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Finite Element Analysis of two basic Composites

Lauge Fuglsang Nielsen

Preface and readers guidance

A composite theory has been presented in (1,2) on stiffness prediction of isotropic
composites. The composite geometries are thought of as stages in a process of one
phase transforming its geometry from spherical shapes to anti-spherical shapes
(shells). In a complementary way the other phase transforms from shells to sphe-
res.

In other words, the general composite geometry considered is the one outlined in
Figure c: Namely, a transition geometry between the so-called CSA geometries
(Composite Spheres Assemblage) shown in Figures a and b.

A number of numerical evaluations have been made in order to justify this geome-
trical concept which is the basis of the composite theory presented in (1,2): 4 the-
ory by which composite stiffness and internal stresses can be predicted for any com-
posite geometry.

COMPOSITE SPHERES ASSEMBLAGE (CSAp) COMPOSITE SPHERES ASSEMBLAGE (CSAs)

COMPOSITE SPHERE COMPOSITE SPHERE

PHASE P . PHASE 8

r
S v o
Volume concentrations

PHASE S

1-¢ C  concentration 1-¢

Figure a. 4 so-called Composite Spheres  Figure b. A so-called Composite Spheres

Assemblage: Here spheres of phase P Assemblage: Here spheres of phase S
embedded in a continuous phase S. embedded in a continuous phase P.

o B <

Figure c. Potential composite geome-
tries going from CSAp to CSAs. Black
and gray areas denote Phase P and
phase S respectively.

The present report is the complete documentation for a finite element analysis
made on three basic composites (parts have previously been reported in (1,3)).
The composites considered are the following (with four-letter definitions explai-
ned in Figure d):
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- DC-DC composites: Compact (Discrete) phase P particles in a continuous pha-
se S matrix ("Particulate composites”).

- CC-CC composites: Interconnected compact phase P particles in a continuous
phase S matrix ("pearls on a string composites").

- CC-CC composites: Three-dimensional grids of one phase in complementary
grids of the other phase ("Grid composites").

- A special analysis of the influence of defective phase-contacts on composite
stiffness is made as part of the analysis of particulate composites.

The text of the report is self-contained in the sense that principles and symbols
used are explained in Appendix A at the end of the report. The reader is kindly
asked to ‘go through’ this appendix before she reads the main section.

It is all over understood that concentration ¢ means volume fraction of phase P as
defined in the following expression where volumes are indicated by V. Phase S con-
centration is then 1 - c.

Ve (phase P) ; l—c= Vs (phase S)

C:—
Vet Vs Vpt Vs

PHASE P
D m=C+D C

Figure d. Stylized phase geometries in two-
phase materials. C, D and m (= C + D) de-
note continuous geometry, discrete geometry,
and mixed geometry respectively.

A DC-CD composite has a DC-geometry at a
phase P volume concentration of ¢ = 0 and a
CD-geometry at c = 1.

PHASE S

Remark: The nature of being a documentation report is emphasized. Only raw-
data — and raw-data treated with well-justified averaging procedures are presented.
Any application and graphical presentations of the data must be studied in (1,2,3)
and other publications referred to in these references.

The overall accuracy of the FEM-analysis made is evaluated in a special section
of the report.
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Introduction

As previously mentioned, parts of the FEM-analysis considered has previously been
reported in (1,3). The complete analysis, however, is presented in this report together
with references made to the original research reports (4,5,6,7,8,9,10). The FEM-me-
thod used is STRUDL (11).

2. Preliminaries

Composite models used in the FEM-analysis presented are models that can be made
by a tight stacking of equally sized congruent composite elements. A number of
composite elements form so-called basic-cells (such as cubic cells), which repeat
themselves into a macro model of the material considered. A fest volume for FEM-
analysis is volume large enough to represent the macro model with respect to speci-
fic material property considered in analysis. Test volumes can be small as they are in
the present study (smaller than the volume of a basic cell) when they are carefully
selected with respect to loading and materials symmetry.

2.1 Cubical elasticity

The material models presented have cubic basic cells which means that cubical
elasticity(Ec, vc, and Gc) of the macro model (material model) can be determined by
the following "theoretical FEM-experiments", see Appendix A, cubical elasticity.
Only two experiments are needed. The cubic Young's modulus and the cubic Pois-
son's ratio are obtained from the "axial experiment" explained in Equation 1. The
cubic shear modulus is obtained from the "shear experiment" explained in Equation
2. The results of the axial experiment can be checked by the "control experiment”
explained in Equation 3 from which the (Ec,vc)-dependent cubic bulk modulus K¢
can be obtained.

AXIAL EXPERIMENT
Conditions: & ey ey T e, ey, =0
Load: €Z=10'4 (D
Responses: oy (=oy)

02— 201 T 050 a
Results : Eo==F—""""" pe=——>

€z(Gx+O'z) 0x+02

SHEAR EXPERIMENT
Conditions: ey =ey=e, ey, ey, =0
Load: exy=10"" )
Responses:  oxy
Results : Gc= Txy

2exy
Control experiment
Conditions: & ey Zex, =y, =0
Load: ex=ey=ez=10" 3)
Responses: gz (=ox=ov)
Results : K=~ [=L]

3e, | 3(1-2u0)
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2.2 Isotropy

Isotropic material models can be thought of as isotropic mixtures of parts from cubic
model sources. These sources may have different sizes of composite elements which
allows for size graduation in the total composite. Isotropic stiffness is converted
from cubic stiffness by Equations 4 and 5 reproduced from Appendix A, poly-cubic
elasticity. The isotropic bulk modulus is calculated exact. The isotropic shear
modulus is given by upper and lower g-bound solutions. In the present analysis the
bounds are sufficiently close to justify a simple mean value approximation.

-1
L-Fg M_L SGSGC+2 L'GC] (4)
Gec S Ec Gc 512(1+ve)
Ec
K=Kq= 5
Kc 3(1-200) 5)

3. Analysis of particulate composite (DC-DC)
3.1 Model

The so-called TROC-composite outlined in Figures 1 and 2 is considered. It is a tight
composition of identical composite elements each of which has the shape of a
TRuncated OCtahedron with edges of equal lengths. The composite element is
reinforced by a centrally placed particle the shape and orientation of which are
similar to the composite element itself.

COMPOSITE ELEMENT 7
TTRO(‘-PART]CI,E

Figure 1. Stacked TROC-elements. Distance Figure 2. TROC-composite: Composite
between square faces of element is 1. element and basic cell. Length unit 1 is
heigth of composite element.

Test volume and FEM-division

Due to symmetry and antimetry with respect to both materials model and the FEM-
setup, subsequently explained, a test volume of only 1/16 of the basic cell is used in
the stiffness analysis of TROC-composites. The test volume and basic cell are shown
in Figure 3. Another illustration of the test volume is shown in Figure 4 with
coordinate system and symbols introduced which define the FEM-division
subsequently used.
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With 6 and 6' as points of affinity the test volume is divided into 2 times 13 layers
affine to the surfaces C'B'EABDD' and CBEA'B'D'D respectively, see Figure 5.
Thickness of layers can be chosen arbitrarily. By taking the factors of affinity as
independent variables this feature gives us the possibility of choosing an arbitrary
volume concentration of particles (defined as the area inside a layer).

Figure 3. Basic cell and test volume for

FEM-analysis of TROC-composite Figure 4. Test volume for FEM-analysis of

TROC-composite.
0 D' B
T KSR
SRR

1 e% Qi
R
SIS ¢
%&M&U— —_r Figure 6. Principle of FEM-division of

6 . . D c test volume. Unfolded surface of
Figure 5. FEM-division of test volume in TROC-element.

X =Y. Shaded areas are TROC-particles.
Arbitrarily chosen phase P concentration
c. (As illustrated ¢ = 0.34).

BASIC STRUDL
ISOPARAMETRIC FEM-ELEMENTS

DETAILS AT ORIGO OF
FINITE ELEMENT DIVISION

Figure 7. FEM-elements usea
and some combinations.

Every layer is then subdivided into finite elements as shown in Figure 6. The
elements used are isoparametric and of the types IPLS and TRIP defined in (11),
see Figure D7. The total amount of finite elements in the basis element is 738 with
948 sets of joint coordinates. The supporting joints in planes AA'6'C and A'C'6' are
modified by infinitely stiff bars to pick up reaction forces on the test volume. The



FEM analysis of two basic composites

version of the finite element program applied, STRUDL (11), is unable to give reac-
tions directly from finite element joints.

A detailed description of the finite element division is given in (4). This reference
also describes a program which is developed to generate automatically the 1255
sets of joint coordinates needed when changing the particle concentration (factors
of affinity).

FEM-setup

The following set-ups are designed to execute the experiments outlined in Equations
1-3. The average strain is joint movement divided by associated length (0.5) of test
volume, see Figure 3. The average stress is sum of bar forces divided by associated
surface area of test volume.

AXIAL EXPERIMENT

Conditions: All joints in faces of test volume are smoothly supported against infinitely
stiff parallel walls.

Load: Joints in face A6C are moved 0.5%10* in Z-direction.

Response:  Sum of Z-forces picked up from bars in face A'C'6’

SHEAR EXPERIMENT

Conditions: All joints in faces of test volume except A6C'A' and AA'6'C are smooth-
ly supported against infinitely stiff parallel walls. The joints in face
ABC'A' can move freely only in Y-direction. Joints in AA'6'C can move
freely only in X-direction.

Load: All joints in face A6C'A" are moved 0.5*10* in X-direction.

Response:  Sum of Y-forces picked up from bars in face AA'6'C

CONTROL EXPERIMENT (spot checks only)
Conditions: As in axial experiment.

Load: Joints in face A6C are moved 0.5%10* in Z-direction. Face AA'6'C is
moved -0.5%10 in X-direction.

Response:  Sum of Z-forces picked up from bars in face A'C'0'

FEM-results

A number of FEM-experiments have been made varying the stiffness parameters and
the volume concentrations (see Figure 5) of the TROC-model. The variables are
summarized as follows:

Variables: c=022-0.86, vg=0-04, v, =0-04, n=0- 10’

The raw data obtained from the axial experiment (ox,0y) and the shear experiment
(oxy) are presented in Table 1. Cubic stiffness parameters derived from these data by

Equations 2 and 3 are presented in Table 2. Isotropic stiffness parameters derived
from Equations 4 and 5 are presented in Table 3.




FEM analysis of two basic composites

10. 512 2.e5
10. 729 2.e5
353 729 2.e5
100. 512 2.e5
100. 729 2.e5
1.e5 729 2.e5
1.e5 729 2.e5
le5 729 2.e5

13.90655 54.83788  44.99459
22.24486 89.02735  73.71604
39.03639 105.92799 73.82064
17.21308 68.72851  60.51260
33.13180 138.70803 128.49007
21.06033 145.07626 144.18834
35.15577 147.93230 140.50922
107.13340 237.20075 197.75796

n c ES vS wvS oXx oz oxy
0 216 8e5 2 2 1471278 55.06929  43.23578
0 343 8eS 2 2 11.68733 40.53782  32.33229
0 512 8e5 2 2 829173 2576719 20.28353
0 729 8e5 .0 2 219976 1143127  10.40773
0 729 8eS 2 2 435933 12.12563  8.88100
0 729 8e5 4 2 797351 1475839 7.93490
0 8574  8e5 .0 2 122059 5.55475 4.76655
0 8574  8eS 2 2 221903 5.84648 4.02942
0 8574 8e5 4 2 378670 6.93173 3.55923
114 729  2e5 4 .0 202856 5.30578 3.56397
1 512 265 2 2 246370 8.63511 6.71724
13 512 2e5 2 2 336936 13.00879  9.92820
13 729  2e5 2 2 264806 1024968 7.79571
L. 5 65 2 2 16.68391 66.73593 _ 50.05188
3. 216 2e5 2 2 695928 27.63501  20.93380
3. 512 265 2 2 949556 37.53126  28.90596
3 J29  2e5 2 2 12.03125 4774705 36.73804

2 2

2 2

2 4

2 2

2 2

0 2

2 2

4 2

Table 1. Reaction stresses (kp/cm’) in experiments on plain TROC-composite. Axial oy and
oy. Shear: oyy.

n c Vs Vp ECUB/_ES_VCUB QCUB/ES

.00000 .21600 .20000 .20000 .61082 .21084  .64854
.00000 .34300 .20000 .20000 .44134 22379 48498
.00000 .51200 .20000 .20000 .27162 24345 30425

.00000 .72900 .00000 .20000 .13402 .16138 .13010

.00000 .72900 .20000 .20000 .12275 26444  .13321

.00000 .72900 .40000 .20000 .11456 35076  .13886
.00000 .85740 .00000 .20000 .06394 .18015 .05958
.00000 .85740 .20000 .20000 .05782 27513  .06044
.00000 .85740 .40000 .20000 .05320 .35329  .06229

.07143 72900 .40000 .00000 .20918 27658  .24948

10000 .51200 .20000  .20000  .37707 22198  .40303
33330 51200 .20000 20000 58112 20572 .59569
33330 72900 .20000  .20000 45812 20531 46774
1.00000 .50000 .20000 20000 1.00104  .20000 1.00104
3.00000 21600 .20000 .20000 1.24175 20117 1.25603
3.00000 .51200 .20000 .20000 1.68483 .20192 1.73436
3.00000 72900 .20000  .20000 2.14521 .20126 2.20428
10.00000 .51200 .20000 .20000 2.46057 .20229 2.69968
10.00000 .72900 .20000 .20000 4.00666  .19991 4.42296
11.66700 72900 .20000  .40000 4.24522 26928 4.42924
100.00000 .51200 .20000 .20000 3.09167 .20029 3.63076
100.00000 72900 .20000 .20000 6.29660 .19281 7.70940
100000.00000 .72900 .00000 .20000 6.98684  .12677 7.20942
100000.00000 .72900 .20000 .20000 6.72157  .19202 8.43055
100000.00000 .72900 .40000 .20000 8.52677 .31113 13.84306

Table 2. Cubic stiffness of plain TROC-composite.
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n C Vs Vp G/Gq K/Kq E/Eq v
.00000 .21600 .20000 .20000 .63054 .63371 63117 20120
63126 - .63175 .20093
.00000 .34300 .20000 .20000 46265 47934 46590 20842
46409 46707 20768
.00000 .51200 .20000 .20000 .28588 31763 29171 22448
28740 29298 22328
.00000 72900 .00000 .20000 12379 19788 14144 14262
12422 14181 14168
.00000 72900 .20000 .20000 12598 15633 13107 24848
12653 13154 24757
.00000 72900 40000 .20000 .13004 .07676 .12429 .33808
13081 .12495 33723
.00000 .85740 .00000 .20000 .05730 .09995 .06680 16584
.05742 06691 16258
.00000 .85740 .20000 .20000 .05788 07713 .06092 26307
.05803 .06105 26254
.00000 .85740 40000 .20000 .05917 .03626 .05678 34343
.05939 .05697 .34291
.07143 72900 40000 .00000 24104 .09363 21814 26701
.24145 .21846 .26668
.10000 .51200 .20000 .20000 .38926 40688 .39266 21048
.38993 39321 .21008
.33330 .51200 .20000 .20000 .58864 .59243 .58939 20154
.58876 .58949 20149
33330 72900 .20000 .20000 46301 46637 46368 20173
46308 46374 .20170
1.00000 .50000 .20000 20000 1.00104 1.00104 1.00104 .20000
1.00104 1.00104 .20000
3.00000 .21600 .20000 20000 1.24979 1.24661 1.24915 .19939
1.24983 1.24919 .19938
3.00000 51200 .20000 20000 1.71309 1.69567 1.70958 19754
1.71347 1.70988 .19749
3.00000 72900 .20000 20000 2.17933  2.15429 2.17428 19722
2.17975 2.17461 19717
10.00000 .51200 .20000 20000 2.59657 2.47953 2.57229 .18878
2.60216 2.57667 .18825
10.00000 72900 .20000 20000 4.24660 4.00551  4.19609 18573
4.25656 4.20386 .18514
11.66700 72900 .20000 40000 4.25302 5.52002 4.45765 25774
4.26294 4.46637 25726
100.00000 .51200 .20000 20000 3.39367 3.09464 3.32933 17725
3.41482 3.34559 17567
100.00000 72900 .20000 20000 7.09358 6.14915 6.88218 16424
7.15947 6.93169 16182
100000.00000 72900 .00000 20000 6.76900 9.35985  7.45705 .10165
6.80597 7.48692 .10005
100000.00000 72900 .20000 20000 7.67556  6.54732 7.41984 .16002
7.76497 7.48650 15697
100000.00000 72900 40000 20000 11.45786 4.51468 10.39236 26981
11.94772 10.76603 26153

Table 3. Polycubic stiffness bounds for plain TROC-composite.

10
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4. Analysis of defective particulate composite

Particulate composites with defective phase contact are considered in a FEM-
analysis just as the TROC-material. A thin layer of "voids" (or zones of missing
phase contact), however, is spread over the surface of the particle phase covering
several fractions of the total surface. The degree of missing phase contact is defined
by Equation 6 where S denotes particle surface.

X = Sinactive/ Stotal degree of missing phase contact

(6)

ca=xc[(1+ A)3 —1] associated void volume

Each zone of missing phase contact may be covered by a void of uniform thickness
A (relative to mean radius vector of particle) which is related to void concentration c,
(relative to composite volume) and y as given in Equation 6.

Remark: The zones of missing contact are introduced into FEM-analysis by simple
joint-cutting and by finite elements of no stiffness. Sufficient openings are assumed
between opposite zone faces such that load does not produce closure effects.

4.1 FEM-setup and results

The FEM models used have an area of missing phase contact centrally placed on
each of the 6-edge faces (N = 8) or on each of the 4-edge faces (N = 6) of the TROC-
particle. A number of FEM-experiments have been made varying the stiffness
parameters, the volume concentrations (see Figure 5) and degree (o) of missing
phase contact. The variables are summarized as follows:

Variables: ¢=0.25,vs=vp=0.2,n=0.1-10, ¢ =22%-78%, c, = 0-6%
c=042, vs=vp=02:n=1-10 withy=42% and c,=4.1%

The raw data obtained from the axial experiment (ox,0v) and the shear experiment
(oxy) are presented in Table 4. Cubic stiffness parameters derived from these data by
Equations 2 and 3 are presented in Table 5. Isotropic stiffness parameters derived
from Equations 4 and 5 are presented in Table 6.

Defects as cracks

x = 78 % corresponds to no contact at all between matrix and 6-edge faces of
particle. y = 0.224 corresponds to no contact at all between matrix and 4-edge faces
of particle.

The defective areas including voids corespond to short hollow cylindrical fibres the
characteristics of which can be calculated by Equation 7. H is height of composite
element, h is corresponding height of inclusion. N = 8 for number of 6-edge faces
per TROC-particle. N = 4 for number of 4-edge faces per TROC-particel.

Fibre diameter: d (diameter of void)

Fibre aspect ratio: A =1/d (1 is length of fibre = thickness of void)
Crack density: p (number of cracks per volume unit)

Crack parameter: pd® (easily calculated by (4))

11
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d=h* /Z—X(l + 2\/5) where h=H * \3/5 (crack diameter)
T

NG 3 32

p="5 (crack density) = pd’=2N*c* [—X(l +243 )] M
h 8w

A= 4XC3 [(1 + A)3 _ 1] (aspect ratio)
Tpd

A cracked homogeneous material

A 'defective particulate composite' with a stiffness ratio of n =1 is of special interest
because this composite is, in fact, a cracked homogeneous material. One such mate-
rial with cracks placed on the 8-edge faces of fictitious TROC-particles is defined in
Equation 8. The crack characteristics (pd’,A) are calculated by Equation 7 with
geometrical information introduced from Table 6. The (cracked) materials stiffness
associated (E/Es) is also shown in Equation 8.

pd*=0.272
(c,N,x,A)=(0.25,8,0.3128,0) = |A =0

E/Eg=0.96

pd*=0.272
(¢,N,x,A)=(0.25,8,0.3128,0.1111) = |A =0.136 (8)

E/Eg=0.92

pd*=0.92
(c,N,x,A)=(0.422,8,0.497,0.067) = |A =0.0623

E/Eg=0.82
n C Es ¥ N A Ca Oy o; Oxy
0.1 025 3¢5 0.0 8. 0.0 0.0 5.64187 21.4337 16.6075
0.1 025 3e5 03128 8. 0.0 0.0 5.52754  21.0901 16.4699
0.1 025 3e5 03128 8. 0.1111 0.0252 530531 20.3145 15.7044
0.1 025 365 07760 8. 00 0.0 531115 20.2065 15.8471
0.1 025 3e5 07760 8. 0.1111 0.0596 4.78016 18.0350 13.9938
1.0 025 3e5 03128 8. 0.0 0.0 7.63060 31.7567 24.1558
1.0 025 365 03128 8. 0.1111 0.0252 7.47874 30.5322 23.1879
2.3333 025 3.5 02240 6. 0.1111 0.0232 9.07449 37.0004 28.4921
2.3333 025 3e5 03128 8. 0.0 0.0 9.13265 38.5681 29.4133
23333 025 3e5 03128 8. 01111 00252 891010 37.0617 28.1979
2.3333 025 3e5 07760 8. 0.0 0.0 6.43111 31.9672 24.7755
2.3333 025 3e5 07760 8. 0.0317 0.0170 6.47292 30.8845 23.9469
2.3333 025 365 07760 8. 0.1111 0.0596 6.47904 29.4582 22.6830
10. 025 3¢5 0.0 8. 0.0 0.0 12.9076 50.7740 39.5445
10. 025 3e5 03128 8. 0.0 0.0 11.2129 47.9405 37.4999
10. 025 3¢5 03128 8 0.1111 00252 107837 46.0183 35.7760
10. 025 3e5 07760 8. 0.0 0.0 6.93955 38.9623 30.7241
10. 025 3e5 07760 8. 0.1111 0.0596 7.15779 35.4200 27.2428
L. 0422 3.5 0497 8. 0067 0041 637132 26.7849 20.6577
10. 0422 3e5 0497 8. 0.067 0.041 11.1205 53.4810 41.3576

Table 4. Reaction stresses (kp/cm’) in experiments on defective TROC-composite. Axial ox
and ov. Shear: oxv.
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n c X A ca EcuslEs vcus__GeuslGs

.100000 25000 .00000 .00000  .00000  .63608 20837  .66430
.100000 25000 .31280 .00000  .00000  .62648 20766  .65880
.100000 25000 .31280 .I11110  .02520  .60391 20708  .62818
.100000 25000 .77600 .00000  .00000  .59985 20814  .63388
.100000 25000 .77600 .11110  .05960  .53440 .20952  .55975
1.000000 .25000 .31280 .00000 ~ .00000  .96000 .19373  .96623
1.000000 .25000 .31280 .11110  .02520  .91964 .19675  .92752
2.333300 .25000 .22400 .11110  .02320 1.11420 .19695 1.13968
2.333300 .25000 .31280 .00000  .00000 1.16904 .19146 1.17653
2.333300 .25000 31280 .11110  .02520 1.12026 .19382 1.12792
2.333300 .25000 .77600 .00000  .00000  .99377 .16748  .99102
2.333300 .25000 .77600 .03170  .01700  .95471 17327 95788
2.333300 .25000 .77600 .11110  .05960  .90407 .18029  .90732
10.000000 .25000 .00000 .00000  .00000 1.51805 .20269 1.58178
10.000000 .25000 .31280 .00000  .00000 1.45632 .18956 1.50000
10.000000 .25000 .31280 .11110  .02520 1.39746 .18985 1.43104
10.000000 .25000 .77600 .00000  .00000 122880 .15118 1.22896
10.000000 25000 77600 .11110  .05960 1.10045 .16811 1.08971
1.000000 .42200 .49700 .06700  .04100  .81121 .19216  .82631
10.000000 .42200 .49700 .06700  .04100 1.65508 .17214 1.65430

Table 5. Cubic stiffness of defective TROC-composite.

n C X A Ca G/Gq K/Kg E/Eg \'4
.100000 .25000 .00000 .00000 .00000 65085 .65435 65155 20128
.65125 65187 20114
.100000 .25000 .31280 .00000 .00000 64378 .64290 .64361 .19967
.64428 .64400 .19949
.100000 .25000 .31280 .11110 .02520 61675 .61850 .61710 20068
.61705 .61734 20056
.100000 .25000 .77600 .00000 .00000 61809 .61658 61778 19941
.61866 .61824 19919
.100000 .25000 .77600 .11110 .05960 54754 55191 .54841 20190
.54793 .54872 20173
1.000000 .25000 .31280 .00000 .00000 96576 94036 96057 .19355
96576 96057 .19355
1.000000 .25000 .31280 .11110 .02520 92536 90979 92220 .19591
.92537 92221 19591
2.333300 .25000 .22400 .11110 .02320 1.13052 1.10299 1.12490 .19404
1.13063 1.12499 .19402
2.333300 .25000 .31280 .00000 .00000 1.17689 1.13667 1.16862 .19157
1.17689 1.16862 .19157
2.333300 .25000 31280 .11110 .02520 1.12717 1.09764 1.12114 .19358
1.12718 1.12114 19358
2.333300 .25000 .77600 .00000 .00000 1.00297 .89659 97972 17218
1.00319 97989 .17213
2.333300 .25000 .77600 .03170 .01700 96523 87661 94610 .17622
96531 94616 .17620
2.333300 .25000 .77600 .11110 .05960 91202  .84833 .89853 .18225
91206 .89856 .18224
10.000000 .25000 .00000 .00000 .00000 1.55423 1.53178 1.54969 .19649
1.55493 1.55025 .19638
10.000000 .25000 .31280 .00000 .00000 1.48748 1.40733 1.47073 .18648
1.48764 1.47085 .18646
10.000000 .25000 .31280 .11110 .02520 1.42230 1.35171 1.40760 .18760
1.42238 1.40766 .18758
10.000000 .25000 .77600 .00000 .00000 1.24923 1.05683 1.20534 .15784
1.24974 1.20572 15773
10.000000 .25000 .77600 .11110 .05960 1.10566 .99471 1.08154 .17381
1.10602 1.08181 .17373
1.000000 .42200 .49700 .06700 .04100 .82237 79055 81581 .19042
.82240 81583 .19041
10.000000 .42200 49700 .06700 .04100 1.67012 1.51444 1.63648 .17583
1.67035 1.63665 .17579

Table 6. Poly-cubic stiffness bounds for defective TROC-compo-
site.
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5. Pearls on a string composite (CC-CC)

The FEM-analysis of a TROC-material is also used in an analysis of composites
where particles have grown together changing phase P from being discrete to being
continuous like pearls on a string - or in other words, from being a closed "pore"
system to being an open "pore" system.

5.1 FEM-setup and results

FEM-setup is as explained in Figures 1 - 7. The "pearls on a string" geometry of
phase P is obtained by interconnecting the TROC-particles between the 6-edge faces
of the TROC-particles. Cylindrical tunnels are formed by letting the finite elements
between particles, see Figure 5, take the properties of the particles. The volume frac-
tion of phase P TROC-particles relative to total phase P volume (both TROC and
tunnels) is denoted by o.

A number of FEM-experiments have been made on Pearls on a string composites
defined as follows:

¢c=036,a0a=60%,vs =vp=02:n=0-10
c=045 a=76%,vs =vep =0.2:1n=0and 100
c=0.67,aa=76%,vs=vr=02:n=0-100

Variables:

The raw data obtained from the axial experiment (ox,0y) and the shear experiment
(oxy) are presented in Table 7. Cubic stiffness parameters derived from these data by
Equations 2 and 3 are presented in Table D8. Isotropic stiffness parameters derived
from Equations 4 and 5 are presented in Table 9.

n C a(®) Es wvs  wvs oy o, Oyy

0. 36 60. 8e5 2 2 8.34233 36.98560 24.36056
333333 36 60. 2e5 2 2 3.78127 15.24916 11.37820
3. 36 60. 2e5 2 2 8.49105 32.80770 25.30464
10. .36 60. 2e5 2 2 16.42488 51.60347 45.69911
l.e-5 451 76. 2e5 2 2 1.729845 7.21862 477155
100. 451 76. 2e5 2 2 124.22087 286.63932 321.55018
l.e-5 674 76. 2e5 2 2 0.65792 3.43617 1.46436
333333 674 76. 2e5 2 2 2.66456 10.89348 7.99115
3. 674 76. 2e5 2 2 11.67492 46.63378 35.29817
10. 674 76. 2e5 2 2 28.42779 107.75521 86.38002
100. 674 76. 2e5 2 2 22942133 770.07510 679.22262

Table 7. Reaction stresses (kp/cm’) in experiments on Pearls on a String
TROC-composite. Axial ox and ov. Shear: oxv.

n c a(%) vs vp Ecus/Es_veus GeuslGs
.00000 .36000 60. .20000 .20000 42394 18404 36541
33333 .36000 60. .20000 .20000 .68733 19870 68269

3.00000 .36000 60. .20000 .20000 1.46581 .20560 1.51828
10.00000 .36000 60. .20000 .20000 2.18361 24144 2.74195
.00001 45100 76. 20000 20000 32749 19331 28629
100.00000 145100 76. 20000 .20000 10.57623  .30234 19.29301
.00001 67400 76. 20000 20000 16124 16070 08786
33333 .67400 76. 20000 .20000 49231 19653 47947
3.00000 .67400 76. .20000 .20000 2.09793  .20023 2.11789
10.00000 67400 76. 20000 .20000 479434 20875 5.18280
100.00000 .67400 76. 20000 .20000 33.23769 .22954  40.75335

Table 8. Cubic stiffness of Pearls on a String TROC-composite.
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n c(a%) v Vp G/Gg K/Kg E/Es A\'4

.00000 .360(60) .20000 .20000 .38865 40253 39135 20833
39110 39334 20685

33333 .360(60) .20000 .20000 .68483 .68435 68474 19983
.68484 68475 19983

3.00000  .360(60) .20000 .20000 1.49400 1.49369 1.49394 19995
1.49457 1.49439 19986

10.00000 .360(60) .20000 .20000 2.44899 2.53360 2.46546 20807
2.48945 249816 .20420

.00001 A451(76) .20000 .20000 .30208 .32035 30557 21384
30351 30673 21275

100.00000  .451(76) .20000 .20000 13.86086  16.05243  14.24996 .23369
15.47385 15.58620 .20871

.00001 .674(76) .20000 .20000 .10836 14256 11382 26048
11939 12341 24031

33333 .674(76) 20000 .20000 48508 48668 48540 .20079
48518 48548 20074

3.00000 .674(76) .20000 .20000 2.10970 2.09951 2.10765 .19884
2.10975 2.10769 .19883

10.00000 .674(76) .20000 .20000 5.00482 4.93832 499138 .19678
5.01354 499831 .19636

100.00000 .674(76) .20000 .20000 36.96384  36.86753  36.94454 .19937
37.42770 37.31431 .19636

Table 9. Poly-cubic stiffness bounds for Pearls on a String TROC-compo-

site.
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6. Grid composite (CC-CC)
6.1 Model

The so-called CROSS-composite shown in Figure 8 is considered. It is a phase
symmetric cubic frame work of phase P embedded in a complementary cubic frame
work of phase S. The composite element and the basic cell of a CROSS-composite
are shown in Figure 9.

COMPOSITE ELEMENT (CROSS-ELEMENT) '/‘ CROSS.CENTRE
N "ROSS-CENTRE
1 ® o
1l e v
Y >
! o
|
1t e o \
I b i i
U X ~0 | °
Figure 9. Composite element and basic cell for CROSS-

Figure 8. CROSS-com-posite  comnosite. Both heights are 1.

A FEM-DIVISION OF
7Z  TESTVOLUME
et A Z=05, T —
AN - ‘ 1>
I L 4 ""I_"'--_""
';' i STRUDL BOX
LT ELEMENT
- =
=] 18 | .
s - (a2
L X=05 [ c=c33-20)
I\ e S ——
Figure 10. Shaded box is test volume Figure 11. FEM-structure of test volume.
for FEM-analysis. Length unit 1 is Size of FEM-elements and phase P concen-
heigth of composite element. tration (c) is regulated by 0 < o < 1 as in-
dicated.

6.2 Test volume and FEM-division

Due to symmetry and antimetry with respect to both materials model and the FEM-
setup, subsequently explained, a test volume of only 1/64 of the basic cell is used in
the stiffness analysis of CROSS-composites. The composite element, basic cell and
test volume are shown in Figures 9 and 10.

The very simple FEM-structure of the test volume shown in Figure 11 is made
possible combining the cubic regularity of the composite element with very refined
STRUDL box type elements, see Figure 11, defined in (11). It is indicated in Figure
11 how volume concentrations (c¢) can be chosen arbitrarily in analysis.

The supporting joints in planes X = 1/2 and Z = 1/2 are modified by infinitely stiff
bars to pick up reaction forces on the test volume. The version of the finite element
program applied, STRUDL (11), is unable to give reactions directly from finite
element joints.
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AXIAL EXPERIMENT

Conditions: All joints in faces of test volume are smoothly supported against in-
finitely stiff parallel walls.

Load: Joints in face Z = 0 are moved 0.5*10* in Z-direction.

Response: Sum of Z-forces picked up from bars in face Z = 1/2.

SHEAR EXPERIMENT

Conditions: All joints in planes Z = 0 and Z = 1/2 are smoothly supported against
infinitely stiff parallel walls. The joints in planes Y = O and Y = 1/2
can move freely only in Y-direction. Joints in X = 0 and X = 1/2 can
move freely only in X-direction.

Load: All joints in plane Y = 0 are moved 0.5*10* in X-direction. All joints
in X = 0 are moved 0.5*10™ in Y-direction

Response: Sum of Y-forces picked up from bars in plane X = 1/2

CONTROL EXPERIMENT (spot checks only)
Conditions: ~ As in axial experiment.

Load: Joints in plane Z = 0 are moved 0.5*10* in Z-direction. Joints in
plane X = 0 are moved 0.5*10* in X-direction. Joints in plane Y = 0
are moved 0.5*%10* in Y-direction.

Response: Sum of Z-forces picked up from bars in plane Z = 1/2 (= sum of X-
forces picked up from bars in plane X = 1/2).

FEM-setup

The following set-ups are designed to execute the experiments outlined in Equations
1-3. The average strain is joint movement divided by associated length (0.5) of test
volume, see Figure 10. The average stress is sum of bar forces divided by associated
surface area (0.25) of test volume, see Figure 10 again.

FEM-results

A number of FEM-experiments have been made varying the stiffness parameters and
the volume concentrations, ¢, of the CROSS-model. The variables are summarized
as follows:

Variables: c=025-0.75, vp=v3=02, n=0- 10°

The raw data obtained from the axial experiment (ox,0y) and the shear experiment
(oxy) are presented in Table 10. Cubic stiffness parameters derived from these data
by Equations 2 and 3 are presented in Table 11. Isotropic stiffness parameters
derived from Equations 4 and 5 are presented in Table 12.
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n C Es Vs_ Vs Oy (o} Oxy
5.e-6 2522 2.e5 2 2 2.34360 12.2310 7.56482
.01 2522 2.e5 2 2 242376 12.4551 7.79996
1 2522 2.e5 2 2 3.04553 14.1795 9.56759
333333 2522 2.e5 2 2 4.11096 17.2564 12.5175
3. 2522 2.5 2 2 7.10379 303116 21.5464
10. 2522 2.5 2 2 9.18508 49.9761 27.8779
100. 2522 2.5 2 2 27.1192 275.502 67.9144
1000. 2522 2.e5 2 2 203.517 2515.67 443.012

0. .5 2.e5 2 2 .830440 6.23841 2.45587
.001 .5 2.e5 2 2 .839332 6.26705 2.48726
.01 .5 2.e5 2 2 918772 6.52110 2.76339
1 .5 2.e5 2 2 1.64688 8.78233 5.11944
333333 5 2.5 2 2 3.08359 13.3206 9.39984
1. 5 2.5 2 2 5.55480 22.2220 16.6656
10. .5 2.e5 2 2 16.4687 87.8232 51.1945

0. 7478 2.e5 2 2 195981 2.48889 416377
.01 7478 2.e5 2 2 271191 2.75504 .679140
1 7478 2.e5 2 2 918508 4.99762 2.78779
1000. 7478 2.e5 2 2 2351.29 12252.7 7588.46

Table 10. Reaction stresses (kp/cm®) in experiments on CROSS-
composite. Axial ox and ov. Shear: oxy.

n c Vs Vp EcuelEs_vcus GeuelGs
5.e-6 25220 .20000 .20000 .57386 .16080 45389
.01000 .25220 .20000 .20000 58327 .16290 46800
10000 .25220 .20000 .20000 .65513 17681 .57406
33333 25220 .20000 .20000 78373 19239 75105
3.00000 .25220 .20000 .20000 1.38071 .18986 1.29278
10.00000 .25220 .20000 .20000 2.35620 15526 1.67267
100.00000 .25220 .20000 .20000 13.53207 08961 4.07486
1000.00000  .25220 .20000 .20000 124.26030 .07484 26.58072
.00000 .50000 .20000 .20000 30216 11748 14735
.00100 .50000 .20000 .20000 .30344 11811 14924
.01000 .50000 .20000 .20000 31471 12349 .16580
.10000  .50000 .20000 .20000 41311 15791 30717
33333 50000 .20000 .20000 .60807 18798 .56399
1.00000 .50000 .20000 .20000 1.00002 .19997 .99994
10.00000 .50000 .20000 .20000 4.13110 15791 3.07167
.00000 .74780 .20000 .20000 12301 07299 02498
.01000 .74780 .20000 .20000 13532 .08961 .04075
.10000 .74780 .20000 .20000 23562 15525 16727
1000.00000 .74780 .20000 .20000  574.77850 16100 455.30760

Table 11. Cubic stiffness of CROSS-composite.
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n C Vg Vp G/Gq K/Kq E/Eq v

5.e-6 25220 .20000 .20000 .50096 .50755 .50226 20312
.50963 - .50921 19901

.01000 .25220 .20000 .20000 51371 .51908 51477 .20249
52155 - .52105 .19886

.10000 .25220 .20000 .20000 .60829 .60812 .60825 .19993
61165 - .61094 .19861

33333 .25220 .20000 .20000 76568 76435 76541 .19958
76612 - 76577 19944

3.00000 .25220 .20000 .20000 1.33089 1.33558 1.33183 .20084
1.33266 - 1.33324 .20052

10.00000 25220 .20000 .20000 191519  2.05039 1.94078 21604
1.98256 - 1.99579 .20799

100.00000 .25220 .20000 .20000 5.74434  9.89221 6.27016 .30985
8.40611 - 8.66650 23717

1000.00000 .25220 .20000 .20000 39.28336 87.68112 44.15820 .34891
71.44010 - 74.18846 24616

.00000 .50000 .20000 .20000 .18851 23698 19655 25117
21820 - 22172 21932

.00100  .50000 .20000 .20000 .19052 23837 .19849 25019
21981 - 22328 21899

.01000 .50000 .20000 .20000 20796 .25076 21531 24242
23394 - 23712 21632

.10000  .50000 .20000 .20000 .34630 36228 .34939 21068
35555 - 35688 .20448

33333 .50000 .20000 .20000 .58306 .58463 .58338 .20064
.58408 - .58419 .20023

1.00000 .50000 .20000 .20000 .99998 .99992 1.00002 .19999
.99998 - 1.00002 .19999

10.00000 .50000 .20000 .20000 3.46304  3.62282  3.49386 21068
3.55551 - 3.56877 .20448

.00000 .74780 .20000 .20000 .03714 .08643 .04192 35448
.07002 - .07278 24736

.01000 .74780 .20000 .20000 05744 .09892 06270 .30985
.08406 - .08667 23717

.10000 .74780 .20000 .20000 19152 20504 .19408 21604
.19826 - 19958 .20799

1000.00000 .74780 .20000 .20000 502.23610 508.65840 503.50760 .20304

510.81840

510.38490 .19898

Table 12. Poly-cubic stiffness bounds for CROSS-composite.
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7. On the accuracy of FEM-analysis

Approximately every second cubic bulk K¢ = E¢/(1 - 2vc) obtained from axial expe-
riments are checked by the control experiment explained in Equation 3. The results
agree within the first five significant digits. The isotropic Young's modulus for n = 1
and vp = vs = 0.2 is calculated with an accuracy < 1 o/oo. It is concluded from these
observations that the FEM-partitioning used in the analysis is appropriate in general,
and that numerical errors are very modest at moderate stiffness ratios.

In general no accurate error analysis can be made on the stiffness moduli predicted
by FEM-analysis. Some valuable estimates on accuracy, however, can be made at vp
=vs = 0.2 from Equation 9 which is an adapted compilation of expressions presented
in appropriate theoretical expressions in (1,2).

OFEM:[H—C(H—D]CFEM—H n<Qppm <1 atn<l
l+c(n—1)—erpMm I <Qppm <n atn>1
erem(n,c) = (CSAp) 9)

€FEM (l/n,c)
erem(M,C) =N *erpm (l/n,l — c) (Phase - symmetry)

- The former expression checks that no FEM results violate the H/S bounds. A
high accuracy of the FEM-analysis is indicated by a continuous and smooth
development of Orpm(c) at increasing stiffness ratios, n. Particulate composites
will have Orgm(c) close to 1. Phase-symmetric composites will have Orpm(c)
closer to n.

- The second expression can be used to check the accuracy of the FEM-analysis
of the TROC material assuming that this material behaves as a CSPp
composite

- The latter expression can be used to check the FEM-analysis of the CROSS
material because this material is in fact phase-symmetric.

- 10 ‘
| TROC(e)
I DOTS: O(FEM) !
i !
! |
| 7
! 1 o
I | .
© 2 © 5 ?
| ol TROC(e)
|
I | DOTS: O(FEM)
s 8 !
! o=1 !
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, !
|
', 0=1
| pe ot G-
II S0
< 0
0
0 50 100 0 5 10
N N

Figure 13. TROC-composite with vp =
vs = 0.2: 6-test on FEM-data obtained
to determine Young's modulus.

Figure 12. TROC-composite with ver =
vs = (0.2: o-test on FEM-data obtained to
determine Young's modulus.
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The TROC FEM-results (with vp = vg = 0.2) have been checked by the former ex-
pression in Equation 9. No violations of the H/S bounds were found (Figures 12 and
13). It was observed that Orgm(c) keeps very much to = 1, meaning that the material
tested behaves approximately as a CSAp composite (Figure 14). An accuracy of
about 1% is then calculated by the second expression in Equation 9.

Also for the CROSS FEM-results (with vp = vs = 0.2), no violations of the H/S
bounds were found (Figures 15 and 16). The phase-symmetric geometry is con-
firmed which means that an accuracy of <<1 % is calculated by the latter term in
Equation 9.

Conclusion: From the above discussion is stated that only very modest errors are
attached to the stiffness properties determined by FEM-analysis.

7.5 . 30 ,
!
TROC(e) . ;
DOTS: | e=FEMdata /
SOLID:| e=e(CSAs) / s
//
!
5.0 20 //
(%]
o . /e CROSS(e)
N L DOTS: O(FEM
L D c // > ( )
® 1
Il /
1
v25 * 10 d
1
/
//
! @
! [ ]
/
I 0=1
0.0 Y Seleeleieletelieeleieieiel setuleteleteileialeieleluie
0.0 25 5.0 7.5 5 = 100
Eesap Figure 15. CROSS-composite with vp =

Figure 14. TROC-composite with vp = vs = vg = 0.2: O-test on FEM-data obtained to
0.2: FEM-Young's modulus compared with

determine Young's modulus.
Young's modulus of CSAp composite.

7.1 False data

10

The following rule has been used to
exclude false data (mistakes in tests or
data treatment): If a description can be
made which fits very well a large number

- o of familiar data with only a few data as
e il clear exceptions - then these data can be
’ CROSS(e) | considered false. Only one false data set

DOTS: O(FEM)

was found in this FEM-analysis, namely
, shear modulus g of the TROC-composite
. at (n,vs,vp.c) = (10°,0.4,0.2,0.73). The

. o=1 . .
t’ij' ************************** reason for exclusion is obvious from
0¥ : 4 appropriate Figures in the theoretical
N works (1,2).

Figure 16. CROSS-composite with vp =
vg= 0.2: O-test on FEM-data obtained to
determine Young's modulus.
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Appendix A - Elasticity
A.1 Isotropy

Stiffness of an isotropic elastic material is defined by the bulk modulus K and the
shear modulus G. Young's modulus E, and the Poisson's ratio (v) together with two
v-parameters (x and v) are related to K and G as follows.

__9KG . 3K-2G
3K+G 2(3K +G)
- k=t (AI)
2(1+v) 3(1-2v)
2(1-2v) 7-5v
K=———" ) =
1+v 2(4-5v)

A.1.1 Composite aspects

In composite theory it is very often appropriate to relate composite elastic moduli
(K, G, E, v) to elastic moduli (Ks, Gs, Es, vs) of an isotropic reference material S.
Dimensionless versions of E and v are then presented as follows with k = K/Kg, g =
G/Gg, and e = E/Eg

o= 3kg = (I+vek-(1-2v5)g
2(1+vgk +(1-2p8)g 2(1+yg)k +(1-2p5)g

(A2)

A.1.2 Stress-strain

The stress tensor oj; and the strain tensor ¢;; are related as follows (ex 12) when an
1sotropic elastic material is considered with stiffness properties from Equation Al.

_1+v 5 % ]
€ij= ——=—| 0~ 0T Okk
+ ..
E I+ i,j=1,2,3
1%
%iT 1, €ij+6ijm€kk] (A3)

1ifi=]

with Kroneckers delta  § =[ 0 ifis |

Volumetric stress and strain are denoted by oy = 011 + O + o33 and ey = €11 + €22
+ €33 respectively. The stress strain relation can also be written as follows in two

expressions - one relating volumetric strain to volumetric stress - and another one
relating deviatoric strain (e;) to deviatoric stress ().

_Okk e |EKKTEN +e55 T e33 volumetric strain
Ekk =5, Wit .
3K ok =011t o2t o33 volumetric stress
(A4)
i eij= cij— dije/3  deviatoric strain
e~ o~
' 2G

with

Sij = 0ij — 6ijo‘kk/3 deviatoric stress
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A.2 Cubic elasticity

Stiffness of a cubic elastic material is defined by the cubic bulk modulus K¢, the
cubic shear modulus G¢, and the cubic Young's modulus Ec or the cubic Poisson's
ratio ve. The constitutive equation of a cubical elastic material can be expressed as
shown in Equation A5 using the coordinate system defined in Figure A1 with stress-
strain planes coinciding with planes of elastic symmetry (and materials symmetry).

Qubic material models are considered in
the main text of this report. The stiffness
parameters for these materials can be de-
termined performing the two 'FEM-experi-
ments' outlined in Equations A6 and A7.
The cubic Young's modulus, the cubic
Poisson's ratio, and the cubic bulk modu-
lus are obtained from the "axial experi-
ment" explained in Equation A6. The cu-
bic shear modulus is obtained from the

X "shear experiment" explained in Equation
AT.
Figure Al. Coordinate system used in
FEM-analysis.
€x 1/Ec -vd/Ec -vc/Ec 0 0 0 | ox
ey| |-vd/Bc  VEc -vd/Ec 0 0 0 | oy
€z| _ -vd/Ec  -vd/Ec 1/Ec 0 0 0 %| Oz (AS)
Exy 0 0 0 1/2Gc 0 0] |oxy
Exz 0 0 0 0 12Gc 0| |oxz
Eyz 0 0 0 0 0 12Gc| |oyz
Conditions : ExTEyTExy —Exz—Eyz =0
Load = response: ¢; = ox (5ovy)
02— 205t 0x0 o
Results : E.=—F—7"2  yc=—— = (A6)
€Z(O'X + O'Z) ox T o
K.=—LE¢
3(1—-2y¢)
Conditions : Ex=Ey=€r=Exz =€y, =0
Load =response: exy = oxy (A7)
Result : G.= Txy
28xy

A.2.1 Poly-cubic elasticity

Isotropic mixtures of parts from a cubic material behave elastically, just as an
1sotropic mixture of cubic crystals. Equation A8 expresses the exact bulk modulus
for such mixtures (13).
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Ec
K = _ A8
Kc 3(1-200) (A8)

No corresponding exact poly-cubic shear modulus solution has yet been found.
However, it has been shown (14) that the true value is bounded between two
solutions derived in (15,16). Some re-writing of these boundary values imply

-1
2(1+ye) 1
Ec Gc

12 oo _Ee
Ge 5 S 2(1+ve)

_Ec Gc] (A9)

The lower bound (16) is based on an assumption which is tantamount to assuming
that the state of stress is identical from crystal to crystal. Correspondingly the upper
bound (15) assumes identical states of strain. If the crystals were isotropic then
Equation A9 predicts G = G¢. Improved bounds for poly-crystals have been given by
Hashin and Shtrikman (17). For the present work, however, the bounds in Equation
A9 suffice. The upper and lower bounds are sufficiently close to justify simple mean
value approximations.

A.2.2 Composite aspects

When isotropic mixtures of cubic composite elements are considered it is very often
appropriate to relate composite cubic elastic moduli (K¢, Ge, Ec, vc) to the elastic
moduli (Ks, Gs, Es, vs) of an isotropic reference material S. Normalized versions of
Equations A8 and A9 with respect to phase S are presented as follows with relative
coefficients of cubical elasticity ke = Kc/Ks, gc = Gc/Gs, and ec = E¢/Es,

1-2 1
k=kc=ec vS = Vc:—[l—e—c(l—zvs)]
1—2uc 2 kc
1 (A10)
1 21+ 1 1 2(1+
(R TEREIY [ e
gc S(ltusec gc S\+ve
which can also be expressed as follows with v¢ introduced
LR 1_1—2vs]
=5 5(1+
g Sgc S(1+ws)lec kc g (A11)
g§3g;C+4(l+Us) i_l—ZUS]
5 5 ec kc
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