

Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins

Lambertsen, L.; Sternberg, Claus; Molin, Søren

Published in: Environmental Microbiology

Link to article, DOI: 10.1111/j.1462-2920.2004.00605.x

Publication date: 2004

Document Version Peer reviewed version

Link back to DTU Orbit

Citation (APA):

Lambertsen, L., Sternberg, C., & Molin, S. (2004). Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. *Environmental Microbiology*, *6*, 726-732. https://doi.org/10.1111/j.1462-2920.2004.00605.x

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Mini-Tn7 transposons – the delivery plasmids

See also the documents: "The Tn7 transposon " and "How to use the mini-Tn7 transposons". **Note !** The delivery plasmids presented here are all pUC19 derivatives and can replicate in *E. coli* and other enterics, but for example not in *Pseudomonas*. Only characters inserted as part of the mini-Tn7 transposon are described in the table below.

Note also: Sequences of the plasmids are not available as the system is based on plasmids, which were constructed long time ago when sequencing was not common. For available information about the base plasmids see McKown *et al.* 1988; Bao *et al.*, 1991; Højberg *et al.*, 1999 and Koch *et al.*, 2001.

ori _{ColE1}	Ap ^R	Tn7L	Tnž	7 elements		Tn7R	mob
					_	•	
n7 elements of th	e delivery plasmids	EcoR1	(Pstl HindIII HindIII Apal	SacII SacII EcoRI KpnI	<i>Hind</i> III	Notl AffII Mhul	Small
miniTn7(Gm) P _r	rnB P1 <i>gfp-a</i>	T	n7L ΩGm ^R	sfp gfp	T₀Cm ^l	^R T ₁ Tn	7R
miniTn7(Gm)P _A	1/03/04 <i>gfp.AAV</i> -a	T	n7L ΩGm ^R	gfpAAV	T₀Cm ¹	^R T ₁ Tn	7 R
miniTn7(Gm)P _A	1/03/04 <i>gfp.ASV</i> -a	T	n7L ΩGm ^R	gfpASV	T₀Cm ¹	^R T ₁ Tn	7R
miniTn7(Gm)P _A	1/03/04 <i>gfp.AGA</i> -a	T	n7L ΩGm ^R	gfpAGA	T₀Cm ¹	^R T ₁ Tn	7R
miniTn7(Gm)P l	PrrnB P1 gfp.AAV-a	T	n7L ΩGm ^R	gfpAAV	T₀Cm ¹	^R T ₁ Tn	7R
miniTn7(Gm)P l	PrrnB P1 gfp.ASV-a	T	n7L ΩGm ^R	gfpASV	T₀Cm ¹	^R T ₁ Tn	7R
miniTn7(Gm)P l	PrrnB P1 gfp.AGA-a	T	n7L ΩGm ^R	gfpAGA	T _o Cm ¹	^R T ₁ Tn	7R
miniTn7(Gm)P _A	1/03/04 <i>ecfp</i> -a	T	n7L ΩGm ^R	ecfp	T₀Cm ¹	^R T ₁ Tn	7R
miniTn7(Gm)P _A	_{1/03/04} <i>eyfp-</i> a	Т	n7L ΩGm ^R	eyfp	T _o Cm ¹	^R T ₁ Tn	7R
miniTn7(Gm)P _A	1/03/04 DsRedExpress-a	T	n7L ΩGm ^R	DsRedEx	press	T _o Cm ^R	T ₁ Tn7R
miniTn7(Gm)P _A	1/03/04 HcRed-a	T	n7L ΩGm ^R	HcRe	ed 🛛	T _o Cm ^R	Γ ₁ Tn7R
		EcoR1	Pstl Smal HindIII	FindIII HindIII Apal KpnI SacII	Notl EcoRI KpnI	HindIII	Notl Afill Miul Smal
miniTn7(Gm) P	A1/03/04 ecfp-a	T	n7L Km ^R	ΩSm ^R	ecfp	T₀Cn	n ^R T ₁ Tn7R
miniTn7(Gm) P	A1/03/04 <i>eyfp-</i> a	T	n7L Km ^R	ΩSm ^R	eyfp	T₀Cn	n ^R T ₁ Tn7R
miniTn7(Gm) P	A1/03/04 DsRedExpress-	a Ti	n7L Km ^R	ΩSm ^R	DsRedEx	press	$\Gamma_0 Cm^R T_1$ Tn7
miniTn7(Gm) P	HcRed-a	Т	n7L Km ^R	ΩSm^R	HcRe	d T	Γ₀Cm ^R T ₁ Tn7

• •

stitutive promoter: $P_{A1/04/03}$ (a P_{lac} -derivative)

Growth dependent promoter: P_{rrnB P1}

 \triangleright

Fig. 1. The Tn7 delivery plasmids. The resistance genes are: gentamicin resistance (Gm^R) provided by *aacC1* encoding acetyltransferase-3-1, from plasmid pAComegaGm, chloramphenicol resistance (Cm^R) provided by cat encoding chloramphenicol-acetyl-transferase, kanamycin resistance (Km^R) provided by neomycin phosphotransferase (nptII), original from Tn903 (Oka et al., 1981) and streptomycin resistance (Sm^R) provided by aadA from pUCBM20 and original from Tn9 (Boehringer Mannheim). All plasmids are based on pUC19 and carry resistance to ampicillin (Koch et al., 2001). Ω shows that the resistance gene is flanked by transcription and translation terminators (Fellay et al., 1987) and the fluorescent proteins are from Clontech Laboratories (Palo Alto, CA). All constructs contain the ribosomal binding site, RBSII, in front of the fluorescent gene and terminator T₀ and T₁ flanking cat after, as indicated and described by Andersen et al., 1998. GfpAAV, gfpAGA and gfpASV encode unstable versions of Gfp protein (Andersen et al., 1998; Ramos et al 2000). Most constructs are also available with the fluorescent protein transcribed in the direction from the right to left, though we have not indications that the orientation should have an effect on expression (data not shown). Useful known restriction sites are indicated, the figure is not drawn to scale.

Name of plasmid		Promoter (driving the fluorescent	Fluorescent protein	Comments For details on the constructions, see the section "construction of delivery plasmids"	Strain harbouring the plasmid <i>E. coli</i>		Cloned by ⁴	Our strain number
pBK-miniTn7-ΩGm	$Gm \rightarrow$	-	-	see reference	XL1-Blue	Koch <i>et al.</i> , 2001	BK	AKN62
pBK-miniTn7-ΩSm1	Sm	-	-	see reference	XL1-Blue	Koch <i>et al.</i> , 2001	BK	AKN63
pBK-miniTn7-KmΩSm1	Km→	-	-	see reference	XL1-Blue	Koch <i>et al.</i> , 2001	BK	AKN64
pBK-miniTn7- <i>gfp</i> 1	Km→,Cm→	P _{A1/04/03} ⁵	GFP→	see reference	XL1-Blue	Koch <i>et al.</i> , 2001	BK	AKN65
pBK-miniTn7- <i>gfp</i> 2	Gm→,Cm→	P _{A1/04/03}	GFP→	see reference	XL1-Blue	Koch <i>et al.</i> , 2001	BK	AKN66
pBK-miniTn7- <i>gfp</i> 3	$Km \rightarrow ,Sm,$ $Cm \rightarrow$	P _{A1/04/03}	GFP→	see reference	XL1-Blue	Koch <i>et al.</i> , 2001	BK	AKN67
miniTn7(Gm) $P_{A1/04/03}$ -ecfp-a	Gm→,Cm→	P _{A1/04/03}	ECFP→	$P_{A1/04/03}$ – <i>ecfp</i> cloned into <i>Not</i> I site of pBK- miniTn7- Ω Gm	JM105	Klausen <i>et</i> <i>al.</i> , 2003	AKN	AKN34
miniTn7(Gm)P _{A1/04/03} -ecfp-b	Gm→,Cm←	P _{A1/04/03}	ECFP←	$P_{A1/04/03}$ - <i>ecfp</i> cloned into <i>Not</i> I site of pBK- miniTn7- Ω Gm	JM105	Lambertsen <i>et al.</i> , 2003	AKN	AKN35
miniTn7(Gm)P _{A1/04/03} -eyfp-b	Gm→,Cm←	P _{A1/04/03}	EYFP←	$P_{A1/04/03}$ - <i>eyfp</i> cloned into <i>Not</i> I site of pBK- miniTn7- Ω Gm	JM105	Lambertsen <i>et al.</i> , 2003	AKN	AKN36
miniTn7(Gm)P _{A1/04/03} -eyfp-a	Gm→,Cm→	P _{A1/04/03}	EYFP→	$P_{A1/04/03}$ - <i>eyfp</i> cloned into <i>Not</i> I site of pBK- miniTn7- Ω Gm	JM105	Klausen <i>et</i> <i>al.</i> , 2003	AKN	AKN69

 Table 2. Mini-Tn7 transposons – the delivery plasmids (see also Fig. 1)

¹ An arrow after the resistance marker indicates the direction of transcription of the gene compared to the left, Tn7L, and right, Tn7R, side of the transposon. Gm: gentamicin resistance is provided by *aacC1* encoding acetyltransferase-3-1, from pAComegaGm. Cm: chloramphenicol resistance provided by *cat* encoding chloramphenicol-acetyl-transferase. Km: kanamycin resistance provided by neomycin phosphotransferase (nptII), original from Tn903 (Oka *et al.*, 1981), Sm: streptomycin resistance provided by from pUCBM20, original from Tn9 (Boehringer Mannheim). All plasmids are based on pUC19 and carry resistance to ampicillin.

² All constructs contain the ribosomal binding site: RBSII and terminator T_0 and T_1 flanking *cat* (Cm resistance) after the fluorescent gene as described by Andersen *et al.*, 1998.

³ An arrow after the encoded protein indicates the direction of transcription of the gene compared to the left Tn7L, and right, Tn7R, side of the transposon. The *gfp* gene used is the derivative *gfp*mut3*.

⁴ AKN: Anne Kirstine Nielsen, TJ: Tove Johansen, BK: Birgit Koch, LL: Lotte Lambertsen

⁵ Lac derived promoter (Lanzer and Bujard, 1988).

Name of plasmid	resistance to	(driving the fluorescent		Comments For details on the constructions, see the section "construction of delivery plasmids"	Strain harbouring the plasmid <i>E. coli</i>	Reference	Cloned by ⁴	Our strain number
miniTn7(Gm)P _{A1/04/03} -dsred-a	Gm→,Cm→	P _{A1/04/03}	DsRed→	P _{A1/04/03} – <i>dsred</i> cloned into <i>Not</i> I site of pBK- miniTn7-ΩGm	JM105	Lambertsen <i>et al.</i> , 2003	AKN	AKN38
miniTn7(Gm)P _{rrnB1} -gfp-a	Gm→,Cm→	P_{rrnB1}^{6}	GFP→	P_{rr} -gfp cloned into NotI site of pBK- miniTn7- Ω Gm	MT102	Lambertsen <i>et al.</i> , 2003	TJ	SM1973 or AKN137
miniTn7(Gm)P _{rrnB1} -gfpAAV-a	Gm→,Cm→	P _{rrnB1}	GFP-AAV→	P _{rr} - <i>gfp</i> -AAV cloned into <i>Not</i> I site of pBK- miniTn7-ΩGm	MT102	Lambertsen <i>et al.</i> , 2003	TJ	SM1974 or AKN138
miniTn7(Gm)P _{rrnB1} –gfpASV-a	Gm→,Cm→	P _{rmB1}	GFP-ASV→	P _{rr} - <i>gfp</i> -ASV cloned into <i>Not</i> I site of pBK- miniTn7-ΩGm	MT102	Lambertsen <i>et al.</i> , 2003	TJ	SM1975 or AKN139
miniTn7(Gm)P _{rrnB1} -gfpAGA-a	Gm→,Cm→	P _{rrnB1}	GFP-AGA→	P _{rr} - <i>gfp</i> -AGA cloned into <i>Not</i> I site of pBK- miniTn7-ΩGm	MT102	Lambertsen <i>et al.</i> , 2003	TJ	SM1976 or AKN140
miniTn7(Km, Sm)P _{A1/04/03} –ecfp-a	$Km \rightarrow ,Sm \rightarrow Cm \rightarrow$	P _{A1/04/03}	ECFP→	P _{A1/04/03} - <i>ecfp</i> cloned into <i>Not</i> I site of pBK- miniTn7-KmΩSm1	MT102	Lambertsen <i>et al.</i> , 2003	AKN	AKN84
miniTn7(Km, Sm)P _{A1/04/03} -ecfp-b	$\begin{array}{c} \text{Km} \rightarrow \text{Sm} \rightarrow \\ \text{Cm} \leftarrow \end{array}$	P _{A1/04/03}	ECFP←	P _{A1/04/03} – <i>ecfp</i> cloned into <i>Not</i> I site of pBK- miniTn7-KmΩSm1	MT102	Lambertsen <i>et al.</i> , 2003	AKN	AKN99
miniTn7(Km,Sm)P _{A1/04/03} -eyfp-a	$Km \rightarrow , Sm \rightarrow Cm \rightarrow$	P _{A1/04/03}	EYFP→	P _{A1/04/03} - <i>eyfp</i> cloned into <i>Not</i> I site of pBK- miniTn7-KmΩSm1	MT102	Lambertsen <i>et al.</i> , 2003	AKN	AKN86
miniTn7(Km, Sm)P _{A1/04/03} -eyfp-b	Km→,Sm→ Cm←	P _{A1/04/03}	EYFP←	P _{A1/04/03} - <i>eyfp</i> cloned into <i>Not</i> I site of pBK- miniTn7-KmΩSm1	MT102	Lambertsen <i>et al.</i> , 2003	AKN	AKN85
miniTn7(Gm)P _{A1/04/03} -gfpAAV-a	Gm→,Cm→	P _{A1/04/03}	GFP-AAV→	P_{rr} -gfp-AAV cloned into NotI site of pBK- miniTn7- Ω Gm	JM105	Lambertsen <i>et al.</i> , 2003	AKN	AKN104
miniTn7(Gm) P _{A1/04/03} -gfpASV-a	Gm→,Cm→	P _{A1/04/03}	GFP-ASV→	P _{A1/04/03} -gfp-ASV cloned into NotI site of pBK-miniTn7-ΩGm	JM105	Lambertsen <i>et al.</i> , 2003	AKN	AKN102
miniTn7(Gm) <i>P</i> _{A1/04/03} –gfpAGA-a	Gm→,Cm→	P _{A1/04/03}	GFP-AGA→	P _{A1/04/03} -gfp-AGA cloned into NotI site of pBK-miniTn7-ΩGm	JM105	Lambertsen <i>et al.</i> , 2003	AKN	AKN100
miniTn7(Gm) P _{A1/04/03} -gfpAAV-b	Gm→,Cm←	P _{A1/04/03}	GFP-AAV←	P _{A1/04/03} -gfp-AAV cloned into NotI site of pBK-miniTn7-ΩGm	JM105	Lambertsen <i>et al.</i> , 2003	AKN	AKN105
miniTn7(Gm)P _{A1/04/03} -gfpASV-b	Gm→,Cm←	P _{A1/04/03}	GFP-ASV←	<i>P_{A1/04/03}-gfp</i> -ASV cloned into <i>Not</i> I site of pBK-miniTn7-ΩGm	JM105	Lambertsen <i>et al.</i> , 2003	AKN	AKN103
miniTn7(Gm)P _{A1/04/03} -gfpAGA-b	Gm→,Cm←	$P_{A1/04/03}$	GFP-AGA←	<i>P_{A1/04/03}-gfp</i> -AGA cloned into <i>Not</i> I site of pBK-miniTn7-ΩGm	JM105	Lambertsen <i>et al.</i> , 2003	AKN	AKN101

⁶ A ribosomal promoter. Growth rate regulated (Bartlett and Gourse, 1994).

Name of plasmid	Antibiotic ¹ resistance to	(driving the fluorescent	protein or other	Comments For details on the constructions, see the section "construction of delivery plasmids"	Strain harbouring the plasmid <i>E. coli</i>			Our strain number
miniTn7(Gm)P _{A1/04/03} – DsRedExpress-a	Gm→,Cm→	P _{A1/04/03}	-	$P_{A1/04/03}$ - DsRedExpress (AKN122) cloned into <i>Not</i> I site of pBK-miniTn7- Ω Gm	JM105	Lambertsen <i>et al.</i> , 2003	LL	AKN132
miniTn7(Gm)P _{A1/04/03} - DsRedExpress-b	Gm→,Cm←	P _{A1/04/03}	DsRedExpress	$P_{A1/04/03}$ - DsRedExpress (AKN122) cloned into <i>Not</i> I site of pBK-miniTn7- Ω Gm	JM105	Lambertsen et al., 2003	LL	AKN131
miniTn7(Km, Sm)P _{A1/04/03} – DsRedExpress-a	$Km \rightarrow$, Sm , $Cm \rightarrow$	P _{A1/04/03}	DsRedExpress	$P_{A1/04/03}$ - DsRedExpress (AKN122) cloned into <i>Not</i> I site of pBK-miniTn7-Km Ω Sm1	JM105	Lambertsen <i>et al.</i> , 2003	LL	AKN133
miniTn7(Km, Sm)P _{A1/04/03} – DsRedExpress-b	Km→, Sm, Cm←	P _{A1/04/03}	-	<i>P</i> _{A1/04/03} - DsRedExpress (AKN122) cloned into <i>Not</i> I site of pBK-miniTn7-KmΩSm1	JM105	Lambertsen <i>et al.</i> , 2003	LL	AKN134
miniTn7(Gm)P _{A1/04/03} -HcRed-a	Gm→,Cm→	P _{A1/04/03}	HcRed1→	$P_{A1/04/03}$ - HcRed1 (AKN118) cloned into NotI site of pBK-miniTn7- Ω Gm	JM105	Lambertsen <i>et al.</i> , 2003	LL	AKN123
miniTn7(Gm)P _{A1/04/03} -HcRed-b	Gm→,Cm←	P _{A1/04/03}	HcRed1←	$P_{A1/04/03}$ - HcRed1 (AKN118) cloned into NotI site of pBK-miniTn7- Ω Gm	JM105	Lambertsen <i>et al.</i> , 2003	LL	AKN124
miniTn7(Km, Sm) <i>P</i> _{A1/04/03} – <i>HcRed</i> -a	Km→,Sm, Cm→	P _{A1/04/03}	HcRed1→	<i>P</i> _{A1/04/03} - HcRed1 (AKN118) cloned into <i>Not</i> I site of pBK-miniTn7-KmΩSm1	JM105	Lambertsen <i>et al.</i> , 2003	LL	AKN125
miniTn7(Km, Sm)P _{A1/04/03} -HcRed-b	Km→,Sm, Cm←	P _{A1/04/03}	HcRed1←	$P_{A1/04/03}$ - HcRed1 (AKN118) cloned into NotI site of pBK-miniTn7-Km Ω Sm1	JM105	Lambertsen <i>et al.</i> , 2003	LL	AKN126
pUX-BF13				Helper plasmid, providing the Tn7 transposase proteins		Bao <i>et al.</i> , 1991		AKN68 or SM1958

Mini-Tn7 delivery plasmids, ver. 1

Construction of mini-Tn7 transposon delivery plasmids for fluorescent tagging

All delivery plasmids (Fig. 1) are based on the mini-Tn7 delivery plasmids published by Koch *et al.*, 2001. They are all pUC-plasmid derivatives containing ampicillin resistance. They also carry the mobilisation genes (*mob*) from RP4, which provide these plasmids with the ability to be mobilised into a host by the RP4/ RK2 plasmid. Apart from this they carry the DNA fragment that will be inserted by transposition, containing genes encoding an antibiotic resistance marker and a fluorescent protein, flanked by the left Tn7L and right Tn7R end of the Tn7 transposon. All constructs contain the ribosomal binding site: RBSII in front of the fluorescent gene and terminator T_0 and T_1 flanking *cat* (Cm resistance) after the fluorescent gene as described by Andersen *et al.*, 1998. Below are the details about the constructed plasmids.

All DNA manipulations were performed essentially as described by Sambrook *et al.*, 1989, except for DNA plasmid purification which was performed using the Plasmid DNA purification QIAprep Spin Miniprep Kit (Qiagen GmbH) and DNA fragments and PCR products, were purified using GFXTM PCR DNA and Gel Band Purification Kit (Amersham Phamacia Biotech Europe). Enzymes were purchased from GibcoBRL, Life Technologies.

All delivery plasmids have been tested by transposition into *Pseudomonas putida* KT2440 using either electroporation or mobilitation (by four-parental mating with *P. putida* KT2440, *E. coli* HB101/RK600 (mobilises the other plasmids), *E. coli* SM10:: λ pir/ pUX-BF13 (helper contains the transposase genes) and *E. coli* containing the delivery-plasmid being tested. Inserts were tested as described by Lambertsen *et al.*, (2003) and in the document "How to use the Mini-Tn7 transposon".

miniTn7(Gm)P_{A1/04/03}–*ecfp*-a and **miniTn7(Gm)P**_{A1/04/03}–*ecfp*-b were constructed by: a) PCR amplifying the *ecfp* gene as a 740 bp fragment from the templates pECFP (Clontech) using the primer pair 5'-atatagcatgctgagcaagggcgaggagctg-3' and 5'ctctcaagcttattacttgtacagctcgtccatgcc-3', which also introduce a *SphI* and *Hind*III restriction site. (b) Cloning the *SphI-Hind*III digested PCR fragments into the *SphI-Hind*III site of pTTN50 (a pUC18Not::P_{A1/04/03} *dsRed*; Tolker-Nielsen *et al.*, 2000), resulting in pUC18Not::P_{A1/04/03} *ecfp*. (c) Cloning the app. 2,000 bp *NotI* fragment from this plasmid into the *NotI* site of pBK-miniTn7- Ω Gm (Koch *et al.*, 2001). d) Orientation of the inserted *NotI*fragment was tested by restriction with *KnpI* and the construction in which *ecfp* is transcribed in the direction from Tn7L to Tn7R was named -a, the other -b.

miniTn7(Gm) $P_{A1/04/03}$ -eyfp-a and **miniTn7(Gm)** $P_{A1/04/03}$ -eyfp-b were constructed by: a) PCR amplifying the *eyfp* gene as a 740 bp fragment from the templates pEYFP (Clontech) using the primer pair 5'-atatagcatgctgagcaagggcgaggagctg-3' and 5'ctctcaagcttattacttgtacagctcgtccatgcc-3', which also introduce a *SphI* and *Hind*III restriction site. (b) Cloning the *SphI-Hind*III digested PCR fragments into the *SphI-Hind*III site of pTTN50 (a pUC18Not::P_{A1/04/03} dsRed; Tolker-Nielsen et al., 2000), resulting in pUC18Not::P_{A1/04/03} eyfp. (c) Cloning the app. 2,000 bp NotI fragment from this plasmid into the *Not*I site of pBK-miniTn7- Ω Gm (Koch et al., 2001). d) Orientation of the inserted *Not*Ifragment was tested by restriction with *KnpI* and the construction in which eyfp is transcribed in the direction from Tn7L to Tn7R was named -a, the other -b.

miniTn7(Gm)P_{A1/04/03}-dsred-a was constructed by:

a) Cloning an app. 2,000 bp *Not*I fragment from pTTN50 (a pUC18Not:: $P_{A1/04/03}$ *dsRed*; dsRed from Clontech, Tolker-Nielsen *et al.*, 2000) into the *Not*I site of pBK-miniTn7- Ω Gm (Koch *et al.*, 2001). b) Orientation of the inserted *Not*I-fragment was tested by restriction

with *Knp*I and the construction in which *dsRed* is transcribed in the direction from Tn7L to Tn7R was named -a.

Note this mini-Tn7 insert does only give a visible colour after several days, when used in *Pseudomonas putida* KT2440.

miniTn7(Gm)P_{rrnB1}-gfp-a was constructed by:

a) Cloning an app. 2,000 bp *Not*I fragment from pSM1690 (pLOW2Not-*rrnB*P1-*gfp*mut3b*; Sternberg *et al.*, 1999) into the *Not*I site of pBK-miniTn7- Ω Gm (Koch *et al.*, 2001). b) Orientation of the inserted *Not*I-fragment was tested by restriction with *Knp*I and the construction in which *gfp* is transcribed in the direction from Tn7L to Tn7R was named -a.

miniTn7(Gm)P_{rrnB1}-gfpAAV-a was constructed by:

a) Cloning an app. 2,000 bp *Not*I fragment from pSM1606 (pLOW2Not-*rrnB*P1-*gfp*(AAV); Sternberg *et al.*, 1999) into the *Not*I site of pBK-miniTn7- Ω Gm (Koch *et al.*, 2001). b) Orientation of the inserted *Not*I-fragment was tested by restriction with *Knp*I and the construction in which *gfp* is transcribed in the direction from Tn7L to Tn7R was named -a.

miniTn7(Gm)P_{rrnB1} -gfpASV-a was constructed by:

a) Cloning an app. 2,000 bp *Not*I fragment from pTTN129 (pLOW2Not-*rrnB*P1-*gfp*(ASV), constructed as described in Sternberg *et al.*, 1999 into the *Not*I site of pBK-miniTn7- Ω Gm (Koch *et al.*, 2001). b) Orientation of the inserted *Not*I-fragment was tested by restriction with *Knp*I and the construction in which *gfp* is transcribed in the direction from Tn7L to Tn7R was named –a.

miniTn7(Gm) P_{rrnB1} –gfpAGA-a was constructed by: a) Cloning an app. 2,000 bp NotI fragment from pSM1692 (pLOW2Not-*rrnB*P1-gfp(AGA); Ramos et al., 2000; Sternberg et al., 1999 into the NotI site of pBK-miniTn7- Ω Gm (Koch et al., 2001). b) Orientation of the inserted NotI-fragment was tested by restriction with KnpI and the construction in which gfp is transcribed in the direction from Tn7L to Tn7R was named –a.

miniTn7(Km, Sm) $P_{A1/04/03}$ -*ecfp*-a and **miniTn7(Km, Sm)** $P_{A1/04/03}$ -*ecfp*-b were constructed by cloning the app. 2,000 bp *Not*I fragment from pUC18Not::P_{A1/04/03}-*ecfp* into the *Not*I site of pBK-miniTn7-Km Ω Sm1 (Koch *et al.*, 2001). b) Orientation of the inserted *Not*I-fragment was tested by restriction with *Knp*I and the construction in which *ecfp* is transcribed in the direction from Tn7L to Tn7R was named -a, the other -b.

miniTn7(Km,Sm) $P_{A1/04/03}$ -eyfp-a and **miniTn7(Km, Sm)** $P_{A1/04/03}$ -eyfp-b were constructed by: a) cloning the app. 2,000 bp NotI fragment from pUC18Not::P_{A1/04/03} eyfp into the NotI site of pBK-miniTn7-Km Ω Sm1 (Koch et al., 2001). b) Orientation of the inserted NotIfragment was tested by restriction with KnpI and the construction in which ecfp is transcribed in the direction from Tn7L to Tn7R was named -a, the other -b.

miniTn7(Gm) $P_{A1/04/03}$ -gfpAAV-a and miniTn7(Gm) $P_{A1/04/03}$ -gfpAAV-b were constructed by: a) Cloning an app. 2,000 bp NotI fragment from JBA112 (Andersen *et al.*, 1998)into the NotI site of pBK-miniTn7- Ω Gm (Koch *et al.*, 2001). b) Orientation of the inserted NotIfragment was tested by restriction with KnpI and the construction in which gfp is transcribed in the direction from Tn7L to Tn7R was named –a, the other b.

miniTn7(Gm) *P*_{A1/04/03} –*gfp*ASV-a and miniTn7(Gm)*P*_{A1/04/03} –*gfp*ASV-b were constructed by: a) Cloning an app. 2,000 bp *Not*I fragment from JBA113 (Andersen *et al.*, 1998)into the

*Not*I site of pBK-miniTn7- Ω Gm (Koch *et al.*, 2001). b) Orientation of the inserted *Not*I-fragment was tested by restriction with *Knp*I and the construction in which *gfp* is transcribed in the direction from Tn7L to Tn7R was named –a, the other b.

miniTn7(Gm) $P_{A1/04/03}$ -gfpAGA-a and miniTn7(Gm) $P_{A1/04/03}$ -gfpAGA-b were constructed by: a) Cloning an app. 2,000 bp NotI fragment from JBA47 (Andersen *et al.*, 1998; Ramos *et al.*, 2000) into the NotI site of pBK-miniTn7- Ω Gm (Koch *et al.*, 2001). b) Orientation of the inserted NotI-fragment was tested by restriction with KnpI and the construction in which gfp is transcribed in the direction from Tn7L to Tn7R was named –a, the other b.

miniTn7(Gm) $P_{A1/04/03}$ -DsRedExpress-a and miniTn7(Gm) $P_{A1/04/03}$ -DsRedExpress-b were constructed by a) cloning the *NcoI-NotI* fragment (klenow treated) of pDsRedExpress (Clontech) into pJBA27 (Andersen *et al.*, 1998) restricted by *Hind*III and klenow treated, then restricted by *SphI* and T4-DNA polymerase treated to form the plasmid p18-P_{A1/04/03} DsRedExpress. The app. 2000 bp *NotI*-fragment from this plasmid was inserted into the *NotI* site of pBK-miniTn7- Ω Gm (Koch *et al.*, 2001). b) Orientation of the inserted *NotI*-fragment was tested by restriction with *PstI* and the construction in which *DsRedExpress* is transcribed in the direction from Tn7L to Tn7R was named –a, the other b. <u>Note</u> this mini-Tn7 insert does only give a visible colour after 1-2 days, when used in *Pseudomonas putida* KT2440.

miniTn7(Km, Sm) $P_{A1/04/03}$ –DsRedExpress-a and miniTn7(Km, Sm) $P_{A1/04/03}$ – DsRedExpress-b were constructed by a) cloning the *NcoI-NotI* fragment (klenow treated) of pDsRedExpress (Clontech) into pJBA27 (Andersen *et al.*, 1998) restricted by *Hind*III and klenow treated, then restricted by *SphI* and T4-DNA polymerase treated to form the plasmid p18-P_{A1/04/03} DsRedExpress. The app. 2000 bp *NotI*-fragment from this plasmid was inserted into the *NotI* site of pBK-miniTn7-Km Ω Sm1 (Koch *et al.*, 2001). b) Orientation of the inserted *NotI*-fragment was tested by restriction with *PstI* and the construction in which *DsRedExpress* is transcribed in the direction from Tn7L to Tn7R was named –a, the other b. <u>Note</u> this mini-Tn7 insert does only give a visible colour after 1-2 days, when used in *Pseudomonas putida* KT2440.

miniTn7(Gm) $P_{A1/04/03}$ –*HcRed*-a and **miniTn7(Gm)** $P_{A1/04/03}$ –*HcRed*-b were constructed by a) cloning the *NcoI-NotI* fragment (klenow treated) of pHcRed (Clontech) into pJBA27 (Andersen *et al.*, 1998) restricted by *Hind*III and klenow treated, then restricted by *SphI* and T4-DNA polymerase treated to form the plasmid p18-P_{A1/04/03} HcRed. The app. 2000 bp *NotI*-fragment from this plasmid was inserted into the *NotI* site of pBK-miniTn7- Ω Gm (Koch *et al.*, 2001). b) Orientation of the inserted *NotI*-fragment was tested by restriction with *NarI* and the construction in which *HcRed* is transcribed in the direction from Tn7L to Tn7R was named –a, the other b.

Note this mini-Tn7 insert does only give a visible colour after 1 day, when used in *Pseudomonas putida* KT2440.

miniTn7(Km, Sm)P_{A1/04/03}-HcRed-a and miniTn7(Km, Sm)P_{A1/04/03}-HcRed-b

were constructed by a) cloning the *NcoI-Not*I fragment (klenow treated) of pHcRed (Clontech) into pJBA27 (Andersen *et al.*, 1998) restricted by *Hind*III and klenow treated, then restricted by *Sph*I and T4-DNA polymerase treated to form the plasmid p18- $P_{A1/04/03}$ HcRed. The app. 2000 bp *Not*I-fragment from this plasmid was inserted into the *Not*I site of pBK-miniTn7-Km Ω Sm1 (Koch *et al.*, 2001). b) Orientation of the inserted *Not*I-fragment

was tested by restriction with *Nar*I and the construction in which *HcRed* is transcribed in the direction from Tn7L to Tn7R was named –a, the other b. <u>Note</u> this mini-Tn7 insert does only give a visible colour after 1 day, when used in *Pseudomonas putida* KT2440.

References

Andersen, J. B., C. Sternberg, L. K. Poulsen, S. P. Bjørn, M. Givskov, and S. Molin (1998). New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. App. Environm. Microbiol. 64: 2240-2246.

Bao, Y., Lies, D. P., Fu, H. and Roberts, G. P. (**1991**). An improved Tn7-based system for the single-copy insertion of cloned genes into chromosomes of Gram-negative bacteria. *Gene* 109: 167-168.

Bartlett M. S. and R. L.Gourse (**1994**). Growth rate-dependent control of the *rrnB* P1 core promoter in *Escherichia coli*. J. Bacteriol. 176: 5560-5564.

Fellay R., J, Frey, and H. Krisch (**1987**). Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vitro insertional mutagenesis of Gram-negative bacteria. *Gene* **52**: 147-154.

Højberg, O., U. Schnider, H. V. Winteler, J. Sørensen, and D. Haas (**1999**). Oxygen-sensing reporter strain of *Pseudomonas fluorescens* for monitoring the distribution of low-oxygen habitats in soil. Appl. Environ. Microbiol. 65: 4085-4093.

Klausen, M., Heydorn, A., Ragas, P., Lambertsen, L., Aaes-Jørgensen, A., Molin, S. and T. Tolker-Nielsen (**2003**). Biofilm formation by *Pseudomonas aeruginosa* wild type, flagella and type IV pili mutants. Molecular Microbiology 48: 1511-1524.

Koch, B., L. E. Jensen, and O. Nybroe (**2001**). A panel of Tn7-based vectors for insertion of the *gfp* marker gene or for delivery of cloned DNA into Gram-negative bacteria at a neutral chromosomal site. J. Microbiol. Meth. 45: 187-195.

Lambertsen, L. M., Sternberg, C. and S. Molin (2004). Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. Environ. Microbiol. In press.

Lanzer M. and H. Bunjard (1988). Promoters largely determine the efficency of repressor action. Proc. Natl. Acad. Sci. USA 85: 8973-8977.

McKown, R. L., K. A. Orle, T. Chen, and N. L. Craig (**1988**). Sequence requirements of *Escherichia coli att*Tn7, a specific site of transposon Tn7 insertion. J. Bacteriol. 170: 352-358.

Oka, A., Sugisaki, H. and M. Takanami (**1981**). Nucleotide sequence of the kanamycin resistance transposon Tn903. J. Mol. Biol. 147: 217-226.

Ramos, C., L. Mølbak and S. Molin (**2000**). Bacterial activity in the rhizosphere analyzed at the single-cell level by monitoring ribosome contents and synthesis rates. Appl. Environ. Microbiol. 66: 801-809.

Sternberg C., B. B. Christensen, T. Johansen, A. T. Nielsen, J. B. Andersen, M. Givskov and S. Molin (**1999**). Distribution of bacterial growth activity in flow-chamber biofilm. Appl. Environm. Microbiol. 65: 4108-4117.

Tolker-Nielsen, T., U. C. Brinch, P. C. Ragas, J. B. Andersen, C. S. Jachobsen, S. Molin. (**2000**). Development and dynamics of *Pseudomonas* sp. Biofilms. J. Bacteriol. 182: 6482-6489.