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Chapter 1

Preliminaries

We start by recaling some usefull theory, that is some results from multivari-
able calculus and the concept of a Poincaré map.

Elements of Multivariable Calculus

In the theory of analytical mechanics two main theorems are frequently used,
namely the chain rule and the inverse function theorem. Therefore we start
be recalling these basic mathematical facts.

Throughout this text we will denote a vector x ∈ Rn by boldface and it’s
elements by xi, i.e. x = (x1, . . . , xn). For a smooth function f : Rn → Rm,
f = f(x), that is f ∈ C∞(Rn,Rm), the Jacobian matrix ∂f

∂x is the m × n
matrix given by1

∂f

∂x
=


∂f1

∂x1
· · · ∂f1

∂xn... . . . ...
∂fm

∂x1
. . . ∂fm

∂xn


With this the chain rule can be given as

Theorem 1 (The chain rule). For the smooth functions f : Rn → Rm,
f = f(x), and g : Rm → Rk, g = g(y), the Jacobian of g ◦ f : Rn → Rk is
given by

∂g ◦ f

∂x
(x) =

∂g

∂y
(f(x))

∂f

∂x
(x)

Example 1. Let f : R → Rn, f = f(t), and g : Rn → R, g = g(x) then we

1Often, when there is no risk of confusion, we will for functions f : Rn → R also use
the notation ∂f

∂x for it’s transpose, i.e. the gradient of f .
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have by the chain rule that

d

dt
g ◦ f(t) =

∂g

∂x
(f(t))

df

dt
(t)

=
n∑

i=1

∂g

∂xi

(f(t))ḟi(t)

= ∇g(f(t)) · ḟ(t)

where the dot ‘·’ is the usual Euclidian scalar product.

If a function f : Rn → Rn is bijective (one-to-one and onto) with inverse
f−1, and if both f and f−1 are smooth, then f is said to be a diffeomorphism.
A diffeomorphism is also sometimes refered to as a coordinate change, since
it can be used to define new coordinates in which every function will be as
many times differentiable as in the old coordinates. We will often specify a
coordinate transformation ψ : Rn → Rn by x ↔ y to state explicitly that
it takes the x-coordinates and transforms to the y-coordinates, and ψ−1 vice
versa. The inverse function gives sufficient conditions on a map f : Rn → Rn

to be a diffeomorphism.

Theorem 2 (Inverse function theorem). Let U ⊂ Rn be open, and let f :

U → Rn, f = f(x), be smooth. If ∂f
∂x is non-singular at x0 ∈ U , i.e.

det

(
∂f

∂x
(x0)

)
6= 0

then there exists an open set V with x0 ∈ V ⊂ U such that f |V is a diffeo-
morphism.

Example 2. If g : R2n → R, g = g(x,y), x,y ∈ Rn, is smooth and if

det

(
∂2g

∂y∂y

)
6= 0

where ∂2g
∂y∂y is the Jacobian matrix of ∂g

∂y , then we know by the inverse
function theorem, that it is possible to define a coordinate transformation
ψ : R2n → R2n, (x,y) ↔ (x̃, ỹ), as

(x̃, ỹ) =

(
x,
∂g

∂y
(x,y)

)
This transformation is important in the theory of analytical mechanics and
is called the Legendre transform.

A more general result is the following
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Theorem 3 (Implicit function theorem). Let U ⊂ Rn−m ×Rm be open, and
let f : U → Rm be smooth. Denote the Cartesian coordinate system on
Rn−m ×Rm by (x,y) = (x1, . . . , xn−m, y1, . . . , ym). Suppose that at the point
(x0,y0) ∈ U

f(x0,y0) = 0

and the matrix ∂f
∂y is nonsingular, i.e.

det

(
∂f

∂y
(x0,y0)

)
6= 0

Then there exists an open neighborhood V of x0 in Rn−m and an open neigh-
borhood W of y0 in Rm such that V ×W ⊂ U , and there exists a smooth
map g : V → W such that for each (x,y) ∈ V ×W

f(x,y) = 0 ⇔ y = g(x)

The inverse function theorem can be deduced from the implicit function
theorem as a corrolary.

Poincaré Maps

For a general autonomous differential equation ẋ = f(x), x ∈ Rn, a surface
of section S is the image of a map g : U → Rn, U ⊂ Rn−1, e.i. S = g(U),2
such that f is transversal to it, that is the flow f(x) intersects S only in
points, not lines. Let ϕt be the flow of f , Γ = ϕ[0,∞)(p) the trajectory from
p ∈ Rn — assuming that ϕt(p) is defined for all t ∈ [0,∞] — and xk the
k-th intersection, in a particular sence (e.g. from right to left) of Γ and S,
xk+1 = ϕτ (xk) for some τ ∈ (0,∞), then the Poincaré map σ : S → S is
defined as the mapping giving

σ(xk) = xk+1

Studying the Poincaré map of a differential equation can simplify some
of the qualitative analysis. Consider a differential equation in R3 and the
Poincaré map σ given by considering succesive intersections with a plane,
from one specific side to the other. If σ has a fixed point we know that the
differential equation has a closed orbit, and if x1,x2 = σ(x1),x3 = σ2(x1), . . .
lies on a closed curve we know that near the plane of section the motion takes
place on something similar to a cylinder.

2This difinition slightly differs from the standerd one, where S is a n − 1 dimensional
submanifold of Rn. So we see that our definition is contained in the “correct” one.
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Chapter 2

Lagrangian Mechanics

2.1 Calculus of Variations
A functional is a mapping from a vector space to the real numbers. Let
L : Rn+1 → R be a smooth function, called the Lagrangian, and consider a
smooth curve γ : [t0, t1] → Rn, then we define the functional I as

I(γ) =

∫ t1

t0

L(γ(t), γ̇(t), t)dt

The number n is refered to as the number of degrees of freedom, for reasons
which will become clear later. The variation δI of I is for a smooth curve
η : [t0, t1] → Rn defined as

δI(γ, η) =
d

ds

∣∣∣∣
s=0

I(γ + sη) (2.1)

We see that a necessary condition for γ to be an ekstremum of I, i.e. I(γ) ≤
lims→0 I(γ+sη) or I(γ) ≥ lims→0 I(γ+sη) for all curves η, is that δI(γ, ·) = 0.
If we wish to find the curves starting at q0 and ending at q1 that are extremals
of I we therefore calculate 2.1 with the condition on η that η(t0) = η(t1) = 0,
which gives

δI(γ, η) =

∫ t1

t0

(
∂L

∂q
(γ(t), γ̇(t), t) · η(t) +

∂L

∂q̇
(γ(t), γ̇(t), t) · η̇(t)

)
dt

=

∫ t1

t0

(
∂L

∂q
(γ, γ̇(t), t)− d

dt

∂L

∂q̇
(γ(t), γ̇(t), t)

)
· η(t)dt+

[
∂L

∂q̇
· η
]t1

t0

=

∫ t1

t0

(
∂L

∂q
(γ(t), γ̇(t), t)− d

dt

∂L

∂q̇
(γ(t), γ̇(t), t)

)
· η(t)dt (2.2)

where q = (q1, . . . , qn), q̇ = (q̇1, . . . , q̇n) are Euclidian coordinates and L =
L(q, q̇, t). In order to proceed we need the so called fundamental lemma of
the calculus of variations
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Lemma 1. Let g ∈ C0([t0, t1],Rn), then∫ t1

t0

g(t) · h(t)dt = 0 ∀ h ∈ C∞([t0, t1],Rn)

if and only if

g = 0

Proof. The if part is obvious. The only if part we show by contradiction, so
assume that

∫ t1
t0

g(t) · h(t)dt =
∫ t1

t0

∑n
i=1 gi(t)hi(t)dt = 0 for some gi0 6= 0.

Then there exists τ ∈ (t0, t1) such that gi0(τ) 6= 0. Since gi0 is continous
there exists δ > 0 such that gi0(t) >

1
2
gi0(τ) for t ∈ (τ − δ, τ + δ). Then

choose h smooth such that

hi0(t) = 0 for t ∈ [t0, τ − δ] ∪ [τ + δ, t1]

hi0(t) > 0 for t ∈ (τ − δ, τ + δ)

hi(t) = 0 for i 6= i0, t ∈ [t0, t1]

But then we get∫ t1

t0

n∑
i=1

gi(t)hi(t)dt =

∫ τ+δ

τ−δ

gi0(t)hi0(t)dt > δgi0(τ)

which is a contradiction.

Using this lemma we thus get the following

Theorem 4. If a curve γ ∈ C∞([t0, t1],Rn) with γ(t0) = q0 and γ(t1) = q1

is an extremum of I among the curves satisfying these boundary conditions
then it satisfies the equations

d

dt

∂L

∂q̇
(q, q̇, t)− ∂L

∂q
(q, q̇, t) = 0

These equations are called the Euler-Lagrange equations. If we use
the chain rule the Euler-Lagrange equations become

n∑
j=1

∂2L

∂q̇i∂q̇j
q̈j +

n∑
j=1

∂2L

∂q̇i∂qj
q̇j +

∂2L

∂q̇i∂t
− ∂L

∂qi
= 0 i = 1, . . . , n

So we see that the Euler-Lagrange equations are a set of coupled second
order differential equations. From the classical theorem on the existence
and uniqueness of solutions to a differential equation we see that a sufficient
condition to ensure the existence and uniqueness of a solution to the Euler-
Lagrange equations is

det

(
∂2L

∂q̇∂q̇

)
6= 0
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Example 3. In 1696 John Bernoulli posed the following problem, which was
later solved by John Bernoulli, James Bernoulli, Newton, and L’Hospital, and
played an important part in the development of the theory of the calculus of
variations.

Let A and B be fixed points in a vertical plane, and assume that B is
lower than A. Let a particle slide without friction along a curve joining A
and B, then the time it takes to reach B from A is a functional of the curve,
and the curve which takes the least time is called the brachistochrone, and
can be calculated using the Euler-Lagrange equations as follows:

We choose normal Euclidian x-y coordinates in the plane, where gravity
acts in the positive direction of the y-axis, and assume for simplicity that
the particle starts at rest and that A is the origin of coordinates. Letting the
curve be a function of x we get

v =

√
1 + (y′)2 dx

dt

and due to conservation of energy we have that

v =
√

2gy

where g is the gravitational accelleration. The transit time T of a curve y is
therefore given by

T (y) =

∫ tend

tstart

dt =

∫ x1

0

√
1 + (y′)2

√
2gy

dx

So the Lagrangian is given by

L(y, y′) =

√
1 + (y′)2

√
2gy

and the Euler-Lagrange equation for this problem becomes

2y′′(x)y(x) + (y′(x))
2
+ 1 = 0

We notice that this equation is independent of the values of g and the mass
of the particle.

It turns out that the solution to the Euler-Lagrange equation is a family
of cycloids

x = r(θ − sin θ) y = r(1− cos θ)

parametrized by θ.
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Geodesic Curves

Consider a curve γ in U ⊂ Rn. The length L of a curve in U is the functional
given by

L(γ) =

∫ t1

t0

‖γ̇(t)‖dt

The curves which minimize length are called geodesic curves.
If we define the functional E as

E(γ) =
1

2

∫ t1

t0

‖γ̇(t)‖2dt

we get using Schwartz’ inequality

L(γ) =

∫ t1

t0

1 · ‖γ̇‖dt

≤
(∫ t1

t0

dt

)1/2(∫ t1

t0

‖γ̇(t)‖2dt

)1/2

≤
√

2(t1 − t0)
√
E(γ)

where we have equality if and only if ‖γ̇(t)‖ = constant. So when minimizing
E we find a geodesic curve with constant “speed”.

Example 4. Consider U = Rn with coordinates x = (x1, . . . , xn). We have
that the Lagrangian for E is

L(x, ẋ) =
1

2
‖ẋ‖2 =

1

2
(ẋ2

1 + . . .+ ẋ2
n)

So according to the Euler-Lagrange equations we get that the geodesic curves
satisfies

ẍ = 0

which means that the curves in Rn with minimal length are

γ(t) = at+ b

i.e. straight lines, a well known fact.

Another instructive example is the following

Example 5. Consider the sphere S2 ⊂ R3. In R3 we can choose spherical
coordinates (θ, φ, r) and in these coordinates S2 will be given by

x = sin θ cosφ

y = sin θ sinφ

z = cos θ
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Therefore on S2 we have that the Lagrangian for the energy is

L(θ, φ, θ̇, φ̇) =
1

2
‖ẋ|S2‖2

=
1

2

(
ẋ|2S2 + ẏ|2S2 + ż|2S2

)
=

1

2

(
(θ̇ cos θ cosφ− φ̇ sin θ sinφ)2

+ (θ̇ cos θ sinφ+ φ̇ sin θ cosφ)2 + (−θ̇ sin θ)2
)

=
1

2
(θ̇2 + φ̇2 sin2 θ)

and this is thus the Lagrangian determining the geodesic curves on S2 via
the Euler-Lagrange equations.

If we have a smooth coordinate transformation ψ : Rn → Rn, q 7→ q̃(q),
then a smooth curve in the q-coordinates must be a smooth curve in the q̃-
coordinates and vice versa. Thus it seems that if a curve in the q-coordinates
is an ekstremum for I then it must also be so in the q̃-coordinates. The
following result would be a direct consequence of such a result.

Proposition 1. The Euler-Lagrange equations are invariant under a smooth
coordinate transformation ψ : Rn → Rn, q ↔ q̃(q). That is if γ : [t0, t1] →
Rn, γ̃(t) = ψ(γ(t)), and L = L̃ ◦ ψ then we have

d

dt

∂L

∂q̇
(γ(t), γ̇(t), t)− ∂L

∂q
(γ(t), γ̇(t), t) = 0

if and only if

d

dt

∂L̃

∂ ˙̃q
(γ̃(t), ˙̃γ(t), t)− ∂L̃

∂q̃
(γ̃(t), ˙̃γ(t), t) = 0

Proof. From the chain rule we have

˙̃qj =
n∑

k=1

∂q̃j
∂qk

q̇k ⇒ ∂ ˙̃qj
∂q̇i

=
∂q̃j
∂qi

Thus we get using the chain rule on L(q, q̇, t) = L̃(q̃(q), ˙̃q(q, q̇), t)

∂L

∂q̇i
=

n∑
j=1

∂L̃

∂ ˙̃qj

∂ ˙̃qj
∂q̇i

=
n∑

j=1

∂L̃

∂ ˙̃qj

∂q̃j
∂qi

giving

d

dt

(
∂L

∂q̇i

)
=

n∑
j=1

(
d

dt

∂L̃

∂ ˙̃qj

)
∂q̃j
∂qi

+
n∑

j=1

∂L̃

∂ ˙̃qj

n∑
k=1

∂2q̃j
∂qi∂qk

q̇k
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The second part of the Euler-Lagrange equations is similarly calculated using
the chain rule

∂L

∂qi
=

n∑
j=1

∂L̃

∂q̃j

∂q̃j
∂qi

+
n∑

j=1

∂L̃

∂ ˙̃qj

∂ ˙̃qj
∂qi

=
n∑

j=1

∂L̃

∂q̃j

∂q̃j
∂qi

+
n∑

j=1

∂L̃

∂ ˙̃qj

n∑
k=1

∂2q̃j
∂qi∂qk

q̇k

Combining these we get

d

dt

∂L

∂q̇i
− ∂L

∂qi
=
∂q̃j
∂qi

(
d

dt

∂L̃

∂ ˙̃qj
− ∂L̃

∂q̃j

)

We notice that ∂q̃j

∂qi
are the elements of the Jacobian matrix ∂q̃

∂q for ψ and we
get

d

dt

∂L

∂q̇
− ∂L

∂q
=
∂q̃

∂q

T
(

d

dt

∂L̃

∂ ˙̃q
− ∂L̃

∂q̃

)
(2.3)

Since ψ is a coordinate transformation ∂q̃
∂q is nonsingular and therefore we

get the desired result.

Problems that are invariant under smooth coordinate transformations can
typically be stated in a differential geometric setting which makes it possible
to work with the problem in a coordinate free way giving many powerfull
tools for analysis.

2.2 Lagrange’s Equations

Consider a mechanical system of k point masses mi. If we by xj = (xj, yj, zj)
denote the Cartesian coordinates of the i-th point mass, the entire system can
be described by (x1, . . . ,xk) ∈ R3k, i.e. by 3k coordinates. Throughout this
monograph we will only consider conservative systems which are mechanical
systems for which the total force on the elements in the system can be derived
from a potential V : R3k → R according to

F i = − ∂V
∂xi

so newtons second law gives

miẍi = − ∂V
∂xi
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If we for a mechanical system of point masses define the Lagrangian as

L =
k∑

i=1

1

2
mi‖ẋi‖2 − V (x1, . . . ,xk)

that is the kinetic energyK minus the potential energy V , the Euler-Lagrange
equations for this system becomes

miẍi = − ∂V
∂xi

so we see that Newtons laws and Lagrange’s equations with L = K − V for
k point masses are equivalent.

Due to proposition 1 we know that we can choose arbitrary coordinates
for the analysis of the system. Consider a mechanical system of point masses
described locally in V ⊂ Rd by the coordinates z = (z1, . . . , zd), not neces-
sarily Cartesian coordinates, and assume that the potential is given by

V = V1(z1, . . . , zd) +
1

2

1

ε
(z1 − zd)

2

for some ε > 0. Since the solution to a differential equation depending
continously on a parameter will depend continously on that parameter the
solution of Euler-Lagrange’s equation for this potential will depend contin-
uosly on ε. For ε very small we will have zd ≈ z1, when zd(0) = z1(0), so
effectively in the equations the zd coordinate can be considered a constant
and the Euler-Lagrange equations will still describe the motion. So if we
examine a mechanical system of point masses with a potential which to a
good approximation gives the constraints

żd−c+1 = 0 . . . żd = 0

then we expect the motion of the system still to be expressed by the Euler-
Lagrange equations, where zd−c+1, . . . , zd are just constants. The number
n = c− d is called the degrees of freedom of the system since this is the least
number of coordinates which is needed to specify the configuration of the
system. The coordinates q = (q1, . . . , qn) = (z1, . . . , zn) ∈ U ⊂ Rn are called
generalised coordinates, and with

L(q, q̇, t) = L(q1, . . . , qn, zd−c+1, . . . , zd, q̇1, . . . , q̇n, 0, . . . , 0)

the motion of the system is thus determined by

d

dt

∂L

∂q̇
(q, q̇, t)− ∂L

∂q
(q, q̇, t) = 0

These equations are called Lagrange’s equations — so basically Lagrange’s
equations are the Euler-Lagrange equations for a mechanical system with
Lagrangian equal to the kinetic- minus the potential energy.
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m

g

x

y

θ r

Figure 2.1: The pendulum.

Example 6. For a pendulum, see figure 2.1, we have, due to the fact that
the length ` of the pendulum approximative is constant, that in cartesian
coordinates (x, y)

x2 + y2 = `2

If we instead choose polar coordinates (r, θ), where θ = 0 in the vertical
downward position, we have ṙ = 0 and the kinetic energy K and the potential
energy V is given by

K =
1

2
m`2θ̇2 V = −mg` cos(θ)

where m is the mass and g is the gravitational accelleration. From this the
motion is determined by Lagrange’s equations

d

dt

∂L

∂θ̇
− ∂L

∂θ
= 0

giving

θ̈ = −g`−1 sin(θ)

This equation would in the Newtonian framework have been deduced from
angular momentum considerations and not Newton’s second law directly,
but in the Lagrangian framework everything is deduced from Lagrange’s
equations alone.
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2.3 Symmetries and Conservation Laws
If the Lagrangian L is independent of qi then qi is called a cyclic coordinate,
and from the Euler-Lagrange equations we get

d

dt

∂L

∂q̇i
=
∂L

∂qi

so if qi is a cyclic coordinate, then ∂L
∂q̇i

is a constant of the motion.
The energy E : R2n+1 → R is defined, using the Lagrangian, as

E(q, q̇, t) :=
∂L

∂q̇
(q, q̇, t) · q̇ − L(q, q̇, t)

Letting γ(t) be a solution to the Euler-Lagrange equations we get using the
chain rule and the Euler-Lagrange equations

d

dt
E(γ(t), γ̇(t), t) =

d

dt

∂L

∂q̇
(γ(t), γ̇(t), t) · γ̇(t) +

∂L

∂q̇
(γ(t), γ̇(t), t) · γ̈(t)

− d

dt
L(γ(t), γ̇(t), t)

=
∂L

∂q
(γ(t), γ̇(t), t) · γ̇(t) +

∂L

∂q̇
(γ(t), γ̇(t), t) · γ̈(t)

−
(
∂L

∂q
(γ(t), γ̇(t), t) · γ̇(t) +

∂L

∂q̇
(γ(t), γ̇(t), t) · γ̈(t)

+
∂L

∂t
(γ(t), γ̇(t), t)

)
= −∂L

∂t
(γ(t), γ̇(t), t)

So if the Lagrangian is independent of t the energy is a constant of the
motion.

The fact that conservation of momentum or angular momentum of a
mechanical system follows from invariance of the problem with respect to
translation or rotation respectively is a consequence of a more general result
originally showed by E. Noether.

Theorem 5 (Noether’s theorem). Let L : R2n+1 → R be smooth and assume
there exists a one-parameter family of smooth maps hs : Rn → Rn smooth in
s ∈ (−ε, ε), ε > 0, and with h0 = id. If

L

(
hs(γ(t)),

d

dt
hs(γ(t)), t)

)
= L(γ(t), γ̇(t), t)

for all s ∈ (−ε, ε) and all smooth curves γ : [t0, t1] → Rn. Then for any
solution of the Euler-Lagrange equations the function

F (q, q̇, t) =
∂L

∂q̇
(q, q̇, t) · dhs

ds

∣∣∣∣
s=0

(q)

is a constant of the motion.
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Proof. By assumption we have that

0 =
d

ds

∣∣∣∣
s=0

L

(
hs(γ(t)),

d

dt
hs(γ(t)), t)

)
=
∂L

∂q
(γ(t), γ̇(t), t) · dhs

ds

∣∣∣∣
s=0

(γ(t)) +
∂L

∂q̇
(γ(t), γ̇(t), t) · d

dt

dhs

ds

∣∣∣∣
s=0

(γ(t))

Let γ(t) be a solution to the Euler-Lagrange equations, i.e. we have

d

dt

∂L

∂q̇
(γ(t), γ̇(t), t)− ∂L

∂q
(γ(t), γ̇(t), t) = 0

Inserting this we get

0 =
d

dt

∂L

∂q̇
(γ(t), γ̇(t), t) · dhs

ds

∣∣∣∣
s=0

(γ(t)) +
∂L

∂q̇
(γ(t), γ̇(t), t) · d

dt

dhs

ds

∣∣∣∣
s=0

(γ(t))

=
d

dt

(
∂L

∂q̇
(γ(t), γ̇(t), t) · dhs

ds

∣∣∣∣
s=0

(γ(t))

)
which shows that F is a constant of the motion.

Example 7. Consider a mechanical system of n point masses mj and coor-
dinates qj = (xj, yj, zj)

L =
n∑

j=1

1

2
mj‖q̇j‖2 − V (q1, . . . , qn)

Assume that the system is invariant under a translation along the x-axis, i.e.

hs(q1, . . . , qn) = (q1 + sex, . . . , qn + sex)

where ex is a unit vector in the x-direction. Then we get that
n∑

j=1

mjẋj

which is the total momentum along the x-axis, is conserved by the flow. From
proposition 1 we thus know that a mechanical system of point masses which
is invariant under translation in some direction has total momentum along
this axis as a constant of the motion.

A system consisting of two point masses with a potential given by

V (q1, q2) = V (‖q1 − q2‖)

is invariant under a translation along any axis and therefore the total mo-
mentum in any direction is conserved. Examples of such systems include two
masses interacting gravitationally, e.g. the sun and a planet, and two charges
interacting due to Coulomb’s law.



Chapter 3

Hamiltonian Mechanics

3.1 Hamilton’s Equations
Given a smooth Lagrangian L : R2n+1 → R the smooth map (q, q̇) 7→ Rn

given by

p =
∂L

∂q̇

gives the Legendre transformation (q, q̇) ↔ (q,p) if

det

(
∂2L

∂q̇∂q̇

)
6= 0

which insures according to the inverse function theorem that (q, q̇) ↔ (q,p)
indeed locally defines a smooth coordinate transformation.1

Remark 1. Often for mechanical systems the potential energy is a function
of the configuration only and the kinetic energy K is given by a quadratic
form, i.e.

K =
1

2
q̇T G(q)q̇ =

1

2

n∑
i,j=1

gij(q)q̇iq̇j

where G is a positive definite and symmetric n×nmatrix, possibly depending
on q, with elements gij. Since G is positive definite it’s determinant is strictly
positive and we get

det

(
∂2L

∂q̇∂q̇

)
= det

(
∂2K

∂q̇∂q̇

)
= det(G) 6= 0

So for these systems the Legendre transformation does exist.
1If L depends on t we know from the implicit function theorem that the Legendre

transformation is smooth in t.
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The Legendre transformation makes it possible to define the Hamilto-
nian which is the smooth function H : R2n+1 → R given by

H(p, q, t) =
n∑

j=1

pj q̇j − L(q, q̇(q,p, t), t)

Remark 2. Consider a mechanical system with potential energy a function
of the configuration only and the kinetic energy K given by a quadratic form
G

K =
1

2
q̇T G(q)q̇ =

1

2

n∑
i,j=1

gij(q)q̇iq̇j

The Legendre transformation gives

p = G(q)q̇ q̇ = G−1(q)p

pi =
n∑

j=1

gij(q)q̇j q̇i =
n∑

j=1

gij(q)pj

where gij are the elements of the matrix G−1, which is also positive definite
and symmetric. Then,

K =
1

2
pT G−T (q)G(q)G−1(q)p

=
1

2
pT G−1(q)p

and

H = pT G−1(q)p− 1

2
pT G−1(q)p + V (q)

=
1

2
pT G−1(q)p + V (q)

= K(p, q) + V (q)

Thus we see that for such a system the Hamiltonian is equal to the total
energy of the system.

How the dynamics of the Euler-Lagrange equations is expressed in the
coordianates q and p is given by the following

Theorem 6. The Euler-Lagrange equations are equivalent to the following
equations

ṗ = −∂H
∂q

q̇ =
∂H

∂p

These equations are called Hamilton’s equations.
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Proof. The differential of H is given by

dH =
n∑

j=1

(
∂H

∂pj

dpj +
∂H

∂qj
dqj

)
+
∂H

∂t
dt (3.1)

If instead H is considered as a function in q and q̇ we get the following
differential

dH =
n∑

j=1

(
pjdq̇j + q̇jdpj −

∂L

∂qi
dqi −

∂L

∂q̇j
dq̇j

)
+
∂H

∂t
dt

=
n∑

j=1

(
q̇jdpj −

∂L

∂qi
dqi

)
+
∂H

∂t
dt (3.2)

The Euler-Lagrange equations is in the coordinates q and p given by

d

dt
p =

∂L

∂q

Inserting this in 3.2 gives

dH =
n∑

j=1

(q̇jdpj − ṗjdqj) +
∂H

∂t
dt (3.3)

Comparing equation 3.3 and 3.1 gives Hamilton’s equations.

Example 8. Consider the pendulum. We have that the kinetic energy K
and the potential energy V are given by

K =
1

2
m`2θ̇2 V = −mg` cos(θ)

According to remark 2 we thus have

p = m`2θ̇

and

H =
1

2

p2

m`2
−mg` cos(θ)

Therefore Hamilton’s equations for the pendulum are

ṗ = −mg` sin(θ)

θ̇ =
p

m`2
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We define the 2n× 2n matrix J as

J =

[
0 I
−I 0

]
J−1 = JT = −J

where I is the n × n identity matrix. This Matrix is called the symplectic
identity. Hamiltons equations can then be written as[

ṗ
q̇

]
= −

[
0 I
−I 0

][ ∂H
∂p
∂H
∂q

]
We define y = (p, q) which gives the equations in the compact form

ẏ = J−1∇H(y, t)

We will denote by ϕH
t the flow of Hamilton’s equations ẏ = J−1∇H(y, t).

Proposition 2. We have
d

dt
H(ϕH

t (y0, t0), t) =
∂H

∂t
(ϕH

t (y0, t0), t)

So if H is independent of t, H is a constant of the motion for Hamilton’s
equations ẏ = J−1∇H(y, t).
Proof. This follows from the direct calculation using the chain rule and
Hamiltons equations. Take (p(t), q(t)) = ϕH

t (y0, t0)

d

dt
H(p(t), q(t), t) =

∂H

∂p
(p(t), q(t), t) · ṗ(t) +

∂H

∂q
(p(t), q(t), t) · q̇(t)

+
∂H

∂t
(p(t), q(t), t)

=
∂H

∂p
(p(t), q(t), t) ·

(
−∂H
∂q

(p(t), q(t), t)

)
+
∂H

∂q
(p(t), q(t), t) · ∂H

∂p
(p(t), q(t), t) +

∂H

∂t
(p(t), q(t), t)

=
∂H

∂t
(p(t), q(t), t)

If a system does indeed depend explicitly on t, that is H = H(p, q, t),
then we can define a new Hamiltonian H : R2n+2 → R as

H(p, p0, q, q0) = p0 +H(p, q, q0)

Hamilton’s equation for this system then are

ṗ = −∂H
∂q

ṗ0 = −∂H
∂q0

q̇ =
∂H

∂p
q̇0 = 1

Thus every time dependent system with n degrees of freedom can be written
as a system independent of time with n + 1 degrees of freedom. For this
reason from now on only time independent systems will be considered.
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Poincaré Maps for Hamiltonian Systems with 2 Degrees of Freedom

When you have a time independent Hamiltonian system with 2 degrees of
freedom with Hamiltonian H, we know from proposition 2 that the Hamilto-
nian will be a constant of the motion. Thus we know that a trajectory will be
confined to move on a set WE = {(p1, p2, q1, q2) ∈ R4 | H(p1, p2, q1, q2) = E}.
On WE we can locally write p2 = p2(p1, q1, q2) due to the implicit function
theorem, so we can regard WE as a subset of R3. Therefore instead of in-
vestigating a Poincaré map for a specific surface of section in R4, that is
a volume, we can simplify matters and only consider the trajectory in the
p1, q1, and q2 coordinates, i.e. in WE ⊂ R3, and in these coordinates examine
the Poincaré map for a surface of section, now indeed a surface, in R3, e.g.
the plane given by q2 = 0.

3.2 Canonical Transformations
The concept of a canonical coordinate transformation is very important since
this is the class of coordinate transformations which leave invariant the form
of Hamilton’s equations.

q

p

q̃

p̃

ϕHt ϕH̃t

ψ

Figure 3.1: Coordinate transformation. It is canonical if H = H̃ ◦ ψ.

Definition 1. The smooth coordinate transformation ψ : R2n → R2n, (p̃, q̃) ↔
(p, q) is said to be canonical if for any Hamiltonian H Hamiltons’s equations
are equivalent to

˙̃p = −∂H̃
∂q̃

˙̃q =
∂H̃

∂p̃

where H̃ = H ◦ ψ.

We then have that ψ is a canonical transformation if and only if

ϕH
t ◦ ψ = ψ ◦ ϕ eH

t
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i.e. solutions are mapped into solutions. Denoting by ∂y
∂ỹ

the Jacobian of
ψ we have the following result giving an easy characterisation of canonical
transformations.

Proposition 3. The transformation ψ : R2n → R2n, ỹ ↔ y, is canonical if
and only if its Jacobian ∂y

∂ỹ
satisfies the relation

∂y

∂ỹ

T

J
∂y

∂ỹ
= J

Proof. Since with y = y(ỹ) we have

ẏ =
∂y

∂ỹ
˙̃y

we get that two general differential equations

ẏ = Y (y) ˙̃y = Ỹ (ỹ)

are equal if and only if

Y (y(ỹ)) =
∂y

∂ỹ
Ỹ (ỹ)

using this we get that the transformation is canonical if and only if

J−1∇H(y(ỹ)) =
∂y

∂ỹ
J−1∇

(
H̃(ỹ)

)
=
∂y

∂ỹ
J−1∇ (H(y(ỹ))

=
∂y

∂ỹ
J−1∂y

∂ỹ

T

∇H(y(ỹ))

giving the relation

∂y

∂ỹ
J−1∂y

∂ỹ

T

= J−1

Transposing this expression and using J−1 = JT = −J gives the desired
relation.

This immediately gives that a composition of canonical transformations
is a canonical transformation.

A 2n× 2n matrix A is said to be symplectic if it satisfies the relation

AT JA = J

Therefore a smooth map, which is a canonical transformation, is also said to
be symplectic.

Proposition 3 can be used to show the following theorem, which is inter-
esting in it’s own right, but which also encourage us to examine symplectic
integrators, i.e. integrators that are symplectic mappings.
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Proposition 4. For fixed t ∈ R the flow ϕH
t : R2n → R2n of Hamilton’s

equations ẏ = J−1∇H(y) is a canonical transformation.

Proof. Since H is assumed smooth the flow ϕH
t (y) is a smooth function of t

and y and since
(
ϕH

t

)−1
= ϕH

−t it defines a smooth coordinate transformation.
Denoting by ∇2H the Hessian matrix of H we get from

∇
(

d

dt
ϕH

t (y)

)
= ∇

(
J−1∇H(ϕH

t (y))
)

that
d

dt

∂ϕt

∂y
(y) = J−1∇2H(ϕH

t (y))
∂ϕt

∂y
(y)

We use this, the fact that ∇2H is symmetric, and the relations JJ = −I,
J−1 = −J, and JT = −J, to calculate the following

d

dt

(
∂ϕH

t

∂y

T

J
∂ϕH

t

∂y

)
=

(
d

dt

∂ϕH
t

∂y

)T

J
∂ϕH

t

∂y
+
∂ϕH

t

∂y

T

J

(
d

dt

∂ϕH
t

∂y

)

=
∂ϕH

t

∂y

T (
∇2H(ϕH

t (y))
)T

J−T J
∂ϕH

t

∂y

+
∂ϕH

t

∂y

T

JJ−1∇2H(ϕH
t (y))

∂ϕH
t

∂y

= −∂ϕ
H
t

∂y
∇2H(ϕH

t (y))
∂ϕH

t

∂y
+
∂ϕH

t

∂y

T

∇2H(ϕH
t (y))

∂ϕH
t

∂y

= 0

Since ϕ0 = id we have

∂ϕH
0

∂y

T

J
∂ϕH

0

∂y
= J

so ϕH
0 must be a canonical transformation and because of the above ϕH

t must
be a canonical transformation for all t.

This proposition can also be used to search for a Hamiltonian χ such that
the canonical transformation ϕχ

t , t fixed, gives the Hamiltonian system under
consideration a Hamiltonian which is simpler in some sense.

From the fact that the flow ϕH
t of Hamilton’s equations is a canonical

transformation we get for fixed t

det

(
∂ϕH

t

∂y

T

J
∂ϕH

t

∂y

)
=

(
det

(
∂ϕH

t

∂y

))2

det(J)

= det(J)
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θ

p

Figure 3.2: The pendulum. The vector field and some solution curves. Two
disks of initial conditions and their appearence after time t = 1.5 and t = 3.
The volume of the disks are unchanged.

Since det(J) 6= 0, ϕH
t is a smooth function of y, and ϕH

0 = id we thus get

det

(
∂ϕH

t

∂y

)
= 1

The volume of a subset U of R2n, Vol(U) =
∫

U
dy1 . . . dy2n, when mapped by

the flow ϕH
t for fixed t, can be calculated using the above and the change of

variables formula for integrals as

Vol(ϕH
t (U)) =

∫
ϕH

t (U)

dy1 . . . dy2n

=

∫
U

∣∣∣∣det

(
∂ϕH

t

∂y

)∣∣∣∣ dy1 . . . dy2n

=

∫
U

dy1 . . . dy2n

= Vol(U)

Thus we see that the flow of Hamilton’s equations preserves the volume.
This leads to several important facts about the flow of Hamilton’s equations,
e.g. it is not possible for the flow to have asymptotically stable equilibrium
positions or asymptotically stable limit cycles.

A canonical transformation ψ : R2n → R2n, ỹ 7→ y, can very well mix
the p and q coordinates. This is very different from the Lagrangian setting
where only point transformations q̃ 7→ q are considered.

The following theorem gives a very usefull way of constructing canonical
transformations.
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Proposition 5. Given a smooth function S1 : R2n → R, S1 = S1(q̃, q),
q̃, q ∈ Rn, such that

det

(
∂2S1

∂q̃∂q

)
6= 0

the equations

p̃ = −∂S1

∂q̃
p =

∂S1

∂q

implicitly define a local canonical coordinate transformation (p, q) = ψ(p̃, q̃).

Proof. If we define p̃ = p̃(q̃, q) and p = p(q̃, q) by

p̃ = −∂S1

∂q̃
p =

∂S1

∂q
(3.4)

then the condition

det

(
∂2S1

∂q̃∂q

)
6= 0

gives according to the implicit function theorem that q = q(p̃, q̃) and thus
p = p(p̃, q̃). We can therefore calculate

∂(p, q)

∂(p̃, q̃)
=

 ∂p
∂p̃

∂p
∂q̃

∂q
∂p̃

∂q
∂q̃


=

 ∂p
∂p̃

∂2S1

∂q̃∂q(
∂2S1

∂q∂q̃

)−1
∂q
∂q̃


which is nonsingular so the inverse function theorem insures that 3.4 implic-
itly defines a coordinate transformation (p, q) = ψ(p̃, q̃).

Hamiltons equations with Hamiltonian H : R2n → R, H = H(p, q), are
the Euler-Lagrange equations with Lagrangian L : R4n → R given by

L(q,p, q̇, ṗ) =
n∑

i=1

piq̇i −H(p, q)

For L : R2m → R and S : Rm → R smooth, the functionals

I1(γ) =

∫ t1

t0

L(γ(t), γ̇(t))dt

I2(γ) =

∫ t1

t0

(
L(γ(t), γ̇(t)) +

d

dt
S(γ(t))

)
dt
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where γ is a smooth curve γ : [t0, t1] → Rm, leads to the same Euler-Lagrange
equations. Combining these two facts and proposition 1 we see that if the
canonical coordinates (p, q) and the general coordinates (p̃, q̃) with (p, q) =
ψ(p̃, q̃) satisfies

n∑
i=1

piq̇i −H(p, q) =
n∑

i=1

p̃i
˙̃qi − H̃(p̃, q̃) +

d

dt
S(p̃, q̃)

where H̃ = H ◦ψ, then ψ must be a canonical transformation. This sufficient
condition is equivalent to

dS = −
n∑

i=1

p̃idq̃i +
n∑

i=1

pidqi + (H̃ −H)dt

= −
n∑

i=1

p̃idq̃i +
n∑

i=1

pidqi (3.5)

Thus when comparing

dS1 =
n∑

i=1

∂S1

∂q̃i
dq̃i +

n∑
i=1

∂S1

∂qi
dqi

with the sufficient condition on canonicity, that is equation 3.5, we see that
the coordinate transformation (p, q) = ψ(p̃, q̃) given by 3.4 is canonical.

A similar constructive proposition for finding canonical transformations
is the following regarding a function of p̃ and q

Proposition 6. Given a smooth function S2 : R2n → R, S2 = S2(p̃, q),
p̃, q ∈ Rn, such that

det

(
∂2S2

∂p̃∂q

)
6= 0

the equations

p =
∂S2

∂q
q̃ =

∂S2

∂p̃

implicitly define a local canonical coordinate transformation (p, q) = ψ(p̃, q̃).

Proof. The argumentation that this indeed does implicitly define a coordinate
transformation is completely similar to that in proposition 5.

If we in proposition 5 use

S(p̃, q̃) = S̄(p̃, q̃)−
n∑

i=1

p̃iq̃i
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The sufficient condition on canonicity, that is equation 3.5, is seen to be
equivalent to

dS̄ =
n∑

i=1

pidqi +
n∑

i=1

q̃idp̃i

Since

dS2 =
n∑

i=1

∂S2

∂p̃i

dp̃i +
n∑

i=1

∂S2

∂qi
dqi

=
n∑

i=1

q̃idp̃i +
n∑

i=1

pidqi

we therefore see that this transformation is canonical.

Similar theorems can be made for functions S3(p, q̃) and S4(p, p̃). The
functions S1, S2, S3, and S4 are called generating functions. The sign
when differentiating on of the generating functions can be read from the
mnemonic figure 3.3.

q̃q

pp̃

S3

S1

S4

S2

Figure 3.3: Canonical transformations given by a generating function. Go-
ing along an arrow, in any direction, gives the new variable as the end point.
Going in the arrows direction corresponds to differentiating, w.r.t. the vari-
able at the starting point, the generating function at the starting point and
nothing else whereas going opposite the arrows direction corresponds to dif-
ferentiating, and changing the sign.

Example 9. Consider the generating function S2 given by

S2(p̃, q) = p̃ · g(q)

which gives the canonical transformation

p =

(
∂g

∂q
(q)

)T

p̃ q̃ = g(q)



26 Hamiltonian Mechanics

This is seen to give the way in which a transformation of the q’s extends
canonically to the p’s. Such a transformation is called a contact transforma-
tion. For g(q) = q this is the identity transformation.

These propositions give a constructive way of searching for canonical
transformations which makes the Hamiltonian in the new coordinates much
simpler, e.g. H̃(p̃, q̃) = H̃(q̃). This is accomplished if for example

H

(
∂S1

∂q

∣∣∣∣
q=q(p̃,q̃)

, q(p̃, q̃)

)
= H̃(q̃)

so we get a partial differential equation which, if it has a solution, can be used
to find such a generating function. The above partial differential equation,
along with similar equations for the other generating functions, is called the
Hamilton-Jacobi equation.

3.3 Integrable Systems
For two smooth functions f, g : R2n → R their Poisson bracket {f, g} is
the smooth function given by

{f, g} =
(
∇f(y)

)T
J−1∇g(y)

=
n∑

j=1

(
∂f

∂qj

∂g

∂pj

− ∂f

∂pj

∂g

∂qj

)
The following proposition is an immediate consequense of the definition.

Proposition 7. The Poisson bracket {, } : C∞(R2n,R) × C∞(R2n,R) →
C∞(R2n,R), given by {f, g} =

(
∇f(y)

)T
J−1∇g(y), f, g, h ∈ C∞(R2n,R) ,

satisfies:

1. {f, g} is bilinear in f and g.

2. {f, g} = −{g, f}, skew-symmetry.

3. {fg, h} = f{g, h}+ g{f, h}, derivation in each argument.

4. {{f, g}, h}+ {{h, f}, g}+ {{g, h}, f} = 0, Jacobi’s identity.

We then have

d

dt
F (ϕH

t (y)) =
n∑

i=1

∂F

∂yi

(ϕH
t (y))

(
ϕ̇H

t (y)
)

i

=
(
∇F (ϕH

t (y)
)T

J−1∇H(ϕH
t (y))

= {F,H}(ϕH
t (y))
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Thus we see that F is a constant of the motion of Hamilton’s equations with
Hamiltonian H if and only if {F,H} = 0, and therefore we also immediately
get that H is a constant of the motion since {H,H} = 0 due to the skew-
symmetry of the bracket. Since we get from Jacobi’s identity

{F1, H} = 0 , {F2, H} = 0 ⇒ {{F1, F2}, H} = 0

we have that if F1 and F2 are constants of the motion of Hamiltons equations
then so is {F1, F2}.

If F1, . . . , Fn are smooth and linearly independent, i.e.

Rank

(
∂F

∂y

)
= n

where F : R2n → Rn, y 7→ [F1(y) . . . Fn(y)]T , then we know from the
implicit function theorem that F = c = constant defines an n dimensional
subset of R2n for which it is possible to assign coordinates. If furthermore
{Fi, Fj} = 0, for all i, j, we have since

{Fi, Fj} = 0 ⇒ ϕFi
t ◦ ϕFj

s = ϕFj
s ◦ ϕFi

t

that we can take s1, . . . , sn as local coordinates on Σc = {y ∈ R2n|F (y) = c}
defined by

ϕF1
s1
◦ . . . ◦ ϕFn

sn
(y0) : Rn → Σc

where y0 ∈ Σc. These considerations are of importance in the proof of the
following theorem

Theorem 7 (Liouville-Arnol’d theorem). Assume there exist n smooth func-
tions F1, . . . , Fn : R2n → R, such that {Fi, Fj} = 0 for all i, j. Assume
F1, . . . , Fn are linearly independent on a level set Σc. Furthermore assume
that Σc is compact, then:

1. Σc is diffeomorphic to the n-dimensional torus Tn = Rn/Zn

2. There exists a neighborhood U ⊂ Rn of c such that the set

DU =
⋃
c′∈U

Σc′

is diffeomorphic to U × Σc and in DU there exists a canonical
transformation (p, q) = ψ(I,ϕ), defined for I ∈ B ⊂ Rn and ϕ ∈ Tn,
DU = ψ(B × Tn), such that I is constant on tori and, conversely,
F̃ = F ◦ ψ depend only on I, i.e. F̃ (I,ϕ) = F̃ (I).

Proof. See [1]

From this we immediately get
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B

Rn

Tn

Figure 3.4: Integrable system. The foliation of B ⊂ Rn with tori with quasi
periodic motion.

Corollary 1. Consider Hamilton’s equations ẏ = J−1∇H(y). Let F1 = H
and assume that there exists n − 1 smooth functions Fj : R2n → R, j =
2, . . . , n, such that {Fi, Fj} = 0 for all i, j = 1, . . . , n, i.e. Fj, j = 1, ..., n,
are constants of the motion of the flow of ẏ = J−1∇F1(y). If F1, . . . , Fn are
linearly independent on the level sets Σc of the n constants of the motion
and if these level sets are compact, then each of them is diffeomorphic to
the n-dimensional torus Tn. In a neighborhood of Σc there exist a canonical
coordinate transformation ψ : R2n → R2n, (p, q) = ψ(I,ϕ), such that the
new hamiltonian H̃ = H ◦ ψ is given by

H̃(I,ϕ) = h(I)

The I-coordinates are called action variables and the ϕ coordinates are
called the angle variables, and together (I,ϕ) are called action-angle vari-
ables. Hamiltonian systems which satisfy the assumptions of the Liouville-
Arnol’d theorem are said to be integrable. Thus for integrable systems the
dynamics is given by

İ = 0

ϕ̇ = ω(I)

where ω(I) = ∂h

∂I (I). So the motion takes place on a torus Tn, one for each
value of I, with constant angular velocity. Such a motion is said to be quasi
periodic with frequency ω(I).

Poincaré Maps for integrable Systems with 2 Degrees of Freedom

If we follow the procedure explained earlier about Poincaré maps for Hamil-
tonian systems with 2 degrees of freedom, we know according to the Liouville-
Arnol’d theorem that for every initial condition the trajectory will lie on a
torus T2 imbedded in WE ⊂ R3. Thus when making a Poincaré map for
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such a system each point will lie on on a closed curve, and if we change the
definition of direction in the map the points of this map will lie on another
closed curve. Therefore a Poincaré map can immediately show if a system
with 2 degrees of freedom is not integrable.

3.4 Nearly Integrable Systems
Two cornerstones in pertubation theory for integrable Hamiltonian systems
are the KAM theorem and the Nekhoroshev theorem. The KAM theorem
gives sufficent conditions for a perturbed integrable system to behave qual-
itatively as the integrable system. The Nekhoroshev theorem instead gives
conditions on the system for the action variables to be almost conserved quan-
tities of the motion. Here we will only state the theorems without proofs since
these are very long and technical.

A nearly integrable Hamiltonian system is a system with Hamilto-
nian H : B × Tn → R, B ⊂ Rn, of the form

H(I,ϕ) = h(I) + εf(I,ϕ) ε > 0 (3.6)

Suppose we can find a canonical transformation (I,ϕ) = ψ(Ĩ, ϕ̃) which
simplifies the Hamiltonian as

H̃ = h̃(Ĩ) + εg(Ĩ) + ε2f̃(Ĩ, ϕ̃)

Such a generation function must depend on ε and for ε = 0 it should be
the identity. A near the identity canonical transformation is a canonical
transformation ψ = ψε, ε small, with

lim
ε→0

ψε = id

Therefore we need a near the identity canonical transformation to simplify
the Hamiltonian. It can be proven that any near the identity canonical
transformation can be constructed using a generating function of the form

Sε
2(Ĩ,ϕ) = Ĩ ·ϕ− εχε(Ĩ,ϕ, ε)

Since we will need only the first order part in ε we will use

S2(Ĩ,ϕ) = Ĩ ·ϕ− εχ(Ĩ,ϕ)

According to proposition 6 we have

I = Ĩ − ε
∂χ

∂ϕ
(Ĩ,ϕ)

ϕ̃ = ϕ− ε
∂χ

∂Ĩ
(Ĩ,ϕ)
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Inverting these we get

I = Ĩ − ε
∂χ

∂ϕ
(Ĩ, ϕ̃) +O(ε2)

ϕ = ϕ̃ +O(ε)

and the hamiltonian transforms to

H̃(Ĩ, ϕ̃) = h(Ĩ) + ε

(
−ω(Ĩ) · ∂χ

∂ϕ̃
(Ĩ, ϕ̃) + f(Ĩ, ϕ̃)

)
+O(ε2)

where ω = ∂h

∂I . Thus, when dropping the tilde, we wish to find a function χ
such that

g(I) = −ω(I) · ∂χ
∂ϕ

(I,ϕ) + f(I,ϕ) (3.7)

for some function g. Since χ is a function on B × Tn it can be written

χ(I,ϕ) =
∑
ν∈Zn

χν(I)eiν·ϕ

and therefore 〈
∂χ

∂ϕ

〉
= 0

where 〈ρ〉 = 1
(2π)n

∫ 2π

0
ρ(I,ϕ)dϕ1 . . . dϕn denotes the average in the angle

variables. Equation 3.7 therefore gives g(I) = 〈f〉 and simplifies to

ω(I) · ∂χ
∂ϕ

(I,ϕ) = f(I,ϕ)− 〈f〉 (3.8)

This equation however can generally not be solved, a fact which is known as
the Poincaré difficulty, and can be stated precisely as follows

Proposition 8. Let the Hamiltonian be given by

H(I,ϕ) = h(I) + εf(I,ϕ) (I,ϕ) ∈ B × Tn

and assume:

1. h is non degenerate, i.e.

det

(
∂2h

∂I∂I

)
6= 0

in an open subset B0 ⊂ B.



3.4 Nearly Integrable Systems 31

2. f has essentially full Fourier series, more precisely, denoting

f(I,ϕ) =
∑
ν∈Zn

fν(I)eiν·ϕ

for any ν ∈ Zn there exits ν ′ parallel to ν such that fν′(I) 6= 0 in B0.
Then in B0 there doesn’t exist a function χ solving equation 3.8

Proof. Since

ω(I) · ∂χ
∂ϕ

=
∑
ν∈Zn

iν · ω(I)χν(I)eiν·ϕ

we see that in order for 3.8 to be satisfied in B0 it would be necessary that

iν · ω(I)χν(I) = fν(I) ∀ν ∈ Zn \ {0}

in B0. This can formally be solved as

χν(I) =
fν(I)

iν · ω(I)

According to assumption 1 ω is a diffeomorphism and since Qn is dense in
Rn we will have ν ·ω(I) = 0 in a dense subset B′

0 = ω−1(Qn ∩ω(B0)) ⊂ B0,
and therefore for all ν ′ parallel to ν, but fν′ 6= 0 for at least one ν ′ due to
assumption 2, which proves the proposition.

From the proof of this we see that in order to proceed we need to define
sufficient conditions for

χν(I,ϕ) =
∑
ν∈Zn

χν(I)eiν·ϕ χν(I) =
fν(I)

iν · ω(I)
ν ∈ Zn \ {0}

to be solvable. We see that it is necesarry that ω is nonresonant, i.e.

ν · ω(I) 6= 0 ∀ν ∈ Zn

It turns out however that it is not sufficient that ω is nonresonant.
The proper sufficiency condition on a frequency ω ∈ Rn is that there

must exist real constants γ > 0 and τ > n− 1 such that

|ν · ω| ≥ γ

|ν|τ
∀ν ∈ Zn \ {0}

where |ν| = |ν1| + . . . |νn|. Then ω is said to be Diophantine, or more
precisely (γ, τ)-Diophantine. The set Ωγ,τ consisting of all (γ, τ)-Diophantine
frequencies in a ball K in Rn, has the counter intuitive property that it has
large measure, but its complement K \ Ωγ,τ is open and dense in K.
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Example 10. Consider the interval [0, 1]. Then the set [0, 1]∩Q of rational
numbers in [0, 1] is countable and denote by ai the i-th element. Denote by
W and V the sets

W =
⋃
i∈N

(
ai −

1

2

(
1

4

)i

, ai +
1

2

(
1

4

)i
)
∩ [0, 1] V = [0, 1] \W

Then we have that W is open and dense in [0, 1], since the rational numbers
are dense in the real numbers. Furthermore we have

1 ≥ Measure(V ) = 1−Measure(W ) ≥ 1−
∞∑
i=1

(
1

4

)i

=
2

3

So the set V has the same peculiar proporties as Ωγ,τ .

In the different theorems on nearly integrable systems some definitions
will be needed:

1. ρ = (ρI , ρϕ) ∈ R+ × R+.

2. ‖ · ‖ denotes the Euclidian norm in Rn.

3. The strip Sρ = {ϕ ∈ Cn : |Imϕj| < ρϕ, j = 1, . . . , n}.

4. The supremum norm ‖ · ‖∞ρ of a function F : Sρ → C

‖F‖∞ρ = sup
ϕ∈Sρ

‖F (ϕ)‖

5. The Fourier norm ‖ · ‖ρ of a function F : Sρ → C, periodic of real
period 2π in each argument

‖F‖ρ =
∑
ν∈Zn

|Fν |eρϕ|ν|

6. For a ball B ⊂ Rn

Bρ =
⋃
I∈B

∆ρ(I) , ∆ρ(I) = {Ĩ ∈ Cn : |Ĩj − Ij| < ρI , j = 1, . . . , n}

7. Dρ = Bρ × Sρ

8. The Fourier norm ‖·‖ρ of a function F : Dρ → C, f = F (I,ϕ), periodic
of real period 2π in ϕi

‖F‖ρ = sup
I∈Bρ

‖F (I, ·)‖ρ

A complex function F : U → C, U ⊂ Cn open, is said to be analytic if it is
differentiable in every point in U or equivalently if it’s Taylor series in around
every point in U converges in a neighbourhood of that point (see e.g. [14]).
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3.4.1 The KAM Theorem

This theorem is named after A. N. Kolmogorov who first proved it (in 1954)
and V. I. Arnold, and J. K. Moser who shortly after proved some slightly
different theorems about esentially the same subject. Here we give the the-
orem in the form originally given by Kolmogorov.

Consider the Nearly integrable system with Hamiltonian

H(I,ϕ) = h(I) + εf(I,ϕ) (I,ϕ) ∈ B × Tn

Consider a fixed I∗ ∈ B and define

H∗(J ,ϕ) = H(I∗ + J ,ϕ)

Then a Taylor expansion gives

H∗(J ,ϕ) = h(I∗) + ω∗ · J +
1

2
ΓJ · J

+ ε

(
A(ϕ) +B(ϕ) · J +

1

2
C(ϕ)J · J

)
+O(‖J‖3)

where

ω∗ = ω(I∗) Γ =
∂2h

∂I∂I
(I∗)

A(ϕ) = f(I∗,ϕ) B(ϕ) =
∂f

∂I
(I∗,ϕ) C(ϕ) =

∂2f

∂I∂I
(I∗,ϕ)

Kolmogorov’s theorem then asserts that under certain conditions it is possible
to construct a canonical transformation such that A and B vanish — the
resulting Hamiltonian is then said to be in Kolmogorov weak normal form.

?

Rn

Tn

B

Figure 3.5: Nearly integrable system. The foliation of a large subset, with
respect to measure, of B ⊂ Rn with tori with quasi periodic motion.
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Theorem 8 (Kolmogorov’s theorem). Consider the Hamiltonian system with
Hamiltonian

H(I,ϕ) = h(I) + εf(I,ϕ) (I,ϕ) ∈ B × Tn

and suppose it is analytic in a complex neighborhood Dρ of B×Tn with some
ρ = (ρI , ρϕ). Let I∗ ∈ B be such that ω∗ = ω(I∗) is (γ, τ)-Diophantine and
Γ = ∂2h

∂I∂I (I∗) is invertible, and define H∗(J ,ϕ) = H(I∗ + J ,ϕ).
Then there exist a positive constant E, depending on n, ρ, γ, ‖ω∗‖, and

‖Γ−1‖, such that if ε‖f‖∞ρ < E, then there exists a neighborhood B0 of J = 0,
and a canonical transformation (J ,ϕ) = ψ(J ′,ϕ′), defined in B0×Tn, such
that the new Hamiltonian H ′ = H∗ ◦ ψ is in Kolmogorov weak normal form

H ′(J ′,ϕ′) = ω∗ · J ′ +
1

2
Γ′J ′ · J ′ +O(‖J ′‖2)

Γ′ being a constant matrix close to Γ.

Proof. See [4]

From this it follows directly

Corollary 2. Under the conditions as in Kolmogorov’s theorem. For each
Diophantine ω∗, if the norm of the pertubation is sufficiently small, the origi-
nal Hamiltonian system has an invariant torus, close to the unpertubed torus
I∗ × Tn, and on this torus the motion is quasi periodic with frequency ω∗.

It can be proved that the set of invariant tori has relative measure differing
from 1 by at most quantities of order O(ε1/4).

Poincaré Maps for Nearly Integrable Systems with 2 Degrees of
Freedom

If we investigate a Poincaré map for a nearly integrable system with 2 degrees
of freedom we know that, if the conditions of Kolmogorov’s theorem are
satisfied, then the trajectory is most likely lying on a torus T2 imbedded in
WE ⊂ R3. If we for such a system plot several Poincaré maps in WE, E
being the same for all of them, we then have that most of what we will see
are closed curves lying inside closed curves, and since two tori T2 in R3 will
confine trajectories in between, a motion, which is no longer lying on a torus,
will still be confined to lie in a bounded region.

3.4.2 Nekhoroshev’s Theorem

The KAM theorem was concerned with which tori persist under a pertu-
bation of the system. The Nekhoroshev theory presents a rather different
perspective to nearly integrable systems, since it is concerned with sufficient
conditions on the system to insure that the action variables change only a
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little along the motion.

The Nekhoroshev theorem can be stated as follows
Theorem 9 (Nekhoroshev). Consider a nearly integrable Hamiltonian sys-
tem

H(I,ϕ) = h(I) + εf(I,ϕ) (I,ϕ) ∈ B × Tn

and assume:
1. H is analytic in the complex neighborhood Dρ of B × Tn.

2. h is (l,m)-quasi-convex in B, namely the system

|ω(I) · v| < l‖v‖ |∂ω
∂I

(I)v · v| < m‖v‖2

has no solution for I ∈ B.
Denote ω0 = infI∈B

‖ω(I)‖. Then there exist positive constants ε∗, E1,
E2 depending on ρ, l, m, ω0, ‖h‖ρ, ‖f‖ρ, and positive constants a and b
depending only on n, such that any motion (I(t),ϕ(t) with initial values
(I0,ϕ0) ∈ B × Tn satisfies

‖I(t)− I0‖ < E1

( ε
ε∗

)b

for |t| < E2e
(ε∗/ε)a

Proof. See [6]

The class of Hamiltonian systems with Hamiltonian H(I,ϕ) = ω · I,
ω ∈ Rn, which is clearly seen to be integrable, is called isochronous systems.
A theorem regarding the stability of the actions for a pertubed isochronous
system is the following, which is considerably easier to prove than Nekhoro-
shev’s theorem
Theorem 10. Consider a pertubed isochronous system

H(I,ϕ) = ω · I + εf(I,ϕ) (I,ϕ) ∈ B × Tn

Assume:
1. f is analytic in the complex neighborhood Dρ of B × Tn.

2. ω is (γ, n)-Diophantine.

3. ε < ε∗ = cE3/‖f‖ρ, where E3 = γρIρ
n
ϕ and c is a specific positive

constant depending on n.
Then for initial values (I(0),ϕ(0)) = (I0,ϕ0) ∈ B×Tn we have, with E4 = c

γ

and a = 1
n+1

, that

‖I(t)− I0‖ ≤ 3
ε

ε∗
ρI for |t| < E4e

(ε∗/ε)a

Proof. See [6]

These two theorems dealing with the stability of the actions of nearly
integrable systems are some of the strongest theorems in this area.
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3.5 Symplectic Integrators
As described in [10] a symplectic integrator Ψh : Rn → Rn is an integrator
which is also a symplectic map. Examples include the symplectic Euler
method, the Störmer/Verlet method and the splitting method

Φh = ϕH1

h/2 ◦ ϕ
H2
h ◦ ϕH1

h/2

The motivation for studying symplectic integrators comes from the fact that
the exact flow of Hamilton’s equations is a symplectic map, and therefore
when studying Hamilton’s equations numerically a better performance could
be anticipated if using a symplectic integrator.

Before going in to details with the important theorems on symplectic in-
tegrators, we will first describe a very usefull way of writting the Taylor series
for the flow of a differential equation, and give some necessary definitions .

A function h : U → U ,U ⊂ Rd or U ⊂ Cd, is said to be analytic in
z0 ∈ Cd if the Taylor series for h in a neighborhood of z0 converges. If we
consider a differential equation given by the vector field f : Rd → Rd

ẋ = f(x)

then if f is analytic the solution ϕt must be analytic (see e.g. [7]), therefore
we have in a neighborhood of t = 0

ϕt(x0) =
∞∑

k=0

tk

k!

dk

dtk

∣∣∣∣
t=0

ϕt(x0)

Since for a differentiable function g : Rd → R we have

d

dt
g(ϕt(x0)) =

∂g

∂x
(ϕt(x0)) · ϕ̇t(x0)

=
∂g

∂x
(ϕt(x0)) · f(ϕt(x0))

The Lie derivative with respect to the vector field f , Lf , is for a differentiable
function g : Rd → R defined as

Lf g =
∂g

∂x
(x0) · f(x0)

and the Lie derivative with respect to the vector field f , for a differentiable
function g : Rd → Rc, g = (g1, . . . , gc), is defined as Lfg = (Lf g1, . . . , Lf gc).
Using these expressions we have by induction

dk

dtk

∣∣∣∣
t=0

g(ϕt(x0)) =
(
Lk

fg
)

(x0)
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With this we get for g and f analytic in a neighborhood of t = 0

g(ϕt(x0)) =
∞∑

k=0

tk

k!

dk

dtk

∣∣∣∣
t=0

g(ϕt(x0))

=

(
∞∑

k=0

tk

k!
Lk

fg

)
(x0)

=
(
exp(tLf )g

)
(x0)

From this we see that for f analytic we have in a neighborhood of t = 0 that

ϕt(x0) =
(
exp(tLf )x

)
(x0)

Two more definitions — which are quite similar to some of the definitions
necessary for the theory on nearly integrable systems — are needed. Let
U ⊂ Rd and σ ∈ Rd, σi > 0, then define

Uσ =
⋃
x∈U

{z ∈ Cd : |zi − xi| ≤ σi, i = 1, ..., d}

For a function w : Uσ → Cd we define the norm ‖ · ‖σ as

‖w‖σ = max
i∈{1,...,d}

supx∈Uσ
|wi(x)|

σi

With this in hand we can state the main theorem regarding symplectic inte-
grators as follows.

Theorem 11. Consider the mapping Ψε : U → U , U ⊂ Rd

Ψε(x) = x +
∞∑

k=1

εkψk(x) ε ≥ 0

Assume the functions ψk, as extensions of functions to Uσ, are real analytic
in Uσ and satisfy there the estimates

‖ψk‖σ ≤ µk−1Γ

for some positive constants µ and Γ. Denote

β = 4 max(µ,Γ)

Then there exists a formal series of vector fields

f∞
ε = f 1 + εf 2 + ε2f 3 + . . .

analytic in Uσ such that:
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1. One has formally

Ψε = exp
(
εLf∞

ε

)
x

2. The vector fields fk satisfies the estimates

‖f 1‖σ ≤ Γ

‖fk‖σ/2 <
1

2
kk−1βk−1µ , k ≥ 2

3. Let ε∗ = 1
2eβ

, then the flow ϕt of the vector field

f r
ε = f 1 + εf 2 + . . .+ ε[ε

∗/ε]−1f [ε∗/ε]

satisfies

‖ϕε −Ψε‖σ/4 < 3εΓe−[ε∗/ε]

where [·] gives the integer part.

4. If Ψε is a symplectic map, then all the vector fields f 1, f 2, . . . are
Hamiltonian, i.e. f 1 = J−1∇Ĥ1, f 2 = J−1∇Ĥ2, . . ., for some Hamil-
tonians Ĥ1, Ĥ2, . . ..

Proof. See [5]

The meaning of “formal” in this theorem simply means that f∞
ε can be

written in the stated way, but this series doesn’t necessarily converge. Since
Ψε is analytical in ε = 0 it’s Taylor series converge, and item 1 in the theorem
gives the way to determine the Taylor coefficients of Ψε — even though the
series f∞

ε may not converge.
Thus according to 1 of this theorem we see that formally the map Ψε is

the flow for time ε of the formal vector field f∞
ε .

If we consider an analytic symplectic integrator Φh of order m approxi-
mating a solution to Hamiltons equations ẏ = J−1∇H, with analytic Hamil-
tonian, we then get

ϕH
h − Φh = exp (hLJ−1∇H) y − exp

(
hL(J−1∇ bH1+hJ−1∇ bH2+...)

)
y

=

(
id + hLJ−1∇H + . . .+

hm

m!
Lm

J−1∇H + . . .

)
y

−
(

id + hL(J−1∇ bH1+hJ−1∇ bH2+...) + . . .+
hm

m!
Lm

(J−1∇ bH1+hJ−1∇ bH2+...)
+ . . .

)
y
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but due to the order

ϕH
h − Φh = O(hm+1)

we get when collecting terms, using L
hf = hLf , that

Ĥ1 = H

Ĥk = 0 k = 2, . . . ,m

Combining this and theorem 11 we get

Corollary 3. Let Φh : U → U , U ⊂ R2n, be a symplectic integrator of order
m approximating a solution to Hamiltons equations ẏ = J−1∇H, with ana-
lytic Hamiltonian, and assume that Φh satisfies the assumptions of theorem
11 and define σ, h∗ and Γ according to this theorem. Then there exist a
Hamiltonian

Ĥ = H + hmĤm+1 + . . .+ h[h∗/h]−1Ĥ[h∗/h]

such that

‖ϕ bH
h − Φh‖σ/4 < 3hΓe−[h∗/h]

The Hamiltonian Ĥ is called the modified Hamiltonian of the sym-
plectic integrator.

This corollary is very important in connection with numerical calcula-
tions using symplectic integrators, since a computer only has a finite pre-
cision. Therefore effectively a symplectic integrator can be constructed, by
choosing the timestep h small enough, such that the numerical algorithm
exactly, that is up to machine accuracy, solves a Hamiltonian system which
is a pertubed version of the Hamiltonian system under consideration. This
corollary thus gives a very usefull connection between symplectic integrators
and pertubation theory for Hamiltonian systems.

Theorem 11 and corollary 3 is used to show the following proposition.

Proposition 9. Let Φh, m, H, Ĥ, σ, h∗, and Γ be as in corollary 3, and
suppose Φh(y0) stays within a compacs set K, where y0 ∈ U . Then there
exist a positive constant λ such that∣∣∣Ĥ(Φi

h(y0))− Ĥ(y0)
∣∣∣ ≤ 3λΓe−

[h∗/h]
2∣∣H(Φi

h(y0))−H(y0)
∣∣ = O(hm)

for ih ≤ e
[h∗/h]

2 .

Proof. Due to theorem 11 item 2 we know that there exist a Lipshitz constant
λ such that for y1,y2 ∈ U we have

|Ĥ(y2)− Ĥ(y1)| ≤ λ‖y2 − y1‖σ/4
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and thus

|Ĥ(Φi
h(y0))− Ĥ(y0)| ≤

i∑
j=1

|Ĥ
(
Φj

h(y0)
)
− Ĥ

(
ϕ

bH
h (Φj−1(y0))

)
|

≤ iλ‖Φh − ϕ
bH
h ‖σ/4

≤ 3λΓe−
[h∗/h]

2 .

Since a continous function on a compact set attains a maximum we get
using corollary 3∣∣H(ϕi

h(y0))−H(y0)
∣∣ =

∣∣∣Ĥ(Φi
h(y0))− Ĥ(y0) + hmĤm+1(y0)− hmĤm+1(Φ

i
h(y0))

+ . . .+ h[h∗/h]−1Ĥ[h∗/h](y0)− h[h∗/h]−1Ĥ[h∗/h](Φ
i
h(y0))

∣∣∣
≤
∣∣∣Ĥ(Φi

h(y0))− Ĥ(y0)
∣∣∣+ 2hm max

y∈K

∣∣∣Ĥm+1(y)
∣∣∣

+ . . .+ 2h[h∗/h]−1 max
y∈K

∣∣∣Ĥ[h∗/h](y)
∣∣∣

≤ 2hmMm+1 + . . .+ 2h[h∗/h]−1M[h∗/h] + 3λΓe−
[h∗/h]

2

So the dominating term in this expression is seen to be of order O(hm).

Remark 3. Corollary 3 and proposition 9 shows why standard step size
control cannot be immediately applied to a symplectic integrator without
affecting it in a negative way. This comes from the fact that by regulating the
step size the modified Hamiltonian will become time dependent and a time
dependent Hamiltonian has not conservation of the Hamiltonian. Therefore
a symplectic integrator with standard step size control can not be expected
to have good properties when it comes to conservation of the Hamiltonian.

If we instead consider a completely general method Ψh of order m we get
when performing the same estimates as in this proposition and again using
theorem 11∣∣H(Ψi

h(y0))−H(y0)
∣∣ ≤ i∑

j=1

∣∣H(Ψj
h(y0))−H(Ψj−1

h (y0))
∣∣

≤ λ
i∑

j=1

‖Ψj
h(y0)−Ψj−1

h (y0)‖σ/4

Since ‖Ψj
h(y0))−Ψj−1

h (y0)‖σ/4 = O(hm+1) we get∣∣H(Ψi
h(y0))−H(y0)

∣∣ = O(thm)

where t = ih. Thus for a completely general nonsymplectic method we see
that the error in conservation of energy grows up to linearly in time, so
when it comes to energy properties symplectic integrators therefore behave
superior to nonsymplectic methods.
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Modified Hamiltonians for Symplectic Splitting Methods

The easiest methods to calculate modified Hamiltonians for are the splitting
methods, for which the BCH theorem (see e.g. [10]) gives an elegant way
of expressing them using the Poisson bracket. This also gives that for a
symmetric splitting method the modified Hamiltonian only consists of even
terms in h. Consider the Hamiltonian system with Hamiltonian

q
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-1
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2
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1

-2

-2-6 0

Figure 3.6: The pendulum. The solid curves are level curves for the pen-
dulum Hamiltonian and the dashed curves are level curves of it’s modified
Hamiltonian for a 1st order splitting method.

H = H1 +H2

where H1 and H2 are analytic, and the two symplectic methods for solving
Hamiltons equations ẏ = J−1∇H

Φh = ϕH1
h ◦ ϕH2

h ΦS
h = ϕH1

h/2 ◦ ϕ
H2
h ◦ ϕH1

h/2

of order 1 and 2 respectively. Then the modified Hamiltonian Ĥ = H +
hĤ2 + h2Ĥ3 +O(h3) for Φh is given by

Ĥ2 =
1

2
{H1, H2}

Ĥ3 =
1

12
({{H1, H2}, H2}+ {{H2, H1}, H1})

whereas the modified Hamiltonian ĤS = H + h2ĤS
3 +O(h4) for ΦS

h is given
by

ĤS
3 = − 1

24
{{H2, H1}, H1}+

1

12
{{H1, H2}, H2}

Higher order terms are likewise composed of Poisson brackets of Poisson
brackets and so forth of H1 and H2.



42 Hamiltonian Mechanics

Example 11. Consider the pendulum which has Hamiltonian

H =
1

2
p2 − cos(q)

If the Hamiltonian is split into it’s kinetic energy H1 = 1
2
p2 and potential

energy H2 = − cos(q) then we get that the modified Hamiltonian for the first
order symplectic splitting method Φh = ϕH1

h ◦ ϕH2
h has first order element

Ĥ2 =
1

2
{H1, H2}

=
1

2
[p 0]

[
0 −1
1 0

] [
0

sin(q)

]
= −1

2
p sin(q)

Level curves for H and H + hĤ2 are shown in figure 3.6 with h = 1
2
.
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