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ABSTRACT 
The relation between the plane wave expansion 
(PWE) and the spherical wave expansion (SWE) is 
investigated. It is shown how the SWE can be 
transformed into the PWE, from which the aperture 
field can subsequently be calculated. Through the 
SWE-PWE transformation the visible as well as the 
invisible regions can be recovered, providing a high 
spatial resolution of the aperture field. 
The SWE-PWE transformation allows an efficient 
antenna diagnostics for spherical near-field 
measurements. Different test cases are examined 
and the limitations implied by the practical 
truncation of the SWE are investigated and 
clarified. 
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1. Introduction 

Electrical and mechanical errors in an antenna can 
be identified by use of an efficient antenna 
diagnostics technique. The presence of such errors 
is usually observed in the measured far-field 
pattern, however their causes can only be explained 
by analyzing the extreme near-field amplitude and 
phase. Since a direct measurement of this quantity is 
not usually implemented in measurement facilities, 
an alternative procedure has to be used.   Several 
non-invasive diagnostics techniques have been 
proposed over the years [1]; however, all methods 
are limited either in terms of the type of antennas 
for which they can be used, or in terms of the 
accuracy that they can provide e.g. methods based 
on planar and cylindrical near-field or far-field 
measurements. There is thus a need for an antenna 
diagnostics technique that applies to general types 
of antennas, and that is intrinsically accurate. In this 
perspective, we propose a new technique to be 
applied at the DTU-ESA Spherical Near-Field 
Antenna Test Facility located at the Technical 
University of Denmark [2]. The measurement 
technique employed at the DTU-ESA Facility is 
based on the SWE of the field radiated by the 
antenna [3]. This expansion is mathematically valid 
in any source-free region of space outside the 
minimum sphere of the antenna, the smallest sphere 
centered at the origin of the measurement 

coordinate system which completely encloses the 
antenna. Thus the aperture field in the extreme near-
field of the antenna can not be computed [4]. One 
way to overcome this is to transform the SWE of 
the radiated field into a PWE. We will show how 
the plane wave spectrum can be computed by the 
knowledge of the coefficients of the SWE, on any 
aperture plane in the antenna source-free region.  
This will give two main advantages. The first is that 
the plane wave spectrum can be evaluated also in 
part of the spectrally invisible region, the second is 
that the aperture field can be computed as an IFT of 
this spectrum. Hence, the spatial resolution 
achieved in the aperture field can in principle 
exceed the traditional value of half a wavelength, 
provided by the traditional techniques. In this 
manuscript analytical calculations as well as 
numerical simulations will be shown and 
investigations on the number of spherical modes 
necessary for the PWE convergence will be 
presented. All results are expressed in the S.I. 
rationalized system with e-iωt time convention. 

2. Theory 

2a) Theoretical derivation 

We start by introducing the SWE of the electric 
field Ē radiated by an antenna circumscribed by a 
minimum sphere of radius ro. In any source-free 
region r>ro the field can be expressed as [3],  
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where )3(
1mnQ and )3(

2mnQ are the expansion coefficients, 
that can be obtained from a spherical near-field 
measurement, and )()3(

1 rF mn  and )()3(
2 rF mn are the power-

normalized spherical vector wave functions. The 
medium intrinsic admittance is denoted by η, k is 
the wave number, and r  is the position vector 
expressed as a function of the traditional spherical 
coordinates (r, θ, φ). In practice, the n-summation 
of the SWE is truncated at n = N, with N usually 
being equal to N = kro+10. The PWE of the same 
electric field in the spectral (kx ky)-domain valid for 
z>zo, with zo being the largest z-coordinate of the 
source region, is given by [5] 
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where kx, ky, kz  are the Cartesian components of the 
wave propagation vector k  with 

222
yxz kkkk −−= . The spectral domain defined by 

the variables kx,and  ky,  can be divided in two 
regions, the first one called “visible” for kx

2+ ky
2 ≤ 

k2 , responsible of the propagating plane waves, and 
the second one called “invisible” for kx

2+ ky
2 > k2, 

see Fig. 1, constituted by the evanescent plane 
waves. The two variables (kx ky) are always real, 
while kz is real in the visible region but purely 
imaginary in the invisible region. In practice, the 
(kx, ky) integrals are truncated at finite values  ±kxmax 
and ±kymax.  

                   

Fig.1 Visible and invisible regions in the spectral 
(kx,ky) domain. 

The plane wave spectrum for a given z-coordinate is 
thus equal to zik

yx
ze)k,k(T . It was previously shown 

[6-7] how the SWE of Eq. 1 can be transformed into 
the PWE of Eq. 2, arriving at the following relation 
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with ẑαŷβαx̂βαŝ cossinsincossin ++= , β∈[-π, π] 
and α∈C+, see Fig. 2. The vector spherical 
harmonics )( βα ,Y m

n  is defined by 
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with )(cosαP m
n  being the normalized associated 

Legendre function as defined by [3],   
ẑαŷβαx̂βαα̂ sinsincoscoscos −+=  and 

ŷx̂ˆ βββ cossin +−= . The variable (α,β) on the 
right hand side of Eq.3 must be expressed as 
functions of the spectral variables kx and ky 

according to k/kŝ = . The spatial 
resolution )( yx ,δδ obtained in the aperture field is 

given by maxyymaxxx k/,k/ πδπδ ==  and can thus 

be controlled by selecting kxmax and kymax 
appropriately in the SWE-to-PWE transformation. 

                   
Fig.2 Domain of α variable on contour C+.           

We can therefore summarize the required steps of 
this antenna diagnostics technique as follows: 

1. Evaluate the Q coefficients through a 
spherical near-field measurement of the 
radiated field of the AUT. 

2. Calculate the plane wave spectrum in the 
(kx,ky) domain on a given z plane, z>zo, 
according to Eqs. 3-4. 

3. Compute the field on the desired z plane as 
the inverse Fourier transform of the 
spectrum through Eq. 2. 

 
2b) Theoretical considerations 

We will now focus on three specific aspects of the 
SWE-PWE transformation. First, by looking at the 
expression of the )( βα ,Y m

n function, in Eq. 5, we 
see after a few mathematical manipulations that  
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pattern function of the spherical vector waves. We 
conclude that the spectrum in the (α,β)-
domain, αcosikzeŝÊ )( ,  is thus given by the SWE of 
the far-field. All information about the visible and 
invisible spectral regions of the PWE are therefore 
in principle contained in the far-field. As an 
example of this important property, a z-oriented 
Hertzian dipole located at the origin of the 
coordinate system can be considered. Its SWE 
contains only the single mode s=2, m=0, n=1. From 
the knowledge of the corresponding coefficient 

)3(
201Q  the plane wave spectrum is completely 

reconstructed in the visible as well as in the 
invisible region. For more realistic antennas the 
SWE of the field is given by a larger number of 
modes, however, the concept of deriving the 
complete set of Q’s from the far-field remains 

0
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principally valid and its consequences will be 
discussed more later. Second, since the variable α 
becomes purely imaginary in the invisible domain, 
see Fig.2, the trigonometric functions in α included 
in ),( βαm

nY  are not limited in that region, and this 
gives rise to computational problems already for 
moderate values of n. An example is shown in 
Fig.4, where the amplitude of the spectrum on z=λ 
for s=1, m=0 and n= 20 and 1)3(

1020 =Q is presented in 
logarithmic scale and normalized to the value on 
axis. 

 
Fig.4 Amplitude of the spectrum for n=20, m=0 
on z=λ, in dB. 

On the other hand, the exponential term zikze , 
which is also included in the spectrum, provides a 
decay in the invisible domain. A way to partly 
control the computational difficulties is therefore to 
embed the term zikze into the calculation of the 
vector spherical harmonics. Third, we will 
concentrate on Eq. 3. It is noted that a singularity 
for kz=0 (kx

2+ ky
2=k2) will always be present at least 

in one component of any antenna spectrum, and that 
the necessary but not sufficient condition to avoid 
that is that the antenna far-field pattern presents a 
null for θ=π/2 [5]. The singularity prevents a direct 
use of the IFT for the calculation of the aperture 
field, since an infinite number of points would be 
required to correctly sample the function in the 
vicinity of kz=0. But there is a way to overcome the 
problem and get an accurate value of the field even 
from components affected by the singularity. For 
this purpose, we write the spectrum T as a product 
of two functions, 1T  with no singularity, and 1/kz, 

i.e. 
z

yxyx k
k,kTk,kT 1)()( 1= . We know that the IFT 

of T  is the convolution in the spatial (x,y,z) domain 
of the IFT’s of the two separated functions. We 
inverse transform with an IFT 1T and we write the 
inverse Fourier transform of 1/kz by use of the Weyl 
identity [5] for z > 0 
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with the Green function, we need to split the 
quantity z in two, z=z+z1-z1, to have an exponential 
factor of the type of zikze on both terms. We get 
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with 2
1

22
1 zyxr ++= . Since in the practice we 

deal with functions defined on a discrete domain of 
finite dimension, we need to implement a circular 
convolution, according to the discrete Fourier 
transform theory described in [8]. The results and 
the accuracy of this method will be shown in the 
following section, dedicated to the test cases.   

3. Test Cases 

3a) Array of Hertzian dipoles 

A set of five x-oriented Hertzian dipoles on the x-y 
plane, four equally displaced from the origin with 
the distance ro and one at the center, see Fig.5, is the 
first test case.  

          
 
Fig.5. Five Hertzian dipoles displaced on the x-y 
plane, with minimum sphere of radius ro. 
 
With such a configuration, the aperture plane can be 
moved into the minimum sphere of radius ro, still 
remaining in a source-free region. For this antenna 
the Q coefficients can be calculated analytically, by 
use of the results reported in [3, pp. 339] for a 
sampled x-polarized planar current ring. Since the 
SWE contains arbitrarily high-order modes in n and 
m, the influence of the truncation in n in Eq. 4 can 
be analyzed. We consider as reference spectrum the 
one calculated through the dipole currents [5] 
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with P being the dipole moment. Tx and Ty contain 
the singularity in kz. Different values of ro have been 
studied, and here the results for ro = 2λ 
corresponding to kro=12, will be considered. The 
spectral components are then computed with Eq.4 
for different values of N. The plots for N=kro, 
N=kro+10, N=kro+40 for the x-component on z=0.2λ 
are shown in dB in Fig.6, normalized to the value of 
Tx in the origin. We see how the convergence region 
in the (kx,ky) domain increases gradually with 
increasing N. For N=kro the visible region is still not 
completely reconstructed but its convergence is 
reached with N=kro+10. For N>kro+10, only 
changes in the invisible region are noted until the 
complete picture obtained by N=kro+40=52. The 
singularity for kz=0 is perfectly identified, already 
by N=kro+10. 

 

 
Fig.6 Amplitude of the x component of the 
spectrum of the five dipoles with ro=2λ, on z=0.2λ 
in dB: the reference Tx, N=kro, N=kro+10 and 
N=kro+40.  
 
To better understand the convergence mechanism, 
we also plot the n-mode power spectrum, 

∑=
sm

smnrad QnP
2)3(

2
1)( in function of n, see Fig.7. 

Extreme low values of power are contained in the 
high n modes, however, due to the corresponding 
low values of Q’s the product with the diverging 
vector spherical harmonics is kept finite. A plot of 
the x component of the spectrum in function of N, 
for different points of the spectral domain, can 
finally clarify the convergence mechanism, see 
Fig.8. Points belonging to the visible region reach 
the convergence with N=kro+10, while points in the 
invisible domain need more modes as they move 
away from the visible domain. The maximum N 
required for a complete convergence in the (-2k,2k) 
domain depends on ro. It has been found that 
generally N=kro+4kro is needed for the five dipoles 

case. From Fig.8 we see that the series behaves as 
one with alternating sign. At every step n a new 
quantity is summed to the previous terms, adding or 
subtracting a certain amount of spectrum. 

 
Fig.7 n-mode power spectrum for ro=2λ.  
 
This is necessary in order to “clean” the spectral 
invisible region, until the convergence values are 
reached. 

 
Fig.8 Amplitude of the x component of the 
spectrum in function of N, kro=12, for different 
points of the spectral domain. 
 
We can therefore inverse Fourier transform the 
spectrum and compare the quantity with the 
analytical field. Since the spectral domain has an 
extension of (-2k,2k), the resolution achieved in the 
(x,y) domain is equal to λ/4. The z component can 
be directly inverse Fourier transformed, while the x 
and y components require the procedure of the 
circular convolution. To understand the influence of 
the invisible region, we consider the spectrum 
computed with N=kro+40=52, N=kro+10=22 and 
N=kro=12. Only the convergent part of the spectrum 
was used in these cases, while the non-convergent 
part was replaced by zeros. Results are shown in 
Fig.9 for the x component on z=0.2λ. The figures 
are normalized to the value on axis of the analytical 
field and plotted in linear scale: we can distinguish 
the five dipoles on the (x,y) plane in all pictures. 
However the result provided by N=kro is not 
quantitatively satisfactory in determining the 
dipoles contribution. On the other hand, already 



with N=kro+10 terms a very accurate aperture field 
is computed. This means that the most important 
part of the spectrum to be recovered is constituted 
by the visible region, the singularity for kz=0, and a 
little part of the invisible region.  

 

 

 
Fig.9 Amplitude of the x component of the field 
on z=0.2λ, for ro=2λ in linear scale: the analytical, 
the one obtained by N=kro, N=kro+10 and 
N=kro+40. 
 
3b) Rectangular aperture in free-space 

The second antenna test case is a rectangular 
aperture with the TE01 mode, located on the x-y 
plane and radiating in free space, see Fig. 10.     

                                                                                                                                                                       
Fig.10 Rectangular aperture, of dimension a and 
b, located on the x-y plane, with mode TE01.  
 
From the analytical far-field pattern )( ϕθ ,F , based 
on electrical and magnetical equivalent currents [9], 
the reference spectrum T is calculated as 

θ
ϕθϕθϕθ

cos
)()sinsincossin(

k
,Fik,kT =  [5], with  

[ ]20 /,πθ ∈ and [ )πϕ 20,∈ . This immediately 

provides the expression for T in the visible 
domain 222 kkk yx ≤+ . However it is possible to 

analytically continue the far-field pattern )( ϕθ ,F  to 
complex values of θ [5], so that by the use of the 
same expression the spectrum T  in the invisible 
domain is also calculated.  The angle θ will be 
substituted by α defined on the domain C+ and φ by 
β. The Q coefficients are calculated from the 
projection of the far-field on the functions 

),(ˆ βαm
nYs×  and ),( βαm

nY , but due to numerical 
problem, only N=19 terms are available.  Different 
values of a and b have been analyzed, and here we 
present the results for a=λ and b=2λ, corresponding 
to kro=6. The expressions of the reference spectral 
components are: 
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with ))2((1 2
01 b/k/ λβ −= , 2/akX x= ,  and  

2/bkY y=  with 0=yT and zxxz k/TkT −= , from 

0=⋅Tk . The singularity in kz=0 is present both in 
Tx and Tz. Again we will calculate the spectrum 
through Eq.4 with different value of N, and we will 
focus on the x component, see Fig.11 where the 
quantities are normalized to the value of Tx in the 
origin and plotted on z=0.2λ. The convergence 
mechanism is similar to the one shown by the five 
dipoles case. 

   

 

 
Fig.11 Amplitude of the x component of the 
spectrum for the rectangular aperture with a=λ 
and b=2λ, on z=0.2λ in dB: the reference Tx, 
N=kro, N=kro+10 and N=kro+13. 
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As before, the singularity on kz=0 is perfectly 
identified. Slightly more than kro terms are needed 
for the convergence of the visible region, while 
modes with n>kro have influence on the invisible 
domain. The n-mode power spectrum is reported in 
Fig. 12, and compared to the one of a set of five 
dipoles with ro=λ and thus the same value of kro. 
The power contained in the high n modes is lower 
than in the five dipoles case: the corresponding Q’s 
can therefore better control the product with the 
diverging vector spherical harmonics. This could be 
the reason why a large part of the invisible region is 
reconstruct already for N= kro+10. 

 
Fig.12 n-mode power spectrum for a rectangular 
aperture with a=λ and b=2λ, compared with the 
one given by five dipoles with the same ro. 
 
The x component of the field is finally calculated on 
z=0.2λ as inverse Fourier transform of the x 
component of the spectrum with the use of the 
circular convolution, see Fig.13. No analytical 
expression of the field is known on that z plane, so 
the comparison is done between the IFT of the 
reference spectrum and the IFT of the spectrum 
represented by N=kro+10 terms, with the non- 
converging region replaced by zeros. Results are in 
linear scale and normalized in respect to the value 
on axis of the field obtained by the reference 
spectrum. The aperture dimensions on the (x,y) 
plane are identified, and again, extremely good 
agreement is found between the two pictures. 

 

 
Fig.13 Amplitude of the x component of the field 
on z=0.2λ, for a rectangular aperture with a=λ 
and b=2λ, in linear scale: on the left from the 
reference spectrum, on the right from N=kro+10. 

 

Conclusions 

A new antenna diagnostics technique for spherical 
near-field antenna measurements has been 
presented. The theoretical derivations as well as the 
two test cases have shown an important property: 
the plane wave spectrum, in the visible as well as in 
part of the invisible region, can be derived by the 
knowledge of the Q coefficients of the SWE of the 
field. This provides a spatial resolution in the 
aperture field higher than the usual half wavelength 
provided by the traditional techniques. It is 
important to point out that, while the reconstruction 
of the invisible domain of the PWE is in principle 
possible from the SWE, the practical truncation of 
the SWE in real measurements will of course 
enforce a limitation on this.  However, it has been 
shown that very accurate aperture fields can be 
obtained with a realistic truncation number, 
provided that the kz=0 singularity of the PWE is 
recovered. Future work will focus on the influence 
of noise and finite dynamic range on the truncation 
number for different types of antennas. Real 
measured data will then be included in the analysis.  
 

8. REFERENCES 

[1] Kaplan L., Hanfling J. D., Borgiotti G. V., The 
Backward Transform of the Near-Field for 
Reconstruction of Aperture Field, IEEE Trans. on 
Ant. and Prop. Soc. Symp. Dig., 764-767, 1979. 

[2] Homepage of the DTU-ESA Facility: 
http://www.oersted.dtu.dk/English/research/emi/afg/
dtu_esa_facility.aspx 

[3] Hansen J. E., Spherical Near-Field Antenna 
Measurements, Peter Peregrinus Ltd. London, 1988. 

[4] Joy E. B., Guler M. G., High Resolution 
Spherical Microwave Holography, IEEE Trans. on 
Ant. and Prop., vol. 43, 464-472, 1995. 

[5] Hansen T. B., Yaghjian A. D., Plane Wave 
Theory of Time-Domain Fields, Near-Field 
Scanning Applications, IEEE PRESS, 1999. 

[6] Devaney A. J., Wolf E., Multipole Expansion 
and Plane Wave Representations of the 
Electromagnetic Field, Journal of Math. and 
Physics, Vol. 15, 234-244, February 1974. 

[7] Cappellin C., Breinbjerg O., Frandsen A., A 
high Resolution Antenna Diagnostics Technique for 
Spherical Near-Field Measurements,  28th ESA 
Antenna Workshop, ESTEC, Noordwijk, The 
Netherlands, pp 899-906, 2005. 

[8] Oppenheim A. V., Schafer R. W., Digital Signal 
Processing, Prentice-Hall, 1975. 

[9] Silver S., Microwave Antenna theory and 
Design, Peter Peregrinus Ltd. London, 1984. 


