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 Summary i 

Summary 

In recent decades, an increasing effort has been spend on studies and development of 

improved oil recovery processes. Gas injection can be a very efficient method for improving 

the oil production, particularly in the case where miscibility develops during the displacement 

process. The minimum pressure at which a gas should be injected into the reservoir in order to 

obtain a multicontact miscible displacement (the MMP, minimum miscibility pressure) has 

consequently obtained a very important status in IOR/EOR studies. Another area to which 

increasing attention is paid is the ongoing development of a new generation of reservoir 

simulators. The new simulators, based on streamline technology, decompose the three-

dimensional (3-D) structure of a reservoir into a sequence of one-dimensional (1-D) problems. 

Efficient methods for generating solutions to the 1-D gas injection problem are hence needed. 

A new algorithm has been developed for calculation of minimum miscibility pressures for the 

displacement of oil by multicomponent gas injection. The algorithm is based on the key tie 

line identification approach initially addressed by Wang and Orr52. In this work a new global 

approach is introduced. A number of deficiencies of the sequential approach have been 

eliminated, resulting in a robust and highly efficient algorithm. The time consumption for 

calculation of the MMP in multicomponent displacement processes has been reduced 

significantly, so that the calculation can now be performed within a few seconds on a PC for a 

15-component gas mixture. The algorithm is therefore particularly suitable for gas enrichment 

studies or other case studies where a large number of MMP calculations are required. 

Predicted results from the key tie line identification approach are shown to be in excellent 

agreement with slimtube data and with results from multicell/slimtube simulators presented in 

the literature. 

The solution to mass conservation equations governing one-dimensional (1-D) dispersion-free 

flow in which components are partitioned between two equilibrium phases is controlled by 

the geometry of key tie lines. It has previously been proven that for systems with an arbitrary 

number of components, the key tie lines can be approximated quite accurately by a sequence 

of intersecting tie lines. This experience was utilized in the development of the new MMP 

algorithm. 
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Tools developed during the implementation of the global approach to calculation of the MMP 

have been combined with tools from the analytical theory of 1-D gas injection processes. As a 

result, a new approach to generating approximate 1-D analytical solutions to problems with 

constant initial and injection compositions (Riemann problems) has been developed. For fully 

self-sharpening systems, in which all key tie lines are connected by shocks, the obtained 

analytical solutions are rigorously accurate, while for systems where some key tie lines are 

connected by spreading waves, the analytical solutions are approximations, but accurate ones. 

Detailed comparison between analytical solutions with both coarse and fine grid 

compositional simulations indicates that even for systems with continuous variation between 

key tie lines, approximate analytical solutions predict composition profiles far more 

accurately than coarse grid numerical simulations. Because of the generality of the new 

approach, approximate analytical solutions can be obtained for any system whose phase 

behavior can be modeled by an equation of state. The construction of approximate analytical 

solutions is shown to be orders of magnitude faster than the equivalent coarse grid 

compositional simulation. Hence, the new approach is valuable in areas where fast 

compositional solutions to Riemann problems are required. The new approach to construction 

of approximate analytical solutions to the 1-D gas injection problem is initially described for a 

simplified version of the conservation equations. In the simplified version, described in 

Chapter 4, components are assumed to take up a constant volume throughout the 

displacement. This assumption is relaxed in Chapter 5 where a general approach to 

constructing approximate analytical solutions is presented. 

A large number of finite difference (FD) simulations were performed as part of developing 

the algorithms for constructing approximate analytical solutions. The well-documented 

existence of a system dependent sensitivity to numerical dispersion in FD simulations was 

observed. An approach to a qualitative estimation of the sensitivity for a given system is 

suggested. The approach, presented in Chapter 6, is based on the key tie line orientation of the 

approximate analytical solutions. A qualitative estimate can hence be obtained directly from 

the new MMP algorithm without increase in the required CPU time. 
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Resumé 

Gennem det sidste årti er en væsentlig forskningsmæssig indsats blevet rettet mod indblik i og 

udvikling af metoder til forbedring af olieindvinding fra eksisterende oliefelter. Injektion af 

gas kan bidrage til en væsentlig forbedring af indvindingsgraden. Specielt hvis der under 

fortrængningsprocessen optår blandbarhed mellem den injicerede gas og olien. Det laveste 

tryk, ved hvilket der under fortrængningsprocessen opstår multikontakt blandbarhed (MMP), 

har som følge deraf en afgørende rolle i forbindelse med studier af metoder til forbedring af 

indvindingsgraden. Den igangværende udvikling af en ny type reservoirsimulatorer har 

ligeledes fået stor opmærksomhed. Den nye type reservoirsimulator, baseret på 

strømningslinjeteknologi, opsplitter den tredimensionale beskrivelse af et oliereservoir til en 

sekvens af endimensionalt (1-D) formulerede problemstillinger. Der er derfor opstået et behov 

for effektive metoder til løsning af flow problemer for 1-D gasinjektionsprocesser. 

Der er blevet udviklet en ny algoritme til beregning af MMP for fortrængningsprocesser, hvor 

multikomponent gas injiceres i en olie. Algoritmen er baseret på nøglebindelinie konceptet 

introduceret af Wang og Orr52 . En ny global formulering af problemstillingen er beskrevet og 

implementeret. Reformuleringen eliminerer en række begrænsende faktorer fra den 

oprindelige formulering. Dette resulterer i en robust og meget effektiv algoritme. 

Beregningstiden for bestemmelsen af MMP er reduceret signifikant, således at beregningen 

nu kan udføres med PC på få sekunder for systemer med 15 komponenter i injektionsgassen. 

Den nye algoritme er derfor velegnet til studier af forskellige injektionsgasser og blandinger 

heraf. Generelt er den nye algoritme velegnet til studier af injektionsprojekter, hvor mange 

MMP beregninger er en nødvendighed. Resultater opnået med den nye angrebsvinkel er i god 

overensstemmelse med slimtube data og med resultater beskrevet i litteraturen fra numeriske 

simulatorer. 

Løsninger til bevarelsesligninger, der beskriver endimensionalt dispersionsfrit flow, hvor 

komponenter fordeler sig mellem to faser i ligevægt, er bestemt ved geometrien af nøgle 

bindelinier. Det er tidligere blevet demonstreret, at disse nøglebindelinier kan beskrives 

tilnærmelsesvist korrekt ved en serie af bindeliner, hvis forlængelse skærer hinanden parvist. 

Dette faktum blev benyttet i udviklingen af den nye MMP algoritme. En kombination af 
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værktøj, udviklet i forbindelse med implementeringen af MMP algoritmen, med værktøj fra 

den analytiske teori for 1-D gasinjektionsprocesser har ført til udviklingen af en ny metode til 

generering af approksimative analytiske løsninger til 1-D gasinjektionsprocesser. 

Løsningsmetoden kan anvendes til problemstillinger med konstante begyndelsebetingelser 

(Riemann problemer). For systemer, hvor den korrekte løsning udelukkende består af 

chokfronter, vil den udviklede løsningsmetode være uomtvistelig nøjagtig. For systemer, hvor 

nøglebindelinier er forbundet ved kontinuert variation, vil de genererede løsninger være 

approksimative men stadig meget nøjagtige. En detaljeret sammenligning af de 

approksimative analytiske løsninger med numeriske simuleringer demonstrerer, at de 

approksimative løsninger er mere nøjagtige end numeriske simuleringer, hvis antallet af 

gridblokke er lavt. På baggrund af den generelle formulering af den nye metode kan den 

anvendes til alle 1-D problemstillinger, hvor faseligevægte for de involverede fluider kan 

beskrives med eksempelvis en tilstandsligning. Beregningstiden for den nye metode er 

størrelsesordner lavere end for tilsvarende numeriske simuleringer selv med få gridblokke. 

Metoden er derfor velegnet til problemstillinger, hvor løsning af mange Riemann problemer 

er påkrævet. Den nye løsningsmetode blev i første omgang udviklet for en simplificeret 

udgave af bevarelsesligningerne. I den simplificerede udgave, beskrevet i kapitel 4, antages 

komponenterne at have konstant molar volumen under hele fortrængningsprocessen. Den 

simplificerede metode er videreudviklet i kapitel 5, hvor en generel metode bliver 

præsenteret. 

Et stort antal numeriske simuleringer, baseret på differensmetoden, blev udført som led i 

udviklingen af den nye løsningsmetode. Den vel dokumenterede eksistens af en 

systemafhængig følsomhed over for numerisk dispersion blev observeret. En generel metode 

til kvalitativ estimering af denne følsomhed er beskrevet i kapitel 6. Metoden benytter sig af 

den geometriske struktur af den tilsvarende approksimative analytiske løsning. Dette betyder, 

at et kvalitativt estimat for følsomheden af et givet system kan genereres sideløbende med en 

MMP beregning uden at påvirke den nødvendige beregningstid. 
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 Chapter 1. Introduction 1 

1. Introduction 

Miscible gas injection processes have become a widely used technique for 

enhanced/improved oil recovery (EOR/IOR) throughout the world. The understanding of the 

multiphase, multicomponent flow taking place in any miscible displacement process is 

essential for successful design of gas injection projects. Due to complex reservoir geometry 

and reservoir fluid properties, numerical simulations of the flow processes are usually 

conducted to obtain such understanding. In principle, compositional simulation could be used 

to study such problems. But in practice conventional finite difference simulation is so slow 

that three-dimensional (3-D) computations are feasible only when coarse grid blocks are used. 

Such simulations are not very useful, however, because they are severely affected by 

numerical dispersion.

Recent progress in the application of streamline methods offers a way to overcome the 

limitations of 3-D finite difference compositional simulations2,3,48,49. In the streamline 

approach, a one-dimensional (1-D) solution is mapped onto streamlines which capture the 

effects of reservoir heterogeneity. Thiele et al.50 described 2-D and 3-D streamline 

compositional simulations in which analytical and finite difference approaches were used to 

solve the 1-D flow problem. Thiele et al.50 used a numerical solution to the 1-D problem to 

perform a compositional simulation for a heterogeneous 3-D reservoir described with 518000 

grid blocks. At that time, analytical solutions for problems with an arbitrary number of 

components in the oil and injection gas were not available. Application of analytical solutions 

in simulations like that of Thiele et al.50 could lead to substantial additional speed-ups in 

streamline calculations. 

Gas injection can be a very efficient method for EOR/IOR, particularly if miscibility develops 

during the displacement process. Hence, the task of determining the minimum pressure at 

which a given gas should be injected into the reservoir in order to achieve multicontact 

miscibility (the MMP) has obtained a very important role in production case studies. Various 

approaches have been suggested in the literature for determining the MMP. Many attempts 

based on ternary representations have later been proven to apply only to the special cases of a 

vaporizing or a condensing mechanism controlling the development of miscibility. Zick58 and 
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subsequently Stalkup44 demonstrated that the mechanism controlling the development of 

miscibility could be (and often is) of a combined vaporizing and condensing nature. 

Furthermore, they showed that the MMP in general could be determined by 1-D 

compositional simulation.

A massive effort has been spend on the development of the analytical theory of 1-D gas 

injection problems. The development of this theory has offered a very helpful tool for 

understanding the nature of the mechanisms controlling the development of miscible 

displacements. The current work is devoted to the further development of the analytical 

theory and to the implementation of the theory into effective algorithms for the study of 

miscible gas injection problems. 

The need for effective algorithms for 1-D gas injection problems is evident since time-

consuming finite difference simulations are still used for streamline simulations and for 

determination of the minimum miscibility pressure. 

Chapter 2 presents the conservation equations governing 1-D dispersion free two-phase flow 

and introduces the reader to the analytical theory forming the backbone of this study. In 

Chapter 3 a brief introduction is given to the mechanisms controlling the development of a 

miscible displacement along with an overview of different methods for calculation of the 

MMP previously presented in the literature. Subsequently, a new algorithm for effective 

calculation of the MMP, based on the analytical theory, is presented. In Chapter 4, the tools 

developed in Chapter 3 are combined with tools from the analytical theory to construct 

approximate analytical solutions to a simplified version of the conservation equations. This 

chapter also presents some new contributions to the analytical theory. In Chapter 5 the 

algorithms of Chapter 4 are extended to consider the general formulation of the conservation 

equations. Finally, Chapter 6 demonstrates how the effects of numerical dispersion in finite 

difference simulations can be linked to the geometry of the approximate analytical solutions. 
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2. Conservation Equations and Analytical Theory of the 1-D Gas Injection Process 

This chapter introduces the flow equations and the analytical theory forming the basis of the 

work described in the later chapters. Two different formulations of the one-dimensional (1-D) 

two-phase flow problem are presented. Initially, the general form of the conservation 

equations is presented in which the components are allowed to change volume as they transfer 

between phases. Then a simplified version of the conservation equations is given. In the 

simplified version components do not change volumes as they transfer between the 

equilibrium phases. The mathematical problem of solving the conservation equations for the 

latter case is much simpler than for the general case and is used as a starting point for 

generating general approximate analytical solutions of the 1-D flow problem. 

A sketch of the physical system considered in the modeling work is given in Figure 2.1. 

Figure 2.1: Sketch of the 1-D gas injection problem. 

2.1 General Formulation of the Conservation Equations  

The derivation of the conservation equations for the one-dimensional (1-D) flow problem is 

based on the following assumptions: 

• The porous medium is homogeneous and incompressible 

• Instantaneous thermodynamic equilibrium exists everywhere 

• The gradient in pressure along the system is small compared to the total pressure 

• Capillary forces and gravity are neglected 

• The flow is isothermal and linear 

• Mass transfer by dispersion/diffusion is neglected 

Injection of gas Production
Porous media saturated with oil

L
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Given these assumptions, the mass conservation equation for flow of two phases in a 1-D 

porous media is given by 

 (2.1) 

where t is the time, x is the distance, ρmj is the density of phase j, v is the linear flow velocity 

based on an empty tube and φ is the porosity. Sj and fj are the saturation and the fractional 

flow of phase j respectively. In the absence of chemical reactions during the displacement 

process, Eq. 2.1 can be rewritten in terms of molar phase densities (ρj) and mole fractions for 

each of the nc components as 

(2.2)

where xij is the mole fraction of component i in phase j. By introducing the dimensionless 

variables

(2.3)

where L is the system length and vinj is the injection velocity (volumetric flow rate divided by 

cross sectional area), Eq. 2.2 can be written as 

(2.4)

with

(2.5)

and

(2.6)
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fractions. To close the mathematical formulation of the flow problem, initial data must be 

specified. This work deals strictly with the case of constant initial data which is the overall 

composition of the injection gas and the overall composition of the initial oil connected by a 

discontinuity at z = 0.

(2.7)

The mathematical formulation of the flow problem is given by a set of coupled first order 

partial differential equations (PDEs). Specification of constant initial data gives rise to a 

Riemann problem, which may be solved by the method of characteristics. Lax27 demonstrated 

that the solution to Eq. 2.4 is self-similar. The self-similarity of the solution allows the flow 

problem to be reformulated into an eigenvalue problem by introducing the variable 

(2.8)

By application of the chain rule the derivatives of Eq. 2.4 can be rewritten as 

(2.9)

and

(2.10)

Substitution of Eqs. 2.8-10 into Eq. 2.4 yields the eigenvalue problem 

(2.11)

Eq. 2.11 can be written in the matrix-vector notation 

(2.12)

where the elements of A and B are given by 

(2.13)

⎩
⎨
⎧

>
<

==
0

0
)0,(

zforZ

zforZ
zZ

oil

injτ

τ
η z=

τ
η

ητ ∂
∂

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∂
∂

=
∂
∂ ∑

−

=

1

1

nc

j

j

j

ii

d

dZ

Z

CC

zd

dZ

Z

F

d

dv

v

F

z

F nc

j

j

j

id

d

ii

∂
∂

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∂
∂

+
∂
∂

=
∂
∂ ∑

−

=

η
ηη

1

1

,..,nci
d

dZ

Z

C

d

dZ

Z

F

d

dv

v

F nc

j

nc

j

j

j

ij

j

id

d

i 1,0
1

1

1

1

==
∂
∂

−
∂
∂

+
∂
∂ ∑ ∑

−

=

−

= η
η

ηη

( ) 0=− XBA λ

⎪
⎪
⎩

⎪⎪
⎨

⎧

=
∂
∂

−=
=

∂
∂

=
for

1,..,1

,..,1
for

ncj
v

F
ncj

nci

Z

F

A

d

i

j

i

ij

⎪⎩

⎪
⎨
⎧

=
−=

=
∂
∂

=
for0

1,..,1

,..,1
for

ncj
ncj

nci

Z

C
B

j

i

ij



 Chapter 2. Conservation Equations and 1-D Analytical Theory 6 

The eigenvalues of Eq. 2.12 (λ=η) correspond to the characteristic wave velocity of a given 

overall composition whereas the associated eigenvectors 

(2.14)

are tangents to composition paths. The physical interpretation of the characteristic wave 

velocities is the speed at which a given overall composition propagates throughout the porous 

media. The eigenvalue problem can be used to generate analytical solutions to the 1-D flow 

problem (Eq. 2.2). Due to the non-linearity introduced by normal S-shaped fractional flow 

functions (fj), the set of partial differential equations is not strictly hyperbolic. In terms of the 

corresponding eigenvalue problem, this means that the eigenvalues are not strictly ordered 

and hence that the composition path may change from a tie line path to a nontie line path at 

points of equal eigenvalues. This fact plays an important role in the construction of 1-D 

solutions described in subsequent sections.

The fractional flow function used in this work is based on the Darcy law for multiphase flow 

with no gravity or capillary forces acting on the fluids. On these assumptions the fractional 

flow of phase j can be written in terms of the phase relative permeability (krj) and the phase 

viscosity (μj) as 

(2.15)

The phase relative permeability (krj) is described by Corey type expressions. For the liquid 

and the vapor phase, respectively, these are 

(2.16)

and

(2.17)

Sor is the residual oil saturation, krle and krve are the effective relative permeabilities of liquid 

and vapor respectively and nl, nv are system specific constants. Before turning attention to the 
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tools available for construction of 1-D solutions, a simplified version of the flow problem is 

considered.

2.2 Conservation Equations with No Volume Change on Mixing (NVC) 

Various authors have studied simplified versions of the conservation equations presented in 

the previous section. In the work of Johns24 and Wang54 components are assumed to mix 

ideally. Thus, components do not change molar volume/density in the transition between 

liquid phase and vapor phase. The assumption about no volume change is reasonable when 

pressures are high. For systems at lower pressures where the solubility of light components in 

undisplaced oil is high but the gas density is low, effects of volume change can be significant 

and the general formulation of the conservation equations should be used. 

The assumption leads to a major simplification of the mathematics involved in solving the 

resultant conservation equations, since overall convective velocity will be constant in the 

NVC formulation of the displacement process. Further, the overall molar compositions (Cj)

and the overall molar fluxes (Fj) entering into Eq. 2.4 can be substituted by an overall volume 

fraction and an overall fractional flow term. Consequently, the conservation equations are 

written in the form 

(2.18)

where

(2.19)

and

(2.20)

Due to the restrictions on the overall volume fractions (Gi) and the overall fractional flows 

(Qi)

(2.21)

only nc-1 of the conservation equations (Eq. 2.18) are independent. The component volume 

fractions are defined by 
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(2.22)

where ρci is the molar density of the pure component i taken at the pressure and temperature 

of the displacement process. ρj
ideal is the molar density of phase j based on the assumption 

about ideal mixing. That is  

(2.23)

By applying the concept of self-similarity (Lax27), the conservation equations are rewritten in 

terms of the ratio of independent variables: 

(2.24)

where η is defined by Eq. 2.8. Inserting the derivatives of the new independent variable η into 

Eq. 2.24 brings the conservation equations on the form 

(2.25)

The derivative of the overall fractional flow (Qi) can be expressed in terms of the overall 

volume fractions by applying the chain rule: 

(2.26)

This is the eigenvalue problem associated with the NVC conservation equations. In matrix-

vector notation the eigenvalue problem is given by 

(2.27)
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In equivalence with the general eigenvalue problem including volume change (VC), the 

eigenvalues of Eq. 2.27 correspond to characteristic wave velocities of a given overall volume 

fraction and the eigenvectors are tangents to the associated composition paths. The initial data 

of the NVC formulation is specified by 

(2.29)

2.3 Geometry of 1-D Analytical Solutions  

The analytical solutions to Eq. 2.4 (or Eq. 2.18) are constructed by solving the eigenvalue 

problem associated with the mass conservation equations. In the compositional space, the 

corresponding problem is to identify the correct (unique) route, which connects the initial oil 

composition and the injection gas composition. The composition route describing the 

analytical solution geometrically is subject to the following requirements:  

1. The composition route must have characteristic wave velocities in the two-phase region 

which increase monotonically from upstream to downstream locations. This condition is 

known as the velocity rule. If the velocity rule should be violated by a continuous 

variation (known as a rarefaction), a shock must be introduced to ensure that the solution 

remains single-valued. In other words, the velocity rule emphasizes that a state property 

can only assume one value at a given point in the solution. Violation of the velocity rule 

and the appearance of shocks are well known issues from the Buckley-Leveret (1941) 

theory. Shocks must be introduced in the 1-D dispersion-free solution to resolve possible 

multivaluedness arising from neglecting terms which account for physical 

dispersion/diffusion (i.e. secondorder derivatives with respect to the space variable). A 

shock must satisfy the integral form of the mass conservation equations (Eq. 2.4): 

(2.30)

where Λ is the shock velocity. Hence, a shock is a weak solution to the conservation 

equations. Upstream and downstream parts of the shock are denoted u and d respectively. 

Eq. 2.30 is a Rankine-Hugoniot condition6,27.
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2. Any shock present in a solution must satisfy an entropy condition. Lax27,28 introduced the 

term entropy condition in the study of gas dynamics where the actual entropy of the 

system was used as a measurement to rule out non-physical shock solutions. For the more 

complex systems studied in this work the entropy condition is of a mathematical nature 

and requires any shock to be stable in the presence of a small amount of dispersion. The 

entropy condition thus dictates that a composition just upstream of the shock must move 

faster than a composition just downstream of the shock. This feature will allow the shock 

to regenerate upon small perturbations. 

3. In addition, solutions must satisfy a continuity condition with respect to initial and 

injection data. In other words, small perturbations to the initial or the injection 

compositions must result in small changes in the solution. 

A substantial body of mathematical theory now exists for construction of analytical solutions 

to the dispersion-free 1-D multicomponent flow problem7,8,21,22,23,36. This theory, based on the 

method of characteristics (MOC), illustrates that the behavior of the solution is controlled by 

the geometry of key tie lines in the compositional space. Larson and Hirasaki29 demonstrated 

that shocks from the single-phase region into the two-phase region must occur along the 

extension of tie lines. Hence, two tie lines, the tie line extending through the initial oil and the 

tie line extending through the injection gas, are key tie lines in the analytical solutions. These 

key tie lines are referred to as the initial tie line and the injection tie line respectively. Monroe 

et al.36 showed that for gas injection problems with four components, the 1-D solution is 

bound to intersect a third key tie line. This third tie line is known as a crossover tie line. 

Johns24, Dindoruk7 and Orr et al.38 generalized the work of Monroe et al. to systems with nc

components. They established that for a system with nc components the 1-D solutions is 

controlled by the geometry of nc-1 key tie lines: The initial tie line, the injection tie line and 

nc-3 crossover tie lines. The nc-1 key tie lines belong to nc-2 families of tie lines, each of 

which generates a ruled surface. Thus, the crossover tie lines are lines of intersection between 

the ruled surfaces. Wang54 demonstrated that ruled surfaces are also developable surfaces. 

The existence of key tie lines and ruled surfaces is illustrated for a four-component system in 

Figure 2.2. Only the part of the ruled surfaces spanned by the key tie lines is included in the 
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sketch. G denotes the injection gas composition and O the initial oil composition. The 

solution path enters the two-phase region from O along the initial tie line and from G along 

the injection tie line. 

Figure 2.2: Illustration of key tie lines and ruled surfaces for a quaternary system. 

Based on the study of surfactant/oil/water (ternary) systems Helfferich14 demonstrated that the 

two eigenvectors, associated with the conservation equations, at a given point in the two-

phase region may point in two different directions. One of the directions was shown to 

coincide with the tie line through the given point whereas the other pointed in a nontie line 

direction. This discovery gave rise to the formalism of tie line paths and nontie line paths in 

the analytical theory of 1-D displacements. Helfferich15 and Dumoré9 also illustrated that the 

tie line eigenvalue was linked to the fractional flow function by 

(2.31)

The subscripts of f and S have been removed in Eq. 2.31 and unless otherwise mentioned, f

denotes the fractional flow of vapor and S the volume fraction of vapor. Variation along a tie 

line is referred to as a tie line path whereas variation in a nontie line direction is referred to as 
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a nontie line path. For an nc component system each point in the two-phase region is 

intersected by nc-2 nontie line paths corresponding to the nontie line eigenvectors. By 

recalling that the conservation equations are given by a set of non-strictly hyperbolic PDEs, 

the corresponding eigenvalue problem will degenerate when two eigenvalues coincide. In the 

analytical theory of 1-D gas injection processes only equal eigenvalue points of mixed type 

(λtie line = λnontie line) are of importance, because solution paths may switch from a tie line path 

to a nontie line path at these points. A sketch of some nontie line paths is given for a simple 

ternary system in Figure 2.3. An equal eigenvalue point is an apex on the given nontie line 

path.

Figure 2.3: Tie line paths, nontie line paths and equal eigenvalue points. 

A nontie line path can be traced by integration of nontie line eigenvalues in the corresponding 

eigenvector directions. The surface of tie lines traveled by a nontie line path is a ruled surface. 

For systems with more than three components these surfaces are not planar but developable 

surfaces as pointed out by Wang54.
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2.4 Solution Construction Tools 

The solution to a given 1-D displacement process is made up by a sequence of different 

segments. Possible segments are  

• Shocks along key tie lines when entering and leaving the two-phase region 

• Shocks connecting key tie lines (nontie line shock) 

• Continuous variation along key tie lines (tie line paths) 

• Constant states (on key tie lines) 

• Continuous variation connecting key tie lines (nontie line paths) 

In the following attention is focused on the geometrical construction of shocks and their 

relation to the fractional flow curve. Three different types of shocks can occur in the 1-

Dsolution, Johns24.

1. The genuine shock where both the up- and downstream compositions of the shock have 

eigenvalues (composition velocities) different from the shock velocity. 

2. The semi-shock (tangent shock) where either the up- or downstream composition of the 

shock has an eigenvalue equal to the shock velocity. 

3. The contact discontinuity (indifferent shock) where both the up- and down-stream 

compositions of the shock have eigenvalues identical to the shock velocity. 

2.4.1 Shocks due to Phase Appearance/Disappearance 

If the leading and the trailing shocks (entering the two-phase region from the initial and the 

injection compositions respectively) are considered first, these occur along single key tie 

lines. The properties of the initial and the injection tie line are found by performing negative 

flash calculations56. A typical plot of an s-shaped fractional flow curve is illustrated in Figure 

2.4. The shock balance for a shock entering the two-phase region is written as 

(2.32)

The superscripts I and II refer to the single- and two-phase regions respectively. In Eq. 2.32  
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the shock balance is written in terms of the NVC formulation for simplicity. By inserting the 

definitions of Qi and Gi into Eq. 2.32 it is easily seen that 

(2.33)

where θ is the superficial vapor saturation corresponding to the single-phase composition (gas 

or oil). 

Figure 2.4: Semi-shock construction along initial or injection tie line. 

For semi-shocks the tie line eigenvalue must be equal to the shock velocity on the up- or 

downstream side of the shock. For shocks entering the two-phase region the shock velocity Λ

can hence easily be determined by locating the line from θ which is tangent to the fractional 

flow curve (ff-curve). The vapor saturation corresponding to the point of tangency on the ff-

curve can be found by solving 

 (2.34) 

where f is given as an explicit function in S (Eq.2.15). This type of tangent constructions is 

also known from the Buckley-Leveret4 theory. For s-shaped ff-curves two tangent 

constructions are possible as illustrated in Figure 2.4. Helfferich15 demonstrated that the 

solutions to gas injection problems are bound to be in the f>S part of the compositional space 

and therefore one of the tangent constructions can easily be ruled out. Dindoruk7 stresses that 
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not all shocks, due to phase appearance or disappearance, are tangent shocks. Depending on 

the compatibility with the rest of the solution they can be genuine shocks. In the latter case the 

landing point in the two-phase region is known and the shock velocity can be calculated 

directly from Eq. 2.33. 

2.4.2 Shocks in the two-phase region 

A significant contribution to the analytical theory was made by the work of Orr et al.38, who 

demonstrated that if two key tie lines are connected by a shock they must intersect. Dindoruk7

later used the VC formulation of the conservation equations to derive the general proof. In the 

NVC formulation a nontie line shock must fulfill 

(2.35)

The superscript x denotes the composition point at which the key tie lines intersect upon 

extension. By comparison of Eq. 2.35 and Eq. 2.32 it is seen that an expression similar to Eq. 

2.33 can be derived. Hence, Eq. 2.35 can be rewritten as 

(2.36)

To illustrate the construction of a nontie line tangent shock, it is convenient to use a plot of 

the Q vs. G plot for the adjacent key tie lines. Such a plot is given in Figure 2.5. 

Figure 2.5: Nontie line tangent shock construction. 
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The Q vs. G curves for two neighboring key tie lines a) and b) are shown in Figure 2.5. 

Component nc is used as a reference component but in general any component present on 

both tie lines can be used. By discarding the solutions in the f<S region of the compositional 

space, only two tangent constructions are possible, but only one of the tangent constructions 

will, as illustrated in the figure, give the correct shock solution. From a computational point of 

view, Eq. 2.36 can be solved for one of the key tie lines (b) to determine a shock velocity. 

Subsequently, the left-hand side of Eq. 2.36 is fixed and solved for S on the adjacent tie line 

(a). If a solution exists, tie line (b) holds the tangent part of the shock and the construction is 

completed. Otherwise the procedure is reversed (tangent construction to tie line (a)) and a 

solution will be found. Two neighboring key tie lines may also be connected by a genuine 

shock. In such a case a composition point on one of the tie lines is known in advance and Eq. 

2.35 is used directly to calculate the shock velocity and the landing point composition on the 

neighboring key tie line.  

2.4.3 Continuous Variation along Tie Lines and Constant States 

To illustrate the existence and the nature of continuous variation along key tie lines as well as 

constant states three neighboring key tie lines are considered. A sketch of the tie lines is given 

in Figure 2.6. 

Figure 2.6: Illustration of continuous variation along a key tie line and constant states. 

It is assumed that the tie lines are connected by shocks and hence must intersect at I1 and I2

upon extension. Starting at the upstream intersection point I1 a tangent construction is made, 
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which results in the jump point a, the landing point b and the shock velocity Λab. The shock 

velocity is equal to the tie line eigenvalue at point a (df/dSa = λa). Next, two different cases 

can arise. In the first case, a tangent construction from the intersection point I2 is made giving 

the jump point c, the landing point d and the shock velocity Λcd. For this construction the 

shock velocity equals the tie line eigenvalue at point c (df/dSc = λc). In order for the two 

segments to be compatible they must comply with the velocity rule. That is, characteristic 

wave velocities must increase in the downstream direction. Thus, for the segments to be 

compatible 

(2.37)

On the assumption that Eq. 2.37 is not violated in this scenario, the saturation profile 

corresponding to the shock segments is sketched (full line) in Figure 2.7. 

Figure 2.7: Sketch of some possible combinations of constant states and continuous 

variation on key tie lines. 

The saturations at points a and b are connected by a shock (vertical line). As the tie line 

eigenvalue at point b exceeds the speed of the shock, a constant state (constant saturation) 

follows the tangent shock allowing the saturation at the landing point to speed up and match 

the tie line eigenvalue. The compositions corresponding to points b and c are then connected 

by continuous variation along the tie line (curved segment in Figure 2.7) until the tangent 

point of the second shock construction is reached. 
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By, on the other hand, assuming that Eq. 2.37 is violated by the two tangent constructions a 

different scenario will arise. In the illustrated case the tangent construction from I2 must be 

replaced by a genuine shock. As stated previously, one point is known in advance when the 

shock balance for a genuine shock is solved. In Figure 2.6 that is the composition at point b.

The shock velocity of the genuine shock Λbc* must be larger than Λab and hence a constant 

state enters the solution. The saturation profile corresponding to the second scenario is 

illustrated in Figure 2.7 by the dotted line from point b and on. 

2.4.4 Continuous Variation along Nontie Line Paths 

As pointed out previously a solution path can switch from a tie line path to a nontie line path 

due to the non-strictly hyperbolic nature of the conservation equations. Thus, two adjacent 

key tie lines can be connected by continuous variation along a nontie line path (rarefaction) as 

opposed to the shock constructions described in the preceding sections. The nontie line path 

travels a sequence (family) of tie lines which form a ruled surface. In general the ruled surface 

of a given nontie line path can be linked to an envelope curve as illustrated by Figure 2.8 in a 

2-D projection. 

Figure 2.8: 2-D projection of ruled surface of tie lines and corresponding envelope curve. 

The tie lines on a ruled surface are all tangents to the envelope curve upon extension as 

depicted in Figure 2.8. The switch between tie line and nontie line paths can only take place at 

equal eigenvalue points and hence a method for locating the equal eigenvalue points is 

required. Two methods for location of the equal eigenvalue points are available. One 

approach is to locate the equal eigenvalue points by combining an iterative scheme with a 

direct calculation of the eigenvalues along a given key tie line. Dindoruk7 suggests a far 
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simpler and more elegant approach where the variation of nontie line eigenvalues along a key 

tie line is linked to the corresponding envelope curves. Each key tie line connects nc-2 ruled 

surfaces corresponding to the directions of the nontie line eigenvectors (ek) and can thus be 

linked to nc-2 envelope curves (Ek). Dindoruk7 demonstrates that the superficial vapor 

saturation θk at which a key tie line extension is tangent to the envelope curve Ek can be 

calculated as 

(2.38)

λk is the k'th nontie line eigenvalue at an arbitrary point on the key tie line corresponding to 

the vapor saturation S and a fractional flow of vapor f(S). In this approach the eigenvalues 

only have to be calculated once to determine the nc-2 θk's. The variation of the nontie line 

eigenvalues along a key tie line can subsequently be calculated by isolation of λk in Eq. 2.38. 

The equal eigenvalue points are calculated, in a tangent construction manner, by solving Eq. 

2.39:

(2.39)

for the vapor saturation. A plot of the typical variation in eigenvalues along a key tie line 

along with the equal eigenvalue points is given for a quaternary system in Figure 2.9. 

Figure 2.9: Equal eigenvalue points and variation of eigenvalues along a key tie line. 
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2.5 Approximation of Key Tie Lines 

The tools for constructing solutions to the 1-D gas injection problem, presented in the 

previous sections, all assumed that the location of all key tie lines was known in advance. 

However, that is not the case in general. The analytical solutions previously presented in the 

literature have been restricted to considering only quaternary systems when more than one 

component is present in the injected gas. For systems with more than four components the 

presented solutions have been restricted to considering injection of pure component gases and 

fully self-sharpening systems. For a fully self-sharpening system the solution path is made up 

exclusively of shocks and hence the key tie lines must intersect pairwise38 as illustrated in 

Figure 2.10. 

Figure: 2.10 Illustration of intersecting key tie lines. 

The combination of using a pure component injection gas and a self-sharpening system allows 

the key tie lines to be located in a sequential manner. The approach to location of the tie lines 

is discussed in sections 3.3.6 and 3.4. 
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If two key tie lines are connected by continuous variation along a nontie line path (spreading 

wave), there is no proof whether or not these tie lines will intersect upon extension. Wang and 

Orr52,53 demonstrated by calculations the modesty of the error introduced by assuming that tie 

lines connected by a spreading wave intersect. The tie line intersection approach can thus be 

used to approximate key tie lines. The intersection approach forms the backbone of this work 

in the sense that it is used for predicting the minimum miscibility pressure in Chapter 3 and 

for generating approximate 1-D solutions in Chapters 4 and 5. 

2.6 Summary 

In this chapter a mathematical formulation of the one-dimensional dispersion free two-phase 

flow problem has been presented. The presentation includes two versions of the mass 

conservation equations: A general version and a simplified version. In the simplified version 

components are assumed to mix ideally as they transfer between equilibrium phases. The 

conservation equations are given by a set of first order non-strictly hyperbolic PDEs which 

along with the specification of constant initial data give rise to a Riemann problem. It is 

illustrated how the PDEs can be transformed into an eigenvalue problem which can be solved 

analytically due to the self-similarity of the solution. 

The uniqueness requirement, the velocity rule and the entropy condition are outlined. It is 

emphasized that the solution to the 1-D flow problem is controlled by the geometry of nc-1

key tie lines in the compositional space. Two of these are the initial and the injection tie lines. 

The remainder of the key tie lines is known as crossover tie lines.  

The reader is introduced to the tools available for constructing analytical solutions to the 1-D 

flow problem.  In this connection it has been demonstrated how shock balances can be solved 

on the basis that two key tie lines connected by a shock must intersect. The appearance of 

spreading waves (continuous variation along nontie line paths) due to the non-strictly 

hyperbolic nature of the conservation equations has been discussed.  

The need for a general approach to approximation of the key tie lines has been discussed. An 

approach, known as the tie line intersection approach, has been sketched and will be 

developed further in the following chapters for the purpose of calculating the minimum 

miscibility pressure and for generation of approximate 1-D solutions to the simplified and the 

general 1-D flow problem.  
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3. Determination of the Minimum Miscibility Pressure 

In this section the problem is addressed how to determine the minimum miscibility pressure 

(MMP). Initially, the reader is introduced to the main mechanisms controlling the 

development of a miscible displacement. Then a brief presentation of the methods, previously 

presented in the literature, for prediction of the MMP is given. Finally, a new approach to 

calculation of the MMP is presented.

3.1 First contact miscibility 

At a given temperature and pressure, an injection gas is first contact miscible with an oil if 

any mixture of the two fluids forms a single phase. The lowest pressure at which two fluids 

are first contact miscible is known as the first contact miscibility pressure (FCMP). The 

definition of the FCMP is sketched in Figure 3.1. 

Figure 3.1: Definition of the first contact miscibility pressure (FCMP). 

In the pseudoternary representation of Figure 3.1 the dilution line connecting the oil and the 

gas compositions must be tangent to the phase boundary at the FCMP. For a multicomponent 

fluid description, the FCMP can be determined by plotting the saturation pressure of all 

possible mixtures of the oil and the gas vs. the mixing ratio α. The maximum on the Psat vs. α

curve is then the FCMP. Reservoir engineers refer to the Psat vs. α curve as a swelling test. 

C1

C2-C6

C7+

Gas

Oil

P = FCMP

Two phase region



 Chapter 3. Determination of the Minimum Miscibility Pressure 24 

3.2 Multicontact Miscibility 

When the vapor and the liquid phases move through the porous media, the fluids come into 

contact with multiple different compositions. As a consequence, the component present in the 

system partition between the equilibrium phases and miscibility may develop along the 

displacement by three different mechanisms. These are 

• The vaporizing gas drive 

• The condensing gas drive 

• The combined vaporizing/condensing gas drive 

When the development of miscibility is controlled by a vaporizing gas drive (VGD), 

intermediate components (C2-C6) from the oil phase are gradually vaporized by the passing 

vapor, forming a denser vapor phase. At some point during the displacement an enriched 

vapor phase becomes locally miscible with the liquid phase. The characteristic features of the 

vaporizing gas drive are sketched in Figures 3.2 and 3.3 

Figure 3.2: Developed multicontact miscible displacement. Vaporizing drive. The figure 

illustrates the development of K-factors (vapor to liquid phase ratio of 

components present in the mixture) along the displacement direction. 
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Figure 3.3: Developed multicontact miscible displacement. Vaporizing drive. The figure 

illustrates the development of phase densities along the displacement direction. 

Figure 3.3 illustrates how the density of the vapor phase starts to increase in the vaporizing 

segment of the displacement. The density of the liquid phase decreases over the same segment 

and coincides with the vapor phase at the single phased displacement front. In the illustrated 

case the miscible front is also the leading front of the displacement. Development of 

multicontact miscibility by a vaporizing mechanism will, due to the nature of the VGD, 

normally be possible if light gases are injected. Examples of light injection gases are pure N2

and pure methane.

On the other hand, if gas mixtures with a high content of intermediate and heavier 

components (enriched gas) are injected into the porous media, a different mechanism may 

control the development of miscibility. When an enriched gas  comes into contact with the oil 

in place, intermediate and heavier components may condense into the oil forming a lighter oil 

phase. Eventually, the enriched oil phase can become locally miscible with the gas phase. If 

multicontact miscibility develops by this phenomenon, the mechanism controlling the 

development of miscibility is known as a condensing gas drive (CGD). The characteristic 

features of a CGD are given in Figures 3.4 and 3.5.  
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Figure 3.4: Sketch of a developed multicontact miscible displacement. Condensing drive. 

The figure illustrates the variation in K-factors along the displacement direction. 

Figure 3.5: Sketch of a developed multicontact miscible displacement. Condensing drive. 

The figure illustrates the development of phase densities along the displacement 

direction.

In Figure 3.5 the density of the gas phase decreases across the condensing segment as the 

intermediate components are migrating into the oil phase. The original injection gas becomes 
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miscible front differs from the leading front, which is located at the end of the condensing 

segment. 

The existence of a combined vaporizing and condensing gas drive was discovered by Zick58

and subsequently by Stalkup44. They pointed out the possible coexistence of a vaporizing and 

a condensing segment along the displacement direction. The typical features of the combined 

mechanism are illustrated in Figures 3.6 and 3.7. 

Figure 3.6: K-factor profile along the displacement direction for a v/c gas drive. 

Figure 3.7: Density variation along the displacement direction for a v/c gas drive. 
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Starting from the injection site, the density of the gas phase increases along the displacement 

direction due to the vaporization of intermediate components. Then in a near-miscible zone, 

intermediate components start to migrate back into the liquid phase by condensation, forming 

a condensing segment.   

The discovery of the combined vaporizing and condensing mechanism was a significant 

milestone in understanding and modeling miscible as well as near-miscible gas injection 

processes. The significance will become evident from the following presentation and 

discussion of previously suggested methods for calculation of the minimum miscibility 

pressure.

3.3 Traditional Determination of the MMP 

Ever since the injection of gas became a prospect of enhancing the recovery from oil 

reservoirs, methods for prediction of the minimum miscibility pressure have been suggested 

in the literature. Traditionally, the minimum pressure at which the gas should be injected in 

order to realize a miscible displacement (MMP) has been determined experimentally by 

slimtube experiments. The experimental apparatus used for slimtube experiments is shown in 

Figure 3.8: 

Figure 3.8: Sketch of a slimtube apparatus47.



 Chapter 3. Determination of the Minimum Miscibility Pressure 29 

The slimtube apparatus consists of a long steel tube packed with sand to ensure proper mixing 

of the fluids. The tube is initially saturated with reservoir fluid and placed in a constant 

temperature air bath. The gas of interest is then injected into the tube at constant velocity or 

constant pressure drop and the reservoir fluid is displaced. The produced fluids are collected 

at the outlet and the recovery of the original oil in place (OOIP) is calculated after 1.2 pore 

volumes have been injected. Unless otherwise mentioned, the recovery is defined as the 

volume-based ratio of the produced oil and the OOIP under standard conditions (25oC and 1 

atm). The apparatus is then cleaned and the procedure is repeated at a different average 

pressure. By plotting the recovery factors vs. the corresponding average pressure, a picture 

like Figure 3.9 typically emerges. 

Figure 3.9: Sketch of a typical recovery vs. pressure plot. Definition of the MMP. 

The experimental recovery curve exhibits two different regions. At low pressures the recovery 

increases more rapidly with increasing pressure than at higher pressures. The break point on 

the recovery curve has traditionally been used to determine the pressure at which a miscible 

displacement develops, and it was hence considered to be at the MMP. By increasing the 

injection pressure above the MMP, only a minor increase in the recovery is achieved.  Thus 

the determination of the MMP is of major economic importance when implementation of a 

gas injection project is considered. 
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Obviously, the experimental approach to determination of the MMP is very time consuming 

and consequently expensive. This fact qualifies the massive effort spent on the development 

of predictive tools.  The numerous suggestions for such predictive tools, documented in the 

literature, can be organized in six main groups: 

• Empirical correlation 

• Ternary representation/ Limiting tie line approach 

• Single cell simulation 

• Slimtube simulation 

• Multicell simulation 

• Semi-analytical methods by the intersecting tie line approach 

The different methods will be described and briefly discussed in the following subsections. 

3.3.1 Empirical Correlations 

Various authors have developed empirical correlations for the purpose of predicting the 

MMP10,11,12,13,25,41,57. Most of these are based on the theorem of corresponding states or 

methods derived from this theorem. Experimental MMPs are correlated with properties like 

pseudocritical temperature and pressure, gas densities and molecular weight of the C7+

fraction. Most of the methods are based on studies of pure injection gases (e.g. CO2) or 

slightly contaminated injection gases. As in any other application of the corresponding states 

principle, the predictions become unreliable upon extrapolation. Hence, good results can only 

be obtained for systems very similar to the reference system. The correlations are easy to use 

and give a fast result, but as soon as the correlations are used for other systems than the 

reference, the predicted MMPs are of very little use. Consequently, more general methods for 

prediction of the MMP are needed. 

3.3.2 Ternary Representation/Limiting Tie Line Approach 

With the discovery of the vaporizing and the condensing mechanism42 in the late 1950s, 

pseudoternary representations of the phase behavior of gas-oil systems were used to predict 
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the development of multicontact miscibility in gas injection processes. The properties of such 

a representation are shown in Figure 3.10. 

Figure 3.10: Pseudoternary representation of the gas injection process. 

Two tie lines denoted the injection and the initial tie line are illustrated in Figure 3.10. These 

tie lines extend through the injected gas composition and the initial oil composition 

respectively. A miscible displacement, in the pseudoternary sense, develops at a pressure 

where one of these tie lines becomes a critical tie line (tangent to the two-phase boundary). In 

the illustrated case the initial tie line becomes a critical tie line at a lower pressure than that of 

the injection tie line. This corresponds to vaporizing gas drive in the sense that the initial oil 

becomes multicontact miscible with a richer gas phase. If the injection tie line becomes 

critical the mechanism controlling the development of miscibility is a CGD as the injected gas 

becomes miscible with a lighter oil phase. For the system illustrated in Figure 3.10 the 

pressure needed for development of a miscible displacement would be lower for the VGD 

than for the CGD. Hence, in the pseudoternary sense, the VGDMMP would be considered as 

the MMP. The pressure at which the initial and the injection tie lines become critical can be 

calculated by using a negative flash algorithm (Whitson and Michelsen56) or by using the 

mixing cell approach described in section 3.3.3 
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Use of the pseudoternary representation for prediction of the MMP give rise to the problem 

that the result can only be rigorously correct for true ternary systems because of the 

partitioning of intermediate components (C2-C6) during the displacement. In other words, the 

properties of the pseudocomponent C2-6 change along the displacement process and the shape 

of the two-phase region changes accordingly58. Another more fundamental problem of using 

the ternary representation is that the development of miscibility can only take place at the 

injection site (condensing drive) or at the displacement front (vaporizing drive). Or stated in 

another way, the ternary representation cannot predict the existence of a combined VGD/CGD 

mechanism. 

3.3.3 Single Cell Simulators 

To account for the deficiencies of the pseudoternary approach to determination of the MMP, 

several methods based on a single mixing cell have been suggested (e.g. Jensen and 

Michelsen17). In the mixing cell approach, the thermodynamic behavior of the reservoir fluid 

and the injected gas is described as a multicomponent system by an equation of state (EOS). 

The logic of the mixing cell approach is illustrated in Figure 3.11. 

a) Forward contact 

b) Backward contact (reversed contact) 

Figure 3.11: Sketch of the mixing cell approach.  

Oil batch Gas Excess liquid

Gas batch Oil Excess gas
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The mixing cell approach consists of two different numerical experiments. In the first case (a) 

a cell of constant volume, temperature and pressure is filled with the injected gas. A batch of 

the reservoir fluid is added and the resultant mixture is flashed. The excess volume of the cell 

is then removed. Any liquid formed by the contact is removed before gas is removed. After 

removing the excess volume a new batch of fresh oil is added, and the procedure is repeated 

until the composition in the cell no longer changes. If the mixing cell forms a single phase 

during any of the contacts, the pressure is above the MMP and a new experiment is performed 

at a lower pressure. On the other hand, if the simulation converges as a two-phase system, the 

pressure is below the MMP and a new run is performed at a higher pressure. The pressure can 

be updated by a simple bisection approach. The MMPone-cell is defined as the pressure at which 

the simulation converges at a critical composition. A typical result of a one-cell simulation is 

illustrated in Figure 3.12. 

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0 20 40 60 80 100 120 140 160

Number of contacts

L

Initial tie-line
Onecell simulation
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The y-axis in the figure is the length of the tie line from each contact. The length of a tie line 

can be defined as 

(3.1)

where xi and yi are liquid and vapor mole fractions. In Figure 3.12 the composition initially 

moves towards the critical locus and reaches the minimum distance after ~30 contacts. Then 

the distance increases and the simulation converges at the initial tie line. By increasing the 
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pressure, the simulation will converge at a composition different from the initial tie line. This 

is why different values of the MMP in some cases are obtained from one-cell simulations and 

limiting tie line approaches based on negative flash calculations. Such difference has been 

reported for reservoir fluids by Jensen and Michelsen17 and described in detail by Wang and 

Orr52.

In the backward contact scheme (Figure 3.11b) the cell is initially filled with oil and fresh 

injection gas is added in batches. Excess gas is removed before excess liquid and the rest of 

the scheme is similar to that of forward contacts.  

The physical locations corresponding to the one-cell simulations are the displacement front 

(forward contacts) and the injection site (backward contacts). If the features of the combined 

vaporizing and condensing mechanism are recalled, miscibility developed by a combined 

mechanism cannot take place at the injection site or at the displacement front. Hence, the one-

cell simulators can only predict the rigorously true MMP for a pure condensing or pure 

vaporizing displacement. Pure vaporizing displacements exist for e.g. injection of N2 or 

natural gases mainly consisting of CH4 into oil. For more complex injection gases the 

displacements are always combined by nature and the use of one-cell simulations will lead to 

an overestimation of the MMP16. Pure condensing displacements have not, so far, been 

reported for multicomponent fluid descriptions. 

3.3.4 Slimtube and Multicell Simulations 

With the discovery of the combined VGD and CGD mechanism controlling the development 

of miscibility, Zick58 and Stalkup44 illustrated that more complex methods have to be used in 

order to capture the true nature of the general 1-D gas injection process. These methods fall 

into two categories: A mathematical approach and a physical approach. The mathematical 

approach is the slimtube simulations where the conservation equations governing 1-D two-

phase dispersion-free flow are solved by a finite difference (FD) approach. A variety of 

different FD methods can be found in the literature, of which the simplest and most widely 

used is the fully explicit one-point upstream weighting scheme. The slimtube simulations are 

used to generate recovery curves and the MMP can be determined by the breakpoint on these 

curves. In the physical approach, the slimtube is described by a sequence of interconnected 
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tanks as illustrated in Figure 3.13. This approach is referred to as the multicell (MC) approach 

(Metcalfe33).

Figure 3.13: Sketch of the multicell approach. 

The tanks are initially filled with reservoir fluid and gas is added in batches. Each batch is 

added to the first cell. The resultant overall composition in the cell is flashed and the excess 

volume is moved to the neighboring cell. This procedure is repeated for each cell until the 

production cell (cell n) is reached and a new batch is added to the first cell. The excess 

volumes are moved according to some specified fractional flow function. As for the FD 

approach, recovery curves are generated and the MMP can be estimated. It is common to both 

approaches that the simulation results, and hence the determination of the MMP, are strongly 

affected by numerical dispersion. Numerical dispersion originates from the discretization of 

the flow problem. The coarser grid blocks (lower number of cells) used in the simulation the 

larger the effect of numerical dispersion. The presence of numerical dispersion has the effect 

of smearing out the recovery curves and make the determination of a break point more 

difficult/inaccurate. The potential grid size dependence on recovery curves from FD 

simulations is illustrated in Figure 3.14.  

Figure 3.14: Recovery vs. pressure at 1.2 pore volumes injected (PVI). Δτ/Δz = 0.1. 
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Hence, the task of determining the MMP by FD/multicell approaches becomes a balance 

between acceptable accuracy and acceptable CPU time consumption. Various attempts to 

eliminate the numerical dispersion have been suggested, starting with the paper of Stalkup45.

The general idea is to extrapolate the recovery factors from coarse grid/cell simulations to an 

infinite number of grid blocks/cells. A comparison of different extrapolation procedures is 

found in Høier16. Even if extrapolation procedures are combined with FD/MC simulations the 

CPU time consumption for determination of the MMP is still quite extensive. Thus, 

development of new and faster methods for calculation of the MMP is required. 

3.3.5 Semi-analytical Calculation of the MMP 

The semi-analytical approach to calculation of the MMP is based on the analytical theory for 

1-D dispersion-free two-phase flow outlined in Chapter 2. The backbone of the semi-

analytical approach is that the composition path specifying the solution to the 1-D flow 

problem has to travel through a sequence of key tie lines36. For some systems where the 

solution to the 1-D problem consists of shocks only, the extensions of these key tie lines (the 

initial tie line, the injection tie line and nc-3 crossover tie lines) have been proven to intersect 

rigorously. In the general case and for the purpose of calculating the MMP, the assumption 

about intersecting key tie lines has proven to be a very good approximation53. Orr et al.38

showed that multicontact miscibility develops at a pressure where one of the key tie lines 

becomes a critical tie line (shrinks to a point). Dindoruk7 used the intersection approach to 

study the MMP behavior of four-component N2 systems and Johns and Orr23 extended the 

approach to fluid descriptions with up to 11 components, considering only pure component 

injection gases. Wang and Orr52 extended the previous works to multicomponent mixtures 

with an arbitrary number of components in the injection gas. They used an iterative scheme 

based on successive substitution to solve their formulation of the intersection equations, but 

reported numerical problems due to singularities for some systems. Their work formed the 

basis for a new approach developed in the course of this study. The new approach is also 

presented in Jessen et al.18 whereas results from the case study in Section 3.5 are given in 

Jessen et al.19
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3.4 Global Approach for Calculation of the MMP 

A new algorithm has been developed for calculation of minimum miscibility pressure for the 

displacement of oil by multicomponent gas injection. The algorithm is based on the key tie 

line identification approach initially addressed by Wang and Orr53. In this work a new global 

approach is introduced. A number of deficiencies of the sequential approach have been 

eliminated, resulting in a robust and highly efficient algorithm. The time consumption for 

calculation of the MMP in multicomponent displacement processes has been reduced 

significantly and calculation of the MMP can now be performed within a few seconds on a PC 

for a 15-component gas mixture. Therefore the algorithm is particularly suitable for gas 

enrichment studies or other case studies where a large number of MMP calculations are 

required. Predicted results from the key tie line identification approach are shown to be in 

excellent agreement with slimtube data and with other MC/FD simulators presented in the 

literature. 

3.4.1 Mathematical Approach 

In the work of Wang and Orr53 the existence of a point of intersection I is used to specify that 

two tie lines A1 – B1 and A2 – B2 are coplanar (Figure 3.15). Let the end points (A1, A2)

represent the vapor compositions and (B1, B2) the liquid compositions.

Figure 3.15: Definition of coplanar tie lines. 
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The coordinates of I must then satisfy 

(3.2)

In this formulation the intersection point can, however, be located far outside the positive 

composition space and the corresponding vapor fractions β1 and β2 become numerically large 

when tie lines are close to parallel. In fact, the values of the vapor fractions may even change 

from minus infinity to plus infinity as tie lines change orientation. This feature will frequently 

result in numerical difficulties and should therefore be avoided.

We find it preferable to express the colinearity condition by the requirement that a point of 

intersection I* between the lines A1 – B2 and A2 – B1 must exist (Figure 3.15). In this 

formulation Eq. 3.2 is replaced by 

(3.3)

The new formulation of the intersection point constrains the corresponding variables α and β

to be in the interval of [0 ; 1], which is far more convenient from a numerical point of view. In 

the global approach the succession of nc-1 intersecting key tie lines is written as 

(3.4)

where i and j specify the component number and the tie line number respectively. The 

sequence of tie lines must connect the initial tie line and the injection tie line. Hence, we 

specify the initial oil composition zoil and the injection gas composition zinj by 

(3.5)

Eqs. (3.4) and (3.5) must be solved subject to the equilibrium constraint: 

(3.6)
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Finally the mole fractions must sum to unity  

(3.7)

The MMP is determined as the lowest pressure where one of the tie lines becomes critical. 

3.4.2 Solution Strategy 

In order to solve the set of Eqs. 3.4-3.7 at a specified pressure, an initial estimate of all 

variables is required for a Newton-Raphson iteration scheme. This estimate has to be fairly 

accurate, in particular at pressures close to the MMP, where one tie line is nearly critical. An 

inaccurate initial estimate is here very likely to result in the “trivial solution” with two 

equilibrium phases becoming of identical composition, which leads to divergence. To ensure 

an adequate quality of the initial estimate, the overall calculation is divided into three distinct 

steps.

In the first step we select a pressure pini much lower than the assumed MMP in order to 

guarantee that all equilibrium phases are far from being critical. In addition, we select an 

approximate injection gas, consisting of the component present in the largest amount in the 

injection gas concerned, and neglect all other components. Wang and Orr53 have shown that 

for a pure injection gas the sequence of tie lines can be determined in a simple sequential 

manner as described below. The tie line extending through the initial oil can easily be located 

by a negative flash calculation (Whitson and Michelsen56). Then the initial tie line is 

extrapolated to the point where the composition of the most volatile component k (apart from 

the injected component) equals zero: 

(3.8)

Based on the overall composition at βk the first crossover tie line can be located by 

performing another negative flash calculation. Then the most volatile among the remaining 

components is removed and the procedure is repeated until the tie line extending through the 

injection gas is reached. In the pure component gas injection case, only the heavy component 

of the oil and the injected component are represented on this tie line.
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In the second step we specify the injection gas composition as 

(3.9)

where the superscript pure indicates the injection gas used in the first step. The solution from 

the first step corresponds to θ = 0, whereas the solution for the injection gas considered 

corresponds to θ = 1. By use of the θ = 0 solution as the initial estimate, the solution for a 

small value of θ is calculated, which is again used to determine consecutive solutions until we 

arrive at the desired θ = 1 solution. In the final step, the injection gas composition is fixed at 

the true value and new solutions are determined at increasing pressures, by using that from the 

previous pressure step as initial estimate, until the MMP is reached. The measurement of the 

distance from a critical point dj is calculated in each pressure step for all key tie lines j by 

(3.10)

To improve the performance of the algorithm the sensitivity equation  

(3.11)

is solved to find the pressure derivatives of all variables. v is the variable vector. No 

significant computational expense is introduced by solving Eq. 3.11 as all matrices required 

already exist in a decomposed form. The pressure derivatives are then used to obtain a better 

estimate for the variables at new pressures and thus lower the number of iterations necessary 

in each pressure step. Furthermore, the derivatives indicate how much the pressure can be 

increased in each step. This is accomplished by using the fastest changing composition as a 

step moderator by making sure that the mole fractions do not extrapolate outside the interval 

[0 ; 1]. 
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3.4.3 Linear Solver for Newton-Raphson Iteration 

To solve the non-linear system of equations described in the previous section a Newton-

Raphson scheme is applied with analytical calculation of all elements in the Jacobian matrix. 

In each iteration the linear system of equations 

(3.12)

must be solved for the correction vector Δ. J is the Jacobian matrix and F is the trial function 

vector. The linear system may be solved directly by triangular (LU) decomposition followed 

by backsubstitution. For small systems (number of equations N < 100) this approach is very 

efficient. As the size of the system is increased, the number of algebraic manipulations for the 

decomposition increases as N3. For a 15-component fluid description the linear system to be 

solved in each iteration is of the size N = 448, and for this size the LU/back procedure is quite 

expensive. From initial studies of the Newton scheme it was found that the linear solver is the 

most time consuming part of the algorithm and hence should be the target for optimization in 

order to speed up the calculation. By analysis of the structure of the linear system it is found 

that an excessive number of multiplications by zero is performed when a general solver is 

used. Therefore, a solver specific to the global formulation has been developed. Figure 3.16 

gives the structure of the Jacobian matrix for a four-component mixture.  

Figure 3.16: Non-zero entries of the Jacobian matrix for linear system (x = non-zero 

element). 
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Non-zero entries are marked by x whereas zero entries are indicated by a dot. The structure 

allows the system of linear equations to be solved in a blockwise manner. By defining the 

submatrices A, B and S as illustrated in Figure 3.16 the original linear system of equations 

(3.12) can be rewritten as: 

(3.13)

(3.14)

(3.15)

(3.16)

where Δi and fi are subvectors of Δ and F. Eq. 3.13 can be solved independently of (3.14-

3.16). The correction vector Δ1 is then inserted into Eq. 3.14, allowing Δ2 to be expressed 

explicitly by Δα. This elimination procedure is repeated until Δα is found from Eq. 3.16. In 

this manner the full system is solved through a sequence of subsystems for which the 

LU/back procedure is still efficient. The size of the subsystems for a 15- component mixture 

is N = 31. The difference in time consumption for solving the linear system by the direct 

LU/back approach and by the blockwise approach described above is illustrated in Figure 

3.17.

Figure 3.17: Comparison of time consumption for linear equation solvers. 233MHz CPU. 
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It should be pointed out that the same LU and back substitution routines were used in both 

cases. The difference in performance is very significant. For a mixture containing 15 

components the CPU time consumption, for a single iteration, is reduced by more than a 

factor of 100. 

3.4.4 Modification of Iterative Scheme in the Near-critical Region 

As the pressure approaches the MMP it becomes unsafe to use the first order approximation 

for initial estimates obtained from solving the sensitivity Eq. 3.11, because the variables 

change rapidly and in a highly non-linear manner in the vicinity of a critical region. A typical 

behavior of the α’s entering Eq. 3.4 is illustrated in Figure 3.18.  

Figure 3.18: Typical variation of α as a function of pressure.
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In order to improve the stability of the algorithm a modification of the original formulation is 

introduced for calculations in the near-critical region. The global formulation for locating the 

key tie lines can be regarded as the calculation of nc-1 coupled phase envelopes. Analogously 

to the phase envelope calculation of Michelsen34 it is favorable to change specifications in the 

vicinity of a critical region. Specifying a K-factor and using the pressure as an independent 

variable prevents getting trapped by the “trivial solution”. The fastest changing K-factor is 

that of the heaviest component on the shortest key tie line. To specify the K-factor an extra 

equation must be added to the original formulation. That is 

(3.17)

where the subscript min indicates the shortest tie line and K* is the specified value. After the 

specification of a K-factor the resulting problem can be written as 

(3.18)

The prime on F indicates the extra equation. The Newton-Raphson scheme corresponding to 

the new formulation includes calculation of a modified correction vector 

(3.19)

where the first term on the right-hand side is the contribution at constant pressure and the 

second term is the contribution from variation in pressure at constant compositions. The linear 

set of equations to be solved in each iteration is now written as 

(3.20)

(3.21)
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Δ can be expressed explicitly by Δp from Eq. 3.20. By substituting of this expression into Eq. 

3.21, Δp and subsequently Δ can be evaluated. Although an extra equation is added to the 

original formulation only an insignificant change in the time consumption is observed. When 

the solution corresponding to the specified K-factor is found the value of K* is increased and 

the procedure is repeated until some stop criterion is satisfied. As the pressure is the primary 

variable of interest (MMP), it should be pointed out that only very small changes in the 

pressure are observed when the specified K-factor approaches unity. This is due to the 

proportionality relation 

(3.22)

Hence, the calculation should be stopped at –lnK* < 0.05 in order to avoid unnecessary 

iterations. It is suggested switching between the iterative schemes when dmin < 0.15, where 

min denotes the tie line with the shortest distance to the critical region. Finally to accelerate 

the convergence in the critical region, improved estimates for the independent variables are 

obtained for each K*-step by solving the equations 

(3.23)

(3.24)

for the derivatives of v and p with respect to K*.

3.4.5 Examples of MMP Calculation 

The global approach described previously has been applied to a number of multicomponent 

systems ranging from heavy oils to gas condensates. In the numerical experiments presented 

in the following, phase equilibrium calculations were performed by use of the Peng-

Robinson40 equation of state. All experiments were run on a Pentium II 233 MHz PC. 
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Initially, the reservoir fluid from Zick58 is used as an example. This selection is due to the 

documented existence of the combined VGD and CGD mechanism controlling the 

development of miscibility. The fluid is characterized by the procedure of Pedersen et al.39,

using 12 pseudocomponents. The characterized fluid description is given in Table 3.1.  

- TC(K) PC(atm) ω kCO2,j 

CO2 304.2 72.9 0.228 0.00 

CH4 190.6 45.4 0.008 0.12 

C2 305.4 48.2 0.098 0.15 

C3 369.8 41.9 0.152 0.15 

C4 425.2 37.5 0.193 0.15 

C5 469.6 33.3 0.251 0.15 

C6 507.4 29.3 0.296 0.15 

C7+(1) 616.2 28.5 0.454 0.15 

C7+(2) 698.9 19.1 0.787 0.15 

C7+(3) 770.4 16.4 1.048 0.15 

C7+(4) 853.1 15.1 1.276 0.15 

C7+(5) 1001.2 14.5 1.299 0.15 

Table 3.1: Characterization of Zick58 oil including non-zero binary interaction parameters. 

Based on the characterization two numerical experiments were carried out. In the first 

experiment the oil was depleted to 103.4 atm at 358.15 K (Oil 1) and the MMP was 

determined for displacement by injection of Gas 1 (Table 3.2).  

- x-Oil 1 xOil 2 yGas 1 yGas 2

CO2 0.0449 0.0656 0.2218 0.1775 

CH4 0.2071 0.3711 0.2349 0.3878 

C2 0.0481 0.0538 0.2350 0.1880 

C3 0.0409 0.0373 0.2745 0.2196 

C4 0.0323 0.0261 0.0338 0.0271 
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C5 0.0247 0.0187 0 0 

C6 0.0298 0.0218 0 0 

C7+ (1) 0.2525 0.1791 0 0 

C7+ (2) 0.1285 0.0910 0 0 

C7+ (3) 0.0855 0.0605 0 0 

C7+ (4) 0.0631 0.0447 0 0 

C7+ (5) 0.0427 0.0302 0 0 

Table 3.2: Oil and injection gas compositions. Based on data from Zick58.

In the second experiment the oil was depleted to 206.9 atm at 358.15 K (Oil 2) and the MMP 

was determined for displacement by injection of Gas 2 (Gas 1 + 20 mole % methane). The 

results from the experiments are shown in Figures 3.19 and 3.20 whereas the numerical 

results are presented in Table 3.4.

A second series of experiments for a slightly volatile Oil 3, described in Høier16, has been 

performed. The 15-component oil composition and the injection gas composition are given in 

Table 3.3 whereas the fluid description is given in Appendix A.1. Three experiments, 

displacing Oil 3 by injection Gas 3, Gas 4 and Gas 5 (53% Gas 3 + 47% Gas 4) at 368.15 K 

are reported. Calculation results for the first two experiments are given in Figures 3.21 and 

3.22. The result from the third experiment is illustrated in Appendix A.2. Numerical values 

for all experiments are given in Table 3.4.  

- xOil 3 yGas 3 yGas 4

N2 0.785 1.58583 1.8579 

CH4 45.622 92.8772 55.5113 

CO2 0.265 0.59725 3.79585 

C2 6.092 3.66376 11.4829 

C3 4.429 0.38875 13.4119 

iC4 0.865 0.33887 2.0708 

C4 2.26 0.08508 6.52458 
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iC5 0.957 0.11535 1.68332 

C5 1.406 0.02264 2.38398 

C6 2.097 0.11333 0.5051 

C7+(1) 4.902 0.12047 0.6952 

C7+(2) 9.274 0.0914 0.0766 

C7+(3) 9.88 0.0001 0.00057 

C7+(4) 7.362 0 1.71E-05 

C7+(5) 3.804 0 0 

Table 3.3: Compositions of Oil 3 and Gas 3+4. Data from Høier16.

Figure 3.19:  Simulation results for Oil 1 displaced by Gas 1. The fourth crossover tie line 

becomes critical at 156.7 atm (MMP). Injection and initial tie lines are plotted as 

dotted and broken lines respectively.
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Figure 3.20: Simulation results for Oil 2 displaced by Gas 1. The third crossover tie line 

becomes critical at 211.0 atm (MMP). Injection and initial tie lines are plotted as 

dotted and broken lines respectively.

Figure 3.21: Simulation results for Oil 3 displaced by Gas 3. The second crossover tie line 

becomes critical at 519.3 atm (MMP). Injection and initial tie lines are plotted as 

dotted and broken lines respectively. 
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Figure 3.22: Simulation results for Oil 3 displaced by Gas 4. The eighth crossover tie line 

becomes critical at 217.3 atm (MMP). Injection and initial tie lines are plotted as 

dotted and broken lines respectively. 

Method / Oil Oil1-Gas1 Oil2-Gas2 Oil3-Gas3 Oil3-Gas4 Oil3-Gas5

Multicell , Høier16 - - 514.2 231.9 310.9 

Slimtube, Høier16* - - 512 ± 7 228 ± 10 302 ± 10 

Slimtube, Zick58 152 213.8 - - - 

Louis Bleriot** 157 211 524 216 298 

Key tie line 156.7 211.0 519.3 217.3 295.7 

Calculation Time (Secs) 0.7 0.7 1.9 1.7 1.6 

Table 3.4: Comparison with simulation results presented in the literature.  P (atm),   
* E300 simulation, ** multicell simulation (IVC-SEP program). 
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The MMP predictions by the presented algorithm are seen to be in excellent agreement with 

reported slimtube experiments and compositional simulators. In the work of Høier16 a number 

of compositional simulations, for different types of fluids, are presented. On the basis of these 

fluid descriptions the MMPs have been calculated under the same conditions. A general 

comparison of the MMPs predicted by the presented algorithm and the simulations of Høier16

and Zick58 is given in Figure 3.23. 

Figure 3.23: Comparison of calculation results with results from the literature16, 58.
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Raphson iteration. The repeated solution of the intersection equations offers very good initial 

estimates in each pressure/K* step and no more than five iterations are needed by the global 

approach even for the near-critical region. 

It should be emphasized that none of the presented calculation examples exhibit pure 

vaporizing or pure condensing mechanisms controlling the development of miscibility. This is 

evident from the fact that the critical tie line in all cases differs from the initial and the 

injection tie lines. 

3.5 Application of the New MMP Algorithm 

The modest time consumption for calculations of the MMP by the global approach makes the 

algorithm particularly useful in connection with gas enrichment studies as well as other 

studies where compositional simulators are significantly more costly. To illustrate in more 

detail some areas of application of the new algorithm, a case study relevant to considerations 

made by the reservoir engineer prior to any full scale modeling of a gas injection project is 

presented. Before any modeling work can be done, a reservoir fluid sample is sent to the PVT 

laboratory in order to obtain information about component distributions, densities, bubble- 

point pressures, swelling tests etc. This is the experimental basis for the generation of a fluid 

description entering the thermodynamic model (EOS) for prediction of phase equilibrium. 

Normally, a characterized fluid description is generated. This fluid description is then tuned to 

match experimental data from the PVT laboratory. Most of the standard PVT experiments 

give little or no information about the phase equilibrium in the critical/near-critical region(s). 

If it is recalled that prediction of the MMP is in fact prediction of a point on the critical locus 

some interesting questions could be: 

• To what extent will the prediction of the MMP be affected when a given fluid description 

is tuned to match other experimental data?  

• Does it make any difference what parameters are used to tune the thermodynamic model? 

• How sensitive is the predicted MMP to the number of components used in the fluid 

description? 
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All phase equilibrium calculations of the following subsections have been performed using 

the SRK EOS43. A real reservoir fluid described in Table 3.5 forms the basis of this study. 

Initially, the fluid is characterized by the method of Pedersen et al.39, using 15 pseudo-

components. The characterized fluid description is given in Tables 3.6 and 3.7. At the 

reservoir temperature (387.45 K), the fluid is reported to have a saturation pressure (Psat) of 

251.7 atm. 

Component Mole (%) ρ (Kg/m3) Mw(g/mole) 
N2 0.45   

CO2 1.64   
CH4 45.85   
C2 7.15   
C3 6.74   

i-C4 0.84   
n-C4 3.11   
i-C5 1.03   
n-C5 1.65   
C6 2.52   
C7 3.77 729.4 92 
C8 4.28 750.9 106 
C9 2.70 773.9 120 
C10 1.69 783.5 137 
C11+ 16.58 796.8 288 

Table 3.5: Fluid description for case study. 

 Tc(K) Pc(atm) ω Mw(g/mole) x-Oil 4 y-Gas 6 y-Gas 7

N2 126.200 33.6000 0.0400 28.016 0.450 0.49 0.67 
CO2 304.200 72.9000 0.2280 44.010 1.640 1.82 2.44 
CH4 190.600 45.4000 0.0080 16.043 45.850 81.39 68.16 
C2 305.400 48.2000 0.0980 30.069 7.150 9.15 10.32 
C3 369.800 41.9000 0.1520 44.096 6.740 4.67 9.50 

i-C4 408.100 36.0000 0.1760 58.123 0.840 0.50 1.09 
n-C4 425.200 37.5000 0.1930 58.123 3.110 1.24 3.75 
i-C5 460.400 33.4000 0.2270 72.150 1.030 0.20 0.95 
n-C5 469.600 33.3000 0.2510 72.150 1.650 0.26 1.31 
C6 507.400 29.3000 0.2960 86.177 2.520 0.09 0.91 
C7 632.800 30.2987 0.1842 109.007 12.440 0.19 0.90 
C11 659.605 23.4598 0.4773 175.327 6.320 0.00 0.00 
C16 703.646 19.2900 0.8197 256.674 5.024 0.00 0.00 
C23 766.497 16.7852 1.2114 370.099 3.240 0.00 0.00 
C33 892.990 15.1302 1.3718 590.374 1.996 0.00 0.00 

Table 3.6: Characterized fluid description. 
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3.5.1 Effect of Tuning and Lumping 

The predicted saturation pressure based on the initial characterized fluid description is 259.1 

atm. In order to obtain a better match on the predicted Psat the fluid description was tuned by 

five different approaches/parameters resulting in five tuned fluid descriptions. The parameters 

were

• The molecular weight of the plus fraction (re-characterization) 

• The critical temperature Tc of the heaviest component in the characterized fluid 

description

• The critical pressure Pc of the heaviest component in the characterized fluid description 

• The acentric factor ω  of the heaviest component in the characterized fluid description 

• The binary interaction parameter kij between CH4 and the heaviest component in the 

characterized fluid description 

The values of the tuned parameters for the five new fluid descriptions are given in Table 3.8.  

 CH4 C2 C3 to C33

N2 0.02 0.06 0.08 
CO2 0.12 0.15 0.15 

Table 3.7: Non-zero interaction parameters. 

Parameter Initial value Tuned value Psat (atm) MMP (atm) Dev % 

Experimental - - 251.7 370.1 0.0 

No tuning - - 259.1 363.7 1.7 

Mw (g/mole) 288.00 268 251.7 351.6 5.0 

Tc   (K) 892.99 830.50 251.7 365.1 1.4 

Pc   (atm) 15.13 12.38 251.7 370.8 -0.2 

ω 1.372 1.1331 251.7 366.1 1.1 

kij (CH4-C33) 0.00 -0.0856 251.7 366.5 1.0 

Table 3.8: Tuned parameters and a comparison of calculated MMPs for various tuning 
approaches.
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In order to match the experimental Psat when the molecular weight (Mw) of the plus fraction is 

used as a parameter a reduction of 7% is needed. This is of the same magnitude as the 

uncertainty of the experimental determination and hence considered to be reasonable. In the 

Tc-tuned description a reduction of 7 % is necessary to match the Psat, whereas a reduction of 

18% is needed in the Pc-tuned model. The magnitude of the latter is somewhat high but can 

still be accepted. For the ωnc-model, the tuned value is 17 % lower than the characterized 

value. Finally, a kij-value of -0.086 is needed in the last tuning approach.  

An experimental swelling test where the reservoir fluid Oil 4 is mixed with Gas 6 (Table 3.6) 

is compared with predictions of the different models in Figure 3.24. 

Figure 3.24: Swelling test simulations for different tuning approaches. 
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swelling test performance where the Mw-model is superior to the untuned model. Based on the 

investigated system it is concluded that a high accuracy in the prediction of a swelling test 

does not ensure a correct prediction of the MMP.

Although increasingly powerful computers are developed, the number of components used in 

three-dimensional compositional simulators is still limited to a maximum of about eight. 

Therefore, it is necessary to reduce the number of components used in the fluid description by 

a lumping procedure. The influence of lumping on the prediction of the MMP has been 

investigated for the reservoir fluid. Through a number of calculations with decreasing number 

of components, the variation in the MMP predictions has been determined. In this work, the 

clustering procedure of Montell and Gouel37 combined with property calculation of 

Leibovici30 is applied. Relative errors in Psat and MMP for the tuned models are shown in 

Figures 3.25 and 3.26 respectively.  

Figure 3.25: Lumping study. Relative error in Psat vs. number of components. 
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reservoir fluid, it is concluded that the key tie line approach has a low sensitivity to the 

number of components used in the fluid description. 

Figure 3.26: Lumping study. Relative error in MMP vs. number of components. 

3.5.2 Gas Enrichment Study 

If more than one potential injection gas is available, a gas enrichment study is necessary to 

determine which gas mixture should be injected into the reservoir. In this study a rich gas 

(Gas 7, Table 3.6) is considered as solvent. The fraction E of solvent added to the original 

injection gas is defined by 

(3.25)

A series of MMP calculations for different values of the solvent fraction has been made by 

use of the Tc-tuned model. Figure 3.27 shows the MMP as a function of the solvent fraction 

along with an indication of which key tie line controls the development of miscibility. At low 

values of the solvent fraction, the MMP decreases slowly up to a fraction around 0.1. In this 

region the 4th key tie line controls the miscibility process. Afterwards the MMP drops off 

rapidly until a solvent fraction of around 0.4 is reached. At this level of enrichment the MMP 

is reduced by 90 atm to approximately 280 atm. The development of miscibility is now 
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controlled by the 9th key tie line. Further enrichment of the injection gas does not affect the 

MMP. Hence, in this case, no further enrichment is necessary if the solvent gas can be used 

for other profitable purposes. 

Figure 3.27: Gas enrichment study. MMP vs. fraction of solvent Gas 7. 

In the gas enrichment study illustrated in Figure 3.27 the MMP is a monotonic, decreasing 

function of the fraction of solvent gas (E).  

Figure 3.28: Gas enrichment study. MMP vs. fraction of solvent gas (25 % N2 + 75% CO2).
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This is not always the case and the entire MMP vs. E needs to be investigated in order to 

locate the true minimum value of the MMP. As an illustration, a solvent gas consisting of 25 

% N2 and 75 % CO2 is considered. The MMP vs. E plot of this solvent is given in Figure 3.28. 

The MMP vs. E curve initially increases as the fraction of solvent is increased. Then, at an 

enrichment level around 0.1 the curve breaks and starts to decrease. The value of the MMP 

decreases until it reaches the minimum value at around E = 0.58 and starts, again, to increase 

until the maximum value of MMP is reached at E = 1.0. Thus, Figure 3.28 illustrates that the 

MMP vs. E relationship is not necessarily monotonic. 

3.6 Summary 

A brief introduction to the different approaches used for prediction of the minimum 

miscibility pressure over the last decades has been given. The overview aims to stress that 

more complex methods, like the FD/MC methods or the semi-analytical method, must be used 

to ensure a proper prediction of the MMP in general. 

A new global approach to calculation of the MMP has been presented. The algorithm is based 

on the semi-analytical approach and allows prediction of the MMP for gas injection processes 

using any number of components in the fluid description. The new approach has been tested 

on a number of different systems. All calculations have been verified with an in-house 

multicell compositional simulator. Most of the investigated systems have been bubble-point 

systems but also a few dew-point systems (gas condensates) have been investigated. For the 

latter systems the number of grids used in the compositional simulators has a large influence 

on the predicted MMP16. For gas condensates, MMPs predicted by the key tie line approach 

are found to be in good agreement with reported simulation results, but more condensate 

systems should be investigated before further conclusions are made. 

The global approach is superior to previously presented MMP algorithms in terms of the CPU 

requirement. Calculation times have been reduced to a few seconds on a PC. Thus, the 

algorithm offers an efficient tool for reservoir engineers studying gas injection processes.  
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Examples based on a case study are given to illustrate the use of the algorithm. The effects of 

tuning and lumping on the predicted MMP have been investigated. For this case study the 

variables used for tuning the fluid description to experimental PVT data did not influence the 

predicted MMP significantly. This may not hold true for all systems. The lumping study 

showed that the number of components used in the fluid description only had a minor effect 

on the predicted MMP as long as four or more components were used. As for the effect of 

tuning, this may not hold true for all systems. The lumping study verifies the fact that four or 

more components are needed in the fluid description in order to represent a combined v/c 

displacement. 

The algorithm was used in two gas enrichment studies with the aim of determining the 

optimal mixture of available injection gases. In the first enrichment study the MMP was 

found to be a monotonous function of the enrichment factor, while the second study exhibited 

a strongly non-monotonous behavior. The two cases are given to illustrate the need for more 

than a few points on the MMP vs. E curve and hence the need for a fast MMP algorithm. 
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 4. Approximate Semi-analytical Solutions to the 1-D Gas Injection Problem (NVC) 

In this chapter the algorithm for approximation of key tie lines, developed during the 

calculation of the MMP (Chapter 3), will be combined with the analytical theory of 1-D gas 

injection processes (Chapter 2) to obtain approximate semi-analytical solutions to the 

governing mass conservation equations. The simplified version of the conservation equations 

described in Section 2.1 is initially addressed. Due to the simpler mathematics involved in 

solving the NVC formulation of the flow problem, the NVC form serves as a proper starting 

point for generating algorithms for the general formulation. Further, it will be demonstrated 

how solution construction tools from a no volume change (NVC) algorithm can be used in a 

volume change (VC) algorithm by introducing minor modifications. 

4.1 Grouping of Analytical Solutions 

Solutions to the 1-D gas injection problem can be divided into two main groups. The first 

group describes fully shelf-sharpening systems where all key tie lines are connected by 

shocks. The second group describes systems where some key tie lines are connected by 

continuous variation along a nontie line path (rarefaction or spreading wave). The two groups 

are dealt with in separate subsections 

All analyses and examples in this chapter are based on a fractional flow function given by 

(4.1)

The residual oil saturation Sor is fixed at 0.2 and the vapor to liquid phase relative viscosity μr

is calculated by the Lohrenz-Bray-Clark31 correlation. The NVC algorithms for fully self-

sharpening systems and systems with nontie line rarefactions are also presented in Jessen et 

al.20
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4.2 Self-sharpening Systems 

Fully self-sharpening systems are characterized by the feature that all key tie lines are 

connected by shocks. For such systems the key tie line intersection approach is rigorously 

accurate because the extensions of a pair of key tie lines connected by a shock must 

intersect38. Two types of shocks occur. When the shock velocity matches the tie line 

eigenvalue (λtie line = df/dS) on one side of the shock, the shock is known as a tangent shock. 

When the shock velocity differs from the wave velocities on both sides of the shock, the 

shock is called a genuine shock.  Both types of shocks occur in typical solutions. Because the 

tie lines which make up the solution can be found by the intersecting tie line approach18,53, a 

full solution can be constructed if the shock composition points can be determined on each of 

the key tie lines. The only remaining question is: On which tie line does the solution 

construction begin? In the following, that tie line will be referred to as the “primary” tie line.  

Solution construction begins with finding the tangent shocks that connect the primary tie line 

to adjacent tie lines just upstream and downstream. For problems in which the injection gas 

composition lies on the vapor side of the two-phase region, the composition path lies on the 

vapor side of the equivelocity curve (where f=S)15. For such compositions, f > S.

It is now demonstrated that the primary tie line must be the shortest of the key tie lines. To 

prove the truth of this statement, consider the simple ternary vaporizing gas drive (Figure 

4.1a) in which oil (composition a) is displaced by gas (composition e). Two key tie lines 

make up the solution: The tie line extending through the initial oil composition, and the tie 

line extending through the gas composition. In this example, the tie lines are connected by a 

shock because a rarefaction between the oil tie line and the gas tie line would violate the 

velocity rule. The corresponding overall fractional flow curves for the two key tie lines are 

shown in Figure 4.1b, and the saturation profile for the solution is shown in Figure 4.1c. In 

this case, the leading shock is a tangent shock, found by constructing the chord from point a

in Figure 4.1b, which is tangent to the fractional flow curve for the oil tie line. The shock 

from point c on the oil tie line is found by constructing a chord from point X which is tangent 

to the fractional flow curve for the oil tie line. Point X (Figure 4.1a) is the intersection point 

of the two key tie lines. Point X in Figure 4.1b lies on the Q1 = G1 line.  
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Figure 4.1: Construction of tangent shocks. Existence of primary tie line. 

The composition of point d, the landing point on the gas tie line is given by the intersection of 

the chord with the fractional flow curve of the gas tie line. It should be noted that point d lies 

above the composition at which a chord constructed from the gas composition, point e, would 

be tangent to the fractional flow curve for the gas tie line. A continuous variation from point d

to that tangent point would violate the velocity rule, so a genuine shock from point d to point 

e is required. The velocity of that shock is given by the slope of the chord from point d to 

point e.

The tangent drawn from point X to point c in Figure 4.1b satisfies the following equations7:

 (4.2) 

where Scx and Sdx refer to the saturations at point X measured on the tie lines containing 

points c and d:
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Figure 4.1b shows that the tangent constructed from point c to X intersects the overall 

fractional flow curve for the injection gas tie line at point d. If, on the other hand, the chord 

had been drawn from point X to the tangent point on the gas tie line, the extension of the 

chord would not intersect the overall fractional flow curve for the oil tie line. Thus, it is not 

possible to satisfy the shock equations if the tangent has been constructed to the gas tie line, 

but it is possible to do so for the oil tie line. Analysis of the shock equations indicates that it is 

always possible to satisfy the shock equations for this example if Scx > Sdx. The length of the 

tie lines controls that restriction.  In this example, the oil tie line is short and the gas tie line is 

longer, so gc
1v – gc

1l > gd
1v – gd

1l. Because the differences in gc
1l and gd

1l are small, the length 

of the tie lines dominates the saturations in Eq. 4.3. Thus, if a shock between two tie lines is a 

tangent shock, the tangent must be constructed to the shorter of the two tie lines. 

Similar reasoning can be applied sequentially to each adjacent pair of tie lines, with the result 

that in fully self-sharpening systems the shortest of the nc - 1 key tie lines must be a tie line 

which is connected to tie lines just upstream and downstream by tangent shocks, with the 

tangents constructed from the intersection points to the shortest tie line. Therefore, the 

shortest tie line is the primary tie line. 

The algorithm for construction of fully self-sharpening 1-D solutions is: 

1. Locate all key tie lines by using the tie line intersection approach. The global solution 

algorithm of Jessen et al.18 presented in the previous chapter was used here. 

2. Locate the primary (shortest) key tie line and start tracing the solution upstream and 

downstream. For each adjacent pair of tie lines, the possibility of a tangent construction is 

initially investigated. The construction procedure is illustrated in Figure 4.2.  

3. Downstream construction: A tangent construction is made by solving Eq. 4.2 for (S1, λ1)

on the primary tie line from the first downstream intersection point (I1). The landing point 

on the downstream tie line (S2, λ1) is subsequently found by solving Eq. 4.2 with the 

shock velocity fixed. 
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4. For the next downstream pair, intersecting at I2, a new tangent construction is examined. 

From this point and forward the tangent construction may be invalid due to a violation of 

the velocity rule. That is, if the end point of the previous construction (S2, λ1) has a 

velocity which is higher than the jump or landing point from the new shock construction 

(S3, λ2). In such a case, the new pair of tie lines is connected by a genuine shock, which is 

followed by a constant state. If, on the other hand, two tangent constructions are made to 

the same tie line the tangent points are connected by either a direct jump or by continuous 

variation along the tie line. 

5. Step 4 is repeated until the tie line extending through the initial oil is reached. The 

solution path often enters (and leaves) the two-phase region by a tangent shock. However, 

for some systems, (Figure 4.1, for example), variation along the tie line violates the 

velocity rule and a direct jump is used.  

6. From the primary tie line, the solution path is traced upstream by the approach of steps 3 

and 4. 

Figure 4.2: Illustration of downstream solution path construction. 

4.3 Solution Example for Fully Self-sharpening System 

To illustrate the application of the algorithm for construction of self-sharpening solutions, the 

Oil 4/Gas 6 system given in Table 3.6 is revisited. The reservoir temperature is 387.45 K at 

which the bubble point pressure of the original oil is 252 atm. The pure component critical 
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volumes Vc, used for the prediction of phase viscosities, are calculated by specifying the 

critical compressibility factor of all components to be 0.307. The 1-D solution for the 

displacement of Oil 4 by Gas 6 at 275 atm is desired. The 14 key tie lines (those extending 

through the oil and gas compositions and 12 crossover tie lines) are determined, and the third 

crossover tie line is identified as the primary (shortest) tie line, the starting point for shock 

construction. The saturation profile is shown in Figure 4.3, and the details of the solution are 

given in Table 4.1.  

Figure 4.3: Comparison of analytical and numerical saturation profiles for displacement of Oil 

4 by Gas 6 at 275 atm and 387.45 K. The finite difference (FD) solutions were 

obtained with 100, 1000, and 10000 grid blocks and Δz/Δt = 10. 

The primary tie line is connected to the first downstream tie line by a tangent shock (d1). The 

remaining downstream part of the solution consists of genuine shocks, constant states, and a 

direct jump from the oil tie line to the initial oil composition. 

The upstream part of the solution starts with a tangent shock (d2) connecting the primary tie 

line to the next crossover tie line. The remaining upstream shocks are all genuine shocks with 

associated constant states, and another genuine shock connects the injection gas tie line to  
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the injection gas composition. A continuous variation connects the two shock points (d1 and 

d2) on the primary tie line. 

In order to confirm the analytical solution, a series of finite difference (FD) simulations was 

performed. Single-point upstream weighting with a Courant number (Δz/Δt) of 10 was used in 

all the simulations, which were run on a 450 MHz PC. The FD simulation scheme is 

described in Appendix A.3. The new two-phase PT flash algorithm developed by Michelsen35

was used in the FD simulator to speed up the numerical solutions. The numerical saturation 

profiles from simulations using 100,1000 and 10000 grid blocks are compared with the 

analytical profile in Figure 4.3. The CPU time required to construct the analytical solution 

was 0.9 second, compared to 4.4 seconds, 5.4 minutes and 7.8 hours used respectively in the 

numerical simulations. The coarse grid simulation (100 grid blocks) is not able to describe the 

details but only the general tendency of the dispersion-free solution. More details are captured 

by use of 1000 grid blocks and an excellent agreement is observed when 10000 grid blocks 

Point Tie line μgas/μoil Log (Knc) Znc S λ
Oil Initial 0.1719 -5.80352 0.019957 - 1.9972 - ∞
a  Initial 0.1719 -5.80352 0.011376 0.321 1.4501 - 1.9972 
b  1 0.1758 -5.70171 0.010801 0.344 1.2170 - 1.4501 
c  2 0.1740 -5.73387 0.010972 0.338 1.1270 - 1.2170 
d1 3 0.1879 -5.46043 0.008974 0.424 1.1270 
d2 3 0.1879 -5.46043 0.008732 0.438 1.0187 
e  4 0.1782 -5.64053 0.007761 0.509 0.9505 - 1.0187 
f  5 0.1774 -5.65381 0.007727 0.512 0.9086 - 0.9505 
g  6 0.1674 -5.83705 0.007376 0.547 0.8407 - 0.9086 
h  7 0.1608 -5.95911 0.007205 0.567 0.8155 - 0.8407 
i  8 0.1500 -6.16425 0.007001 0.595 0.7360 - 0.8155 
j  9 0.1281 -6.60241 0.006702 0.646 0.4823 - 0.7360 
k  10 0.0705 -7.72998 0.006246 0.780 0.3521 - 0.4823 
l  11 0.0391 -8.54209 0.006109 0.862 0.1630 - 0.3521 

m  12 0.0219 -9.01158 0.006151 0.927 0.0351 - 0.1630 
n   Inj. 0.0150 -9.12906 0.008519 0.960 0.0163- 0.0351 
o  Inj. 0.0150 -9.12906 0.000049 1 0- 0.0163 

Gas Inj. 0.0150 -9.12906 0.000000 - 0 

  Table 4.1: MOC solution for displacement of Oil 4 by Gas 6 at 275 atm and 387.45 K. 
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are used. However, the CPU cost for capturing the true dispersion-free saturation profile by 

numerical simulators is substantially higher.  

4.4 Systems with Nontie-line Rarefactions (Spreading Waves) 

The shock solution described in the previous sections can be found even when a rarefaction 

connects one or more pairs of tie lines. In many problems, rarefaction segments appear which 

are short, and wave velocities change little over the length of the rarefaction. In such cases, 

the shock solution is an excellent approximation of the exact solution. For problems with 

longer rarefactions, a more accurate approximate solution can be obtained by the procedure 

described in this section. 

It should be recalled that at any given point in the two-phase region, the nc-1 eigenvalues 

represent characteristic wave velocities of compositions subject to variation in the 

corresponding eigenvector direction. Tie lines are eigenvectors and the remaining nc-2

admissible directions can be integrated to obtain nontie-line paths. When a nontie-line 

rarefaction exists in the 1-D solution, the solution path switches from a key tie line path and 

travels along a nontie-line path to end up at a neighboring key tie line. The velocity rule 

dictates that a path switch, from a tie line path to a nontie-line path, can only occur at an equal 

eigenvalue point of mixed type. That is a point in compositional space where a tie line 

eigenvalue coincides with a nontie-line eigenvalue. For a given tie line the number of equal-

eigenvalue points of mixed type is 2(nc-2). Half of them can immediately be disregarded, as 

they are located on the liquid side of the equivelocity curve. The equal eigenvalue points can 

be located directly by solving the eigenvalue problem along a given tie line. The direct 

approach is quite time consuming and therefore the indirect method of Dindoruk7 (described 

in Section 2.3.4) for location of equal eigenvalue points is recommended for problems of the 

current type. 

In the following we assume that two key tie lines, known in advance, are connected by a 

spreading wave. The question is then: At which equal eigenvalue point does the tie line path 

switch to the nontie-line path?  The appropriate equal eigenvalue point can be selected by a 

geometrical interpretation of the displacement problem. When a rarefaction is present, the key 

tie lines are bound to a surface in compositional space of tie lines intersected by the path 
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between the key tie lines. The nontie-line rarefaction traverses this surface. As illustrated 

later, experience shows that the tie line surface is only gently curved and can be approximated 

nicely by a plane determined by the key tie lines. Hence, at the correct equal eigenvalue point 

no other eigenvectors, besides the tie-line eigenvector and the eigenvector related to the 

matching nontie-line eigenvalue, will point in the direction of the plane R spanned by the 

neighboring key tie lines. In practice this is done by checking angles between the normal 

vector to R and the eigenvectors. It should be noted that for systems with five or more 

components in the mixture, the normal vector to R is no longer uniquely determined and must 

be found by e.g. a minimization approach. In this work the approach described in Appendix 

A.4 was used to determine the normal vector. 

After the selection of equal eigenvalue point, the nontie-line path is traced to the next key tie 

line by integration of the nontie-line eigenvector. For the general case, however, the presence 

of a spreading wave is not known in advance. Hence, a tool for predicting the existence of 

nontie-line rarefactions is needed. 

4.5 Prediction of Spreading Waves in 1-D Solutions 

If two key tie lines are connected by a rarefaction, the path switch from the tie line path to the 

nontie-line path must occur at an equal eigenvalue point on the tie-line closest to the critical 

locus. This is due to the intrinsic symmetric behavior around critical points. In the work of 

Dindoruk7, continuous variation along nontie-line paths is linked to the envelope curve 

generating the ruled surface traveled by the nontie-line path. This envelope curve is illustrated 

in a two-dimensional projection of the general case in Figure 2.8. The tie lines belonging to 

the one-parameter family ϕk(ψ) on the k’th ruled surface are all tangents to the envelope curve 

Ek. The overall volume fraction of a given component i at the point of tangency on the 

envelope curve can be written as 

  (4.4) 

where θk(ψ) is the superficial vapor volume fraction at the point of tangency.   

ilkilivi gggG +−= )()( ψθ



 Chapter 4. Approximate Solutions to the 1-D Gas Injection Problem (NVC) 70 

Dindoruk7 derives an expression for the variation of the nontie-line eigenvalue λk along the 

nontie-line path in the vicinity of the equal eigenvalue point: 

  (4.5) 

where λt is the tie line eigenvalue at the equal eigenvalue point. While Eq. 4.5 applies strictly 

only near the equal eigenvalue point, the indicated sign of the left-hand side applies over the 

entire nontie-line path. 

4.5.1 The Fanning Rule (Envelope Rule) 

Eq. 4.4 shows that a critical point must be a point on the envelope curve. This fact makes it 

possible to predict the sign of the derivative of the superficial vapor saturation with respect to 

ψ and hence the variation of λk, once the orientation of the key tie lines is known. The 

absolute distance from the two-phase boundary to the envelope curve increases as the nontie-

line path is traced from an equal eigenvalue point. The sign of the superficial vapor fraction 

depends on whether the tie lines of the ruled surface are fanning from the liquid side or the 

vapor side of the two-phase region or, equivalently, whether the envelope curve is located on 

the vapor or the liquid side of the two-phase region. Ultimately, the shape of the fractional 

flow curve and the velocity rule are used to determine whether a path switch at an equal 

eigenvalue point is admissible. It should be recalled that the velocity rule states that a high-

speed wave must be found downstream of a low-speed wave. For systems in which the 

injection composition lies on the vapor side of the phase envelope and the initial composition 

on the liquid side, the solution path (after the leading shock) lies on the vapor side of the 

equivelocity curve (f > S). This fixes the sign of the numerator on the right hand side of Eq. 

4.5, and hence the derivative of the nontie-line eigenvalue has the same sign as the derivative 

of the superficial vapor saturation θk. Application of the fanning (envelope) rule in 

combination with the velocity rule results in four distinct cases shown in Figures 4.4-4.7.  
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Figure 4.4: Vaporizing wave with liquid side envelope. Upstream (u), downstream (d). 

The first case illustrated in Figure 4.4 is a vaporizing wave where the envelope curve is 

located on the liquid side of the two-phase region. As the nontie-line path is traced from the 

equal eigenvalue point located downstream (d) towards the injection point located upstream 

(u), the superficial vapor saturation θk decreases. This is consistent with the velocity rule and 

hence the path switch is allowed and a spreading wave will be present in the 1-D solution. 

Figure 4.5 Condensing wave with vapor side envelope. 

Figure 4.5 shows a condensing wave in which θk is increasing as the nontie-line path is traced 

from an upstream point (u) towards the initial oil. This is consistent with the velocity rule and  

hence a spreading wave will form in the solution.  

Figure 4.6 Condensing wave with liquid side envelope. 
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In the condensing drive illustrated in Figure 4.6, θk is a decreasing function of the nontie-line 

path when traced from an upstream point (u) towards the initial oil. This is a violation of the 

velocity rule, as the upstream part of the wave will eventually catch up with the downstream 

part. In other words, the wave is self-sharpening. The upstream and downstream key tie lines 

must consequently be connected by a shock. Depending on the compatibility with the solution 

this can be either a tangent shock or a genuine shock. 

Figure 4.7: Vaporizing wave with vapor side envelope.  

Figure 4.7 shows a vaporizing wave with the envelope curve located on the vapor side of the 

two-phase region. As the nontie-line path is traced from an upstream point (u) towards the 

injection point, the nontie-line eigenvalue increases. Again this behavior will result in a 

sharpening wave, a path switch at the equal eigenvalue point is not allowed and a shock is 

required.

The general feature of the four cases presented above is that a spreading wave will only form 

if the nontie-line path, starting at the equal eigenvalue point, is moving away from the 

envelope curve. Whether a rarefaction appears between two key tie lines can be summarized 

easily in terms of tie line length and whether the intersection point lies on the liquid or the 

vapor side of the two-phase region. Table 4.2 gives a summary of this.  
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Vaporizing segments occur when a longer key tie line lies upstream of a shorter key tie line 

(see Figures 4.4 and 4.7), and in vaporizing segments, a rarefaction occurs when the 

intersection between the key tie lines lies on the liquid side of the two-phase region.  In 

condensing segments, a shorter key tie line is upstream of a longer one (see Figures 4.5 and 

4.6), and a rarefaction occurs when the intersection is on the vapor side. Additional analysis is 

required to determine whether rarefactions appear if either the initial oil or the injection gas 

composition is in the two-phase region. 

4.5.2 Algorithm for Systems with Nontie-line Rarefactions 

The algorithm for constructing 1-D solutions, taking into account the existence of spreading 

waves, is as follows:  

1. Locate all key tie lines by the tie line intersection approach. 

2. Apply the fanning rule to each neighboring pair of key tie lines. If no rarefactions are 

predicted, switch to the simplified algorithm for fully self-sharpening systems. 

3. For each predicted rarefaction, locate the equal eigenvalue point and integrate the 

eigenvalue problem to obtain the corresponding nontie-line path. 

4. Locate the primary key tie line and start the shock construction downstream. Switch 

points between the nontie-line paths, and the tie line paths are introduced in the solution 

requirements in parallel with the velocity rule. The downstream solution is traced until the 

initial oil composition is reached. 

5. Continue constructing the upstream solution by the approach of step 4 until the injection 

gas composition is reached. 

Tie line length 
Type 

Upstream Downstream 
Intersection Wave 

Vaporizing Long Short Liquid side Rarefaction 

Vaporizing Long Short Vapor side Shock 

Condensing Short Long Liquid side Shock 

Condensing Short Long Vapor side Rarefaction 

Table 4.2: Summary of the fanning (envelope) rule. 
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4.6 Solution Example with Nontie-line Rarefaction 

The appearance of nontie-line rarefactions is commonly observed in the solution path for 

displacements when N2 is present in the injected gas. To illustrate the limits of the algorithm 

used for constructing fully self-sharpening solutions, pure N2 is now injected into the 

reservoir fluid (Oil 4) at the same temperature and pressure as previously. The saturation 

profile generated by the algorithm for fully self-sharpening systems is compared with coarse 

and fine grid numerical simulations in Figure 4.8. The saturation profile from the fine grid 

simulation clearly indicates a nontie-line rarefaction between the initial tie line and the first 

crossover tie line. Figure 4.8 further illustrates the saturation profile obtained by combining 

an integration of the nontie-line path with shock constructions as described previously. 

Details of the shock solution are given in Appendix A.5. 

Figure 4.8: Comparison of analytical solutions (with and without integration) with numerical 

saturation profiles for the displacement of Oil 4 by pure N2 at 275 atm and 387.45 

K. The finite difference (FD) solutions were obtained using 100 and 10,000 grid 

blocks and Δz/Δt = 10. 

For this system, the tie line extending through the initial oil is the primary tie line. Application 

of the fanning rule indicates that a nontie-line rarefaction connects the initial tie line and the 
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first crossover tie line. The nontie-line path ends at an overall composition approximately 

located on the adjacent tie line. The inaccuracy of the approximation introduced by assuming 

intersecting key tie lines is quite small, as Table 4.3 shows.  

The observed deviation is of an order of magnitude where the numerical evaluation of the 

coefficient matrix A (Eq. 2.27) and the step by step integration may contribute significantly. 

To avoid violation of the mass conservation equations, the first crossover tie line is connected 

to the end point of the nontie-line path by a genuine shock. The downstream solution consists 

of a continuous variation along the initial tie line and a tangent shock to the initial oil. 

Genuine shocks and constant states make up the upstream part of the solution until the 

injection tie line is reached. Finally, the solution is completed by a direct jump to the injection 

composition.

Figure 4.8 shows that the fully self-sharpening solution is a much more refined approximation 

than that obtained by a coarse grid (FD 100) numerical simulation. 

-. x  (shock) x(rarefaction) Error % y (shock) y(rarefaction) Error % 
N2 0.23695463 0.23657449 0.16 0.86905145 0.87052697 0.17 

CO2 0.00892119 0.00896803 0.52 0.01255008 0.01262557 0.60 
CH4 0.00000000 0.00000000 - 0.00000000 0.00000000 - 
C2 0.06295753 0.06196958 1.59 0.05199391 0.05114823 1.65 
C3 0.07434362 0.07361960 0.98 0.03517118 0.03476156 1.18 

i-C4 0.01007617 0.00998769 0.89 0.00333684 0.00329854 1.16 
n-C4 0.03922843 0.03896883 0.67 0.01076864 0.01066283 0.99 
i-C5 0.01382016 0.01374001 0.58 0.00260091 0.00257527 1.00 
n-C5 0.02260102 0.02248533 0.51 0.00376605 0.00373032 0.96 
C6 0.03645991 0.03630629 0.42 0.00382992 0.00379312 0.97 
C7 0.20213968 0.20233382 0.10 0.00585749 0.00581241 0.78 
C11 0.10787320 0.10827271 0.37 0.00095891 0.00095155 0.77 
C16 0.08952057 0.09020739 0.76 0.00011148 0.00011053 0.86 
C23 0.05901420 0.05964260 1.05 0.00000305 0.00000300 1.37 
C33 0.03608969 0.03692364 2.26 0.00000009 0.00000009 0.88 

Table 4.3:  Comparison of tie lines found by MOC integration and by the tie line 

intersection approach. Oil 4 displaced by pure N2 at 387.45K and 275 atm. 
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4.7 Significance of Spreading Waves in the 1-D Solutions  

It was pointed out in the previous section that even if a spreading wave is present in the 1-D 

solution, the fully self-sharpening solution could give a far more refined approximation than 

coarse grid FD simulation. This fact combined with the additional complication of including 

the nontie-line path integration suggests that some spreading waves may be disregarded in the 

approximate solutions. This section illustrates how the key tie line information can be used to 

select significant spreading waves and disregard insignificant ones. It has been proven that 

spreading waves traveling a ruled surface where all tie lines intersect at the same point upon 

extension have a constant characteristic wave velocity24 (nontie-line eigenvalue). In such 

cases the spreading wave is identical to a nontie-line shock of which the latter is far more 

convenient when a solution is constructed. It should be recalled that ruled surfaces are also 

developable surfaces54. The characteristic of a developable surface is that two tie lines on the 

surface located infinitely close to each other will intersect. This  suggests that the variation of 

eigenvalues along a nontie-line path can be neglected if two key tie lines are located close to 

each other. On the limit where two key tie lines coincide this will be rigorously true. The 

angle between two neighboring key tie lines can be used as a measurement of the distance to 

be traveled by the nontie-line path. In the previous section Oil 4 was displaced by pure N2 to 

illustrate the application of the general NVC algorithm. In the calculation example the angle 

between the initial and the first crossover tie lines is 80.2 deg. Hence, the nontie-line path has 

to travel quite a distance, which results in a significant variation of the corresponding wave 

velocity. Next the displacement of Oil 4 by a gas containing 85 % CH4 and 15 % N2 at 275 

atm and 387.45 K is considered. The simulation result is illustrated in Figure 4.9 whereas the 

details of the shock solution can be found in Appendix A.6. For this displacement the fanning 

rule predicts a spreading wave connecting the initial and the first crossover tie lines. In this 

case the angle between the two key tie lines is 12.0 deg. Accordingly, the significance of the 

spreading wave is smaller than in the displacement by pure N2. This is clearly seen from 

Figure 4.9. In fact the numerical simulation using 1000 grid blocks is less refined than the 

solution consisting only of shocks. In summary of this section, the displacement of Oil 4 by 

pure CH4 at 275 atm and 387.45 K is studied. 
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Figure 4.9: Comparison of analytical and numerical saturation profiles for displacement of Oil 

4 by 85% CH4 and 15% N2 at 275 atm and 387.45 K. The finite difference (FD) 

solutions were obtained with 100, 1000, and 10000 grid blocks and Δz/Δt = 10. 

Figure 4.10: Comparison of analytical and numerical saturation profiles for displacement of 

Oil 4 by pure CH4 at 275 atm and 387.45 K. The finite difference (FD) solutions 

were obtained with 100, 1000, and 5000 grid blocks and Δz/Δt = 10. 
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The details of the shock solution are given in Appendix A.7 and a comparison of analytical 

and numerical saturation profiles is shown in Figure 4.10. For this displacement the initial and 

the first crossover tie lines are no longer connected by continuous variation. On the other hand 

the fanning rule predicts the presence of two spreading waves: One connecting the first and 

the second crossover tie lines and one connecting the second and the third crossover tie lines. 

These segments are in fact predicted for all the displacements of Oil 4 considered up to now. 

The angles between the key tie lines holding the predicted segments are very small and Figure 

4.10 clearly justifies that these waves are replaced by shocks. A summary of the insignificant 

spreading waves predicted by the fanning rule is given in Table 4.4. 

Table 4.4:  Prediction of insignificant nontie-line rarefactions. Angles between key tie lines. 

Based on this analysis it is recommended to discard spreading waves predicted by the fanning 

rule if the angle between the neighboring key tie lines is less than 10 deg. The diminutive gain 

in accuracy of the approximate solutions obtained by including such segments does not 

qualify the extra complexity added to the solution construction. Throughout the rest of this 

work insignificant nontie-line rarefactions will be disregarded without further notice. 

4.8 Example of Curvature of Surface Traveled by a Spreading Wave 

This section illustrates, by a calculation example, the modest curvature of a surface traveled 

by a nontie-line path. For this purpose Oil 3 (Table 3.3) is displaced by pure N2 at 300 atm 

and 368.15 K. The saturation profile of the MOC solution is compared with FD solutions in 

Figure 4.11 whereas the details of the MOC solution are given in Appendix A.7. 

Angle between crossover tie lines (deg.) 
System 

2 and 3 3 and 4 

Oil 4 - Gas 6 0.20 3.7*10-2 

Oil 4 – N2 0.33 0.40 

Oil 4 – 85% CH4/15% N2 0.99 2.00 

Oil 4 – CH4 0.96 2.13 
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Figure 4.11: Comparison of analytical and numerical saturation profiles for displacement of 

Oil 3 by pure N2 at 300 atm and 368.15 K. The finite difference (FD) solutions 

were obtained with 100 and 5000 grid blocks and Δz/Δt = 10. 

In the solution the initial tie line is connected to the first crossover tie line by a spreading 

wave. Based on the key tie line intersection approach, a plane R spanned by the initial tie line 

and the first crossover tie line can be defined. The question is then: To what extent does the 

nontie-line path connecting the two key tie lines deviate from the plane R? The deviation of 

the nontie-line path can be quantified, at any given point, by the angle γ between the normal 

vector n to the plane R and the nontie-line eigenvector. Further the distance to the landing tie 

line, in this case the first crossover tie line, can be defined as 

(4.6)

The superscripts u and d refer to the landing point and the current point on the nontie-line path 

respectively. x and y are equilibrium mole fractions of the liquid and the vapor phase on a 

given tie line. A plot of the distance and the angle γ vs. the nontie-line eigenvalue is given in 

Figure 4.12. 
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Figure 4.12: Deviation of nontie-line path from the plane spanned by neighboring key tie 

lines. 

The equal eigenvalue point is located at (S,λ) = (0.221,1.937). At this point the angle to the n- 

vector is 90 deg. while the distance to the first crossover tie line is 1.287. Initially, the angle to 

the n-vector increases steeply as the nontie-line path is traced in the eigenvector directions. 

This may be due to the error introduced by the stepwise approach for tracing the nontie-line 

path. In other words, a step in the tangent vector direction will deviate more from the exact 

path at points with high curvature. This is sketched in Figure 4.13. As the nontie-line path is 

traced away from the equal eigenvalue point the change in γ becomes more flat. This indicates 

that the final deviation is biased by the error introduced at the start of the tracing. 

Figure 4.13: Sketch of tangent vectors (eigenvectors) and nontie-line path. 
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In the given calculation example the ultimate deviation from R is only 0.4 degree although a 

large variation in the eigenvalue results in tracing the nontie-line path. This observation 

confirms that the assumption about intersecting key tie lines is a very good approximation 

indeed. Different step sizes ε have been tested in the scheme for tracing a nontie-line path: 

(4.7)

In the scheme of Eq. 4.7 eigenvectors are normalized prior to any step. It is recommended to 

use a step size in the interval [10-4;10-2]. The smallest step size should be used in the vicinity 

of the equal eigenvalue point. 

4.9 Analytical Solution below the Saturation Pressure of the Initial Oil 

For all the solutions presented in the previous sections the gas was injected into the oil at a 

pressure above the bubble-point pressure of the oil. To demonstrate that analytical solutions 

can also be constructed for systems where the initial oil is unstable, the displacement of Oil 4 

by pure CO2 at 200 atm and 387.45K is considered. The bubble-point pressure of Oil 4 is 252 

atm and hence the initial oil forms a two-phase system. Injection of CO2 into Oil 4 represents 

a fully self-sharpening system and the analytical solution is made up entirely of shocks. The 

saturation profile obtained by the analytical approach is compared with coarse and fine grid 

FD simulations in Figure 4.14. 

Details of the analytical solution are given in Appendix A.9. The second crossover tie line is 

identified as the primary tie line. The upstream solution consists of a tangent shock 

connecting the primary tie line and the third crossover tie line. Genuine shocks and a direct 

jump, from the injection tie line to the injection gas composition, make up the remainder of 

the upstream solution. The downstream construction starts with a tangent shock connecting 

the first and the second crossover tie lines. Hence, continuous variation along the second 

crossover tie line connects the up- and downstream constructions. The first crossover tie line 

and the initial tie line are connected by a genuine shock. The landing point S1 from the 

genuine shock, connecting the first crossover tie line to the initial tie line, is located below the 

inflection point on the ff-curve whereas the saturation corresponding to the initial oil So is 

located above the inflection point. 

linetienonoldnew YGG −+= ε
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Figure 4.14: Comparison of analytical and numerical saturation profiles for displacement of 

Oil 4 by pure CO2 at 200 atm and 387.45 K. The finite difference (FD) 

solutions were obtained with 100, 1000, and 5000 grid blocks and Δz/Δt = 10. 

This means that the velocity rule would be violated if the two points (S1, So) were connected 

by continuous variation, and a direct jump from point S1 to So is the only possible solution.  

4.10 Recovery Curves from Analytical 1-D Solutions 

So far, all the presented approximate semi-analytical solutions to the 1-D gas injection 

problem have been given as relations between vapor saturation and characteristic wave 

velocity S(λ). This form of presenting 1-D solutions is very general in the sense that no 

consideration has to be made regarding the amount of injected gas or specification of any 

position along the displacement. From a reservoir engineering point of view, the recovery of 

OOIP for a given gas injection process is of greater interest than any characteristic wave 

velocity. Consequently, this section demonstrates how recovery curves can be generated 

through construction of semi-analytical solutions. 
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To use the analytical solutions for calculation of recovery for a given 1-D displacement 

process, attention should again be turned to the physical system sketched in Figure 2.1. It is 

seen from the dimensionless variables (z,τ) introduced in Eq. 2.3 that the outlet of the 

slimtube is located at z = 1 and that τ corresponds to the number of pore volumes injected 

(PVI). The traditional recovery factor of the OOIP after 1.2 PVI is used in this work. The 

recovery factor based on the MOC solutions can be calculated by setting up a simple mass 

balance over the slimtube. By specifying one pore volume the OOIP and the 

amount/composition of the fluids left in the slimtube after the displacement can be 

determined. After injecting 1.2 PV of gas, compositions with a wave velocity less than or 

equal to 1.2-1 will still be in the slimtube. 

Figure 4.15: Determination of amount and composition of fluid left in slimtube after 1.2 PVI. 

In more general terms, the self-similar nature of the analytical solution allows the saturation 

profiles to be scaled with respect to the number of PVI (τ). A sketch of a re-scaled saturation 

profile is given in Figure 4.15. The saturation profile is then divided into n segments (Δzi) of 

constant vapor saturation, corresponding to a specific overall composition on a known key tie 

line. The vapor saturation for each segment is converted to mole fractions of vapor (β) and the 

component overall mole fractions can be calculated from the key tie line information. For the 

recovery factors the “true” vapor and liquid volumes predicted by the EOS are used to 

determine the mole numbers in each segment by 

(4.8)

If a segment contains two equilibrium phases zeos is calculated by 
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(4.9)

where the subscripts l and v refer to the liquid and vapor phase compressibility factors 

respectively. The total number of moles left in the slimtube after the displacement (Nleft) is 

found by summing Eq. 4.8 over all segments, whereas the overall composition, in mole 

fractions, is calculated by 

(4.10)

When the number of moles and the composition of the fluid left in the slimtube after the 

displacement are known, the produced amount/composition can be calculated by mole and 

component balances. The produced oil and gas are then flashed to standard conditions and the 

recovery factor can be calculated. To confirm the recovery curves determined by semi-

analytical calculations, a similar approach has been applied to determination of the recovery 

factor from numerical simulations. Initially, the displacement of Oil 4 by Gas 6 is considered. 

For this system the predicted MMP is 365 atm. The recovery curve obtained by semi-

analytical calculations is compared with numerical simulations in Figure 4.16. 

Figure 4.16: Comparison of semi-analytical and numerical recovery curves for the 

displacement of Oil 4 by Gas 6 at 387.45 K. The finite difference (FD) solutions 

were obtained with 100, 500, and 1000 grid blocks and Δz/Δt = 10. 
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The recovery curves from the FD simulation approach the dispersion-free solution (MOC) 

rapidly as the number of grid blocks is increased. If the MMP was determined by location of 

the break point on the recovery from coarse grid numerical simulations, only a small over 

prediction would occur in the current case. The deviation between the analytical recovery 

curve and the numerical recovery curves is largest at the MMP because effects of numerical 

dispersion become stronger as a point in the critical locus (MMP) is approached51.

Similar features are found for the displacement of Oil 4 by pure CH4 and by pure CO2. The 

MMPs for these displacements are 371 atm and 226 atm respectively. Analytical and 

numerical results are given in Figures 4.17 and 4.18. 

Figure 4.17: Comparison of analytical and numerical recovery curves for displacement of Oil 

4 by pure CH4 at 387.45 K. The finite difference (FD) solutions were obtained 

with 100, 500, and 5000 grid blocks and Δz/Δt = 10. 

The displacement of Oil 4 by pure CH4 and pure CO2 appears to be slightly more sensitive to 

numerical dispersion, and more refined numerical simulations are needed to capture the 

dispersion-free recovery curve. 
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Figure 4.18: Comparison of analytical and numerical recovery curves for displacement of 

Oil 4 by pure CO2 at 387.45 K. The finite difference (FD) solutions were 

obtained with 100, 500 and 5000 grid blocks and Δz/Δt = 10. 

A completely different picture arises when Oil 4 is displaced by pure N2. For this system the 

MMP predicted by the global approach is 380 atm. The recovery curve obtained by MOC  

Figure 4.19: Comparison of analytical and numerical recovery curves for displacement of 

Oil 4 by pure N2 at 387.45 K. The finite difference (FD) solutions were 

obtained with 100, 500, 1000, 5000 and 10000 grid blocks and Δz/Δt = 10. 
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calculations is compared with numerical simulations in Figure 4.19. For this system the effect 

of numerical dispersion is seen to be very significant. At the MMP the recovery predicted by 

numerical simulations with 100, 1000 and 10000 grid blocks is 70%, 85% and 93 %. This 

very substantial variation in the recovery factor suggests that otherwise feasible gas injection 

projects might be abandoned, if coarse grid numerical simulations form the basis of a project 

evaluation. The existence of a system-dependent sensitivity to numerical dispersion has been 

reported by several authors32,45,51 and will be discussed further in Chapter 6. Sensitivity to 

numerical dispersion, similar to that of the previous system, is found for the displacement of 

Oil 3 by pure N2.

Figure 4.20: Comparison of analytical and numerical recovery curves for displacement of 

Oil 3 by pure N2 at 368.15 K. The finite difference (FD) solutions were 

obtained with 100, 500, 1000, 5000 and 10000 grid blocks and Δz/Δt = 10. 

The time consuming part of constructing 1-D analytical solutions is the location of key tie 

lines. Hence, in terms of required CPU time the MOC approach is superior to coarse grid 

numerical simulations for the purpose of generating recovery curves. This is partly due to the 

fact that key tie lines from a previous solution (pressure) are easily traced to a higher pressure 

whereas the FD simulations have to be restarted for each pressure step.  
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4.11 Supplementary NVC Solutions 

In this section additional semi-analytical solutions based on the NVC assumption are 

presented. The additional solutions serve as additional validation of the algorithms given in 

the previous sections. Four cases are described in which Oil 3 is displaced by Gas 3, Gas 5, 

pure CH4 and a 75%-25% mixture of CO2 and CH4.

4.11.1 Displacement of Oil 3 by Gas 3 at 300 atm and 368.15 K 

A comparison of the analytical and the numerical solutions is given in Figure 4.21 while the 

details of the MOC solution are given in Appendix A.10. 

Figure 4.21: Comparison of analytical and numerical saturation profiles for displacement of 

Oil 3 by Gas 3 at 300 atm and 368.15 K. The finite difference (FD) solutions 

were obtained with 100, 1000, and 5000 grid blocks and Δz/Δt = 10. 

The displacement of Oil 3 by Gas 3 is somewhat different from the previously presented 

solutions in the sense that three tangent constructions are included. The second crossover tie 

line is identified as the primary tie line. The downstream construction starts with a tangent 

construction connecting the second and the first crossover tie lines. The next pair of key tie 
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lines (the first crossover tie line and the initial tie line) is also connected by a tangent shock. 

The tangent part of this shock is located on the first crossover tie line and hence two points on 

this tie line are connected by continuous variation. Finally, the initial oil is connected to the 

initial tie line by a direct jump. The upstream part of the solution starts with a tangent shock 

connecting the primary tie line and the third crossover tie line. The two points on the primary 

tie line are connected by continuous variation along the tie line. The rest of the upstream 

solution is made up by genuine shocks followed by a direct jump to the injection gas 

composition.

4.11.2 Displacement of Oil 3 by Gas 5 at 250 atm and 368.15 K 

A comparison of the analytical and numerical solutions is given in Figure 4.22 while the 

details of the MOC solution are given in Appendix A.11. 

Figure 4.22: Comparison of analytical and numerical saturation profiles for displacement of 

Oil 3 by gas 5 at 250 atm and 368.15 K. The finite difference (FD) solutions 

were obtained with 100, 1000, and 5000 grid blocks and Δz/Δt = 10. 

In this case the eighth crossover tie line is the primary one. The downstream solution starts 

with a tangent shock connecting the primary tie line and the seventh crossover tie line. 
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Genuine shocks and a direct jump to the initial oil make up the rest of the downstream 

solution. The upstream solution is similar to the downstream solution. That is, a tangent 

construction to the primary tie line followed by a sequence of genuine shocks until the 

injection tie line is reached. Finally, the injection gas is reached through a direct jump. The 

up- and downstream parts of the solution are connected by continuous variation along the 

primary tie line. 

4.11.3 Displacement of Oil 3 by Pure CH4 at 300 atm and 368.15 K 

A comparison of the analytical and the numerical solutions is given in Figure 4.23 while the 

details of the MOC solution are given in Appendix A.12. 

Figure 4.23: Comparison of analytical and numerical saturation profiles for displacement of 

Oil 3 by pure CH4 at 300 atm and 368.15 K. The finite difference (FD) solutions 

were obtained with 100, 1000, and 5000 grid blocks and Δz/Δt = 10. 

The structure of the analytical solutions for this system is identical to the previous one. In this 

case, however, the primary tie line is the first crossover tie line. 
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4.11.4 Displacement of Oil 3 by 75% CO2 and 25% CH4 at 275 atm and 368.15 K 

The MMP for the displacement of Oil 3 by the CO2-CH4 mixture is predicted to be 291 atm. 

The displacement at 275 atm is therefore close to being a multicontact miscible. This is 

evident from the comparison of analytical and numerical simulations given in Figure 4.24. 

Figure 4.24: Comparison of analytical and numerical saturation profiles for displacement of 

Oil 3 by 75% CO2 and 25% CH4 at 275 atm and 368.15 K. The finite difference 

(FD) solutions were obtained with 100, 1000, and 5000 grid blocks and Δz/Δt =10. 

As the pressure approaches the MMP the saturation profile becomes gradually steep. At the 

MMP the profile will be a step function with a wave velocity of 1. Figure 4.24 clearly shows 

the effects of numerical dispersion in the near-critical region. Even the FD simulation using 

5000 grid blocks has difficulties capturing the dispersion-free profile. The structure of the 

analytical solution, constructed from the second crossover tie line (primary), is identical to 

that of Section 4.10.2. Details of the MOC solution are found in Appendix A.13. 
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4.12 Summary 

A new approach to constructing approximate analytical solutions to the 1-D gas injection 

process is presented. The new approach is based on a combination of the analytical theory of 

1-D gas injection problems with no volume change on mixing and the tie line intersection 

approach studied in Chapter 3. Two algorithms are developed for the construction of 

approximate analytical solutions.  

The first algorithm is based on the assumption that all key tie lines, defining the 1-D solution 

geometrically in the compositional space, are connected by shocks and hence must intersect 

pairwise. Construction of fully self-sharpening solutions is bound to start at a primary tie line. 

Proof is given that a primary tie line exists and that the primary tie line must be the shortest of 

the key tie lines. The solutions generated by the algorithm are rigorously correct for fully self-

sharpening systems. For displacements which include nontie line rarefactions, the solutions 

obtained by the algorithm are approximate, but they are much more accurate than solutions 

obtained by conventional finite difference compositional simulation unless impractical fine 

computational grids are used. The computation time required for construction of fully self-

sharpening solutions is demonstrated to be orders of magnitude lower than for the 

corresponding numerical simulations. 

To obtain a more refined approximation for displacements with nontie line rarefactions a tool 

is developed for the prediction of such segments. The presence of a rarefaction between key 

tie lines can be determined easily from the lengths of the upstream and downstream tie lines 

and from the position of the intersection point on the vapor side or the liquid side of the two-

phase region. This approach is referred to as the fanning rule, which forms the basis of the 

general algorithm for construction of analytical solutions. In the general algorithm, shock 

constructions are combined with nontie line path integration, resulting in far more accurate 

approximations of the 1-D displacement problems with significant spreading waves. Through 

a study of the curvature of the ruled surface traveled by a nontie line rarefaction, it is 

demonstrated that the tie line intersection approach is very accurate even for systems with 

significant rarefaction.  

The new algorithms are used for generating recovery curves. In this connection, the existence 

of a system dependent sensitivity to numerical dispersion for FD simulations is observed.
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5. Approximate Analytical 1-D Solutions with Volume Change (VC) 

In this chapter the intersecting key tie line approach is combined with tools from the general 

analytical theory of 1-D gas injection processes. It will be demonstrated how this combination 

allows the construction of approximate analytical solutions taking into account volume 

change on mixing (VC). The reader is assumed to be familiar with the content of Chapters 2-

4. The analysis and the development of algorithms in this chapter are restricted to consider 

only the construction of fully self-sharpening solutions: All segments of the approximate 

solutions are based on shock constructions. Nevertheless, the fanning rule presented in the 

previous chapter applies directly to the general displacement problem, in which components 

are allowed to change volume as they are partitioned between the equilibrium phases. Hence, 

by checking for emergence of significant nontie line rarefactions, the quality of the 

approximations obtained by constructing fully self-sharpening solutions can be monitored. 

For all the calculation examples presented in this chapter, molar densities predicted by the 

applied EOS are used directly without any volume correction. 

5.1 Shocks in the Two-phase Region 

In the general formulation of the conservation equations a shock balance is given by 

(5.1)

with

(5.2)

and

(5.3)

ρx and ρy refer to the liquid and vapor phase molar densities corresponding to the liquid and 

vapor phase compositions on the tie line connecting x and y. The superscripts I and II in Eq. 

5.1 denote the two key tie lines connected by the shock. An extra degree of complexity is 

added to the shock balance equation as the total velocity (vd) varies across a shock front. In 

general the variation in the total velocity is caused by changes in the phase densities 
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throughout the displacement. Variation in the compositional space along a tie line does 

accordingly not affect the total velocity, as the equilibrium phase densities are constant. 

Shock balances in the form of Eq. 5.1 were applied successfully in the work of Dumoré9 and 

Monroe et al.36 whereas Dindoruk7 presented the first detailed analysis. He demonstrated that 

two tie lines connected by a shock intersect in the molar concentration space at a fictitious 

point ρsZs,i defined by 

(5.4)

and

(5.5)

where α is given by 

(5.6)

The fictitious nature of the concentration point ρsZs,i is due to the fact that tie lines can 

intersect outside the physical concentration space. Dindoruk7 further demonstrated that the 

fictitious vapor saturations θI and θII entering Eqs. 5.4-5 are related to the shock velocity and 

the corresponding total velocities on the opposite sides of the shock by 

(5.7)

and

(5.8)

The superficial vapor saturations entering Eqs. 5.7 and 5.8 can be determined directly from 

key tie line information by simple component balances.  

Consider a neighboring pair of key tie lines (I and II). Let tie line I be the shorter one and 

hence the starting point for a shock construction. Eq. 5.7 can be rewritten in the form 

(5.9)

which is similar in structure to the shock balance equation in the NVC formulation (Eq. 2.33). 

If the key tie lines are connected by a tangent shock, the scaled shock velocity (Λ*) can be 

determined by a tangent construction to the fractional flow curve as indicated in Eq. 5.9. If on 
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the other hand the shock is, a genuine shock the saturation SI and consequently the fractional 

flow of vapor fI will be known in advance and Eq. 5.9 can be used to calculate the scaled 

shock velocity directly. The landing point on key tie line II can be determined through a 

reformulation of Eq. 5.8 in terms of the scaled shock velocity: 

(5.10)

Prior to calculation of the landing point on tie line II the ratio between the total velocities on 

the opposite sides of the shock must be evaluated. This is done by calculating α from Eqs. 5.4 

and 5.5 by use of any component present on both sides of the shock. The ratio of total 

velocities is then given by 

(5.11)

and the landing point is subsequently obtained by solving Eq. 5.10 for the vapor saturation SII.

From the shock construction scheme outlined above it is evident that the routines, developed 

in the course of solving NVC problems, can be applied to VC problems without 

modifications.

5.2 Shocks due to Phase Appearance and Disappearance 

For shocks due to phase appearance (leading shocks) and disappearance (trailing shocks), the 

shock balance given in Eq. 5.1 is applied with superscripts I and II, indicating the single-

phase side and the two-phase side respectively. This shock balance was initially studied by 

Welge.55 The overall molar density and overall flux of a component i at a point in the single-

phase region can be written as 

(5.12)

where ρs is the EOS based molar density at the point Z. By inserting Eqs. 5.12 and 5.2 in Eq. 

5.1 the following expression is derived: 

(5.13)
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By introducing a fictitious molar density *
sρ defined by 

(5.14)

it is evident that *
sρ must be located on the extension of a line passing through the points ρx

and ρy, and that this line is a key tie line (initial or injection tie line). This reasoning is similar 

to the analysis by Dindoruk7. The fictitious vapor saturation θ corresponding to *
sρ can be 

calculated from key tie line information. By rewriting Eq. 5.13 the shock velocity can be 

related to the landing point in the two-phase region by 

(5.15)

The scaled shock velocity can thus be solved for either as a semi-shock by tangent 

construction to the fractional flow curve (as indicated in Eq. 5.15) or as a genuine shock 

where SII and fII are known a priori. After solving for the scaled shock velocity, the 

relationship between the total velocities at points I and II is found from 

(5.16)

5.3 Algorithm for Construction of Fully Self-sharpening Solutions (VC) 

In Sections 5.1 and 5.2, tools were described for calculation of the shock velocity scaled with 

respect to dimensionless total velocity on one side of the shock. However, for the purpose of 

constructing full solutions to 1-D problems, actual shock velocities must be used to rule out 

non-physical shock solutions by application of the velocity rule. In other words, the 

dimensionless total velocity on one side of a shock must be known prior to any shock 

constructions. As for the NVC formulation of the 1-D problem, a fully self-sharpening 

solution must start with a tangent construction to the primary tie line. Thus the dimensionless 

total velocity of the primary tie line must be determined. In Chapter 2 the conservation 

equations were written in terms of a dimensionless time variable τ given by 
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(5.17)

In the formulation of Chapter 2 the displacement problem is thus scaled with respect to the 

injection velocity. Consequently, the determination of vd on the primary tie line requires the 

full solution to be known. This paradox can be resolved due to the self-similarity of the 

analytical solutions and the linear dependence between the overall flux and the total velocity 

(Eq. 2.6). Any solution to the conservation equations can be rescaled with respect to any 

given total velocity without changing the structure of the solution. By rescaling the 

conservation equations with respect to the total velocity on the primary tie line, the up- and 

downstream parts of the solution can be constructed by use of the tools described in previous 

sections. Once a solution to the rescaled problem is found, the solution to the original 

formulation is determined by scaling the characteristic wave velocities with respect to the 

injection velocity. For convenience the total velocity on the primary tie line can be set equal 

to 1. The solution scaled with respect to the injection velocity is found from

(5.18)

(5.19)

The velocity vinj entering Eqs. 5.18 and 5.19 is the injection velocity predicted by the rescaled 

solution. The algorithm for construction of fully self-sharpening solutions is hence: 

1. Determine all key tie lines by the global approach. 

2. Locate the primary key tie line and fix the total velocity for this tie line. 

3. Construct the up- and downstream parts of the solution by solving the shock balances for 

each adjacent pair of key tie lines. Start both segments by a tangent construction to the 

primary tie line. 

4. Rescale the characteristic wave velocities and the total velocities of the obtained solution 

with respect to the injection velocity. 
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5.4 Examples of Analytical Solutions with Volume Change on Mixing 

The new approach to constructing semi-analytical solutions to the 1-D displacement problem, 

taking into account volumetric effects, has been applied to a number of gas-oil systems. It 

should be recalled that no density information is required to locate the key tie lines defining 

the geometry of a given displacement process. The key tie lines used for constructing 

solutions to the VC formulation of the conservation equations are therefore identical to those 

used for solving the NVC problems. This similarity suggests that the general structure of the 

analytical solutions in the VC formulation is identical to that of the simplified NVC 

formulation. The truth of this is apparent from the following calculation examples. 

Initially, the displacement of Oil 4 by Gas 6 is considered. The gas is injected into the oil at 

275 atm and 387 K. By application of the fanning rule no significant nontie line rarefactions 

are predicted, and the fully self-sharpening solution is thus expected to be a very good 

approximation. As for the NVC solution, the shock constructions start at the third crossover 

tie line by tangent constructions to the second and fourth crossover tie lines.  

Figure 5.1: Comparison of analytical and numerical solutions for the displacement of Oil 4 

by Gas 6 at 275 atm and 387.45 K including volumetric effects. The FD solution 

was obtained with 5000 grid blocks and Δz/Δτ = 10. 
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Genuine shocks and direct jumps in and out of the two-phase region make up the remainder of 

the up- and downstream solution. The analytical solution is compared with a fine grid 

numerical simulation in Figure 5.1 while details of the solution are found in Appendix A.14. 

Excellent agreement is found between the analytical solution and the numerical simulation. A 

comparison of the VC solution with the NVC solution reported in Chapter 4 is illustrated in 

Figure 5.2. 

Figure 5.2: Comparison of analytical VC and NVC solutions for the displacement of Oil 4 

by Gas 6 at 275 atm and 387.45 K. 

The general structure of the NVC and the VC solutions is seen to be identical. In the given 

example the characteristic waves of the VC solution are moving slower than in the NVC 

solution. In terms of the displacement process, the breakthrough time (time elapsed prior to 

any production of gas) predicted by the VC solution would be larger than for the NVC 

solution. That this is no general feature is shown by the next example. 

To illustrate the limitations of the self-sharpening solutions with volume change, the 

displacement process in which pure N2 is injected into Oil 3 at 275 atm and 387 K is 

examined. The analytical solution is compared with fine and coarse grid numerical 

simulations in Figure 5.3 while the VC and the NVC solutions are compared in Figure 5.4. 
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Figure 5.3: Comparison of analytical and numerical solutions for the displacement of Oil 4 by 

pure N2 at 275 atm and 387.45 K including volumetric effects. The FD solutions 

were obtained with 100 and 5000 grid blocks and Δz/Δτ = 10. 

Figure 5.4: Comparison of analytical VC and NVC solutions for the displacement of Oil 4 

by pure N2 at 275 atm and 387 K. 
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Details of the analytical solution are found in Appendix A.15. For this example the fanning 

rule predicts the existence of a significant nontie line rarefaction connecting the initial tie line 

and the first crossover tie line. Nevertheless, it is possible to construct a solution consisting of 

shocks only. It is seen from Figure 5.3 that analytical solution based on pure shock 

constructions fails to match exactly the fine grid numerical simulation. However, the 

analytical solution still offers a far more refined approximation to the fine grid simulation 

than the coarse grid simulation does. The analytical approximation will be particularly useful 

if the displacement process is continued after breakthrough. For this example the 

breakthrough will occur after 0.48 PVI (corresponding to λ front = 2.1). Hence, for calculation 

of recovery curves after injection of 1.2 PVI, where all waves with characteristic velocities 

larger than  1.2-1 have been produced, the analytical solution will be a good approximation to 

the fine grid numerical simulation. The quality of this approximation is demonstrated in 

Section 5.5. 

The similarity in the general structure of the analytical solution for the VC and NVC 

problems is illustrated in Figure 5.4. In contrast to the previous example, where the 

characteristic waves of the NVC had higher velocities than the VC waves over the entire 

range, the NVC waves of the current case have lower velocities in one region of the solution 

and higher in another. 

Next the analytical shock solution for the displacement of Oil 3 by Gas 3 at 300 atm and 

368.15 K is generated. The NVC solution for this displacement process is described in 

Section 4.10.1. This system differs from the other systems presented in Chapter 4 in the sense 

that three tangent constructions are present in the solution. Again the same structure is found 

for the VC solution. The saturation and the total velocity profile are compared with equivalent 

numerical simulations in Figure 5.5. Details of the analytical solution along with a 

comparison of the NVC and the VC solutions are given in Appendix A.16. No significant 

nontie line rarefactions are predicted by the fanning rule so that good agreement is expected 

between the semi-analytical and fine grid numerical simulation. Figure 5.5 clearly shows that 

this if fact is the case. The downstream solution construction starts with a tangent shock 

connecting the primary tie line (second crossover tie line) to the first crossover tie lines. A 

second tangent construction connects the first crossover tie line to the initial tie line and, 

finally, the downstream construction is completed by a direct jump to the initial oil. 
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Figure 5.5: Comparison of analytical and numerical solutions for the displacement of Oil 3 

by Gas 3 at 300 atm and 368.15 K including volumetric effects. The FD 

solutions were obtained with 100 and 5000 grid blocks and Δz/Δτ = 10. 

The upstream solution construction starts with a third tangent construction connecting the 

primary tie line to the fourth crossover tie line, followed strictly by genuine shocks and a 

direct jump to the injection gas composition. 

Finally, a near-miscible displacement process is considered in which Oil 3 is displaced by a 

mixture of 75% CO2 and 25% CH4. The gas mixture is injected at 275 atm and 368.15 K. 

These conditions are 16 atm below the pressure at which a multicontact miscible displacement 

would develop (MMP = 291 atm). The analytical solution is compared with numerical 

simulations in Figure 5.6. As pointed out previously numerical dispersion becomes significant 

as a miscible displacement is approached. This is evident from Figure 5.6. Although the 

saturation profiles from the numerical simulations converge towards the analytical solution as 

the number of grid blocks is increased, not even the fine grid numerical solution is able to 

capture the details of the analytical solution completely. The specifics of the analytical 

solution and a comparison with the NVC solution are given in Appendix A.17. 
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Figure 5.6: Comparison of analytical and numerical VC solutions for the displacement of 

Oil 3 by Gas 3 at 275 atm and 368.15 K. The FD solutions were obtained with 

100, 1000 and 5000 grid blocks and Δz/Δτ = 10. 

5.5 Recovery Curves from Analytical Solutions with Volume Change on Mixing 

In this section the results obtained from applying the new VC algorithm to generation of 

recovery curves are presented. The approach to calculation of the recovery factor from 

analytical solutions described in Chapter 4 can be used directly for the VC solutions of this 

chapter. Initially, the displacement process where Gas 6 is injected into Oil 3 at 387.45 K is 

studied. The recovery curve obtained from analytical solutions is compared with numerical 

simulations in Figure 5.7. As the number of grid blocks is increased in the FD simulations the 

corresponding recovery curves converge rapidly towards the dispersion-free recovery curve. 

The largest deviation is found near the MMP (365 atm) where the effect of numerical 

dispersion becomes more significant. 
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Figure 5.7:  Comparison of recovery curves for the displacement of Oil 4 by Gas 6 at 387.45 

K generated by semi-analytical calculations and FD simulations. The FD 

solutions were obtained with 100, 500 and 5000 grid blocks and Δz/Δτ = 10. 

Figure 5.8:  Comparison of recovery curves for the displacement of Oil 4 by pure N2 at 

387.45 K generated by semi-analytical calculations and FD simulations. The FD 

solutions were obtained with 100, 500 and 5000 grid blocks and Δz/Δτ = 10. 
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The second example of recovery curves generated by analytical calculations and FD 

simulations given in Figure 5.8 is based on the displacement of Oil 3 by pure N2 at 387.45 K. 

The analytical solution to this displacement problem was presented in the previous section. It 

was described how the analytical solution fails to capture the details of the fine grid FD 

simulation because of the existence of a significant nontie line rarefaction in the solution. 

Figure 5.8 shows excellent agreement between the recovery curves predicted by fine grid FD 

simulations and the pure shock solutions. The high quality of the approximate analytical 

solution is due to the fact that only the low-velocity part (λ<1.2-1) of the saturation profiles 

(e.g. Figure 5.3) is used for calculation of the recovery. The convergence of the FD simulation 

towards the dispersion-free solution is observed to be much slower for the injection of pure 

N2 than for the injection of Gas 6 considered in the previous example. An identical pattern 

was observed for the NVC solutions to the two gas injection problems. Hence, there appears 

to be a system specific sensitivity to the effects of numerical dispersion. The nature of this 

phenomenon is addressed in Chapter 6. 

5.5 Summary 

In this chapter the general analytical theory of 1-D gas injection problems is combined with 

the intersecting tie line approach in order to obtain semi-analytical solutions. Thus, the 

assumption about ideal mixing used for construction of 1-D solutions in Chapter 4 is relaxed. 

The analysis and the development of solution construction tools are restricted to considering 

only fully self-sharpening solutions. In other words, the analytical solutions are assumed to 

consist only of shock constructions. The shock balances in the general (VC) formulation are 

more complex than in the NVC formulation since the overall convective velocity varies across 

a shock front.

Tools for construction of shocks in the two-phase region along with tools for construction of 

shocks due to phase appearance and disappearance are presented. The shock balance 

equations are rewritten in a form which allows direct application of the routines developed in 

the course of constructing NVC solutions. 

In order to construct full solutions to the 1-D problem the general formulation of the 

conservation equations has to be rescaled with respect to the convective velocity of the 
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primary tie line. An approach to rescale the conservation equations is described as well as a 

new general algorithm for construction of pure shock solutions with VC. 

The new algorithm is applied to four different oil-gas systems. It is demonstrated how the 

fanning rule developed in Chapter 4 can be used to predict the quality of the approximate 

solutions by checking for the emergence of significant spreading waves. Very good agreement 

between analytical and fine grid numerical solutions is observed. It is demonstrated that even 

though significant spreading waves exist in a true solution, the approximation of a pure shock 

solution is far more refined than coarse grid numerical simulations. 

Analytical solutions from the new algorithm are used for generation of recovery curves which 

can be used to predict the upper recovery limit (dispersion-free) for a given displacement 

process. The analytical recovery curves are in excellent agreement with results from fine grid 

FD simulations. 

Finally, the existence of a system dependent sensitivity to numerical dispersion in FD 

simulations is observed. 
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6. On System-dependent Sensitivity of Numerical Dispersion in FD Simulations 

The effects of numerical dispersion in conventional finite difference compositional 

simulations have been studied extensively ever since computers were first applied to 

prediction of reservoir performance or, ultimately, generation of production forecasts. The 

papers of Stalkup45,46 and Lim et al.32 are examples of such studies. This chapter focuses on 

the apparent system specific sensitivity to numerical dispersion observed for the numerical 

simulation reported in Chapters 4 and 5. Analysis of this phenomenon will be restricted to 

considering the impact of numerical dispersion on FD solutions for 1-D displacement 

problems in homogeneous porous media. Further, this study considers only the simple but still 

often applied one-point upstream weighting formulation of the mass conservation equations. 

Numerical dispersion in this type of simulation emerges partly from truncation errors 

introduced by the finite difference representation of the convective term26, and partly from the 

fact that FD simulations of this kind basically correspond to a sequence of interconnected 

mixing cells. Aris and Amundson1 demonstrated the asymptotic equivalence of mixing cells 

in series and the convection-diffusion equation. In mixing cell terminology, it is characteristic 

of numerical dispersion that material entering one cell can be allowed to enter the next cell 

faster than normal flow would allow. The magnitude of the artificial dispersion is of the order 

Δz/2, which for reservoir scale modeling often exceeds what is physically realistic46.

Walsh and Orr51 demonstrated, on the basis of 1-D ternary displacements problems, that the 

sensitivity to of numerical dispersion for a given system is related to the phase behavior of the 

system in terms of the size and the shape of the two-phase region. The basic ideas of Walsh 

and Orr51 are combined with the intersecting tie line approach and extended to apply to 

miscible displacements of multicomponent systems. Consider the displacement of Oil 5 given 

in Table 6.1 by pure N2 at 305 atm and 344 K.

 PC(psia) TC(F) ω Oil 5 k(N2,j)
N2 493 -232.42 0.04 0 - - - 

CH4 667.8 -116.63 0.0104 0.5 0.031 - - 
C4 550.7 305.65 0.201 0.1624 0.12 0.027 - 
C10 305.7 652.1 0.49 0.3376 0.12 0.042 0.008 

Table 6.1: Properties of Oil 5. Data from Dindoruk7
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Dindoruk7 analyzed in detail the analytical VC solution to the system at a pressure well below 

the MMP. The geometrical structure of the displacement process is shown in Figure 6.1. The 

figure illustrates the key tie lines predicted by the global approach (red lines) along with an 

FD solution path obtained by use of 1000 grid blocks and Δz/Δτ = 10 (blue line). At the given 

temperature the MMP for the current system is predicted to be 309 atm. Thus, the 

displacement process shown in Figure 6.1 is near-miscible as seen from the length of the 

initial tie line. The mechanism controlling the development of miscibility is a pure vaporizing 

drive and hence an enriched gas becomes locally miscible with the initial oil. 

Figure 6.1: Displacement of Oil 5 by pure N2 at 305 atm and 344 K. The red lines are the key 

tie lines predicted by the global approach. The blue line is the result of a 1000 grid 

FD simulation with Δz/Δτ = 10. 

The initial oil is located on the CH4 – C4 – C10 surface of the quaternary diagram. The initial 

tie line is also located on this surface and the dispersion-free analytical solution (not included) 

would have to enter the two-phase region by a shock along this tie line. The initial tie line is 

connected to the crossover tie line by a nontie line rarefaction. In this case the crossover tie 
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line is located on the N2 – C4 – C10 surface. A shock must connect the crossover tie line to the 

injection tie line, which is located on the N2 – C10 line of the phase diagram. 

The recovery curve for this displacement process has been generated by analytical 

calculations and is compared with coarse and fine grid numerical simulations in Figure 6.2. 

Figure 6.2: Comparison of recovery curves from analytical and FD simulations for the 

displacement of Oil 5 by pure N2 at 344 K. The FD simulations were performed 

with 100, 1000 and 5000 grid blocks and Δz/Δτ = 10. 

Figure 6.2 clearly demonstrates that FD simulation of the displacement process illustrated in 

Figure 6.1 is strongly affected by numerical dispersion if coarse grid blocks are used. The 

geometrical structure of the displacement process (Figure 6.1) can be used to explain this high 

sensitivity to numerical dispersion. At the beginning of the FD simulation N2 is mixed with 

the initial oil along the dilution line connecting the two compositions (dotted line). As the oil 

is mixed with the injected N2, the composition path starts to move along the dilution line until 

the boundary of the two-phase region is reached. The orientation of the tie lines in the two-

phase region forces the liquid composition of the first two-phased contact down towards the 

N2 – C4 – C10 surface (and the injection tie line), whereas the corresponding gas phase is 

moving upwards toward the initial tie line. In the case concerned the presence of numerical 

dispersion will allow a gas with low enrichment of C4, from previous contacts with liquid 
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compositions still rich in C4, to contact an even richer liquid phase. Such a contact 

corresponds to a line of similar direction as that of the dilution line in compositional space. 

Thus, numerical dispersion will force the composition path downward in the direction of the 

N2 – C4 – C10 surface and away from the initial tie line. This suggests that the orientation of 

the dilution line relative to the direction of the initial tie line (critical tie line) plays an 

important role regarding the sensitivity of the current system. To investigate if this 

relationship has any influence on the sensitivity to numerical dispersion, a 50/50 mixture of 

N2 and CH4 is used as injection gas. The geometrical structure of this displacement process is 

given in Figure 6.3 

Figure 6.3: Displacement of Oil 5 by 50% N2 and 50% CH4 at 305 atm and 344 K. The red 

lines are the key tie lines predicted by the global approach. The blue line is the 

result of a 1000 grid FD simulation with Δz/Δτ = 10. 

The new injection gas composition does not alter the MMP of the displacement process as the 

initial tie line is fixed by the oil composition. However, the locations of the injection and the 

crossover tie lines are changed. Both tie lines are moved closer to the initial tie line. 

Consequently, the angle between the initial tie line and the dilution line is reduced. Two 

numerical simulations were made at 305 atm with the new injection gas: A coarse grid 
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simulation with 100 grid blocks and a fine grid simulation with 5000 grid blocks. The 

variation in the predicted recovery at 1.2 PVI for the two numerical experiments was 18% 

compared to 21% for the N2 displacement process. Thus, the effects of numerical dispersion 

are still quite significant although the angle between the dilution line and the initial tie line is 

reduced. A third injection gas consisting of 10% N2 and 90% CH4 was injected into Oil 5. The 

structure of the displacement process is shown in Figure 6.4. 

Figure 6.4: Displacement of Oil 5 by 10% N2 and 90% CH4 at 305 atm and 344 K. The red 

lines are the key tie lines predicted by the global approach. The blue line is the 

result of a 1000 grid FD simulation with Δz/Δτ = 10. 

Again, the injection of a CH4 rich gas does not alter the location of the initial tie line and 

hence the MMP for the displacement process. The general structure of the analytical solution 

also remains the same. This experiment was performed to force the dilution line to be located 

similarly to the initial tie line. Recovery curves for this displacement process, based on 

analytical calculations and FD simulations, are compared in Figure 6.5. A very significant 

change is observed regarding the sensitivity of this displacement process. The numerical 

simulations converge rapidly towards the analytical recovery curve as the number of grid 

blocks is increased. 
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Figure 6.5: Comparison of recovery curves from analytical and FD simulations for the 

displacement of Oil 5 by 10% N2 and 90% CH4 at 344 K. The FD simulations 

were performed with 100, 1000 and 5000 grid blocks and Δz/Δτ = 10. 

A comparing the Figures 6.1 and 6.2 with 6.4 and 6.5 reveals that the relative orientation of 

the dilution line and the initial tie line (critical tie line) has a major impact on the significance 

of numerical dispersion in FD simulations of the investigated system.  

For miscible/near-miscible multicomponent displacement processes, numerical dispersion has 

the effect of forcing the composition path away from the critical/near-critical key tie line and 

back into the two-phase region. Considerations similar to those applied to the investigation of 

the quaternary system can be applied to multicomponent systems. The results from the 

previous analysis suggest that the relative orientation of the dilution line and the lines 

connecting the critical tie line to the initial oil and the injection gas can be used as an indicator 

of the significance of sensitivity to numerical dispersion for a given system. The lines 

connecting the critical key tie line to the initial oil and the injection gas are referred to as 

critical lines.  

To test this hypothesis the variations in recoveries predicted by coarse and fine grid 

(100/5000) FD simulations (from previously presented simulations) were compiled for the 
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near miscible displacement processes (P ≈ MMP). The relative variations are plotted against 

the maximum angle between the critical lines and the dilution line in Figure 6.6. 

Figure 6.6: Sensitivity to numerical dispersion at the MMP vs. the maximum angle between 

the dilution line and the critical lines. The plot includes numerical simulations 

with and without volume change on mixing.  

Some scatter is observed in Figure 6.6 but a general tendency is evident. As the orientation of 

the dilution line and the critical lines diverges the gas injection process becomes more 

sensitive to the presence of numerical dispersion. It is pointed out that the injection gases 

applied to displacement studies of this work range from pure injection gases (N2, CH4 and 

CO2) and artificial mixtures of these to realistic separator gases (Gas 3 and Gas 4). 

Two methods can be used to obtain an indication of the sensitivity of a given system with 

respect to numerical dispersion. The sensitivity can be calculated directly by performing fine 

and coarse grid numerical simulations at the MMP and monitoring the variation of the 

predicted recovery. Alternatively, the orientation of the dilution line and the critical line can 

be determined from MMP calculations by the global approach where the approximated key tie 

lines are traced in the compositional space. This approach does not give a quantitative 

measurement of the dispersive effects but can be used to obtain a fast indication of the 

significance of numerical effects. 
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6.1 Results from Commercial Simulator E300 

To investigate the potential of the new tool for prediction of dispersive effects on the 

calculation performed with commercial finite difference simulators, two numerical 

experiments were run for a 20 m slimtube on the compositional simulator Eclipse 300. The 

Oil 4 – Gas 6 and Oil 4 – N2 systems were used in the numerical experiments since very 

different sensitivity to numerical dispersion is reported for the 1-D formulation of this work. 

Numerical simulations with E300 involve a simultaneous solution of the mass conservation 

equations and the pressure equation. Different solution strategies can be used in E300. In this 

work the implicit pressure/explicit saturation (IMPES) approach for solving the flow problem 

was used. This selection is made because the full implicit approach is more dispersive than 

the IMPES approach. Details of the slimtube model are given in Appendix A.18. For the 

purpose of comparison, special care was taken to avoid a large build-up in pressure through 

the specification of a low injection velocity. The recovery curves for the model systems 

generated with E300 are given in Figure 6.7 and 6.8. 

Figure 6.7: Comparison of recovery curves from E300 simulations for the displacement of Oil 

4 by pure N2 at 387.45 K. The E300 simulations were performed with 100, 500, 

1000 and 5000 grid blocks and adaptive time step regulation. 
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Figure 6.8: Comparison of recovery curves from E300 simulations for the displacement of Oil 

4 by Gas 6 at 387.45 K. The E300 simulations were performed with 100, 500, 

1000 and 5000 grid blocks and adaptive time step regulation. 

It is seen from Figures 6.7 and 6.8 that the system specific sensitivity to numerical dispersion 

from E300 simulations is equivalent to the sensitivity reported in the preceding chapters. This 

result indicates that the new approach to prediction of system dependent sensitivity can be 

used as guidance for selection of a proper grid refinement, when E300 is used for simulation 

of 1-D displacements in a homogenous porous media. However, a more detailed analysis of 

the application is advised prior to further conclusions about this subject. 

6.2 Summary 

The analysis and examples given in this chapter verify the results presented by Walsh and 

Orr51. They demonstrated that the sensitivity of a given ternary system to the presence of 

numerical dispersion is related to the phase equilibrium of the specific system. The 

considerations of Walsh and Orr51 have been applied for systems with more than three 

components. Detailed analysis of the grid size effect on the recovery predictions for the 

displacement of a CH4 – C4 – C10 system by pure N2 and mixtures of N2 and CH4 is 

performed. The analysis, based on the geometrical structure of the true dispersion-free 
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solutions, shows that the sensitivity to the presence of numerical dispersion can be related to 

the relative orientation of the dilution line and the line connecting the initial oil to the critical 

tie line.  

The predictive tool suggested from the analysis of the quaternary system is adopted for 

displacement processes where pure and multicomponent injection gases are used to displace 

real reservoir fluids. The quantitative variation in RF1.2 predicted at the MMP by numerical 

simulations proves to correlate well with the maximum angle between the dilution line and 

the critical lines, connecting the initial oil and the injection gas to the critical tie line. Thus, 

the algorithm developed for prediction of the MMP can be used to indicate the grid size 

sensitivity of FD simulations for a given 1-D displacement process. 

To compare the grid size effects observed from the FD simulations of the previous chapters 

and from a commercial simulator, two numerical slimtube experiments were made with 

Eclipse 300. The effect of the grid size used for the E300 simulations was found to be 

identical to what was observed for the FD simulators developed in the course of this work. 

The similarity in grid size effects for the FD simulators of this work and E300 indicates that 

the new predictive tool can be used as guidance for selection of proper grid sizes when 

commercial simulators based on upstream weighting schemes are employed. However, it 

should be stressed that a more detailed comparison should be performed prior to further 

conclusions about the portability. 
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7. Conclusions and Suggestions for Future Work 

The purpose of this work has been to develop efficient algorithms for the study of gas 

injection processes. The study and the development of such algorithms are qualified by time- 

consuming numerical simulators still being used worldwide in the design and development of 

miscible gas injection projects. Hence, there is room for improvements with respect to the 

computational expenses of such studies.  

In this work, the analytical theory of 1-D gas injection processes has formed the basis of the 

study and the development of new efficient tools. 

A new algorithm for prediction of the MMP has been developed. The algorithm is based on 

the intersecting tie line approach emanating from the 1-D analytical theory. The new approach 

allows prediction of the MMP for gas injection processes using any number of components 

for representing the phase equilibrium of the gas/oil system. The algorithm has been tested on 

a number of different gas/oil systems for which the corresponding finite difference 

simulations were available in the literature. Most of the reported systems are bubble-point 

systems but also a few gas condensates have been tested. Excellent agreement between 

reported values of the MMP and the values predicted by the global algorithm is found in all 

cases. For all the systems tested, where multicomponent separator gases are injected into a 

reservoir fluid, the mechanism controlling the development of miscibility is shown to be of a 

combined vaporizing/condensing nature. The application of simplified algorithms, like the 

single-cell approaches, to such systems must therefore be expected to overpredict the MMP. 

Up to now systems with a maximum of 15 components in the oil description and 15 

components in the injected gas have been investigated. The average time consumption for the 

MMP calculations is around a few seconds. Thus, the new algorithm is superior to any 

general approaches previously presented for prediction of the MMP, as regards the required 

CPU time. 
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Due to the modest CPU time consumption, the new algorithm is a powerful tool for reservoir 

engineers working with the design of gas injection projects. Two case studies are presented to 

indicate some fields of application.

The effects of tuning and lumping on the predicted MMP for a realistic reservoir fluid are 

investigated. The predicted MMP is found to be insensitive to the parameters used for tuning 

the fluid description of the given system to experimental swelling test data. The lumping 

study shows that the MMP predictions are also insensitive to the number of components in the 

fluid description as long as four or more components are used. This result agrees well with the 

fact that four or more components are needed in order to represent a combined 

vaporizing/condensing gas drive. In a second study, the algorithm was applied to 

determination of the optimal mixture of two available injection gases. In the first enrichment 

study the MMP was found to be a monotonous function of the enrichment factor. In a second 

study where a new solvent gas was considered a strongly non-monotonous behavior was 

found. The two cases show the need for more than a few points on the MMP vs. E curve and 

hence the need for an effective MMP algorithm. 

Based on the global formulation of the intersecting tie line approach, developed in the course 

of Chapter 3, a new method for constructing approximate analytical solutions to the 1-D gas 

injection process has been developed and implemented. The basis of the new method is that 

the path in the compositional space defining a 1-D displacement process is bound to travel 

through a sequence of key tie lines. In general these key tie lines are approximated very 

accurately by the intersection approach. 

The new method is initially developed for a simplified version of the conservation equations 

where components take up constant volumes during the displacement process (NVC). It is 

demonstrated how approximate solutions can be generated efficiently by assuming that all key 

tie lines are connected shocks. This is done by solving the shock balance equations for each 

adjacent pair of tie lines up- and downstream, starting at a primary key tie line. Proof is given 

that a primary tie line exists and that the primary tie line must be the shortest of the key tie 

lines. For oil/gas systems where all key tie lines are in fact connected by shocks (self-

sharpening systems) the approximate solutions are rigorously correct. For systems with nontie 
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line rarefactions, a detailed comparison with fine and coarse grid finite difference (FD) 

simulations shows that the pure shock solution offers a far more refined approximation than a 

coarse grid FD simulation. The computation time required for construction of fully self-

sharpening solutions is proved to be orders of magnitude lower than for the corresponding 

coarse grid numerical simulations. 

A tool has been developed for prediction of nontie line rarefactions in 1-D analytical 

solutions. The tool, referred to as the fanning rule, utilizes the geometrical orientation of the 

key tie lines to predict the existence of nontie line rarefactions. The fanning rule allows 

construction of far more refined approximate solutions for systems with nontie line 

rarefactions. The refined approximations are obtained by combining the shock constructions 

with integration of predicted nontie line paths. It is shown that not all nontie line rarefactions 

predicted by the fanning rule are of significant importance to the quality of the approximate 

solutions, and a method for discarding insignificant rarefactions is presented.  

Solution construction tools from the NVC algorithm have been used in the development of an 

algorithm taking volume change on mixing  (VC) into account. The VC algorithm is used for 

construction of pure shock solutions to the general formulation of the 1-D displacement 

problem. The qualities of the approximations generated by the VC algorithm can be 

monitored by applying the fanning rule and subsequently checking for significant nontie line 

rarefactions. As for the NVC algorithm, the VC shock solutions prove to be far more accurate 

approximations than coarse grid FD simulations for oil/gas systems with significant nontie 

line rarefactions. 

Both algorithms are used for generating recovery curves for the true dispersion-free 

displacement process. The recovery curves are compared with corresponding fine and coarse 

grid FD simulations. The comparison shows that the predicted recovery, for some oil/gas 

systems, is very sensitivity to the presence of numerical dispersion.  

On the basis of this observation a method for obtaining a qualitative estimate of the system 

specific sensitivity to numerical dispersion has been proposed. The method is based on a 
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geometrical interpretation of the dispersion-free solution paths for quaternary systems, and it 

is shown to correlate the sensitivities of the gas/oil systems investigated in this work well.  

The grid size effect observed for the FD simulators of this work has been compared with that 

of the commercial simulator Eclipse 300. Similarities in the observed grid size effects indicate 

that the proposed method can be used as guidance for selection of a proper grid size when 

commercial simulators with simple upstream weighting schemes are used. It is stressed that 

this analysis is based on displacements in homogeneous porous media. Thus, further 

investigation of this matter is needed prior to further conclusions on the portability. 

Suggestions for future work: 

An evident extension of the current work is to incorporate integration of nontie line 

rarefactions in the VC algorithm in order to obtain more accurate approximations for systems 

with such rarefactions. 

In equivalence with the lumping study performed with the MMP algorithm it could be 

interesting to investigate the sensitivity of predicted recovery factors with respect to the 

number of components used in a fluid description. 

In this work the 1-D algorithms have been used for calculation of dispersion-free recovery of 

the OOIP. It is a well-known fact that some of the heavy ends, produced from an oil reservoir, 

can cause problems in the downstream processing facilities. Thus, it could be interesting to 

investigate the possibility of designing a component selective gas drive. This would include a 

study of the interactions between the injection gas composition and the composition of the 

produced fluids. Such a study can start at a low scale, e.g. by the use of 1-D modeling. 

Finally, a study of 1-D gas injection problems with non-uniform initial data should be 

initiated. 
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8. Nomenclature 

A Coefficient matrix 
B Coefficient matrix 
Ci Overall molar concentration of component j 
d Length of a tie line 
E Enrichment factor 
f Fractional flow of vapor 
fj Fractional flow of phase j 
Fi Overall flux of component i 
Gi Overall volume fraction of component i 
gij Volume fraction of component i in phase j 
I Unit matrix 
J  Jacobian matrix 
kij Binary interaction parameter (EOS) 
krj Relative permeability of phase j 
krle  Effective relative permeability of liquid 
krve Effective relative permeability of vapor 
Ki Equilibrium constant of component i 
L Length 
Mw Molecular weight 
nc Number of components 
p Pressure 
P Pressure 
Pc Critical pressure 
Psat Saturation pressure 
Qi Overall fractional flow of component i 
S Saturation of vapor 
Sj Saturation of phase j
Sor  Residual oil saturation  
t Time 
T Temperature 
Tc Critical temperature 
v Convective velocity 
vd Dimensionless velocity 
x Distance 
xij Mole fraction of component i in phase j 
xi Mole fraction of component i in liquid phase 
yi Mole fraction of component i in vapor phase 
X Eigenvector (VC) 
Y Eigenvector (NVC) 
z Dimensionless distance 
zeos Compressibility factor 
zi Mole fraction of component i 
Zi Mole fraction of component i 
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Greek letters: 

β Mole fraction of vapor 
Δ Correction vector 
Δz Size of grid block 
Δt Size of time step 
ε Step size in nontie line integration 
φ Porosity 
η Similarity variable (z/τ)
λ Eigenvalue 
Λ  Shock velocity 
μ Viscosity 
μr Viscosity ratio (vapor/liquid) 
θ Fictitious vapor saturation 
ρj Molar density of phase j 
ρci Molar density of pure component i 
ρj

ideal Molar density of phase j (ideal mixing) 
ρm,j Mass density of phase j 
τ Dimensionless time (PVI) 
ω Acentric factor 
ϕ Fugacity coefficient 
ψ Parameter along envelope curve 

Abbreviations:

CGD Condensing gas drive 
EOS Equation of state 
FD Finite difference 
MC Multicell 
MMP Minimum miscibility pressure  
MOC Method of characteristics 
NVC No volume change 
OOIP Original oil in place 
PR  Peng-Robinson 
RF1.2 Recovery factor at 1.2 PVI 
PVI Pore volumes injected 
SRK Soave-Redlich-Kwong 
VC  Volume change 
VGD Vaporizing gas drive 
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10. Appendix 

A.1 Critical Properties of Oil 3 

Table A3.1: Critical properties and non-zero interaction parameters for Oil 3. 

 The data from Høier16 is for Peng-Robinson EOS. 

- Tc(K) Pc(atm) ω Mw (g/mol) kCH4,j KN2,j kCO2,j

CH4 190.6 45.44 0.0115 16.04 0 0.025 0.105 

N2 126.3 33.55 0.045 28.01 0.025 0 0 

CO2 304.2 72.84 0.231 44.01 0.105 0 0 

C2 305.4 48.16 0.0908 30.07 0 0.01 0.13 

C3 369.8 41.94 0.1454 44.1 0 0.09 0.125 

i-C4 408.1 36.00 0.1756 58.12 0 0.095 0.12 

n-C4 425.2 37.47 0.1928 58.12 0 0.095 0.115 

i-C5 460.4 33.37 0.2273 72.15 0 0.1 0.115 

n-C5 469.7 33.25 0.251 72.15 0 0.11 0.115 

C6 507.4 29.73 0.2957 86.18 0 0.11 0.115 

C7+(1) 563.2 31.36 0.2753 117.98 0.02 0.11 0.115 

C7+(2) 638.3 25.84 0.3761 180.12 0.028 0.11 0.115 

C7+(3) 736.5 19.38 0.5552 250.66 0.04 0.11 0.115 

C7+(4) 837 14.33 0.8021 346.62 0.052 0.11 0.115 

C7+(5) 936.9 10.92 1.108 547.83 0.064 0.11 0.115 
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A.2 Calculation Results from Displacement of Oil 3 by Gas 5 

Figure A3.2: Simulation results for Oil 3 displaced by Gas 5. The 8th crossover tie line 

becomes critical at 296 atm (MMP). Injection and initial tie lines are plotted as 

dotted and broken lines respectively. 
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A.3 Finite Difference (FD) Simulation 

This appendix describes the finite difference formulation of the conservation equations used 

to verify the semi-analytical solutions presented in this work. Two different FD simulators 

have been employed to verify the NVC and the VC solutions generated by the MOC.  Both 

are based on the fully explicit one-point upstream weighting approach. In a FD simulation a 

discretizised version of the conservation equations is solved. The space and the time 

dimension are divided into Ng grid blocks and Nt time steps respectively. The conservation 

equations are the rewritten in terms of difference quotients rather than true derivatives. 

Recalling that the NVC formulation of the conservation equations assume the form 

(A4.1)

the corresponding FD formulation used in this work is given by 

(A4.2)

where n is the grid block and t is the time step. In the NVC formulation Eq. A4.2 can be 

applied directly to generation of approximate solutions to the 1-D problem. This is due to the 

inherited volume conversion of the NVC formulation. 

A more complex formulation must be used for the VC formulation of the conservation 

equations:

(A4.3)

Special care must be taken to ensure that both mass and volume are conserved for each grid 

block. A descritizised version of Eq. A4.3 can be written as 

(A4.4)

where

(A4.5)

The extra complexity entering the FD solution strategy is a result of letting the components 

change volume as they transfer between the flowing phases. This results in variable overall 
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convective velocity. The overall velocity in a given grid block n at time step t can be written 

as

(A4.6)

where

(A4.7)

β is the mole fraction of vapor in the grid block while ρv and ρl are the vapor and liquid phase 

densities respectively. Comparison of Eqs. A4.4 and A4.6 makes it clear that an inner iterative 

loop must be used. Dindoruk7 suggests an iterative scheme using the density as independent 

variable in the inner loop. The algorithm for solving and updating G in grid block n to time 

step t+1 is:

1. Evaluate t
ndv ,  from Eq. A4.6 

2. Calculate 1
,
+t
niG by Eq. A4.4 

3. Calculate the overall mole fractions by  

(A4.8)

4. Calculate ρ based on 1
,
+t
niZ and evaluate the mass error by  

(A4.9)

If the mass error ε is greater than a tolerance (10-2-10-4), return to step 2 using the new 

density. Otherwise move to the next grid block and start with step 1. 

When fully explicit formulations are used, in general, special care must be taken to ensure 

stability of the simulation. The simulation will be stable if sufficiently small time steps are 

applied in comparison with the space step. In this work a Courant number of 10 (Δz/Δτ) was 

used and no instability was encountered. 
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A.4 Determination of Normal Vectors in Multidimensional Space 

The problem of locating the normal vector to the plane spanned by two intersecting vectors a

and b becomes an important issue, when the equal eigenvalue point is sought at which a 

solution path switches from a tie line path to a nontie line path. In the multidimensional space 

(m>3) the normal vector n to a given hyperplane may not be given uniquely. However, it is 

possible to locate a normal vector by posing an optimization problem. The normal vector n

must be perpendicular to the vectors a and b simultaneously. Hence, an objective function 

F(n) can be defined by 

A.4.10

F(n) will be positive or zero for all values of n. At the solution the derivatives of F with 

respect to the elements of n must be zero. This requirement can be written as 

A.4.11

where n0 is the solution. The elements of the gradient vector are given by 

A.4.12

Given an initial estimate of the normal vector the solution to A.4.12 can be generated by using 

the steepest descent approach or a combination of the steepest descent approach and a Newton 

iteration.  The Jacobian matrix required for the Newton iteration is given by 

A.4.13

The steepest descent approach may exhibit slow convergence near the solution. In such cases 

a switch to a full Newton iteration will speed up the convergence. 
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A.5 Details of 1-D Shock Solution Given in Figure 4.8 

Oil 4 displaced by pure N2 at 275 atm and 387.45 K . 

*Primary tie line 

Tie line μv/μl ρv/ρl Ln(Knc) S λ

Oil - - - 0 1.9981-∞

1* 1.252 0.1719 -5.8034 0.328 1.9981 

1* 1.252 0.1719 -5.8034 0.394 1.3085 

2 1.412 0.0565 -12.8906 0.706 1.3085-1.1639 

3 1.412 0.0556 -13.0025 0.825 1.1639-1.0953 

4 1.449 0.0492 -13.7463 0.826 1.0953-1.0245 

5 1.510 0.0426 -14.4138 0.834 1.0245-0.9116 

6 1.518 0.0418 -14.4895 0.845 0.9116-0.8189 

7 1.558 0.0388 -14.7522 0.846 0.8189-0.7657 

8 1.571 0.0378 -14.8221 0.852 0.7657-0.6486 

9 1.596 0.0360 -14.9429 0.854 0.6486-0.6109 

10 1.634 0.0336 -15.0917 0.858 0.6109-0.4610 

11 1.899 0.0241 -15.3741 0.864 0.4610-0.1559 

12 2.162 0.0181 -15.5495 0.900 0.1559-0.0643 

13 2.468 0.0136 -15.6557 0.930 0.0643-0.0146 

14 2.753 0.0109 -15.6793 0.951 0.0146-0.0073 

14 2.753 0.0109 -15.6793 0.958 0.0073-0.0071 

Gas - - - 1 0.0071-0 
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A.6 Details of 1-D Shock Solution Given in Figure 4.9 

Oil 4 displaced by 85 % CH4 and 15 % N2 at 275 atm and 387.45 K. 

*Primary tie line 

Tie line μv/μl ρv/ρl Ln(Knc) S λ

Oil - - - 0 1.998069-∞

1* 1.2515 0.1719 -5.8035 0.3282 1.998069 

1* 1.2515 0.1719 -5.8035 0.3802 1.435455 

2 1.2886 0.1316 -7.1043 0.5366 1.435455-1.358416 

2 1.2886 0.1316 -7.1043 0.6057 1.358416-1.19363 

3 1.2912 0.1264 -7.2401 0.6116 1.19363-1.099905 

4 1.3371 0.0961 -8.316 0.6585 1.099905-0.977401 

5 1.3985 0.073 -9.3087 0.6983 0.977401-0.894986 

6 1.4073 0.0705 -9.4277 0.7031 0.894986-0.844431 

7 1.4429 0.062 -9.8311 0.7204 0.844431-0.752449 

8 1.4552 0.0595 -9.9518 0.7263 0.752449-0.720468 

9 1.4776 0.0553 -10.1517 0.7363 0.720468-0.606363 

10 1.5126 0.0494 -10.4282 0.7528 0.606363-0.301007 

11 1.7306 0.0306 -11.0763 0.8258 0.301007-0.173708 

12 1.9685 0.02 -11.4886 0.8828 0.173708-0.052804 

13 2.265 0.0132 -11.7138 0.9332 0.052804-0.008837 

14 2.533 0.0099 -11.7649 0.9546 0.008837-0.006165 

14 2.533 0.0099 -11.7649 1 0.006165-0 

Gas - - - 1 0 
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A.7 Details of 1-D Shock Solution Given in Figure 4.10 

Oil 4 displaced by pure CH4 at 275 atm and 387.45 K. 

*Primary tie line  

Tie line μv/μl ρv/ρl Ln(Knc) S λ

Oil    0 1.997204-∞

1* 1.2515 0.1719 -5.8035 0.320545 1.997204-1.451519 

1* 1.2515 0.1719 -5.8035 0.38219 1.451519 

1* 1.2515 0.1719 -5.8035 0.407213 1.221407 

2 1.2463 0.1784 -5.6367 0.468295 1.221407-1.121263 

3 1.2504 0.1695 -5.7932 0.592126 1.121263-0.998271 

4 1.3052 0.1195 -7.0479 0.654817 0.998271-0.918956 

5 1.371 0.0859 -8.168 0.66166 0.918956-0.869465 

6 1.3801 0.0824 -8.3012 0.684889 0.869465-0.78352 

7 1.4163 0.0711 -8.7493 0.692614 0.78352-0.752922 

8 1.4289 0.0678 -8.887 0.705237 0.752922-0.647447 

9 1.4513 0.0625 -9.1098 0.725571 0.647447-0.348221 

10 1.4866 0.055 -9.4249 0.809849 0.348221-0.21444 

11 1.6994 0.0326 -10.1983 0.872709 0.21444-0.072124 

12 1.9324 0.0206 -10.6905 0.928577 0.072124-0.011485 

13 2.2262 0.0132 -10.9592 0.955598 0.011485-0.006735 

14 2.4913 0.0098 -11.0198 1 0.006735-0 

Gas    1 0 
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A.8 Details of 1-D shock solution given in Figure 4.11 

Oil 3 displaced by pure N2 at 300 atm and 368.15 K 

* Primary tie line 

Tie line μv/μl ρv/ρl Ln(Knc) S λ

Oil - - - 0 2.699345 ∞

1* 1.5336 0.0345 -7.0682 0.188954 2.699345 

1* 1.5336 0.0345 -7.0682 0.236395 1.645552 

2 1.7956 0.0103 -13.9089 0.522951 1.645552 1.324804 

3 1.7967 0.0103 -13.9354 0.52341 1.324804 1.112373 

4 1.8607 0.009 -14.6603 0.540709 1.112373 0.804747 

5 1.9319 0.0081 -15.1031 0.556146 0.804747 0.627263 

6 1.9475 0.0079 -15.1771 0.559626 0.627263 0.5515 

7 1.9944 0.0075 -15.3571 0.569135 0.5515 0.401119 

8 2.0141 0.0073 -15.4145 0.573485 0.401119 0.357466 

9 2.0476 0.007 -15.4991 0.580628 0.357466 0.22948 

10 2.096 0.0066 -15.5861 0.592401 0.22948 0.124802 

11 2.2367 0.0059 -15.7116 0.621861 0.124802 0.036671 

12 2.5885 0.0047 -15.8099 0.698649 0.036671 0.004686 

13 3.1524 0.0036 -15.8307 0.816858 0.004686 0.000269 

14 3.8868 0.0027 -15.8322 0.86623 0.000269 0.000123 

14 3.8868 0.0027 -15.8322 1 0.000123 0 

Gas - - - 1 0 
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A.9 Details of 1-D shock solution given in Figure 4.14 

Oil 4 displaced by pure CO2 at 200 atm and 387.45 K 

* Primary tie line 

Tie line μv/μl ρv/ρl Ln(Knc) S λ

Oil    0.162 3.82995-∞

1 1.1876 0.0898 -8.8985 0.118505 3.82955-1.290996 

2 1.1872 0.0911 -8.8073 0.1207 1.290996-1.160407 

3* 1.1697 0.374 -3.4055 0.494162 1.160407 

3* 1.1697 0.374 -3.4055 0.505332 1.075567 

4 1.2443 0.2559 -4.7199 0.706924 1.075567-1.014097 

5 1.3274 0.1732 -6.039 0.77145 1.014097-0.97409 

6 1.3388 0.1648 -6.2032 0.777803 0.97409-0.948706 

7 1.3817 0.138 -6.7605 0.798177 0.948706-0.903057 

8 1.3971 0.1298 -6.9443 0.804838 0.903057-0.885855 

9 1.423 0.1176 -7.2305 0.814958 0.885855-0.824143 

10 1.4644 0.1008 -7.6499 0.830545 0.824143-0.596932 

11 1.7002 0.0537 -8.7853 0.888074 0.596932-0.44394 

12 1.9442 0.0324 -9.4503 0.925601 0.44394-0.204687 

13 2.2434 0.0203 -9.8023 0.958171 0.204687-0.044935 

14 2.5137 0.0147 -9.8805 0.975927 0.044935-0.025028 

14 2.5137 0.0147 -9.8805 1 0.025028-0 

Gas    1 0 
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A.10 Details of 1-D Shock Solution Given in Figure 4.21 

Oil 3 displaced by Gas 3 at 300 atm and 368.15 K. 

* Primary tie line 

Tie line μv/μl ρv/ρl Ln(Knc) S λ

Oil - - - 0 2.698707 ∞

1 1.5336 0.0345 -7.0682 0.185131 2.698707 1.918674 

2 1.5279 0.0356 -6.953 0.223645 1.918674 

2 1.5279 0.0356 -6.953 0.237154 1.397001 

3* 1.5269 0.0358 -6.9359 0.254620 1.397001 

3* 1.5269 0.0358 -6.9359 0.265874 1.243583 

4 1.5532 0.0318 -7.2519 0.344670 1.243583 1.045402 

5 1.6134 0.0252 -7.833 0.411902 1.045402 0.931771 

6 1.6162 0.025 -7.8571 0.414345 0.931771 0.866988 

7 1.6543 0.022 -8.1502 0.443566 0.866988 0.756791 

8 1.6656 0.0212 -8.2285 0.451864 0.756791 0.719709 

9 1.6931 0.0195 -8.4042 0.470195 0.719709 0.597189 

10 1.7264 0.0177 -8.5889 0.492049 0.597189 0.415781 

11 1.8138 0.0144 -8.902 0.539645 0.415781 0.219434 

12 2.0313 0.0097 -9.3232 0.637438 0.219434 0.070445 

13 2.4347 0.0058 -9.5915 0.775269 0.070445 0.014252 

14 2.9962 0.0036 -9.6892 0.902660 0.014252 0.002375 

14 2.9962 0.0036 -9.6892 1 0.002375 0 

Gas - - - 1 0 
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A.11 Details of 1-D Shock Solution Given in Figure 4.22 

Oil 3 displaced by Gas 5 at 250 atm and 368.15 K . 

* Primary tie line 

Tie line μv/μl ρv/ρl Ln(Knc) S λ

Oil - - - 0 3.171526 ∞

1 1.5004 0.0228 -8.6599 0.067236 3.171526 1.514511 

2 1.5004 0.0228 -8.6596 0.06724 1.514511 1.171592 

3 1.494 0.0246 -8.4672 0.071099 1.171592 1.092878 

4 1.4573 0.0303 -7.8781 0.083111 1.092878 1.006383 

5 1.3433 0.0572 -6.3125 0.132232 1.006383 0.962889 

6 1.3189 0.0665 -5.9654 0.147778 0.962889 0.938889 

7 1.2314 0.1195 -4.674 0.232313 0.938889 0.899153 

8 1.2039 0.1467 -4.234 0.276558 0.899153 0.88434 

9* 1.1576 0.2126 -3.4385 0.47024 0.88434 

9* 1.1576 0.2126 -3.4385 0.477872 0.835109 

10 1.1678 0.1954 -3.6158 0.571843 0.835109 0.742035 

11 1.1910 0.1642 -3.9496 0.646037 0.742035 0.611293 

12 1.3124 0.0791 -5.083 0.79721 0.611293 0.405713 

13 1.5149 0.0348 -5.87 0.891628 0.405713 0.201268 

14 1.8152 0.0155 -6.2557 0.954836 0.201268 0.080245 

14 1.8152 0.0155 -6.2557 1 0.080245 0 

Gas - - - 1 0 
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A.12 Details of 1-D Shock Solution Given in Figure 4.23 

Oil 3 displaced by pure CH4 at 300 atm and 368.15 K. 

* Primary tie line 

Tie line μv/μl ρv/ρl Ln(Knc) S λ

Oil - - - 0 2.68024 ∞

1 1.5336 0.0345 -7.0682 0.168991 2.68024 1.894932 

2* 1.5206 0.0370 -6.8056 0.227271 1.894932 

2* 1.5206 0.0370 -6.8056 0.257488 1.388917 

3 1.5220 0.0367 -6.829 0.278365 1.388917 1.237088 

4 1.5943 0.0266 -7.6846 0.399307 1.237088 1.043549 

5 1.6657 0.0206 -8.3431 0.450722 1.043549 0.929012 

6 1.6815 0.0196 -8.4713 0.460331 0.929012 0.863911 

7 1.7248 0.0172 -8.7794 0.483451 0.863911 0.751018 

8 1.7439 0.0163 -8.8989 0.493318 0.751018 0.713224 

9 1.7744 0.0150 -9.0747 0.507889 0.713224 0.586949 

10 1.8207 0.0134 -9.3029 0.529999 0.586949 0.402147 

11 1.9366 0.0106 -9.6547 0.575157 0.402147 0.205475 

12 2.2221 0.0069 -10.0918 0.667391 0.205475 0.059015 

13 2.6873 0.0044 -10.313 0.788512 0.059015 0.010241 

14 3.3287 0.0028 -10.3872 0.907072 0.010241 0.001519 

14 3.3287 0.0028 -10.3872 1 0.001519 0 

Gas - - - 1 0 
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A.13 Details of 1-D Shock Solution Given in Figure 4.24 

Oil 3 displaced by 75 % CO2 and 25 % CH4 at 275 atm and 368.15 K. 

* Primary tie line

Tie line μv/μl ρv/ρl Ln(Knc) S λ

Oil - - - 0 1.613431 ∞

1 1.5237 0.0281 -7.8314 0.047601 1.613431 1.191951 

2 1.5145 0.0298 -7.5947 0.050438 1.191951 1.109161 

3* 1.1887 0.3572 -1.8766 0.495685 1.109161 

3* 1.1887 0.3572 -1.8766 0.502612 1.057492 

4 1.3206 0.1922 -3.0245 0.743313 1.057492 1.024916 

5 1.4279 0.1233 -3.8685 0.795237 1.024916 1.005119 

6 1.4508 0.1129 -4.0372 0.803228 1.005119 0.993493 

7 1.5102 0.0908 -4.4516 0.820711 0.993493 0.96942 

8 1.5363 0.0829 -4.6218 0.827459 0.96942 0.960334 

9 1.5754 0.0728 -4.8639 0.836484 0.960334 0.92695 

10 1.6339 0.0604 -5.1946 0.848695 0.92695 0.86471 

11 1.7679 0.0419 -5.7752 0.870183 0.86471 0.744147 

12 2.0703 0.0223 -6.5887 0.903674 0.744147 0.502959 

13 2.5289 0.0117 -7.1188 0.938287 0.502959 0.226694 

14 3.1568 0.0064 -7.3485 0.971455 0.226694 0.073111 

14 3.1568 0.0064 -7.3485 1 0.073111 0 

Gas - - - 1 0 
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A.14 Displacement (VC) of Oil 4 by Gas 6 at 275 atm and 387.45 K  

Details of 1-D shock solution. Properties of the key tie lines are given in Table 4.3. 

* Primary tie line 

Tie line S vd λ

Oil 0 0.951705 1.916983 ∞

1 0.327694 0.971139 1.916983 1.365171 

2 0.350849 0.971831 1.365171 1.137328 

3 0.344404 0.971713 1.137328 1.050533 

4* 0.429693 0.972047 1.050533 

4* 0.444027 0.972047 0.946128 

5 0.514057 0.972145 0.946128 0.880199 

6 0.51702 0.972071 0.880199 0.83989 

7 0.551699 0.972409 0.83989 0.774649 

8 0.571168 0.972756 0.774649 0.750527 

9 0.598427 0.973382 0.750527 0.67434 

10 0.648088 0.975239 0.67434 0.43432 

11 0.777113 0.984203 0.43432 0.312619 

12 0.857434 0.992959 0.312619 0.141069 

13 0.921774 0.998698 0.141069 0.029908 

14 0.956542 0.999737 0.029908 0.014141 

Gas 1 1 0.014141 0 
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A.15 Displacement (VC) of Oil 4 by pure N2 at 275 atm and 387.45 K  

Details of shock solution and a comparison of VC and NVC solutions. Key tie line properties 

are given in Appendix A.5. 

Tie line S vd λ

Oil 0 1.046255 2.107325 ∞

1* 0.330314 1.067514 2.107325 

1* 0.399267 1.067514 1.343283 

2 0.68182 1.011644 1.343283 1.172547 

3 0.683425 1.010776 1.172547 1.020871 

4 0.697478 1.005166 1.020871 0.817946 

5 0.714721 1.000906 0.817946 0.679143 

6 0.717223 1.000546 0.679143 0.608584 

7 0.727044 0.999274 0.608584 0.472118 

8 0.730587 0.999062 0.472118 0.432961 

9 0.737257 0.998727 0.432961 0.295701 

10 0.74922 0.998652 0.295701 0.08366 

11 0.816239 0.999376 0.08366 0.032045 

12 0.869223 0.999874 0.032045 0.005822 

13 0.905447 0.999995 0.005822 0.002108 

14 0.915147 1 0.002108 0.002036 

Gas 1 1 0.002036 0 

* primary tie line 
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A.16 Displacement (VC) of Oil 3 by Gas 3 at 300 atm and 368.15 K 

Details of 1-D shock solution and a comparison of VC and NVC solutions. Key tie line 

properties are given in Appendix A.10. 

Tie line S vd λ
Oil 0 0.913949 2.571301 ∞
1 0.190258 0.981463 2.571301 1.805965 
2 0.227677 0.982876 1.805965 
2 0.241865 0.982876 1.302147 
3* 0.259621 0.983069 1.302147 
3* 0.271169 0.983069 1.155907 
4 0.348206 0.981703 1.155907 0.96635 
5 0.4131 0.981445 0.96635 0.857445 
6 0.415423 0.981493 0.857445 0.795753 
7 0.443232 0.982223 0.795753 0.6911 
8 0.451111 0.982588 0.6911 0.656061 
9 0.468479 0.983494 0.656061 0.540972 

10 0.489224 0.984894 0.540972 0.372948 
11 0.534566 0.987936 0.372948 0.194591 
12 0.629044 0.993934 0.194591 0.06189 
13 0.766244 0.998576 0.06189 0.012457 
14 0.896864 0.999849 0.012457 0.002062 
14 1 1 0.002062 0 

Gas 1 1 0 

* Primary tie line 
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A.17 Displacement (VC) of Oil 3 by CO2/CH4 at 275 atm and 368.15 K  

Shock solution and a comparison of VC and NVC solutions. Key tie line properties are given 

in Appendix A.13. 

Tie line S vd λ
Oil 0 0.962562 1.555963 ∞
1 0.048489 0.979251 1.555963 1.149717 
2 0.051257 0.979937 1.149717 1.07225 
3* 0.497782 0.980686 1.07225 
3* 0.504797 0.980686 1.021393 
4 0.745113 0.978951 1.021393 0.988685 
5 0.79647 0.978521 0.988685 0.968545 
6 0.804318 0.978537 0.968545 0.956697 
7 0.821405 0.978703 0.956697 0.931994 
8 0.827974 0.978866 0.931994 0.922655 
9 0.836736 0.979148 0.922655 0.88825 

10 0.848561 0.979782 0.88825 0.82409 
11 0.869229 0.98173 0.82409 0.700195 
12 0.901557 0.987119 0.700195 0.458334 
13 0.935773 0.994224 0.458334 0.198371 
14 0.96974 0.998622 0.198371 0.062854 
14 1 1 0.062854 0 

Gas 1 1 0 

* Primary tie line 
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A.18 Input file for Eclipse (E300) Slimtube Simulation 

-->Simulation of a 20 metre slimtube using lab units 
-->Developed by Niels Lindeloff
-- PVT input and rock props supplied by K. Jessen 
-------------------------------------------------------------
RUNSPEC  ============================================================ 

OIL
GAS

IMPES

DIMENS
1000  1  1  / 

-- Cartesian co-ord system 

CART

-- Units: Lab 

LAB

-- Number of components: implies compositional run 
COMPS
 15 / 

MISCIBLE

GRID     ============================================================ 

DX
1000*2 / 

--Cross section is 0.5 square cm 

DY
1000*0.7071 / 

DZ
1000*0.7071 / 

-- Porosity and permeability 

PORO
1000*0.3042 / 

PERMX
1000*46000.0 / 

PERMY
1000*46000.0 / 

PERMZ
1000*46000.0 / 
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--Depth of cell centres 

MIDS
1000*100.0 / 

PROPS    ============================================================ 

-- Properties section: PVT data from INCLUDE file 

EOS
SRK  / 

-- Names of Components 
CNAMES
NITROGEN
CO2
METHANE
ETHANE
PROPANE
I-BUTANE
N-BUTANE
I-PENTANE
N-PENTANE
C6
C7
C11
C16
C23
C33
/

MISCEXP
0.000001 / 

-- Component Critical Temperatures  (K) 
TCRIT
    126.20000   304.20000   190.60000   305.40000   369.80000 
    408.10000   425.20000   460.40000   469.60000   507.40000 
    632.80001   659.60533   703.64643   766.49716   892.98963 
/

-- Component Critical Pressures   (bar) 
PCRIT
     34.04520    73.86592    46.00155    48.83865    42.45517 
     36.47700    37.99687    33.84255    33.74122    29.68822 
     30.70019    23.77062    19.54564    17.00758    15.33069 
/
-- Component Critical Volumes  (ccm) 
--  set by user 
VCRIT
     90.080000     93.950000      99.260000     147.950000     202.890000 
    262.700000    254.710000     305.830000     304.020000     370.140000 
    511.730000    737.840000    1079.190000    1612.480000    2758.530000 
/

-- Critical Volumes for viscosity  (ccm) 
--  set by user 
VCRITVIS
     90.080000     93.950000      99.260000     147.950000     202.890000 
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    262.700000    254.710000     305.830000     304.020000     370.140000 
    511.730000    737.840000    1079.190000    1612.480000    2758.530000 
/

-- Component acentric factor 
ACF
  0.04000 0.22800 0.00800 0.09800 0.15200 
  0.17600 0.19300 0.22700 0.25100 0.29600 
  0.18424 0.47731 0.81969 1.21141 1.37175 
/

-- Components Parachors  (dyn/cm) 
--        (for IFT - Fanchi 1990) 
PARACHOR
     74.43680   111.22300    46.89890    79.15870   111.42080 
    239.61917   239.61917   280.57801   280.57801   321.53685 
    388.20114   581.85564   819.38791  1150.58805  1793.79357 
/

-- Peneleux Correction (Shift parameters DM-less) 
SSHIFT
    0.03434   0.11197   0.02113   0.05829   0.08059 
    0.09050   0.09752   0.11156   0.12146   0.14005 
    0.17465   0.02796  -0.07706  -0.20962  -0.42467 
/

-- Component Molecular Weight  g/mol 
MW
   28.01600  44.01000  16.04300  30.06900  44.09600 
   58.12300  58.12300  72.15000  72.15000  86.17700 
  109.00723 175.32727 256.67393 370.09864 590.37450 
/

-- Binary interaction parameters 
BIC
0.000000
0.020000 0.120000 
0.060000 0.150000 0.000000 
0.080000 0.150000 0.000000 0.000000 
0.080000 0.150000 0.000000 0.000000 0.000000 
0.080000 0.150000 0.000000 0.000000 0.000000 0.000000 
0.080000 0.150000 0.000000 0.000000 0.000000 0.000000 0.000000 
0.080000 0.150000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
0.080000 0.150000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
0.000000
0.080000 0.150000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
0.000000 0.000000 
0.080000 0.150000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
0.000000 0.000000 0.000000 
0.080000 0.150000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
0.000000 0.000000 0.000000 0.000000 
0.080000 0.150000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
0.000000 0.000000 0.000000 0.000000 0.000000 
0.080000 0.150000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
/

STCOND
15.0 1.0 / 
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GRAVITY
1* 1.01 1* / 

-- Reservoir temperature: Deg C 
RTEMP
 114.3  /

-- Rock and properties 

ROCK
250.0  0.00000  / 

--Gas saturation functions 
SGFN
--     Sg         Krg        Pcog 
    0.000000    0.000000       0 
    0.050000    0.003906       0
    0.100000    0.015625       0 
    0.150000    0.035156       0 
    0.200000    0.062500       0 
    0.250000    0.097656       0 
    0.300000    0.140625       0 
    0.350000    0.191406       0 
    0.400000    0.250000       0 
    0.450000    0.316406       0 
    0.500000    0.390625       0 
    0.550000    0.472656       0 
    0.600000    0.562500       0 
    0.650000    0.660156       0 
    0.700000    0.765625       0 
    0.750000    0.878906       0 
    0.800000    1.000000       0 
    1.000000    1.000000       0 
/

--  Oil saturation functions 
SOF2
 0.000000    0.000000 
 0.200000    0.000000 
 0.250000    0.003906 
 0.300000    0.015625 
 0.350000    0.035156 
 0.400000    0.062500 
 0.450000    0.097656 
 0.500000    0.140625 
 0.550000    0.191406 
 0.600000    0.250000 
 0.650000    0.316406 
 0.700000    0.390625 
 0.750000    0.472656 
 0.800000    0.562500 
 0.850000    0.660156 
 0.900000    0.765625 
 0.950000    0.878906 
 1.000000    1.000000 
/

SOLUTION ============================================================ 
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--  Solution section: define explicitly 

PRESSURE
1000*250.0 / 

SGAS
1000*0.0 / 

XMF
1000*0.0045 1000*0.0164 1000*0.4585 1000*0.0715 1000*0.0674 1000*0.00840 
1000*0.03110 1000*0.01030 1000*0.01650 1000*0.02520 
1000*0.12440 1000*0.06320 1000*0.05024 1000*0.03240 1000*0.01996 / 

YMF
1000*0.0045 1000*0.0164 1000*0.4585 1000*0.0715 1000*0.0674 1000*0.00840 
1000*0.03110 1000*0.01030 1000*0.01650 1000*0.02520 
1000*0.12440 1000*0.06320 1000*0.05024 1000*0.03240 1000*0.01996 / 

--  Calculate initial oil and gas in place at surface conditions 

FIELDSEP
1 15.0 1.0 / 
/

RPTSOL
PRES  SOIL  SGAS  / 

OUTSOL
PRES  SOIL  SGAS / 

SUMMARY  ============================================================ 

WOPR
PRODUCER  / 

FOPR

WOPT
PRODUCER  / 

WGOR
PRODUCER  / 

RUNSUM

SCHEDULE ============================================================ 

CVCRIT
-0.001 / 

SEPSPEC
SEPP  G2  1  15.0  1.0 / 
/

WELLSPEC
INJECTOR G1  1 1 1*       / 
PRODUCER G2 1000 1 1* SEPP  / 
/
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WELLCOMP
INJECTOR  1  1  1  1  1  1* 5000 / 
PRODUCER 1000 1  1  1  1  1* 5000 / 
/

WELLSTRE
LEANGAS  0.9999 0.0001 / 
/

--Total pore volume is 304.2ccs, inject 1/10 PV per hour 

WELLINJE
INJECTOR  STREAM  LEANGAS  RV  5* 30.42 / 
/

WELLPROD
PRODUCER  BHP  4*  250.0  / 
/

RPTPRINT
1 1 1 1 1   1 1 1 0 0 / 

RPTSCHED
PRESSURE  SOIL  SGAS / 

--Limit max step to get at least 500 timesteps per 10 hours = 1 PV injected 
-- Her sat til mindst 1000 pr 10 hrs NL
TSCRIT
0.001 0.0001 0.01 / 

--Run for 12 hours - ie 1.2 pore volumes injected 

TIME
1 2 3 4 5 6 7 8 9 10 11 12 / 

END


