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Summary

In recent decades, an increasing effort has been spend on studies and development of
improved oil recovery processes. Gas injection can be a very efficient method for improving
the oil production, particularly in the case where miscibility develops during the displacement
process. The minimum pressure at which a gas should be injected into the reservoir in order to
obtain a multicontact miscible displacement (the MMP, minimum miscibility pressure) has
consequently obtained a very important status in IOR/EOR studies. Another area to which
increasing attention is paid is the ongoing development of a new generation of reservoir
simulators. The new simulators, based on streamline technology, decompose the three-
dimensional (3-D) structure of areservoir into a sequence of one-dimensional (1-D) problems.

Efficient methods for generating solutions to the 1-D gas injection problem are hence needed.

A new algorithm has been developed for calculation of minimum miscibility pressures for the
displacement of oil by multicomponent gas injection. The algorithm is based on the key tie
line identification approach initially addressed by Wang and Orr®2. In this work a new global
approach is introduced. A number of deficiencies of the sequential approach have been
eliminated, resulting in a robust and highly efficient algorithm. The time consumption for
calculation of the MMP in multicomponent displacement processes has been reduced
significantly, so that the calculation can now be performed within afew seconds on a PC for a
15-component gas mixture. The algorithm is therefore particularly suitable for gas enrichment
studies or other case studies where a large number of MMP calculations are required.
Predicted results from the key tie line identification approach are shown to be in excellent
agreement with slimtube data and with results from multicell/slimtube simulators presented in

the literature.

The solution to mass conservation equations governing one-dimensional (1-D) dispersion-free
flow in which components are partitioned between two equilibrium phases is controlled by
the geometry of key tie lines. It has previously been proven that for systems with an arbitrary
number of components, the key tie lines can be approximated quite accurately by a sequence
of intersecting tie lines. This experience was utilized in the development of the new MMP

algorithm.
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Tools developed during the implementation of the global approach to calculation of the MMP
have been combined with tools from the analytical theory of 1-D gas injection processes. As a
result, a new approach to generating approximate 1-D analytical solutions to problems with
constant initial and injection compositions (Riemann problems) has been developed. For fully
self-sharpening systems, in which all key tie lines are connected by shocks, the obtained
analytical solutions are rigorously accurate, while for systems where some key tie lines are
connected by spreading waves, the analytical solutions are approximations, but accurate ones.
Detailed comparison between analytical solutions with both coarse and fine grid
compositional simulations indicates that even for systems with continuous variation between
key tie lines, approximate analytical solutions predict composition profiles far more
accurately than coarse grid numerical simulations. Because of the generality of the new
approach, approximate analytical solutions can be obtained for any system whose phase
behavior can be modeled by an equation of state. The construction of approximate analytical
solutions is shown to be orders of magnitude faster than the equivalent coarse grid
compositional simulation. Hence, the new approach is valuable in areas where fast
compositional solutions to Riemann problems are required. The new approach to construction
of approximate analytical solutionsto the 1-D gasinjection problem isinitialy described for a
simplified version of the conservation equations. In the simplified version, described in
Chapter 4, components are assumed to take up a constant volume throughout the
displacement. This assumption is relaxed in Chapter 5 where a general approach to

constructing approximate analytical solutionsis presented.

A large number of finite difference (FD) simulations were performed as part of developing
the algorithms for constructing approximate analytical solutions. The well-documented
existence of a system dependent sensitivity to numerical dispersion in FD simulations was
observed. An approach to a qualitative estimation of the sensitivity for a given system is
suggested. The approach, presented in Chapter 6, is based on the key tie line orientation of the
approximate analytical solutions. A qualitative estimate can hence be obtained directly from
the new MMP algorithm without increase in the required CPU time.
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Resumé

Gennem det sidste arti er en vassentlig forskningsmaessig indsats blevet rettet mod indblik i og
udvikling af metoder til forbedring af olieindvinding fra eksisterende oliefelter. Injektion af
gas kan bidrage til en veesentlig forbedring af indvindingsgraden. Specielt hvis der under
fortraengningsprocessen optar blandbarhed mellem den injicerede gas og olien. Det laveste
tryk, ved hvilket der under fortraangningsprocessen opstar multikontakt blandbarhed (MMP),
har som f@lge deraf en afgerende rolle i forbindelse med studier af metoder til forbedring af
indvindingsgraden. Den igangvaarende udvikling af en ny type reservoirsimulatorer har
ligeledes faet stor opmegksomhed. Den nye type reservoirsimulator, baseret pa
stremningslinjeteknologi, opsplitter den tredimensionale beskrivelse af et oliereservoir til en
sekvens af endimensionalt (1-D) formulerede problemstillinger. Der er derfor opstaet et behov

for effektive metoder til l@sning af flow problemer for 1-D gasinjektionsprocesser.

Der er blevet udviklet en ny algoritme til beregning af MMP for fortraangningsprocesser, hvor
multikomponent gas injiceres i en olie. Algoritmen er baseret pa naglebindelinie konceptet
introduceret af Wang og Orr>? . En ny global formulering af problemstillingen er beskrevet og
implementeret. Reformuleringen eliminerer en rakke begramsende faktorer fra den
oprindelige formulering. Dette resulterer i en robust og meget effektiv algoritme.
Beregningstiden for bestemmelsen af MMP er reduceret signifikant, siledes at beregningen
nu kan udfares med PC pa fa sekunder for systemer med 15 komponenter i injektionsgassen.
Den nye algoritme er derfor velegnet til studier af forskellige injektionsgasser og blandinger
heraf. Generelt er den nye algoritme velegnet til studier af injektionsprojekter, hvor mange
MMP beregninger er en ngdvendighed. Resultater opnaet med den nye angrebsvinkel er i god
overensstemmelse med slimtube data og med resultater beskrevet i litteraturen fra numeriske

simulatorer.

Lasninger til bevarelsesligninger, der beskriver endimensionalt dispersionsfrit flow, hvor
komponenter fordeler sig mellem to faser i ligevaagt, er bestemt ved geometrien af negle
bindelinier. Det er tidligere blevet demonstreret, at disse ngglebindelinier kan beskrives
tilneamelsesvist korrekt ved en serie af bindeliner, hvis forlaangelse skager hinanden parvist.
Dette faktum blev benyttet i udviklingen af den nye MMP algoritme. En kombination af
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vagktgj, udviklet i forbindelse med implementeringen af MMP agoritmen, med vaaktgj fra
den analytiske teori for 1-D gasinjektionsprocesser har fert til udviklingen af en ny metode til
generering af approksimative analytiske lgsninger til 1-D gasinjektionsprocesser.
Lasningsmetoden kan anvendes til problemstillinger med konstante begyndel sebetingel ser
(Riemann problemer). For systemer, hvor den korrekte Igsning udelukkende bestdr af
chokfronter, vil den udviklede | @sningsmetode vaae uomtvistelig ngjagtig. For systemer, hvor
naglebindelinier er forbundet ved kontinuert variation, vil de genererede |gsninger vaae
approksimative men stadig meget ngjagtige. En detajeret sammenligning af de
approksimative analytiske lgsninger med numeriske simuleringer demonstrerer, at de
approksimative lgsninger er mere ngjagtige end numeriske simuleringer, hvis antalet af
gridblokke er lavt. P4 baggrund af den generelle formulering af den nye metode kan den
anvendes til alle 1-D problemstillinger, hvor faseligevaagte for de involverede fluider kan
beskrives med eksempelvis en tilstandsligning. Beregningstiden for den nye metode er
starrelsesordner lavere end for tilsvarende numeriske simuleringer selv med fa gridblokke.
Metoden er derfor velegnet til problemstillinger, hvor lgsning af mange Riemann problemer
er pakraevet. Den nye lgsningsmetode blev i farste omgang udviklet for en simplificeret
udgave af bevarelsesligningerne. | den simplificerede udgave, beskrevet i kapitel 4, antages
komponenterne at have konstant molar volumen under hele fortraangningsprocessen. Den
simplificerede metode er videreudviklet i kapitel 5, hvor en generel metode bliver

prassenteret.

Et stort antal numeriske simuleringer, baseret pa differensmetoden, blev udfert som led i
udviklingen a den nye lgsningsmetode. Den vel dokumenterede eksistens af en
systemafhaangig felsomhed over for numerisk dispersion blev observeret. En generel metode
til kvalitativ estimering af denne falsomhed er beskrevet i kapitel 6. Metoden benytter sig af
den geometriske struktur af den tilsvarende approksimative analytiske |gsning. Dette betyder,
at et kvalitativt estimat for falsomheden af et givet system kan genereres sidel gbende med en
MM P beregning uden at pavirke den ngdvendige beregningstid.
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Chapter 1. Introduction 1

1. Introduction

Miscible gas injection processes have become a widely used technique for
enhanced/improved oil recovery (EOR/IOR) throughout the world. The understanding of the
multiphase, multicomponent flow taking place in any miscible displacement process is
essential for successful design of gas injection projects. Due to complex reservoir geometry
and reservoir fluid properties, numerical simulations of the flow processes are usually
conducted to obtain such understanding. In principle, compositional simulation could be used
to study such problems. But in practice conventional finite difference simulation is so slow
that three-dimensional (3-D) computations are feasible only when coarse grid blocks are used.
Such simulations are not very useful, however, because they are severely affected by

numerical dispersion.

Recent progress in the application of streamline methods offers a way to overcome the

23484 In the streamline

limitations of 3-D finite difference compositional simulation
approach, a one-dimensiona (1-D) solution is mapped onto streamlines which capture the
effects of reservoir heterogeneity. Thiele et al.>® described 2-D and 3-D streamline
compositional simulations in which analytical and finite difference approaches were used to
solve the 1-D flow problem. Thiele et al.* used a numerical solution to the 1-D problem to
perform a compositional simulation for a heterogeneous 3-D reservoir described with 518000
grid blocks. At that time, analytical solutions for problems with an arbitrary number of
components in the oil and injection gas were not available. Application of analytical solutions
in simulations like that of Thiele et al.* could lead to substantial additional speed-ups in

streamline calculations.

Gas injection can be a very efficient method for EOR/IOR, particularly if miscibility develops
during the displacement process. Hence, the task of determining the minimum pressure at
which a given gas should be injected into the reservoir in order to achieve multicontact
miscibility (the MMP) has obtained a very important role in production case studies. Various
approaches have been suggested in the literature for determining the MMP. Many attempts
based on ternary representations have later been proven to apply only to the special cases of a

vaporizing or a condensing mechanism controlling the development of miscibility. Zick® and
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subsequently Stalkup® demonstrated that the mechanism controlling the development of
miscibility could be (and often is) of a combined vaporizing and condensing nature.
Furthermore, they showed that the MMP in general could be determined by 1-D

compositional simulation.

A massive effort has been spend on the development of the analytical theory of 1-D gas
injection problems. The development of this theory has offered a very helpful tool for
understanding the nature of the mechanisms controlling the development of miscible
displacements. The current work is devoted to the further development of the analytical
theory and to the implementation of the theory into effective algorithms for the study of

miscible gas injection problems.

The need for effective algorithms for 1-D gas injection problems is evident since time-
consuming finite difference simulations are still used for streamline ssimulations and for

determination of the minimum miscibility pressure.

Chapter 2 presents the conservation equations governing 1-D dispersion free two-phase flow
and introduces the reader to the analytical theory forming the backbone of this study. In
Chapter 3 a brief introduction is given to the mechanisms controlling the development of a
miscible displacement along with an overview of different methods for calculation of the
MMP previously presented in the literature. Subsequently, a new agorithm for effective
calculation of the MMP, based on the analytical theory, is presented. In Chapter 4, the tools
developed in Chapter 3 are combined with tools from the analytical theory to construct
approximate analytical solutions to a simplified version of the conservation equations. This
chapter also presents some new contributions to the analytical theory. In Chapter 5 the
algorithms of Chapter 4 are extended to consider the general formulation of the conservation
equations. Finally, Chapter 6 demonstrates how the effects of numerical dispersion in finite

difference simulations can be linked to the geometry of the approximate analytical solutions.
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2. Conservation Equations and Analytical Theory of the 1-D Gas I njection Process

This chapter introduces the flow equations and the analytical theory forming the basis of the
work described in the later chapters. Two different formulations of the one-dimensional (1-D)
two-phase flow problem are presented. Initially, the general form of the conservation
equations is presented in which the components are allowed to change volume as they transfer
between phases. Then a simplified version of the conservation equations is given. In the
simplified version components do not change volumes as they transfer between the
equilibrium phases. The mathematical problem of solving the conservation equations for the
latter case is much simpler than for the general case and is used as a starting point for

generating general approximate analytical solutions of the 1-D flow problem.

A sketch of the physical system considered in the modeling work is givenin Figure 2.1.

Injection of gas Production
— > Porous media saturated with oil —

< L

Y

Figure 2.1: Sketch of the 1-D gasinjection problem.

2.1 General Formulation of the Conservation Equations

The derivation of the conservation equations for the one-dimensiona (1-D) flow problem is

based on the following assumptions:

e The porous medium is homogeneous and incompressible

¢ Instantaneous thermodynamic equilibrium exists everywhere

e Thegradient in pressure along the system is small compared to the total pressure
e Capillary forces and gravity are neglected

e Theflow isisothermal and linear

e Masstransfer by dispersion/diffusion is neglected
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Given these assumptions, the mass conservation equation for flow of two phases in a 1-D

porous mediais given by

ii s 2 Xi f |=0 2.1)
ot i:lpmj : oXx (I)jzlpmj ) .

where t is the time, x is the distance, py is the density of phase j, v is the linear flow velocity
based on an empty tube and ¢ is the porosity. § and f; are the saturation and the fractional
flow of phase j respectively. In the absence of chemical reactions during the displacement
process, Eq. 2.1 can be rewritten in terms of molar phase densities (p;) and mole fractions for

each of the nc components as

J (< 9 (v _ -
1= j=

where x;; is the mole fraction of component i in phase j. By introducing the dimensionless
variables
Vit

_ S
vy L (2.3)

where L is the system length and vi; is the injection velocity (volumetric flow rate divided by

cross sectiona area), EQ. 2.2 can be written as

JC.  oF .
42 1=-0, i=1.,nc 24
0T 0z L @49
with
2
C(2)= 2 XiP;S, (2.5)
i1
and
2
F, (Z,Vd):dexiij‘ f, (2.6)
-1

Z isthe overall composition in mole fractions and vy is the velocity scaled with respect to the

injection velocity Vi (Va = V/Vin). Z contains only nc-1 elements due to the constraint on mole
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fractions. To close the mathematical formulation of the flow problem, initial data must be
specified. This work deals strictly with the case of constant initial data which is the overal
composition of the injection gas and the overall composition of the initial oil connected by a
discontinuity at z= 0.

Z,; for z<0
Z_ for z>0

=il

2(27=0) ={ @7
The mathematical formulation of the flow problem is given by a set of coupled first order
partia differential equations (PDES). Specification of constant initial data gives rise to a
Riemann problem, which may be solved by the method of characteristics. Lax*’ demonstrated
that the solution to Eq. 2.4 is self-similar. The salf-similarity of the solution allows the flow

problem to be reformulated into an eigenvalue problem by introducing the variable

z
n=— (2.8)
T
By application of the chain rule the derivatives of Eq. 2.4 can be rewritten as
aC, _ Elaidi on 2.9)
Jdt | {2 dZ; dn |ot
and
oF, oF dv, oF dZ; o
RaNERY [ R Yt Bl By LA (2.10)
0z |dvy dn 95 9Z; dn |oz
Substitution of Egs. 2.8-10 into Eq. 2.4 yields the eigenvalue problem
: wlgfF dZ, ©loC dZ.
IR vy +> oF ¢4 -n 9C % _ 0,i=1.,nc (2.12)
ovy dn  {ZdZ; dn = 0Z; dn
Eq. 2.11 can be written in the matrix-vector notation
(A-2B)X =0 (2.12)
where the elements of A and B are given by
oF. i=1.,nc .
— for oC, i=1.,nc
Z j=1,..,nc—1 — for | (213)
A = 9z, J=L..nc B; =40Z. j=1.,nc-1
oF, . I :
— for j=nc 0 for j=nc

v,
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The eigenvalues of EQ. 2.12 (A=n) correspond to the characteristic wave velocity of a given

overall composition whereas the associated eigenvectors

X [dididz_d_] (2.14)
dn dn dn dn
are tangents to composition paths. The physical interpretation of the characteristic wave
velocities is the speed at which a given overall composition propagates throughout the porous
media. The eigenvalue problem can be used to generate analytical solutions to the 1-D flow
problem (Eq. 2.2). Due to the non-linearity introduced by normal S-shaped fractiona flow
functions (f;), the set of partial differential equations is not strictly hyperbolic. In terms of the
corresponding eigenvalue problem, this means that the eigenvalues are not strictly ordered
and hence that the composition path may change from atie line path to a nontie line path at
points of equal eigenvalues. This fact plays an important role in the construction of 1-D

solutions described in subsequent sections.

The fractional flow function used in this work is based on the Darcy law for multiphase flow
with no gravity or capillary forces acting on the fluids. On these assumptions the fractional
flow of phase j can be written in terms of the phase relative permeability (k;) and the phase

viscosity (y;) as

¢ _ Kol
i ik. n (2.15)
i=1

The phase relative permeability (k) is described by Corey type expressions. For the liquid
and the vapor phase, respectively, these are

nl
krl — krle(l_ S- Sor ) (216)

and 1- Sor

S nv
k,=K.|——o
rv rve(l_ SOr ] (217)

Sor istheresidua oil saturation, ke and ke are the effective relative permeabilities of liquid

and vapor respectively and nl, nv are system specific constants. Before turning attention to the
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tools available for construction of 1-D solutions, asimplified version of the flow problemis

considered.

2.2 Conservation Equationswith No Volume Change on Mixing (NVC)

Various authors have studied simplified versions of the conservation equations presented in
the previous section. In the work of Johns®* and Wang™ components are assumed to mix
ideally. Thus, components do not change molar volume/density in the transition between
liquid phase and vapor phase. The assumption about no volume change is reasonable when
pressures are high. For systems at lower pressures where the solubility of light componentsin
undisplaced oil is high but the gas density is low, effects of volume change can be significant

and the general formulation of the conservation equations should be used.

The assumption leads to a magjor ssimplification of the mathematics involved in solving the
resultant conservation equations, since overall convective velocity will be constant in the
NVC formulation of the displacement process. Further, the overall molar compositions (Cj)
and the overall molar fluxes (F;) entering into Eq. 2.4 can be substituted by an overall volume
fraction and an overall fractional flow term. Consequently, the conservation equations are

written in the form

aa%waa%:o ,i=1.,nc-1 (2.18)
where ,
G =>¢S, (2.19)
and -
Q©=3¢f, 220
j=1

Due to the restrictions on the overall volume fractions (G;) and the overall fractiona flows
(Q)
3G =>q-=1 (221)
i=1 i=1

only nc-1 of the conservation equations (Eqg. 2.18) are independent. The component volume

fractions are defined by
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ideal
_%iP;

: (2.22)
pci

where pg is the molar density of the pure component i taken at the pressure and temperature

of the displacement process. p;'**

about ideal mixing. That is

is the molar density of phase j based on the assumption

nc

pi = [Zi] (2.23)

i=1 Pg

By applying the concept of self-similarity (Lax*’), the conservation equations are rewritten in

terms of the ratio of independent variables:

96, an , 9Q an
on 9t  9dn oz

=0,i=1.,nc-1 (2.24)
where 1) is defined by EqQ. 2.8. Inserting the derivatives of the new independent variable n into

Eq. 2.24 brings the conservation equations on the form

Q. G,
&_n_'

=0,i=1.,nc-1 2.25
an an i=1.,nc (2.25)

The derivative of the overal fractiona flow (Q;) can be expressed in terms of the overal
volume fractions by applying the chain rule:
nc-1 aQ| aGJ ~ oG,

n—=0,i=1.,nc-1 2.26
jz_{an on on (2:26)

This is the eigenvalue problem associated with the NVC conservation equations. In matrix-

vector notation the eigenvalue problem is given by

(A-ni ) =0 (2.27)

where | isthe unity matrix and the elementsif A and Y are given by

_R %G i,j=1.,nc-1 (2.28)

Aj‘aej C o
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In equivalence with the general eigenvalue problem including volume change (VC), the
eigenvalues of Eq. 2.27 correspond to characteristic wave velocities of a given overall volume
fraction and the eigenvectors are tangents to the associated composition paths. The initial data

of the NV C formulation is specified by

G,; for z<0
G, for z>0

~ail

G(z,t=0)= { (2.29)

2.3 Geometry of 1-D Analytical Solutions

The analytical solutions to Eq. 2.4 (or Eq. 2.18) are constructed by solving the eigenvalue
problem associated with the mass conservation equations. In the compositional space, the
corresponding problem is to identify the correct (unique) route, which connects the initia oil
composition and the injection gas composition. The composition route describing the

analytical solution geometrically is subject to the following requirements:

1. The composition route must have characteristic wave velocities in the two-phase region
which increase monotonically from upstream to downstream locations. This condition is
known as the velocity rule. If the velocity rule should be violated by a continuous
variation (known as a rarefaction), a shock must be introduced to ensure that the solution
remains single-valued. In other words, the velocity rule emphasizes that a state property
can only assume one value at a given point in the solution. Violation of the velocity rule
and the appearance of shocks are well known issues from the Buckley-Leveret (1941)
theory. Shocks must be introduced in the 1-D dispersion-free solution to resolve possible
multivaluedness arising from neglecting terms which account for physical
dispersion/diffusion (i.e. secondorder derivatives with respect to the space variable). A
shock must satisfy the integral form of the mass conservation equations (Eq. 2.4):

u d
A =% P=1..n, (2.30)
where A is the shock velocity. Hence, a shock is a weak solution to the conservation
equations. Upstream and downstream parts of the shock are denoted u and d respectively.

Eq. 2.30 is a Rankine-Hugoniot condition®?’.
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2. Any shock present in a solution must satisfy an entropy condition. Lax*"? introduced the
term entropy condition in the study of gas dynamics where the actual entropy of the
system was used as a measurement to rule out non-physical shock solutions. For the more
complex systems studied in this work the entropy condition is of a mathematical nature
and requires any shock to be stable in the presence of a small amount of dispersion. The
entropy condition thus dictates that a composition just upstream of the shock must move
faster than a composition just downstream of the shock. This feature will allow the shock

to regenerate upon small perturbations.

3. In addition, solutions must satisfy a continuity condition with respect to initial and
injection data. In other words, small perturbations to the initial or the injection

compositions must result in small changes in the solution.

A substantial body of mathematical theory now exists for construction of analytical solutions
to the dispersion-free 1-D multicomponent flow problem’82+22233 Thjs theory, based on the
method of characteristics (MOC), illustrates that the behavior of the solution is controlled by
the geometry of key tie lines in the compositional space. Larson and Hirasaki®® demonstrated
that shocks from the single-phase region into the two-phase region must occur along the
extension of tie lines. Hence, two tie lines, the tie line extending through the initial oil and the
tie line extending through the injection gas, are key tie lines in the analytical solutions. These
key tie lines are referred to as the initial tie line and the injection tie line respectively. Monroe
et al.*® showed that for gas injection problems with four components, the 1-D solution is
bound to intersect a third key tie line. This third tie line is known as a crossover tie line.
Johns**, Dindoruk” and Orr et a.*® generalized the work of Monroe et al. to systems with nc
components. They established that for a system with nc components the 1-D solutions is
controlled by the geometry of nc-1 key tie lines. The initial tie line, the injection tie line and
nc-3 crossover tie lines. The nc-1 key tie lines belong to nc-2 families of tie lines, each of
which generates aruled surface. Thus, the crossover tie lines are lines of intersection between
the ruled surfaces. Wang™ demonstrated that ruled surfaces are also developable surfaces.
The existence of key tie lines and ruled surfaces is illustrated for a four-component system in

Figure 2.2. Only the part of the ruled surfaces spanned by the key tie lines is included in the
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sketch. G denotes the injection gas composition and O the initial oil composition. The
solution path enters the two-phase region from O aong the initial tie line and from G along

theinjectiontieline.

Injection tie line G

\

Crossover tieline

Ruled surfaces

Solution path

™

Initial tieline

Figure 2.2: Illustration of key tie lines and ruled surfaces for a quaternary system.

Based on the study of surfactant/oil/water (ternary) systems Helfferich'® demonstrated that the
two eigenvectors, associated with the conservation equations, at a given point in the two-
phase region may point in two different directions. One of the directions was shown to
coincide with the tie line through the given point whereas the other pointed in a nontie line
direction. This discovery gave rise to the formalism of tie line paths and nontie line paths in
the analytical theory of 1-D displacements. Helfferich®™ and Dumoré® also illustrated that the

tie line eigenvalue was linked to the fractional flow function by

df

Z’tieline = e
das

(2.32)
The subscripts of f and S have been removed in Eq. 2.31 and unless otherwise mentioned, f
denotes the fractional flow of vapor and S the volume fraction of vapor. Variation along atie

lineisreferred to as atie line path whereas variation in anontie line direction is referred to as
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a nontie line path. For an nc component system each point in the two-phase region is
intersected by nc-2 nontie line paths corresponding to the nontie line eigenvectors. By
recalling that the conservation equations are given by a set of non-strictly hyperbolic PDEs,
the corresponding eigenvalue problem will degenerate when two eigenvalues coincide. In the
anaytical theory of 1-D gas injection processes only equa eigenvalue points of mixed type
(Mie tine = Anontie line) @re of importance, because solution paths may switch from atie line path
to a nontie line path at these points. A sketch of some nontie line paths is given for a simple
ternary system in Figure 2.3. An equal eigenvalue point is an apex on the given nontie line
path.

Tielines Non-tie line paths

Equal eigenvalue point

Figure 2.3: Tieline paths, nontie line paths and equal eigenvalue points.

A nontie line path can be traced by integration of nontie line eigenvalues in the corresponding
eigenvector directions. The surface of tie lines traveled by a nontie line path is a ruled surface.
For systems with more than three components these surfaces are not planar but developable

surfaces as pointed out by Wang™.
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2.4 Solution Construction Tools

The solution to a given 1-D displacement process is made up by a sequence of different

segments. Possible segments are

e Shocks aong key tie lines when entering and leaving the two-phase region
e Shocks connecting key tie lines (nontie line shock)

e Continuous variation along key tie lines (tie line paths)

e Constant states (on key tie lines)

e Continuous variation connecting key tie lines (nontie line paths)

In the following attention is focused on the geometrical construction of shocks and their
relation to the fractional flow curve. Three different types of shocks can occur in the 1-

Dsol ution, Johns?*.

1. The genuine shock where both the up- and downstream compositions of the shock have
eigenvalues (composition velocities) different from the shock velocity.

2. The semi-shock (tangent shock) where either the up- or downstream composition of the
shock has an eigenvalue equal to the shock velocity.

3. The contact discontinuity (indifferent shock) where both the up- and down-stream

compositions of the shock have eigenvalues identical to the shock velocity.

2.4.1 Shocks due to Phase Appear ance/Disappear ance

If the leading and the trailing shocks (entering the two-phase region from the initial and the
injection compositions respectively) are considered first, these occur along single key tie
lines. The properties of the initial and the injection tie line are found by performing negative
flash calculations™. A typical plot of an s-shaped fractional flow curve isillustrated in Figure
2.4. The shock balance for a shock entering the two-phase region is written as

Ao Qi” _Qi: ’

= W i=1..,nc (232)

The superscripts | and 11 refer to the single- and two-phase regions respectively. In Eq. 2.32
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the shock balance is written in terms of the NV C formulation for simplicity. By inserting the
definitions of Q; and G;into Eq. 2.32 it is easily seen that

f-0

A=—
S-6

(2.33)

where 0 is the superficial vapor saturation corresponding to the single-phase composition (gas

or ail).
1.2
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Figure 2.4: Semi-shock construction along initial or injection tie line.

For semi-shocks the tie line eigenvalue must be equal to the shock velocity on the up- or
downstream side of the shock. For shocks entering the two-phase region the shock velocity A
can hence easily be determined by locating the line from 6 which is tangent to the fractional
flow curve (ff-curve). The vapor saturation corresponding to the point of tangency on the ff-

curve can be found by solving

_df  f-6

“ds s_o (2.34)
where f is given as an explicit function in S (Eq.2.15). This type of tangent constructions is
dso known from the Buckley-Leveret* theory. For s-shaped ff-curves two tangent
constructions are possible as illustrated in Figure 2.4. Helfferich'® demonstrated that the
solutions to gas injection problems are bound to be in the f>S part of the compositional space

and therefore one of the tangent constructions can easily be ruled out. Dindoruk’ stresses that
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not all shocks, due to phase appearance or disappearance, are tangent shocks. Depending on
the compatibility with the rest of the solution they can be genuine shocks. In the latter case the
landing point in the two-phase region is known and the shock velocity can be calculated
directly from Eq. 2.33.

2.4.2 Shocksin the two-phaseregion

A significant contribution to the analytical theory was made by the work of Orr et a.*, who
demonstrated that if two key tie lines are connected by a shock they must intersect. Dindoruk’
later used the VC formulation of the conservation equations to derive the general proof. In the

NV C formulation a nontie line shock must fulfill

_ Qiu _ QiX _ Qid _ Qix
G'-G' Gf-G

A (2.35)

,1=1..,n,

The superscript x denotes the composition point at which the key tie lines intersect upon
extension. By comparison of Eq. 2.35 and Eq. 2.32 it is seen that an expression similar to Eq.

2.33 can be derived. Hence, Eq. 2.35 can be rewritten as

_fu-g*  fi—p¢

A = ,
s'-6" S'-6°

i=1..,nc (2.36)

To illustrate the construction of a nontie line tangent shock, it is convenient to use a plot of

the Q vs. G plot for the adjacent key tie lines. Such aplot isgiven in Figure 2.5.

0.9 Point of tie line

intersection \),/
oy
. -
0.7 | End point of tangent "
construction e
o
. 0/
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Q(nc)

construction il
s
0.3 Rl

2) Invalid tangent construction.

0.1 1 No intersection with shorter
b) tie line.
'Ol T T T T T
-0.1 0.1 0.3 05 0.7 0.9
G(nc)

Figure 2.5: Nontie line tangent shock construction.
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The Q vs. G curves for two neighboring key tie lines &) and b) are shown in Figure 2.5.
Component nc is used as a reference component but in general any component present on
both tie lines can be used. By discarding the solutions in the f<S region of the compositional
space, only two tangent constructions are possible, but only one of the tangent constructions
will, asillustrated in the figure, give the correct shock solution. From a computational point of
view, EQ. 2.36 can be solved for one of the key tie lines (b) to determine a shock velocity.
Subsequently, the left-hand side of Eq. 2.36 is fixed and solved for S on the adjacent tie line
(). If asolution exists, tie line (b) holds the tangent part of the shock and the construction is
completed. Otherwise the procedure is reversed (tangent construction to tie line (a)) and a
solution will be found. Two neighboring key tie lines may also be connected by a genuine
shock. In such a case a composition point on one of the tie lines is known in advance and Eq.
2.35 is used directly to calculate the shock velocity and the landing point composition on the
neighboring key tieline.

2.4.3 Continuous Variation along Tie Linesand Constant States

To illustrate the existence and the nature of continuous variation along key tie lines as well as
constant states three neighboring key tie lines are considered. A sketch of thetie linesis given
in Figure 2.6.

1 Downstream

Upstream lo

Figure 2.6: Illustration of continuous variation along a key tie line and constant states.

It is assumed that the tie lines are connected by shocks and hence must intersect at I; and I,

upon extension. Starting at the upstream intersection point 1; a tangent construction is made,
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which results in the jump point a, the landing point b and the shock velocity Ag,. The shock
velocity is equal to the tie line eigenvalue at point a (df/dS, = A,). Next, two different cases
can arise. In the first case, a tangent construction from the intersection point I, is made giving
the jump point c, the landing point d and the shock velocity Aq. For this construction the
shock velocity equals the tie line eigenvalue at point ¢ (df/dS; = A¢). In order for the two
segments to be compatible they must comply with the velocity rule. That is, characteristic
wave velocities must increase in the downstream direction. Thus, for the segments to be

compatible

AgZAy 2 A, (237)
On the assumption that Eq. 2.37 is not violated in this scenario, the saturation profile

corresponding to the shock segmentsis sketched (full line) in Figure 2.7.

S
\

> T

Figure2.7: Sketch of some possible combinations of constant states and continuous

variation on key tie lines.

The saturations at points a and b are connected by a shock (vertical ling). As the tie line
eigenvalue at point b exceeds the speed of the shock, a constant state (constant saturation)
follows the tangent shock allowing the saturation at the landing point to speed up and match
the tie line eigenvalue. The compositions corresponding to points b and ¢ are then connected
by continuous variation along the tie line (curved segment in Figure 2.7) until the tangent

point of the second shock construction is reached.
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By, on the other hand, assuming that Eq. 2.37 is violated by the two tangent constructions a
different scenario will arise. In the illustrated case the tangent construction from I, must be
replaced by a genuine shock. As stated previously, one point is known in advance when the
shock balance for a genuine shock is solved. In Figure 2.6 that is the composition at point b.
The shock velocity of the genuine shock A+ must be larger than Ay and hence a constant
state enters the solution. The saturation profile corresponding to the second scenario is
illustrated in Figure 2.7 by the dotted line from point b and on.

2.4.4 Continuous Variation along Nontie Line Paths

As pointed out previously a solution path can switch from atie line path to a nontie line path
due to the non-strictly hyperbolic nature of the conservation equations. Thus, two adjacent
key tie lines can be connected by continuous variation along a nontie line path (rarefaction) as
opposed to the shock constructions described in the preceding sections. The nontie line path
travels a sequence (family) of tie lines which form aruled surface. In genera the ruled surface
of a given nontie line path can be linked to an envelope curve asillustrated by Figure 2.8 in a

2-D projection.

Equal eigenvalue point
Nontie line path /

Envelope curve (Ex)
Tieline

\ “““““ :

P
—@

Figure 2.8: 2-D projection of ruled surface of tie lines and corresponding envelope curve.

The tie lines on a ruled surface are all tangents to the envelope curve upon extension as
depicted in Figure 2.8. The switch between tie line and nontie line paths can only take place at
equal eigenvalue points and hence a method for locating the equal eigenvalue points is
required. Two methods for location of the equal eigenvalue points are available. One
approach is to locate the equal eigenvalue points by combining an iterative scheme with a

direct calculation of the eigenvalues along a given key tie line. Dindoruk’ suggests a far
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simpler and more elegant approach where the variation of nontie line eigenvalues along a key
tie line is linked to the corresponding envelope curves. Each key tie line connects nc-2 ruled
surfaces corresponding to the directions of the nontie line eigenvectors (ec) and can thus be
linked to nc-2 envelope curves (Ey). Dindoruk’ demonstrates that the superficial vapor
saturation 6 at which a key tie line extension is tangent to the envelope curve E¢ can be
calculated as

g, = ST (2.38)

A —
Ak is the k'th nontie line eigenvalue at an arbitrary point on the key tie line corresponding to
the vapor saturation S and a fractional flow of vapor f(S). In this approach the eigenvalues
only have to be calculated once to determine the nc-2 6¢'s. The variation of the nontie line
eigenvalues along a key tie line can subsequently be calculated by isolation of Ay in Eq. 2.38.

The equal eigenvalue points are calculated, in a tangent construction manner, by solving Eq.
2.39:

A =45 58, (2.39)

for the vapor saturation. A plot of the typical variation in eigenvalues along a key tie line

along with the equal eigenvalue pointsis given for a quaternary system in Figure 2.9.
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Figure 2.9: Equal eigenvalue points and variation of eigenvalues along akey tieline.
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2.5 Approximation of Key TieLines

The tools for constructing solutions to the 1-D gas injection problem, presented in the
previous sections, all assumed that the location of all key tie lines was known in advance.
However, that is not the case in general. The analytical solutions previously presented in the
literature have been restricted to considering only quaternary systems when more than one
component is present in the injected gas. For systems with more than four components the
presented solutions have been restricted to considering injection of pure component gases and
fully self-sharpening systems. For a fully self-sharpening system the solution path is made up
exclusively of shocks and hence the key tie lines must intersect pairwise® as illustrated in
Figure 2.10.

Key tielines

Cio Cy

Figure: 2.10 lllustration of intersecting key tie lines.

The combination of using a pure component injection gas and a self-sharpening system alows
the key tie lines to be located in a sequential manner. The approach to location of the tie lines
isdiscussed in sections 3.3.6 and 3.4.
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If two key tie lines are connected by continuous variation along a nontie line path (spreading
wave), there is no proof whether or not these tie lines will intersect upon extension. Wang and
Orr*2* demonstrated by calculations the modesty of the error introduced by assuming that tie
lines connected by a spreading wave intersect. The tie line intersection approach can thus be
used to approximate key tie lines. The intersection approach forms the backbone of this work
in the sense that it is used for predicting the minimum miscibility pressure in Chapter 3 and

for generating approximate 1-D solutions in Chapters 4 and 5.

2.6 Summary

In this chapter a mathematical formulation of the one-dimensional dispersion free two-phase
flow problem has been presented. The presentation includes two versions of the mass
conservation equations: A genera version and a simplified version. In the smplified version
components are assumed to mix ideally as they transfer between equilibrium phases. The
conservation equations are given by a set of first order non-strictly hyperbolic PDES which
along with the specification of constant initial data give rise to a Riemann problem. It is
illustrated how the PDEs can be transformed into an eigenvalue problem which can be solved
analytically due to the self-similarity of the solution.

The uniqueness requirement, the velocity rule and the entropy condition are outlined. It is
emphasized that the solution to the 1-D flow problem is controlled by the geometry of nc-1
key tie lines in the compositional space. Two of these are the initial and the injection tie lines.
The remainder of the key tie linesis known as crossover tie lines.

The reader is introduced to the tools available for constructing analytical solutions to the 1-D
flow problem. In this connection it has been demonstrated how shock balances can be solved
on the basis that two key tie lines connected by a shock must intersect. The appearance of
spreading waves (continuous variation along nontie line paths) due to the non-strictly
hyperbolic nature of the conservation equations has been discussed.

The need for a general approach to approximation of the key tie lines has been discussed. An
approach, known as the tie line intersection approach, has been sketched and will be
developed further in the following chapters for the purpose of calculating the minimum
miscibility pressure and for generation of approximate 1-D solutions to the smplified and the
general 1-D flow problem.
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3. Determination of the Minimum Miscibility Pressure

In this section the problem is addressed how to determine the minimum miscibility pressure
(MMP). Initidly, the reader is introduced to the main mechanisms controlling the
development of a miscible displacement. Then a brief presentation of the methods, previously
presented in the literature, for prediction of the MMP is given. Finadly, a new approach to
calculation of the MMP is presented.

3.1 First contact miscibility
At a given temperature and pressure, an injection gas is first contact miscible with an oil if
any mixture of the two fluids forms a single phase. The lowest pressure at which two fluids

are first contact miscible is known as the first contact miscibility pressure (FCMP). The
definition of the FCMP is sketched in Figure 3.1.

CrCs
P=FCMP

il

........ Two phase region

C]_ C7+

Figure 3.1: Definition of the first contact miscibility pressure (FCMP).

In the pseudoternary representation of Figure 3.1 the dilution line connecting the oil and the
gas compositions must be tangent to the phase boundary at the FCMP. For a multicomponent
fluid description, the FCMP can be determined by plotting the saturation pressure of al
possible mixtures of the oil and the gas vs. the mixing ratio o.. The maximum on the P vs. o

curve isthen the FCMP. Reservoir engineers refer to the P« vs. o curve as a swelling test.



Chapter 3. Determination of the Minimum Miscibility Pressure 24

3.2 Multicontact Miscibility

When the vapor and the liquid phases move through the porous media, the fluids come into
contact with multiple different compositions. As a consequence, the component present in the
system partition between the equilibrium phases and miscibility may develop along the

displacement by three different mechanisms. These are

e Thevaporizing gasdrive
e Thecondensing gas drive

e The combined vaporizing/condensing gas drive

When the development of miscibility is controlled by a vaporizing gas drive (VGD),
intermediate components (C,-Cg) from the oil phase are gradually vaporized by the passing
vapor, forming a denser vapor phase. At some point during the displacement an enriched
vapor phase becomes locally miscible with the liquid phase. The characteristic features of the
vaporizing gas drive are sketched in Figures 3.2 and 3.3

o = N
!

In (K)

' ' ' | ' ' '
~ (o] &) B w N =
! ! ! ! ! !
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Normalized distance from inlet (z/L)

Figure 3.2: Developed multicontact miscible displacement. Vaporizing drive. The figure
illustrates the development of K-factors (vapor to liquid phase ratio of
components present in the mixture) aong the displacement direction.
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Figure 3.3: Developed multicontact miscible displacement. Vaporizing drive. The figure

illustrates the devel opment of phase densities along the displacement direction.

Figure 3.3 illustrates how the density of the vapor phase starts to increase in the vaporizing
segment of the displacement. The density of the liquid phase decreases over the same segment
and coincides with the vapor phase at the single phased displacement front. In the illustrated
case the miscible front is also the leading front of the displacement. Development of
multicontact miscibility by a vaporizing mechanism will, due to the nature of the VGD,
normally be possible if light gases are injected. Examples of light injection gases are pure N,

and pure methane.

On the other hand, if gas mixtures with a high content of intermediate and heavier
components (enriched gas) are injected into the porous media, a different mechanism may
control the development of miscibility. When an enriched gas comes into contact with the oil
in place, intermediate and heavier components may condense into the oil forming a lighter ail
phase. Eventually, the enriched oil phase can become locally miscible with the gas phase. If
multicontact miscibility develops by this phenomenon, the mechanism controlling the
development of miscibility is known as a condensing gas drive (CGD). The characteristic

features of a CGD are given in Figures 3.4 and 3.5.



Chapter 3. Determination of the Minimum Miscibility Pressure 26

In (K)

0 0.2 0.4 0.6 0.8 1

Normalized distance from inlet (z/L)

Figure 3.4: Sketch of a developed multicontact miscible displacement. Condensing drive.

Thefigureillustrates the variation in K-factors along the displacement direction.
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Figure 3.5: Sketch of a developed multicontact miscible displacement. Condensing drive.
The figure illustrates the development of phase densities along the displacement

direction.

In Figure 3.5 the density of the gas phase decreases across the condensing segment as the
intermediate components are migrating into the oil phase. The original injection gas becomes

locally miscible with the lighter oil phase at the back of a two-phase region. In this case the
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miscible front differs from the leading front, which is located at the end of the condensing
segment.

The existence of a combined vaporizing and condensing gas drive was discovered by Zick>®
and subsequently by Stalkup™. They pointed out the possible coexistence of a vaporizing and
a condensing segment along the displacement direction. The typical features of the combined
mechanism areillustrated in Figures 3.6 and 3.7.
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Figure3.6.  K-factor profile aong the displacement direction for av/c gasdrive.
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Figure3.7:  Density variation along the displacement direction for av/c gas drive.
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Starting from the injection site, the density of the gas phase increases along the displacement
direction due to the vaporization of intermediate components. Then in a near-miscible zone,
intermediate components start to migrate back into the liquid phase by condensation, forming
a condensing segment.

The discovery of the combined vaporizing and condensing mechanism was a significant
milestone in understanding and modeling miscible as well as near-miscible gas injection
processes. The significance will become evident from the following presentation and
discussion of previousy suggested methods for calculation of the minimum miscibility
pressure.

3.3 Traditional Deter mination of the MM P

Ever since the injection of gas became a prospect of enhancing the recovery from oail
reservoirs, methods for prediction of the minimum miscibility pressure have been suggested
in the literature. Traditionally, the minimum pressure at which the gas should be injected in
order to realize a miscible displacement (MMP) has been determined experimentally by
slimtube experiments. The experimental apparatus used for slimtube experiments is shown in

Figure 3.8:
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“'a INCH (6.35mm) OD STAINLESS
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Figure 3.8: Sketch of a slimtube apparatus®’.



Chapter 3. Determination of the Minimum Miscibility Pressure 29

The slimtube apparatus consists of along steel tube packed with sand to ensure proper mixing
of the fluids. The tube is initially saturated with reservoir fluid and placed in a constant
temperature air bath. The gas of interest is then injected into the tube at constant velocity or
constant pressure drop and the reservoir fluid is displaced. The produced fluids are collected
at the outlet and the recovery of the original oil in place (OOIP) is calculated after 1.2 pore
volumes have been injected. Unless otherwise mentioned, the recovery is defined as the
volume-based ratio of the produced oil and the OOIP under standard conditions (25°C and 1
atm). The apparatus is then cleaned and the procedure is repeated at a different average
pressure. By plotting the recovery factors vs. the corresponding average pressure, a picture
like Figure 3.9 typically emerges.
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Figure 3.9: Sketch of atypical recovery vs. pressure plot. Definition of the MMP.

The experimental recovery curve exhibits two different regions. At low pressures the recovery
increases more rapidly with increasing pressure than at higher pressures. The break point on
the recovery curve has traditionally been used to determine the pressure at which a miscible
displacement develops, and it was hence considered to be at the MMP. By increasing the
injection pressure above the MMP, only a minor increase in the recovery is achieved. Thus
the determination of the MMP is of major economic importance when implementation of a
gasinjection project is considered.
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Obvioudly, the experimental approach to determination of the MMP is very time consuming
and consequently expensive. This fact qualifies the massive effort spent on the devel opment
of predictive tools. The numerous suggestions for such predictive tools, documented in the

literature, can be organized in six main groups:

Empirical correlation

e Ternary representation/ Limiting tie line approach
e Single cell simulation

e Slimtube simulation

e Multicell smulation

e Semi-analytical methods by the intersecting tie line approach

The different methods will be described and briefly discussed in the following subsections.

3.3.1 Empirical Correlations

Various authors have developed empirical correlations for the purpose of predicting the
MM POE1213254L57 “NMogt of these are based on the theorem of corresponding states or
methods derived from this theorem. Experimental MMPs are correlated with properties like
pseudocritical temperature and pressure, gas densities and molecular weight of the Cz.
fraction. Most of the methods are based on studies of pure injection gases (e.g. CO,) or
dlightly contaminated injection gases. As in any other application of the corresponding states
principle, the predictions become unreliable upon extrapolation. Hence, good results can only
be obtained for systems very similar to the reference system. The correlations are easy to use
and give a fast result, but as soon as the correlations are used for other systems than the
reference, the predicted MMPs are of very little use. Consequently, more general methods for
prediction of the MMP are needed.

3.3.2 Ternary Representation/Limiting Tie Line Approach

With the discovery of the vaporizing and the condensing mechanism® in the late 1950s,

pseudoternary representations of the phase behavior of gas-oil systems were used to predict
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the development of multicontact miscibility in gas injection processes. The properties of such

arepresentation are shown in Figure 3.10.

Cos

Critical point

\Injection tieline
Cl C7+

Figure 3.10: Pseudoternary representation of the gas injection process.

Two tie lines denoted the injection and the initial tie line are illustrated in Figure 3.10. These
tie lines extend through the injected gas composition and the initia oil composition
respectively. A miscible displacement, in the pseudoternary sense, develops at a pressure
where one of these tie lines becomes a critical tie line (tangent to the two-phase boundary). In
theillustrated case the initial tie line becomes a critical tie line at alower pressure than that of
the injection tie line. This corresponds to vaporizing gas drive in the sense that the initial oil
becomes multicontact miscible with a richer gas phase. If the injection tie line becomes
critical the mechanism controlling the development of miscibility isa CGD as the injected gas
becomes miscible with a lighter oil phase. For the system illustrated in Figure 3.10 the
pressure needed for development of a miscible displacement would be lower for the VGD
than for the CGD. Hence, in the pseudoternary sense, the VGDywp Would be considered as
the MMP. The pressure at which the initial and the injection tie lines become critical can be
caculated by using a negative flash algorithm (Whitson and Michelsen®®) or by using the
mixing cell approach described in section 3.3.3
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Use of the pseudoternary representation for prediction of the MMP give rise to the problem
that the result can only be rigorously correct for true ternary systems because of the
partitioning of intermediate components (C,-Cg) during the displacement. In other words, the
properties of the pseudocomponent C,.¢ change aong the displacement process and the shape
of the two-phase region changes accordingly®®. Another more fundamental problem of using
the ternary representation is that the development of miscibility can only take place at the
injection site (condensing drive) or at the displacement front (vaporizing drive). Or stated in
another way, the ternary representation cannot predict the existence of a combined VGD/CGD

mechanism.

3.3.3Single Cell Smulators

To account for the deficiencies of the pseudoternary approach to determination of the MMP,
several methods based on a single mixing cell have been suggested (e.g. Jensen and
Michelsen'). In the mixing cell approach, the thermodynamic behavior of the reservoir fluid
and the injected gas is described as a multicomponent system by an equation of state (EOS).
The logic of the mixing cell approach isillustrated in Figure 3.11.

Oil batch —>» | Gas | —> Excessliquid

a) Forward contact

Gasbatch —> | Qil —> EXcessgas

b) Backward contact (reversed contact)

Figure 3.11: Sketch of the mixing cell approach.
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The mixing cell approach consists of two different numerical experiments. In the first case (a)
acell of constant volume, temperature and pressure is filled with the injected gas. A batch of
the reservoir fluid is added and the resultant mixture is flashed. The excess volume of the cell
is then removed. Any liquid formed by the contact is removed before gas is removed. After
removing the excess volume a new batch of fresh oil is added, and the procedure is repeated
until the composition in the cell no longer changes. If the mixing cell forms a single phase
during any of the contacts, the pressure is above the MMP and a new experiment is performed
at alower pressure. On the other hand, if the simulation converges as a two-phase system, the
pressure is below the MMP and a new run is performed at a higher pressure. The pressure can
be updated by a simple bisection approach. The MMPgnecqi iS defined as the pressure at which
the simulation converges at a critical composition. A typica result of a one-cell smulation is
illustrated in Figure 3.12.
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Figure 3.12: One-cell simulation. P< MM Pgnecai (fOrward contacts).

The y-axis in the figure is the length of the tie line from each contact. The length of atie line

can be defined as
L= > (x-yf (3.1)
i=1

where x; and y; are liquid and vapor mole fractions. In Figure 3.12 the composition initially
moves towards the critical locus and reaches the minimum distance after ~30 contacts. Then

the distance increases and the simulation converges at the initial tie line. By increasing the
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pressure, the simulation will converge at a composition different from the initial tie line. This
iswhy different values of the MMP in some cases are obtained from one-cell simulations and
limiting tie line approaches based on negative flash calculations. Such difference has been
reported for reservoir fluids by Jensen and Michelsen'” and described in detail by Wang and

orr2,

In the backward contact scheme (Figure 3.11b) the cell is initialy filled with oil and fresh
injection gas is added in batches. Excess gas is removed before excess liquid and the rest of

the scheme is similar to that of forward contacts.

The physical locations corresponding to the one-cell simulations are the displacement front
(forward contacts) and the injection site (backward contacts). If the features of the combined
vaporizing and condensing mechanism are recalled, miscibility developed by a combined
mechanism cannot take place at the injection site or at the displacement front. Hence, the one-
cell simulators can only predict the rigorously true MMP for a pure condensing or pure
vaporizing displacement. Pure vaporizing displacements exist for e.g. injection of N, or
natural gases mainly consisting of CH4 into oil. For more complex injection gases the
displacements are always combined by nature and the use of one-cell simulations will lead to
an overestimation of the MMP™. Pure condensing displacements have not, so far, been

reported for multicomponent fluid descriptions.

3.3.4 Slimtube and Multicell Simulations

With the discovery of the combined VGD and CGD mechanism controlling the devel opment
of miscibility, Zick®® and Stalkup™ illustrated that more complex methods have to be used in
order to capture the true nature of the general 1-D gas injection process. These methods fall
into two categories: A mathematical approach and a physical approach. The mathematical
approach is the dimtube simulations where the conservation equations governing 1-D two-
phase dispersion-free flow are solved by a finite difference (FD) approach. A variety of
different FD methods can be found in the literature, of which the ssimplest and most widely
used is the fully explicit one-point upstream weighting scheme. The slimtube simulations are
used to generate recovery curves and the MMP can be determined by the breakpoint on these

curves. In the physical approach, the slimtube is described by a sequence of interconnected
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tanks asillustrated in Figure 3.13. This approach is referred to as the multicell (MC) approach

(Metcalfe®).

Injection gas
e

Cdl 1

Batchi

N

Cell 2

Cdln

Production
—

Qil/gas

Figure 3.13: Sketch of the multicell approach.

The tanks are initially filled with reservoir fluid and gas is added in batches. Each batch is
added to the first cell. The resultant overall composition in the cell is flashed and the excess
volume is moved to the neighboring cell. This procedure is repeated for each cell until the
production cell (cell n) is reached and a new batch is added to the first cell. The excess
volumes are moved according to some specified fractional flow function. As for the FD
approach, recovery curves are generated and the MMP can be estimated. It is common to both
approaches that the simulation results, and hence the determination of the MMP, are strongly
affected by numerical dispersion. Numerical dispersion originates from the discretization of
the flow problem. The coarser grid blocks (lower number of cells) used in the simulation the
larger the effect of numerical dispersion. The presence of numerical dispersion has the effect
of smearing out the recovery curves and make the determination of a break point more
difficult/inaccurate. The potential grid size dependence on recovery curves from FD

simulationsisillustrated in Figure 3.14.
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Figure 3.14: Recovery vs. pressure at 1.2 pore volumes injected (PVI). At/Az = 0.1.
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Hence, the task of determining the MMP by FD/multicell approaches becomes a balance
between acceptable accuracy and acceptable CPU time consumption. Various attempts to
eliminate the numerical dispersion have been suggested, starting with the paper of Stalkup™®.
The general idea is to extrapolate the recovery factors from coarse grid/cell simulations to an
infinite number of grid blocks/cells. A comparison of different extrapolation procedures is
found in Haier'®. Even if extrapolation procedures are combined with FD/MC simulations the
CPU time consumption for determination of the MMP is till quite extensive. Thus,

development of new and faster methods for calculation of the MMP is required.

3.3.5 Semi-analytical Calculation of the MMP

The semi-analytical approach to calculation of the MMP is based on the analytical theory for
1-D dispersion-free two-phase flow outlined in Chapter 2. The backbone of the semi-
analytical approach is that the composition path specifying the solution to the 1-D flow
problem has to travel through a sequence of key tie lines*®. For some systems where the
solution to the 1-D problem consists of shocks only, the extensions of these key tie lines (the
initial tie line, the injection tie line and nc-3 crossover tie lines) have been proven to intersect
rigorously. In the general case and for the purpose of calculating the MMP, the assumption
about intersecting key tie lines has proven to be a very good approximation®. Orr et al.*®
showed that multicontact miscibility develops at a pressure where one of the key tie lines
becomes a critical tie line (shrinks to a point). Dindoruk’ used the intersection approach to
study the MMP behavior of four-component N, systems and Johns and Orr® extended the
approach to fluid descriptions with up to 11 components, considering only pure component
injection gases. Wang and Orr>® extended the previous works to multicomponent mixtures
with an arbitrary number of components in the injection gas. They used an iterative scheme
based on successive substitution to solve their formulation of the intersection equations, but
reported numerical problems due to singularities for some systems. Their work formed the
basis for a new approach developed in the course of this study. The new approach is aso
presented in Jessen et al.'® whereas results from the case study in Section 3.5 are given in

Jessen et al.*°
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3.4 Global Approach for Calculation of the MMP

A new algorithm has been developed for calculation of minimum miscibility pressure for the
displacement of oil by multicomponent gas injection. The algorithm is based on the key tie
line identification approach initially addressed by Wang and Orr>. In this work a new global
approach is introduced. A number of deficiencies of the sequential approach have been
eliminated, resulting in a robust and highly efficient algorithm. The time consumption for
calculation of the MMP in multicomponent displacement processes has been reduced
significantly and calculation of the MMP can now be performed within a few seconds on a PC
for a 15-component gas mixture. Therefore the algorithm is particularly suitable for gas
enrichment studies or other case studies where a large number of MMP calculations are
required. Predicted results from the key tie line identification approach are shown to be in
excellent agreement with simtube data and with other MC/FD simulators presented in the

literature.
3.4.1 Mathematical Approach
In the work of Wang and Orr> the existence of a point of intersection | is used to specify that

two tie lines A; — B; and A, — B, are coplanar (Figure 3.15). Let the end points (A, A2)

represent the vapor compositions and (Bs, B,) the liquid compositions.

CH4

Tieline extending
through initia oil
composition

Initial oil

Injectiongas /N T

C02 C7+

Tieline extending
through injected gas

Figure 3.15: Definition of coplanar tie lines. .
composition
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The coordinates of | must then satisfy
Z(1)= ﬁlx(l) +(1- ﬁl))_((l) = ﬁzX(Z) +(1- ﬂz))_((Z) (3.2)

In this formulation the intersection point can, however, be located far outside the positive
composition space and the corresponding vapor fractions 3; and 3, become numerically large
when tie lines are close to paralléel. In fact, the values of the vapor fractions may even change
from minus infinity to plus infinity astie lines change orientation. This feature will frequently

result in numerical difficulties and should therefore be avoided.

We find it preferable to express the colinearity condition by the requirement that a point of
intersection | between the lines A; — B, and A; — By must exist (Figure 3.15). In this

formulation Eq. 3.2 isreplaced by
(1) =ay? +(1-o)x? = By? + (1- B)x? (33

The new formulation of the intersection point constrains the corresponding variables oc and 3
to beintheinterval of [0 ; 1], which isfar more convenient from a numerical point of view. In
the global approach the succession of nc-1 intersecting key tie linesis written as
_ _ : . i=1nc-1
M—a )J+yla, —x1(1-8.)-y/"B. =0, 34
X -, )+ yie, - X - B)) - yiB, {j:an—Z (34)
where i and j specify the component number and the tie line number respectively. The
sequence of tie lines must connect the initial tie line and the injection tie line. Hence, we

specify theinitial oil composition 22 and the injection gas composition 2" by

ZiO” = Xij=1(1_ Bai)+ yij=1ﬁoil

- _ i = -1 (3.5)
Zim] _ Xi1=n0—1(1_ ﬂinj)+ yij=nc71ﬁinj }| 1nc

Egs. (3.4) and (3.5) must be solved subject to the equilibrium constraint:

_ _ i=1nc
xlol —ylpY =0, 3.6
PO — Yo {jzlnc—l (3.6)
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Finally the mole fractions must sum to unity
1—ixij :1—iyij =0 j=1.,nc-1 (3.7)
i1 =)
The MMP is determined as the lowest pressure where one of the tie lines becomes critical.
3.4.2 Solution Strategy

In order to solve the set of Egs. 3.4-3.7 at a specified pressure, an initial estimate of all
variables is required for a Newton-Raphson iteration scheme. This estimate has to be fairly
accurate, in particular at pressures close to the MMP, where one tie line is nearly critical. An
inaccurate initial estimate is here very likely to result in the “trivial solution” with two
equilibrium phases becoming of identical composition, which leads to divergence. To ensure
an adequate quality of the initial estimate, the overall calculation is divided into three distinct
steps.

In the first step we select a pressure pi,i much lower than the assumed MMP in order to
guarantee that al equilibrium phases are far from being critical. In addition, we select an
approximate injection gas, consisting of the component present in the largest amount in the
injection gas concerned, and neglect al other components. Wang and Orr> have shown that
for a pure injection gas the sequence of tie lines can be determined in a simple sequential
manner as described below. The tie line extending through the initial oil can easily be located
by a negative flash calculation (Whitson and Michelsen®™). Then the initia tie line is
extrapolated to the point where the composition of the most volatile component k (apart from
the injected component) equals zero:

B, = X (3.8

X — Y«
Based on the overall composition at fx the first crossover tie line can be located by
performing another negative flash calculation. Then the most volatile anong the remaining
components is removed and the procedure is repeated until the tie line extending through the
injection gas is reached. In the pure component gas injection case, only the heavy component

of the oil and the injected component are represented on thistie line.
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In the second step we specify the injection gas composition as

2, =(1-6)z)° +6 Z;* (3.9)
where the superscript pure indicates the injection gas used in the first step. The solution from
the first step corresponds to 6 = 0, whereas the solution for the injection gas considered
corresponds to 6 = 1. By use of the 6 = 0 solution as the initial estimate, the solution for a
small value of @ is calculated, which is again used to determine consecutive solutions until we
arrive at the desired & = 1 solution. In the final step, the injection gas composition is fixed at
the true value and new solutions are determined at increasing pressures, by using that from the
previous pressure step as initial estimate, until the MMP is reached. The measurement of the

distance from acritical point d is calculated in each pressure step for all key tielinesj by

d; = Z(&j -y, )2 (3.10)

To improve the performance of the algorithm the sensitivity equation

-1
oF . OF d\_/__[ag] oF (3.12)

dp=0 = —==—-|—| —
dp ov | op
is solved to find the pressure derivatives of all variables. v is the variable vector. No
significant computational expense is introduced by solving Eg. 3.11 as all matrices required
already exist in a decomposed form. The pressure derivatives are then used to obtain a better
estimate for the variables at new pressures and thus lower the number of iterations necessary
in each pressure step. Furthermore, the derivatives indicate how much the pressure can be
increased in each step. This is accomplished by using the fastest changing composition as a
step moderator by making sure that the mole fractions do not extrapolate outside the interval
[0;1].
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3.4.3 Linear Solver for Newton-Raphson Iteration

To solve the non-linear system of equations described in the previous section a Newton-
Raphson scheme is applied with analytical calculation of al elements in the Jacobian matrix.

In each iteration the linear system of equations
JA+F=0 (3.12)

must be solved for the correction vector A. J is the Jacobian matrix and F is the trial function
vector. The linear system may be solved directly by triangular (LU) decomposition followed
by backsubstitution. For small systems (number of equations N < 100) this approach is very
efficient. As the size of the system is increased, the number of algebraic manipulations for the
decomposition increases as N°. For a 15-component fluid description the linear system to be
solved in each iteration is of the size N = 448, and for this size the LU/back procedure is quite
expensive. From initial studies of the Newton scheme it was found that the linear solver isthe
most time consuming part of the algorithm and hence should be the target for optimization in
order to speed up the calculation. By analysis of the structure of the linear system it is found
that an excessive number of multiplications by zero is performed when a genera solver is
used. Therefore, a solver specific to the globa formulation has been developed. Figure 3.16

gives the structure of the Jacobian matrix for a four-component mixture.
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Figure 3.16: Non-zero entries of the Jacobian matrix for linear system (x = non-zero
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Non-zero entries are marked by x whereas zero entries are indicated by a dot. The structure
allows the system of linear equations to be solved in a blockwise manner. By defining the
submatrices A, B and S as illustrated in Figure 3.16 the origina linear system of equations
(3.12) can be rewritten as:

BA,+f,=0 (313)
AA +BA, +SA, +f,=0 (3.14)
AA, +BA; +SA, + f;=0 (3.15)
AA,+SA,+T1,=0 (3.16)

where A; and f; are subvectors of A and F. Eqg. 3.13 can be solved independently of (3.14-
3.16). The correction vector A; is then inserted into Eqg. 3.14, alowing A; to be expressed
explicitly by A,. This elimination procedure is repeated until A, is found from Eq. 3.16. In
this manner the full system is solved through a sequence of subsystems for which the
LU/back procedure is still efficient. The size of the subsystems for a 15- component mixture
is N = 31. The difference in time consumption for solving the linear system by the direct

LU/back approach and by the blockwise approach described above is illustrated in Figure
3.17.
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Figure 3.17: Comparison of time consumption for linear equation solvers. 233MHz CPU.
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It should be pointed out that the same LU and back substitution routines were used in both
cases. The difference in performance is very significant. For a mixture containing 15
components the CPU time consumption, for a single iteration, is reduced by more than a
factor of 100.

3.4.4 Modification of Iterative Schemein the Near-critical Region
As the pressure approaches the MMP it becomes unsafe to use the first order approximation
for initial estimates obtained from solving the sensitivity Eq. 3.11, because the variables

change rapidly and in a highly non-linear manner in the vicinity of a critical region. A typical
behavior of the o sentering Eq. 3.4 isillustrated in Figure 3.18.
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Figure 3.18: Typical variation of o as afunction of pressure.

As atie line becomes critical one o value must approach unity and another must approach
zero. These characteristics as well as the highly non-linear behavior are observed in Figure
3.18.
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In order to improve the stability of the algorithm a modification of the original formulation is
introduced for calculations in the near-critical region. The global formulation for locating the
key tie lines can be regarded as the calculation of nc-1 coupled phase envelopes. Analogously
to the phase envelope calculation of Michelsen® it is favorable to change specifications in the
vicinity of a critical region. Specifying a K-factor and using the pressure as an independent
variable prevents getting trapped by the “trivial solution”. The fastest changing K-factor is
that of the heaviest component on the shortest key tie line. To specify the K-factor an extra
equation must be added to the original formulation. That is

ch

' =InK’ —|n(&) -0 (3.17)

where the subscript min indicates the shortest tie line and K is the specified value. After the

specification of a K-factor the resulting problem can be written as

F(v,p,K)=0 (3.18)

The prime on F indicates the extra equation. The Newton-Raphson scheme corresponding to

the new formulation includes calculation of a modified correction vector

A=A, += A (3.19)

where the first term on the right-hand side is the contribution at constant pressure and the
second term is the contribution from variation in pressure at constant compositions. The linear

set of equationsto be solved in each iteration is now written as

9E A+ 9E ApsE =0 (3.20)
V- oP
M A+ P pps =0 (321)

ov op
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A can be expressed explicitly by Ap from Eq. 3.20. By substituting of this expression into Eq.
3.21, Ap and subsequently A can be evaluated. Although an extra equation is added to the
original formulation only an insignificant change in the time consumption is observed. When
the solution corresponding to the specified K-factor is found the value of K is increased and
the procedure is repeated until some stop criterion is satisfied. As the pressure is the primary
variable of interest (MMP), it should be pointed out that only very small changes in the
pressure are observed when the specified K-factor approaches unity. This is due to the

proportionality relation
p- pcritica] o< (InK*)Z (322)

Hence, the calculation should be stopped at —InK™ < 0.05 in order to avoid unnecessary
iterations. It is suggested switching between the iterative schemes when dnin < 0.15, where
min denotes the tie line with the shortest distance to the critical region. Finally to accelerate
the convergence in the critical region, improved estimates for the independent variables are

obtained for each K’ -step by solving the equations

JF dv JF dp  dF
ovdK®  9p dK* oK’

=0 (3.23)

v dK® ap dK” oK’

of dv ot dp af" | (3.24)

for the derivatives of v and p with respect to K.
3.4.5 Examples of MM P Calculation

The global approach described previously has been applied to a number of multicomponent
systems ranging from heavy oils to gas condensates. In the numerical experiments presented
in the following, phase equilibrium calculations were performed by use of the Peng-
Robinson® equation of state. All experiments were run on a Pentium 11 233 MHz PC.
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Initially, the reservoir fluid from Zick® is used as an example. This selection is due to the
documented existence of the combined VGD and CGD mechanism controlling the
development of miscibility. The fluid is characterized by the procedure of Pedersen et al.*,

using 12 pseudocomponents. The characterized fluid description isgivenin Table 3.1.

- Tc(K) Pc(atm) ® Kcoz;
CO, 304.2 72.9 0.228 0.00
CH,4 190.6 45.4 0.008 0.12

C 305.4 48.2 0.098 0.15
Cs 369.8 41.9 0.152 0.15
Cs 425.2 375 0.193 0.15
Cs 469.6 33.3 0.251 0.15
Cs 507.4 29.3 0.296 0.15
Crn 616.2 28.5 0.44 0.15
Cr+2) 698.9 19.1 0.787 0.15
Cri3) 770.4 16.4 1.048 0.15
Cr+a) 853.1 15.1 1.276 0.15
Cre | 10012 | 145 | 1200 | 015

Table 3.1: Characterization of Zick®® oil including non-zero binary interaction parameters.

Based on the characterization two numerical experiments were carried out. In the first
experiment the oil was depleted to 103.4 atm at 358.15 K (Oil 1) and the MMP was
determined for displacement by injection of Gas 1 (Table 3.2).

- X.qil 1 Xoil 2 YGas1 YGas2
CO; 0.0449 0.0656 0.2218 0.1775
CH, 0.2071 0.3711 0.2349 0.3878

C 0.0481 0.0538 0.2350 0.1880
Cs 0.0409 0.0373 0.2745 0.2196
Cy 0.0323 0.0261 0.0338 0.0271
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Cs 0.0247 | 0.0187 0 0
Co 0.0298 | 0.0218 0 0
Cr@ | 02525 | 04791 0 0
Cr@ | 01285 | 00910 0 0
Cr@ | 00855 | 0.0605 0 0
Crr | 00631 | 00447 0 0
Cr | 00427 | 0.0302 0 0

Table 3.2: Oil and injection gas compositions. Based on data from Zick®®.

In the second experiment the oil was depleted to 206.9 atm at 358.15 K (Oil 2) and the MMP
was determined for displacement by injection of Gas 2 (Gas 1 + 20 mole % methane). The
results from the experiments are shown in Figures 3.19 and 3.20 whereas the numerical

results are presented in Table 3.4.

A second series of experiments for a slightly volatile Oil 3, described in Hgier'®, has been
performed. The 15-component oil composition and the injection gas composition are given in
Table 3.3 whereas the fluid description is given in Appendix A.l. Three experiments,
displacing Oil 3 by injection Gas 3, Gas 4 and Gas 5 (53% Gas 3 + 47% Gas 4) at 368.15 K
are reported. Calculation results for the first two experiments are given in Figures 3.21 and

3.22. The result from the third experiment is illustrated in Appendix A.2. Numerical values

for al experiments are givenin Table 3.4.

- Xoil 3 YGas3 YGas4
N> 0.785 1.58583 1.8579
CH, 45.622 92.8772 55.5113
CO; 0.265 0.59725 | 3.79585
C 6.092 3.66376 11.4829
Cs 4.429 0.38875 13.4119
iICa 0.865 0.33887 2.0708
C4 2.26 0.08508 | 6.52458
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iCs 0957 | 0.11535 | 1.68332

Cs 1406 | 002264 | 2.38398

Co 2097 | 0.11333 | 05051
Cr(1) 4902 | 012047 | 0.6952
C(2) 9.274 00914 | 0.0766
C(3) 9.88 0.0001 | 0.00057
Cr+(4) 7.362 0 1.71E-05
Cr+(5) 3.804 0 0

Table 3.3: Compositions of Oil 3 and Gas 3+4. Data from Haier'®.
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Figure 3.19: Simulation results for Oil 1 displaced by Gas 1. The fourth crossover tie line
becomes critical at 156.7 atm (MMP). Injection and initial tie lines are plotted as
dotted and broken lines respectively.
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Figure 3.20: Simulation results for Oil 2 displaced by Gas 1. The third crossover tie line
becomes critical at 211.0 atm (MMP). Injection and initial tie lines are plotted as
dotted and broken lines respectively.
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Figure 3.21: Simulation results for Oil 3 displaced by Gas 3. The second crossover tie line
becomes critical at 519.3 atm (MMP). Injection and initial tie lines are plotted as
dotted and broken lines respectively.
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Figure 3.22: Simulation results for Oil 3 displaced by Gas 4. The eighth crossover tie line
becomes critical at 217.3 atm (MMP). Injection and initial tie lines are plotted as
dotted and broken lines respectively.

Method / Oil Oil;-Gas, | Oil,-Gas; | Oils-Gas; | Oils-Gas, | Oils-Gass
Multicell , Haier™ - - 514.2 231.9 310.9
Slimtube, Haier'® - - 512+7 | 228+10 | 302+10
Slimtube, Zick™ 152 213.8 - - -
Louis Bleriot 157 211 524 216 298
Key tieline 156.7 211.0 519.3 217.3 295.7
Caculation Time (Secs) 0.7 0.7 19 17 16

Table 3.4: Comparison with simulation results presented in the literature. P (atm),
" E300 simulation,  multicell simulation (I C-SEP program).
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The MMP predictions by the presented algorithm are seen to be in excellent agreement with
reported slimtube experiments and compositional simulators. In the work of Hgier'® a number
of compositional simulations, for different types of fluids, are presented. On the basis of these
fluid descriptions the MMPs have been calculated under the same conditions. A genera
comparison of the MMPs predicted by the presented algorithm and the simulations of Hgier'®
and Zick®® is given in Figure 3.23.
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Figure 3.23:  Comparison of calculation results with results from the literature™® .
3.4.6 Discussion of the Global Approach for Calculation of the MMP

Up to now systems with a maximum of 15 components in the oil description and 15
components in the injected gas have been investigated. The average time consumption for the
MMP calculations is around a few seconds. Wang and Orr>® describe a sequential approach
for solving the key tie line intersection equations. The sequential approach, based on an outer
loop for updating K-factors by successive substitution and an inner loop for solving the
intersection equations, is much more time-consuming than the global formulation of this
work. Wang and Orr>® report typical computation times of about 30 minutes with a Dec-Alpha
workstation. The large difference in time consumption is caused by the use of successive
substitution for updating K-factors, which is impractica for near-critical calculations.

Furthermore, the sequential approach cannot achieve the convergence speed of a full Newton-
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Raphson iteration. The repeated solution of the intersection equations offers very good initial
estimates in each pressure/K™ step and no more than five iterations are needed by the global

approach even for the near-critical region.

It should be emphasized that none of the presented calculation examples exhibit pure
vaporizing or pure condensing mechanisms controlling the development of miscibility. Thisis
evident from the fact that the critical tie line in al cases differs from the initial and the

injection tielines.

3.5 Application of the New MMP Algorithm

The modest time consumption for calculations of the MMP by the global approach makes the
algorithm particularly useful in connection with gas enrichment studies as well as other
studies where compositional simulators are significantly more costly. To illustrate in more
detail some areas of application of the new algorithm, a case study relevant to considerations
made by the reservoir engineer prior to any full scale modeling of a gas injection project is
presented. Before any modeling work can be done, a reservoir fluid sample is sent to the PVT
laboratory in order to obtain information about component distributions, densities, bubble-
point pressures, swelling tests etc. This is the experimental basis for the generation of a fluid
description entering the thermodynamic model (EOS) for prediction of phase equilibrium.
Normally, a characterized fluid description is generated. This fluid description is then tuned to
match experimental data from the PVT laboratory. Most of the standard PVT experiments
give little or no information about the phase equilibrium in the critical/near-critical region(s).
If it isrecalled that prediction of the MMP isin fact prediction of a point on the critical locus

some interesting questions could be:

e To what extent will the prediction of the MMP be affected when a given fluid description
is tuned to match other experimental data?

e Doesit make any difference what parameters are used to tune the thermodynamic model?

e How sensitive is the predicted MMP to the number of components used in the fluid

description?
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All phase equilibrium calculations of the following subsections have been performed using
the SRK EOS™. A real reservoir fluid described in Table 3.5 forms the basis of this study.
Initially, the fluid is characterized by the method of Pedersen et a.*, using 15 pseudo-
components. The characterized fluid description is given in Tables 3.6 and 3.7. At the
reservoir temperature (387.45 K), the fluid is reported to have a saturation pressure (Ps) of

251.7 atm.

Component | Mole (%) | p (Kg/m®) | Mw(g/mole)
N2 0.45
CO, 1.64
CH,4 45.85
C, 7.15
Cs 6.74
i-Cy4 0.84
n-Cy4 311
i-Cs 1.03
n-Cs 1.65
Ce 2.52
C; 3.77 729.4 92
Cs 4.28 750.9 106
Co 2.70 773.9 120
Cio 1.69 783.5 137
Cui+ 16.58 796.8 288
Table 3.5: Fluid description for case study.
T(K) Pc(atm) ® Mw(g/mole) | x-Oil 4 | y-Gas6 | y-Gas7
Ny 126.200 | 33.6000 | 0.0400 28.016 0.450 0.49 0.67
CO, | 304.200 | 72.9000 | 0.2280 44.010 1.640 1.82 244
CH, | 190.600 | 45.4000 | 0.0080 16.043 45.850 | 81.39 68.16
C, 305.400 | 48.2000 | 0.0980 30.069 7.150 9.15 10.32
Cs 369.800 | 41.9000 | 0.1520 44.096 6.740 4.67 9.50
i-C4 | 408.100 | 36.0000 | 0.1760 58.123 0.840 0.50 1.09
n-C, | 425.200 | 37.5000 | 0.1930 58.123 3.110 1.24 3.75
i-Cs | 460.400 | 33.4000 | 0.2270 72.150 1.030 0.20 0.95
n-Cs | 469.600 | 33.3000 | 0.2510 72.150 1.650 0.26 1.31
Ce 507.400 | 29.3000 | 0.2960 86.177 2.520 0.09 0.91
C; 632.800 | 30.2987 | 0.1842 109.007 12.440 | 0.19 0.90
Cy | 659.605 | 23.4598 | 0.4773 175.327 6.320 0.00 0.00
Cis | 703.646 | 19.2900 | 0.8197 256.674 5.024 0.00 0.00
Cps | 766.497 | 16.7852 | 1.2114 370.099 3.240 0.00 0.00
Css | 892990 | 15.1302 | 1.3718 590.374 1.996 0.00 0.00

Table 3.6: Characterized fluid description.
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CH4 C2 C3t0C33
N> 0.02 0.06 0.08
CO; 0.12 0.15 0.15

Table 3.7: Non-zero interaction parameters.

3.5.1 Effect of Tuning and Lumping

The predicted saturation pressure based on the initial characterized fluid description is 259.1
atm. In order to obtain a better match on the predicted Py the fluid description was tuned by
five different approaches/parameters resulting in five tuned fluid descriptions. The parameters

were

e Themolecular weight of the plus fraction (re-characterization)

e The criticad temperature T. of the heaviest component in the characterized fluid
description

e Thecritical pressure P, of the heaviest component in the characterized fluid description

e Theacentric factor @ of the heaviest component in the characterized fluid description

e The binary interaction parameter k;; between CH4 and the heaviest component in the
characterized fluid description

The values of the tuned parameters for the five new fluid descriptions are given in Table 3.8.

Parameter Initial value | Tunedvaue | Pg (atm) MMP (atm) Dev %
Experimental - - 251.7 370.1 0.0
No tuning - - 259.1 363.7 17
My, (g/mole) 288.00 268 251.7 351.6 5.0
T (K) 892.99 830.50 251.7 365.1 14
P. (atm) 15.13 12.38 251.7 370.8 -0.2
) 1372 11331 251.7 366.1 11
Kij (CH4-Cgs3) 0.00 -0.0856 251.7 366.5 10
Table3.8: Tuned parameters and a comparison of calculated MM Ps for various tuning

approaches.
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In order to match the experimental Ps; when the molecular weight (My,) of the plus fraction is
used as a parameter a reduction of 7% is needed. This is of the same magnitude as the
uncertainty of the experimental determination and hence considered to be reasonable. In the
Tc-tuned description a reduction of 7 % is necessary to match the Py, whereas a reduction of
18% is needed in the P.-tuned model. The magnitude of the latter is somewhat high but can
still be accepted. For the m,.-model, the tuned value is 17 % lower than the characterized
value. Finally, akj-value of -0.086 is needed in the last tuning approach.

An experimental swelling test where the reservoir fluid Oil 4 is mixed with Gas 6 (Table 3.6)
is compared with predictions of the different models in Figure 3.24.
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Figure 3.24: Swelling test simulations for different tuning approaches.

Predictions of the T¢-tuned model and the kj;-tuned mode! are seen to give the best accuracy.
The MMP based on dimtube experiments where Gas 6 (Table 3.6) is injected into reservoir
fluid has been reported to be 370.1 atm. Calculated values of the MMP for the original fluid
description as well as for the five tuned models are given in Table 3.8. It is seen that no
significant difference in the predicted MMPs is observed from using different parameters for
tuning the characterized fluid description. Further, it is seen that the M-tuned model
introduces the largest error in the predicted MMP. This is somewhat in contrast to the
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swelling test performance where the M,,-model is superior to the untuned model. Based on the
investigated system it is concluded that a high accuracy in the prediction of a swelling test
does not ensure a correct prediction of the MMP.

Although increasingly powerful computers are developed, the number of components used in
three-dimensional compositional simulators is still limited to a maximum of about eight.
Therefore, it is necessary to reduce the number of components used in the fluid description by
a lumping procedure. The influence of lumping on the prediction of the MMP has been
investigated for the reservoir fluid. Through a number of calculations with decreasing number
of components, the variation in the MMP predictions has been determined. In this work, the
clustering procedure of Montell and Gouel® combined with property calculation of
Leibovici®® is applied. Relative errors in P& and MMP for the tuned models are shown in

Figures 3.25 and 3.26 respectively.
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Figure 3.25: Lumping study. Relative error in Pg vs. number of components.

The relative errors in the predicted Py do not exceed 3 % as long as more than four
components are used in the fluid description. The same pattern is seen for the relative errorsin
the predicted MMP. Equivalent variation in the relative error, biased by the error from the 15-
component fluid descriptions, is seen for all models. This also indicates that the method of

tuning has very little impact on the prediction of the MMP. On basis of the investigated
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reservoir fluid, it is concluded that the key tie line approach has a low sensitivity to the

number of components used in the fluid description.
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Figure 3.26: Lumping study. Relative error in MMP vs. number of components.

3.5.2 Gas Enrichment Study

If more than one potentia injection gas is available, a gas enrichment study is necessary to
determine which gas mixture should be injected into the reservoir. In this study a rich gas
(Gas 7, Table 3.6) is considered as solvent. The fraction E of solvent added to the original
injection gasis defined by

Yiy = Yo (L= E) + Yo E (3:25)

A series of MMP calculations for different values of the solvent fraction has been made by
use of the T-tuned model. Figure 3.27 shows the MMP as a function of the solvent fraction
along with an indication of which key tie line controls the development of miscibility. At low
values of the solvent fraction, the MMP decreases slowly up to a fraction around 0.1. In this
region the 4™ key tie line controls the miscibility process. Afterwards the MMP drops off
rapidly until a solvent fraction of around 0.4 is reached. At this level of enrichment the MMP

is reduced by 90 atm to approximately 280 atm. The development of miscibility is now



Chapter 3. Determination of the Minimum Miscibility Pressure 58

controlled by the 9" key tie line. Further enrichment of the injection gas does not affect the
MMP. Hence, in this case, no further enrichment is necessary if the solvent gas can be used

for other profitable purposes.
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Figure 3.27: Gas enrichment study. MMP vs. fraction of solvent Gas 7.

In the gas enrichment study illustrated in Figure 3.27 the MMP is a monotonic, decreasing

function of the fraction of solvent gas (E).
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Figure 3.28: Gas enrichment study. MMP vs. fraction of solvent gas (25 % N, + 75% CO,).
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This is not always the case and the entire MMP vs. E needs to be investigated in order to
locate the true minimum value of the MMP. As an illustration, a solvent gas consisting of 25
% N, and 75 % CO, is considered. The MMP vs. E plot of this solvent is given in Figure 3.28.
The MMP vs. E curve initially increases as the fraction of solvent is increased. Then, at an
enrichment level around 0.1 the curve bresks and starts to decrease. The value of the MMP
decreases until it reaches the minimum value at around E = 0.58 and starts, again, to increase
until the maximum value of MMP isreached at E = 1.0. Thus, Figure 3.28 illustrates that the

MMP vs. E relationship is not necessarily monotonic.

3.6 Summary

A brief introduction to the different approaches used for prediction of the minimum
miscibility pressure over the last decades has been given. The overview aims to stress that
more complex methods, like the FD/MC methods or the semi-analytical method, must be used

to ensure a proper prediction of the MMP in general.

A new global approach to calculation of the MMP has been presented. The algorithm is based
on the semi-analytical approach and allows prediction of the MMP for gas injection processes
using any number of components in the fluid description. The new approach has been tested
on a number of different systems. All calculations have been verified with an in-house
multicell compositional simulator. Most of the investigated systems have been bubble-point
systems but also a few dew-point systems (gas condensates) have been investigated. For the
latter systems the number of grids used in the compositional simulators has a large influence
on the predicted MMP'®. For gas condensates, MM Ps predicted by the key tie line approach
are found to be in good agreement with reported simulation results, but more condensate

systems should be investigated before further conclusions are made.

The global approach is superior to previously presented MMP agorithms in terms of the CPU
requirement. Calculation times have been reduced to a few seconds on a PC. Thus, the

algorithm offers an efficient tool for reservoir engineers studying gas injection processes.
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Examples based on a case study are given to illustrate the use of the algorithm. The effects of
tuning and lumping on the predicted MMP have been investigated. For this case study the
variables used for tuning the fluid description to experimental PVT data did not influence the
predicted MMP significantly. This may not hold true for al systems. The lumping study
showed that the number of components used in the fluid description only had a minor effect
on the predicted MMP as long as four or more components were used. As for the effect of
tuning, this may not hold true for all systems. The lumping study verifies the fact that four or
more components are needed in the fluid description in order to represent a combined v/c

displacement.

The algorithm was used in two gas enrichment studies with the aim of determining the
optimal mixture of available injection gases. In the first enrichment study the MMP was
found to be a monotonous function of the enrichment factor, while the second study exhibited
a strongly non-monotonous behavior. The two cases are given to illustrate the need for more

than afew points on the MMP vs. E curve and hence the need for afast MMP algorithm.
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4. Approximate Semi-analytical Solutionsto the 1-D GasInjection Problem (NVC)

In this chapter the agorithm for approximation of key tie lines, developed during the
calculation of the MMP (Chapter 3), will be combined with the analytical theory of 1-D gas
injection processes (Chapter 2) to obtain approximate semi-analytical solutions to the
governing mass conservation equations. The simplified version of the conservation equations
described in Section 2.1 is initially addressed. Due to the simpler mathematics involved in
solving the NV C formulation of the flow problem, the NV C form serves as a proper starting
point for generating algorithms for the general formulation. Further, it will be demonstrated
how solution construction tools from a no volume change (NVC) algorithm can be used in a

volume change (V C) algorithm by introducing minor modifications.

4.1 Grouping of Analytical Solutions

Solutions to the 1-D gas injection problem can be divided into two main groups. The first
group describes fully shelf-sharpening systems where all key tie lines are connected by
shocks. The second group describes systems where some key tie lines are connected by
continuous variation along a nontie line path (rarefaction or spreading wave). The two groups

are dealt with in separate subsections

All analyses and examplesin this chapter are based on afractional flow function given by

SZ
f =
S +p, (1-S-S, ) (4.1)

The residua oil saturation Sy is fixed at 0.2 and the vapor to liquid phase relative viscosity u,
is calculated by the Lohrenz-Bray-Clark® correlation. The NVC agorithms for fully self-
sharpening systems and systems with nontie line rarefactions are also presented in Jessen et
a|.20
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4.2 Self-shar pening Systems

Fully self-sharpening systems are characterized by the feature that all key tie lines are
connected by shocks. For such systems the key tie line intersection approach is rigorously
accurate because the extensions of a pair of key tie lines connected by a shock must
intersect®. Two types of shocks occur. When the shock velocity matches the tie line
eigenvalue (Ate ine = df/dS) on one side of the shock, the shock is known as a tangent shock.
When the shock velocity differs from the wave velocities on both sides of the shock, the
shock is called a genuine shock. Both types of shocks occur in typical solutions. Because the

tie lines which make up the solution can be found by the intersecting tie line approach’®3,

a
full solution can be constructed if the shock composition points can be determined on each of
the key tie lines. The only remaining question is. On which tie line does the solution

construction begin? In the following, that tie line will be referred to as the “primary” tieline.

Solution construction begins with finding the tangent shocks that connect the primary tie line
to adjacent tie lines just upstream and downstream. For problems in which the injection gas
composition lies on the vapor side of the two-phase region, the composition path lies on the

vapor side of the equivelocity curve (where f=S)™ For such compositions, f> S

It is now demonstrated that the primary tie line must be the shortest of the key tie lines. To
prove the truth of this statement, consider the simple ternary vaporizing gas drive (Figure
4.1a) in which oil (composition a) is displaced by gas (composition €). Two key tie lines
make up the solution: The tie line extending through the initial oil composition, and the tie
line extending through the gas composition. In this example, the tie lines are connected by a
shock because a rarefaction between the ail tie line and the gas tie line would violate the
velocity rule. The corresponding overall fractiona flow curves for the two key tie lines are
shown in Figure 4.1b, and the saturation profile for the solution is shown in Figure 4.1c. In
this case, the leading shock is a tangent shock, found by constructing the chord from point a
in Figure 4.1b, which is tangent to the fractional flow curve for the oil tie line. The shock
from point ¢ on the oil tie line is found by constructing a chord from point X which is tangent
to the fractional flow curve for the ail tie line. Point X (Figure 4.13) is the intersection point

of thetwo key tielines. Point X in Figure 4.1b lieson the Q; = G line.
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Figure 4.1: Construction of tangent shocks. Existence of primary tieline.

The composition of point d, the landing point on the gastie line is given by the intersection of
the chord with the fractional flow curve of the gastie line. It should be noted that point d lies
above the composition at which a chord constructed from the gas composition, point e, would
be tangent to the fractional flow curve for the gastieline. A continuous variation from point d
to that tangent point would violate the velocity rule, so a genuine shock from point d to point
e is required. The velocity of that shock is given by the slope of the chord from point d to

point e.
The tangent drawn from point X to point c in Figure 4.1b satisfies the following equations”:

Qic_Qid _Q.ic_Qi>< _Qid _Gix _ fC—SCX _ fd—SdX _dfC

c d c x  ~d x c ox — od X oS (42)
G -GY G°'-G* G'-G' S-S S-S* ds

where S™ and S™ refer to the saturations at point X measured on the tie lines containing
points c and d:
S — Glx - gfl SdX — G(l;( — gij (43)
glcv - gﬁ O — 9y
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Figure 4.1b shows that the tangent constructed from point ¢ to X intersects the overall
fractional flow curve for the injection gas tie line at point d. If, on the other hand, the chord
had been drawn from point X to the tangent point on the gas tie line, the extension of the
chord would not intersect the overal fractional flow curve for the oil tie line. Thus, it is not
possible to satisfy the shock equations if the tangent has been constructed to the gas tie line,
but it is possible to do so for the oil tie line. Analysis of the shock equationsindicates that it is
always possible to satisfy the shock equations for this example if S* > S*. The length of the
tie lines controls that restriction. In this example, the oil tie line is short and the gastielineis
longer, so g1 — g% > g%1 — g%y Because the differences in ¢y and g%y are small, the length
of the tie lines dominates the saturationsin Eq. 4.3. Thus, if a shock between two tielinesisa

tangent shock, the tangent must be constructed to the shorter of the two tie lines.

Similar reasoning can be applied sequentially to each adjacent pair of tie lines, with the result
that in fully self-sharpening systems the shortest of the n; - 1 key tie lines must be a tie line
which is connected to tie lines just upstream and downstream by tangent shocks, with the
tangents constructed from the intersection points to the shortest tie line. Therefore, the

shortest tie lineis the primary tieline.

The algorithm for construction of fully self-sharpening 1-D solutionsis:

1. Locate al key tie lines by using the tie line intersection approach. The global solution

algorithm of Jessen et al.*® presented in the previous chapter was used here.

2. Locate the primary (shortest) key tie line and start tracing the solution upstream and
downstream. For each adjacent pair of tie lines, the possibility of a tangent construction is
initially investigated. The construction procedureisillustrated in Figure 4.2.

3. Downstream construction: A tangent construction is made by solving Eq. 4.2 for (S, A1)
on the primary tie line from the first downstream intersection point (I;). The landing point
on the downstream tie line (S, A1) is subsequently found by solving Eq. 4.2 with the
shock velocity fixed.
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4. For the next downstream pair, intersecting at 1,, a new tangent construction is examined.
From this point and forward the tangent construction may be invalid due to a violation of
the velocity rule. That is, if the end point of the previous construction (S, A1) has a
velocity which is higher than the jump or landing point from the new shock construction
(Ss, A2). In such a case, the new pair of tie lines is connected by a genuine shock, which is
followed by a constant state. If, on the other hand, two tangent constructions are made to
the same tie line the tangent points are connected by either a direct jump or by continuous

variation along thetie line.

5. Step 4 is repeated until the tie line extending through the initial oil is reached. The
solution path often enters (and leaves) the two-phase region by a tangent shock. However,
for some systems, (Figure 4.1, for example), variation along the tie line violates the

velocity rule and adirect jJump is used.

6. From the primary tie line, the solution path is traced upstream by the approach of steps 3

and 4.
Primary key tieline

Downstream

Figure 4.2: Illustration of downstream solution path construction.

4.3 Solution Example for Fully Self-shar pening System

To illustrate the application of the algorithm for construction of self-sharpening solutions, the
Oil 4/Gas 6 system given in Table 3.6 is revisited. The reservoir temperature is 387.45 K at

which the bubble point pressure of the origina oil is 252 atm. The pure component critical
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volumes V,, used for the prediction of phase viscosities, are calculated by specifying the
critical compressibility factor of all components to be 0.307. The 1-D solution for the
displacement of Oil 4 by Gas 6 at 275 atm is desired. The 14 key tie lines (those extending
through the oil and gas compositions and 12 crossover tie lines) are determined, and the third
crossover tie line is identified as the primary (shortest) tie line, the starting point for shock
construction. The saturation profile is shown in Figure 4.3, and the details of the solution are
givenin Table 4.1.
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= 0.8 1 ——FD 1000
«Q ——— FD 10000
é 0.6 - -. I MOC shock
E 3
>
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0.0 0.5 1.0 1.5 2.0
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Figure 4.3: Comparison of analytical and numerical saturation profiles for displacement of Oil
4 by Gas 6 at 275 atm and 387.45 K. The finite difference (FD) solutions were
obtained with 100, 1000, and 10000 grid blocks and Az/At = 10.

The primary tie line is connected to the first downstream tie line by a tangent shock (d;). The
remaining downstream part of the solution consists of genuine shocks, constant states, and a
direct jump from the oil tie line to the initial oil composition.

The upstream part of the solution starts with a tangent shock (d,) connecting the primary tie
line to the next crossover tie line. The remaining upstream shocks are all genuine shocks with

associated constant states, and another genuine shock connects the injection gastie line to
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Point Tieline | ugdloi | LG (Kno) Zne S A
Oil Initial 0.1719 -5.80352 0.019957 - 1.9972 -
a Initial 0.1719 -5.80352 0.011376 0.321 1.4501 - 1.9972
b 1 0.1758 -5 70171 0.010801 0.344 1.2170 - 1.4501
(o 2 0.1740 -5.73387 0.010972 0.338 1.1270-1.2170
d; 3 0.1879 -5.46043 0.008974 0.424 1.1270
d> 3 0.1879 -5.46043 0.008732 0.438 1.0187
e 4 0.1782 -5.64053 0.007761 0.509 0.9505 - 1.0187
f 5 0.1774 -5.65381 0.007727 0.512 0.9086 - 0.9505
g 6 0.1674 -5.83705 0.007376 0.547 0.8407 - 0.9086
h 7 0.1608 -5.95011 0.007205 0.567 0.8155 - 0.8407
i 8 0.1500 -6.16425 0.007001 0.595 0.7360 - 0.8155
j 9 0.1281 -6.60241 0.006702 0.646 0.4823 - 0.7360
k 10 0.0705 -7.72998 0.006246 0.780 0.3521 - 0.4823
[ 11 0.0391 -8.54209 0.006109 0.862 0.1630 - 0.3521
m 12 0.0219 -9.01158 0.006151 0.927 0.0351 - 0.1630
n Inj. 0.0150 -9.12906 0.008519 0.960 0.0163- 0.0351
0 Inj. 0.0150 -9.12906 0.000049 1 0- 0.0163
Gas Inj. 0.0150 -9.12906 0.000000 - 0

Table 4.1: MOC solution for displacement of Qil 4 by Gas 6 at 275 atm and 387.45 K.

the injection gas composition. A continuous variation connects the two shock points (d; and

dy) on the primary tie line.

In order to confirm the analytical solution, a series of finite difference (FD) simulations was
performed. Single-point upstream weighting with a Courant number (Az/At) of 10 was used in
al the smulations, which were run on a 450 MHz PC. The FD simulation scheme is
described in Appendix A.3. The new two-phase PT flash algorithm developed by Michelsen®
was used in the FD simulator to speed up the numerical solutions. The numerical saturation
profiles from simulations using 100,1000 and 10000 grid blocks are compared with the
analytical profile in Figure 4.3. The CPU time required to construct the analytical solution
was 0.9 second, compared to 4.4 seconds, 5.4 minutes and 7.8 hours used respectively in the
numerical simulations. The coarse grid simulation (100 grid blocks) is not able to describe the
details but only the general tendency of the dispersion-free solution. More details are captured
by use of 1000 grid blocks and an excellent agreement is observed when 10000 grid blocks
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are used. However, the CPU cost for capturing the true dispersion-free saturation profile by

numerical simulators is substantially higher.

4.4 Systems with Nontie-line Rar efactions (Spreading Waves)

The shock solution described in the previous sections can be found even when a rarefaction
connects one or more pairs of tie lines. In many problems, rarefaction segments appear which
are short, and wave velocities change little over the length of the rarefaction. In such cases,
the shock solution is an excellent approximation of the exact solution. For problems with
longer rarefactions, a more accurate approximate solution can be obtained by the procedure

described in this section.

It should be recaled that at any given point in the two-phase region, the n.-1 eigenvalues
represent characteristic wave velocities of compositions subject to variation in the
corresponding eigenvector direction. Tie lines are eigenvectors and the remaining ng-2
admissible directions can be integrated to obtain nontie-line paths. When a nontie-line
rarefaction exists in the 1-D solution, the solution path switches from a key tie line path and
travels along a nontie-line path to end up at a neighboring key tie line. The velocity rule
dictates that a path switch, from atie line path to a nontie-line path, can only occur at an equal
eigenvalue point of mixed type. That is a point in compositional space where a tie line
eigenvalue coincides with a nontie-line eigenvalue. For a given tie line the number of equal-
eigenvalue points of mixed type is 2(n.-2). Half of them can immediately be disregarded, as
they are located on the liquid side of the equivelocity curve. The equal eigenvalue points can
be located directly by solving the eigenvalue problem aong a given tie line. The direct
approach is quite time consuming and therefore the indirect method of Dindoruk’ (described
in Section 2.3.4) for location of equal eigenvalue points is recommended for problems of the

current type.

In the following we assume that two key tie lines, known in advance, are connected by a
spreading wave. The question is then: At which equal eigenvalue point does the tie line path
switch to the nontie-line path? The appropriate equal eigenvalue point can be selected by a
geometrical interpretation of the displacement problem. When ararefaction is present, the key

tie lines are bound to a surface in compositional space of tie lines intersected by the path
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between the key tie lines. The nontie-line rarefaction traverses this surface. As illustrated
later, experience shows that the tie line surface is only gently curved and can be approximated
nicely by a plane determined by the key tie lines. Hence, at the correct equal eigenvalue point
no other eigenvectors, besides the tie-line eigenvector and the eigenvector related to the
matching nontie-line eigenvalue, will point in the direction of the plane R spanned by the
neighboring key tie lines. In practice this is done by checking angles between the normal
vector to R and the eigenvectors. It should be noted that for systems with five or more
components in the mixture, the normal vector to Ris no longer uniquely determined and must
be found by e.g. a minimization approach. In this work the approach described in Appendix
A.4 was used to determine the normal vector.

After the selection of equal eigenvalue point, the nontie-line path is traced to the next key tie
line by integration of the nontie-line eigenvector. For the general case, however, the presence
of a spreading wave is not known in advance. Hence, a tool for predicting the existence of

nontie-line rarefactions is needed.

4.5 Prediction of Spreading Wavesin 1-D Solutions

If two key tie lines are connected by a rarefaction, the path switch from the tie line path to the
nontie-line path must occur at an equal eigenvalue point on the tie-line closest to the critical
locus. This is due to the intrinsic symmetric behavior around critical points. In the work of
Dindoruk’, continuous variation along nontie-line paths is linked to the envelope curve
generating the ruled surface traveled by the nontie-line path. This envelope curveisillustrated
in a two-dimensiona projection of the general case in Figure 2.8. The tie lines belonging to
the one-parameter family ¢x(y) on the K'th ruled surface are al tangents to the envelope curve
Ex. The overall volume fraction of a given component i at the point of tangency on the

envelope curve can be written as

G =(9y —9y)0, (W) +g, (4.4)

where 6(v) is the superficial vapor volume fraction at the point of tangency.
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Dindoruk” derives an expression for the variation of the nontie-line eigenvalue A, along the

nontie-line path in the vicinity of the equal eigenvalue point:

. dA, f-s do,|
lim = 5
ok dy  (S-6,)2 dy |,

(4.5)

where A; is the tie line eigenvalue at the equal eigenvalue point. While Eq. 4.5 applies strictly
only near the equal eigenvalue point, the indicated sign of the left-hand side applies over the

entire nontie-line path.

4.5.1 The Fanning Rule (Envelope Rule)

Eg. 4.4 shows that a critical point must be a point on the envelope curve. This fact makes it
possible to predict the sign of the derivative of the superficial vapor saturation with respect to
v and hence the variation of A, once the orientation of the key tie lines is known. The
absolute distance from the two-phase boundary to the envelope curve increases as the nontie-
line path is traced from an equal eigenvalue point. The sign of the superficia vapor fraction
depends on whether the tie lines of the ruled surface are fanning from the liquid side or the
vapor side of the two-phase region or, equivalently, whether the envelope curve is located on
the vapor or the liquid side of the two-phase region. Ultimately, the shape of the fractional
flow curve and the velocity rule are used to determine whether a path switch at an equal
eigenvalue point is admissible. It should be recalled that the velocity rule states that a high-
speed wave must be found downstream of a low-speed wave. For systems in which the
injection composition lies on the vapor side of the phase envelope and the initial composition
on the liquid side, the solution path (after the leading shock) lies on the vapor side of the
equivelocity curve (f > S). This fixes the sign of the numerator on the right hand side of Eq.
4.5, and hence the derivative of the nontie-line eigenvalue has the same sign as the derivative
of the superficial vapor saturation 6. Application of the fanning (envelope) rule in

combination with the velocity rule resultsin four distinct cases shown in Figures 4.4-4.7.
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(u)
Figure 4.4: Vaporizing wave with liquid side envelope. Upstream (u), downstream (d).
The first case illustrated in Figure 4.4 is a vaporizing wave where the envelope curve is
located on the liquid side of the two-phase region. As the nontie-line path is traced from the
equal eigenvalue point located downstream (d) towards the injection point located upstream

(u), the superficial vapor saturation 6y decreases. This is consistent with the velocity rule and

hence the path switch is allowed and a spreading wave will be present in the 1-D solution.

Ay | )

Figure 4.5 Condensing wave with vapor side envel ope.
Figure 4.5 shows a condensing wave in which 6 is increasing as the nontie-line path is traced

from an upstream point (u) towardsthe initial oil. Thisis consistent with the velocity rule and

hence a spreading wave will form in the solution.

Vapor

Figure 4.6 Condensing wave with liquid side envel ope.



Chapter 4. Approximate Solutions to the 1-D Gas Injection Problem (NVC) 72

In the condensing drive illustrated in Figure 4.6, 6 is a decreasing function of the nontie-line
path when traced from an upstream point (u) towards the initia oil. Thisis a violation of the
velocity rule, as the upstream part of the wave will eventually catch up with the downstream
part. In other words, the wave is self-sharpening. The upstream and downstream key tie lines
must consequently be connected by a shock. Depending on the compatibility with the solution

this can be either atangent shock or a genuine shock.

Liquid
de,
S L7ATA

>0

Figure 4.7: Vaporizing wave with vapor side envelope.

Figure 4.7 shows a vaporizing wave with the envelope curve located on the vapor side of the
two-phase region. As the nontie-line path is traced from an upstream point (u) towards the
injection point, the nontie-line eigenvalue increases. Again this behavior will result in a
sharpening wave, a path switch at the equal eigenvalue point is not allowed and a shock is

required.

The general feature of the four cases presented above is that a spreading wave will only form
if the nontie-line path, starting at the equal eigenvalue point, is moving away from the
envelope curve. Whether a rarefaction appears between two key tie lines can be summarized
easily in terms of tie line length and whether the intersection point lies on the liquid or the

vapor side of the two-phase region. Table 4.2 gives asummary of this.
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Tielinelength _
Type Intersection Wave
Upstream Downstream
Vaporizing Long Short Liquid side Rarefaction
Vaporizing Long Short Vapor side Shock
Condensing Short Long Liquid side Shock
Condensing Short Long Vapor side Rarefaction

Table 4.2: Summary of the fanning (envelope) rule.

Vaporizing segments occur when a longer key tie line lies upstream of a shorter key tie line
(see Figures 4.4 and 4.7), and in vaporizing segments, a rarefaction occurs when the
intersection between the key tie lines lies on the liquid side of the two-phase region. In
condensing segments, a shorter key tie line is upstream of a longer one (see Figures 4.5 and
4.6), and ararefaction occurs when the intersection is on the vapor side. Additional analysisis
required to determine whether rarefactions appear if either the initial oil or the injection gas

composition isin the two-phase region.

4.5.2 Algorithm for Systemswith Nontie-line Rar efactions

The agorithm for constructing 1-D solutions, taking into account the existence of spreading

waves, is as follows:

=

Locate al key tie lines by the tie line intersection approach.

N

Apply the fanning rule to each neighboring pair of key tie lines. If no rarefactions are

predicted, switch to the smplified algorithm for fully self-sharpening systems.

3. For each predicted rarefaction, locate the equal eigenvalue point and integrate the
eigenvalue problem to obtain the corresponding nontie-line path.

4. Locate the primary key tie line and start the shock construction downstream. Switch
points between the nontie-line paths, and the tie line paths are introduced in the solution
requirements in parallel with the velocity rule. The downstream solution is traced until the
initial oil composition is reached.

5. Continue constructing the upstream solution by the approach of step 4 until the injection

gas composition is reached.



Chapter 4. Approximate Solutions to the 1-D Gas Injection Problem (NVC) 74

4.6 Solution Example with Nontie-line Rar efaction

The appearance of nontie-line rarefactions is commonly observed in the solution path for
displacements when N is present in the injected gas. To illustrate the limits of the algorithm
used for constructing fully self-sharpening solutions, pure N, is now injected into the
reservoir fluid (Oil 4) at the same temperature and pressure as previously. The saturation
profile generated by the algorithm for fully self-sharpening systems is compared with coarse
and fine grid numerical simulations in Figure 4.8. The saturation profile from the fine grid
simulation clearly indicates a nontie-line rarefaction between the initial tie line and the first
crossover tie line. Figure 4.8 further illustrates the saturation profile obtained by combining
an integration of the nontie-line path with shock constructions as described previoudly.
Details of the shock solution are given in Appendix A.5.
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Figure 4.8: Comparison of analytical solutions (with and without integration) with numerical
saturation profiles for the displacement of Oil 4 by pure N, at 275 atm and 387.45
K. The finite difference (FD) solutions were obtained using 100 and 10,000 grid
blocks and Az/At = 10.

For this system, the tie line extending through the initial oil isthe primary tie line. Application

of the fanning rule indicates that a nontie-line rarefaction connects the initia tie line and the
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first crossover tie line. The nontie-line path ends at an overall composition approximately

located on the adjacent tie line. The inaccuracy of the approximation introduced by assuming

intersecting key tielinesis quite small, as Table 4.3 shows.

- X (shock) | x(rarefaction) | Error % | y (shock) | y(rarefaction) | Error %
N, | 0.23695463 | 0.23657449 0.16 | 0.86905145 | 0.87052697 0.17
CO, | 0.00892119 | 0.00896803 0.52 | 0.01255008 | 0.01262557 0.60
CH, | 0.00000000 | 0.00000000 - 0.00000000 | 0.00000000 -
C, | 0.06295753 | 0.06196958 159 | 0.05199391 | 0.05114823 1.65
Cs | 0.07434362 | 0.07361960 0.98 | 0.03517118 | 0.03476156 1.18
i-C, | 0.01007617 | 0.00998769 0.89 | 0.00333684 | 0.00329854 1.16
n-C, | 0.03922843 | 0.03896883 0.67 | 0.01076864 | 0.01066283 0.99
i-Cs | 0.01382016 | 0.01374001 0.58 | 0.00260091 | 0.00257527 1.00
n-Cs | 0.02260102 | 0.02248533 0.51 | 0.00376605 | 0.00373032 0.96
Cs | 0.03645991 | 0.03630629 0.42 | 0.00382992 | 0.00379312 0.97
C; | 0.20213968 | 0.20233382 0.10 | 0.00585749 | 0.00581241 0.78
Cy;; | 0.10787320 | 0.10827271 0.37 | 0.00095891 | 0.00095155 0.77
Cis | 0.08952057 | 0.09020739 0.76 | 0.00011148 | 0.00011053 0.86
Cys | 0.05901420 | 0.05964260 1.05 | 0.00000305 | 0.00000300 1.37
Csz | 0.03608969 | 0.03692364 2.26 | 0.00000009 | 0.00000009 0.88

Table 4.3: Comparison of tie lines found by MOC integration and by thetie line
intersection approach. Oil 4 displaced by pure N, at 387.45K and 275 atm.

The observed deviation is of an order of magnitude where the numerical evauation of the
coefficient matrix A (Eq. 2.27) and the step by step integration may contribute significantly.
To avoid violation of the mass conservation equations, the first crossover tie line is connected
to the end point of the nontie-line path by a genuine shock. The downstream solution consists
of a continuous variation along the initia tie line and a tangent shock to the initial oil.
Genuine shocks and constant states make up the upstream part of the solution until the
injection tie line is reached. Finaly, the solution is completed by a direct jump to the injection

composition.

Figure 4.8 shows that the fully self-sharpening solution is a much more refined approximation
than that obtained by a coarse grid (FD 100) numerical simulation.
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4.7 Significance of Spreading Wavesin the 1-D Solutions

It was pointed out in the previous section that even if a spreading wave is present in the 1-D
solution, the fully self-sharpening solution could give a far more refined approximation than
coarse grid FD simulation. This fact combined with the additional complication of including
the nontie-line path integration suggests that some spreading waves may be disregarded in the
approximate solutions. This section illustrates how the key tie line information can be used to
select significant spreading waves and disregard insignificant ones. It has been proven that
spreading waves traveling a ruled surface where al tie lines intersect at the same point upon
extension have a constant characteristic wave velocity* (nontie-line eigenvalue). In such
cases the spreading wave is identical to a nontie-line shock of which the latter is far more
convenient when a solution is constructed. It should be recalled that ruled surfaces are also
developable surfaces™. The characteristic of a developable surface is that two tie lines on the
surface located infinitely close to each other will intersect. This suggests that the variation of
eigenvalues along a nontie-line path can be neglected if two key tie lines are located close to
each other. On the limit where two key tie lines coincide this will be rigorously true. The
angle between two neighboring key tie lines can be used as a measurement of the distance to
be traveled by the nontie-line path. In the previous section Oil 4 was displaced by pure N, to
illustrate the application of the general NV C agorithm. In the calculation example the angle
between the initial and the first crossover tie linesis 80.2 deg. Hence, the nontie-line path has
to travel quite a distance, which results in a significant variation of the corresponding wave
velocity. Next the displacement of Qil 4 by a gas containing 85 % CH,4 and 15 % N, at 275
atm and 387.45 K is considered. The simulation result isillustrated in Figure 4.9 whereas the
details of the shock solution can be found in Appendix A.6. For this displacement the fanning
rule predicts a spreading wave connecting the initial and the first crossover tie lines. In this
case the angle between the two key tie lines is 12.0 deg. Accordingly, the significance of the
spreading wave is smaller than in the displacement by pure N,. This is clearly seen from
Figure 4.9. In fact the numerical ssimulation using 1000 grid blocks is less refined than the
solution consisting only of shocks. In summary of this section, the displacement of Qil 4 by
pure CH, at 275 atm and 387.45 K is studied.
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Figure 4.9: Comparison of analytical and numerical saturation profiles for displacement of Oil
4 by 85% CH,4 and 15% N, at 275 atm and 387.45 K. The finite difference (FD)
solutions were obtained with 100, 1000, and 10000 grid blocks and Az/At = 10.
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Figure 4.10: Comparison of analytical and numerical saturation profiles for displacement of
Oil 4 by pure CH, at 275 atm and 387.45 K. The finite difference (FD) solutions
were obtained with 100, 1000, and 5000 grid blocks and AZ/ At = 10.
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The details of the shock solution are given in Appendix A.7 and a comparison of analytical
and numerical saturation profilesis shown in Figure 4.10. For this displacement the initial and
the first crossover tie lines are no longer connected by continuous variation. On the other hand
the fanning rule predicts the presence of two spreading waves. One connecting the first and
the second crossover tie lines and one connecting the second and the third crossover tie lines.
These segments are in fact predicted for all the displacements of Oil 4 considered up to now.
The angles between the key tie lines holding the predicted segments are very small and Figure
4.10 clearly justifies that these waves are replaced by shocks. A summary of the insignificant
spreading waves predicted by the fanning ruleis given in Table 4.4.

Angle between crossover tie lines (deg.)
System
2and 3 3and4
Qil 4 - Gas6 0.20 3.7*10°
Oil 4—N; 0.33 0.40
Oil 4 —85% CH,4/15% N, 0.99 2.00
Oil 4—CH, 0.96 2.13

Table 4.4: Prediction of insignificant nontie-line rarefactions. Angles between key tie lines.

Based on this analysis it is recommended to discard spreading waves predicted by the fanning
rule if the angle between the neighboring key tie lines is less than 10 deg. The diminutive gain
in accuracy of the approximate solutions obtained by including such segments does not
qualify the extra complexity added to the solution construction. Throughout the rest of this

work insignificant nontie-line rarefactions will be disregarded without further notice.

4.8 Example of Curvature of Surface Traveled by a Spreading Wave

This section illustrates, by a calculation example, the modest curvature of a surface traveled
by a nontie-line path. For this purpose Oil 3 (Table 3.3) is displaced by pure N, at 300 atm
and 368.15 K. The saturation profile of the MOC solution is compared with FD solutions in
Figure 4.11 whereas the details of the MOC solution are given in Appendix A.7.
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Figure4.11: Comparison of analytical and numerical saturation profiles for displacement of
Oil 3 by pure N, at 300 atm and 368.15 K. The finite difference (FD) solutions
were obtained with 100 and 5000 grid blocks and AZ/At = 10.

In the solution the initial tie line is connected to the first crossover tie line by a spreading
wave. Based on the key tie line intersection approach, a plane R spanned by the initial tie line
and the first crossover tie line can be defined. The question is then: To what extent does the
nontie-line path connecting the two key tie lines deviate from the plane R? The deviation of
the nontie-line path can be quantified, at any given point, by the angle y between the normal
vector n to the plane R and the nontie-line eigenvector. Further the distance to the landing tie
line, in this case the first crossover tie line, can be defined as

|=2(>§” —xF+ -y f (4.6)
The superscripts u and d refer to the landing point and the current point on the nontie-line path
respectively. x and y are equilibrium mole fractions of the liquid and the vapor phase on a
giventieline. A plot of the distance and the angle y vs. the nontie-line eigenvalue is given in
Figure 4.12.
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Figure 4.12: Deviation of nontie-line path from the plane spanned by neighboring key tie

lines.

The equal eigenvalue point islocated at (S,A) = (0.221,1.937). At this point the angle to the n-
vector is 90 deg. while the distance to the first crossover tie lineis 1.287. Initially, the angle to
the n-vector increases steeply as the nontie-line path is traced in the eigenvector directions.
This may be due to the error introduced by the stepwise approach for tracing the nontie-line
path. In other words, a step in the tangent vector direction will deviate more from the exact
path at points with high curvature. This is sketched in Figure 4.13. As the nontie-line path is
traced away from the equal eigenvalue point the change in y becomes more flat. This indicates
that the final deviation is biased by the error introduced at the start of the tracing.

Eigenvectors ---»
¥ Equal eigenvalue point e

/ NOﬂ-tIe I | ne path ,,,,,,,,,,,,,,,,

Figure 4.13: Sketch of tangent vectors (eigenvectors) and nontie-line path.
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In the given calculation example the ultimate deviation from R is only 0.4 degree although a
large variation in the eigenvalue results in tracing the nontie-line path. This observation
confirms that the assumption about intersecting key tie lines is a very good approximation

indeed. Different step sizes € have been tested in the scheme for tracing a nontie-line path:

G =G g +€Y

= new —old — non-tieline

(4.7)

In the scheme of Eq. 4.7 eigenvectors are normalized prior to any step. It is recommended to
use astep sizein theinterval [10%10?]. The smallest step size should be used in the vicinity
of the equal eigenvalue point.

4.9 Analytical Solution below the Saturation Pressure of the Initial Oil

For all the solutions presented in the previous sections the gas was injected into the oil at a
pressure above the bubble-point pressure of the oil. To demonstrate that analytical solutions
can also be constructed for systems where the initial oil is unstable, the displacement of Oil 4
by pure CO, at 200 atm and 387.45K is considered. The bubble-point pressure of Oil 4 is 252
atm and hence the initial oil forms a two-phase system. Injection of CO; into Oil 4 represents
a fully self-sharpening system and the analytical solution is made up entirely of shocks. The
saturation profile obtained by the analytical approach is compared with coarse and fine grid
FD smulationsin Figure 4.14.

Details of the analytical solution are given in Appendix A.9. The second crossover tie line is
identified as the primary tie line. The upstream solution consists of a tangent shock
connecting the primary tie line and the third crossover tie line. Genuine shocks and a direct
jump, from the injection tie line to the injection gas composition, make up the remainder of
the upstream solution. The downstream construction starts with a tangent shock connecting
the first and the second crossover tie lines. Hence, continuous variation along the second
crossover tie line connects the up- and downstream constructions. The first crossover tie line
and the initia tie line are connected by a genuine shock. The landing point S; from the
genuine shock, connecting the first crossover tie line to the initial tie line, is located below the
inflection point on the ff-curve whereas the saturation corresponding to the initial oil S, is

located above the inflection point.
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Figure4.14: Comparison of analytical and numerical saturation profiles for displacement of
Oil 4 by pure CO, at 200 atm and 387.45 K. The finite difference (FD)
solutions were obtained with 100, 1000, and 5000 grid blocks and Az/At = 10.

This means that the velocity rule would be violated if the two points (S;, So) were connected

by continuous variation, and a direct jump from point S; to S is the only possible solution.
4.10 Recovery Curvesfrom Analytical 1-D Solutions

So far, al the presented approximate semi-analytical solutions to the 1-D gas injection
problem have been given as relations between vapor saturation and characteristic wave
velocity S(A). This form of presenting 1-D solutions is very general in the sense that no
consideration has to be made regarding the amount of injected gas or specification of any
position along the displacement. From a reservoir engineering point of view, the recovery of
OOIP for a given gas injection process is of greater interest than any characteristic wave
velocity. Consequently, this section demonstrates how recovery curves can be generated
through construction of semi-analytical solutions.
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To use the analytical solutions for calculation of recovery for a given 1-D displacement
process, attention should again be turned to the physical system sketched in Figure 2.1. It is
seen from the dimensionless variables (z,1) introduced in Eg. 2.3 that the outlet of the
slimtube is located at z = 1 and that T corresponds to the number of pore volumes injected
(PVI). The traditional recovery factor of the OOIP after 1.2 PVI is used in this work. The
recovery factor based on the MOC solutions can be calculated by setting up a simple mass
balance over the dlimtube. By specifying one pore volume the OOIP and the
amount/composition of the fluids left in the dimtube after the displacement can be
determined. After injecting 1.2 PV of gas, compositions with a wave velocity less than or
equal to 1.2 will still bein e slimtube.

A
/ Key tielines
AZp ) AZnq Az,
> Z
0 z=1

Figure 4.15: Determination of amount and composition of fluid left in slimtube after 1.2 PVI.

In more general terms, the self-similar nature of the analytical solution allows the saturation
profiles to be scaled with respect to the number of PVI (t). A sketch of are-scaled saturation
profile is given in Figure 4.15. The saturation profile is then divided into n segments (Az) of
constant vapor saturation, corresponding to a specific overall composition on a known key tie
line. The vapor saturation for each segment is converted to mole fractions of vapor () and the
component overall mole fractions can be calculated from the key tie line information. For the
recovery factors the “true” vapor and liquid volumes predicted by the EOS are used to

determine the mole numbers in each segment by

N = 2aP (4.8)
z. R T

eos ' ‘gas

If a segment contains two equilibrium phases z. is calcul ated by
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=z(1-B)+z,p (4.9)

where the subscripts | and v refer to the liquid and vapor phase compressibility factors
respectively. The total number of moles left in the slimtube after the displacement (Net) is
found by summing Eq. 4.8 over al segments, whereas the overall composition, in mole
fractions, is calculated by

Ziy = NleﬂE N.Z, (4.10)

When the number of moles and the composition of the fluid Ieft in the slimtube after the
displacement are known, the produced amount/composition can be calculated by mole and
component balances. The produced oil and gas are then flashed to standard conditions and the
recovery factor can be calculated. To confirm the recovery curves determined by semi-
analytical calculations, a similar approach has been applied to determination of the recovery
factor from numerical simulations. Initially, the displacement of Oil 4 by Gas 6 is considered.
For this system the predicted MMP is 365 atm. The recovery curve obtained by semi-

analytical calculations is compared with numerical ssimulationsin Figure 4.16.
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Figure4.16: Comparison of semi-analytical and numerical recovery curves for the
displacement of Qil 4 by Gas 6 at 387.45 K. The finite difference (FD) solutions
were obtained with 100, 500, and 1000 grid blocks and Az/At = 10.
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The recovery curves from the FD simulation approach the dispersion-free solution (MOC)
rapidly as the number of grid blocks is increased. If the MMP was determined by location of
the break point on the recovery from coarse grid numerical simulations, only a small over
prediction would occur in the current case. The deviation between the analytical recovery
curve and the numerical recovery curves is largest at the MMP because effects of numerical

dispersion become stronger as a point in the critical locus (MMP) is approached™.

Similar features are found for the displacement of Oil 4 by pure CH, and by pure CO,. The
MMPs for these displacements are 371 atm and 226 atm respectively. Analytical and
numerical results are given in Figures 4.17 and 4.18.
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Figure 4.17: Comparison of analytical and numerical recovery curves for displacement of Qil
4 by pure CH,4 at 387.45 K. The finite difference (FD) solutions were obtained
with 100, 500, and 5000 grid blocks and Az/At = 10.

The displacement of Qil 4 by pure CH4 and pure CO, appears to be dightly more sensitive to
numerical dispersion, and more refined numerical simulations are needed to capture the

dispersion-free recovery curve.
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Figure4.18: Comparison of analytical and numerical recovery curves for displacement of

Oil 4 by pure CO, at 387.45 K. The finite difference (FD) solutions were
obtained with 100, 500 and 5000 grid blocks and Az/At = 10.

A completely different picture arises when Oil 4 is displaced by pure N». For this system the
MMP predicted by the global approach is 380 atm. The recovery curve obtained by MOC
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Figure4.19: Comparison of analytical and numerical recovery curves for displacement of

Oil 4 by pure N, a 387.45 K. The finite difference (FD) solutions were
obtained with 100, 500, 1000, 5000 and 10000 grid blocks and AZ/ At = 10.
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calculations is compared with numerical simulations in Figure 4.19. For this system the effect
of numerical dispersion is seen to be very significant. At the MMP the recovery predicted by
numerical simulations with 100, 1000 and 10000 grid blocks is 70%, 85% and 93 %. This
very substantial variation in the recovery factor suggests that otherwise feasible gas injection
projects might be abandoned, if coarse grid numerical simulations form the basis of a project
evauation. The existence of a system-dependent sensitivity to numerical dispersion has been
reported by several authors®**>°! and will be discussed further in Chapter 6. Sensitivity to
numerical dispersion, similar to that of the previous system, is found for the displacement of
Oil 3 by pure N..
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Figure 4.20: Comparison of analytical and numerical recovery curves for displacement of
Oil 3 by pure N, a 368.15 K. The finite difference (FD) solutions were
obtained with 100, 500, 1000, 5000 and 10000 grid blocks and AZ/At = 10.

The time consuming part of constructing 1-D analytical solutions is the location of key tie
lines. Hence, in terms of required CPU time the MOC approach is superior to coarse grid
numerical simulations for the purpose of generating recovery curves. Thisis partly due to the
fact that key tie lines from a previous solution (pressure) are easily traced to a higher pressure

whereas the FD simulations have to be restarted for each pressure step.
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4.11 Supplementary NVC Solutions

In this section additional semi-analytical solutions based on the NVC assumption are
presented. The additional solutions serve as additional validation of the algorithms given in
the previous sections. Four cases are described in which Oil 3 is displaced by Gas 3, Gas 5,
pure CH, and a 75%-25% mixture of CO, and CH,.

4.11.1 Displacement of Oil 3 by Gas 3 at 300 atm and 368.15 K

A comparison of the analytical and the numerical solutions is given in Figure 4.21 while the
details of the MOC solution are given in Appendix A.10.
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Figure4.21: Comparison of analytical and numerical saturation profiles for displacement of
Oil 3 by Gas 3 at 300 atm and 368.15 K. The finite difference (FD) solutions
were obtained with 100, 1000, and 5000 grid blocks and AZ/At = 10.

The displacement of Oil 3 by Gas 3 is somewhat different from the previousy presented
solutions in the sense that three tangent constructions are included. The second crossover tie
line is identified as the primary tie line. The downstream construction starts with a tangent
construction connecting the second and the first crossover tie lines. The next pair of key tie



Chapter 4. Approximate Solutions to the 1-D Gas Injection Problem (NVC) 89

lines (the first crossover tie line and the initial tie line) is also connected by a tangent shock.
The tangent part of this shock is located on the first crossover tie line and hence two points on
this tie line are connected by continuous variation. Finally, the initial oil is connected to the
initial tie line by a direct jump. The upstream part of the solution starts with a tangent shock
connecting the primary tie line and the third crossover tie line. The two points on the primary
tie line are connected by continuous variation along the tie line. The rest of the upstream

solution is made up by genuine shocks followed by a direct jump to the injection gas
composition.

4.11.2 Displacement of Oil 3 by Gas5 at 250 atm and 368.15 K

A comparison of the analytical and numerical solutions is given in Figure 4.22 while the
details of the MOC solution are given in Appendix A.11.
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Figure 4.22: Comparison of analytical and numerical saturation profiles for displacement of
Oil 3 by gas 5 a 250 atm and 368.15 K. The finite difference (FD) solutions
were obtained with 100, 1000, and 5000 grid blocks and Az/At = 10.

In this case the eighth crossover tie line is the primary one. The downstream solution starts

with a tangent shock connecting the primary tie line and the seventh crossover tie line.
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Genuine shocks and a direct jump to the initia oil make up the rest of the downstream
solution. The upstream solution is similar to the downstream solution. That is, a tangent
construction to the primary tie line followed by a sequence of genuine shocks until the
injection tie line is reached. Finally, the injection gas is reached through a direct jump. The

up- and downstream parts of the solution are connected by continuous variation along the
primary tieline.

4.11.3 Displacement of Oil 3 by Pure CH,4 at 300 atm and 368.15 K

A comparison of the analytical and the numerical solutions is given in Figure 4.23 while the
details of the MOC solution are given in Appendix A.12.
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Figure 4.23: Comparison of analytical and numerical saturation profiles for displacement of
Oil 3 by pure CH, at 300 atm and 368.15 K. The finite difference (FD) solutions
were obtained with 100, 1000, and 5000 grid blocks and AZ/ At = 10.

The structure of the analytical solutions for this system is identical to the previous one. In this
case, however, the primary tie lineisthe first crossover tieline.
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4.11.4 Displacement of Oil 3 by 75% CO, and 25% CH, at 275 atm and 368.15 K

The MMP for the displacement of Oil 3 by the CO,-CH4 mixture is predicted to be 291 atm.
The displacement at 275 atm is therefore close to being a multicontact miscible. This is

evident from the comparison of analytical and numerical simulations given in Figure 4.24.
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Figure 4.24: Comparison of analytical and numerical saturation profiles for displacement of
Oil 3 by 75% CO, and 25% CH, at 275 atm and 368.15 K. The finite difference
(FD) solutions were obtained with 100, 1000, and 5000 grid blocks and Az/At =10.

As the pressure approaches the MMP the saturation profile becomes gradually steep. At the
MMP the profile will be a step function with a wave velocity of 1. Figure 4.24 clearly shows
the effects of numerical dispersion in the near-critical region. Even the FD simulation using
5000 grid blocks has difficulties capturing the dispersion-free profile. The structure of the
analytical solution, constructed from the second crossover tie line (primary), is identical to
that of Section 4.10.2. Details of the MOC solution are found in Appendix A.13.
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4.12 Summary

A new approach to constructing approximate analytical solutions to the 1-D gas injection
process is presented. The new approach is based on a combination of the analytical theory of
1-D gas injection problems with no volume change on mixing and the tie line intersection
approach studied in Chapter 3. Two algorithms are developed for the construction of
approximate analytical solutions.

The first algorithm is based on the assumption that al key tie lines, defining the 1-D solution
geometrically in the compositiona space, are connected by shocks and hence must intersect
pairwise. Construction of fully self-sharpening solutions is bound to start at a primary tie line.
Proof is given that a primary tie line exists and that the primary tie line must be the shortest of
the key tie lines. The solutions generated by the algorithm are rigorously correct for fully self-
sharpening systems. For displacements which include nontie line rarefactions, the solutions
obtained by the algorithm are approximate, but they are much more accurate than solutions
obtained by conventional finite difference compositional simulation unless impractical fine
computational grids are used. The computation time required for construction of fully self-
sharpening solutions is demonstrated to be orders of magnitude lower than for the
corresponding numerical simulations.

To obtain a more refined approximation for displacements with nontie line rarefactions a tool
is developed for the prediction of such segments. The presence of a rarefaction between key
tie lines can be determined easily from the lengths of the upstream and downstream tie lines
and from the position of the intersection point on the vapor side or the liquid side of the two-
phase region. This approach is referred to as the fanning rule, which forms the basis of the
general algorithm for construction of analytical solutions. In the genera agorithm, shock
constructions are combined with nontie line path integration, resulting in far more accurate
approximations of the 1-D displacement problems with significant spreading waves. Through
a study of the curvature of the ruled surface traveled by a nontie line rarefaction, it is
demonstrated that the tie line intersection approach is very accurate even for systems with
significant rarefaction.

The new algorithms are used for generating recovery curves. In this connection, the existence
of a system dependent sensitivity to numerical dispersion for FD simulations is observed.
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5. Approximate Analytical 1-D Solutionswith Volume Change (VC)

In this chapter the intersecting key tie line approach is combined with tools from the general
analytical theory of 1-D gas injection processes. It will be demonstrated how this combination
allows the construction of approximate analytical solutions taking into account volume
change on mixing (VC). The reader is assumed to be familiar with the content of Chapters 2-
4. The analysis and the development of algorithms in this chapter are restricted to consider
only the construction of fully self-sharpening solutions. All segments of the approximate
solutions are based on shock constructions. Nevertheless, the fanning rule presented in the
previous chapter applies directly to the genera displacement problem, in which components
are alowed to change volume as they are partitioned between the equilibrium phases. Hence,
by checking for emergence of significant nontie line rarefactions, the quality of the
approximations obtained by constructing fully self-sharpening solutions can be monitored.
For all the calculation examples presented in this chapter, molar densities predicted by the

applied EOS are used directly without any volume correction.

5.1 Shocksin the Two-phase Region

In the general formulation of the conservation equations a shock balance is given by

VR v

| A oo i=1..,nc (5.1)
with
F = o,y — pX )+ puX (52
and
C =S(p, Y = P.% )+ X (5.3)

px and py refer to the liquid and vapor phase molar densities corresponding to the liquid and
vapor phase compositions on the tie line connecting x and y. The superscripts | and Il in Eq.
5.1 denote the two key tie lines connected by the shock. An extra degree of complexity is
added to the shock balance equation as the total velocity (vq) varies across a shock front. In

general the variation in the total velocity is caused by changes in the phase densities
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throughout the displacement. Variation in the compositional space aong a tie line does
accordingly not affect the total velocity, as the equilibrium phase densities are constant.

Shock balances in the form of Eq. 5.1 were applied successfully in the work of Dumoré® and
Monroe et a.* whereas Dindoruk’ presented the first detailed analysis. He demonstrated that
two tie lines connected by a shock intersect in the molar concentration space at a fictitious
point psZs; defined by

p.Zy =(p,y,6+(1-6)p,x) (5.4)
and
pZ,, =alp,y,6+(1-6)p,x ) (5.5)
where o is given by
o= VoA (5.6)
vl —A

The fictitious nature of the concentration point psZs; is due to the fact that tie lines can
intersect outside the physical concentration space. Dindoruk’ further demonstrated that the
fictitious vapor saturations 8' and 6" entering Egs. 5.4-5 are related to the shock velocity and
the corresponding total velocities on the opposite sides of the shock by

Vif'—AS

: Q' (5.7)
vy —A
and
1 1 1
&%;£i=m (5.8)
VI —A

The superficial vapor saturations entering Egs. 5.7 and 5.8 can be determined directly from

key tie line information by simple component balances.

Consider a neighboring pair of key tie lines (I and I1). Let tie line | be the shorter one and

hence the starting point for a shock construction. Eg. 5.7 can be rewritten in the form

| | |

a=A_T o6 f d 5.9)
v, S -6 ds

which is similar in structure to the shock balance equation in the NV C formulation (Eg. 2.33).

If the key tie lines are connected by a tangent shock, the scaled shock velocity (A”) can be

determined by a tangent construction to the fractional flow curve asindicated in Eq. 5.9. If on
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the other hand the shock is, a genuine shock the saturation S and consequently the fractional
flow of vapor f will be known in advance and Eq. 5.9 can be used to calculate the scaled
shock velocity directly. The landing point on key tie line Il can be determined through a
reformulation of Eq. 5.8 in terms of the scaled shock velocity:

VII, . F_g

V(;I S” _ 9 I} (510)

Prior to calculation of the landing point on tie line |1 the ratio between the total velocities on
the opposite sides of the shock must be evaluated. Thisis done by calculating o. from Egs. 5.4
and 5.5 by use of any component present on both sides of the shock. The ratio of total
velocitiesis then given by

Yol A A (511)

and the landing point is subsequently obtained by solving Eq. 5.10 for the vapor saturation S'.
From the shock construction scheme outlined above it is evident that the routines, developed
in the course of solving NVC problems, can be applied to VC problems without

modifications.

5.2 Shocks due to Phase Appear ance and Disappear ance

For shocks due to phase appearance (leading shocks) and disappearance (trailing shocks), the
shock balance given in Eq. 5.1 is applied with superscripts | and |1, indicating the single-
phase side and the two-phase side respectively. This shock balance was initially studied by
Welge.* The overall molar density and overall flux of a component i at a point in the single-

phase region can be written as

F'=C'=p,Z (5.12)

where psis the EOS based molar density at the point Z. By inserting Egs. 5.12 and 5.2 in Eq.

5.1 the following expression is derived:

Vi —A
Vy f_AS! ~ pszi Vj:' _A_pxxi _o
vy — A" PyYi = PiX

(5.13)
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By introducing afictitious molar density p defined by

. Vg —A
Ps :ps\/ﬁ—_A:(py—pxb+px (5.149)
d

it is evident that p_ must be located on the extension of a line passing through the points py
and py, and that thisline is akey tie line (initial or injection tie line). This reasoning is similar
to the analysis by Dindoruk’. The fictitious vapor saturation 6 corresponding top. can be

calculated from key tie line information. By rewriting Eq. 5.13 the shock velocity can be
related to the landing point in the two-phase region by

1 1
Ao A _F -0 d (5.15)
Vi T s'—g| ds'

The scaled shock velocity can thus be solved for either as a semi-shock by tangent
construction to the fractional flow curve (as indicated in Eq. 5.15) or as a genuine shock
where S' and f' are known a priori. After solving for the scaled shock velocity, the
relationship between the total velocities at points| and Il isfound from

| *

Yo _Ps(1 A )4 A (5.16)

Y Ps

5.3 Algorithm for Construction of Fully Self-shar pening Solutions (VC)

In Sections 5.1 and 5.2, tools were described for calculation of the shock velocity scaled with
respect to dimensionless total velocity on one side of the shock. However, for the purpose of
constructing full solutions to 1-D problems, actua shock velocities must be used to rule out
non-physical shock solutions by application of the velocity rule. In other words, the
dimensionless total velocity on one side of a shock must be known prior to any shock
constructions. As for the NVC formulation of the 1-D problem, a fully self-sharpening
solution must start with a tangent construction to the primary tie line. Thus the dimensionless
total velocity of the primary tie line must be determined. In Chapter 2 the conservation

equations were written in terms of a dimensionless time variable t given by
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7= i (5.17)

In the formulation of Chapter 2 the displacement problem is thus scaled with respect to the
injection velocity. Consequently, the determination of vg4 on the primary tie line requires the
full solution to be known. This paradox can be resolved due to the self-similarity of the
analytical solutions and the linear dependence between the overall flux and the total velocity
(Eg. 2.6). Any solution to the conservation equations can be rescaled with respect to any
given total velocity without changing the structure of the solution. By rescaling the
conservation equations with respect to the total velocity on the primary tie line, the up- and
downstream parts of the solution can be constructed by use of the tools described in previous
sections. Once a solution to the rescaled problem is found, the solution to the origina
formulation is determined by scaling the characteristic wave velocities with respect to the
injection velocity. For convenience the total velocity on the primary tie line can be set equal

to 1. The solution scaled with respect to the injection velocity is found from

3 = Hrema (5.18)
Vinj
V I esCi
Vd = —d'v‘ Aled (519)

The velocity vir entering Egs. 5.18 and 5.19 is the injection velocity predicted by the rescaled

solution. The algorithm for construction of fully self-sharpening solutionsis hence:

1. Determine al key tie lines by the global approach.

2. Locate the primary key tie line and fix the total velocity for thistie line.

3. Construct the up- and downstream parts of the solution by solving the shock balances for
each adjacent pair of key tie lines. Start both segments by a tangent construction to the

primary tieline.

4. Rescale the characteristic wave velocities and the total velocities of the obtained solution

with respect to the injection velocity.
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5.4 Examples of Analytical Solutionswith Volume Change on Mixing

The new approach to constructing semi-analytical solutions to the 1-D displacement problem,
taking into account volumetric effects, has been applied to a number of gas-oil systems. It
should be recalled that no density information is required to locate the key tie lines defining
the geometry of a given displacement process. The key tie lines used for constructing
solutions to the VC formulation of the conservation equations are therefore identical to those
used for solving the NV C problems. This similarity suggests that the genera structure of the
analytical solutions in the VC formulation is identical to that of the simplified NVC

formulation. The truth of thisis apparent from the following cal cul ation examples.

Initially, the displacement of Qil 4 by Gas 6 is considered. The gas is injected into the oil at
275 atm and 387 K. By application of the fanning rule no significant nontie line rarefactions
are predicted, and the fully self-sharpening solution is thus expected to be a very good
approximation. As for the NVC solution, the shock constructions start at the third crossover

tie line by tangent constructions to the second and fourth crossover tie lines.
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Figure5.1: Comparison of analytical and numerical solutions for the displacement of Oil 4
by Gas 6 at 275 atm and 387.45 K including volumetric effects. The FD solution
was obtained with 5000 grid blocks and Az/At = 10.
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Genuine shocks and direct jumps in and out of the two-phase region make up the remainder of
the up- and downstream solution. The analytical solution is compared with a fine grid
numerical smulation in Figure 5.1 while details of the solution are found in Appendix A.14.
Excellent agreement is found between the analytical solution and the numerical simulation. A
comparison of the VC solution with the NV C solution reported in Chapter 4 is illustrated in
Figure5.2.
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Figure5.2: Comparison of analytical VC and NV C solutions for the displacement of Qil 4
by Gas 6 at 275 atm and 387.45 K.

The general structure of the NVC and the VC solutions is seen to be identical. In the given
example the characteristic waves of the VC solution are moving slower than in the NVC
solution. In terms of the displacement process, the breakthrough time (time elapsed prior to
any production of gas) predicted by the VC solution would be larger than for the NVC
solution. That thisis no general feature is shown by the next example.

To illustrate the limitations of the self-sharpening solutions with volume change, the
displacement process in which pure N, is injected into Oil 3 at 275 aim and 387 K is
examined. The analytical solution is compared with fine and coarse grid numerical

simulationsin Figure 5.3 while the VC and the NV C solutions are compared in Figure 5.4.
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Figure 5.3: Comparison of analytical and numerical solutions for the displacement of Oil 4 by
pure N, at 275 atm and 387.45 K including volumetric effects. The FD solutions
were obtained with 100 and 5000 grid blocks and Az/At = 10.
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Figure5.4: Comparison of analytical VC and NV C solutions for the displacement of Qil 4
by pure N at 275 atm and 387 K.
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Details of the analytical solution are found in Appendix A.15. For this example the fanning
rule predicts the existence of a significant nontie line rarefaction connecting the initial tie line
and the first crossover tie line. Nevertheless, it is possible to construct a solution consisting of
shocks only. It is seen from Figure 5.3 that analytical solution based on pure shock
constructions fails to match exactly the fine grid numerical simulation. However, the
analytical solution still offers a far more refined approximation to the fine grid simulation
than the coarse grid simulation does. The analytical approximation will be particularly useful
if the displacement process is continued after breakthrough. For this example the
breakthrough will occur after 0.48 PVI (corresponding to A font = 2.1). Hence, for calculation
of recovery curves after injection of 1.2 PVI, where al waves with characteristic velocities
larger than 1.2 have been produced, the analytical solution will be a good approximation to
the fine grid numerical simulation. The quality of this approximation is demonstrated in
Section 5.5.

The similarity in the general structure of the analytical solution for the VC and NVC
problems is illustrated in Figure 5.4. In contrast to the previous example, where the
characteristic waves of the NVC had higher velocities than the VC waves over the entire
range, the NV C waves of the current case have lower velocities in one region of the solution

and higher in another.

Next the analytical shock solution for the displacement of Oil 3 by Gas 3 at 300 atm and
368.15 K is generated. The NVC solution for this displacement process is described in
Section 4.10.1. This system differs from the other systems presented in Chapter 4 in the sense
that three tangent constructions are present in the solution. Again the same structure is found
for the VC solution. The saturation and the total velocity profile are compared with equivalent
numerical simulations in Figure 5.5. Detalls of the analytica solution aong with a
comparison of the NVC and the VC solutions are given in Appendix A.16. No significant
nontie line rarefactions are predicted by the fanning rule so that good agreement is expected
between the semi-analytical and fine grid numerical simulation. Figure 5.5 clearly shows that
this if fact is the case. The downstream solution construction starts with a tangent shock
connecting the primary tie line (second crossover tie line) to the first crossover tie lines. A
second tangent construction connects the first crossover tie line to the initia tie line and,

finally, the downstream construction is completed by adirect jump to the initial oil.
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Figure5.5: Comparison of analytical and numerical solutions for the displacement of Oil 3
by Gas 3 a 300 atm and 368.15 K including volumetric effects. The FD
solutions were obtained with 100 and 5000 grid blocks and Az/At = 10.

The upstream solution construction starts with a third tangent construction connecting the
primary tie line to the fourth crossover tie line, followed strictly by genuine shocks and a
direct jump to the injection gas composition.

Finally, a near-miscible displacement process is considered in which Oil 3 is displaced by a
mixture of 75% CO, and 25% CH,. The gas mixture is injected at 275 atm and 368.15 K.
These conditions are 16 atm below the pressure at which a multicontact miscible displacement
would develop (MMP = 291 atm). The analytical solution is compared with numerical
simulations in Figure 5.6. As pointed out previously numerical dispersion becomes significant
as a miscible displacement is approached. This is evident from Figure 5.6. Although the
saturation profiles from the numerical simulations converge towards the analytical solution as
the number of grid blocks is increased, not even the fine grid numerical solution is able to
capture the details of the analytical solution completely. The specifics of the analytical
solution and a comparison with the NV C solution are given in Appendix A.17.
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Figure5.6: Comparison of analytical and numerical VC solutions for the displacement of
Oil 3 by Gas 3 at 275 atm and 368.15 K. The FD solutions were obtained with
100, 1000 and 5000 grid blocks and Az/At = 10.

5.5 Recovery Curvesfrom Analytical Solutionswith Volume Change on Mixing

In this section the results obtained from applying the new VC agorithm to generation of
recovery curves are presented. The approach to calculation of the recovery factor from
analytical solutions described in Chapter 4 can be used directly for the VC solutions of this
chapter. Initially, the displacement process where Gas 6 is injected into Oil 3 at 387.45 K is
studied. The recovery curve obtained from analytical solutions is compared with numerical
simulations in Figure 5.7. As the number of grid blocks is increased in the FD simulations the
corresponding recovery curves converge rapidly towards the dispersion-free recovery curve.
The largest deviation is found near the MMP (365 atm) where the effect of numerical
dispersion becomes more significant.
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Figure5.7: Comparison of recovery curves for the displacement of Oil 4 by Gas 6 at 387.45
K generated by semi-analytical caculations and FD simulations. The FD
solutions were obtained with 100, 500 and 5000 grid blocks and Az/At = 10.
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Figure5.8: Comparison of recovery curves for the displacement of Oil 4 by pure N, a
387.45 K generated by semi-analytical calculations and FD simulations. The FD
solutions were obtained with 100, 500 and 5000 grid blocks and Az/At = 10.
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The second example of recovery curves generated by analytica calculations and FD
simulations given in Figure 5.8 is based on the displacement of Oil 3 by pure N, at 387.45 K.
The analytical solution to this displacement problem was presented in the previous section. It
was described how the analytical solution fails to capture the details of the fine grid FD
simulation because of the existence of a significant nontie line rarefaction in the solution.
Figure 5.8 shows excellent agreement between the recovery curves predicted by fine grid FD
simulations and the pure shock solutions. The high quality of the approximate analytical
solution is due to the fact that only the low-velocity part (A<1.2Y) of the saturation profiles
(e.g. Figure 5.3) is used for calculation of the recovery. The convergence of the FD simulation
towards the dispersion-free solution is observed to be much slower for the injection of pure
N2 than for the injection of Gas 6 considered in the previous example. An identical pattern
was observed for the NV C solutions to the two gas injection problems. Hence, there appears
to be a system specific sensitivity to the effects of numerical dispersion. The nature of this
phenomenon is addressed in Chapter 6.

5.5 Summary

In this chapter the general analytical theory of 1-D gas injection problems is combined with
the intersecting tie line approach in order to obtain semi-analytical solutions. Thus, the
assumption about ideal mixing used for construction of 1-D solutions in Chapter 4 is relaxed.
The analysis and the development of solution construction tools are restricted to considering
only fully self-sharpening solutions. In other words, the analytical solutions are assumed to
consist only of shock constructions. The shock balances in the general (VC) formulation are
more complex than in the NV C formulation since the overall convective velocity varies across

ashock front.

Tools for construction of shocks in the two-phase region along with tools for construction of
shocks due to phase appearance and disappearance are presented. The shock balance
equations are rewritten in a form which allows direct application of the routines developed in
the course of constructing NV C solutions.

In order to construct full solutions to the 1-D problem the genera formulation of the

conservation equations has to be rescaled with respect to the convective velocity of the
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primary tie line. An approach to rescale the conservation equations is described as well as a

new general algorithm for construction of pure shock solutions with VC.

The new algorithm is applied to four different oil-gas systems. It is demonstrated how the
fanning rule developed in Chapter 4 can be used to predict the quality of the approximate
solutions by checking for the emergence of significant spreading waves. Very good agreement
between analytical and fine grid numerical solutions is observed. It is demonstrated that even
though significant spreading waves exist in a true solution, the approximation of a pure shock

solution is far more refined than coarse grid numerical simulations.

Analytical solutions from the new algorithm are used for generation of recovery curves which
can be used to predict the upper recovery limit (dispersion-free) for a given displacement
process. The analytical recovery curves are in excellent agreement with results from fine grid

FD simulations.

Finally, the existence of a system dependent sensitivity to numerical dispersion in FD

simulations is observed.
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6. On System-dependent Sensitivity of Numerical Dispersion in FD Simulations

The effects of numerical dispersion in conventiona finite difference compositiona
simulations have been studied extensively ever since computers were first applied to
prediction of reservoir performance or, ultimately, generation of production forecasts. The
papers of Stalkup™“® and Lim et al.** are examples of such studies. This chapter focuses on
the apparent system specific sensitivity to numerical dispersion observed for the numerical
simulation reported in Chapters 4 and 5. Analysis of this phenomenon will be restricted to
considering the impact of numerical dispersion on FD solutions for 1-D displacement
problems in homogeneous porous media. Further, this study considers only the simple but still
often applied one-point upstream weighting formulation of the mass conservation equations.
Numerical dispersion in this type of simulation emerges partly from truncation errors
introduced by the finite difference representation of the convective term?, and partly from the
fact that FD simulations of this kind basically correspond to a sequence of interconnected
mixing cells. Aris and Amundson® demonstrated the asymptotic equivalence of mixing cells
in series and the convection-diffusion equation. In mixing cell terminology, it is characteristic
of numerical dispersion that material entering one cell can be allowed to enter the next cell
faster than normal flow would alow. The magnitude of the artificial dispersion is of the order

Az/2, which for reservoir scale modeling often exceeds what is physically realistic®.

Walsh and Orr>* demonstrated, on the basis of 1-D ternary displacements problems, that the
sensitivity to of numerical dispersion for a given system is related to the phase behavior of the
system in terms of the size and the shape of the two-phase region. The basic ideas of Walsh
and Orr™* are combined with the intersecting tie line approach and extended to apply to
miscible displacements of multicomponent systems. Consider the displacement of Oil 5 given
in Table 6.1 by pure N, at 305 atm and 344 K.

Pe(psig) | Tc(F) ® Qil 5 K(N2,)
N2 493 [-23242 | 0.04 0 - -
CH, | 667.8 |-116.63| 0.0104 | 05 [ 0.031 -
C, | 5507 | 30565 | 0.201 | 0.1624 | 0.12 | 0.027 -
Co | 3057 | 6521 | 049 | 03376 | 012 | 0.042 | 0.008

Table 6.1: Properties of Qil 5. Data from Dindoruk’



Chapter 6. On Numerical Dispersionin FD Simulations 108

Dindoruk’ analyzed in detail the analytical VC solution to the system at a pressure well below
the MMP. The geometrical structure of the displacement process is shown in Figure 6.1. The
figure illustrates the key tie lines predicted by the global approach (red lines) along with an
FD solution path obtained by use of 1000 grid blocks and Az/At = 10 (blue line). At the given
temperature the MMP for the current system is predicted to be 309 atm. Thus, the
displacement process shown in Figure 6.1 is near-miscible as seen from the length of the
initial tie line. The mechanism controlling the development of miscibility is a pure vaporizing

drive and hence an enriched gas becomes locally miscible with the initial oil.

CH4

Cuwo

Figure 6.1: Displacement of Oil 5 by pure N, at 305 atm and 344 K. The red lines are the key
tie lines predicted by the global approach. The blue line is the result of a 1000 grid

FD simulation with Az/At = 10.

The initial oil is located on the CH, — C4 — Cy surface of the quaternary diagram. The initial
tielineis also located on this surface and the dispersion-free analytical solution (not included)
would have to enter the two-phase region by a shock along this tie line. The initia tie line is

connected to the crossover tie line by a nontie line rarefaction. In this case the crossover tie
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lineislocated on the N, — C4 — Cyg surface. A shock must connect the crossover tie line to the

injection tie line, which islocated on the N, — Cy line of the phase diagram.

The recovery curve for this displacement process has been generated by analytical

calculations and is compared with coarse and fine grid numerical simulationsin Figure 6.2.
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Figure 6.2: Comparison of recovery curves from anaytical and FD simulations for the
displacement of Oil 5 by pure N, at 344 K. The FD simulations were performed
with 100, 1000 and 5000 grid blocks and Az/At = 10.

Figure 6.2 clearly demonstrates that FD simulation of the displacement process illustrated in
Figure 6.1 is strongly affected by numerical dispersion if coarse grid blocks are used. The
geometrical structure of the displacement process (Figure 6.1) can be used to explain this high
sensitivity to numerical dispersion. At the beginning of the FD simulation N is mixed with
the initial oil along the dilution line connecting the two compositions (dotted line). As the oil
is mixed with the injected N, the composition path starts to move along the dilution line until
the boundary of the two-phase region is reached. The orientation of the tie lines in the two-
phase region forces the liquid composition of the first two-phased contact down towards the
N, — C, — Cyp surface (and the injection tie line), whereas the corresponding gas phase is
moving upwards toward the initial tie line. In the case concerned the presence of numerical

dispersion will alow a gas with low enrichment of C,4, from previous contacts with liquid
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compositions still rich in C4, to contact an even richer liquid phase. Such a contact
corresponds to a line of similar direction as that of the dilution line in compositional space.
Thus, numerical dispersion will force the composition path downward in the direction of the
N, — C, — Cyp surface and away from the initial tie line. This suggests that the orientation of
the dilution line relative to the direction of the initia tie line (critical tie line) plays an
important role regarding the sensitivity of the current system. To investigate if this
relationship has any influence on the sensitivity to numerical dispersion, a 50/50 mixture of
N, and CH, is used as injection gas. The geometrical structure of this displacement processis

givenin Figure 6.3

Cio

Figure 6.3: Displacement of Oil 5 by 50% N, and 50% CH, at 305 atm and 344 K. The red
lines are the key tie lines predicted by the globa approach. The blue line is the
result of a 1000 grid FD simulation with Az/At = 10.

The new injection gas composition does not alter the MMP of the displacement process as the
initial tie line is fixed by the oil composition. However, the locations of the injection and the
crossover tie lines are changed. Both tie lines are moved closer to the initia tie line.
Consequently, the angle between the initial tie line and the dilution line is reduced. Two

numerical simulations were made at 305 atm with the new injection gas. A coarse grid
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simulation with 100 grid blocks and a fine grid simulation with 5000 grid blocks. The
variation in the predicted recovery at 1.2 PVI for the two numerical experiments was 18%
compared to 21% for the N displacement process. Thus, the effects of numerical dispersion
are still quite significant although the angle between the dilution line and the initial tielineis
reduced. A third injection gas consisting of 10% N, and 90% CH,4 was injected into Qil 5. The

structure of the displacement process is shown in Figure 6.4.

CH,4

Ciwo

Figure 6.4: Displacement of Oil 5 by 10% N, and 90% CH, at 305 atm and 344 K. The red
lines are the key tie lines predicted by the global approach. The blue line is the
result of a 1000 grid FD simulation with Az/At = 10.

Again, the injection of a CH, rich gas does not ater the location of the initial tie line and
hence the MMP for the displacement process. The general structure of the analytical solution
also remains the same. This experiment was performed to force the dilution line to be located
similarly to the initia tie line. Recovery curves for this displacement process, based on
anaytical calculations and FD simulations, are compared in Figure 6.5. A very significant
change is observed regarding the sensitivity of this displacement process. The numerical
simulations converge rapidly towards the analytical recovery curve as the number of grid
blocks isincreased.
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Figure 6.5: Comparison of recovery curves from analytical and FD simulations for the
displacement of Oil 5 by 10% N, and 90% CH, at 344 K. The FD simulations
were performed with 100, 1000 and 5000 grid blocks and Az/At = 10.

A comparing the Figures 6.1 and 6.2 with 6.4 and 6.5 reveals that the relative orientation of
the dilution line and the initid tie line (critical tie line) has a major impact on the significance

of numerical dispersion in FD simulations of the investigated system.

For miscible/near-miscible multicomponent displacement processes, numerical dispersion has
the effect of forcing the composition path away from the critical/near-critical key tie line and
back into the two-phase region. Considerations similar to those applied to the investigation of
the quaternary system can be applied to multicomponent systems. The results from the
previous analysis suggest that the relative orientation of the dilution line and the lines
connecting the critical tie lineto the initial oil and the injection gas can be used as an indicator
of the significance of sensitivity to numerical dispersion for a given system. The lines
connecting the critical key tie line to the initial oil and the injection gas are referred to as

critical lines.

To test this hypothesis the variations in recoveries predicted by coarse and fine grid
(100/5000) FD simulations (from previously presented simulations) were compiled for the



Chapter 6. On Numerical Dispersionin FD Simulations 113

near miscible displacement processes (P =~ MMP). The relative variations are plotted against

the maximum angle between the critical lines and the dilution line in Figure 6.6.
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Figure 6.6: Sensitivity to numerical dispersion at the MMP vs. the maximum angle between
the dilution line and the critical lines. The plot includes numerical simulations

with and without volume change on mixing.

Some scatter is observed in Figure 6.6 but a general tendency is evident. As the orientation of
the dilution line and the critical lines diverges the gas injection process becomes more
sensitive to the presence of numerical dispersion. It is pointed out that the injection gases
applied to displacement studies of this work range from pure injection gases (N,, CH, and

CO,) and artificial mixtures of these to realistic separator gases (Gas 3 and Gas 4).

Two methods can be used to obtain an indication of the sensitivity of a given system with
respect to numerical dispersion. The sensitivity can be calculated directly by performing fine
and coarse grid numerical simulations at the MMP and monitoring the variation of the
predicted recovery. Alternatively, the orientation of the dilution line and the critical line can
be determined from MMP cal culations by the global approach where the approximated key tie
lines are traced in the compositional space. This approach does not give a quantitative
measurement of the dispersive effects but can be used to obtain a fast indication of the

significance of numerical effects.
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6.1 Results from Commercial Simulator E300

To investigate the potential of the new tool for prediction of dispersive effects on the
calculation performed with commercia finite difference simulators, two numerical
experiments were run for a 20 m slimtube on the compositional ssimulator Eclipse 300. The
Oil 4 — Gas 6 and Qil 4 — N, systems were used in the numerical experiments since very

different sensitivity to numerical dispersion is reported for the 1-D formulation of this work.

Numerical simulations with E300 involve a simultaneous solution of the mass conservation
equations and the pressure equation. Different solution strategies can be used in E300. In this
work the implicit pressure/explicit saturation (IMPES) approach for solving the flow problem
was used. This selection is made because the full implicit approach is more dispersive than
the IMPES approach. Details of the slimtube model are given in Appendix A.18. For the
purpose of comparison, specia care was taken to avoid a large build-up in pressure through
the specification of a low injection velocity. The recovery curves for the model systems
generated with E300 are given in Figure 6.7 and 6.8.
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Figure 6.7: Comparison of recovery curves from E300 simulations for the displacement of Oil
4 by pure N, at 387.45 K. The E300 simulations were performed with 100, 500,
1000 and 5000 grid blocks and adaptive time step regulation.
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Figure 6.8: Comparison of recovery curves from E300 simulations for the displacement of Oil
4 by Gas 6 at 387.45 K. The E300 simulations were performed with 100, 500,
1000 and 5000 grid blocks and adaptive time step regulation.

It is seen from Figures 6.7 and 6.8 that the system specific sensitivity to numerical dispersion
from E300 simulations is equivalent to the sensitivity reported in the preceding chapters. This
result indicates that the new approach to prediction of system dependent sensitivity can be
used as guidance for selection of a proper grid refinement, when E300 is used for simulation
of 1-D displacements in a homogenous porous media. However, a more detailed analysis of

the application is advised prior to further conclusions about this subject.

6.2 Summary

The analysis and examples given in this chapter verify the results presented by Walsh and
Orr*!. They demonstrated that the sensitivity of a given ternary system to the presence of
numerical dispersion is related to the phase equilibrium of the specific system. The
considerations of Walsh and Orr™* have been applied for systems with more than three
components. Detailed analysis of the grid size effect on the recovery predictions for the
displacement of a CH; — C4 — Cyp system by pure N, and mixtures of N, and CH,4 is
performed. The analysis, based on the geometrical structure of the true dispersion-free
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solutions, shows that the sensitivity to the presence of numerical dispersion can be related to
the relative orientation of the dilution line and the line connecting the initial oil to the critical

tieline.

The predictive tool suggested from the anaysis of the quaternary system is adopted for
displacement processes where pure and multicomponent injection gases are used to displace
real reservoir fluids. The quantitative variation in RF;; predicted at the MMP by numerical
simulations proves to correlate well with the maximum angle between the dilution line and
the critical lines, connecting the initial oil and the injection gas to the critical tie line. Thus,
the algorithm developed for prediction of the MMP can be used to indicate the grid size

sensitivity of FD simulations for a given 1-D displacement process.

To compare the grid size effects observed from the FD simulations of the previous chapters
and from a commercial ssimulator, two numerical slimtube experiments were made with
Eclipse 300. The effect of the grid size used for the E300 simulations was found to be

identical to what was observed for the FD simulators developed in the course of this work.

The similarity in grid size effects for the FD simulators of this work and E300 indicates that
the new predictive tool can be used as guidance for selection of proper grid sizes when
commercial simulators based on upstream weighting schemes are employed. However, it
should be stressed that a more detailed comparison should be performed prior to further

conclusions about the portability.
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7. Conclusions and Suggestions for Future Work

The purpose of this work has been to develop efficient algorithms for the study of gas
injection processes. The study and the development of such algorithms are qualified by time-
consuming numerical simulators still being used worldwide in the design and development of
miscible gas injection projects. Hence, there is room for improvements with respect to the

computational expenses of such studies.

In this work, the analytical theory of 1-D gas injection processes has formed the basis of the

study and the development of new efficient tools.

A new algorithm for prediction of the MMP has been developed. The algorithm is based on
the intersecting tie line approach emanating from the 1-D analytical theory. The new approach
allows prediction of the MMP for gas injection processes using any number of components
for representing the phase equilibrium of the gas/oil system. The algorithm has been tested on
a number of different gas/oil systems for which the corresponding finite difference
simulations were available in the literature. Most of the reported systems are bubble-point
systems but also a few gas condensates have been tested. Excellent agreement between
reported values of the MMP and the values predicted by the global agorithm is found in al
cases. For al the systems tested, where multicomponent separator gases are injected into a
reservoir fluid, the mechanism controlling the development of miscibility is shown to be of a
combined vaporizing/condensing nature. The application of simplified agorithms, like the
single-cell approaches, to such systems must therefore be expected to overpredict the MMP.

Up to now systems with a maximum of 15 components in the oil description and 15
components in the injected gas have been investigated. The average time consumption for the
MMP calculations is around a few seconds. Thus, the new algorithm is superior to any
general approaches previously presented for prediction of the MMP, as regards the required
CPU time.
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Due to the modest CPU time consumption, the new algorithm is a powerful tool for reservoir
engineers working with the design of gas injection projects. Two case studies are presented to

indicate some fields of application.

The effects of tuning and lumping on the predicted MMP for a redistic reservoir fluid are
investigated. The predicted MMP is found to be insensitive to the parameters used for tuning
the fluid description of the given system to experimental swelling test data. The lumping
study shows that the MMP predictions are also insensitive to the number of componentsin the
fluid description as long as four or more components are used. This result agrees well with the
fact that four or more components are needed in order to represent a combined
vaporizing/condensing gas drive. In a second study, the algorithm was applied to
determination of the optimal mixture of two available injection gases. In the first enrichment
study the MMP was found to be a monotonous function of the enrichment factor. In a second
study where a new solvent gas was considered a strongly non-monotonous behavior was
found. The two cases show the need for more than a few points on the MMP vs. E curve and
hence the need for an effective MMP agorithm.

Based on the global formulation of the intersecting tie line approach, developed in the course
of Chapter 3, a new method for constructing approximate analytical solutions to the 1-D gas
injection process has been developed and implemented. The basis of the new method is that
the path in the compositional space defining a 1-D displacement process is bound to travel
through a sequence of key tie lines. In genera these key tie lines are approximated very

accurately by the intersection approach.

The new method is initially developed for a simplified version of the conservation equations
where components take up constant volumes during the displacement process (NVC). It is
demonstrated how approximate solutions can be generated efficiently by assuming that all key
tie lines are connected shocks. This is done by solving the shock balance equations for each
adjacent pair of tie lines up- and downstream, starting at a primary key tie line. Proof is given
that a primary tie line exists and that the primary tie line must be the shortest of the key tie
lines. For oil/gas systems where al key tie lines are in fact connected by shocks (self-

sharpening systems) the approximate solutions are rigorously correct. For systems with nontie
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line rarefactions, a detailed comparison with fine and coarse grid finite difference (FD)
simulations shows that the pure shock solution offers a far more refined approximation than a
coarse grid FD simulation. The computation time required for construction of fully self-
sharpening solutions is proved to be orders of magnitude lower than for the corresponding

coarse grid numerical simulations.

A tool has been developed for prediction of nontie line rarefactions in 1-D analytical
solutions. The tool, referred to as the fanning rule, utilizes the geometrical orientation of the
key tie lines to predict the existence of nontie line rarefactions. The fanning rule allows
construction of far more refined approximate solutions for systems with nontie line
rarefactions. The refined approximations are obtained by combining the shock constructions
with integration of predicted nontie line paths. It is shown that not all nontie line rarefactions
predicted by the fanning rule are of significant importance to the quality of the approximate

solutions, and a method for discarding insignificant rarefactions is presented.

Solution construction tools from the NV C algorithm have been used in the development of an
algorithm taking volume change on mixing (VC) into account. The VC algorithm is used for
construction of pure shock solutions to the genera formulation of the 1-D displacement
problem. The qualities of the approximations generated by the VC agorithm can be
monitored by applying the fanning rule and subsequently checking for significant nontie line
rarefactions. As for the NV C agorithm, the VC shock solutions prove to be far more accurate
approximations than coarse grid FD simulations for oil/gas systems with significant nontie
line rarefactions.

Both agorithms are used for generating recovery curves for the true dispersion-free
displacement process. The recovery curves are compared with corresponding fine and coarse
grid FD simulations. The comparison shows that the predicted recovery, for some oil/gas

systems, is very sensitivity to the presence of numerical dispersion.

On the basis of this observation a method for obtaining a qualitative estimate of the system

specific sensitivity to numerical dispersion has been proposed. The method is based on a
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geometrical interpretation of the dispersion-free solution paths for quaternary systems, and it
is shown to correlate the sensitivities of the gas/oil systemsinvestigated in this work well.

The grid size effect observed for the FD simulators of this work has been compared with that
of the commercial simulator Eclipse 300. Similarities in the observed grid size effects indicate
that the proposed method can be used as guidance for selection of a proper grid size when
commercial simulators with simple upstream weighting schemes are used. It is stressed that
this analysis is based on displacements in homogeneous porous media. Thus, further

investigation of this matter is needed prior to further conclusions on the portability.

Suggestions for future work:

An evident extension of the current work is to incorporate integration of nontie line
rarefactions in the VC algorithm in order to obtain more accurate approximations for systems

with such rarefactions.

In equivalence with the lumping study performed with the MMP agorithm it could be
interesting to investigate the sensitivity of predicted recovery factors with respect to the

number of components used in afluid description.

In this work the 1-D algorithms have been used for calculation of dispersion-free recovery of
the OOIP. It is a well-known fact that some of the heavy ends, produced from an oil reservoir,
can cause problems in the downstream processing facilities. Thus, it could be interesting to
investigate the possibility of designing a component selective gas drive. This would include a
study of the interactions between the injection gas composition and the composition of the
produced fluids. Such a study can start at alow scale, e.g. by the use of 1-D modeling.

Finally, a study of 1-D gas injection problems with non-uniform initial data should be
initiated.
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8. Nomenclature

™ ma Qlmi>

N |<[X< X

N

€0S
Z;
Zi

Coefficient matrix

Coefficient matrix

Overal molar concentration of component |
Length of atieline

Enrichment factor

Fractional flow of vapor

Fractional flow of phase]

Overdl flux of component i

Overal volume fraction of component i
Volume fraction of component i in phase j
Unit matrix

Jacobian matrix

Binary interaction parameter (EOS)
Relative permeability of phase ]
Effective relative permeability of liquid
Effective relative permeability of vapor
Equilibrium constant of component i
Length

Molecular weight

Number of components

Pressure

Pressure

Critical pressure

Saturation pressure

Overall fractional flow of component i
Saturation of vapor

Saturation of phase |

Residual oil saturation

Time

Temperature

Critical temperature

Convective velocity

Dimensionless velocity

Distance

Mole fraction of component i in phasej
Mole fraction of component i in liquid phase
Mole fraction of component i in vapor phase
Eigenvector (VC)

Eigenvector (NVC)

Dimensionless distance
Compressibility factor

Mole fraction of component i

Mole fraction of component i
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Greek letters:

B Mole fraction of vapor

A Correction vector

Az Size of grid block

At Size of time step

€ Step size in nontie line integration
(0 Porosity

n Similarity variable (z/7)

A Eigenvalue

A Shock velocity

18 Viscosity

Ly Viscosity ratio (vapor/liquid)

0 Fictitious vapor saturation

Pj Molar density of phasej

Pai Molar density of pure component i
pi®  Molar density of phasej (ideal mixing)
pmj Massdensity of phase]

T Dimensionless time (PV1)

) Acentric factor

[0) Fugacity coefficient

U} Parameter along envelope curve
Abbreviations:

CGD Condensing gasdrive

EOS Equation of state

FD  Finitedifference

MC  Multicel

MMP Minimum miscibility pressure
MOC Method of characteristics

NVC No volume change

OOIP Original oil in place

PR  Peng-Robinson

RF., Recovery factor at 1.2 PVI

PVI  Porevolumesinjected

SRK  Soave-Redlich-Kwong

VC  Volume change

VGD Vaporizing gasdrive
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10. Appendix
A.1 Critical Propertiesof Oil 3
- Tc(K) | Pc(atm) ® Mw (9/mol) | Kkcha, Knzj | Kcozj

CH, | 190.6 | 45.44 | 0.0115 16.04 0 0.025 | 0.105
N2 126.3 | 33.55 0.045 28.01 0.025 0 0
CO, |304.2 | 72.84 0.231 44.01 0.105 0 0
C. 305.4 | 48.16 | 0.0908 30.07 0 0.01 | 0.13
Cs 369.8 | 41.94 | 0.1454 44.1 0 0.09 | 0.125
i-C,4 | 408.1 | 36.00 | 0.1756 58.12 0 0.095 | 0.12
n-C, | 425.2 | 37.47 | 0.1928 58.12 0 0.095 | 0.115
i-Cs 460.4 | 33.37 | 0.2273 72.15 0 0.1 0.115
n-Cs | 469.7 | 33.25 0.251 72.15 0 0.11 | 0.115
Cs 507.4 | 29.73 | 0.2957 86.18 0 0.11 | 0.115
C7+ | 563.2 | 31.36 | 0.2753 117.98 0.02 0.11 | 0.115
Cr» | 638.3 | 25.84 | 0.3761 | 180.12 | 0.028 | 0.11 |0.115
C7+3) | 736.5 | 19.38 | 0.5552 250.66 0.04 0.11 | 0.115
Cr+@ | 837 14.33 | 0.8021 346.62 0.052 0.11 | 0.115
C7+) | 936.9 | 10.92 1.108 547.83 0.064 0.11 | 0.115

Table A3.1: Critical properties and non-zero interaction parameters for Oil 3.

The data from Hgier'® is for Peng-Robinson EOS.
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A.2 Calculation Results from Displacement of Oil 3 by Gas5

Tie line length

0.2

0.1

O T T T T T
150 175 200 225 250 275 300

Pressure (atm)

Figure A3.2; Simulation results for Oil 3 displaced by Gas 5. The 8" crossover tie line
becomes critical at 296 atm (MMP). Injection and initial tie lines are plotted as
dotted and broken lines respectively.
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A.3 Finite Difference (FD) Simulation

This appendix describes the finite difference formulation of the conservation equations used
to verify the semi-analytical solutions presented in this work. Two different FD simulators
have been employed to verify the NVC and the VC solutions generated by the MOC. Both
are based on the fully explicit one-point upstream weighting approach. In a FD simulation a
discretizised version of the conservation equations is solved. The space and the time
dimension are divided into Ng grid blocks and N; time steps respectively. The conservation
equations are the rewritten in terms of difference quotients rather than true derivatives.
Recalling that the NV C formulation of the conservation equations assume the form

%G, 9

—) =0 i=1.. -1 A4.1
0T 0z  1=1me (A4D)

the corresponding FD formulation used in this work is given by
t+1 t AT t t .
G =Gy~ Ql-Qlrs)  i=1.ne-1 (A4.2)

where n is the grid block and t is the time step. In the NVC formulation Eq. A4.2 can be
applied directly to generation of approximate solutions to the 1-D problem. This is due to the
inherited volume conversion of the NV C formulation.

A more complex formulation must be used for the VC formulation of the conservation
equations:
G LR o ot (A4.3)
T 0z

Specia care must be taken to ensure that both mass and volume are conserved for each grid
block. A descritizised version of Eq. A4.3 can be written as

Cit,:l = Cit,n - (V(ti,nFIit,n_vtti,n—lFlit,n—l) ,1=1.,nc (A44)
where ,
F=Yxpf, (A45)
=

The extra complexity entering the FD solution strategy is a result of letting the components
change volume as they transfer between the flowing phases. This results in variable overall
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convective velocity. The overall velocity in a given grid block n at time step t can be written

as
ZGit,n —p+ V(tj,n—l iTZ I:i I,tn—l
v, =2 E 2=t (A4.6)
SINEY
AzT
where
-1
oL 28
Py P (A4.7)

B isthe mole fraction of vapor in the grid block while p, and p, are the vapor and liquid phase
densities respectively. Comparison of Egs. A4.4 and A4.6 makes it clear that an inner iterative
loop must be used. Dindoruk’ suggests an iterative scheme using the density as independent
variable in the inner loop. The algorithm for solving and updating G in grid block n to time
stept+lis

=

Evaluate v, , from Eq. A4.6
Calculate Gi' by Eq. A4.4
Calculate the overall mole fractions by

w N

t+1
Gi n

nc
2 G-Hl
I,n

i=1

t+1 _
Zi ,n

(A4.8)

e

Calculate p based on Z*'and evaluate the mass error by

,n
nc

ZG'H:L
e=1- =2 (A4.9)
p
If the mass error € is greater than a tolerance (102-10"%), return to step 2 using the new

density. Otherwise move to the next grid block and start with step 1.

When fully explicit formulations are used, in general, special care must be taken to ensure
stability of the simulation. The simulation will be stable if sufficiently small time steps are
applied in comparison with the space step. In this work a Courant number of 10 (Az/At) was
used and no instability was encountered.
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A.4 Determination of Normal Vectorsin Multidimensional Space

The problem of locating the normal vector to the plane spanned by two intersecting vectors a
and b becomes an important issue, when the equal eigenvalue point is sought at which a
solution path switches from atie line path to a nontie line path. In the multidimensional space
(m>3) the normal vector n to a given hyperplane may not be given uniquely. However, it is
possible to locate a normal vector by posing an optimization problem. The normal vector n
must be perpendicular to the vectors a and b simultaneously. Hence, an objective function
F(n) can be defined by

F(n)=(nea)’ +(neb)’ A.4.10

F(n) will be positive or zero for al values of n. At the solution the derivatives of F with

respect to the elements of n must be zero. This requirement can be written as

VF(n,)=0 A.411

where ng is the solution. The elements of the gradient vector are given by

gizzm.@@+2@.@q:o,i:me AA412
n.

Given an initial estimate of the normal vector the solution to A.4.12 can be generated by using
the steepest descent approach or a combination of the steepest descent approach and a Newton

iteration. The Jacobian matrix required for the Newton iteration is given by

i=1..,m
j=1..m

L _96

= A.4.13
?oon,

=2(aiaj +bibj) {

The steepest descent approach may exhibit slow convergence near the solution. In such cases

aswitch to afull Newton iteration will speed up the convergence.
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A.5 Details of 1-D Shock Solution Given in Figure 4.8

Qil 4 displaced by pure N, at 275 atm and 387.45K .

Tie line | u /W ppr | Ln(Knc) S A

ol - - - 0 1.9981-co
1 1.252 | 0.1719 | -5.8034 | 0.328 1.9981
1 1.252 | 0.1719 | -5.8034 | 0.394 1.3085
2 1.412 | 0.0565 |-12.8906| 0.706 1.3085-1.1639
3 1.412 | 0.0556 [-13.0025| 0.825 1.1639-1.0953
4 1.449 | 0.0492 [-13.7463| 0.826 1.0953-1.0245
5 1.510 | 0.0426 [-14.4138| 0.834 1.0245-0.9116
6 1.518 | 0.0418 [-14.4895| 0.845 0.9116-0.8189
7 1.558 | 0.0388 [-14.7522| 0.846 0.8189-0.7657
8 1.571 | 0.0378 [-14.8221| 0.852 0.7657-0.6486
9 1.596 | 0.0360 [-14.9429| 0.854 0.6486-0.6109
10 1.634 | 0.0336 |-15.0917| 0.858 0.6109-0.4610
11 1.899 | 0.0241 [-15.3741| 0.864 0.4610-0.1559
12 2.162 | 0.0181 [-15.5495| 0.900 0.1559-0.0643
13 2.468 | 0.0136 [-15.6557| 0.930 0.0643-0.0146
14 2.753 | 0.0109 [-15.6793] 0.951 0.0146-0.0073
14 2.753 | 0.0109 |-15.6793| 0.958 0.0073-0.0071
Gas - - - 1 0.0071-0

"Primary tieline
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A.6 Details of 1-D Shock Solution Given in Figure 4.9

Oil 4 displaced by 85 % CH4 and 15 % N, at 275 atm and 387.45 K.

Tie line |/ pulp Ln(Kne) S A
Oil - - - 0 1.998069-
1 1.2515 | 0.1719 | -5.8035 | 0.3282 1.998069
1 1.2515 | 0.1719 | -5.8035 | 0.3802 1.435455
2 1.2886 | 0.1316 | -7.1043 | 0.5366 |1.435455-1.358416
2 1.2886 | 0.1316 | -7.1043 | 0.6057 | 1.358416-1.19363
3 1.2912 | 0.1264 | -7.2401 | 0.6116 | 1.19363-1.099905
4 1.3371 | 0.0961 | -8.316 0.6585 |1.099905-0.977401
5 1.3985 | 0.073 | -9.3087 | 0.6983 [0.977401-0.894986
6 1.4073 | 0.0705 | -9.4277 | 0.7031 |0.894986-0.844431
7 1.4429 | 0.062 | -9.8311 | 0.7204 |0.844431-0.752449
8 1.4552 | 0.0595 | -9.9518 | 0.7263 |0.752449-0.720468
9 1.4776 | 0.0553 | -10.1517 | 0.7363 |0.720468-0.606363
10 1.5126 | 0.0494 | -10.4282 | 0.7528 |0.606363-0.301007
11 1.7306 | 0.0306 | -11.0763 | 0.8258 |0.301007-0.173708
12 19685 | 0.02 |-11.4886| 0.8828 |0.173708-0.052804
13 2.265 | 0.0132 |-11.7138 | 0.9332 |0.052804-0.008837
14 2.533 | 0.0099 | -11.7649 | 0.9546 |0.008837-0.006165
14 2.533 | 0.0099 | -11.7649 1 0.006165-0
Gas - - - 1 0

"Primary tieline
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A.7 Details of 1-D Shock Solution Given in Figure 4.10

Oil 4 displaced by pure CH,4 at 275 atm and 387.45 K.

Tieline | ./ pvipi Ln(Knc) S A

Oil 0 1.997204-
1 1.2515 | 0.1719 | -5.8035 | 0.320545 | 1.997204-1.451519
1 1.2515 | 0.1719 | -5.8035 | 0.38219 1.451519
1 1.2515| 0.1719 | -5.8035 | 0.407213 1.221407
2 1.2463 | 0.1784 | -5.6367 | 0.468295 | 1.221407-1.121263
3 1.2504 | 0.1695 | -5.7932 | 0.592126 | 1.121263-0.998271
4 1.3052 | 0.1195 | -7.0479 | 0.654817 | 0.998271-0.918956
5 1.371 | 0.0859 | -8.168 | 0.66166 | 0.918956-0.869465
6 1.3801 | 0.0824 | -8.3012 | 0.684889 | 0.869465-0.78352
7 1.4163 | 0.0711 | -8.7493 | 0.692614 | 0.78352-0.752922
8 1.4289 | 0.0678 | -8.887 | 0.705237 | 0.752922-0.647447
9 1.4513 | 0.0625 | -9.1098 | 0.725571 | 0.647447-0.348221
10 1.4866 | 0.055 | -9.4249 | 0.809849 | 0.348221-0.21444
11 1.6994 | 0.0326 | -10.1983 | 0.872709 | 0.21444-0.072124
12 1.9324 | 0.0206 | -10.6905 | 0.928577 | 0.072124-0.011485
13 2.2262 | 0.0132 | -10.9592 | 0.955598 | 0.011485-0.006735
14 2.4913 | 0.0098 | -11.0198 1 0.006735-0

Gas 1 0

"Primary tieline
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A.8 Details of 1-D shock solution given in Figure 4.11

Oil 3 displaced by pure N, at 300 atm and 368.15 K

Tie line W/ pv/pi Ln(Kne) S A

Oil - - - 0 2.699345 oo

1 1.5336 | 0.0345 | -7.0682 |0.188954 2.699345

1 1.5336 | 0.0345 | -7.0682 |0.236395 1.645552

2 1.7956 | 0.0103 |-13.90890.522951| 1.645552 | 1.324804
3 1.7967 | 0.0103 [-13.9354| 0.52341 | 1.324804 | 1.112373
4 1.8607 0.009 |-14.6603|0.540709| 1.112373 | 0.804747
5 1.9319 | 0.0081 |-15.1031|0.556146| 0.804747 | 0.627263
6 1.9475 | 0.0079 |-15.1771|0.559626| 0.627263 | 0.5515
7 1.9944 | 0.0075 [-15.3571|0.569135| 0.5515 | 0.401119
8 2.0141 | 0.0073 |-15.4145|0.573485| 0.401119 | 0.357466
9 2.0476 | 0.007 |-15.4991|0.580628| 0.357466 | 0.22948
10 2.096 0.0066 |-15.5861|0.592401| 0.22948 | 0.124802
11 2.2367 | 0.0059 |-15.7116|0.621861| 0.124802 | 0.036671
12 2.5885 | 0.0047 |-15.8099 (0.698649| 0.036671 | 0.004686
13 3.1524 | 0.0036 |-15.8307 |0.816858| 0.004686 | 0.000269
14 3.8868 | 0.0027 |-15.8322| 0.86623 | 0.000269 | 0.000123
14 3.8868 | 0.0027 [-15.8322 1 0.000123 0
Gas - - - 1 0

* Primary tieline
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A.9 Details of 1-D shock solution given in Figure 4.14

Oil 4 displaced by pure CO, at 200 atm and 387.45 K

Tieline | p/w pvip) Ln(Knc) S A
Oil 0.162 3.82995-00
1 1.1876 | 0.0898 | -8.8985 [0.118505| 3.82955-1.290996
2 1.1872 | 0.0911 | -8.8073 | 0.1207 | 1.290996-1.160407
3 1.1697 | 0.374 | -3.4055 |0.494162 1.160407
3 1.1697 | 0.374 | -3.4055 |0.505332 1.075567
4 1.2443 | 0.2559 | -4.7199 [0.706924| 1.075567-1.014097
5 1.3274 | 0.1732 | -6.039 | 0.77145 | 1.014097-0.97409
6 1.3388 | 0.1648 | -6.2032 [0.777803| 0.97409-0.948706
7 1.3817 | 0.138 | -6.7605 |0.798177| 0.948706-0.903057
8 1.3971 | 0.1298 | -6.9443 |0.804838 0.903057-0.885855
9 1.423 | 0.1176 | -7.2305 |0.814958| 0.885855-0.824143
10 1.4644 | 0.1008 | -7.6499 |0.830545 | 0.824143-0.596932
11 1.7002 | 0.0537 | -8.7853 [0.888074| 0.596932-0.44394
12 1.9442 | 0.0324 | -9.4503 [0.925601| 0.44394-0.204687
13 2.2434 | 0.0203 | -9.8023 [0.958171] 0.204687-0.044935
14 2.5137 | 0.0147 | -9.8805 |0.975927| 0.044935-0.025028
14 2.5137 | 0.0147 | -9.8805 1 0.025028-0
Gas 1 0

* Primary tieline
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A.10 Details of 1-D Shock Solution Given in Figure 4.21
Oil 3 displaced by Gas 3 at 300 atm and 368.15 K.
Tie line /Ly pvipi Ln(Knc) S A

Oil - - - 0 2.698707 oo

1 1.5336 | 0.0345 | -7.0682 |0.185131|2.698707 |1.918674
2 1.5279 | 0.0356 | -6.953 |0.223645 1.918674

2 1.5279 | 0.0356 | -6.953 |0.237154 1.397001

3 1.5269 | 0.0358 | -6.9359 |0.254620 1.397001

3 1.5269 | 0.0358 | -6.9359 |0.265874 1.243583

4 1.5532 | 0.0318 | -7.2519 [0.344670|1.243583|1.045402
5 1.6134 | 0.0252 | -7.833 [0.411902|1.045402|0.931771
6 1.6162 0.025 | -7.8571 |0.414345/0.931771|0.866988
7 1.6543 0.022 | -8.1502 |0.443566|0.866988|0.756791
8 1.6656 | 0.0212 | -8.2285 |0.451864|0.756791|0.719709
9 1.6931 | 0.0195 | -8.4042 [0.470195|0.719709|0.597189
10 1.7264 | 0.0177 | -8.5889 [0.492049|0.597189|0.415781
11 1.8138 | 0.0144 | -8.902 |0.539645|0.415781|0.219434
12 2.0313 | 0.0097 | -9.3232 |0.637438|0.219434|0.070445
13 2.4347 | 0.0058 | -9.5915 |0.775269|0.070445|0.014252
14 2.9962 | 0.0036 | -9.6892 |0.902660|0.014252|0.002375
14 2.9962 | 0.0036 | -9.6892 1 0.002375 0
Gas - - - 1 0

* Primary tieline
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A.11 Details of 1-D Shock Solution Given in Figure 4.22

Oil 3 displaced by Gas 5 at 250 atm and 368.15K .

Tie line /Ly pvlpi Ln(Kne) S A
Oil - - - 0 3.171526 oo
1 1.5004 | 0.0228 | -8.6599 [0.067236|3.171526(1.514511
2 1.5004 | 0.0228 | -8.6596 | 0.06724 |1.514511(1.171592
3 1.494 0.0246 | -8.4672 |0.071099|1.171592|1.092878
4 1.4573 | 0.0303 | -7.8781 [0.083111|1.092878|1.006383
5 1.3433 | 0.0572 | -6.3125 |0.132232|1.006383|0.962889
6 1.3189 | 0.0665 | -5.9654 [0.147778|0.962889|0.938889
7 1.2314 | 0.1195 | -4.674 |0.232313|0.938889|0.899153
8 1.2039 | 0.1467 | -4.234 |0.276558|0.899153| 0.88434
9 1.1576 | 0.2126 | -3.4385 | 0.47024 0.88434
9 1.1576 | 0.2126 | -3.4385 [0.477872 0.835109
10 1.1678 | 0.1954 | -3.6158 [0.571843|0.835109|0.742035
11 1.1910 | 0.1642 | -3.9496 [0.646037|0.742035|0.611293
12 1.3124 | 0.0791 | -5.083 | 0.79721 |0.611293|0.405713
13 1.5149 | 0.0348 -5.87 ]0.891628|0.405713|0.201268
14 1.8152 | 0.0155 | -6.2557 |0.954836|0.201268|0.080245
14 1.8152 | 0.0155 | -6.2557 1 0.080245 0
Gas - - - 1 0

* Primary tieline
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A.12 Details of 1-D Shock Solution Given in Figure 4.23
Oil 3 displaced by pure CH,4 at 300 atm and 368.15 K.
Tie line W/ pvpi Ln(Knc) S A
oil - - - 0 2.68024 oo
1 1.5336 0.0345 | -7.0682 |0.168991 | 2.68024 | 1.894932
2" 1.5206 0.0370 | -6.8056 |0.227271 1.894932
2" 1.5206 0.0370 | -6.8056 |0.257488 1.388917
3 1.5220 0.0367 -6.829 | 0.278365|1.388917 | 1.237088
4 1.5943 0.0266 | -7.6846 |0.399307 | 1.237088 | 1.043549
5 1.6657 0.0206 | -8.3431 | 0.450722 | 1.043549 | 0.929012
6 1.6815 0.0196 | -8.4713 |0.460331|0.929012 | 0.863911
7 1.7248 0.0172 | -8.7794 |0.483451|0.863911 | 0.751018
8 1.7439 0.0163 | -8.8989 |0.493318 |0.751018 | 0.713224
9 1.7744 | 0.0150 | -9.0747 |0.507889|0.713224 | 0.586949
10 1.8207 0.0134 | -9.3029 |0.529999 | 0.586949 | 0.402147
11 1.9366 0.0106 | -9.6547 |0.575157 | 0.402147 | 0.205475
12 2.2221 0.0069 | -10.0918 | 0.667391 | 0.205475 | 0.059015
13 2.6873 0.0044 | -10.313 |0.788512 | 0.059015| 0.010241
14 3.3287 0.0028 | -10.3872 | 0.907072 | 0.010241 | 0.001519
14 3.3287 0.0028 | -10.3872 1 0.001519 0
Gas - - - 1 0

* Primary tieline
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A.13 Details of 1-D Shock Solution Given in Figure 4.24
Oil 3 displaced by 75 % CO, and 25 % CH, at 275 atm and 368.15 K.
Tie line /L pvipi Ln(Knc) S A

Oil - - - 0 1.613431 oo

1 1.5237 0.0281 | -7.8314 |0.047601|1.613431|1.191951
2 15145 | 0.0298 | -7.5947 |0.050438|1.191951|1.109161
3 1.1887 | 0.3572 | -1.8766 |0.495685 1.109161

3 1.1887 0.3572 | -1.8766 |0.502612 1.057492

4 1.3206 | 0.1922 | -3.0245 |0.743313|1.057492|1.024916
5 1.4279 | 0.1233 | -3.8685 [0.795237|1.024916|1.005119
6 1.4508 | 0.1129 | -4.0372 |0.803228|1.005119|0.993493
7 1.5102 | 0.0908 | -4.4516 |0.820711|0.993493| 0.96942
8 1.5363 | 0.0829 | -4.6218 |0.827459| 0.96942 |0.960334
9 15754 | 0.0728 | -4.8639 |0.836484 |0.960334 | 0.92695
10 1.6339 | 0.0604 | -5.1946 |0.848695| 0.92695 | 0.86471
11 1.7679 | 0.0419 | -5.7752 |0.870183| 0.86471 |0.744147
12 2.0703 | 0.0223 | -6.5887 |0.903674 |0.744147|0.502959
13 2.5289 | 0.0117 | -7.1188 |0.938287|0.502959|0.226694
14 3.1568 | 0.0064 | -7.3485 |0.971455|0.226694|0.073111
14 3.1568 | 0.0064 | -7.3485 1 0.073111 0
Gas - - - 1 0

" Primary tieline
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A.14 Displacement (VC) of Oil 4 by Gas6 at 275 atm and 387.45 K

Details of 1-D shock solution. Properties of the key tie lines are given in Table 4.3.

Tie line S A A
oil 0 0.951705 | 1.916983 o0
1 0.327694[0.971139(1.916983 | 1.365171
2 0.350849 | 0.971831(1.365171 | 1.137328
3 0.344404]0.971713(1.137328 | 1.050533
4 0.429693 | 0.972047 1.050533
4 0.444027 | 0.972047 0.946128
5 0.514057(0.972145 | 0.946128 | 0.880199
6 0.51702 [0.972071|0.880199 | 0.83989
7 0.551699 | 0.972409 | 0.83989 |0.774649
8 0.571168|0.972756 | 0.774649 | 0.750527
9 0.598427(0.973382 | 0.750527 | 0.67434
10  [0.648088[0.975239| 0.67434 | 0.43432
11  [0.777113|0.984203| 0.43432 [0.312619
12 [0.857434|0.992959(0.312619 | 0.141069
13 [0.921774]0.998698 | 0.141069 | 0.029908
14  [0.9565420.999737(0.029908 | 0.014141
Gas 1 1 0.014141 0

" Primary tieline
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A.15 Displacement (VC) of Oil 4 by pureN; at 275 atm and 387.45K

Details of shock solution and a comparison of VC and NV C solutions. Key tie line properties

aregivenin Appendix A.5.

Tie line S \V A
o]] 0 1.046255 | 2.107325 oo
1 0.330314 | 1.067514 2.107325
1 0.399267 | 1.067514 1.343283
2 0.68182 | 1.011644 | 1.343283 | 1.172547
3 0.683425 | 1.010776 | 1.172547 | 1.020871
4 0.697478 | 1.005166 | 1.020871 | 0.817946
5 0.714721 | 1.000906 | 0.817946 | 0.679143
6 0.717223 | 1.000546 | 0.679143 | 0.608584
7 0.727044 | 0.999274 | 0.608584 | 0.472118
8 0.730587 | 0.999062 | 0.472118 | 0.432961
9 0.737257 | 0.998727 | 0.432961 | 0.295701
10 0.74922 | 0.998652 | 0.295701 | 0.08366
11 0.816239 | 0.999376 | 0.08366 | 0.032045
12 0.869223 | 0.999874 | 0.032045 | 0.005822
13 0.905447 | 0.999995 | 0.005822 | 0.002108
14 0.915147 1 0.002108 | 0.002036
Gas 1 1 0.002036 0

* primary tieline
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A.16 Displacement (VC) of Oil 3 by Gas 3 at 300 atm and 368.15 K

Details of 1-D shock solution and a comparison of VC and NVC solutions. Key tie line

properties are given in Appendix A.10.

* Primary tieline

Vapor saturation (S)

1.0

0.8

0.6

0.4

0.2

0.0

Tie line S Vd A
Qil 0 0.913949 | 2.571301 oo
1 0.190258 | 0.981463 | 2.571301 | 1.805965
2 0.227677 | 0.982876 1.805965
2 0.241865 | 0.982876 1.302147
3 0.259621 | 0.983069 1.302147
3 0.271169 | 0.983069 1.155907
4 0.348206 | 0.981703 | 1.155907 | 0.96635
5 0.4131 |0.981445| 0.96635 | 0.857445
6 0.415423 | 0.981493 | 0.857445 | 0.795753
7 0.443232 | 0.982223 | 0.795753 | 0.6911
8 0.451111|0.982588 | 0.6911 | 0.656061
9 0.468479 | 0.983494 | 0.656061 | 0.540972
10 0.489224 | 0.984894 | 0.540972 | 0.372948
11 0.534566 | 0.987936 | 0.372948 | 0.194591
12 0.629044 | 0.993934 | 0.194591 | 0.06189
13 0.766244 | 0.998576 | 0.06189 | 0.012457
14 0.896864 | 0.999849 | 0.012457 | 0.002062
14 1 1 0.002062 0
Gas 1 1 0
|\ e MOC (vc)
—— MOC (nvc)
0.0 0.5 1.0 1.5 2.0 2.5

Wave velocity (z/t)

3.0
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A.17 Displacement (VC) of Oil 3 by CO,/CH4at 275 atm and 368.15 K

Shock solution and a comparison of VC and NV C solutions. Key tie line properties are given

in Appendix A.13.

Vapor saturation (S)

0.4

0.2

0.0

Tie line S \Z A
oil 0 0.962562 | 1.555963 o
1 0.048489 | 0.979251 | 1.555963 | 1.149717
2 0.051257 | 0.979937 | 1.149717 | 1.07225
3 0.497782 | 0.980686 1.07225
3 0.504797 | 0.980686 1.021393
4 0.745113 | 0.978951 | 1.021393 | 0.988685
5 0.79647 |0.978521 | 0.988685 | 0.968545
6 0.804318 | 0.978537 | 0.968545 | 0.956697
7 0.821405 | 0.978703 | 0.956697 | 0.931994
8 0.827974 | 0.978866 | 0.931994 | 0.922655
9 0.836736 | 0.979148 | 0.922655 | 0.88825
10 0.848561 | 0.979782 | 0.88825 | 0.82409
11 0.869229 | 0.98173 | 0.82409 |0.700195
12 0.901557 | 0.987119 | 0.700195 | 0.458334
13 0.935773 | 0.994224 | 0.458334 | 0.198371
14 0.96974 |0.998622 | 0.198371 | 0.062854
14 1 1 0.062854 0
Gas 1 1 0
* Primary tieline
——MOC (VC)
------ MOC (NVC)
T T T ]--I
0.0 0.5 1.0 1.5

Wave velocity (z/t)

2.0
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A.18 Input filefor Eclipse (E300) Slimtube Simulation

-->Simulation of a 20 metre slimtube using lab units
-->Developed by Niels Lindeloff
-- PVT input and rock props supplied by K. Jessen

OIL
GAS

IMPES

DIMENS
1000 1 1 /

-- Cartesian co-ord system

CART

-- Units: Lab

LAB

-- Number of components: implies compositional run
COMPS

15 /

MISCIBLE

GRID ——————————=————————=———————=—=——=—=———==——=—=—=—=—=—=—=——=—=—=======

DX
1000*2 /

--Cross section is 0.5 square cm

DY
1000*0.7071 /

DZ
1000*0.7071 /

-- Porosity and permeability

PORO
1000*0.3042 /

PERMX
1000%46000.0 /

PERMY
1000%46000.0 /

PERMZ
1000%46000.0 /
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--Depth of cell centres
MIDS
1000%100.0 /
PROPS ============================================================
-- Properties section: PVT data from INCLUDE file
EOS
SRK /
-- Names of Components
CNAMES
NITROGEN
co2
METHANE
ETHANE
PROPANE
I-BUTANE
N-BUTANE
I-PENTANE
N-PENTANE
Cé
Cc7
Cl1
Cle
c23
C33
/
MISCEXP
0.000001 /
-- Component Critical Temperatures (K)
TCRIT
126.20000 304.20000 190.60000 305.40000 369.80000
408.10000 425.20000 460.40000 469.60000 507.40000
632.80001 659.60533 703.64643 766.49716 892.98963
/
-- Component Critical Pressures (bar)
PCRIT
34.04520 73.86592 46.00155 48.83865 42.45517
36.47700 37.99687 33.84255 33.74122 29.68822
30.70019 23.77062 19.54564 17.00758 15.33069
/
-- Component Critical Volumes (ccm)
-- set by user
VCRIT
90.080000 93.950000 99.260000 147.950000 202.890000
262.700000 254.710000 305.830000 304.020000 370.140000
511.730000 737.840000 1079.190000 1612.480000 2758.530000
/
-- Critical Volumes for viscosity (ccm)
-- set by user
VCRITVIS
90.080000 93.950000 99.260000 147.950000 202.890000
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262.700000 254.710000 305.830000 304.020000 370.140000
511.730000 737.840000 1079.190000 1612.480000 2758.530000

/

-- Component acentric factor

ACF
0.04000 0.22800 0.00800 0.09800 0.15200
0.17600 0.19300 0.22700 0.25100 0.29600
0.18424 0.47731 0.81969 1.21141 1.37175

0.000000 0.000000 0.000000

/
-- Components Parachors (dyn/cm)
-- (for IFT - Fanchi 1990)
PARACHOR
74.43680 111.22300 46.89890 79.15870 111.42080
239.61917 239.61917 280.57801 280.57801 321.53685
388.20114 581.85564 819.38791 1150.58805 1793.79357
/
-- Peneleux Correction (Shift parameters DM-less)
SSHIFT
0.03434 0.11197 0.02113 0.05829 0.08059
0.09050 0.09752 0.11156 0.12146 0.14005
0.17465 0.02796 -0.07706 -0.20962 -0.42467
/
-- Component Molecular Weight g/mol
MW
28.01600 44.01000 16.04300 30.06900 44.09600
58.12300 58.12300 72.15000 72.15000 86.17700
109.00723 175.32727 256.67393 370.09864 590.37450
/
-- Binary interaction parameters
BIC
.000000
.020000 0.120000
.060000 0.150000 0.000000
.080000 0.150000 0.000000 0.00000O0
.080000 0.150000 0.000000 0.000000 0.000O0OQO
.080000 0.150000 0.000000 0.000000 0.000000 0.0000O0O
.080000 0.150000 0.000000 0.000000 0.000000 0.000000 0.00000O0
.080000 0.150000 0.000000 0.000000 0.000000
.080000 0.150000 0.000000 0.000000 0.000000 O0.00000OC

.000000

.000000 0.000000

.000000 0.000000 0.00000OC

.000000 0.000000 0.000000 0.0000O0O

.000000 0.000000 0.000000 0.000000 0.000000

.000000 0.000000 0.000000 0.000000 0.0000COO

e lNeNeNeNeoNoNoNoNoNoNoNoNoNoNeoNeoNoNoNeo N

STCOND
15.0 1.0 /

.080000 0.150000 0.000000 0.000000 0.000000 0.000000

.080000 0.150000 0.000000 0.000000 0.000000 0.000000

.080000 0.150000 0.000000 O0.00000O0 0.0000Q000 O0.00O0OOO

.080000 0.150000 0.000000 0.000000 0.000000 0.000000

.080000 0.150000 0.000000 0.000000 0.000000 0.000000

0.000000

0.

0.

000000

000000

.000000

.000000

.000000

.000000

0

.000000

.000000

.000000

.000000

.000000

.000000
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GRAVITY
1* 1.01 1* /

-- Reservoir temperature: Deg C
RTEMP
114.3 /

-- Rock and properties

ROCK
250.0 0.00000 /

--Gas saturation functions

SGFN
-- Sg Krg Pcog
0.000000 0.000000 0
0.050000 0.003906 0
0.100000 0.015625 0
0.150000 0.035156 0
0.200000 0.062500 0
0.250000 0.097656 0
0.300000 0.140625 0
0.350000 0.191406 0
0.400000 0.250000 0
0.450000 0.316406 0
0.500000 0.390625 0
0.550000 0.472656 0
0.600000 0.562500 0
0.650000 0.660156 0
0.700000 0.765625 0
0.750000 0.878906 0
0.800000 1.000000 0
1.000000 1.000000 0
/
-- 0il saturation functions
SOF2
0.000000 0.000000
0.200000 0.000000
0.250000 0.003906
0.300000 0.015625
0.350000 0.035156
0.400000 0.062500
0.450000 0.097656
0.500000 0.140625
0.550000 0.191406
0.600000 0.250000
0.650000 0.316406
0.700000 0.390625
0.750000 0.472656
0.800000 0.562500
0.850000 0.660156
0.900000 0.765625
0.950000 0.878906
1.000000 1.000000
/

SOLUTION ============================================================
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-- Solution section:

PRESSURE

1000*250.

SGAS
1000*0.0

XMF

1000*0.0045 1000*0.0164 1000*0.4585
1000%0.03110 1000%0.01030 1000%0.01650 1000*0.02520

0/

/

define explicitly

1000*%0.0715

1000*0.0674

1000*0.00840

1000*0.12440 1000*0.06320 1000*0.05024 1000*0.03240 1000*0.01996 /

YMF

1000*0.0045 1000*0.0164 1000*0.4585
1000%0.03110 1000*%0.01030 1000%0.01650 1000*0.02520

1000*%0.0715

1000*0.0674

1000*0.00840

1000*0.12440 1000*0.06320 1000*0.05024 1000*0.03240 1000*0.01996 /

-- Calculate initial oil and gas in place at surface conditions

FIELDSEP

1 15.0 1.

/

RPTSOL

0/

PRES SOIL SGAS /

OUTSOL

PRES SOIL SGAS /

SUMMARY

WOPR
PRODUCER

FOPR

WOPT
PRODUCER

WGOR
PRODUCER

RUNSUM
SCHEDULE

CVCRIT
-0.001 /

SEPSPEC
SEPP G2
/

WELLSPEC
INJECTOR
PRODUCER
/

Gl 1 1 1%
G2 1000 1 1* SEPP

/

/
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WELLCOMP

INJECTOR 1 1 1 1 1 1* 5000 /
PRODUCER 1000 1 1 1 1 1% 5000 /
/

WELLSTRE
LEANGAS 0.9999 0.0001 /
/

--Total pore volume is 304.2ccs, inject 1/10 PV per hour

WELLINJE
INJECTOR STREAM LEANGAS RV 5* 30.42 /
/

WELLPROD
PRODUCER BHP 4* 250.0 /
/

RPTPRINT
11111 11100/

RPTSCHED
PRESSURE SOIL SGAS /

--Limit max step to get at least 500 timesteps per 10 hours = 1 PV injected
-- Her sat til mindst 1000 pr 10 hrs NL

TSCRIT

0.001 0.0001 0.01 /

--Run for 12 hours - ie 1.2 pore volumes injected

TIME
123456789 1011 12 /

END



