This chapter is made up of two parts. The first part is focussing on the modelling with the

extended UNIQUAC model. Firstly, the flexibility of the model is investigated by fitting only

binary data with and without the residual term of the model. Secondly, an investigation of the

modelling results of binary as well as ternary systems, i.e. osmotic coefficients from isopiestic

measurements and electrode potential measurements, is performed.

In the second part of this chapter the modelling results concerning the HS-MSA model are

given. The model has been applied as it is presented in Chapter 8. Furthermore, the effects of

changing the HS-MSA model from its original primitive basis to a non-primitive basis have

been done in order to see how well the HS-MSA model performs. A primitive model treats

the solvent as a dielectric continuum and not as uncharged molecules. A non-primitive model

treats the solvent molecularly.

9.1 Flexibility of the UNIQUAC model

As mentioned in the introduction of this chapter the model flexibility is investigated by

modelling binary systems of water and amino acid. In binary systems of water and amino acid

the extended UNIQUAC model is losing its electrolyte extension since the amino acid at the

present pH will assumes its zwitterionic configuration; a net charge of zero. The experimental

data are osmotic coefficients, which are obtained by isopiestic measurements.

The maximum number of UNIQUAC parameters that one possibly can estimate for a binary

system is 2 surface area parameters, 2 volume parameters, and 2 interaction parameters, ΔU12

and ΔU21. The surface area parameter and the volume parameter of water are assigned to

those of Abrams and Prausnitz (1975). This leaves 4 estimable parameters per binary system.

The (extended) UNIQUAC model has no difficulties in fitting the experimentally determined
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osmotic coefficients of the 3 representative systems that are shown in Figures 9.1, 9.3, and 9.5

by the full lines.

However, it is possible to model these systems without the residual term of the UNIQUAC

model quite well, i.e. the surface area parameter and the volume parameter of the amino acids

are re-estimated while the interaction parameters are set to zero. The results of these re-

estimations are also shown in Figures 9.1, 9.3, and 9.5 by the dotted lines. The reason for this

success is that the UNIQUAC model is flexible enough to accomplish satisfactory fits. In the

case of glycine the osmotic coefficient calculated by the two versions of the UNIQUAC

model coincide.

As presented in the previous chapter, the UNIQUAC model consists of two terms: the

combinatorial term, eq. (8.51), and the residual term, eq. (8.52). However, the combinatorial

term can be split into two contributions
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To illustrate the flexibility of the model the individual terms of the logarithmic activity

coefficients of the amino acid are shown as function of the amino acid molality. The Figures

9.2, 9.4, and 9.6 are for the 'full' model, i.e. the model including the residual term.
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Figure 9.1: The osmotic coefficient of the glycine -

water system as a function of the glycine molality. The

UNIQUAC model with (–) and without (⋅⋅⋅) its residual

term. The experimental points (o): Smith and Smith

(1937), Richards (1938), and Ellerton et al. (1964).

Figure 9.2: The logarithmic activity coefficient of

glycine as a function of the glycine molality. 'All' is

the full UNIQUAC model, 'combI' is eq. (9.1), 'combII'

is eq. (9.2), and 'res' is eq. (8.52).
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Figure 9.3: The osmotic coefficient of the lysine -

water system as a function of the lysine molality. The

UNIQUAC model with (–) and without (⋅⋅⋅) its residual

term. The experimental points (o): Bonner (1982).

Figure 9.4: The logarithmic activity coefficient of

lysine as a function of the lysine molality. 'All' is the

full UNIQUAC model, 'combI' is eq. (9.1), 'combII' is

eq. (9.2), and 'res' is eq. (8.52).
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Figure 9.5: The osmotic coefficient of the

glycylalanine - water system as a function of the

glycylalanine molality. The UNIQUAC model with (–)

and without (⋅⋅⋅) its residual term. The experimental

points (o): Smith and Smith (1940c).

Figure 9.6: The logarithmic activity coefficient of

glycylalanine as a function of the glycylalanine

molality. 'All' is the full UNIQUAC model, 'combI' is

eq. (9.1), 'combII' is eq. (9.2), and 'res' is eq. (8.52).

Figures 9.2, 9.4, and 9.6 show that the combinatorial term consists of two opposing terms.

This gives a huge flexibility in the model. This is the reason that the reduced version of the

UNIQUAC model is still performing acceptable.

The phenomenon, which is illustrated by Figures 9.2, 9.4, and 9.6, is popularly called

'weighing the ship's captain'; the mass of the captain is determined by weighing the ship with

and without the captain. A small value is determined by subtracting two large values. If the

residual term is left out, the two parts of the combinatorial term, eqs. (9.1) and (9.2), will just

find a new internal ratio so that the reduced model fits the data again.

In conclusion, the UNIQUAC model is a very flexible model to model binary water-amino

acid systems. The extended UNIQUAC model has no difficulties in describing the binary

systems of amino acid (or peptides) and water.

9.2 Binary and ternary systems modelled by the extended UNIQUAC

Knowing that the flexibility of the UNIQUAC model is significant, the focus is shifted

towards the fitting of experimental data in binary as well as ternary systems by the use of the

extended UNIQUAC model. The binary (osmotic coefficients) and the ternary (electrode
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potentials) systems were modelled simultaneously. The application of the extended

UNIQUAC model for solute-electrolyte solutions was greatly facilitated by the work of

Thomsen (1997) since all the needed parameters for aqueous electrolyte systems were

available. Consequently, only the parameters involving the additional amino acids or peptides

had to be estimated. The estimated parameters are given in Tables 9.1 and 9.2. Contrary to the

non-electrolytes the ions of the dissolved salts still have an electrostatic contribution.

The graphic presentations of the model fits to the binary data also include the so-called ideal

osmotic coefficient, φid.

w
s

wid xln
x

x−=φ (9.3)

which is identical to the osmotic coefficient (in the Lewis-Randall framework, eq. (O.15))

except that the solvent activity is replaced by the solvent mole fraction, hence the notation

ideal, (γi = 1). Figure 9.7 shows the ideal osmotic coefficient, φid, as a function of the solute

mole fraction. The osmotic coefficient is another way of formulating the solvent activity.

However, often the solvent activity is close to unity because the solution is diluted. The

advantage of the osmotic coefficient is that it magnifies the behaviour of the solvent activity.

A reasonable fit to the osmotic coefficient is therefore a good fit to the solvent activity.
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Figure 9.7: The osmotic coefficient of an ideal binary solution as a function of the solute mole fraction. The two

end points, (0,1) and (1,0) are valid even for the osmotic coefficient of a real solution.

When the osmotic coefficient of a solution is exhibiting a behaviour resembling that of Figure

9.7, there is reason to believe that the solution in question can be treated as an ideal solution.
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For comparison the ideal osmotic coefficient, eq. (9.3), is shown as the dashed line in Figures

9.12, 9.16, 9.20, 9.23, 9.26, 9.28, and 9.30.

This section will present the relation between the osmotic coefficient and the activity

coefficient of the solute in a binary solution. Based on the behaviour of the osmotic

coefficient with respect to the solute concentration, it is possible to describe the behaviour of

the activity coefficient of the solute and of the solvent in a binary solution. If the deviation

from the ideal osmotic coefficient is negative,

10ln

0xln
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x
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x

x

0

ww

w
S

w
w

S

w

id

>γ�>γ

�<+−
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(9.4)

the activity coefficient of the solvent is greater than unity. From the definition of the activity

coefficient one has the limit

1),P,T(lim i
1xi

=γ
→

n (2.32)

and finally the gradient of the activity coefficients are determined from the Gibbs-Duhem

equation at constant temperature and pressure - implying that the reference chemical

potentials are constants.
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From the definition of real solution (ai = xiγi) one obtains for a binary system at constant

temperature and pressure
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(9.6)

Since the ratio xw / xS always is positive, the gradient of ln γS with respect to nS has the

opposite sign of the gradient of ln γw with respect to nS. The knowledge of the deviation from

the ideal osmotic coefficient gives information of the activity coefficients of the two species

in the solution. When the deviation is negative, the usual behaviour of the activity coefficients
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is encountered as illustrated by Figures 9.8 and 9.9. Both the solute and the solvent activity

coefficients are greater than unity.
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Figure 9.8: A negative deviation from the ideal

osmotic coefficient. The osmotic coefficient (–) and

the ideal osmotic coefficient (- -).

Figure 9.9: The corresponding activity coefficients of

the solute (–) and the solvent (- -) at a negative

deviation from the ideal osmotic coefficient.

However, when the deviation is positive, the behaviour of the activity coefficients is laterally

reversed along the ordinate axis at a value of one, so that the activity coefficients are less than

unity as shown in Figures 9.10 and 9.11. The proof of this is analogous to eq. (9.4).
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Figure 9.10: A positive deviation from the ideal

osmotic coefficient. The osmotic coefficient (–) and

the ideal osmotic coefficient (- -).

Figure 9.11: The corresponding activity coefficients of

the solute (–) and the solvent (- -) at a positive

deviation from the ideal osmotic coefficient.
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The six binary systems of glycine, serine, threonine, and glycylglycine (Figures 9.16, 9.20,

9.23, and 9.28) all have decreasing osmotic coefficients, φ, as a function of the solute molality

in common but none of them are identical to the ideal osmotic coefficient, φid. This implies

that none of these solutions are ideal solutions despite a decreasing osmotic coefficient at

increasing amino acid (or peptide) concentration. They all exhibit a negative deviation from

the ideal osmotic coefficient, φ – φid < 0, which indicates that the solvent activity coefficient is

greater than unity. This is usually the case for binary mixtures.

The two binary systems of alanine and valine (Figures 9.12 and 9.26) are obviously non-ideal

systems since the osmotic coefficients of these solutions are increasing at increasing amino

acid concentration. This is emphasised by the fact that there is a positive deviation from the

ideal osmotic coefficient, φ – φid > 0.

Figure 9.30 shows that the osmotic coefficient of glycyl-L-alanine has a minimum in the

osmotic coefficient. The significance of a minimum is that the activity coefficient of the

solute also has a minimum.

For alanine, threonine, and valine (Figures 9.12, 9.23, and 9.26) the ordinate axis has a small

scale so the scattering of the data is insignificant.

Measurements of the electrode potentials of ternary aqueous solute-electrolyte systems have

been practised since the 1920s (e.g. Harned and Åkerlöf (1926), Harned and Owen (1930a-b),

and Roberts and Kirkwood (1941)). In case the solution is at the isoelectric point of the amino

acid (or the peptide), it is only the inorganic salt that is able to conduct current. By the

introduction of ion-selective electrodes it was possible to conduct experiments at a pH

different from the isoelectric point and still only measure the electrode potential due to the

inorganic salt. Since 1996, Vera and co-workers (Khoshkbarchi and Vera, 1996a-c;

Khoshkbarchi et al., 1997, Soto-Campos et al., 1997a-b, 1998) have performed measurements

of this sort for 6 amino acids in combination with a few salts: NaCl, KCl, and NaNO3. There

is a practical limitation to the number of salts available for electrode potential measurements

using ion-selective electrodes - and that is the types of ISE's available on the market.

However, all the systems investigated by Vera and co-workers are at a pH identical to the

isoelectric point of the amino acids.
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Figure 9.12: The osmotic coefficient of the alanine -

water system as a function of the alanine molality. The

UNIQUAC model with its residual term (–) and the

ideal osmotic coefficient (- -). The experimental points

(o): Smith and Smith (1937b) and Robinson (1952).

Figure 9.13: The activity coefficient ratio of NaCl in

alanine - water. The salt concentrations are from top to

bottom: 0.9, 0.6, 0.4, 0.3, 0.2, and 0.1 molal.

Experimental points (o): Khoshkbarchi and Vera

(1996a).
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Figure 9.14: The activity coefficient ratio of KCl in

alanine - water. The salt concentrations are from top to

bottom: 1.0, 0.7, 0.5, 0.3, and 0.1 molal. Experimental

points (o): Soto-Campos et al. (1997).

Figure 9.15: The activity coefficient ratio of NaNO3 in

alanine - water. The salt concentrations are from top to

bottom: 1.0, 0.7, 0.5, 0.3, and 0.1 molal. Experimental

points (o): Soto-Campos et al. (1997).
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Figure 9.16: The osmotic coefficient of the glycine -

water system as a function of the glycine molality. The

UNIQUAC model with its residual term (–) and the

ideal osmotic coefficient (- -). The experimental points

(o): Smith and Smith (1937), Richards (1938), and

Ellerton et al. (1964).

Figure 9.17: The activity coefficient ratio of NaCl in

glycine - water. The salt concentrations are from top to

bottom: 1.0, 0.7, 0.5, 0.3, and 0.1 molal. Experimental

points (o): Khoshkbarchi and Vera (1996a).
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Figure 9.18: The activity coefficient ratio of KCl in

glycine - water. The salt concentrations are from top to

bottom: 0.50, 0.40, 0.30, 0.25, 0.20, 0.15, 0.10, and

0.05 molal. Experimental points (o): Roberts and

Kirkwood (1941).

Figure 9.19: The activity coefficient ratio of NaNO3 in

glycine - water. The salt concentrations are from top to

bottom: 1.0, 0.7, 0.5, 0.3, and 0.1 molal. Experimental

points (o): Soto-Campos et al. (1997b).
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Figure 9.20: The osmotic coefficient of the serine -

water system as a function of the serine molality. The

UNIQUAC model with its residual term (–) and the

ideal osmotic coefficient (- -). The experimental points

(o): Smith and Smith (1940b) and Hutchens et al.

(1963).

Figure 9.21: The activity coefficient ratio of NaCl in

serine - water. The salt concentrations are from top to

bottom: 1.0, 0.7, 0.5, 0.3, and 0.1 molal. Experimental

points (o): Khoshkbarchi et al. (1997).
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Figure 9.22: The activity coefficient ratio of KCl in

serine - water. The salt concentrations are from top to

bottom: 1.0, 0.7, 0.5, 0.3, and 0.1 molal. Experimental

points (o): Khoshkbarchi et al. (1997).

Figure 9.23: The osmotic coefficient of the threonine -

water system as a function of the threonine molality.

The UNIQUAC model with its residual term (–) and

the ideal osmotic coefficient (- -). The experimental

points (o): Smith and Smith (1940b).
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Figure 9.24: The activity coefficient ratio of NaCl in

threonine - water. The salt concentrations are from top

to bottom: 1.0, 0.7, 0.5, 0.3, and 0.1 molal.

Experimental points (o): Soto-Campos et al. (1997a).

Figure 9.25: The activity coefficient ratio of NaNO3 in

threonine - water. The salt concentrations are from top

to bottom: 1.0, 0.7, 0.5, 0.3, and 0.1 molal.

Experimental points (o): Soto-Campos et al. (1997a).
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Figure 9.26: The osmotic coefficient of the valine -

water system as a function of the valine molality. The

UNIQUAC model with its residual term (–) and the

ideal osmotic coefficient (- -). The experimental points

(o): Bonner (1982), Ellerton et al. (1964) and Smith

and Smith (1937b).

Figure 9.27: The activity coefficient ratio of KCl in

valine - water. The salt concentrations are from top to

bottom: 1.0, 0.7, 0.5, 0.3, and 0.1 molal. Experimental

points (o): Khoshkbarchi and Vera (1996c).



Modelling Results 133

0 0.5 1 1.5 2 2.5
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

molality of glycylglycine

os
m

ot
ic

 c
oe

ffi
ci

en
t, 
φ

0 0.5 1 1.5 2 2.5
−0.25

−0.2

−0.15

−0.1

−0.05

0

molality of glycylglycine

ac
tiv

ity
 c

oe
ffi

ci
en

t, 
ln

( 
γ ±te

r,
 a

sy
m

.  / 
γ ±bi

n,
 a

sy
m

.  )

Figure 9.28: The osmotic coefficient of the

glycylglycine - water system as a function of the

glycylglycine molality. The UNIQUAC model with its

residual term (–) and the ideal osmotic coefficient (- -).

The experimental points (o): Ellerton et al. (1964) and

Smith and Smith (1940c).

Figure 9.29: The activity coefficient ratio of NaCl in

glycylglycine - water. The salt concentrations are from

top to bottom: 1.0, 0.9, 0.8, 0.6, 0.5, 0.4, 0.2, and 0.1

molal. Experimental points (o): This work.
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Figure 9.30: The osmotic coefficient of the glycyl-L-

alanine - water system as a function of the glycyl-L-

alanine molality. The UNIQUAC model with its

residual term (–) and the ideal osmotic coefficient (- -).

The experimental points (o): Smith and Smith (1940c).

Figure 9.31: The activity coefficient ratio of NaCl in

glycyl-L-alanine - water. The salt concentrations are

from top to bottom: 1.0, 0.8, 0.6, 0.4, 0.2, and 0.1

molal. Experimental points (o): This work.
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In general, the extended UNIQUAC model can fit NaCl - amino acid - water systems quite

satisfactorily. The uncertainty lies at low concentrations of both the salt and the amino acid,

i.e. in the region where the electrode potential is most sensitive to changes in the salt

concentration - and consequently in the amino acid concentration. However, it is in this region

(almost a binary solution) that the osmotic coefficients are represented quite well by the

model. Since the physics involved are presumed to be continuous, the divergence in the

electrode potential representation cannot be due to the model, but is more likely due to the

experimental uncertainties at low salt concentrations. This is illustrated by comparing all the

binary systems (Figures 9.12, 9.16, 9.20, 9.23, 9.26, 9.28, and 9.30) to the ternary systems.

It is noted that the description of the osmotic coefficient in Figures 9.16 and 9.28 is less

satisfactory compared with Figures 9.1 and 9.5. However, this is a consequence of fitting the

surface area parameters, volume parameters and the interaction energy parameters, ΔUji, on

ternary as well as binary experimental data. In Figures 9.1 and 9.5, only binary data have been

used.

Besides sodium chloride, potassium chloride in aqueous amino acid solutions can be

described by the model. In all cases only two additional interaction parameters between K+

and the amino acid had to be estimated in order to obtain Figures 9.14, 9.18, 9.22 and 9.27. It

is worth noting that the experimental data of Figure 9.18 is not measured by application of

ion-selective electrodes. Roberts and Kirkwood applied Ag/AgCl electrodes and a cell with a

liquid junction of KCl. However, the disagreement between data points and model could

equally well be due to the general uncertainty of measurements at low concentration.

As mentioned earlier in this chapter, electrode potential measurements have been carried out

on a third salt as well, sodium nitrate, by Vera and his co-workers. The experimental results of

this salt are not described very well by the model. The reason for this obvious discrepancy is

not clear. The experiments of NaNO3 - alanine, NaNO3 - glycine, and NaNO3 - threonine

(Figures 9.15, 9.19, 9.25) all show a different behaviour than the other salts. The data points

of the NaNO3 systems lie very close at low amino acid concentrations. For the NaNO3 -

glycine system the activity coefficient ratio even has a minimum. It is this narrow span of

activity coefficient ratio at low glycine concentration that the model has difficulties in

describing. Another possibility could be that the nitrate ion-selective electrode is not working



Modelling Results 135

properly. A reason for this could be that the solution contains also amino acids that perhaps is

fouling the membrane in the ion-selective electrode.

9.3 Solubility predicted by the extended UNIQUAC model

As mentioned in the previous chapter, the modelling of solubility as a function of temperature

often leads to the estimation of three parameters for the correlation of the equilibrium

constant. However, adding an electrolyte to an aqueous amino acid solution will change the

solubility conditions of the amino acid. Assuming that the amino acid precipitate is invariant

(the same compound is precipitating), the equilibrium constant KS must also be invariant.

AA (s) = AA±
(aq) ±±± γ⋅==

)aq()aq()aq( AAAAAAS xaK (9.7)

The activity coefficients of species i obtained from the extended UNIQUAC model is

asymmetric - except for the solvent, water, where the activity coefficient is symmetric.

Multiplying the solubility (in terms of mole fraction) and the (asymmetric) activity coefficient

gives the equilibrium constant expect for a factor of ∞
±γ

AA,w
, the activity coefficient of amino

acid at infinite dilute in water. This factor is only a function of temperature and pressure. The

asymmetric equilibrium constant

),P,T(~xK
~

AAAAS n±γ⋅= (9.8)

is determined in the binary solution of water and amino acid. For the ternary systems of

electrolyte - amino acid - water the solubility of the amino acid is calculated by eq. (9.8) since

it is one equation with one unknown, xAA. The solubilities of glycine and alanine in aqueous

NaCl and KCl solutions as well as the solubilities of glycylglycine and glycyl-L-alanine in

aqueous NaCl solutions are estimated by the extended UNIQUAC model and are shown in

Figures 9.32 - 9.35.
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Figure 9.32: The solubility (in molality) of glycine in

NaCl - water and in KCl - water as a function of the

electrolyte molality. Extended UNIQUAC model (–).

Experimental points: NaCl (o) and KCl (�) from

Khoshkbarchi and Vera (1997).

Figure 9.33: The solubility (in molality) of alanine in

NaCl - water and in KCl - water as a function of the

electrolyte molality. Extended UNIQUAC model (–).

Experimental points: NaCl (o) and KCl (�) from

Khoshkbarchi and Vera (1997).
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Figure 9.34: The solubility (in molality) of

glycylglycine in NaCl - water as a function of the

electrolyte molality. Extended UNIQUAC model (–).

Experimental points: NaCl (o) from this work.

Figure 9.35: The solubility (in molality) of glycyl-L-

alanine in NaCl - water as a function of the electrolyte

molality. Extended UNIQUAC model (–).

Experimental points: NaCl (o) from this work.

The model does a poor prediction of the amino acid and dipeptide solubility in the aqueous

salt solutions, Figures 9.32-9.35. In particular the glycine solubilities at low electrolyte

concentrations are displeasing; the experimental points contradict the trend of the model. The

model is not able to make the steep decrease at the low electrolyte concentrations. The reason
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is that the extended UNIQUAC model is reduced to the original UNIQUAC model for the

non-electrolyte species, such as the zwitterion of an amino acid. Because of that the extended

UNIQUAC model is not capable of predicting the solubility of glycine.

The behaviour of the alanine solubility is monotonic, Figure 9.33, but the model underpredicts

the solubility in NaCl and overpredicts it in KCl. The reason for the lack of a minimum in the

solubility of alanine in Figure 9.33 could be due to the fact that the experiment is not

conducted at electrolyte concentrations that are not low enough. The minimum in Figure 9.32

is below 0.2 molal salt.

The model predicts the solubility of glycylglycine, Figure 9.34, well in aqueous NaCl

solutions up to 2 molal NaCl but overpredicts the solubility at higher salt concentrations by

approximately 20%. The prediction of glycyl-L-alanine, Figure 9.35, is acceptable at the low

electrolyte concentrations but the model overpredicts the solubility at higher concentrations

by approximately 15%.

In conclusion, it is evident that the extended UNIQUAC model has difficulties in describing

the solubility of an amino acid in a ternary solution based on parameter estimation on

experimental data of ternary electrode potential measurements and binary isopiestic

measurements. However, the solubility trend, salting-in and salting-out effects, is correctly

predicted. With the results at hand, it would seem to be an idea to replace the Fowler-

Guggenheim gE term of the extended UNIQUAC model by the gE term of Pitzer in order to

obtain an electrostatic contribution to the uncharged, non-solvent species as well as the

solvent and the ions.

The UNIQUAC parameters for some amino acids and small peptides have been estimated on

the basis of osmotic coefficient data and electrode potential data. These parameters are

presented in Tables 9.1 and 9.2.

q r q r
water 1.4000 * 0.9200 * glycine 5.4490 5.5814
Na+ 1.1990 * 1.4034 * serine 6.5805 6.3607
K+ 2.4306 * 2.2304 * threonine 4.9885 5.0114
Cl– 10.197 * 10.386 * valine 6.5653 7.4288
NO3

– 6.2074 * 5.4041 * glycylglycine 10.549 10.688

alanine 5.1778 5.0807
glycyl-L-
alanine

9.7327 10.601

Table 9.1: The surface area parameters, q, and the volume parameters, r, of the UNIQUAC model as it is

presented in eqs. (8.51) and (8.52). The asterisk denotes the parameters from the work of Thomsen (1997).
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9.4 Modelling with the HS-MSA model

The application of the HS-MSA model in this work is based on the work of Simonin et al.

(1996). They assume that both the diameter σ+ of the cation and the dielectric constant are

functions of the salt molarity, cS.

S
)1()0( c⋅σ+σ=σ +++ (9.9)

Eq. (9.9) accounts for the hydration of the cation. The hydration of the anion is much less and

in this context presumed negligible (Simonin et al., 1996 and Helgeson et al., 1981). Hence

the diameter of the anion is kept concentration independent and equal to twice its ionic radius,

Table 9.3.

σ(0)
Cl– = 2 ⋅ 1.81 = 3.62 Å σ(0)

Br– = 2 ⋅ 1.96 = 3.92 Å σ(0)
I– = 2 ⋅ 2.20 = 4.40 Å

σ(0)
Li+ = 2 ⋅ 0.76 = 1.52 Å σ(0)

Na+ = 2 ⋅ 1.02 = 2.04 Å σ(0)
K+ = 2 ⋅ 1.38 = 2.76 Å

Table 9.3: Crystal ionic radii are taken from p. 12-14 in CRC 78th Edition.

The functionality of the dielectric constant with respect to molarity, eq. (9.10), is in

accordance with experimental observations, e.g. Åkerlöf (1932) and Helgeson et al. (1981).

The latter of the two is an impressive work on the dielectric constants in salt solutions in

which the reciprocal dielectric constant is assumed a first order function of the ionic strength.

The same behaviour is assumed by Simonin et al. (1996) by their expression.

S

r0

c1

4

α+
επε=ε (9.10)

The results of this work are not obtained by the expression for the mean activity coefficient of

the hard-sphere term given by Simonin et al. (1996) but from the partial molar derivative of

the Helmholtz energy function of the hard-sphere term, eq. (8.64). The reason is that there is

an error in the expression for the mean hard-sphere activity coefficient, eq. (9.11), given by

Simonin et al., 1996.

� σρ
ρ

+

−+−+++��
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�
��
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�
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X
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X
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(9.11)

The correct equation is
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(9.12)

The difference is the third term of eq. (9.11); Simonin et al. (1996) have X0X3x
2 in the

denominator instead of the correct X0X3x
3. Unfortunately, this is not a misprint. Using the

erroneous equation of Simonin et al. one obtains their results.

The experimental data used in the rest of this chapter are identical to those used by Simonin et

al.; i.e. the activity coefficients collected by Robinson and Stokes, 1959. The conversion of

the activity coefficients from the Lewis-Randall framework to the McMillan-Mayer

framework is done in accordance to Simonin et al., eq. (9.13). The molal mean activity

coefficient (in the Lewis-Randall framework) is converted to a molar mean activity

coefficient is (in the McMillan-Mayer framework).

The three parameters σ+
(0), σ+

(1), and α binary systems of water and salt are estimated. Table

9.4 shows a comparison of the results of this work and those of Simonin et al. (1996) when all

three parameters are unconstrained.

σ+
(0)

(Å)
10² σ+

(1)

(Å mol L-1)
10² α

(mol-1 L)
AARD

(%)'Salt'
Simonin

et al.
This
work

Simonin
et al.

This
work

Simonin
et al.

This
work

Simonin
et al.

This
work

HCl 5.00
4.76

± 0.30
– 8.83

– 8.14
± 0.21

6.76
3.44

± 6.23
0.07 0.66

LiCl 4.76
5.20

± 0.09
– 6.60

– 8.73
± 0.20

6.96
12.7

± 2.34
0.26 1.54

NaCl 3.90
3.95

± 0.21
– 3.03

– 3.12
± 1.64

8.18
8.64

± 3.73
0.22 0.22

NaBr 3.99
4.00

± 0.22
– 3.92

– 4.03
± 3.41

8.60
8.97

± 5.05
0.05 0.07

KCl 3.34
3.35

± 0.28
– 0.93

– 1.10
± 5.81

7.75
7.74

± 5.20
0.12 0.12

KBr 3.13
3.22

± 0.23
– 3.09

– 3.16
± 4.24

6.51
7.38

± 4.16
0.07 0.12

KI 3.22
3.27

± 0.35
– 7.08

– 6.67
± 8.83

7.51
9.05

± 7.48
0.13 0.17

Table 9.4: The parameters σ+
(0) and σ+

(1) of the cations and α are estimated. The values of the work of Simonin et
al. (1996) are compared with the results obtained in this work when all three parameters were estimated freely.
The standard deviations are given for the parameters estimated as well. The stopping criteria used in the
Marquardt estimation of the parameters are: ||F'||∞ ≤ 10–4, and ||h||2 ≤ 10–4 ⋅ (10–4 + ||x||2). F' is the gradient and h
is the next step in the parameter vector x. The fourth column gives the average relative deviation.
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d

d
)Mm1( 0

SS
m
i

MM
i +γ=γ (9.13)

where mS is the molality of the salt, MS is the molar mass, d0 is the density of the pure

solvent, and d is the density of the solution. Eq. (9.13) does not include all of the corrections

when converting between the two frameworks, according to Simonin et al. In order to follow

the procedure of Simonin et al. the conversion of eq. (9.13) has been applied. The correct

conversion between the two frameworks is given by eq. (6.27).

In the cases where the 95% confidence interval of an estimated parameter includes zero in

Table 9.4, the parameter in question is set to zero and the other parameters are re-estimated,

but only so that one parameter at a time is set to zero. The 95% confidence interval is [ x –

1.96 sx; x + 1.96 sx]. x is the estimated mean value and sx is the standard deviation. These re-

estimations are shown in Table 9.5 and in Figure 9.36.

σ+
(0)

(Å)
10² σ+

(1)

(Å mol L-1)
10² α

(mol-1 L)
AARD

(%)'Salt'
Simonin

et al.
This
work

Simonin
et al.

This
work

Simonin
et al.

This
work

Simonin
et al.

This
work

HCl 5.00
4.50

± 0.02
– 8.83

– 7.74
± 0.19

6.76 0 * 0.07 0.94

LiCl 4.76
5.20

± 0.09
– 6.60

– 8.73
± 0.20

6.96
12.7

± 2.34
0.26 1.54

NaCl 3.90
2.71

± 0.07
– 3.03 0 * 8.18 0 * 0.22 3.40

NaBr 3.99
2.91

± 0.09
– 3.92 0 * 8.60 0 * 0.05 2.76

KCl 3.34
3.39

± 0.21
– 0.93 0 * 7.75

8.58
± 2.45

0.12 0.34

KBr 3.13
2.51

± 0.15
– 3.09

– 12.1
± 4.44

6.51 0 * 0.07 0.98

KI 3.22
2.54

± 0.16
– 7.08

– 19.4
± 5.93

7.51 0 * 0.13 0.82

Table 9.5: The estimated parameters (σ+
(0), σ+

(1), and α) and the standard deviation thereof. The values of the

work of Simonin et al. (1996) are compared with the results obtained in this work when the parameters estimated

were within the 95% confidence interval. The asterisk denoted a fixed value.

Comparing the estimated cation diameters of Tables 9.4 and 9.5 with the ionic ones of Table

9.3 indicates that the estimated ones are greater than the ionic cation diameters - except for

KBr and KI in Table 9.5. However, the standard deviations on σ+
(1) of these two salts are
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relatively large, c. 30% of the parameter value. Furthermore, it is noticed that two salts (NaCl

and NaBr) can be described by only one parameter, σ+
(0).
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Figure 9.36: The mean activity coefficients of the seven 'salts', HCl (�), LiCl (+), NaCl (�), NaBr (Δ), KCl (×),

KBr (∇), and KI (o) as functions of the molarity at a temperature of 298.15 K. The model parameters are those

of Table 9.5.

9.5 The functionality of dielectric constant

The behaviour of the dielectric constant as a function of the salt concentration has been

reported thoroughly by Helgeson et al., 1981. That work compares - very likely - all published

data and finds that there are inconsistencies and sometimes contradictions (pp. 1307) among

the various authors - even among papers of the same author. Nevertheless, a correlation

between the dielectric constant and the molal ionic strength is presented. An explanation of

why the molal ionic strength is used in this correlation instead of e.g. molarity is not given.

However, it seems more obvious that the dielectric constant would have a volumetric

dependency as it describes the permittivity of a volume rather than that of a mass. Comparing

the expressions of Simonin et al. (1996) and Helgeson et al. (1981)

S
1
water,r

1
r

S

water,r
r mb̂and

c1
+ε=ε

α+
ε

=ε −− (9.14a) and (9.14b)
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where εr,water is the relative dielectric constant of water, gives an interrelation of the two

parameters

b̂
Mcd SS0

water,r ⋅
−
ε

=α (9.15)

where d0 is the density of the pure solvent. In other words, the ratio of α and b̂ is not a

constant, but a function of the concentration. Recalling the reported inconsistencies on

dielectric constant data of ionic solutions a description of the permittivity by molal ionic

strength or molarity seems equally acceptable.

Taking the b̂ values of Helgeson et al. as a starting point and calculating the dielectric

constant as a function of the molal ionic strength, will produce a number of fictive data points

to which the α values are fitted using eq. (9.14a). The obtained estimates of α are presented in

Table 9.6. For comparison α values estimated on real experimental data (Harris and

O'Konski, 1957) are also presented. From Table 9.6 it is clear that the α values obtained from

Helgeson et al. are concurrent with the α values estimated from the experimental data of

Harris and O'Konski. A further comparison to the freely estimated α values of Table 9.4

reveals a better correspondence between the α values of this work and those of Harris and

O'Konski.

Helgeson et al., 1981 Harris and O'Konski, 1957
HCl 16.5 —
LiCl 21.7 12.6
NaCl 19.7 17.3
NaBr 19.4 16.5
KCl 18.4 6.61
KBr 18.1 8.07
KI 15.9 7.99
Table 9.6: Comparison of the α values, eq. (9.13), indirectly obtained from Helgeson and directly from Harris

and O'Konski.

Extrapolating the HS-MSA model beyond the saturation limit of the salt gives some

remarkable behaviour. The most noticeable one is that of lithium chloride. Figure 9.37 shows

an extrapolation of the lithium chloride activity coefficient up to 25 moles per litre.
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Figure 9.37: The activity coefficient of LiCl as a function of molarity. The model parameters are those of Table

9.5.

Since the electrostatic term (of the activity coefficient) of LiCl in the entire concentration

range is nearly zero, the hard-sphere term (of the activity coefficient) must have a horizontal

tangent at some concentration in order for the activity coefficient to have a maximum. This

implies that the reason for the peaking activity coefficient curve is not the concentration

dependent dielectric constant but rather the concentration dependency of the cation; the hard-

sphere term is not a function of permittivity. Only HCl shows a similar behaviour. The rest of

the salts have an increasing exponential behaviour. The two terms of the HS-MSA are plotted

individually in Figure 9.38 for LiCl. Here it is obvious that the electrostatic contribution is

vanishing and the hard-sphere contribution consequently is the dominating one.



Modelling Results 145

0 5 10 15 20 25
−15

−10

−5

0

5

10

15

C (mol/L)

ln
γ ± 0 5 10 15 20 25

0

2

4

6

σ +
 (

Å
)

0 5 10 15 20 25
0

20

40

60

80

C (mol/L)

ε r

Figure 9.38: The logarithmic activity coefficient of

LiCl (—), the hard-sphere term ln γ±
HS (⋅ –), and the

electrostatic term ln γ±
elec(- -) as a function of molarity.

The parameters of Table 9.5.

Figures 9.39a-b: The parameters of LiCl as functions

of molarity. The top figure shows the diameter of

lithium (—) and the diameter of chloride (- -), in

ångstöms. The bottom figure the relative dielectric

constant, εr, dimensionless. The parameters of Table

9.5.

It is noted that the relative dielectric constant in Figure 9.39b is comparable to that of ethanol

(page 100) at the saturation limit. This is in accordance with what is reported by Helgeson et

al., 1981.

9.6 Constant solution density

However, there is a huge disadvantage using a Helmholtz energy in the independent variables

T, V, and n - and that is that nearly all experimental data are reported in the variables T, P and

n which requires the knowledge of the density in order to convert to T, V, and n. This

limitation is overcome in binary salt-water solutions by the impressive work of Söhnel and

Novotný (1985) whose correlations of the solution density as a function of molarity makes

this interrelation possible.

But for more seldom encountered solutions the density is unknown - and a correlation is

called for. However, that there is no mixing rules for densities. So because of this limitation

the application of the HS-MSA model is limited to systems whose densities are known. It is

known from the experiments of determination of the solubilities of glycylglycine and glycyl-

L-alanine that the volume expansion when adding the dipeptide is considerable, Chapter 5.
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This means that even though the dipeptide has a relatively large molar mass the volume

expansion has a reducing effect on the value of the density.

However, assuming a constant density - that of the pure solvent - one can get an impression of

how flexible the model is. Again the same seven 'salts' have been used and as for Table 9.5,

only parameters with reasonable standard deviations are estimated, i.e. their 95% confidence

interval does not include zero. The rest of the parameters are set to zero.

'Salt' σ+
(0)

(Å)
10² σ+

(1)

(Å mol L solvent-1)
10² α

(mol-1 L solvent)
AARD

(%)
HCl 4.19 ± 0.03 – 8.51 ± 0.20 0 * 5.87
LiCl 4.43 ± 0.03 – 7.62 ± 0.17 2.77 ± 0.94 1.05
NaCl 3.11 ± 0.13 – 8.27 ± 2.83 0 * 1.39
NaBr 3.33 ± 0.14 – 12.5 ± 4.80 0 * 0.82
KCl 2.65 ± 0.16 – 12.8 ± 4.92 0 * 0.90
KBr 2.53 ± 0.14 – 13.9 ± 3.34 0 * 1.02
KI 2.56 ± 0.15 – 21.8 ± 4.44 0 * 0.90

Table 9.7: The estimated parameters (σ+
(0), σ+

(1), and α) and the standard deviation thereof. The asterisk denoted

a fixed value.

That α = 0 for almost all of the salts, indicates that the use of mole per litre solvent as the

concentration unit, gives a dielectric constant that is concentration independent. From the

AARD column of Table 9.7 it is obvious that HCl is the only 'salt' that is difficult to describe

by this approach. Based on Table 9.7 it seems that the density of the pure solvent is applicable

if the density of the solution is unknown - at least for these binary systems.

9.7 A non-primitive model

In the original work of Mansoori et al. (1971) the hard-sphere Helmholtz energy function is

not limited to the 'primitive' models. A 'primitive' model is a model where the solvent is

disregard on the molecular level and treated as a dielectric continuum. Applying the hard-

sphere term as well as the electrostatic term as non-primitive, i.e. include the solvent on the

same molecular level as the solutes, implies a basic change: the dielectric constant ε (= ε0εr) is

equal to that of vacuum, ε0. This might inflict on the theory of the MSA theory but not of the

Debye-Hückel theory. The electrostatic term as presented by Debye and Hückel (1923) is a

charging-up process of an existing neutral charged system. Treating water molecularly merely
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suggests that water is charged-up to zero charge - in order to keep the analogy with the ions.

The results obtained by this approach is presented in Table 9.8. The parameterisation is also a

bit different: α is constantly kept equal to zero since the dielectric constant is constantly that

of vacuum.

The diameter of water is taken as 1.58 Å based on the bond length and angle of gaseous water

as described in Figure 9.40.

dOH

dOH

φHOH

σH2O

Figure 9.40: A schematic representation of a water molecule. The shaded circles are hydrogen atoms and the

white one is oxygen. dOH is the distance between oxygen and hydrogen 0.9575 Å, φHOH is angle of the O–H

bonds 104.51°, and σH2O is estimated diameter of water, (p. 9-19, CRC).

'Salt' σ+
(0)

(Å)
10² σ+

(1)

(Å mol L solvent-1)
10² α

(mol-1 L solvent)
AARD

(%)
HCl 3.64 ± 0.03 – 5.28 ± 0.27 0 * 1.69
LiCl 3.57 ± 0.05 – 5.15 ± 0.40 0 * 6.96
NaCl 2.69 ± 0.25 – 6.90 ± 3.09 0 * 1.66
NaBr 2.94 ± 0.33 – 10.7 ± 4.73 0 * 0.94
KCl 2.70 ± 0.35 – 11.7 ± 4.13 0 * 0.83
KBr 2.49 ± 0.34 – 13.9 ± 3.76 0 * 0.94
KI 2.86 ± 0.38 – 24.1 ± 3.46 0 * 0.59

Table 9.8: The estimated parameters (σ+
(0) and σ+

(1)) and the standard deviation thereof. The hard-core diameter

of water is set to 1.58 Å. The asterisk denoted a fixed value.

In order to obtain the asymmetric activity coefficient, the activity coefficient calculated by the

non-primitive model is subtracted by the activity coefficient at infinite dilution; the same

approach as for the UNIQUAC model. As Table 9.8 shows this approach is able to describe

the seven binary salt - water systems equally well by the use of two parameters as was the

case for original approach of Simonin et al. Only the LiCl system has a less acceptable an

AARD.
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10. The Database

The project was started by a literature survey on the work in the field of the solubility of

amino acids and small peptides. The database now consists of some 300 articles. The

experimental data contained in these articles are the basis for the database. It distinguishes

between the L-, D-, and DL-forms of the amino acids. When no specification on the optic

rotation is made in an article, it is assumed that the applied amino acid is racemic, DL.

The database contains three types of experimental data, solid-liquid equilibrium (SLE) data

(solubility data and freezing point depression data), isopiestic data, and electrode potential

data. The reported experimental data are ordered in separate files as to the order of the system:

binary SLE, ternary SLE, and quaternary SLE plus one file for isopiestic data and one file for

electrode potential measurements. The temperatures for the SLE data are mostly 298.15 K.

The temperature range for the electrode potential measurements are 298 - 333 K, but mostly

298.15 K.

The SLE data cover systems such as

amino acid or peptide – water 840 datapoints (binsle.dat)

amino acid or peptide – salt – water 167 datapoints (tersle.dat)

amino acid – acid / base – water 186 datapoints (tersle.dat)

amino acid – amino acid – water 523 datapoints (tersle.dat)

amino acid – acid / base – salt – water 343 datapoints (quasle.dat)

The isopiestic data cover systems such as

amino acid or peptide – water 1128 datapoints (isop.dat)

The emf data cover systems such as

amino acid – salt – water 767 datapoints (elec.dat)

amino acid – acid / base – water 832 datapoints (elec.dat)

amino acid – acid / base – salt – water 1815 datapoints (elec.dat)
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10.1 Compound index

In order to identify each amino acid in a simple way in the databases, a six-digit code - or

compound index - was assigned to each of them. The first 3 digits are assigned in a systematic

manner. First digit in the compound index is 1 for amino acids, 2 for dipeptides, and 3 for

tripeptides. The next two digits are assigned accordingly to which subgroup the amino acid

belongs. The first subgroup is the natural occurring amino acid (including cystine and

hydroxylproline); the second subgroup (5x) long -amino acids; the third subgroup (6x) -

amino acids, etc. The explanation of the last three digits is given on the next page.

amino acids
alanine 101
arginine 102
asparagine 103
aspartic acid 104
cysteine 105
glutamine 106
glutamic acid 107
glycine 108
histidine 109
isoleucine 110
leucine (α-amino-iso-caproic acid) 111
lysine 112
methionine 113
phenylalanine 114
proline 115
serine 116
threonine 117
tryptophan 118
tyrosine 119
valine 120
cystine 121
hydroxyproline 122

α-amino-n-butyric acid 150
α-amino-iso-butyric acid 151
α-amino-n-valeric acid 152 (norvaline)

α-amino-n-caproic acid 153 (norleucine)

β-alanine 160
β-amino-n-butyric acid 161
β-amino-n-valeric acid 162

γ-amino-n-butyric acid 170
γ-amino-n-valeric acid 171

ε-aminocaproic acid 180

dipeptides
alanylalanine 201
alanylglycine 202
glycylalanine 203
glycylglycine 204

tripeptides
tri-glycine 301

Besides the biomolecules the database also contains some inorganic salts (and sugar).

sucrose 7
NaCl 310
Na2SO4 322
KCl 323
NaNO3 324
KNO3 325

CaCl2 346
NaOH 383
KOH 391
(NH4)2SO4 441
HNO3 652
HCl 647
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10.2 The index system

x1 x2 x3 zc za x4

x4: indicator for double salts.

za: number of anions (–).

zc: number of cations (+). Net charge = zc – za.

x1x2x3: compound index
101 – 200 amino acid
201 – 300 dipeptide
301 – 400 tripeptide
401 – proteins

Examples:
The zwitterion of glycine (one cation and one anion): 108110
- glycine has index 108.

The salt of glycine, Gly (s) 108000

The salt of DL-alanine, DL-Ala (s) 101000
The salt of L-alanine, L-Ala (s) 101001
The salt of D-alanine, D-Ala (s) 101002

Sodium glycinate, Gly–,+Na (s) 108003
(The summation of zc and za is still the net charge.)

Arginine hydrochloride, Arg⋅HCl (s) 102004
Aspartic acid hydrid, Asp⋅H2O (s) 104005

The cation of glycylglycine, GlyGly+ (one cation): 204100
- glycylglycine has index 204.

The anion of triglycine, GlyGlyGly – (one anion): 301010
- triglycine has index 301.

Tyr +: 119100
Tyr ±: 119110
Tyr –: 119010
Tyr – –: 119020
- tyrosine has index 119.
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As the example for tyrosine shows, the number of cations, zc, is not identical to the number of

amino groups, as well as the number of anions, za, is not identical to the number of hydroxylic

and carboxylic groups.
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11. Conclusion

This thesis has addressed the chemistry and thermodynamics of amino acids and dipeptides

and the modelling of systems containing these biomolecules. The main conclusions are

summarised in this final chapter.

The solubility of two dipeptides, glycylglycine and glycyl-L-alanine, have been determined in

three salts, NaCl, Na2SO4, and (NH4)2SO4, at various salt concentrations. It is found that the

solubility behaviour of glycylglycine exhibits a moderate salting-in effect; i.e. a moderate

increase in the dipeptide solubility as the salt concentration is increasing. Also the solubility

behaviour of glycyl-L-alanine exhibits a salting-in effect, but only at low salt concentrations

and the effect is less pronounced and in the case of ammonium sulphate the dipeptide

solubility is almost constant. At higher salt concentrations of sodium chloride and sodium

sulphate the solubility behaviour of glycyl-L-alanine shows a moderate salting-out effect,

whereas the dipeptide solubility remains unaffected by the presence of ammonium sulphate.

The usual procedure of modelling the solubility of amino acids has been addressed. It is

concluded that a correct model procedure of such data would demand the knowledge of the

Gibbs energy of formation of the amino acids prior to the fitting of the solubility data and the

activity coefficients.

Furthermore, density measurements have been carried out on aqueous NaCl, Na2SO4, and

(NH4)2SO4 solutions saturated with glycylglycine and glycyl-L-alanine in order to determine

to the volume expansions of water due to dissolving salt and dipeptide. A correlation for the

approximate volume expansion by dissolving salt and dipeptide in 1 kg water is presented.

The use of ion-selective electrodes to determine activity coefficients of the salt in the ternary

systems, NaCl - glycylglycine - H2O, and NaCl - glycyl-L-alanine - H2O, is investigated

experimentally. The application of such electrodes has proven to be suitable to determine the

effect that the salt has on the activity coefficient of a dipeptide. Furthermore, if the activity

coefficient of the non-electrolyte in the binary aqueous system is available, the activity

coefficient of the dipeptide in the ternary system in proportion to the activity coefficient of the

dipeptide at infinite dilution in pure water can be determined. This ratio displays the effect

that the electrolyte has on the dipeptide (non-electrolyte). The results show that the activity
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coefficient ratio of glycylglycine at saturation is decreasing with increasing salt concentration

whereas the activity coefficient ratio of glycyl-L-alanine is increasing slightly with increasing

salt concentration. Given this and the assumption that the standard state of the precipitate is

invariant one would expect a salting-in of glycylglycine and a minor salting-out of glycyl-L-

alanine. This was confirmed by the experiments on the solubilities of the dipeptides.

The problems using models in the McMillan-Mayer framework because of the decoupling of

the direct solvent-solute interaction have been presented. The fact that most experimental data

in the literature are reported in terms of T, P, and n makes it nearly impossible to convert

them to the state of a Helmholtz energy model (T, V, n) - unless a correlation for the density

as a function of the concentration is available.

The derivation of the Debye-Hückel theory as they themselves did it, and as McQuarrie

implies it, have thoroughly been discussed and it is concluded that the state description of the

Debye-Hückel equation is lacking either one independent variable or one assumption. The

lacking independent variable is either the mole number of the solvent (a classical description)

or the chemical potential of solvent (a McMillan-Mayer description).

The modelling of salt - amino acid - water systems by means of the extended UNIQUAC

model has lead to 68 new parameters which are valid at 298.15 K and are presented in Tables

9.1 and 9.2. However, the extended UNIQUAC model is either unable to model NaNO3 -

amino acid - water systems or the applied nitrate ion-selective electrodes are giving erroneous

readings in the presence of biomolecules. The prediction of the solubilities of amino acids and

dipeptides using the parameters estimated are not acceptable. The model contradicts the

experimentally determined solubility of glycine when the model parameters are determined

using isopiestic and electrode potential measurements.

It seems that the model lacks a term to account for the physics of the zwitterion wherefore it

might be an idea to replace the electrostatic term of Fowler and Guggenheim (in the extended

UNIQUAC model) by that of the Pitzer model. The Pitzer gE model is also taking the

influence of uncharged, non-solvent species into account.

An analysis of the HS-MSA model on six salts and HCl were conducted and the model

parameters were estimated for a number of different assumptions concerning these

parameters: the model parameters have considered being functions of the salt concentration,
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the solution having constant density, and the model concept being non-primitive. The model

is performing well in these binary mixtures.

A database on amino acid related literature has been established and the experimental data

found in this literature have been organised in 5 databases: one for binary SLE data, one for

ternary SLE data, one for quaternary SLE data, one for isopiestic data, and one for electrode

potential data.

The fundamentals of thermodynamics and electrochemistry have been addressed extensively

and hopefully also consistently.
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Appendix A on Euler's Theorem for a Homogeneous Function

A.1 Euler's theorem

Given a function M in the variables a and b. This function is a homogeneous function of

degree m in variable b if when multiplying the variable b by a factor of λ the value of the

function will increase by a factor of λm.

),(M),(M m baba λ=λ (A.1)

Theorem: Given the function M(a, b) which is homogeneous of degree m in variable b then
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and the differential of eq. (A.1) with respect to the variable bi is
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By inserting eq. (A.4) into eq. (A.3) one has
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Eq. (A.5) is Euler's theorem for a homogeneous function of degree m in b.

There is a corollary to the Euler's theorem stating that "if M(a,b) is a homogeneous function

of degree one in b, then the first derivatives with respect to variable b are themselves

homogeneous functions of degree zero" [Internet: http://cepa.newschool.edu/het/

essays/math/euler.htm]. The proof of this is

���
�

�
��
�

�
∂∂

∂+��
�

�
��
�

�
∂

∂=

��
�

�
��
�

�
∂∂

∂+��
�

�
��
�

�
∂

∂δ=

��
�

�

�

��
�

�

�

	
	



�

�
�


�
��
�

�
��
�

�
∂

∂
∂
∂=��

�

�
��
�

�
∂
∂

�

��

�

≠≠

≠≠

≠
≠≠

i b,ki

2

i

b,k

i b,ki

2

i
i b,i

ik

b
i b,i

i
kb,k

k,ijkj

k,ijij

kl
ijkl

bb

),(M
b

b

),(M

bb

),(M
b

b

),(M

b

),(M
b

b
),(M

b

aa

aa

aa

baba

baba

ba
ba

0
bb

),(M
b

i b,ki

2

i

k,ij

=��
�

�
��
�

�
∂∂

∂�
≠a

ba
(A.6)

A.2 Gibbs-Duhem equation

The differential of M(a, b) is
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The differential of Euler's theorem for a homogeneous of degree one gives
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Subsequently,
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which is known as the Gibbs-Duhem equation.
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Appendix B on Equilibrium

This appendix is deriving the condition of equilibrium for a system that is influenced by an

electrical potential, Φ. The system considered is described by four independent extensive

variables: the entropy, the volume, the mole numbers, and the charges. From Euler’s theorem

for a homogeneous of degree one gives (Appendix A, eq. (A.9))
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where m is number species in the system. Rearranging eq. (B.1) by expressing the change in

the entropy gives
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For a multiphase system, this is valid for each phase of the system. Since entropy is an

extensive property, the change in entropy of each phase is an additive property. Furthermore,

one has from the second law of thermodynamics that the entropy is ever-increasing (dS > 0)

or at equilibrium at its maximum (dS = 0).
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where π is the number of phases in the system. The system is considered to be isolated so that

no matter or work is exchanged with the surroundings and no reactions within the system are

occurring.

By state description the total internal energy (U), the total volume (V), the overall system

composition (n), and the overall charge (q) is given. This implies that the extensive

independent variables are subject to the some constraints
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The condition of equilibrium is that eq. (B.3) is zero.
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where α is one of the π phases in the system. From the constraints one has
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which are used to simplify eq. (B.8) by eliminating the independent variables of phase α.
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The reason, why the charges (q) and mole numbers (n) are independent variables, is that the

relative charges, z, are independent of the mole numbers
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The electrochemical potential is defined as
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and thus eq. (B.13) is rewritten as
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This equation must be satisfied for any changes in the independent variables since these

variables are constrained by eqs. (B.9) - (B.11) plus the constraint of electroneutrality
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Consequently,

)()j( TT α= for all j phases (B.18)

)()j( PP α= for all j phases (B.19)
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αμ=μ for all j phases and for each species i (B.20)
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In other words, the temperature and the pressure are uniform throughout the system. At

equilibrium the electrochemical potential of species i is the same in all phases.

For a single phase reacting system the condition of equilibrium eq. (B.16) is reduced to

≥ξμν=μ=
m

i

elec
ii

m

i
i

elec
i 0ddndS (B.21)

where dξ is the change in reaction extent. At equilibrium (dS = dξ = 0)

=μν
m

i

elec
ii 0 (B.22)

which is identical to dG = 0 at constant temperature and pressure, see eq. (4.4).



Appendix C 165

Appendix C on Electrostatics

During my study of electrolyte theory I have realised that it is closely related to the

fundamentals of electricity and to some extent magnetism. The fundamental equations of

electrostatics are depending on the choice of the system of units; the cgs system of units,

which is used in ‘old’ literature, or the SI system of units of today - it was adopted in 1960

(CRC Handbook of Chemistry and Physics, 78th Ed, p. 1-19). In this appendix (and the thesis

as a whole) only SI units have been applied. The motivation for this appendix on electricity

and magnetism which is based on excerpts from Electricity and Magnetism of W.N.

Cottingham and D.A. Greenwood, 1991, is to present the fundamental equations in terms of

the SI system of units.

C.1 Coulomb's law

All the equations in this appendix are for free space system; i.e. the permittivity is that of

vacuum. The starting point is Gauss’s theorem which states that the electric flux appearing

when an electric field E (due to a point charge Q) is passing through a closed surface S is

either Q/ε0 (if the point charge is within the closed surface) or else zero.

�
�
� ε

=⋅� Ssideout0

Sinside/Q
d 0

S R

R
SE (C.1)

where S is a closed surface, E is the electric field (unit: V/m), Q is a point charge (unit: C),

and ε0 is permittivity of vacuum (unit: C/V/m). Using the superposition principle Gauss’s

theorem results in

�� ρε=⋅
V0S

dV
1

dSE (C.2)

where is the volumetric charge density. The divergence theorem used on the left-hand side

of eq. (C.2) gives

0V0V

)(
)(dV

1
dV ε

ρ=⋅∇�ρε=⋅∇ ��
r

rEE (C.3)

This is a field equation. The electric potential Φ (unit: volt) is defined as
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)()( rrE Φ−∇= (C.4)

Inserting eq. (C.3) into the field equation results in the relation known as the Poisson equation

0

2 )(
)( ε

ρ−=Φ∇ r
r (C.5)

For a space where are no particles (ρ = 0) the Poisson equation reduces to the Laplace

equation.

Since the electric potential is a function of the variable r only, eq. (C.5) is rewritten as
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The solution to the differential equation of the potential is
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The solution is obtained through the spherical co-ordinate system, which is the reason for the

4π factor. For a point charge Q1 at position r1 the potential reduces to
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The electric field of the electric potential given by eq. (C.8) is derived from eq. (C.4)
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The force on a second particle (of charge Q2) due to the first particle is
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where er is the radial unit vector. Eq. (C.10) is Coulomb’s law. In the SI system of units the

unit of charge is the coulomb (C), and in these units the force between two ‘point’ charges is

given by eq. (C.10).

When the system considered is not a free space system, the permittivity of vacuum, ε0, is

replace by ε0εr, where εr is the relative dielectric constant.

In the cgs system of units the unit of charge was esu, the electrostatic unit. Its definition was

based on Coulomb’s law. Two point charges, each of 1 esu and 1 cm apart, will act with a

force of 1 dyn (= 10–5 newton) on each other. Inserting this length and force in eq. (C.10) will

give a charge of 3.33564⋅10–10 C (= 1 esu). Consequently, the equations presented in this

appendix would appear differently in the ‘old’ literature. Coulomb’s law in the cgs system of

units was

r2

1

21
21

QQ

D

1
)( e

rr
rF

−
= cgs system of units

where D is the relative dielectric constant and D is unity in vacuum.

C.2 Maxwell’s equations in a vacuum

Consider a region of space which is empty of everything except electric fields E and magnetic

fields B. Maxwell’s equations are then

)d(0
t

),c(0

)b(0
t

),a(0 00
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(C.11)

where μ0 is the permeability of vacuum and t is time. Taking the curl of eq. (C.11d), the

vector identity

EEE 2)()( ∇−⋅∇∇=×∇×∇ (C.12)

gives, with eq. (C.11a)

0
t

2 =∂
∂×∇+∇− B

E (C.13)

The ∇ and ∂/∂t operations can be interchanged, so that using eq. (C.11b) one obtains
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2
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Similarly, taking the curl of eq. (C.11b) and using eqs. (C.11c) and (C.11d), gives
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B (C.15)

Thus both the E and B fields satisfy the wave equation, with the wave velocity (μ0ε0)
–½.

Noting that the numerical value of (μ0ε0)
–½ (which indeed has the dimensions of velocity) was

consistent with the values found for the velocity of light, Maxwell concluded that light was an

electromagnetic phenomenon, and c = (μ0ε0)
–½.

From 1983, the velocity of light, c, together with the unit of time has been taken to define the

unit of length: the metre is such that c in a vacuum is exactly 2.99792458 ⋅ 108 m/s. Since
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and

00

2 1
εμ=c (C.17)

it follows that the value of (4πε0)
–1 is also exactly defined
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Hence Coulomb’s law (C.10) determines the unit of charge exactly; which is identical to the

unit of charge as defined from the force between current carrying wires (eq. (C.19)). This is a

consequence of the consistency of the overall theory.

Consider the simple geometry of two thin parallel wires, distance apart, carrying currents I1

and I2. If the currents are in the same direction, the magnetic force per unit length on each

wire is attractive and of magnitude

dl
II

2
dF 210

ρπ
μ= (C.19)
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Hence μ0 has the dimensions kg⋅m/C2. The SI unit of current, the ampere, and the SI unit of

charge, the coulomb (1 A = 1 C/s), are thereby determined. Thus two currents, each of 1 A,

flowing in wires 1 m apart give a force per unit length of 2 ⋅ 10–7 N/m. This example indicates

how in principle absolute standards of current (and hence charge) may be established in terms

of the forces between circuits.
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Notation

ai activity of component i, defined by eq. (2.27)

a distance of closest approach, (m)

A Helmholtz energy, (J)

ADH Debye-Hückel parameter, eq. (8.22), (m3/2⋅mol–1/2)

b parameter in the extended Debye-Hückel model, eq. (8.42), (m3/2⋅mol–1/2)

bm parameter in Fowler-Guggenheim's model, eq. (8.45), (m3/2⋅mol–1/2)

B modified Helmholtz energy, defined by eq. (6.12), (J)

ci molarity of component i, (mole / litre solution)

e elementary charge, 1.602177⋅10–19 C

E electrode potential, defined by eq. (4.22), (volt)

rsE
~

reference electrode potential, defined in eq. (4.26), (volt)

Em reference electrode potential, defined in eq. (4.28)

f fugacity, defined by eq. (2.16)

F Faraday constant, 96485 C/mole

g molar Gibbs energy, (J / mole)

G Gibbs energy, (J)

GA glycyl-L-alanine

GG glycylglycine

h molar enthalpy, (joule / mole)

I ionic strength, defined by eq. (8.21), ( (mole / litre solution)1/2 )

Im molal ionic strength, defined by eq. (8.44), ( (mole / kg solvent)1/2 )

Ix mole fraction ionic strength, defined by eq. (8.48), (dimensionless)

ISE ion-selective electrode

Kc equilibrium constant, defined in eq. (1.1)

mi molality of component i, (mole / kg solvent)

Msolvent molar mass of solvent, (g / mole)

ni mole number of component i, (mole)

n vector of ni

N number of data points
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N molecular number

NA Avogadro's number, 6.02214⋅1023 molecules / mole

P pressure, (Pa)

q charge, (C)

q surface area parameter in the UNIQUAC model

Q canonical ensemble partition function

r volume parameter in the UNIQUAC model

R gas constant, 8.314 J/(mole⋅K)

s sample standard deviation, � −
−

=
N

i

2average
ii )xx(

1N

1
s

S entropy, (J / K)

T absolute temperature, (K)

U internal energy, defined by eq. (4.1), (J)

ΔUij energy interaction parameter of UNIQUAC, (J / mole)

v molar volume (m³ / mole)

V volume (m³)

xi mole fraction of component i

x vector of xi

yi molar ratio of component i to water

y vector of yi

z either x or y

z relative charge (to the charge of H+), (dimensionless)

Greek letters

αk relative concentration of the ionic species k of an amino acid, eq. (1.2)

γi symmetric activity coefficient of component i, defined by eq. (2.31)

bin,
rs,i

∞γ symmetric activity coefficient of component i at infinite dilution in a binary

mixture, defined by eq. (2.43)

rs,i
~γ asymmetric activity coefficient of component i, defined by eq. (2.44)
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γi
m symmetric activity coefficient of component i on a molal basis, defined by eq.

(2.51)

Γ screening parameter, defined by eq. (8.61), (1/m)

ε dielectric constant or permittivity, (C² / (J ⋅ m))

ε0 permittivity of vacuum, 8.85419⋅10–12 C² / (J ⋅ m)

εr relative dielectric constant or relative permittivity, (dimensionless)

θ surface area fraction of UNIQUAC, defined by eq. (8.54)

κ Debye length, defined by eq. (8.5), (1/m)

μ chemical potential, defined by eq. (2.6)

νi stoichiometric coefficient of component i

ν sum of all stoichiometric coefficients of the electrolytes

Ξ grand canonical ensemble partition function

Π osmotic pressure, (Pa)

ρ charge density (C / m³)

ρ number density (molecules / m³)

σ molecular diameter, (m)

φ volume fraction of UNIQUAC, defined by eq. (8.53)

φ osmotic coefficient, defined by eq. (3.17)

ϕ fugacity coefficient, defined by eq. (2.17)

Φ electric potential, (J / C = V)

Ψ semi-grand canonical ensemble partition function

superscript

bin binary system

E excess property

id ideal solution

L liquid

MM McMillan-Mayer framework

r residual property

S solid

ter ternary system
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V vapour

∞ infinite dilution

¯ partial molar property (overbar)

* pure component property (asterisk)

° a set point property

^ a property of a species in a mixture (accent circonflexe)

subscript

A solute, non-electrolyte, dipeptide

m molality based property

rs reference solvent

S solute, electrolyte, salt

w water, solvent

x mole fraction based property

± salt, defined in eq. (5.10)

0 solvent



Index 187

Index

A
Activity coefficient

- definition ........................................................ 19
Amino acids

- essential.................................................2, 10-11
- experimental data ...........................53-58, 71-80
- structure of ................................................10-11

B
Bjerrum diagram ...................................................5-6
Boiling point elevation........................................... 32
Boltzmann-Poisson equation........................ 101, 112

C
Canonical ensemble ..........................................81-82
Continuum concept ................................................ 99
Coulomb's law...............................................165-167

D
Debye-Hückel theory ......................................99-112
Dipeptide bond......................................................... 2
Dissociation ..........................................................3-6

E
Electrode potential ................................................. 38
Euler's theorem .................................................... 157
Extended UNIQUAC ............................113, 121-134

F
Fowler-Guggenheim .....................................109-110
Fugacity coefficient

- definition .................................................. 16, 18
Freezing point depression .................................29-32

G
Gibbs-Duhem......................................... 13, 126, 158
Grand canonical ensemble ..................................... 82

H
Harned cell ........................................................41-44
HS-MSA ........................................114-115, 139-147
Hydration ............................................................. 139

I
Ideal solution

- definition ........................................................ 19
Ion-selective electrodes.......................................... 61
Isoelectric point.....................................................6-8
Isopiestic ...........................................................32-33

M
Maxwell's equations......................................167-168
McMillan-Mayer framework ............................86-88

N
Nernst equation ................................................ 40, 61

O
Osmotic pressure.........................................85, 89-97

P
Permittivity ...........................................100, 142-143
Pitzer .................................................................... 111
Poisson equation .......................................... 100, 166
Primitive / Non-primitive model.......................... 121

R
Real solution

- definition ........................................................ 18

S
Semi-grand ensemble........................................83-85
Stereochemistry.....................................................2-3
Solubility........................................117-119, 135-137

V
Vapour pressure ................................................27-29
Volume expansion ............................................50-51

Z
Zwitterion................................................................. 3



Index 188


