A WORK-NOTE on OSCILLATORS - LEARNING by DOING

Lindberg, Erik

Publication date:
2005

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Lindberg, E. (2005). A WORK-NOTE on OSCILLATORS - LEARNING by DOING.

DTU Library

Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

A WORK-NOTE ON OSCILLATORS

Erik Lindberg, August 2005

Ørsted•DTU Department, 348 Technical University of Denmark Ørsteds Plads, Kgs. Lyngby, DK2800, Denmark e-mail: el@oersted.dtu.dk www: http://www.es.oersted.dtu.dk/~el/

Abstract

Abstract

The aim of this work-note is to give insight in computer aided design of electronic oscillators by means of a study of a number of circuits given as figures - equivalent schemes - or as net-list files for electronic circuit analysis programs - "SPICE FILES". For each figure or net-list a number of questions and exercises are specified. The programs PSpice [1], APLAC [2], ANP3 [3] and WINLAP [4] are used as analysis tools.

I Introduction 1
II "Linear" Oscillators 2
III Oscillators 3
IV LC Oscillators 4
IV-A Negative Resistance Oscillator 4
IV-B Colpitts Oscillator 5
IV-C Emitter Coupled LC oscillators 7
IV-C. 1 Sony1 7
IV-C. 2 Sony2 8
IV-D Transformer Coupled Oscillator 9
V RC oscillators 10
V-A Wien Bridge Oscillator 11
VI Work-Note Comments ("Learning by doing") 11

- References 12

I. Introduction

REAL OSCILLATORS are nonlinear circuits. By means of the Barkhausen Criteria a sinusoidal oscillator is normally designed as a linear amplifier with a frequency determining feed-back circuit so that the poles of the whole circuit are on the imaginary axis of the complex frequency plane, i.e. an ideal harmonic oscillator. In order to startup the oscillations some parameters of the circuit are adjusted so that the poles (eigenvalues) of the linearized circuit are in the right-half plane, RHP, i.e. in the dc bias point the circuit is unstable and signals will start to increase when the power supply is connected. It is obvious that if the poles are very close to the imaginary axis the time constant is very large and the transient time to steady state behavior is very large. Due to the nonlinearities, the physical nature of the circuit, the signals

[^0]Presented at a "SOCRATES/ERASMUS course" at Kaunas University of Technology, Lithuania, October , 2005
will always be limited in some way. The crucial point is whether there will be oscillations of ${ }^{2}$ just a transition to a new stable dc bias point. Very little is reported about how far out in RHP the poles should be placed initially. Also many authors assume that due to the nonlinearities the poles are fixed on the imaginary axis at a certain constant amplitude of the signals. This assumption is of course not true [5], [6]. The normal classification of oscillators in two groups "sinusoidal" and "relaxation" is questionable because the same oscillator topology may perform both "kinds" of oscillations depending on the parameter choice. Classification should be based on the mechanism behind the behavior.

At a certain instant you may investigate the linearized small signal model of the oscillator. The eigenvalues of the Jacobian of the linearized differential equations are the poles of the network functions. It is obvious that the signals will increase in amplitude if the poles are in RHP and decrease if the eigenvalues are in the left-half plane, LHP, of the complex frequency plane. If you assume that the poles are moving back and forth between RHP and LHP then the mechanism behind the behavior of an oscillator may be described as an act of balance between the energy you gain from the dc power supply when the poles are in RHP and the energy you loose when the poles are in LHP. The study of the movement of the eigenvalues of the Jacobian of the linearized differential equations as function of time is called "the frozen eigenvalue approach" [5], [7], [8].

Questions and exercises:

Please perform the following tasks: (1) Search the WWW for information concerning the Barkhausen Criteria. (2) Discuss the concept of Loop Gain. (3) If you have a circuit with only one nonlinear component then discuss the possibility of calculating the trajectories of the eigenvalues in the complex frequency plane. (4) Suggest your own questions and exercises.

Fig. 1. Linear oscillators. (a) Ideal harmonic oscillator. (b) LC oscillator with losses.

II. "Linear" Oscillators

THE ideal linear harmonic oscillator - fig. 1 (a) - is mathematical fiction. Real linear oscillators are damped RLC circuits - fig. 1 (b). By means of a negative resistor $R N$ in parallel with R_{p} the losses may be compensated.

Please perform the following tasks: (1) Setup the differential equations for the circuit fig. 1 (b). (2) Find the Laplace transform of the equations. (3) Find the characteristic equation. (4) Find the eigenvalues. (5) Mark the eigenvalues in the complex frequency plane, s-plane, and discuss the performance of the circuit.

Statement: "A resistor is a current controlled voltage source, CCVS".

(6) Discuss this statement. (7) How may other circuit elements (conductors, capacitors and coils) be interpreted as controlled sources ? (8) Discuss how to create a negative resistor by means of e.g. an operational amplifier or a transistor. (9) The component values for fig. 1 are as follows: $C_{1}=C_{p}=1 \mathrm{nF}, L_{1}=L_{s}=10 \mu \mathrm{H}, R_{s}=10 \Omega, R_{p}=1 \mathrm{M} \Omega$. The initial conditions (charges on the capacitors at time zero) are modeled as dc sources $V_{2}=V_{5}=1 \mathrm{Vdc}$. (10) Analyze the circuit by means of ANP3, Capture and PSpice, APLAC. (11) Make experiments with placing a negative resistor $R N$ in parallel with R_{p}. (12) Find the value of $R N$ (e.g. by means of ANP3) for which the parallel losses R_{p} and the series losses R_{s} are compensated. (13) Suggest your own questions and exercises.

III. Oscillators

AN oscillator is a circuit which for constant input signal (dc power-supply, battery) produces an oscillating output signal (a steady state time varying signal). An old rule of thumb says that if you want to design an oscillator try to design an amplifier instead and if you want to design an amplifier try to design an oscillator (Murphy's Law).

Fig. 2. An amplifier with positive and negative feed-back.
Figure 2 shows a perfect linear amplifier with positive and negative feed-back. The input impedance of the amplifier is assumed infinite and the gain of the amplifier is assumed constant, i.e. $V_{3}=A \times\left(V_{1}-V_{2}\right)$. If we introduce memory elements - capacitors, coils, hysteresis - in the four impedances various types of oscillators may be obtained [9], [10].

If we observe time varying signals for zero input signal $V_{i n}=0$ we have an oscillator. If the poles of the circuit are in the left half plane (LHP) of the complex frequency plane the signals are damped. If the poles are in RHP the signals are undamped. Only if the poles are on the imaginary axis the signals are steady state signals. This is of course impossible in a real world circuit. The ideal harmonic oscillator may be started with any initial condition and keep its
amplitude and frequency constant. It is an impossible act of balance to place the poles exactly on the imaginary axis. Either the poles will be in RHP or in LHP and we have a very large time constant determining the steady state of the oscillator (unstable with infinite large signals or stable with zero signals).

If we want to build an oscillator we must introduce an amplifier with nonlinear gain so that for small signals the poles of the linearized circuit are in RHP and for large signals the poles are in LHP. In this case we may obtain steady state behavior based on balance between energy we obtain from the battery when the poles are in RHP and energy we loose when the poles are in LHP.

In other words an oscillator is a feed-back amplifier with an unstable dc bias point. Due to the nonlinear components the linearized small signal model corresponding to the instant bias point will vary with time. The dominating behavior of the circuit is based on the instant placement of the poles of the linearized model. If the poles are in RHP the signals will increase in amplitude. If the poles are in LHP the signals will diminish in amplitude. The investigation of the movements of the eigenvalues of the linearized Jacobian of the differential equations is called the frozen eigenvalue approach.

Questions and exercises:

Please perform the following tasks: (1) Derive an expression for the load impedance of the source $V_{i n}$ in fig. 2. (2) Discuss the expression for variation of the gain A in the interval $[+\infty,-\infty]$. (3) Discuss the concept of inverting/non-inverting amplifier for $A=\infty$. (4) Suggest your own questions and exercises.

IV. LC Oscillators

IF you introduce LC circuits in the impedances Z_{A}, Z_{B}, Z_{C} and Z_{D} of the feed-back amplifier in fig. 2 you may create a LC oscillator.

Fig. 3. A negative resistance oscillator

A. Negative Resistance Oscillator

If we replace one of the impedances e.g. Z_{D} in figure 2 with a passive LC circuit with losses and introduce resistors for the 3 other impedances Z_{A}, Z_{B} and Z_{C} we have a negative resistance oscillator, fig. 3.

Please perform the following tasks: (1) Derive for all the 4 impedances in fig. 2 the expressions for the "negative" resistance in parallel to an impedance when the 3 other impedances are resistors (hint: [11]). (2) Show that the negative resistance in parallel with C_{D} is $R_{p}=-$ $R_{A} R_{C} / R_{B}$ for $A=\infty$. (3) Discuss the expression for the "negative" resistance in parallel with C_{D} of fig. 3 for variation of the gain A in the interval $[+\infty,-\infty]$. (4) Show that from the expression $2 \alpha=\left(\frac{R_{s}}{L}+\frac{G_{p}}{C}\right)=0$ where $R_{s}=R D$, we may calculate the value of the negative resistor needed for placing the poles on the imaginary axis as

$$
R_{p}=\frac{1}{G_{p}}=-\left(\frac{1}{R_{s}}\right)\left(\frac{L}{C}\right) .
$$

(5) With a given coil $L_{D}=256 \mathrm{mH}$ and $R_{D}=14.8 \Omega$ (the measured series resistance of the coil) design a 10 kHz negative resistance oscillator. (6) Analyze the oscillator by means of ANP3, Capture and PSpice, APLAC. (7) Perform experiments with the placement of the poles in RHP for small signals. (8) Perform experiments with changing the sign of the gain A of the amplifier. (9) Discuss your results. (10) Suggest your own questions and exercises.

B. Colpitts Oscillator

The following file is an input file for the APLAC program [2] describing an analysis of a Colpitts oscillator. The file is available from: http://www.es.oersted.dtu.dk/~el/colpitts.txt

```
$ colpts2.i, colpitts oscillator, APLAC input file
$ Transistor model with package parasitics
    DefModel Transistor 3 c b e
    Ind Lc c c1 0.2n
    Ind Lb b b1 1n
    Ind Le e e1 0.9n
    Cap Cbc c1 b1 0.5p
    Cap Cce c1 e1 0.3p
    Cap Cbe b1 e1 0.5p
    Model BJTRF1 IS=0.89f BF=105 IKF=200m NF=1.01 ISE=54f TF=23p
    + NE=1.55 VAF=45 BR=13 IKR=20m NR=1.01 ISC=50f
    + NC=2.12 VAR=5 RE=0.7 RC=2.2 RB=10 CJC=0.74p
    + CJE=2.1p VJC=0.60 TR=2n VJE=0.60 MJC=0.51 MJE=0.36
    BJT q1 c1 b1 e1 MODEL=BJTRF1
EndModel
```

\$ Simple Transistor model without package parasitics
DefModel TransX 3 cc bb ee
Model BJTRF1 IS=0.89f BF=105
$\$+I K F=200 \mathrm{~m}$ NF $=1.01 \quad \mathrm{ISE}=54 \mathrm{f} \quad \mathrm{TF}=23 \mathrm{p}$
$\$+\mathrm{NE}=1.55 \mathrm{AF}=45 \mathrm{BR}=13 \mathrm{IKR}=20 \mathrm{~m} \quad \mathrm{NR}=1.01 \quad \mathrm{ISC}=50 \mathrm{f}$
$\$+\mathrm{NC}=2.12 \quad \mathrm{VAR}=5 \mathrm{RE}=0.7 \mathrm{RC}=2.2 \quad \mathrm{RB}=10 \quad \mathrm{CJC}=0.74 \mathrm{p}$
$\$+\mathrm{CJE}=2.1 \mathrm{p} \mathrm{VJC}=0.60 \mathrm{TR}=2 \mathrm{n} \mathrm{VJE}=0.60 \mathrm{MJC}=0.51 \mathrm{MJE}=0.36$
BJT q1 cc bb ee MODEL=BJTRF1
EndModel

```
$ Common-emitter amplifier stage
    Res RB1 0 2 21k
    Res RB2 2 4 100k
    Res RC 1 4 1.4k
    Res RE 0 3 100
$ Transistor Q1 1 2 3
    TransX Q1 1 2 3
    Cap CB1 2 5 100n
    Cap CB2 1 10 1u
    Cap CE 0 3 10u
```

\$ Phase-shift network
Cap C1 50 1u
Cap C2 10 1u
Ind L 56 500u $\mathrm{I}=\mathrm{bOsc}$
\$ Load, V_\{out\} = V(10)
Res RL 1001 k
Short s 16
Volt Vcc 40 DC=10 R=1
Curr Inject 010 TRAN=10m*sin $(2 * \mathrm{pi} * 10 \mathrm{k} * \mathrm{t}) *(\mathrm{t}<100 \mathrm{u})$
Sweep "Transient Analysis"
+ LOOP 2001 TIME LIN 0 5m
+ WINDOW 0
+ Y "V_\{out\}" "V" -5 5 MULTX=m
+ BIGSCREEN
+ EPS="colpts2a.eps"
+ WINDOW 1
+ X "t" "s" 4.6m 5.0m MULTX=m
+ Y "u" "V" -5 5
+ Y2 "i" "A" -260m 260m MULTY2=m
+ EPS="colpts2b.eps"
Show WINDOW 0 Y Vtran(10)
Display WINDOW 1
+ Y "v_\{out\}" Vtran(10)
+ Y2 "i" Itran(bOsc) MARKER=1
EndSweep
\$ end of file EOF

Please perform the following tasks: (1) Draw the equivalent scheme for the circuit. (2) Discuss the transistor models. (3) Discuss the Sweep statement. (4) Transfer the circuit to PSpice by (4a) changing the net-list directly (PSpice A/D) and (4b) by means of the equivalent scheme (Capture). (5) Perform the simulation by means of APLAC and PSpice. Compare the results and discuss the use of the programs. (6) Import the PSpice net-list into APLAC and compare with the original APLAC net-list. (7) Determine the small signal model for the circuit in the dc bias point for the case with the simple transistor model. Calculate the eigenvalues by means of ANP3 and WINLAP. Discuss the result. (8) Assume ideal and/or perfect amplifier and calculate the oscillation frequency. Compare with the simulations. (9) Investigate the amplifier alone by means of APLAC and PSpice simulations e.g. dc and ac transfer characteristics. Setup a simple nonlinear model for the amplifier which include input impedance, output impedance, nonlinear gain and dominating pole. Repeat the calculations from (5) with the simple amplifier model and discuss the results. (10) If the transistor operates as an almost ideal switch we have a situation where the capacitors CE, C2 and CB2 abruptly should distribute their charges. Almost a short-circuit of the series connection of CE and C 2 will occur. This mechanism may give rise to chaotic performance. Please make simulations with different transistor models in order to provoke chaos. Study the voltages and the currents of the capacitors as functions of time. Study the instant charge ($q=C \times v$) or the instant energy ($p=i \times v$) of the capacitors as functions of time. (11) Suggest your own questions and exercises.

Fig. 4. Emitter coupled pair oscillator "Sony1".

C. Emitter Coupled LC oscillators

C. 1 Sony1

Figure 4 shows a LC oscillator based on an amplifier made from a pair of emitter coupled transistors ([9] page 316).

Fig. 5. Emitter coupled pair oscillator "Sony2".
The components of the "Sony1" oscillator are chosen as: $C 1=106 \mathrm{pF}, L 1=2.39 \mu \mathrm{H}, R 1=$ $5 \mathrm{k} \Omega, V C C=5 \mathrm{~V}, I E E=0.2 \mathrm{~mA}$. The dc sources $V C 1, V C 2, V B 1, V B 2$ and $V R N L$ are zero valued sources inserted for measurement of currents. The transistor models may be specified as simple Ebers-Moll transport models with $\beta_{f}=100, I_{s}=0.1 \mathrm{fA}$, and $R_{b}=50 \Omega$.

Questions and exercises:

Please perform the following tasks: (1) Redraw the circuit according to fig. 2 and identify the impedances. (2) Redraw the circuit according to the Barkhausen criteria [12]. (3) Suggest your own questions and exercises.

C. 2 Sony2

Figure 5 shows a LC oscillator based on an amplifier made from a pair of emitter coupled transistors ([9] page 321).

The components of the "Sony2" oscillator are chosen as: $C 1=106 \mathrm{pF}, L 1=2.39 \mu \mathrm{H}, R 1=$ $1 \mathrm{k} \Omega, R C 1=R C 2=50 \mathrm{k} \Omega, V C C 1=V C C 2=5 \mathrm{~V}, I E E=1$. The dc sources $V 12$ and $V R N L$ are zero valued sources inserted for measurement of currents. The transistor models may be specified as simple Ebers-Moll transport models with $\beta_{f}=100, I_{s}=0.1 \mathrm{fA}$, and $R_{b}=50 \Omega$.

Questions and exercises:

Please perform the following tasks: (1) Redraw the circuit according to fig. 2 and identify the impedances. (2) Redraw the circuit according to the Barkhausen criteria [12]. (3) Suggest your own questions and exercises.

D. Transformer Coupled Oscillator

The following file is an input file for the PSpice program [1] describing an analysis of a transformer coupled oscillator. The file is available from: http://www.es.oersted.dtu.dk/~el/squeg.txt

```
title SQUEG.CIR, transformer coupled oscillator
*
* ref. Fig. 10.6, page 344 in
* D.O. Pederson and K. Mayaram,
* "Analog Integrated Circuits for Communication -
* Principles, Simulation and Design",
* Kluwer 1991.
*
    R1 1 0 1
Q1 7 1 1 3 mod1
* Q1 
* Q1 }7\begin{array}{llll}{7}&{1}&{3}&{bc107}
* Q1 
*
    VC 2 7 7 0
    VCC 4 0 10
*
* tank circuit
*
\begin{tabular}{llll} 
RL & 4 & 2 & 750 \\
RL & 4 & 2 & 2.6 k \\
CT & 4 & 2 & 450 pF \\
L 1 & 4 & 2 & \(5 u H\)
\end{tabular}
*
* transformer
*
    L2 0 5 50nF
    K1 L1 L2 1
*
* feed-back
*
    CE 5 3 5.0n ; 5.5n ; 6n ; 10n ; 5.0nF
* vary CE in order to observe squegging
*
    RE 3 6 4.65k
    VEE 6 0 -10 ; pulse -15 -10 0 0 0 1s
*
.tran 15e-9 100e-6 0 15n UIC ; 9.3u 15n
.probe
.options nopage opts itl5=0
+ RELTOL = 1.0000E-05 ; 03
+ ABSTOL = 1.0000E-12
+ VNTOL = 1.0000E-08 ; 12 06
+ GMIN = 1.0000E-12
```

```
+ ITL4 = 10
+ CHGTOL = 10.0000E-15
+ NUMDGT = 4
* .width out=80
* ----- models -------------
.model mod1 npn is=1e-16
+ bf=100 rc=10
*
.MODEL Qnideal NPN (
+ Is=1e-16A BF=49 BR=960m Rb=0ohm Re=0ohm
+ Rc=0ohm Cjs=0F Cje=0F Cjc=0F Vje=750mV
+ Vjc=750mV Tf=0s Tr=0s mje=0 mjc=0
+ VA=50V ISE=0A IKF=0A Ne=0)
*
.MODEL BC107 NPN (
+ Is=1.16pA BF=364 BR=4 Rb=42.6ohm Re=10.6ohm
+ Rc=4.26ohm Cjs=0F Cje=36.8pF Cjc=10.8pF Vje=750mV
+ Vjc=750mV Tf=530ps Tr=87.4ns mje=333m mjc=333m
+ VA=120V ISE=42.2pA IKF=120mA Ne=2)
*
.model Q2N2222 NPN (
+ Is=14.34f Xti=3 Eg=1.11 Vaf=74.03 Bf=255.9 Ne=1.307
+ Ise=14.34f Ikf=.2847 Xtb=1.5 Br=6.092 Nc=2 Isc=0 Ikr=0 Rc=1
+ Cjc=7.306p Mjc=.3416 Vjc=.75 Fc=.5 Cje=22.01p Mje=. 377
+ Vje=.75 Tr=46.91n Tf=411.1p Itf=.6 Vtf=1.7 Xtf=3 Rb=10)
* National pid=19 case=T018
* 88-09-07 bam creation
* ----------------------------------------------------------------------
.end
```


Questions and exercises:

Please perform the following tasks: (1) Draw the equivalent scheme for the circuit. (2) Discuss the transistor models. (3) Discuss the .tran statement. (4) Transfer the circuit to PSpice A/D by means of the equivalent scheme (Capture). (5) Perform the simulation by means of PSpice A/D directly from the squeg.cir file and via Capture. Compare the results and discuss the use of PSpice A/D via Capture and directly. (6) Import the PSpice net-list into APLAC and compare simulations. (7) Determine the small signal model for the circuit in the dc bias point for the case with the simple transistor model. Calculate the eigenvalues by means of ANP3 and WINLAP. Discuss the result. (8) Assume ideal and/or perfect amplifier and calculate the oscillation frequency. Compare with the simulations. (9) Suggest your own questions and exercises. (4) Search the literature for other kinds or types of LC oscillators and enlarge these work-notes.

V. RC oscillators

IF you introduce RC circuits in the impedances Z_{A}, Z_{B}, Z_{C} and Z_{D} of the feed-back amplifier in fig. 2 you may create a RC oscillator.

Fig. 6. Wien Bridge Oscillator

A. Wien Bridge Oscillator

Figure 6 shows a Wien Bridge Oscillator for which the components are chosen as: $C A=$ $C B=1 \mathrm{nF}, R A=R B=15.91549431 \mathrm{k} \Omega, R D=10 \mathrm{k} \Omega, R C=24.6 \mathrm{k} \Omega, R C L=99 \mathrm{k} \Omega, A=$ 100k.

Questions and exercises:

Please perform the following tasks: (1) Redraw the circuit according to fig. 2 and identify the impedances. (2) Redraw the circuit according to the Barkhausen criteria [12]. (3) Suggest your own questions and exercises. (4) Search the literature for other kinds or types of RC oscillators and enlarge these work-notes. (5) Search the literature for other kinds or types of oscillators e.g. mechanical or chemical oscillators and enlarge these work-notes.

VI. Work-Note Comments

PROVOKING REMARKS concerning the idea of work-notes. When the universities emerged some 800 years ago it was a process where the students searched and found proper persons with knowledge - the professors - to cooperate with concerning the work with the increase of knowledge among everybody. There were few students for each professor. To-day we see a pattern emerging on some universities where the BS and MS students are considered pupils guided by the teachers and only the PhD students are considered proper students. There are many pupils for each teacher. The teachers give lectures for the students i.e. the students are learning by listening and learning by seeing - "passive entertainment". The teacher enjoy the fun by creating exercises and lecture notes - books. The teacher is learning a lot. We all know that the best way to learn and master a subject is to teach the subject. It is more fun to create an exercise than to solve an exercise. By means of work-notes the student is offered the possibility for making his own lecture notes ("papers", "reports") to be shared with his fellow students and the supervisor ("teacher", "professor") i.e. we are back in the old pattern with learning by doing and learning by reading and writing - "active working". In short:

Learning by listening and learning by seeing imply passive entertainment.
Learning by doing and learning by reading and writing imply active working.

References

[1] http://www.ecs.dtu.dk/programs.htm
http://www.orcad.com/community.aspx
http://www.intusoft.com/spicebook.htm
http://www.softsim.com/tsl/simulation_software.asp
[2] http://www.aplac.hut.fi/aplac/general.html http://www.aplac.com/downloads
http://www.aplac.hut.fi/aplac/models/main.html
[3] http://www.ecs.dtu.dk/napanp.htm
[4] http://www.ecs.dtu.dk/winlap.htm
[5] E. Lindberg, " Is the quadrature oscillator a multivibrator ? ", IEEE Circuits and Devices Magazine, Vol. 20 No. 6 pp. 23-28, November/December 2004. http://www.es.oersted.dtu.dk/~el/ego-ieee-qomv.pdf
[6] Erik Lindberg, " Oscillators - an approach for a better understanding ", Invited tutorial in Proc. of the European Conference on Circuit Theory and Design 2003, ECCTD'03, Cracow, Poland, 1-4 September 2003.
http://www.es.oersted.dtu.dk/~el/el-ecctd03.pdf
[7] E. Lindberg, " Oscillators and eigenvalues ",
in Proceedings ECCTD'97 - The 1997 European Conference on Circuit Theory and Design, pp. 171-176, Budapest, September 1997.
[8] E. Lindberg, " Colpitts, eigenvalues and chaos",
in Proceedings NDES'97 - the 5'th International Specialist Workshop on Nonlinear Dynamics of Electronic Systems, pp. 262-267, Moscow, June 1997.
[9] D.O. Pederson and K. Mayaram, Analog Integrated Circuits for Communication - Principles, Simulation and Design, pp. 1-568, Kluwer 1991.
[10] J. R. Westra, C. J. M. Verhoeven and A. H. M. van Roermund, Oscillators and Oscillator Systems - Classification, Analysis and Synthesis, pp. 1-282, Kluwer 1999.
[11] Erik Lindberg, " Oscillators and Operational Amplifiers",
in Proceedings ECCTD 2005 - European Conference on Circuit Theory and Design, Cork, Ireland, 29 August - 2 September 2005. http://www.es.oersted.dtu.dk/~el/ego-ecctd05-PID108495.pdf
[12] E. Lindberg, K. Murali and A. Tamasevicius, " Design of chaotic oscillators ", in ECCTD'01 - the 15th European Conference on Circuit Theory and Design, Tutorial nr. T5, Helsinki, August 2001. http://www.ecs.dtu.dk/tutor-01.htm

Supplementing References:

[13] H.L. Krauss, C.W. Bostian and F.H. Raab, Solid State Radio Engineering, Wiley 1980.
[14] Randall W. Rhea, Oscillator Desgn \& Computer Simulation, 2nd. ed., McGraw-Hill 1997.
[15] M. Odyniec (edt.), RF and Microwave Oscillator Design, Artech House 2002.
[16] T.L. Floyd and D. Buchla, Fundamentals of Analog Circuits, Prentice Hall 2002.
[17] Emad Hegazi, Jacob Rael and Asad Abidi, The Designer's Guide to High-Purity Oscillators, Kluwer 2005.

[^0]: (2'nd edt.),

