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Finite Element Analysis of two basic Composites 
 

Lauge Fuglsang Nielsen 
 
 

Preface and readers guidance 
A composite theory has been presented in (1,2) on stiffness prediction of isotropic 
composites. The composite geometries are thought of as stages in a process of one 
phase transforming its geometry from spherical shapes to anti-spherical shapes 
(shells). In a complementary way the other phase transforms from shells to sphe-
res. 

In other words, the general composite geometry considered is the one outlined in 
Figure c: Namely, a transition geometry between the so-called CSA geometries 
(Composite Spheres Assemblage) shown in Figures a and b. 

A number of numerical evaluations have been made in order to justify this geome-
trical concept which is the basis of the composite theory presented in (1,2): A the-
ory by which composite stiffness and internal stresses can be predicted for any com-
posite geometry. 

Figure a. A so-called Composite Spheres
Assemblage: Here spheres of phase P
embedded in a continuous phase S.

Figure b. A so-called Composite Spheres
Assemblage: Here spheres of phase S
embedded in a continuous phase P. 

 

Figure c. Potential composite geome-
tries going from CSAP to CSAS. Black
and gray areas denote Phase P and
phase S respectively.  

The present report is the complete documentation for a finite element analysis 
made on three basic composites (parts have previously been reported in (1,3)). 
The composites considered are the following (with four-letter definitions explai-
ned in Figure d): 

 1



FEM analysis of two basic composites 

- DC-DC composites: Compact (Discrete) phase P particles in a continuous pha-
se S matrix ("Particulate composites"). 

- CC-CC composites: Interconnected compact phase P particles in a continuous 
phase S matrix ("pearls on a string composites"). 

- CC-CC composites: Three-dimensional grids of one phase in complementary 
grids of the other phase ("Grid composites"). 

- A special analysis of the influence of defective phase-contacts on composite 
stiffness is made as part of the analysis of particulate composites. 

The text of the report is self-contained in the sense that principles and symbols 
used are explained in Appendix A at the end of the report. The reader is kindly 
asked to ‘go through’ this appendix before she reads the main section. 

It is all over understood that concentration c means volume fraction of phase P as 
defined in the following expression where volumes are indicated by V. Phase S con-
centration is then 1 - c. 

P

P S p S

V Vc =   (phase P)   ;   1  c =   (phase S)
 +  + V V V V

− S   

Figure d. Stylized phase geometries in two-
phase materials. C, D and  m (= C + D) de-
note continuous geometry, discrete geometry,
and mixed geometry respectively. 
A DC-CD composite has a DC-geometry at a
phase P volume concentration of c ≈ 0 and a
CD-geometry at c ≈ 1. 

 
Remark: The nature of being a documentation report is emphasized. Only raw-
data – and raw-data treated with well-justified averaging procedures are presented. 
Any application and graphical presentations of the data must be studied in (1,2,3) 
and other publications referred to in these references. 

The overall accuracy of the FEM-analysis made is evaluated in a special section 
of the report. 
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Introduction 
As previously mentioned, parts of the FEM-analysis considered has previously been 
reported in (1,3). The complete analysis, however, is presented in this report together 
with references made to the original research reports (4,5,6,7,8,9,10). The FEM-me-
thod used is STRUDL (11). 

2. Preliminaries 
Composite models used in the FEM-analysis presented are models that can be made 
by a tight stacking of equally sized congruent composite elements. A number of 
composite elements form so-called basic-cells (such as cubic cells), which repeat 
themselves into a macro model of the material considered. A test volume for FEM-
analysis is volume large enough to represent the macro model with respect to speci-
fic material property considered in analysis. Test volumes can be small as they are in 
the present study (smaller than the volume of a basic cell) when they are carefully 
selected with respect to loading and materials symmetry. 

2.1 Cubical elasticity 
The material models presented have cubic basic cells which means that cubical 
elasticity(EC, vC, and GC) of the macro model (material model) can be determined by 
the following "theoretical FEM-experiments", see Appendix A, cubical elasticity. 
Only two experiments are needed. The cubic Young's modulus and the cubic Pois-
son's ratio are obtained from the "axial experiment" explained in Equation 1. The 
cubic shear modulus is obtained from the "shear experiment" explained in Equation 
2. The results of the axial experiment can be checked by the "control experiment" 
explained in Equation 3 from which the (EC,vC)-dependent cubic bulk modulus KC 
can be obtained. 

y xy xz yzx
-4

Z

YX
2 2
z x x z x

CC
z x z x z

AXIAL EXPERIMENT
Conditions :   =  =  =  =  = 0
Load :         = 10
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  2  + Results :       =    ;    = E
(  + )  + 
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ε
σ σ
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C
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−
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2.2 Isotropy 
Isotropic material models can be thought of as isotropic mixtures of parts from cubic 
model sources. These sources may have different sizes of composite elements which 
allows for size graduation in the total composite. Isotropic stiffness is converted 
from cubic stiffness by Equations 4 and 5 reproduced from Appendix A, poly-cubic 
elasticity. The isotropic bulk modulus is calculated exact. The isotropic shear 
modulus is given by upper and lower g-bound solutions. In the present analysis the 
bounds are sufficiently close to justify a simple mean value approximation. 

-1
C

C
C CC C

1 2 2(1 + ) 1 2 E +  -  G   +  - G5 5  G GE

⎛ ⎞⎛ ⎞ ⎛ ⎞ν ⎟⎜ ⎟ ⎟⎜ ⎜⎟⎟ ⎟≤ ≤⎜ ⎜ ⎜⎟⎟ ⎟⎜ ⎜ ⎜ ⎟⎟ ⎜⎜ ⎟⎟⎜ ⎝ ⎠⎝ ⎠⎝ ⎠ ν
C

CG2(1 + )
 (4) 

 

C
C

C

EK =  = K 3(1 - 2 )ν
 (5) 

3. Analysis of particulate composite (DC-DC) 
3.1 Model 
The so-called TROC-composite outlined in Figures 1 and 2 is considered. It is a tight 
composition of identical composite elements each of which has the shape of a 
TRuncated OCtahedron with edges of equal lengths. The composite element is 
reinforced by a centrally placed particle the shape and orientation of which are 
similar to the composite element itself. 

 

Figure 2. TROC-composite: Composite 
element and basic cell. Length unit 1 is 
heigth of composite element. 

Figure 1. Stacked TROC-elements. Distance 
between square faces of element is 1. 
 

Test volume and FEM-division 
Due to symmetry and antimetry with respect to both materials model and the FEM-
setup, subsequently explained, a test volume of only 1/16 of the basic cell is used in 
the stiffness analysis of TROC-composites. The test volume and basic cell are shown 
in Figure 3. Another illustration of the test volume is shown in Figure 4 with 
coordinate system and symbols introduced which define the FEM-division 
subsequently used. 
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With θ and θ' as points of affinity the test volume is divided into 2 times 13 layers 
affine to the surfaces C'B'EABDD' and CBEA'B'D'D respectively, see Figure 5. 
Thickness of layers can be chosen arbitrarily. By taking the factors of affinity as 
independent variables this feature gives us the possibility of choosing an arbitrary 
volume concentration of particles (defined as the area inside a layer). 
 

 

Figure 4. Test volume for FEM-analysis of 
TROC-composite. 

 

Figure 3. Basic cell and test volume for 
FEM-analysis of TROC-composite 

Figure 5. FEM-division of test volume in
X = Y. Shaded areas are TROC-particles.
Arbitrarily chosen phase P concentration
c. (As illustrated c . 0.34). 

Figure 6. Principle of FEM-division of
test volume. Unfolded surface of
TROC-element. 

Figure 7. FEM-elements used
and some combinations. 

Every layer is then subdivided into finite elements as shown in Figure 6. The 
elements used are isoparametric and of the types IPLS and TRIP defined in (11), 
see Figure D7. The total amount of finite elements in the basis element is 738 with 
948 sets of joint coordinates. The supporting joints in planes AA'θ'C and A'C'θ' are 
modified by infinitely stiff bars to pick up reaction forces on the test volume. The 
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version of the finite element program applied, STRUDL (11), is unable to give reac-
tions directly from finite element joints. 

A detailed description of the finite element division is given in (4). This reference 
also describes a program which is developed to generate automatically the 1255 
sets of joint coordinates needed when changing the particle concentration (factors 
of affinity). 

FEM-setup 
The following set-ups are designed to execute the experiments outlined in Equations 
1-3. The average strain is joint movement divided by associated length (0.5) of test 
volume, see Figure 3. The average stress is sum of bar forces divided by associated 
surface area of test volume. 

AXIAL EXPERIMENT 

Conditions: All joints in faces of test volume are smoothly supported against infinitely 
stiff parallel walls. 

Load: Joints in face AθC are moved 0.5*10-4 in Z-direction. 

Response: Sum of Z-forces picked up from bars in face A'C'θ' 

SHEAR EXPERIMENT 

Conditions: All joints in faces of test volume except AθC'A' and AA'θ'C are smooth-
ly supported against infinitely stiff parallel walls. The joints in face 
AθC'A' can move freely only in Y-direction. Joints in AA'θ'C can move 
freely only in X-direction. 

Load: All joints in face AθC'A' are moved 0.5*10-4 in X-direction. 

Response: Sum of Y-forces picked up from bars in face AA'θ'C 

 

CONTROL EXPERIMENT (spot checks only) 

Conditions: As in axial experiment. 

Load:  Joints in face AθC are moved 0.5*10-4 in Z-direction. Face AA'θ'C is 
moved -0.5*10-4 in X-direction. 

Response: Sum of Z-forces picked up from bars in face A'C'θ' 

FEM-results 
A number of FEM-experiments have been made varying the stiffness parameters and 
the volume concentrations (see Figure 5) of the TROC-model. The variables are 
summarized as follows: 

5
S PVariables: c = 0.22 - 0.86, v  = 0 - 0.4, v  = 0 - 0.4, n = 0 - 10  

The raw data obtained from the axial experiment (σX,σY) and the shear experiment 
(σXY) are presented in Table 1. Cubic stiffness parameters derived from these data by 
Equations 2 and 3 are presented in Table 2. Isotropic stiffness parameters derived 
from Equations 4 and 5 are presented in Table 3. 
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n   c        ES    vS vS  σx   σz  σxy      
.0 .216 8.e5 .2 .2 14.71278 55.06929  43.23578 
.0 .343 8.e5 .2 .2 11.68733 40.53782  32.33229 
.0 .512 8.e5 .2 .2 8.29173 25.76719  20.28353 
.0 .729 8.e5 .0 .2 2.19976 11.43127  10.40773 
.0 .729 8.e5 .2 .2 4.35933 12.12563  8.88100 
.0 .729 8.e5 .4 .2 7.97351 14.75839  7.93490 
.0 .8574 8.e5 .0 .2 1.22059  5.55475  4.76655 
.0 .8574 8.e5 .2 .2 2.21903  5.84648  4.02942 
.0 .8574 8.e5 .4 .2 3.78670  6.93173  3.55923 
1/14 .729 2.e5 .4 .0 2.02856  5.30578  3.56397 
.1 .512 2.e5 .2 .2 2.46370  8.63511  6.71724 
1/3 .512 2.e5 .2 .2 3.36936 13.00879  9.92820 
1/3 .729 2.e5 .2 .2 2.64806 10.24968  7.79571 
1. .5 6.e5 .2 .2 16.68391 66.73593  50.05188 
3. .216 2.e5 .2 .2 6.95928 27.63501  20.93380 
3. .512 2.e5 .2 .2 9.49556 37.53126  28.90596 
3. .729 2.e5 .2 .2 12.03125 47.74705  36.73804 
10. .512 2.e5 .2 .2 13.90655 54.83788  44.99459 
10. .729 2.e5 .2 .2 22.24486 89.02735  73.71604 
35/3 .729 2.e5 .2 .4 39.03639 105.92799  73.82064 
100. .512 2.e5 .2 .2 17.21308 68.72851  60.51260 
100. .729 2.e5 .2 .2 33.13180 138.70803 128.49007 
1.e5 .729 2.e5 .0 .2 21.06033 145.07626 144.18834 
1.e5 .729 2.e5 .2 .2 35.15577 147.93230 140.50922 
1.e5 .729 2.e5 .4 .2 107.13340 237.20075 197.75796 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Reaction stresses (kp/cm2) in experiments on plain TROC-composite. Axial σX and 
σY. Shear: σXY. 
 
 

 
             n         c         v  S   v  P     E  CUB/E  S  v  CUB G  CUB/G  S
 .00000 .21600 .20000 .20000 .61082 .21084 .64854 
 .00000 .34300 .20000 .20000 .44134 .22379 .48498 
 .00000 .51200 .20000 .20000 .27162 .24345 .30425 
 .00000 .72900 .00000 .20000 .13402 .16138 .13010 
 .00000 .72900 .20000 .20000 .12275 .26444 .13321 
 .00000 .72900 .40000 .20000 .11456 .35076 .13886 
 .00000 .85740 .00000 .20000 .06394 .18015 .05958 
 .00000 .85740 .20000 .20000 .05782 .27513 .06044 
 .00000 .85740 .40000 .20000 .05320 .35329 .06229 
 .07143 .72900 .40000 .00000 .20918 .27658 .24948 
 .10000 .51200 .20000 .20000 .37707 .22198 .40303 
              .33330 .51200 .20000 .20000 .58112 .20572 .59569 
 .33330 .72900 .20000 .20000 .45812 .20531 .46774 
 1.00000 .50000 .20000 .20000 1.00104 .20000 1.00104 
 3.00000 .21600 .20000 .20000 1.24175 .20117 1.25603 
 3.00000 .51200 .20000 .20000 1.68483 .20192 1.73436 
 3.00000 .72900 .20000 .20000 2.14521 .20126 2.20428 
 10.00000 .51200 .20000 .20000 2.46057 .20229 2.69968 
 10.00000 .72900 .20000 .20000 4.00666 .19991 4.42296 
 11.66700 .72900 .20000 .40000 4.24522 .26928 4.42924 
 100.00000 .51200 .20000 .20000 3.09167 .20029 3.63076 
 100.00000 .72900 .20000 .20000 6.29660 .19281 7.70940 
 100000.00000 .72900 .00000 .20000 6.98684 .12677 7.20942 
 100000.00000 .72900 .20000 .20000 6.72157 .19202 8.43055 
 100000.00000 .72900 .40000 .20000 8.52677 .31113 13.84306 

 

 

 

 

 

 

 

 

 

 
Table 2. Cubic stiffness of plain TROC-composite. 
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   n    c   v  S   v  P G/G  S  K/K  S  E/E  S    v 
 .00000 .21600 .20000 .20000 .63054 .63371 .63117 .20120 
     .63126    - .63175 .20093 
 .00000 .34300 .20000 .20000 .46265 .47934 .46590 .20842 
     .46409  .46707 .20768 
 .00000 .51200 .20000 .20000 .28588 .31763 .29171 .22448 
     .28740  .29298 .22328 
 .00000 .72900 .00000 .20000 .12379 .19788 .14144 .14262 
     .12422  .14181 .14168 
 .00000 .72900 .20000 .20000 .12598 .15633 .13107 .24848 
     .12653  .13154 .24757 
 .00000 .72900 .40000 .20000 .13004 .07676 .12429 .33808 
     .13081  .12495 .33723 
 .00000 .85740 .00000 .20000 .05730 .09995 .06680 .16584 
     .05742  .06691 .16258 
 .00000 .85740 .20000 .20000 .05788 .07713 .06092 .26307 
     .05803  .06105 .26254 
 .00000 .85740 .40000 .20000 .05917 .03626 .05678 .34343 
     .05939  .05697 .34291 
 .07143 .72900 .40000 .00000 .24104 .09363 .21814 .26701 
     .24145  .21846 .26668 
 .10000 .51200 .20000 .20000 .38926 .40688 .39266 .21048 
     .38993  .39321 .21008 
 .33330 .51200 .20000 .20000 .58864 .59243 .58939 .20154 
     .58876  .58949 .20149 
 .33330 .72900 .20000 .20000 .46301 .46637 .46368 .20173 
     .46308  .46374 .20170 
 1.00000 .50000 .20000 .20000 1.00104 1.00104 1.00104 .20000 
     1.00104  1.00104 .20000 
 3.00000 .21600 .20000 .20000 1.24979 1.24661 1.24915 .19939 
     1.24983  1.24919 .19938 
 3.00000 .51200 .20000 .20000 1.71309 1.69567 1.70958 .19754 
     1.71347  1.70988 .19749 
 3.00000 .72900 .20000 .20000 2.17933 2.15429 2.17428 .19722 
     2.17975  2.17461 .19717 
 10.00000 .51200 .20000 .20000 2.59657 2.47953 2.57229 .18878 
     2.60216  2.57667 .18825 
 10.00000 .72900 .20000 .20000 4.24660 4.00551 4.19609 .18573 
     4.25656  4.20386 .18514 
 11.66700 .72900 .20000 .40000 4.25302 5.52002 4.45765 .25774 
     4.26294  4.46637 .25726 
 100.00000 .51200 .20000 .20000 3.39367 3.09464 3.32933 .17725 
     3.41482  3.34559 .17567 
 100.00000 .72900 .20000 .20000 7.09358 6.14915 6.88218 .16424 
     7.15947  6.93169 .16182 
 100000.00000 .72900 .00000 .20000 6.76900 9.35985 7.45705 .10165 
     6.80597  7.48692 .10005 
 100000.00000 .72900 .20000 .20000 7.67556 6.54732 7.41984 .16002 
     7.76497  7.48650 .15697 
 100000.00000 .72900 .40000 .20000 11.45786 4.51468 10.39236 .26981 
     11.94772  10.76603 .26153 

 

Table 3. Polycubic stiffness bounds for plain TROC-composite. 
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4. Analysis of defective particulate composite 
Particulate composites with defective phase contact are considered in a FEM-
analysis just as the TROC-material. A thin layer of "voids" (or zones of missing 
phase contact), however, is spread over the surface of the particle phase covering 
several fractions of the total surface. The degree of missing phase contact is defined 
by Equation 6 where S denotes particle surface. 

inactive total
3

a

 = /   degree of  missing phase contactS S
 = c[(1 +   1]   associated void volume)c

χ
χ ∆ −

 (6) 

Each zone of missing phase contact may be covered by a void of uniform thickness 
∆ (relative to mean radius vector of particle) which is related to void concentration ca 
(relative to composite volume) and χ as given in Equation 6. 

Remark: The zones of missing contact are introduced into FEM-analysis by simple 
joint-cutting and by finite elements of no stiffness. Sufficient openings are assumed 
between opposite zone faces such that load does not produce closure effects. 

4.1 FEM-setup and results 
The FEM models used have an area of missing phase contact centrally placed on 
each of the 6-edge faces (N = 8) or on each of the 4-edge faces (N = 6) of the TROC-
particle. A number of FEM-experiments have been made varying the stiffness 
parameters, the volume concentrations (see Figure 5) and degree (α) of missing 
phase contact. The variables are summarized as follows: 

Variables: c = 0.25, vS = vP = 0.2, n = 0.1-10,     χ = 22%-78%, ca = 0-6%  
   c = 0.42, vS = vP = 0.2: n = 1-10 with χ = 42% and    ca = 4.1% 

The raw data obtained from the axial experiment (σX,σY) and the shear experiment 
(σXY) are presented in Table 4. Cubic stiffness parameters derived from these data by 
Equations 2 and 3 are presented in Table 5. Isotropic stiffness parameters derived 
from Equations 4 and 5 are presented in Table 6. 

Defects as cracks 
χ = 78 % corresponds to no contact at all between matrix and 6-edge faces of 
particle. χ = 0.224 corresponds to no contact at all between matrix and 4-edge faces 
of particle. 

The defective areas including voids corespond to short hollow cylindrical fibres the 
characteristics of which can be calculated by Equation 7. H is height of composite 
element, h is corresponding height of inclusion. N = 8 for number of 6-edge faces 
per TROC-particle. N = 4 for number of 4-edge faces per TROC-particel. 

  Fibre diameter: d (diameter of void) 
  Fibre aspect ratio: A = l/d (l is length of fibre = thickness of void) 
  Crack density: p (number of cracks per volume unit) 
  Crack parameter: pd3 (easily calculated by (4)) 
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( )
( )

3

3/2
3

3

3
3

3d = h * 1 + 2 3   where  h = H * c    (crack diameter)
8

2Nc 3p =   (crack density)      p  = 2N *c* 1 + 2 3d 8h
4 cA = (1 +   1        (aspect ratio))
pd

χ
π

⎛ ⎞χ ⎟⎜⇒ ⎟⎜ ⎟⎟⎜⎝ ⎠π
χ ⎡ ⎤∆ −⎢ ⎥⎣ ⎦π

 (7) 

A cracked homogeneous material 
A 'defective particulate composite' with a stiffness ratio of n = 1 is of special interest 
because this composite is, in fact, a cracked homogeneous material. One such mate-
rial with cracks placed on the 8-edge faces of fictitious TROC-particles is defined in 
Equation 8. The crack characteristics (pd3,A) are calculated by Equation 7 with 
geometrical information introduced from Table 6. The (cracked) materials stiffness 
associated (E/ES) is also shown in Equation 8. 

3

S
3

S
3

p  = 0.272d
(c, N, , ) = (0.25,8,0.3128,0)         A  = 0

E/  = 0.96E
p  = 0.272d

(c, N, , ) = (0.25,8,0.3128,0.1111)    A  = 0.136
E/  = 0.92E
p  = 0d

(c, N, , ) = (0.422,8,0.497,0.067)     

⎛⎜⎜χ ∆ ⇒ ⎜⎜⎜⎜⎝
⎛⎜⎜χ ∆ ⇒ ⎜⎜⎜⎜⎝

χ ∆ ⇒
S

.92
A  = 0.0623
E/  = 0.82E

⎛⎜⎜⎜⎜⎜⎜⎝

 (8) 

 

 

 

 

 

 

 

 

 

 

 

n c E  S χ N ∆ c  A  σ  x σ  z σ  xy

0.1 0.25 3.e5 0.0 8. 0.0 0.0 5.64187 21.4337 16.6075 
0.1 0.25 3.e5 0.3128 8. 0.0 0.0 5.52754 21.0901 16.4699 
0.1 0.25 3.e5 0.3128 8. 0.1111 0.0252 5.30531 20.3145 15.7044 
0.1 0.25 3.e5 0.7760 8. 0.0 0.0 5.31115 20.2065 15.8471 
0.1 0.25 3.e5 0.7760 8. 0.1111 0.0596 4.78016 18.0350 13.9938 
1.0 0.25 3.e5 0.3128 8. 0.0 0.0 7.63060 31.7567 24.1558 
1.0 0.25 3.e5 0.3128 8. 0.1111 0.0252 7.47874 30.5322 23.1879 
2.3333 0.25 3.e5 0.2240 6. 0.1111 0.0232 9.07449 37.0004 28.4921 
2.3333 0.25 3.e5 0.3128 8. 0.0 0.0 9.13265 38.5681 29.4133 
2.3333 0.25 3.e5 0.3128 8. 0.1111 0.0252 8.91010 37.0617 28.1979 
2.3333 0.25 3.e5 0.7760 8. 0.0 0.0 6.43111 31.9672 24.7755 
2.3333 0.25 3.e5 0.7760 8. 0.0317 0.0170 6.47292 30.8845 23.9469 
2.3333 0.25 3.e5 0.7760 8. 0.1111 0.0596 6.47904 29.4582 22.6830 
10. 0.25 3.e5 0.0 8. 0.0 0.0 12.9076 50.7740 39.5445 
10. 0.25 3.e5 0.3128 8. 0.0 0.0 11.2129 47.9405 37.4999 
10. 0.25 3.e5 0.3128 8. 0.1111 0.0252 10.7837 46.0183 35.7760 
10. 0.25 3.e5 0.7760 8. 0.0 0.0 6.93955 38.9623 30.7241 
10. 0.25 3.e5 0.7760 8. 0.1111 0.0596 7.15779 35.4200 27.2428 
1. 0.422 3.e5 0.497 8. 0.067 0.041 6.37132 26.7849 20.6577 
10. 0.422 3.e5 0.497 8. 0.067 0.041 11.1205 53.4810 41.3576 

 
Table 4. Reaction stresses (kp/cm2) in experiments on defective TROC-composite. Axial σX 
and σY. Shear: σXY. 
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    n   c    χ   ∆   c  A        E  CUB/E  S     v  CUB     G  CUB/G  S

 .100000 .25000 .00000 .00000 .00000 .63608 .20837 .66430 
 .100000 .25000 .31280 .00000 .00000 .62648 .20766 .65880 
 .100000 .25000 .31280 .11110 .02520 .60391 .20708 .62818 
 .100000 .25000 .77600 .00000 .00000 .59985 .20814 .63388 
 .100000 .25000 .77600 .11110 .05960 .53440 .20952 .55975 
 1.000000 .25000 .31280 .00000 .00000 .96000 .19373 .96623 
 1.000000 .25000 .31280 .11110 .02520 .91964 .19675 .92752 
 2.333300 .25000 .22400 .11110 .02320 1.11420 .19695 1.13968 
 2.333300 .25000 .31280 .00000 .00000 1.16904 .19146 1.17653 
 2.333300 .25000 .31280 .11110 .02520 1.12026 .19382 1.12792 
 2.333300 .25000 .77600 .00000 .00000 .99377 .16748 .99102 
 2.333300 .25000 .77600 .03170 .01700 .95471 .17327 .95788 
 2.333300 .25000 .77600 .11110 .05960 .90407 .18029 .90732 
 10.000000 .25000 .00000 .00000 .00000 1.51805 .20269 1.58178 
 10.000000 .25000 .31280 .00000 .00000 1.45632 .18956 1.50000 
 10.000000 .25000 .31280 .11110 .02520 1.39746 .18985 1.43104 
 10.000000 .25000 .77600 .00000 .00000 1.22880 .15118 1.22896 
 10.000000 .25000 .77600 .11110 .05960 1.10045 .16811 1.08971 
 1.000000 .42200 .49700 .06700 .04100 .81121 .19216 .82631 
 10.000000 .42200 .49700 .06700 .04100 1.65508 .17214 1.65430 

 

 

 

 

 

 

 

 

 

Table 5. Cubic stiffness of defective TROC-composite. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    n   c    χ   ∆   c  A  G/G  S  K/K  S  E/E  S   v 
 .100000 .25000 .00000 .00000 .00000 .65085 .65435 .65155 .20128 
      .65125  .65187 .20114 
 .100000 .25000 .31280 .00000 .00000 .64378 .64290 .64361 .19967 
      .64428  .64400 .19949 
 .100000 .25000 .31280 .11110 .02520 .61675 .61850 .61710 .20068 
      .61705  .61734 .20056 
 .100000 .25000 .77600 .00000 .00000 .61809 .61658 .61778 .19941 
      .61866  .61824 .19919 
 .100000 .25000 .77600 .11110 .05960 .54754 .55191 .54841 .20190 
      .54793  .54872 .20173 
 1.000000 .25000 .31280 .00000 .00000 .96576 .94036 .96057 .19355 
      .96576  .96057 .19355 
 1.000000 .25000 .31280 .11110 .02520 .92536 .90979 .92220 .19591 
      .92537  .92221 .19591 
 2.333300 .25000 .22400 .11110 .02320 1.13052 1.10299 1.12490 .19404 
      1.13063  1.12499 .19402 
 2.333300 .25000 .31280 .00000 .00000 1.17689 1.13667 1.16862 .19157 
      1.17689  1.16862 .19157 
 2.333300 .25000 .31280 .11110 .02520 1.12717 1.09764 1.12114 .19358 
      1.12718  1.12114 .19358 
 2.333300 .25000 .77600 .00000 .00000 1.00297 .89659 .97972 .17218 
      1.00319  .97989 .17213 
 2.333300 .25000 .77600 .03170 .01700 .96523 .87661 .94610 .17622 
      .96531  .94616 .17620 
 2.333300 .25000 .77600 .11110 .05960 .91202 .84833 .89853 .18225 
      .91206  .89856 .18224 
10.000000 .25000 .00000 .00000 .00000 1.55423 1.53178 1.54969 .19649 
      1.55493  1.55025 .19638 
 10.000000 .25000 .31280 .00000 .00000 1.48748 1.40733 1.47073 .18648 
      1.48764  1.47085 .18646 
 10.000000 .25000 .31280 .11110 .02520 1.42230 1.35171 1.40760 .18760 
      1.42238  1.40766 .18758 
 10.000000 .25000 .77600 .00000 .00000 1.24923 1.05683 1.20534 .15784 
      1.24974  1.20572 .15773 
 10.000000 .25000 .77600 .11110 .05960 1.10566 .99471 1.08154 .17381 
      1.10602  1.08181 .17373 
 1.000000 .42200 .49700 .06700 .04100 .82237 .79055 .81581 .19042 
      .82240  .81583 .19041 
 10.000000 .42200 .49700 .06700 .04100 1.67012 1.51444 1.63648 .17583 
      1.67035  1.63665 .17579 

Table 6. Poly-cubic stiffness bounds for defective TROC-compo-
site. 
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5. Pearls on a string composite (CC-CC) 
The FEM-analysis of a TROC-material is also used in an analysis of composites 
where particles have grown together changing phase P from being discrete to being 
continuous like pearls on a string - or in other words, from being a closed "pore" 
system to being an open "pore" system. 

5.1 FEM-setup and results 
FEM-setup is as explained in Figures 1 - 7. The "pearls on a string" geometry of 
phase P is obtained by interconnecting the TROC-particles between the 6-edge faces 
of the TROC-particles. Cylindrical tunnels are formed by letting the finite elements 
between particles, see Figure 5, take the properties of the particles. The volume frac-
tion of phase P TROC-particles relative to total phase P volume (both TROC and 
tunnels) is denoted by α. 

A number of FEM-experiments have been made on Pearls on a string composites 
defined as follows: 

Variables: c = 0.36, α = 60%, vS = vP = 0.2: n = 0 - 10 
  c = 0.45, α = 76%, vS = vP = 0.2: n = 0 and 100 
  c = 0.67, α = 76%, vS = vP = 0.2: n = 0 - 100 

The raw data obtained from the axial experiment (σX,σY) and the shear experiment 
(σXY) are presented in Table 7. Cubic stiffness parameters derived from these data by 
Equations 2 and 3 are presented in Table D8. Isotropic stiffness parameters derived 
from Equations 4 and 5 are presented in Table 9. 

n  c           α(%) E  S v  S v  S  σ  x    σ  z    σ  xy  

0. .36 60. 8.e5 .2 .2 8.34233 36.98560 24.36056 
.333333 .36 60. 2.e5 .2 .2 3.78127 15.24916 11.37820 
3. .36 60. 2.e5 .2 .2 8.49105 32.80770 25.30464 
10. .36 60. 2.e5 .2 .2 16.42488 51.60347 45.69911 
1.e-5 .451 76. 2.e5 .2 .2 1.729845 7.21862 4.77155 
100. .451 76. 2.e5 .2 .2 124.22087 286.63932 321.55018 
1.e-5 .674 76. 2.e5 .2 .2 0.65792 3.43617 1.46436 
.333333 .674 76. 2.e5 .2 .2 2.66456 10.89348 7.99115 
3. .674 76. 2.e5 .2 .2 11.67492 46.63378 35.29817 
10. .674 76. 2.e5 .2 .2 28.42779 107.75521 86.38002 
100. .674 76. 2.e5 .2 .2 229.42133 770.07510 679.22262 

Table 7. Reaction stresses (kp/cm2) in experiments on Pearls on a String 
TROC-composite. Axial σX and σY. Shear: σXY. 

 

 
    n    c α(%)    v  S   v  P        E  CUB/E  S  v  CUB      G  CUB/G  S

 .00000 .36000 60. .20000 .20000 .42394 .18404 .36541 
 .33333 .36000 60. .20000 .20000 .68733 .19870 .68269 
 3.00000 .36000 60. .20000 .20000 1.46581 .20560 1.51828 
 10.00000 .36000 60. .20000 .20000 2.18361 .24144 2.74195 
 .00001 .45100 76. .20000 .20000 .32749 .19331 .28629 
 100.00000 .45100 76. .20000 .20000 10.57623 .30234 19.29301 
 .00001 .67400 76. .20000 .20000 .16124 .16070 .08786 
 .33333 .67400 76. .20000 .20000 .49231 .19653 .47947 
 3.00000 .67400 76. .20000 .20000 2.09793 .20023 2.11789 
 10.00000 .67400 76. .20000 .20000 4.79434 .20875 5.18280 
 100.00000 .67400 76. .20000 .20000 33.23769 .22954 40.75335 

Table 8. Cubic stiffness of Pearls on a String TROC-composite. 
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    n   c(α%)    v  S   v  P  G/G  S K/K  S  E/E  S   v 
           .00000 .360(60) .20000 .20000 .38865 .40253  .39135 .20833 
        .39110   .39334 .20685 
 .33333   .360(60) .20000 .20000 .68483 .68435  .68474 .19983 
        .68484   .68475 .19983 
 3.00000    .360(60) .20000 .20000 1.49400 1.49369 1.49394 .19995 
        1.49457   1.49439 .19986 
 10.00000    .360(60) .20000 .20000 2.44899 2.53360 2.46546 .20807 
        2.48945   2.49816 .20420 
           .00001    .451(76) .20000 .20000 .30208 .32035  .30557 .21384 
        .30351   .30673 .21275 
      100.00000      .451(76) .20000 .20000 13.86086 16.05243 14.24996 .23369 
        15.47385   15.58620 .20871 
 .00001    .674(76) .20000 .20000 .10836 .14256  .11382 .26048 
        .11939   .12341 .24031 
 .33333    .674(76) .20000 .20000 .48508 .48668  .48540 .20079 
        .48518   .48548 .20074 
 3.00000    .674(76) .20000 .20000 2.10970 2.09951 2.10765 .19884 
        2.10975   2.10769 .19883 
 10.00000    .674(76) .20000 .20000 5.00482 4.93832 4.99138 .19678 
        5.01354   4.99831 .19636 
 100.00000  .674(76) .20000 .20000 36.96384 36.86753 36.94454 .19937 
        37.42770   37.31431 .19636 

Table 9. Poly-cubic stiffness bounds for Pearls on a String TROC-compo-
site. 
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6. Grid composite (CC-CC) 
6.1 Model 
The so-called CROSS-composite shown in Figure 8 is considered. It is a phase 
symmetric cubic frame work of phase P embedded in a complementary cubic frame 
work of phase S. The composite element and the basic cell of a CROSS-composite 
are shown in Figure 9. 

Figure 9. Composite element and basic cell for CROSS-
composite. Both heights are 1. Figure 8. CROSS-com-posite 

Figure 11. FEM-structure of test volume. 
Size of FEM-elements and phase P concen-
tration (c) is regulated by 0 # α # 1 as in-
dicated. 

Figure 10. Shaded box is test volume 
for FEM-analysis. Length unit 1 is 
heigth of composite element. 
 
6.2 Test volume and FEM-division 
Due to symmetry and antimetry with respect to both materials model and the FEM-
setup, subsequently explained, a test volume of only 1/64 of the basic cell is used in 
the stiffness analysis of CROSS-composites. The composite element, basic cell and 
test volume are shown in Figures 9 and 10. 

The very simple FEM-structure of the test volume shown in Figure 11 is made 
possible combining the cubic regularity of the composite element with very refined 
STRUDL box type elements, see Figure 11, defined in (11). It is indicated in Figure 
11 how volume concentrations (c) can be chosen arbitrarily in analysis. 

The supporting joints in planes X = 1/2 and Z = 1/2 are modified by infinitely stiff 
bars to pick up reaction forces on the test volume. The version of the finite element 
program applied, STRUDL (11), is unable to give reactions directly from finite 
element joints. 
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AXIAL EXPERIMENT 

Conditions: All joints in faces of test volume are smoothly supported against in-
finitely stiff parallel walls. 

Load:  Joints in face Z = 0 are moved 0.5*10-4 in Z-direction. 

Response: Sum of Z-forces picked up from bars in face Z = 1/2. 

SHEAR EXPERIMENT 

Conditions: All joints in planes Z = 0 and Z = 1/2 are smoothly supported against 
infinitely stiff parallel walls. The joints in planes Y = 0 and Y = 1/2 
can move freely only in Y-direction. Joints in X = 0 and X = 1/2 can 
move freely only in X-direction. 

Load:  All joints in plane Y = 0 are moved 0.5*10-4 in X-direction. All  joints 
in X = 0 are moved 0.5*10-4 in Y-direction 

Response: Sum of Y-forces picked up from bars in plane X = 1/2 

 

CONTROL EXPERIMENT (spot checks only) 

Conditions: As in axial experiment. 

Load:  Joints in plane Z = 0 are moved 0.5*10-4 in Z-direction. Joints in 
plane X = 0 are moved 0.5*10-4 in X-direction. Joints in plane Y = 0 
are moved 0.5*10-4 in Y-direction. 

Response: Sum of Z-forces picked up from bars in plane Z = 1/2 (= sum of X-
forces picked up from bars in plane X = 1/2). 

FEM-setup 
The following set-ups are designed to execute the experiments outlined in Equations 
1-3. The average strain is joint movement divided by associated length (0.5) of test 
volume, see Figure 10. The average stress is sum of bar forces divided by associated 
surface area (0.25) of test volume, see Figure 10 again. 

FEM-results 
A number of FEM-experiments have been made varying the stiffness parameters and 
the volume concentrations, c, of the CROSS-model. The variables are summarized 
as follows: 

3
P SVariables: c = 0.25 - 0.75,  =  = 0.2, n = 0 - 10  ν ν

 
The raw data obtained from the axial experiment (σX,σY) and the shear experiment 
(σXY) are presented in Table 10. Cubic stiffness parameters derived from these data 
by Equations 2 and 3 are presented in Table 11. Isotropic stiffness parameters 
derived from Equations 4 and 5 are presented in Table 12. 
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n   c E  S v  S v  S  σ  x  σ  z σ  xy

5.e-6 .2522 2.e5 .2 .2 2.34360 12.2310 7.56482 
.01 .2522 2.e5 .2 .2 2.42376 12.4551 7.79996 
.1 .2522 2.e5 .2 .2 3.04553 14.1795 9.56759 
.333333 .2522 2.e5 .2 .2 4.11096 17.2564 12.5175 
3. .2522 2.e5 .2 .2 7.10379 30.3116 21.5464 
10. .2522 2.e5 .2 .2 9.18508 49.9761 27.8779 
100. .2522 2.e5 .2 .2 27.1192 275.502 67.9144 
1000. .2522 2.e5 .2 .2 203.517 2515.67 443.012 
0. .5 2.e5 .2 .2 .830440 6.23841 2.45587 
.001 .5 2.e5 .2 .2 .839332 6.26705 2.48726 
.01 .5 2.e5 .2 .2 .918772 6.52110 2.76339 
.1 .5 2.e5 .2 .2 1.64688 8.78233 5.11944 
.333333 .5 2.e5 .2 .2 3.08359 13.3206 9.39984 
1. .5 2.e5 .2 .2 5.55480 22.2220 16.6656 
10. .5 2.e5 .2 .2 16.4687 87.8232 51.1945 
0. .7478 2.e5 .2 .2 .195981 2.48889 .416377 
.01 .7478 2.e5 .2 .2 .271191 2.75504 .679140 
.1 .7478 2.e5 .2 .2 .918508 4.99762 2.78779 
1000. .7478 2.e5 .2 .2 2351.29 12252.7 7588.46 

Table 10. Reaction stresses (kp/cm2) in experiments on CROSS-
composite. Axial σX and σY. Shear: σXY. 

 

     n    c   v  S   v  P E  CUB/E  S  v  CUB  G  CUB/G  S

 5.e-6 .25220 .20000 .20000 .57386 .16080 .45389 
 .01000 .25220 .20000 .20000 .58327 .16290 .46800 
 .10000 .25220 .20000 .20000 .65513 .17681 .57406 
 .33333 .25220 .20000 .20000 .78373 .19239 .75105 
 3.00000 .25220 .20000 .20000 1.38071 .18986 1.29278 
 10.00000 .25220 .20000 .20000 2.35620 .15526 1.67267 
 100.00000 .25220 .20000 .20000 13.53207 .08961 4.07486 
 1000.00000 .25220 .20000 .20000 124.26030 .07484 26.58072 
 .00000 .50000 .20000 .20000 .30216 .11748 .14735 
 .00100 .50000 .20000 .20000 .30344 .11811 .14924 
 .01000 .50000 .20000 .20000 .31471 .12349 .16580 
 .10000 .50000 .20000 .20000 .41311 .15791 .30717 
 .33333 .50000 .20000 .20000 .60807 .18798 .56399 
 1.00000 .50000 .20000 .20000 1.00002 .19997 .99994 
 10.00000 .50000 .20000 .20000 4.13110 .15791 3.07167 
 .00000 .74780 .20000 .20000 .12301 .07299 .02498 
 .01000 .74780 .20000 .20000 .13532 .08961 .04075 
 .10000 .74780 .20000 .20000 .23562 .15525 .16727 
 1000.00000 .74780 .20000 .20000 574.77850 .16100 455.30760 

Table 11. Cubic stiffness of CROSS-composite. 
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     n   c   v  S   v  P          G/G  S  K/K  S  E/E  S      v 

 5.e-6 .25220 .20000 .20000 .50096 .50755 .50226 .20312 
      .50963    - .50921 .19901 
 .01000 .25220 .20000 .20000 .51371 .51908 .51477 .20249 
      .52155    - .52105 .19886 
 .10000 .25220 .20000 .20000 .60829 .60812 .60825 .19993 
      .61165    - .61094 .19861 
 .33333 .25220 .20000 .20000 .76568 .76435 .76541 .19958 
      .76612    - .76577 .19944 
 3.00000 .25220 .20000 .20000 1.33089 1.33558 1.33183 .20084 
      1.33266    - 1.33324 .20052 
        10.00000 .25220 .20000 .20000 1.91519 2.05039 1.94078 .21604 
      1.98256    - 1.99579 .20799 
      100.00000 .25220 .20000 .20000 5.74434 9.89221 6.27016 .30985 
      8.40611    - 8.66650 .23717 
    1000.00000 .25220 .20000 .20000 39.28336 87.68112 44.15820 .34891 
      71.44010    - 74.18846 .24616 
 .00000 .50000 .20000 .20000 .18851 .23698 .19655 .25117 
      .21820    - .22172 .21932 
 .00100 .50000 .20000 .20000 .19052 .23837 .19849 .25019 
      .21981    - .22328 .21899 
 .01000 .50000 .20000 .20000 .20796 .25076 .21531 .24242 
      .23394    - .23712 .21632 
 .10000 .50000 .20000 .20000 .34630 .36228 .34939 .21068 
      .35555    - .35688 .20448 
 .33333 .50000 .20000 .20000 .58306 .58463 .58338 .20064 
      .58408    - .58419 .20023 
 1.00000 .50000 .20000 .20000 .99998 .99992 1.00002 .19999 
      .99998    - 1.00002 .19999 
 10.00000 .50000 .20000 .20000 3.46304 3.62282 3.49386 .21068 
      3.55551    - 3.56877 .20448 
 .00000 .74780 .20000 .20000 .03714 .08643 .04192 .35448 
      .07002    - .07278 .24736 
 .01000 .74780 .20000 .20000 .05744 .09892 .06270 .30985 
      .08406    - .08667 .23717 
 .10000 .74780 .20000 .20000 .19152 .20504 .19408 .21604 
      .19826    - .19958 .20799 
   1000.00000 .74780 .20000 .20000 502.23610 508.65840 503.50760  .20304 
      510.81840    - 510.38490  .19898 

Table 12. Poly-cubic stiffness bounds for CROSS-composite. 
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7. On the accuracy of FEM-analysis 
Approximately every second cubic bulk KC = EC/(1 - 2vC) obtained from axial expe-
riments are checked by the control experiment explained in Equation 3. The results 
agree within the first five significant digits. The isotropic Young's modulus for n = 1 
and vP = vS = 0.2 is calculated with an accuracy < 1 o/oo. It is concluded from these 
observations that the FEM-partitioning used in the analysis is appropriate in general, 
and that numerical errors are very modest at moderate stiffness ratios. 

In general no accurate error analysis can be made on the stiffness moduli predicted 
by FEM-analysis. Some valuable estimates on accuracy, however, can be made at vP 
= vS = 0.2 from Equation 9 which is an adapted compilation of expressions presented 
in appropriate theoretical expressions in (1,2). 

( )
( )
( )

FEM FEM
FEM

FEMFEM

PFEM
FEM

FEM FEM

[n  c(n  1)]   n n <  < 1  at n < 1 =       1 <  < n  at n > 11 + c(n  1)  
1(n,c) =               ( )CSA1/n,c

(n,c) = n * 1/n,1 c          (Phase - symmetry)

e
e

e
e

e e

− − − θθ θ− −

−

 (9) 

- The former expression checks that no FEM results violate the H/S bounds. A 
high accuracy of the FEM-analysis is indicated by a continuous and smooth 
development of θFEM(c) at increasing stiffness ratios, n. Particulate composites 
will have θFEM(c) close to 1. Phase-symmetric composites will have θFEM(c) 
closer to n. 

- The second expression can be used to check the accuracy of the FEM-analysis 
of the TROC material assuming that this material behaves as a CSPP 
composite 

- The latter expression can be used to check the FEM-analysis of the CROSS 
material because this material is in fact phase-symmetric. 

 

Figure 13. TROC-composite with vP = 
vS = 0.2: θ-test on FEM-data obtained 
to determine Young's modulus.  

Figure 12. TROC-composite with vP = 
vS = 0.2: θ-test on FEM-data obtained to 
determine Young's modulus.  
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The TROC FEM-results (with vP = vS = 0.2) have been checked by the former ex-
pression in Equation 9. No violations of the H/S bounds were found (Figures 12 and 
13). It was observed that θFEM(c) keeps very much to ≈ 1, meaning that the material 
tested behaves approximately as a CSAP composite (Figure 14). An accuracy of 
about 1% is then calculated by the second expression in Equation 9. 

Also for the CROSS FEM-results (with vP = vS = 0.2), no violations of the H/S 
bounds were found (Figures 15 and 16). The phase-symmetric geometry is con-
firmed which means that an accuracy of << 1 % is calculated by the latter term in 
Equation 9. 

Conclusion: From the above discussion is stated that only very modest errors are 
attached to the stiffness properties determined by FEM-analysis. 

Figure 14. TROC-composite with vP = vS = 
0.2: FEM-Young's modulus compared with 
Young's modulus of CSAP composite. 

Figure 15. CROSS-composite with vP = 
vS = 0.2: θ-test on FEM-data obtained to 
determine Young's modulus.  

 

7.1 False data 
The following rule has been used to 
exclude false data (mistakes in tests or 
data treatment): If a description can be 
made which fits very well a large number 
of familiar data with only a few data as 
clear exceptions - then these data can be 
considered false. Only one false data set 
was found in this FEM-analysis, namely 
shear modulus g of the TROC-composite 
at (n,vS,vP,c) = (105,0.4,0.2,0.73). The 
reason for exclusion is obvious from 
appropriate Figures in the theoretical 
works (1,2). 

Figure 16. CROSS-composite with vP = 
vS = 0.2: θ-test on FEM-data obtained to 
determine Young's modulus.  
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Appendix A - Elasticity 
A.1 Isotropy 
Stiffness of an isotropic elastic material is defined by the bulk modulus K and the 
shear modulus G. Young's modulus E, and the Poisson's ratio (v) together with two 
v-parameters (κ and γ) are related to K and G as follows.  

9KG 3K - 2GE =     ;    = 
3K + G 2(3K + G)

EG =    ;   K = 
2(1 + ) 3(1 - 2 )
2(1 - 2 ) 7 - 5 =    ;    = 

1 + 2(4 - 5 )

ν

ν ν
ν νκ γ
ν ν

E
 (A1) 

 
A.1.1 Composite aspects 
In composite theory it is very often appropriate to relate composite elastic moduli 
(K, G, E, v) to elastic moduli (KS, GS, ES, vS) of an isotropic reference material S. 
Dimensionless versions of E and v are then presented as follows with k = K/KS, g = 
G/GS, and e = E/ES

S

S S S S

3kg (1 + )k - (1 - 2 )ge =   ;   = 
2(1 + )k + (1 - 2 )g 2(1 + )k + (1 - 2 )g

ν νν
ν ν ν

S

ν
 (A2) 

 

A.1.2 Stress-strain 
The stress tensor σij and the strain tensor εij are related as follows (ex 12) when an 
isotropic elastic material is considered with stiffness properties from Equation A1. 

ij ij ij kk

ij ij ij kk

ij

1 +  =   
E 1 +    i, j = 1,2,3
E =  + 

1 + 1 - 2
1  if  i = jwith Kroneckers delta  =  
0  if  i  j

⎛ ⎞ν ν ⎟⎜ − ⎟ε σ δ σ⎜ ⎟⎟⎜⎝ ⎠ν
⎛ ⎞ν ⎟⎜ ⎟σ ε δ ε⎜ ⎟⎟⎜⎝ ⎠ν ν

⎛⎜δ ⎜⎜ ≠⎝

 (A3) 

Volumetric stress and strain are denoted by σkk = σ11 + σ22 + σ33 and εkk = ε11 + ε22 
+ ε33 respectively. The stress strain relation can also be written as follows in two 
expressions - one relating volumetric strain to volumetric stress - and another one 
relating deviatoric strain (eij) to deviatoric stress (sij). 

kk 11 22 33kk
kk

kk 11 22 33

ij ij kkijij
ij

ij ij kkij

=  +  +   volumetric strain
 =   with  

=  +  +   volumetric stress3K

=   /3     deviatoric straines =   with  e  =   /3     deviatori2G s

⎛ε ε ε εσ ⎜⎜ε ⎜⎜⎝σ σ σ σ
−ε δ ε
−σ δ σ c stress

⎛⎜⎜⎜⎜⎝

 (A4) 
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A.2 Cubic elasticity 
Stiffness of a cubic elastic material is defined by the cubic bulk modulus KC, the 
cubic shear modulus GC, and the cubic Young's modulus EC or the cubic Poisson's 
ratio vC. The constitutive equation of a cubical elastic material can be expressed as 
shown in Equation A5 using the coordinate system defined in Figure A1 with stress-
strain planes coinciding with planes of elastic symmetry (and materials symmetry). 

Qubic material models are considered in 
the main text of this report. The stiffness 
parameters for these materials can be de-
termined performing the two 'FEM-experi-
ments' outlined in Equations A6 and A7. 
The cubic Young's modulus, the cubic 
Poisson's ratio, and the cubic bulk modu-
lus are obtained from the "axial experi-
ment" explained in Equation A6. The cu-
bic shear modulus is obtained from the 
"shear experiment" explained in Equation 
A7. 

 

 

Figure A1. Coordinate system used in 
FEM-analysis. 

x xC C C C C

y yC C C C C

z zC C C C C

xy xyC

xz xzC

yz yzC

1/ - / - / 0 0 0E E E
- / 1/ - / 0 0 0E E E
- / - / 1/ 0 0 0E E E =  * 

0 0 0 1/2 0 0G
0 0 0 0 1/2 0G
0 0 0 0 0 1/2G

⎡ ⎤ ⎡⎡ ⎤ε σν ν⎢ ⎥ ⎢⎢ ⎥⎢ ⎥ ⎢⎢ ⎥ε σν ν⎢ ⎥ ⎢⎢ ⎥⎢ ⎥ ⎢⎢ ⎥ε σν ν⎢ ⎥ ⎢⎢ ⎥⎢ ⎥ ⎢⎢ ⎥ε σ⎢ ⎥ ⎢⎢ ⎥⎢ ⎥ ⎢⎢ ⎥ε σ⎢ ⎥ ⎢⎢ ⎥⎢ ⎥ ⎢⎢ ⎥ε σ⎢ ⎥ ⎢⎢ ⎥⎢ ⎥ ⎢⎣ ⎦⎣ ⎦ ⎣

⎥
⎥
⎥
⎥⎥

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

 (A5) 

x y xy xz yz

Z X Y
2 2
z x x z x

CC
z x z x z

C
C

C

Conditions :           =  =  =  =  = 0
Load response :         (= )

  2  + Results :               =    ;    =  E
(  + )  + 
E                       = K

3(1  2

ε ε ε ε ε
⇒ ⇒ε σ σ

−σ σ σ σ σ ⇒ν
ε σ σ σ σ

− )ν

 (A6) 

x y z xz yz

XY XY

xy
C

xy

Conditions :           =  =  =  =  = 0
Load  response :        

Result :               = G
2

ε ε ε ε ε
⇒ ⇒ε σ

σ
ε

 (A7) 

 
A.2.1 Poly-cubic elasticity 
Isotropic mixtures of parts from a cubic material behave elastically, just as an 
isotropic mixture of cubic crystals. Equation A8 expresses the exact bulk modulus 
for such mixtures (13).  
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C
C

C

EK =  = K 3(1 - 2 )ν
 (A8) 

No corresponding exact poly-cubic shear modulus solution has yet been found. 
However, it has been shown (14) that the true value is bounded between two 
solutions derived in (15,16). Some re-writing of these boundary values imply 

-1
C

C
C CC C

1 2 2(1 + ) 1 2 E +  -  G   +  - G5 5  G GE

⎛ ⎞⎛ ⎞ ⎛ ⎞ν ⎟⎜ ⎟ ⎟⎜ ⎜⎟⎟ ⎟≤ ≤⎜ ⎜ ⎜⎟⎟ ⎟⎜ ⎜ ⎜ ⎟⎟ ⎜⎜ ⎟⎟⎜ ⎝ ⎠⎝ ⎠⎝ ⎠ ν
C

CG2(1 + )
 (A9) 

The lower bound (16) is based on an assumption which is tantamount to assuming 
that the state of stress is identical from crystal to crystal. Correspondingly the upper 
bound (15) assumes identical states of strain. If the crystals were isotropic then 
Equation A9 predicts G = GC. Improved bounds for poly-crystals have been given by 
Hashin and Shtrikman (17). For the present work, however, the bounds in Equation 
A9 suffice. The upper and lower bounds are sufficiently close to justify simple mean 
value approximations. 

A.2.2 Composite aspects 
When isotropic mixtures of cubic composite elements are considered it is very often 
appropriate to relate composite cubic elastic moduli (KC, GC, EC, vC) to the elastic 
moduli (KS, GS, ES, vS) of an isotropic reference material S. Normalized versions of 
Equations A8 and A9 with respect to phase S are presented as follows with relative 
coefficients of cubical elasticity kC = KC/KS, gC = GC/GS, and eC = EC/ES, 

S C
C CC

C C
-1

C S
CC C

S CCC C

1  2 1 ek =  =         = 1  (1  2 )ek 1  2 2 k

1 2 1 + 1 1 2 1 +  +      g   +    g ge5 1 + 5 1 + g ge

⎛ ⎞− ν ⎟⎜ ⎟⇒ − −ν ⎜ ν ⎟⎜ ⎟⎜− ⎝ ⎠ν
⎡ ⎤⎛ ⎞ ⎛ ⎞ν ν⎟⎜ ⎟⎢ ⎥ ⎜⎟ ⎟− ≤ ≤ −⎜ ⎜⎟ ⎟⎢ ⎥⎜ ⎜ ⎟⎟ ⎜⎟⎜ ⎝ ⎠ν ν⎝ ⎠⎢ ⎥⎣ ⎦

S

 (A10) 

which can also be expressed as follows with vC introduced 

S

S CCC
-1

S SC

CC

1 3 1 3 1  2   +    
g 5 5(1 + )g e k

3g 4(1 + ) 3 1  2g   +    
5 5 e k

⎛ ⎞− ν ⎟⎜ ⎟≤ −⎜ ⎟⎜ ⎟⎜⎝ ⎠ν
⎛ ⎞−ν ν ⎟⎜ ⎟≤ −⎜ ⎟⎜ ⎟⎜⎝ ⎠

 (A11) 
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