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and Anders Berntson, get many thanks for lending me their time and lab during
a few short, but intense, visits.

Last but not least, a lot of love to my family, and to Maria for always being
there.

Kgs. Lyngby 30/11/2004
Filip Öhman
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Abstract

In this report all-optical 2R-regeneration in optical communication systems is in-
vestigated. A simple regenerator device based on concatenated semiconductor op-
tical amplifiers (SOAs) and electro absorbers (EAs) is introduced and examined.
Experiments show that the monolithic SOA-EA 2R-regenerator has a sharp step-
like transfer function with a threshold that is easily adjusted by simply changing
the bias voltage over the electro absorbers. Measurements on a modulated sig-
nal show that the device can improve the extinction ratio of a degraded signal
with more than 5 dB, and improve the receiver sensitivity with more than 8 dB
compared to the back-to-back case, using a degraded signal. The noise properties
and cascadability of the proposed device are examined through modeling. Fur-
thermore the influence of the saturation properties of the EA on the regeneration
performance is investigated. Calculations show that it is possible to increase the
nonlinearity of the transfer function and improve the regenerating properties by
lowering the saturation power of the EA and concatenating several SOA-EA pairs,
although this also adds more noise to the signal.

In order to analyze the influence of the regenerator properties on the bit error
rate in a cascade of regenerators, a general model for a 2R-regenerator, neglect-
ing timing jitter, is developed. The model conceptually divides the regenerator
into a linear amplifying part and a nonlinear reshaping part. The amplifier adds
noise in the form of amplified spontaneous emission and the nonlinear transfer
function redistributes the noise and improve the extinction ratio of the signal.
The model show that the best choice of decision threshold is made by consider-
ing the properties of the cascaded regenerators rather than the signal going into
the cascade. Furthermore the interplay between different regenerator properties
like noise figure, nonlinearity and extinction ratio is examined. The results show
that an increase in nonlinearity can compensate for a higher amplifier noise figure
or increase the reach of a transmission link. This kind of investigations make it
possible to compare different kinds of regenerators and guide the optimization of
regenerators.

Theoretical modeling and direct measurement of the probability density func-
tion (PDF) of a continuous wave (cw) signal after an SOA show the nonlinear
noise redistribution due to gain saturation and carrier dynamics. The redistribu-
tion give both a reduction in the width and change in the overall shape of the
PDF, compared to a linear amplification. The redistribution of noise, as described
by the changes in the PDF, is central to the understanding of regeneration. The
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vi ABSTRACT

changes of the noise in an SOA is examined closer by use of a small-signal model,
including first and second order noise terms, and a large-signal time-domain simu-
lation. The calculations show the noise spectra and the bandwidth dependence of
the noise redistribution in the device. Both pass-through amplification and wave-
length conversion through cross-gain modulation is investigated and compared.



Resumé (in Danish)

I denne rapport undersøges optisk 2R-regeneration i optiske kommunikationssyste-
mer. En simpel regenerator baseret p̊a sammensatte optiske halvlederforstærkere
(SOA) og elektroabsorbere (EA) præsenteres og undersøges. Eksperimenter viser
at den monolitiske SOA-EA 2R-regerator har en skarp ulineær overføringsfunktion
med en tærskel, der er nemt justerbar blot ved at ændre spændingsfaldet over
elektroabsorberen. Endvidere viser målinger p̊a et moduleret signal at kompo-
nenten kan forbedre udslukningsgraden af et forringet signal med mere end 5dB
og forbedre modtagerfølsomheden med mere end 8 dB sammenlignet med et for-
ringet signal sendt ’back-to-back’. Støjegenskaberne og kaskadekoblingsegenskaber
af komponenten modelleres teoretisk. Desuden undersøges indflydelsen af elek-
troabsorberens mætningsegenskaber p̊a regenerationsegenskaberne. Udregninger
viser at det er muligt at øge overførelsesfunktionens ulinearitet og forbedre regen-
erationsegenskaberne ved at formindske EA’ens mætningseffekt og sammensætte
flere SOA-EA-par, selvom dette ogs̊a addere mere støj til signalet.

For at analysere regeneratoregenskabernes indflydelse p̊a fejlraten (BER) i en
række af regeneratorer, udvikles en generel 2R-regerationsmodel, der dog neg-
ligerer tidslig jitter. Modellen opdeler regeneratoren i en lineær forstærkerdel
og ulineær del. Forstærkeren adderer støj i form af forstærket spontan emission
(ASE) og den ulineære overførselsfunktion omfordeler støjen og forbedre signalets
udslukningsgraden. Modellen viser at det bedste valg af beslutningstærskel sker
ved at se p̊a egenskaberne af rækken af regeneratore frem for at se p̊a det signal,
der g̊ar ind i rækken. Samspillet mellem forskellige regneratoregenskaber s̊asom
støjtal, ulinearitet og udslukningsgraden undersøges. Resultatet viser at større
ulinearitet kan kompensere for et højere støjtal i forstærkeren eller forøge rækkev-
idden af transmissionen. Denne type undersøgelse gør det muligt at sammenligne
forskellige slags regeneratore og guide optimeringen af regeneratore.

Teoretisk modellering og direkte målinger af sandsynlighedstæthedsfunktionen
(PDF) af et ’continuous wave’ (CW) signal efter en SOA viser at den ulineære
omfordeling af støj b̊ade reducerer bredden af og ændrer formen af PDF’en sam-
menlignet med lineær forstærkning. Omfordelingen af støj, beskrevet som æn-
dringer i PDF’en, er central for at forst̊a regeneration. Ændringerne i støjen i
en SOA undersøges yderligere ved hjælp af teoretiske udregninger. De to an-
vendte modeller er en små-signal model med b̊ade første og anden ordens støj
og en stor-signal tidsdomaine simulering. Beregningerne viser støjspektret samt
b̊andbredteafhængigheden af omfordeling af støj i komponenten. B̊ade bølge-
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viii RESUMÉ (IN DANISH)

længdekonvertering via krydsgain modulation og transitforstærkning undersøges
og sammenlignes.
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Chapter 1

Introduction

Modern communication technology is to a large extent based on the huge infor-
mation carrying capacity of a light signal in a glass fiber. The large bandwidth
and low attenuation of the silica glass, used in optical fibers, makes it possible
to send a large amount of information over long distances. In order to use this
capacity as efficiently as possible a lot of complementing technologies have been
developed over the years. The use of many wavelength channels in the same fiber,
so called wavelength division multiplexing (WDM), greatly increase the efficiency
of the optical link, and make it possible to increase the capacity of already in-
stalled fibers. Another route to increased capacity is to increase the line rate of a
single channel, from for example 10 Gb/s to 40 Gb/s. On a subsystem level, this
development have been made possible mainly by the development of the erbium
doped fiber amplifier (EDFA), which allows for the simultaneous amplification of
many wavelength channels, and high speed electronic and optoelectronic devices
for sending, receiving and switching the signals in the network. As the line rate
and channel count goes up, so does the demands on the subsystems and devices.
Today most systems terminate the optical signal at each node by detecting it and
transferring it to the electrical domain. The electrical signal is regenerated, and
all signal processing is made in the electrical domain. The signal is then trans-
fered back into the optical domain. Since the optical-electrical-optical conversion,
and any intermediate processing, requires power hungry and bulky hardware it is
believed that substantial benefits would be gained by letting the optical signals
that are not to be processed pass the node completely in the optical domain. By
doing this the restoring of the signal quality by electrical regeneration is also lost
and the degradation of the optical signal will eventually set a limit to transmission
distance. To remedy this all-optical regeneration is needed.

This report is based on the assumption that all-optical signal regeneration
will be needed in an optical communication system, although the validity of this
assumption is discussed and questioned by many. The electronics that would be
replaced is getting faster and cheaper as the technology develops and there are still
some fundamental issues regarding the new all-optical technologies that needs to
be investigated and understood. This report tackles some of the issues regarding
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2 CHAPTER 1. INTRODUCTION

all-optical regeneration by first, in chapter 2, describe the basics of signal quality
and all-optical regeneration. Furthermore some basic concepts needed later in
the report and some common devices used for all-optical signal processing, most
importantly the semiconductor optical amplifier (SOA), are introduced. In chapter
3 noise measurements and models for describing the noise in an SOA are presented
and discussed. A general model for describing a cascade of regenerators, which
can be used for comparing different regenerators and investigating the impact of
regenerator parameters on the cascadability, is presented in chapter 4. The model
is used to investigate the interplay between different regenerator parameters such
as noise figure, nonlinearity and extinction ratio. In chapter 5 a concrete suggestion
for a simple regenerator components based on concatenated sections of saturable
gain and absorption is introduced. The theoretical models are used to investigate
and optimize the regenerator and some experimental investigations are presented.
Finally, in chapter 6 the report is summarized and concluded.



Chapter 2

Background

One of the most basic components that is needed in any communication system
is a repeater. Whether the repeater is a child playing a whispering game or a
watchman with a signaling fire on top of a mountain the idea is the same; receive
the signal and resend it in a way that makes it possible to increase the total
distance that the signal travels, preferably without introducing any errors.

In a simple optical communication system the signal is sent by a transmit-
ter consisting mainly of a source of optical power, usually a laser diode, which is
modulated by an electrical signal. The optical signal is sent through a glass fiber
and is detected in the other end by a receiver, which converts the signal back to
the electrical domain. A repeater in such a system is a receiver and transmitter
coupled together. The optical signal is detected and transfered from the optical to
the electrical domain and is then transfered back to an optical signal and resent
using the transmitter part of the repeater. Such a repeater is usually referred
to as an OEO-repeater or optoelectronic repeater. Any signal-restoring opera-
tion, or regeneration, in an OEO-repeater is done in the electrical domain. The
costs associated with the conversion between the two domains, the high power
consumption and the relatively slow electronics are some of the arguments for
finding alternatives to the OEO-repeater. In the all-optical approach to an opti-
cal communication system the conversion to the electrical domain is avoided by
regenerating the signal in the optical domain using an all-optical regenerator.

In an optical network using multiple wavelengths a change of wavelength might
be needed in network nodes, for example in order to avoid contention or as a base
for future wavelength routing techniques. A wavelength converter basically per-
forms the same function as a repeater with the addition of the possibility to change
the wavelength of the output light. Although the regeneration functionality is not
necessarily included in wavelength conversion, it is quite common that wavelength
converters also regenerates the signal. Just as for repeaters, wavelength converters
can be optoelectronic or all-optical. In this work the focus will be on all-optical
regeneration and some basic differences between whether wavelength conversion
is made or not, in a specific component, will be investigated. Other properties
of wavelength converters, however, will not be discussed. Whenever regeneration

3



4 CHAPTER 2. BACKGROUND

or wavelength conversion is mentioned the all-optical version is assumed, unless
specifically stated otherwise.

Both the regenerator and wavelength converter have been heavily researched
and developed during the last decade or so and a lot of different approaches and
devices have been suggested for providing the functionalities.

2.1 Basics of regeneration

In an optical communication system there are several sources of signal degradation.
The most basic one is loss. Although modern optical fibers have very low loss, it
is there, and splices, couplers etc. do not make things better. Furthermore there
are chromatic dispersion, fiber non-linearities and other processes that degrades
the signal as it travels in a system. In order to be able to send the signal long
distances, compensation for these degradations is required.

The degradations mentioned so far are all, in principle, deterministic in their
character. This means that the impact of them is known, or can be calculated, in
advance. It also means that they could be compensated for or avoided. Just as
the sources of degradation are plentiful so are the solutions. Some approaches try
to improve the robustness of the signal by clever modulation formats [1–3] that
are influenced less by certain sources of signal degradation. Fiber dispersion can
be compensated by discrete compensation in for example fiber bragg gratings [4]
or by tailoring the links in such a way that the dispersion in different parts of
the fiber cancel each other [5]. In a similar way loss can be compensated for by
amplification in discrete amplifiers, like the erbium doped fiber amplifiers that
revolutionized optical communication [5], or distributed in the fiber link through
raman amplification [5]. Fiber non-linearities can be avoided by designing the sys-
tems in a way that avoid high optical intensities in the fibers. These deterministic
degradations in themself would not be a problem if the corresponding compen-
sations techniques were ideal. However the compensations are seldom ideal and
even in principle some of the degradations cannot be compensated in a straight
forward way.

As soon as there is some random contribution to the signal degradation the
approach with pre-determined compensation schemes fail. Random processes that
impairs the signal includes for example amplifier noise and crosstalk between chan-
nels, but can also be random effects, like environmental influences, on the in princi-
ple deterministic degradations. This means that the signal in an all-optical system
sooner or later has to be regenerated. This is even more important once the all-
optical approach is used in switches and routers, since the signal then can travel
a long way without ever being electrically regenerated.

Before we get deeper into this investigation, some discussion about the basic
concepts of information and errors that will be important in the following presen-
tation has to be discussed.
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2.1.1 BER and signal quality

The basic function of a communication system is to send information from one
place to another. Information can take many forms and can be sent in different
formats. In order to make this presentation clear it is important to define some
basic concepts.

A signal can be sent in analog or digital form. An analog signal is a continuously
varying signal in time, for example the electrical signal from the pick-up of a record
player. A digital signal, however, only takes a few, in a binary case only two,
discrete values. These two values represent the two logical symbols of the binary
system, normally called zero and one. This work will only discuss digital, binary
signals.

In an optical communication system the logical symbols are encoded on the
optical signal by modulation. There are three different properties of the optical
carrier wave that can be modulated, the amplitude, the phase and the frequency. In
advanced modulation formats different combinations of modulation of these basic
properties are used. This work, however, will only consider the most simple of all
modulations, which is when the light intensity is turned on and off and is called
on-off-keying, OOK. Furthermore there are two basic forms of modulation format,
non return-to-zero, NRZ, and return-to-zero, RZ. In NRZ the pulses representing
the one-symbol has a duration of the complete bit-slot and the intensity is not
returned to zero between consecutive one-bits. In RZ the pulses have a fixed
width in time smaller than the bit-slot.

One important measure of the quality of a communication system is how many
errors that are introduced in the sent information. This measure for the amount
of errors is usually referred to as bit error rate, or BER for short. BER is just the
number of errors per sent bit or, in a probability picture, the probability of making
an erroneous identification of a bit. The concept of this is shown schematically
in Fig. 2.1. The signal, in this case NRZ, with random fluctuations are described

Time PDF

Si
gn

al

Threshold

Figure 2.1: The concept of PDFs and BER.
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with two probability density function (PDF), one for each logical symbol, giving
the probability density for detecting a certain signal level. When the information
encoded in the signal is to be read a decision has to be made for each bit regarding
if it is a one or a zero. The most straight forward way of doing this is by introducing
a threshold, or decision, level. If the signal is below this level it is considered to be
a zero and if above it is a one bit. The probability of deciding on one although the
bit was a zero is the area under the PDF of the zero-bits above the threshold, gray
area in Fig. 2.1, and the probability of deciding on zero for a one-bit is the area
of the PDF of the one-bits below the threshold, black area in Fig. 2.1. The total
probability for an error, that is the BER, is then the sum of the error probability
for the ones and the zeros divided by two, assuming equal probability for the bit
being a one or zero. The threshold should obviously be chosen in order to give a
BER as small as possible.

The PDFs of the signal can, as described, be used to calculate the BER of the
signal. The problem is that the complete PDFs of the signal are often cumbersome
to find, and usually approximations are used instead. The basic idea is to measure
or calculate the mean value and standard deviation of the noise and then assume
the PDF-shape. One common approximation is to assume a Gaussian distribution
[5], which is a good approximation when thermal and shot noise in the detector
dominates the signal. For noise from optical amplifier a non-central χ2-distribution
is often a good approximation [6].

Another measure of the signal quality is the so called Q-factor, which is defined
as [5]

Q =
P̄1 − P̄0
σ1 + σ0

(2.1)

where P̄1,0 and σ1,0 are the mean values and standard deviation of the one and zero
level, respectively. When a Gaussian approximation is used a direct relationship
between the BER and Q-factor can be established [5]

BER =
1

2
erfc

(

Q√
2

)

≈ exp(−Q2/2)
Q
√
2π

(2.2)

where the erfc-function is the complementary error function. It is important to
notice that the direct relationship between BER and Q-factor is valid only for
Gaussian PDFs. If, as in the general case, the complete distribution is not uniquely
defined by the mean and standard deviation it is quite possible to have a process
that decrease the standard deviation, and hence increase Q, but at the same time
increase the overlap between the PDFs, and hence the BER. For some processes
it is therefore important to use the complete PDFs to properly describe the signal
quality. As we will see later in this report, regeneration is such a process.

In the Q-factor the difference between the signal levels of the one- and zero-level
is included. Another measure of the separation of the signal levels, but without
the variance, is the extinction ratio, ER. This ratio is defined by

ER =
P̄1
P̄0
. (2.3)
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Another simple measure of signal quality is the signal-to-noise ratio, SNR.
When discussing SNR it is important to be clear about what is meant since there
are a few different definitions. In the PDF picture introduced above the SNR is
often defined as the ratio between the square of the mean power and the variance
of the one-level

SNR =
P̄ 21
σ21

. (2.4)

This definition makes sense if one considers an ideal noise-less detector with a
responsivity equal to one, since the optical power is then identical to the electrical
current from the detector. Noting that the electrical power varies as the square of
the current this definition is equivalent to defining the SNR as the ratio between
electrical average signal power and noise power, or in other words the electrical
signal-to-noise ratio.

The optical signal-to-noise ratio, OSNR, on the other hand, is defined as the
ratio between optical signal power and optical noise power, as measured within a
specific bandwidth by for example an optical spectrum analyzer.

As the way of studying the signal in this work will mainly be that of the PDF-
picture the electrical SNR will be used, and implied by the use of the abbreviation,
SNR, unless explicitly stated otherwise.

The effect of any signal impairments on this picture is to increase the overlap
between the PDFs by making them wider or by moving them closer together, and
hence increase the BER. The job of the regenerator is thus to counteract this and
keep the BER low, which brings us to the next section.

2.1.2 1, 2 and 3R regeneration

It is common to divide regeneration into three functionalities [7], re-amplification,
re-shaping and re-timing, see Fig. 2.2. Re-amplification is the use of optical ampli-

Re-amplification Re-shaping Re-timing

1    0    1    1    1 1    0    1    1    1 1    0    1    1    1 1    0    1    1    1t t t t

Figure 2.2: The concept of re-amplification, re-shaping and re-timing, i.e 3R-
regeneration.

fication to increase the signal power in order to compensate for fiber attenuation
and coupling losses. Re-shaping implies the improvement of the signal quality
by, for example, extinction ratio improvement, noise redistribution and, in the
case of pulsed systems, pulse compression. Re-timing is used for reducing timing
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jitter, i.e. a random disturbance of the timing of the signal-pulses, and can for
example be accomplished by extracting the clock frequency from the signal and
transferring the data to a new low jitter pulse train locked to the extracted clock.
The three functionalities (re-amplification, re-shaping and re-timing) together are
usually referred to as 3R-regeneration, while in 2R-regeneration the re-timing is
omitted and 1R being only amplification. Now, let us have a closer look at the
three Rs.

1R

Re-amplification is just normal in-line amplification, which for many years have
been performed by rare-earth element doped fiber amplifiers, and most commonly
erbium doped fiber amplifiers, EDFAs. Other types of amplifiers include raman
amplifiers and semiconductor optical amplifiers. In the PDF-picture from section
2.1.1 amplification is, at least in the ideal case, a linear process, that is the gain
does not depend on the input signal power. This gives an output power that is a
linear function of the input power with a slope equal to the gain. Because of this
the only change induced by an ideal noise-less amplifier is to scale the PDFs to
higher signal power by an amount given by the gain of the amplifier. If noise is
included in the consideration the PDFs are also broadened and the BER increased,
see Fig. 2.3. If the noise added by the amplifier is considered to be independent

Pin

Pout

Time

PDF

P1P0 PDFPDFTime Time
Without amplifier noise With amplifier noise

Figure 2.3: The influence of linear amplification, without and with amplifier noise,
on the signal and the PDFs.

from the noise of the input signal, the variance at the output is just the sum of the
variances of the input and amplifier noise. One important figure of merit for linear
amplifiers is therefore the noise figure, defined as the ratio between the input and
output signal to noise ratio [8]. The noise figure is a measure of how much noise,
and hence potential errors, the amplifier adds to the signal.
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2R

Re-shaping is achieved by a component with a non-linear intensity transfer function
as shown in Fig. 2.4. The non-linearity allows for two main improvements of the
signal. The steep middle part, in combination with the low output intensity at the
zero level, increases the ratio between the intensity for the logical ones and zeros,
i.e. the extinction ratio (ER). The small slopes at low and high intensities ensure
that large amplitude variations at the input is transferred to smaller variations
at the output, that is the variance of the amplitude fluctuations is decreased
leading to narrower PDFs and increased signal to noise ratio. This process will be
referred to as noise redistribution. The limiting case of a step function is equivalent
to making a decision between a logical one and zero, as done in for example
optoelectronic repeaters. It is important to note that the increase in extinction

Pin

Pout

Time

PDF

Time PDF

BER is ”conserved”

P1PthP0

Pth: Threshold power
P1: Mean value of mark level 
P0: Mean value of space level 
ER = P1/P0 

Figure 2.4: The concept of re-shaping of a NRZ intensity modulated signal using
a non-linear intensity transfer function.

ration and compression of the PDFs shown in Fig. 2.4 does not imply an improved
bit error rate (BER) after the regenerator. Obviously a simple decision cannot
remove errors and the best result an ideal regenerator can achieve is to have the
same BER at the output as at the input. What a regenerator does is to collect
all the accumulated errors at that point in the system and conditions the signal
for further transmission in a way that decreases the rate of error accumulation
later in the transmission line. One indicator on how well the regenerator does
this is given by the intensity transfer function. Shown in Fig. 2.5 is a simple
calculation of BER as function of number of cascaded regenerators for different
transfer functions, using a model based on the static non-linear transfer function
[9]. As seen in the insert the amount of non-linearity of the transfer function
strongly affects the evolution of the BER in the cascade, with the limit of a step
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Figure 2.5: Calculated BER as function of number of regenerators for different
degrees of non-linearity. The corresponding nonlinear transfer functions are shown
in the inset.

function acting as an ideal decision giving a linear increase in errors. However, after
one regenerator the BER is the same for all transfer functions, clearly showing that
a regenerator cannot change the BER. The fact that all different non-linearities
give the same BER after one regenerator, indicates the importance of considering
the BER evolution in a cascade of regenerators when evaluating the performance.
Experimentally this can be done in for example a recirculating loop. However,
it has been shown [10] that by making sure that a suitable noise source is placed
between the regenerator under investigation and the decision circuit of the receiver
evaluating the BER, it is possible to get an idea of the performance of a single
regenerator. This set-up is in fact just a cascade of two ’regenerators’, one non-
linear and one linear, and although it does not give as much information as a loop
set-up, it is far easier to implement.

Even though we can experimentally evaluate the performance of a regenerator
it is hard to define a figure of merit similar to the noise figure of linear amplifiers. A
regenerator will always add noise, either through an active component like an SOA
or by the fact that it introduces additional losses, which have to be compensated
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for by an optical amplifier. Just like for a linear amplifier the amount of noise,
and hence additional errors, that is added by the regenerator is important for the
performance. This can be seen in Fig. 2.5 as the slope of the curves at a large
number of regenerators. A lot of noise gives a faster increase in BER with number
of regenerators. However, since the non-linear regeneration process is designed to
improve the signal-to-noise ratio, the standard definition of noise figure does not
really describe the amount of noise added, and is somewhat problematic to use
for this purpose. The non-linearity of the intensity transfer function gives some
indication about the performance, as seen, but it is just a static transfer function.
It is a memory-less system, described by the time averaged input to output power
relation and as such does not take any dynamics into consideration. As will be
shown later in this report, the dynamics of the regenerator plays an important role
in the noise re-distribution, which makes the static non-linear transfer function a
less than complete way of describing the regenerator.

3R

Re-timing is needed since the pulses representing the one-symbol can drift out
of their respective bit-slots in time. The process of compensating for this moves
the pulses toward the center of their respective bit-slot, as shown schematically
in Fig. 2.2. There are different ways of implementing re-timing but all of them
require that the timing information of the incoming signal is recovered, so called
clock recovery. All-optical clock recovery can be made using, for example, injection
locking of a mode-locked laser [11, 12]. This process results in a clock signal or
regular pulse train with a frequency equal to the bit rate of the incoming signal,
as seen in Fig. 2.6. The signal is then re-timed either by synchronous modulation
of the signal using the recovered clock [13], or by transferring the input signal to
the recovered pulse train by use of an optical gate [14].

1    0    1    1    1 t

t
Clock
recovery

1    0    1    1    1 t

Figure 2.6: The concept of clock recovery.

In 2R-regeneration, that is if the re-timing is not performed, there is a trade-off
between amplitude noise and timing jitter, since the non-linear transfer function
responsible for the re-shaping also converts amplitude fluctuations to timing jitter
[15]. This process is more pronounced for stronger non-linearities, which we have
seen improves the amplitude re-shaping. This further complicates the task of
finding measures of a good regenerator. Timing jitter and re-timing will, however,
not be investigated in this work.
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2.2 Basics of wavelength converters

In WDM-systems, which utilize the large bandwidth of optical fibers by sending
several channels at different wavelength at the same time, it is sometimes neces-
sary to change the wavelength. Some all-optical wavelength converter works by
the principle that the incoming optical signal at the original wavelength opens
and closes an all-optical gate, which in turn modulates a probe signal at the new
wavelength, Fig. 2.7. Just like in the case of a repeater without wavelength conver-

Low noise Converted
Regenerated

In

Outλ1

λ2 λ2

λ1

Non-linear gate

Figure 2.7: The concept of wavelength conversion with 3R-regeneration in nonlin-
ear gate.

sion the gate can operate linearly, without any regeneration, or using a non-linear
transfer function, which can make regeneration possible.

As a regenerator the wavelength converter uses a fundamentally different mode
of operation than the simple regenerator, without wavelength conversion. In a
wavelength converter the signal is transferred from the incoming degraded signal
to a locally produced low noise probe. This is true even if the signal is converted
to the same wavelength, as long as the original signal is not reused at the output.
In this work the two modes of operation will be designated pass-through, for the
case where the input signal is reused at the output, and wavelength conversion,
for the case when the signal is transferred to a low noise probe. The differences
between these two modes regarding noise redistribution, in a specific device, is one
of the things that will be investigated.

2.3 The SOA, an introduction

A large part of this thesis is concerned with the semiconductor optical amplifier,
SOA for short, or devices incorporating an SOA. However, no detailed investiga-
tions of specific device design will be made, and hence a complete picture of the
device will not be presented. This section will try to give a short overview of the
SOA. For further details the references [5, 16] can be studied.

A semiconductor optical amplifier is as the name implies an amplifier for an
optical electromagnetic field made in semiconductor material. Structurally, the
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SOA consists of an active gain medium and a waveguide for confinement of the
optical field. The device is a traveling wave amplifier, which means that the
optical field is injected into one end of the waveguide, is amplified as it travels
along the amplifier and leaves the device through the other end of the waveguide.
Compared to a laser diode, which has basically the same structure, the SOA have
anti-reflection coatings on the facets in order to reduce reflections, since the Fabry-
Perot cavity that would result between two reflecting facets would result in a very
limited bandwidth [5]. To be able to further reduce the reflection the facets are
usually angeled a few degrees in relation to the waveguide so that less of the optical
field is reflected back into the waveguide, and thus feedback is decreased.

The optical gain is based on stimulated emission where an incoming photon
stimulates the recombination of an electron and a hole, which results in the emis-
sion of a new photon with the same energy, phase and direction of propagation
as the incoming photon. In order to have gain in the material this process must
dominate over the case where an incoming photon stimulates the creation of an
electron-hole pair, and is absorbed in the process. The condition under which the
stimulated emission dominates over the stimulated absorption is called population
inversion. Since the stimulated emission depends on the recombination of elec-
trons and holes, the density of electrons in the conduction band and holes in the
valence band must be above a certain level in order to reach population inversion.
In intrinsic, i.e. undoped material the density of electrons and holes are the same
and is usually referred to as just carrier density.

In order to increase the carrier density in the active region the material has to
be pumped, which means that energy is provided to excite the electrons from the
valence band to the conduction band and hence increase the carrier density. An
SOA is usually pumped electrically, which means that carriers are injected into
the active region by an electrical current through contacts connected to the SOA.

The material structure of an SOA is normally a p-i-n doped structure and the
active part, i.e. where the useful stimulated emission takes place, is within the
intrinsic region. This region is also designed to have a lower energy band gap and
higher refractive index in order to confine both carriers and photons in the same
region and increase the stimulated emission.

2.4 Regenerator and wavelength converters, a few
examples

There are many different suggestions for specific implementations of regenerators
in the literature. In most cases they are based on fiber or semiconductor compo-
nents [7, 17–29]. The strengths of regenerators based on nonlinearities in optical
fibers are mainly the very fast response time and low insertion loss. However the
long fibers needed to achieve adequate nonlinearity make the devices bulky and
sensitive to fluctuating environmental conditions, such as temperature [7]. Shorter
fibers can be used but at the trade-off against the use of high input power. Semi-
conductor components on the other hand are small and can be integrated with
other components, making them potentially compact and cheap. One difficulty is
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that they have quite complicated dynamics on different time scales, some of which
are comparable to the bit rate of modern optical communication systems [30].
This means that the response of the component to a specific signal bit depends on
the bit-pattern preceding it in time. This effect is called pattern dependence, and
might lead to strong signal degradation [31,32].

The semiconductor devices most commonly used for signal processing in gen-
eral, and regeneration specifically, are semiconductor optical amplifiers (SOAs)
and electro absorbers (EAs). The way the functionality is achieved varies and
is subject to substantial innovation. In this section a few examples of different
ideas for all-optical repeaters, both regenerators and wavelength converters, will
be presented.

2.4.1 SOA gate

A single SOA can be used as an all-optical gate by using the gain saturation, that
is the effect that a high intensity in the amplifier reduces the carrier density and
hence the optical gain [33]. If two signals is injected in the device a modulation on
one of them can be transferred to the other through this effect, called cross gain
modulation (XGM). As seen in Fig. 2.8 a high intensity in signal one leads to a
low gain in the SOA and a low output intensity of signal two. A low signal level
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Figure 2.8: The concept of cross gain modulation in an SOA. The schematic
transfer function is shown in the middle.

on the first signal does not saturate the gain, resulting in a high output power
of the second signal. The signals can be injected co- or counter propagating.
In the co-propagation scheme the two signals have to be at different wavelength
and an optical filter is needed to remove the original signal at the output. In
the counter propagating setup the wavelength conversion can be made to any
wavelength without filtering, including the original wavelength.
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2.4.2 Saturable absorbers

A very simple regenerator uses a single saturable absorber, for example an electro-
absorber (EA), in order to achieve extinction ratio improvement and to a certain
extent noise redistribution [19,34–37]. The device absorbs low intensity noise, for
example amplified spontaneous emission, while high intensity pulses are transmit-
ted with low loss, Fig. 2.9. Although this setup improves the PDF at the zero
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Figure 2.9: Concept of extinction ratio improvement in an saturable absorber.

level, the amplitude fluctuations of the one level is not affected or can even be
increased [38]. One way to remedy this is to combine the saturable absorber with
a SOA. The gain saturation in the amplifying section then gives a flat intensity
transfer function also at high intensities and can thereby regenerate also the one
level [39,40]. This device will be further discussed later. Another suggestion for re-
ducing the amplitude variations on the logical one-level is to use a highly nonlinear
fiber and an optical bandpass filter [41].

2.4.3 Interferometers

The most common approach for wavelength conversion and regeneration uses cross-
phase modulation in an interferometric structure [23, 42]. A schematic example
of a Mach-Zehnder (MZI) configuration is shown in Fig. 2.10. The input signal
(λ1) modulates the carrier density in semiconductor devices in the interferometer
arms and thereby changes the refractive index. The change in refractive index
transfers the intensity modulation of the input channel to a phase modulation of
the output channel (λ2), which is then transferred back to intensity modulation
through interference at the output of the interferometer. If the input signal is
injected in both interferometer arms but with a slight delay, ∆t, such that the
phase difference between the two arms is reset by the delayed signal, the time
duration that the gate is open, the switching window, is controlled by the delay
time. This can substantially increase the speed of the device compared to a setup
where the switching window is controlled by the carrier lifetime in the SOAs [43].
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Figure 2.10: Mach-Zehnder interferometer for wavelength conversion and 3R-
regeneration, in a delayed scheme.

With proper biasing the interferometer approach can also be used in pass-through
mode [22, 24]. Other interferometric structures than an MZI can be used, for ex-
ample an SOA multi mode interferometer (SOA-MMI) [26]. The perhaps simplest
device uses a single SOA and a passive asymmetric interferometer and is called
delayed-interferometer signal-wavelength converter (DISC), to achieve a similar
functionality as the MZI described above [43].

2.4.4 Polarization rotators

Another approach uses the non-linear birefringence in an SOA. Due to the asym-
metry in effective refractive index and confinement factor between the transverse
electric (TE) and transverse magnetic (TM) modes in the waveguide, a change in
carrier density leads to different phase changes for the two orthogonal polarization
states and thus to a polarization rotation. By placing a polarization filter after
the SOA and controlling the input polarization the intensity dependent polariza-
tion rotation can be used to achieve a non-linear transfer function and, hence,
regeneration [25].

2.5 Summary

By using a probability density function picture of an intensity modulated signal
the concept of regeneration, and its impact on signal quality, was introduced. The
focus was on the reshaping using a non-linear intensity transfer function. The
problem of defining a figure of merit for a 2R-regenerator was discussed briefly.
Although the regeneration is indeed performed by a discrete component, the com-
plete effect of the regeneration and hence the performance of the regenerator can
only be seen as the signal is propagated through the system and a cascade of regen-
erators. Furthermore, regeneration is a non-linear process in the PDF-perspective,
which renders the common measure of added noise, the noise figure, less useful. It
also means that the shape of the PDFs are changed. The static non-linear trans-
fer functions, which in principle could calculate the redistribution of the PDF, do
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not take the dynamics of the device into consideration, and do therefore not give
the complete picture. The questions this discussion leaves us with are the main
objective of this work. They will not all be answered, but they will be the reason
for almost all of the investigations in the following chapters.

The work horse of many devices for all-optical signal processing, the SOA, was
introduced and briefly described. A small part of the multitude of examples of
wavelength converters and regenerators employing this device was presented.

Not all of the tools and concepts used later on have been introduced so far,
but in order to avoid putting the reader to sleep too early, more details will be
presented in the report as they are needed. Now; let us move on to the more
nitty-gritty part of this report.
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Chapter 3

Noise in SOAs

3.1 The origin of SOA noise

As seen in Sec. 2.4 the SOA is used in many devices for regeneration and wavelength
conversion. As any amplifier the SOA, in addition to providing gain, is also a source
of noise. In principle there are different sources of noise in an SOA, such as noise
from pump sources, carrier noise, and so-called amplified spontaneous emission,
ASE. The dominant one [44] is in most cases ASE. This section will deal with
the basics of amplified spontaneous emission in order to define some fundamental
concepts. Detailed modeling of the influence of ASE noise in a saturated SOA is
the topic for Sec. 3.4.

First a few words on other noise sources before starting with ASE. As described
in Sec. 2.3 the gain in an SOA is provided by the inversion of carrier populations
in the conduction and valence bands. Any random fluctuation in the carrier den-
sity will thus translate into a variation in gain and hence in the output optical
field, this will be referred to as carrier noise. The carrier density is mainly de-
termined by four processes, pumping, stimulated and spontaneous emission and
non-radiative recombinations. The noise due to the pump source obviously de-
pends on what pump source is used and can be included in the carrier noise. The
non-radiative recombinations of carriers are all the processes, which decreases the
number of excited carriers without producing any photons. The excess energy is
instead dissipated as heat in the active material. The processes are combination
at recombination centers such as defects, surfaces and interfaces in the material
and Auger recombination. Auger recombination is when the energy from a hole-
electron recombination is transfered to another carrier as kinetic energy, which is
then scattered higher up in the conduction band. A detailed description of carrier
noise is given in [45] but since for most cases it is dominated by the ASE it will
not be studied in this work.

In any optical amplifier working through stimulated emission there will also
be spontaneous emission [16], where photons are emitted from the spontaneous
recombination of an electron-hole pair, i.e. without a stimulating photon. In this
process the emitted photon has random phase and propagation direction. Some of
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these spontaneously emitted photons will propagate along the waveguide, in both
directions, be amplified, and exit at the facets. Since the spontaneous emission
is random it will be a source of noise. It also means that for each spontaneously
emitted photon there is one less electron-hole pair, which means that this process
also contributes to the carrier noise. Since the gain spectrum of an SOA normally
is fairly wide, the spontaneous emission can take place over a wide range of energies
and the ASE is hence a broad-band noise source. In simple linear noise models, [46]
for example, the ASE noise is considered to be a broad band noise field with a
certain mean power. At the detector the different frequency components of this
field beats with the signal field and itself, giving rise to what is called signal-
spontaneous and spontaneous-spontaneous beat noise. The signal-spontaneous
beat noise dominates at higher signal levels, while the spontaneous-spontaneous
beat noise dominates at low signal levels. The ASE power is determined by the
gain, the bandwidth and the inversion factor. However, as the ASE travels along
the waveguide in an SOA it will interact nonlinearly with the input signal and
with itself [44,47–53]. This nonlinear interaction is limited to a narrow bandwidth
around the signal and leads to changes in the spectra of the signal field and to
changes in the noise statistics. These kind of nonlinear interactions will be studied
in this chapter.

3.2 Noise redistribution

As discussed in Sec. 3.1 the non-linear behavior of a saturated SOA is important
for the properties of the added ASE. In a cascade of non-linear amplifiers the
redistribution of the accumulated noise at the input of the amplifier also has to be
considered. Again a more detailed discussion will be made later in this chapter,
but already here a simplified and naive discussion based on the static transfer
function will be made.

The intensity variations due to noise at the input of the SOA will modulate
the carrier density, and hence the gain, through stimulated emission. A high input
intensity leads to many electron-hole recombinations, which lowers the carrier
density and results in low gain, and a low input intensity in the opposite way
leads to high gain. Viewing the input signal as continuous wave, with a specific
mean value, and with a small random modulation due to noise, this relation; high
input intensity compared to the mean → lower gain and low input intensity →
higher gain, give a self gain modulation, which counteracts the input variations,
leading to smaller variations, relative to the mean, on the output than on the
input, if no added noise is considered.

This process is obviously strongly dependent on the speed of the different
carrier dynamics, but it can still be very instructive to view it in a static, memory
less case. In this case the intensity transfer characteristics of the SOA is described
by a time-averaged power transfer function, which is what would be measured
when the output power is measured as a function of the input power with an
ordinary power meter. One example of such a function for an SOA is shown in
Fig. 3.4 in the next section. Let us assume that the transfer function can be
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described mathematically as y = f(x), where x represents the input power and y
the output power. The stochastic variables describing the input and output signal
including noise is then related through the same function, Y = f(X). In this
picture the probability density functions of the signal at the input and output is
described by PDFX(x) and PDFY (y), respectively. The output PDF is then given
as a function of the input PDF by

PDFY (y) =
∣

∣

∣

(

f−1
)′
(y)
∣

∣

∣
PDFX

(

f−1(y)
)

; y ∈ I2, (3.1)

assuming that f is real and a bijective mapping of an interval, I1, of x on an
interval, I2, of y, and that f has a continuous derivative f ′(x) 6= 0 in I1. f

−1(y)
is the inverse function of f(x) [54]. Using this relation a mathematical description
or measurement of the transfer function can be used to calculate the output PDF
assuming a certain input. It should be noted already now that the use of a static
transfer function implies an infinitely fast device with a gain that can instanta-
neously follow the intensity variations. However, for a long cascade of amplifiers,
or regenerators, where the accumulated noise can be large, the consideration of
how a non-linear process redistributes the noise at the input has to be considered,
and such an assumption might be justified under certain conditions. The exami-
nation of this type of redistribution, but including dynamic effects and ASE noise,
is the main topic of the rest of this chapter.

3.3 PDF measurements

3.3.1 Measuring technique

In Sec. 2.1.1 the PDF-picture of a noisy signal was introduced in order to describe
BER and regeneration. As a theoretical tool it is useful when describing the
transformation of noise in a non-linear component, as seen in Sec. 3.2. In this
section the PDFs and the redistribution of noise will be measured and shown to
be more than just a neat theoretical picture [55–57].

The experimental setup is shown in Fig. 3.1. The first part of it is a light
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Power meter

Att. EDFA1 SOA/EDFA2

Att. Filter

90/10

Att.Filter

Figure 3.1: Setup for measuring the PDF after an optical amplifier.
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source in the form of a continuous wave laser (LD) and a noise source in the
form of a variable attenuator and a fiber amplifier (EDFA1). This setup allows for
varying the signal-to-noise ratio of the input signal to the SOA by varying the input
power to EDFA1 using the attenuator. The examined amplifiers are a commercial
bulk InP/InGaAsP SOA and a fiber-based pre-amplifier (SOA/EDFA2), which is
used for comparison. The equipment used for examining the output signal was a
detector, a power meter and a bit-error rate test-set (BERT).

The probability density functions (PDFs) are derived from measuring the BER
as function of decision threshold voltage [48, 58], and the principle is shown in
Fig. 3.2. The low power tail (left side) of the PDF is measured assuming that the
continuous wave signal is a string of ones. By changing the decision threshold of
the BER test-set the BER-dependence on threshold level can be mapped out. As
described in Sec. 2.1.1 the BER is derived from the integral of the PDF and hence
the PDF can be calculated as the derivative of the BER with respect to threshold
voltage.

PDF =
∆BER

∆Vth
(3.2)

The high power tail (right side) of the PDF is measured in the same way but where
the signal is assumed to consist of a string of zeros. Since the main interest in
this investigation is in the optical noise rather than the noise from the detector,
the measured voltage can be related to the optical power by making sure that the
detector is linear in the measuring range and relating the measured mean values
of the PDFs at different power levels to that of the measured optical power at the
detector. In all figures the PDFs will be plotted as a function of optical power.
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Figure 3.2: PDF measuring technique.

This way of measuring the PDF allows for measuring as far out in the tails
as the BER test set can accurately count errors. If the idea is, as in our case, to
examine changes in the PDFs far out in the tails where they influence the number
of errors relevant in a communication systems perspective, this method will thus
per definition give relevant PDF measurements.

To start out let’s compare the measured results to that of the concept of non-
linear noise redistribution discussed in Sec. 3.2. This is done in Fig. 3.3, Fig. 3.4
and Fig. 3.5. The measured input PDF is shown in the lower part of Fig. 3.3. The
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Figure 3.3: Linear transformation of PDF. The input PDF is shown at the bottom,
to the left is the transfer function and to the right the transfered PDF.

upper left part shows a linear transfer function, corresponding to the steady state
gain of the SOA at the specific input power described by the input PDF. The right
part of the figure shows the input PDF transformed with the linear function. The
signal to noise ratio of the input signal, as deduced from the PDF, is 22dB.

Fig. 3.4 shows the same input PDF but the transfer function in this figure is
the measured nonlinear transfer function, i.e. time-averaged output power versus
input power, and the input PDF is transformed using this function, giving the
result shown to the right. The two transformations in Fig. 3.3 and Fig. 3.4 follows
the procedure outlined in Sec. 3.2 and show the expected results. For the linear
case the output PDF differs from the input by a constant factor, which is the gain
(or slope) of the transfer function. In the non-linear case the mean value of the
output PDF is given by the gain at that specific point of the transfer function,
while the over all shape is changed due to the change of slope of the transfer
function with input power. Most obvious of the changes in shape is the much
more narrow PDF at the output. Now let’s see what the measured PDF looks
like.

In Fig. 3.5 we compare the measured output PDF (solid circles) to the trans-
formed PDFs of Fig. 3.3 and Fig. 3.4. The measured PDF ends up in between
the two previous cases. Since the gain of the SOA is obviously quite strongly
saturated, and hence can not be considered to be in a linear regime the linear
transformation is not expected to give a good description of the SOA, but why
does not the measured transfer function give better agreement? The detailed ex-
planation of this will be made in Sec. 3.6.1, when we also have the theoretical
results, but already here a first qualitative explanation can be made.
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Figure 3.4: Non-linear transformation of PDF using measured static transfer func-
tion of an SOA. The input PDF is shown at the bottom, to the left is the transfer
function and to the right the transfered PDF.
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Figure 3.5: Measured PDF compared to the limiting cases of linear and static
non-linear transformation of PDF.

The reason for the discrepancy is that the transfer function does not contain
any information of the dynamics of the device, as described by its recovery time.
The linear case corresponds to a slow device (long recovery time) so that the gain
cannot follow the intensity variations of the high bandwidth noise, which then only
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experiences the mean gain. The measured static transfer function corresponds to
a high speed device (short recovery time) so that the gain modulation follows the
intensity variations instantaneously. The bandwidth of the noise is controlled by
the optical filter before the SOA and is in the order of one nanometer, or 125 GHz.
The recovery time of a typical SOA is on the order of a hundred picoseconds, corre-
sponding to a modulation bandwidth of less than 10 GHz. The limited modulation
bandwidth of the SOA compared to the noise bandwidth results in that only the
low frequency part of the noise spectrum is redistributed according to the non-
linear transfer function, while the high frequency part only experience the linear
gain. In the present case, the measurement bandwidth (Be ≈ 10 GHz) is of the
same order of magnitude as the modulation bandwidth of the SOA. This means
that the noise transformation can be described neither by the static (saturation)
transfer curve, which implies too strong noise suppression due to the non-linearity,
nor by a linear transfer function, which neglects the gain dynamics all-together.

3.3.2 Gain saturation dependency

By measuring the PDF at different input powers the redistribution at different
levels of gain saturation can be examined. The gain as a function of input power
can be seen in Fig. 3.6, where the measuring points of -5, -12, -20 and -30 dBm
are also marked by arrows. These measuring points were chosen to give PDFs
from the non-saturated, strongly saturated as well as intermediate regimes. In
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Figure 3.6: Measured gain of the examined SOA as function of input power. The
input power levels where the PDFs are measured are marked by arrows.

Fig. 3.7 the PDFs after the SOA are compared to the EDFA in a case without
the noise source, i.e. where the input noise originates only from the laser diode
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and is very low. In Fig. 3.8 a case with noise source is shown, and the input
signal-to-noise ratio is about 22dB, as evaluated from the input PDF. In the low
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Figure 3.7: Comparison of measured PDFs after an EDFA and an SOA with low
input noise.

input noise case in Fig. 3.7 the PDFs are mainly dominated by electrical noise
from the receiver set-up, as will be discussed more later in this section. This can
be seen by noticing that the most narrow PDFs all look the same, indicating the
same noise contributions, regardless of input noise or signal power level. In the
case with the noise source, however, the PDFs are dominated by optical noise and
the differences between the SOA and the EDFA can be examined. In Fig. 3.8 it
is clearly seen how the noise distribution after the SOA narrows, compared to the
EDFA, as the mean power increases. This is expected from the decrease of the
slope of the SOA power transfer function, Fig. 3.4, going from low to high powers.
The slow dynamics of the EDFA compared to the measurement bandwidth renders
the EDFA a linear device, in terms of noise transformation, and no narrowing is
seen. For the -5 dBm input power case the output PDF of the EDFA is compared
to the input PDF transformed using the linear transfer function. Apart from a
slight broadening due to the added ASE in the EDFA the PDF shape is the same,
again indicating a linear device.

In order to analyze the measured PDFs further the central moments can be
extracted by calculating the cumulant generating function [59]. The cumulant
generating function is defined as the natural logarithm of the moment generating
function, which is the expectation value of e−sx or

CGF(s) = ln (MGF(s)) = ln

(∫ ∞

−∞

PDF(x)e−sxdx

)

. (3.3)
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Figure 3.8: Comparison of measured PDFs after an EDFA and an SOA with high
input noise. Both cases are also compared to a non-central χ2-distribution with
the same mean and variance (dash-dotted). The EDFA is in the -5 dBm case also
compared to the input PDF transformed with the linear gain (open triangles)

From the cumulant generating function the cumulants of order n can be calculated
by

kn = (−1)n ∂nCGF(s)

∂sn

∣

∣

∣

∣

s=0

. (3.4)

The first order cumulant is identical to the mean value and order two and three
are identical to the respective central moments defined by

mn =

∫ ∞

−∞

(x− µ)nPDF(x)dx, (3.5)

where µ is the mean value of the distribution. The definition of central moments
is more easy to relate to than the cumulant generating function and from Eq. (3.5)
it is seen that the second order central moment (or cumulant) is the variance. In
practice it is easier to calculate the MGF as the Fourier transform of the PDF,
which is the method used in this work.

Fig. 3.8 also includes non-central χ2 distributions plotted using the mean and
variance calculated from the measured PDF. The poor agreement at -30 dBm
input power is again due to that the PDFs are dominated by electrical receiver
noise rather than the optical noise. At higher input powers the agreement in the
SOA case is fairly good with some deviations in the tails, which are attributed to
noise redistribution. In the EDFA case the measured output PDF differs from the
non-central χ2 distribution in a similar way as the input PDF. This again indicates
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that the EDFA is linear when it comes to noise redistribution, while the SOA is
non-linear and redistributes the noise.

In order to see the noise redistribution in the SOA more clearly the skewness
and standard deviation of the PDFs, for the high input noise case, are plotted
versus their mean values in Fig. 3.9 and Fig. 3.10, respectively. The skewness is
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Figure 3.9: Measured standard deviation as a function of mean power for the high
input noise case.

the normalized third order central moment

γs =
m3

m
3/2
2

(3.6)

and describes the asymmetry of the PDF [59], with a positive/negative number
indicating a long high/low power tail. This property of the skewness can also be
seen in Fig. 3.11 and from Eq. (3.5) where the odd order central moments are seen
to have different signs for distributions skewed to different sides of their respective
mean values.

In Fig. 3.12 the standard deviation of the low noise case is plotted versus the
mean value, in order to see the impact of ASE from the two amplifiers.

The non-linear transfer function of the SOA reduces the width of the PDF
compared to the linear EDFA. This noise compression is seen both for the case
with high input noise, Fig. 3.9, but also when the noise at the input is low, Fig. 3.12.
For low input noise, the higher ASE noise of the SOA is seen at low powers, as a
larger standard deviation, while at high power the noise suppression due to gain
saturation and self-modulation reduces the ASE noise for the SOA. The noise level
of the detector can also be deduced from Fig. 3.9 and Fig. 3.12 by noting that in
all cases the standard deviation approaches the same finite value for low powers,
and low optical noise. This indicates a noise level of about 6 µW, which fits fairly
well with the noise equivalent power of the detector, specified to be 3 µW at 10
GHz. For the cases with high input noise the optical noise clearly dominates at
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Figure 3.10: Measured skewness as a function of mean power for the high input
noise case. The skewness for non-central χ2-distributions with the same mean and
standard deviation is shown (open symbols) for comparison.
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Figure 3.11: Schematic picture of the skewness of a PDF.

higher input powers, while for the low input noise the optical noise is comparable
to the detector noise.

Furthermore, it is seen in Fig. 3.10 that the noise redistribution in the SOA
gives a shift from positive to negative skewness when the power is increased. This
shift toward negative skewness for higher powers indicates that the usual approx-
imation of a non-central χ2-distribution no longer holds, since this distribution
always has positive skewness. The comparison to the non-central χ2-distribution
is shown explicitly in Fig. 3.10, where the skewness of this distribution is calculated
using the measured mean and standard deviation. A negative skewness also means
a higher probability of errors at the one-level, which to some degree counteracts
the suppression of the standard deviation, compared to the linear case, and should
be considered when for example all-optical regeneration in SOA-based devices is
considered.

In summary the experimental examination of the statistics of a noisy signal at
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Figure 3.12: Standard deviation as a function of mean power for the low input
noise case.

the output of a saturated SOA in the form of PDFs show both a compression of
the noise and a change in the overall shape of the PDF. These noise redistributions
will be examined further using theoretical modeling and calculations presented in
Sec. 3.4. The examinations and comparison to the experimental results presented
above will be done in Sec. 3.5. An investigation of the influence of noise suppres-
sion, in the form of lower standard deviation, and skewness on the BER will be
investigated in Sec. 3.6.4.

3.4 SOA noise models

This section describes the different models we use to investigate the noise in SOAs.
The actual results from the models is presented in Sec. 3.5, where the different
models are compared to each other and measurements. Some details of the deriva-
tions are left out of this section and presented in the appendices.

All the different noise models are based on the same device model; a standard
rate equation model for the carrier density in an SOA, and a propagation equation
for the electric field, described in [60]. The analysis of noise in the SOA is per-
formed in two different ways, a small-signal analysis and a large-signal simulation.
In both cases, the noise model is based on the same basic assumptions. The noise
is thus incorporated in the equations by Langevin forces, in accordance with [44]
and [61]. The resulting equations for carrier density and optical field are,

∂N

∂t
=

I

qV
− N

τs
− g(N)

A~ω0
|Ẽ|2 + f̃N (3.7)

∂Ẽ

∂z
=

1

2
(g(1− iα)− αint)Ẽ + f̃E . (3.8)
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In these equations, I is the injected current, q is the elementary charge, V is the
active volume, τs is the spontaneous carrier lifetime, A is the effective cross-section
area of the active region, ~ω0 is the photon energy, α is the linewidth enhancement
factor and αint is the waveguide loss and Ẽ(t, z) is the complex envelope of the
optical field normalised such that |Ẽ|2 is the power. The time variable t is a shifted
time coordinate, t = treal − z/vg, where treal is the real time coordinate and vg is
the group velocity. The gain, g(N), is approximated as a linear function of the
carrier density and it is assumed that the carrier frequency ω0 is chosen at the
gain peak. The gain is then

g(N) = a(N −N0) (3.9)

where a is the differential modal gain and N0 is the carrier density at transparency.
f̃N and f̃E are the noise terms (Langevin forces) for the carriers and spontaneous
emission respectively. The electric field and the noise terms are from now on
normalized with the square root of the saturation power, E = Ẽ/

√
Psat, fi =

f̃i/
√
Psat (i = E,N). The spontaneous emission is considered as a Gaussian noise

source with correlation functions

〈fE(z1, t1)f∗E(z2, t2)〉 =
~ω0
Psat

gsnspδ(z1 − z2)R(t1 − t2)

〈fE(z1, t1)fE(z2, t2)〉 = 0 (3.10)

where the saturation power and steady state gain coefficient are

Psat =
A~ω0
aτs

, (3.11)

gs =
g0

1 + P/Psat
, (3.12)

nsp ≈ (gs + aN0)/gs is the spontaneous emission factor and g0 is the gain coef-
ficient without any optical input power. The steady state solution of the gain
is achieved by setting the time derivative and noise terms in Eq. (3.7) to zero.
The carrier noise, described by fN , can be shown, in many cases, to be small
compared to the amplified spontaneous emission noise [44], and will be neglected
in the following examinations. The function R(τ), which controls the correlation
in time, can be chosen to represent the physical system under consideration. By
noting that the Fourier transform of R(τ) is the spectrum of the noise, through
the Wiener-Khinchin theorem [62], a physical choice of R(τ) should give the local
normalized spontaneous emission spectrum of the amplifier. Commonly a white,
i.e. constant, noise spectrum is chosen. This can often be motivated by limit-
ing the investigations to a frequency range within which the spectrum is actually
flat. However, this assumption has the drawback that a constant, unlimited noise
spectrum means that there is infinite noise power. In this work we will compare
different models based on the same basic assumptions, and one of the models is a
sampled time-domain simulation. The time step, ∆t, which we use for the discrete
sampling of our signal, give us a numerical limit to our spectrum through the sam-
pling theorem. By assuming that the signal is a sample-and-hold signal, i.e. the
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Figure 3.13: Schematic of a sample-and-hold signal

signal is constant between sampling points as shown in Fig. 3.13, the correlation
in time becomes

R(τ) =

{

0; |τ | ≥ ∆t
1
∆t

(

1− |τ |
∆t

)

; |τ | ≤ ∆t.
(3.13)

This correlation corresponds to a sinc2-shaped spectrum, which also limits the
amount of noise power. As long as the sampling interval is short enough to make
the noise spectrum much wider than any filtering in the system this assumption
gives results very similar to the white noise assumption.

Now we will move on to describing the models used. The basic equations above
will first be analyzed using a small-signal assumption in Sec. 3.4.1 and then using
a large-signal, statistical simulation approach in Sec. 3.4.2.

3.4.1 Small signal analysis

The first of the two noise descriptions assumes that the noise is small compared
to the signal field and hence can be considered as a small perturbation.

If Eq. (3.8) is written

∂E

∂z
=

1

2
(g(1− iα)− αint)E + λfE . (3.14)

the electric field, including any random fluctuations from the noise terms, can be
expanded in a Volterra series [63] in the arbitrarily chosen parameter λ

E(λ) ≈ Es + E1λ+ E2λ
2 + ...+ Enλ

n (3.15)
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were Es is the electric field without noise and

E1 =
1

1!

dE

dλ

∣

∣

∣

∣

λ=0

E2 =
1

2!

d2E

dλ2

∣

∣

∣

∣

λ=0

En =
1

n!

dnE

dλn

∣

∣

∣

∣

λ=0

.

By setting the arbitrary chosen λ equal to unity, splitting the electric field in its
amplitude and phase

E = ρeiφ (3.16)

and limit the order of the expansion to 2, Eq. (3.15) can be written as

E ' (ρs + ρ1 + ρ2)e
i(φs+φ1+φ2)

= ρse
iφs

(

1 +
ρ1
ρs

+
ρ2
ρs

)

ei(φ1+φ2)

= EsEp. (3.17)

In Eq. (3.17) ρ1, ρ2, φ1 and φ2 can be seen as the perturbations of the steady state
field to first and second order due to noise. By series expansion of the exponential
Ep can be written as

Ep ' 1 +
ρ1
ρs

+ iφ1 +
ρ2
ρs
− φ21

2
+ i

(

φ2 +
ρ1φ1
ρs

)

+ ... (3.18)

The gain coefficient is, in the same manner, written as

g = gs + g1 + g2. (3.19)

where g1 and g2 are perturbations to the steady state gain gs.
The small-signal analysis can thus be performed, in principle, to any order in

the expansion of the field and gain. The first order expansion has already been
done by Shtaif et al. [44], and will, in a short form be presented and used later as
a reference. This first order model, however, can only give information about the
mean and standard deviation of the noise distribution, as will be seen. Since this
investigation of the noise redistribution also includes the change in PDF shape,
as described for example by the skewness, a higher order model is needed. A
model taking the second order terms into considerations have been developed by
the author and his supervisors and will be presented next.

Second order

By inserting Eq. (3.17) into Eq. (3.8) and comparing it to the same equation for
Es, i.e. without noise, an equation for Ep is achieved

dEp
dz

=
1

2
(g − gs)(1− iα)Ep +

fE
Es

. (3.20)
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Now Eq. (3.18) is inserted in Eq. (3.20) and the terms of the same order are
collected. The first and second order equations become

∂

∂z

(

ρ1
ρs

+ iφ

)

=
1

2
g1(1− iα) +

fE
Es

(3.21)

∂

∂z

(

ρ2
ρs
− φ21

2
+ i

(

φ2 +
ρ1φ1
ρs

))

=
1

2

(

g2 +
g1ρ1
ρs

+ iφ1g1

)

(1− iα) (3.22)

These equations are then split into their real and imaginary parts, the results
are for first order:

∂

∂z

(

ρ1
ρs

)

=
1

2
g1 +Nρ (3.23)

∂

∂z
φ1 = −

α

2
g1 +Nφ (3.24)

where Nρ = Re(fE/Es) and Nφ = Im(fE/Es). The equations for the second order
become:

∂

∂z

(

ρ2
ρs
− φ21

2

)

=
1

2

(

g2 +
g1φ1
ρs

+ αφ1g1

)

⇒

⇒ ∂

∂z

(

ρ2
ρs

)

=
1

2

(

g2 +
g1φ1
ρs

)

+ φ1Nφ (3.25)

∂

∂z

(

φ2 +
ρ1φ1
ρs

)

= −α
2

(

g2 +
g1ρ1
ρs

)

+
g1φ1
2

⇒

⇒ ∂

∂z
φ2 = −

α

2
g2 − φ1Nρ −

ρ1
ρs
Nφ. (3.26)

Using Eq. (3.9) in Eq. (3.7) the differential equation for the gain becomes

∂g

∂t
=
g0 − g

τs
− g

τs
|E|2 (3.27)

The first order gain equation is then (using Eq. (3.17), Eq. (3.18) and Eq. (3.19))

τs
∂g1
∂t

= −g1 − ρ2sg1 − 2gsρsρ1 (3.28)

and the equation for the second order gain

τs
∂g2
∂t

= −g2 − ρ2sg2 − (gsρ
2
1 + 2ρsg1ρ1 + 2gsρsρ2). (3.29)

So far the first and second order perturbations have been introduced and the
corresponding differential equations for the field and gain have been formulated.
Now it is time to solve these equations for ρ1, ρ2 and φ1.
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Solving Eq. (3.28) and Eq. (3.29) in the frequency domain yields

g1(z, ω) =
−2gsρ2s

1 + ρ2s + iωτs

ρ1
ρs

(3.30)

g2(z, ω) = −
gsρ1 ⊗ ρ1 + 2ρsg1 ⊗ ρ1 + 2gsρsρ2

1 + ρ2s + iωτs
. (3.31)

where ⊗ means a convolution in the frequency domain. The frequency domain
equations for the first and second order amplitude and the first order phase then
becomes

∂

∂z

(

ρ1
ρs

)

= − gsρ
2
s

1 + ρ2s + iωτs

ρ1
ρs

+Nρ (3.32)

∂

∂z

(

ρ2
ρs

)

= − gsρ
2
s

1 + ρ2s + iωτs

ρ2
ρs

+B(ω, z) (3.33)

∂

∂z
(φ1) =

αgsρ
2
s

1 + ρ2s + iωτs

ρ1
ρs

+Nφ (3.34)

with solutions, in the frequency domain,

ρ1(z, ω)

ρs(z)
=

(

H(0, ω)
ρ1(0, ω)

ρs(0)
+

∫ z

0

H(z′, ω)Nρ(z
′, ω)dz′

)

H(z, ω)−1 (3.35)

ρ2(z, ω)

ρs(z)
=

(

H(0, ω)
ρ2(0, ω)

ρs(0)
+

∫ z

0

H(z′, ω)B(z′, ω)dz′
)

H(z, ω)−1 (3.36)

φ1(z, ω) = φ1(0, ω)− α

(

H(0, ω)

H(z, ω)
− 1

)

ρ1(0, ω)

ρs(0)

+

∫ z

0

[

α

(

1− H(z′, ω)

H(z, ω)

)

Nρ(z
′, ω) +Nφ(z

′, ω)

]

dz′ (3.37)

where

H(z, ω) = exp

(

−
∫ L

z

gsρ
2
s

1 + ρ2s + iωτs
dz′

)

(3.38)

and

B(z, ω) =
1

2

g1 ⊗ ρ1
ρs

− 1

2

gsρ1 ⊗ ρ1 + 2ρsg1 ⊗ ρ1
1 + ρ2s + iωτs

+ φ1 ⊗Nφ. (3.39)

Assuming that all terms of the second order cancel each other out, for both the
real and imaginary part, at the input of the amplifier, the second order amplitude
into the amplifier is

ρ2(0, ω)

ρs(0)
=
φ1(0, ω)

2

2
. (3.40)

By using Eq. (3.35) - Eq. (3.39) in Eq. (3.17) and Eq. (3.18) the output field from
the SOA can be expressed.

The output field from the SOA is now filtered with a real time response func-
tion, F (t), corresponding to an optical filter with a bandwidth much smaller than
the spontaneous emission spectrum. The real response function means that there
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is no frequency to amplitude modulation conversion in the filter. The filtered
output field is then, in the time domain,

EF(L, t) = Es(L)

[

1 + F ∗ ρ1(L, t)
ρs(L)

+ iF ∗ φ1(L, t)

+F ∗ ρ2(L, t)
ρs(L)

− F ∗ φ1(L, t)
2

2

+i

(

F ∗ φ2(L, t) + F ∗ ρ1(L, t)φ1(L, t)
ρs(L)

)

+ ...

]

(3.41)

where ∗ means a convolution in the time domain. The filtered and normalised
output power is thus

P (L, t) = |EF|2 = Ps

[

1 + 2F ∗ ρ1
ρs

+

(

F ∗ ρ1
ρs

)2

+2F ∗ ρ2
ρs

+ (F ∗ φ1)2 − F ∗ φ21 + ...

]

(3.42)

By inserting the time domain versions of Eq. (3.35), Eq. (3.36) and Eq. (3.37) in
Eq. (3.42) it can be written on the form

P (t) = Ps

(

1 + 2

∫

Kρ(z, t− t′)Nρ(t
′)dzdt′

+ 2

∫

Kρ(z, t− t′)
ρ1(z, t

′)

ρs(z, t′)
δ(z+)dzdt′

+
∑

α,β

∫

Nα(z1, t1)Oα,β(z1, t− t1; z2, t− t2)Nβ(z2, t2)dz1dz2dt1dt2



 (3.43)

where the sum over α and β means the sum of all pair-vise combinations of Nρ,
Nφ, ρ1(z)δ(z+)/ρs and φ1(z)δ(z+),

Kρ(z, t) = F (t) ∗H(z, t), (3.44)

and δ(z+) = δ(z − ε) where ε is a positive number, which approaches zero. The
operator Oα,β will be discussed more later. The integrals over z1, t1 and z2, t2 are
split into sums of integrals over M cells of volume ∆V = ∆z∆t. Furthermore a
2M + 2Lt-dimensional noise vector

~nT = (nρ1, ..., nρM , nφ1, ..., nφM , nρ01, ..., nρ0Lt
, nφ01, ..., nφ0Lt

) (3.45)
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is introduced, where

nρi =

∫ ∫

cell i

Nρ(z, t)dzdt (3.46)

nφi =

∫ ∫

cell i

Nφ(z, t)dzdt (3.47)

nρ0i =

∫ ∫

cell i

ρ1(z, t)

ρs(z)
δ(z+)dzdt (3.48)

nφ0i =

∫ ∫

cell i

φ1(z, t)δ(z+)dzdt (3.49)

M = LzLt and Lz and Lt are the number of cells in the z- and t-direction, re-
spectively. In the noise vector, ~n, nρi and nφi represents the spontaneous emission
noise and nρ0i and nφ0i the noise at the input of the SOA. In ~n only those Lt
elements of nρ0i and nφ0i where z = 0 are included since all other elements of the
input noise are zero. Kρ is similarly expressed as a 2M + 2Lt-dimensional vector

~kT = (kρ1, ..., kρM , 0, ..., 0, kρ01, ..., kρ0Lt
, 0, ..., 0) (3.50)

where kρi is Kρ(z, t− t′), where (z, t′) belongs to the i-th cell and kρ0i is the same
but only for the Lt cells where z = 0. In a similar way the operator Oα,β is
expressed as a 2M + 2Lt-dimensional matrix O. For i ≤ M, j ≤ M the matrix
element Oi,j is the value of Oρ,ρ(z1, t− t1; z2, t− t2) where (z1, t1) belongs to the
i-th cell and (z2, t2) belongs to the j-th cell. For M < i ≤ 2M, j ≤M the matrix
element is Oφ,ρ(z1, t − t1; z2, t − t2) where (z1, t1) belongs to the (i −M)-th cell
and (z2, t2) belongs to the j-th cell, and so on. The matrix is further explained in
Appendix A. The power can thus be expressed as

P (t) = Ps(1 + 2~k · ~n+ ~n ·O~n). (3.51)

The output power of the SOA is now expressed in a compact matrix formulation.
What remains is to evaluate the matrix O and find the expression for the PDF at
the output.

The PDF of any random variable can be calculated as the inverse Fourier trans-
form of the characteristic function, which is just the moment generating function
MGF(s) with s = iω [59]. For the output power of the SOA the PDF is thus given
by

PDF(P ) =
1

2π

∫

MGFP (iω)e
iωP dω. (3.52)

Since the noise source representing the spontaneous emission is assumed to be
Gaussian, and assuming Gaussian noise also at the input of the SOA it is seen
from Eq. 3.46 - 3.49 that the components of ~n form a set of jointly Gaussian
random variables. The moment generating function is thus [59]

MGFP (s) =
〈

e−sP
〉

=
(

(2π)2M+2Ltdet(D)
)− 1

2

∫

exp

[

−sP − 1

2
~n ·D−1~n

]

d2M+2Ltn

(3.53)
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where D is the diffusion matrix

Dij = 〈ninj〉 . (3.54)

Inserting the output power from Eq. (3.51) in Eq. (3.53) gives

MGFP (s) =
(

(2π)2M+2LtdetD
)− 1

2 exp (−sPs)

×
∫

exp

[

−2sPs~k · ~n−
1

2
~n · (D−1 + 2sPsO)~n

]

d2M+2Ltn

=
1

√

det
(

1 + 2sPsD
1
2OD

1
2

)

× exp
[

−sPs + 2(sPs)
2~k ·

(

D−1 + 2sPsO
)−1 ~k

]

, (3.55)

which is the moment generating function for the output power in the time domain.
Since the PDF can be calculated directly from the moment generating function
this is the main result of this model, together with the expression for Oij , which
is given later.

In order to calculate the matrix element

~k ·
(

D−1 + 2sPsO
)−1 ~k (3.56)

it is convenient to transform it to the frequency domain. The Fourier transforma-
tion is a unitary transformation which leaves the matrix element invariant. It just
becomes

k̃∗ ·
(

D̃−1 + 2sPsÕ
)−1

k̃ (3.57)

where k̃, D̃ and Õ are the vector ~k and operatorsD and O in the frequency domain.
The integration over space and frequency is, just as in the time domain, split into
a sum over M cells of volume ∆z∆ω/2π. The i-th cell is called Vi and the number
of cells in the z- and ω-direction is called Lz and Lω, respectively. For i ≤M the
i-th component of the vector k̃ is then

k̃i = F ∗(ω)H∗(z, ω) (3.58)

where (z, ω) ∈ Vi. For M < i ≤ 2M and 2M + Lω < i the i-th component of k̃ is
zero and for 2M < i ≤ 2M + Lω

k̃i = F ∗(ω)H∗(0, ω) (3.59)

where (ω) ∈ Vi−2M .
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The operator D̃ has matrix elements

D̃ij = Di(z, ω)
∆ω

2π
δi,j (3.60)

Di(z, ω) =
~ω0gsnsp
2Psatρ2s

sin2
(

ω∆t
2

)

(

ω∆t
2

)2 ∆z,

{

i ≤M, (z, ω) ∈ Vi
M < i ≤ 2M, (z, ω) ∈ Vi−M (3.61)

Di(0, ω) =
σ2∆t

Ps(0)

sin2
(

ω∆t
2

)

(

ω∆t
2

)2 ,

{

2M < i ≤ 2M + Lω, (0, ω) ∈ Vi−2M
2M + Lω < i, (0, ω) ∈ Vi−(2M+Lω)

(3.62)

where σ2 is the variance of the real and imaginary part of the input noise field.
The numbering of the elements in Õ, D̃ and k̃ might seem a bit confusing at first,
and a better description is given in Appendix A. The correlation function of the
input noise is in Eq. (3.62), just as for the spontaneous emission, assumed to have
a sinc2-shaped spectrum, in order to describe a sample-and-hold signal.

In order to be able to compare the model to the experiments, a simple detector
model also has to be included. In this work detection is in all cases considered
to be ideal and noiseless direct detection, such that the optical intensity noise
is the only noise considered in the detector. Furthermore, the limited detector
bandwidth is considered as an additional filtering of the intensity, since the photo
current in the detector is directly proportional to it. In the second order model
this means that k̃i → F ∗

e (ω)k̃i, where Fe(ω) is the filter function of the electrical
filter. A similar change is made to the matrix elements of the operator O, which
is given in Appendix A.

First order

If only the first order perturbations in Eq. (3.18) and Eq. (3.19) are considered
the result for the electrical field and power in the time domain is

EF = Es

[

1 + F ∗ ρ1
ρs

+ iF ∗ φ1
]

. (3.63)

P (t) = |EF|2 = Ps

[

1 + 2F ∗ ρ1
ρs

]

(3.64)

Just like in the second order case the moment generating function can be
expressed as

MGFP (s) =
(

(2π)4MdetD
)− 1

2 exp (−sPs)

×
∫

exp

(

−2sPs~k · ~n−
1

2
~n ·D−1~n

)

d4Mn

= exp
(

−sPs + 2(sPs)
2k̃ · D̃k̃

)

, (3.65)

since the operator Õ is zero when no second order terms are included. By taking
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the inverse Fourier transform of MGFP (iω) the PDF can be calculated

PDF(P ) =
1

2π

∫

MGFP (iω)e
iωP dω =

1
√

8πk̃∗ · D̃k̃P 2s
e
−

(P−Ps)
2

8k̃∗·D̃k̃P2
s , (3.66)

which is a Gaussian distribution with mean value Ps and variance 4k̃∗ · D̃k̃P 2s . If
the square of the first order amplitude noise is included in Eq. (3.64)

P (t) = |EF|2 = Ps

[

1 + 2F ∗ ρ1
ρs

+

(

F ⊗ ρ1
ρs

)2
]

(3.67)

the moment generating function can be expressed by noting that Õ = k̃†k̃. The
results is

MGFP (s) =
1

√

1 + 2sPsk̃∗ · D̃k̃
exp

(

− sPs

1 + 2sPsk̃∗ · D̃k̃

)

. (3.68)

The calculation of the corresponding PDF is quite cumbersome, but the MGF can
be identified as the MGF of a non-central χ2-distribution [59], with the mean value
Ps(1+ k̃

∗ ·D̃k̃) and variance 2P 2s (|k̃∗ ·D̃k̃|2+2k̃∗ ·D̃k̃). In summary this mean that
by including only the first order terms a Gaussian distribution is achieved, and by
partially including second order terms the result is a non-central χ2-distribution.
However, as seen before, the measured PDFs, at high gain saturation, had a dis-
tribution that could not be described either by a Gaussian or a non-central χ2-
distribution, which motivates the use of the second order implementation.

The first order model also give us the possibility to calculate the noise spectra
of the SOA. This was done by Shtaif et al. using a semiclassical and quantum
mechanical treatment of the correlation functions for fN and fE . Their results
show that the different treatments differs only by a shot noise term in the expres-
sions for relative intensity noise (RIN) and phase noise spectra [44]. Furthermore
they showed the different contributions from input noise, spontaneous emission
and carrier noise. In this work only the input and spontaneous emission noise
will be considered, as in the second order case. The relative intensity noise (RIN)
spectrum is defined as

RIN(z, ω) =
Sδρ2,δρ2(z, ω)

ρ4s (z)
= 4

Sδρ,δρ(z, ω)

ρ2s (z)
(3.69)

where

Sx,y(ω) =

∫ ∞

−∞

〈x∗(t)y(t+ τ)〉eiωτdτ (3.70)

is the cross correlation power spectrum between the two processes x(t) and y(t).
By using Eq. (3.35) and the correlation function of the noise term the expression

for the RIN spectrum can be calculated.

RIN = R0 +Rsp (3.71)
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where the different terms represent the noise contribution from the input signal
and spontaneous emission, respectively. The expressions for the noise terms are

R0(ω) = |H(0, ω)|2RIN(0, ω) (3.72)

Rsp(L, ω) =
~ω0
Psat

∫ L

0

|H(z, ω)|2 2gsnsp
ρ2s

sin2 ω∆t2
(

ω∆t
2

)2 dz (3.73)

By comparing these noise spectra to the expression for the variance of the
Gaussian distribution described above

4k̃∗ · D̃k̃P 2s =

[

~ω0
Psat

∫ L

0

|F (ω)H(z, ω)|2 2gsnsp
ρ2s

sin2 ω∆t2
(

ω∆t
2

)2

dzdω

2π

+

∫

|F (ω)H(0, ω)|2 σ
2∆t

Ps(0)

sin2 ω∆t2
(

ω∆t
2

)2

dω

2π

]

P 2s (3.74)

it can be seen that the signal-to-noise ratio for the Gaussian distribution at the
detector, including optical and electrical filtering, is the well known

SNR =

(∫ ∞

−∞

|Fe(2πf)F (2πf)|2RIN(2πf)df

)−1

(3.75)

This definition is identical to the ratio between the mean power squared and
the intensity noise variance within the bandwidth of the filters, as described in
Sec. 2.1.1.

Eq. (3.70) can also be used to calculate the phase noise spectrum by use of
Eq. (3.37) and the correlation functions. The result is

Sφ1,φ1
= Φ0 +Φsp, (3.76)

where

Φ0(ω) = Sφ1,φ1
(ω, 0) +

α2RIN(ω, 0)

4
|H(0)− 1|2

− 2α

ρs(0)
Re [(H(0)− 1)Sφ1,ρ1(ω, 0)] (3.77)

Φsp(ω) =
~ω0
4Psat

∫ L

0

(

α2 |H − 1|2 + 1
) 2gsnsp

ρ2s
dz. (3.78)

In the same way the cross correlation between the amplitude and phase noise can
be calculated. In Eq. (3.77) Sφ1,ρ1(ω, 0) is the cross-correlation between amplitude
and phase noise at the input, which we can assume to be zero as long as the input
noise has not passed through any nonlinear device or filter with intensity to phase
or phase to intensity conversion. The phase and cross correlation spectra will in
this work only be used in order to compare the simulations and the first order
small-signal calculation.
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3.4.2 Simulation

The second noise description assumes a sampled signal in the time domain and
includes ASE noise in the SOA by adding a noise field with appropriate statistics.
This model was developed by Cassioli et al. [61] and we will only present the parts
that are relevant to this work.

The SOA is divided into short sections of length ∆z. The sections are modeled
as ideal SOAs by ignoring the noise terms and the internal losses. Equations (3.7)
and (3.8), without noise terms, can then be rewritten as an ordinary differential
equation

∂h

∂t
=
h0 − h

τs
− |Ein,tot(t)|

2

τs
[exp(h)− 1] (3.79)

where h is the integrated gain

h(t) =

∫ ∆z

0

g(z + zi, t) dz, (3.80)

h0 = g0∆z and zi is the z-coordinate of section number i. The output field for
the ideal section is thus

Eout(t) = Ein,tot(t) exp

[

1

2
(1− iα)h(t)

]

(3.81)

The internal losses and noise are modeled by solving the ideal loss-less model
for the short sections and then including the losses and noise of the propagating
light at the interfaces between the sections. The properties of the noise field are
calculated from equations (3.7) and (3.8) and the correlation functions of the noise
terms.

By assuming that the spontaneous emission coefficient is independent of satu-
ration, that it is constant, within the short section ∆z and that the internal losses
are zero, equation Eq. (3.8) can be solved. The solution is

E(z, t) = Einexp

(∫ z

0

1

2
g(z′′, t)(1− iα)dz′′

)

+

+

∫ z

0

fEexp

(∫ z

z′

1

2
g(z′′, t)(1− iα)dz′′

)

dz′. (3.82)

At z = ∆z this can be written as

E(∆z, t) = (Ein(t) + EASE(∆z, t)) exp

(

∫ ∆z

0

1

2
g(z′, t)(1− iα)dz′

)

(3.83)

where

EASE(∆z, t) =

∫ ∆z

0

fE(z
′, t)exp

(

−
∫ z′

0

1

2
g(z′′, t)(1− iα)dz′′

)

dz′ (3.84)

EASE describes the added ASE noise in the section transformed to the input of
the section. In order to find the correct statistical properties the autocorrelation
function of EASE should be calculated.
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The correlation function in time, Eq. (3.13), is a sharply peaked function of τ
with a width of the order of the sampling interval. Assuming that the gain does
not change during this time period the autocorrelation function becomes

〈EASE(∆z, t)E∗
ASE(∆z, t+ τ)〉 = ~ω0nsp

Psat
(1− exp (−h(∆z, t)))R(τ) (3.85)

The Fourier transform of Eq. (3.85) gives the power spectral density and the noise
power is thus

PASE =

∫ ∞

−∞

~ω0nsp

(

1− 1

G

)

R̃(ω)
dω

2π
= ~ω0nsp

(

1− 1

G

)

1

∆t
(3.86)

where G = exp(h∆z)).
The added noise field is written as

EASE = Ereal + iEimag (3.87)

where Ereal and Eimag is the real and imaginary part of the noise field, respectively.
They have a Gaussian distribution with zero mean and variance according to

Var[Ereal] = Var[Eimag] =
1

2

~ω0nsp
(

1− 1
G

)

Psat

1

∆t
. (3.88)

As discussed before the sampling interval introduces a band-limited Gaussian
noise. In reality different effects, for example the gain spectrum of the SOA,
limit the ASE bandwidth. Since our model does not include such limiting effects
∆t is chosen to be small enough to properly include the modulation bandwidth
of the simulated devices. On the other hand, ∆t has to be limited such that the
ASE power does not contribute significantly to the saturation of the SOA, i.e. ∆t
cannot be too small. This limitation is due to the uni-directional nature of the
model, i.e. ASE traveling backwards in the SOA is not considered. Neglecting this
effect will underestimate the noise figure of the SOA since the backward traveling
ASE will saturate the gain in the beginning of the amplifier, but the effect is small
compared to that of saturation from the signal. Accepting this limitation of the
model we choose ∆t to properly include the bandwidth of the devices and make
sure that the ASE power is very small compared to the mean input power.

In practice Ereal and Eimag are constructed by two pseudo-random sequences
with zero mean and unit variance that are multiplied by the square root of the
right hand side of Eq. (3.88). The total field including the signal and noise is then
used in the model for the ideal sections, i.e.

Ein,tot = Ein +EASE (3.89)

where Ein is the input field of the section.
The output field from the model is finally analyzed statistically to find the

mean, variance, skewness and a histogram estimating the probability density func-
tion. Since the method has the characteristics of a statistical simulation it is
hereafter referred to as the ’simulation’.
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3.5 Comparison of models and experiments

We now have three theoretical tools to use for examining the noise redistribution
seen in the experiments presented in Sec. 3.3; the numerical simulation and the
small-signal analysis to first and second order. In this section these tools will be
compared to the experiments and to each other.

The parameters used in the calculations are a mixture of known physical pa-
rameters of the measurements setup (length of SOA, bias current, input powers
and detection bandwidth), reasonable guesses (coupling losses, waveguide losses,
linewidth enhancement factor, and carrier life time) and fitted parameters (small-
signal gain, saturation power and input signal to noise ratio). The parameter
values used, unless specified, are shown in table 3.1. It should also be noted

Parameter Value
Device length, L [µm] 500
Bias current, I [mA] 200
Input SNR at 10 GHz, [dB] 26
Detection bandwidth, Be [GHz] 10
Optical filter bandwidth, Bo [GHz] 30
Total simulation bandwidth, 1/∆t [GHz] 62.5
Coupling losses, [dB] 4
Time constant, τs [ps] 100
Saturation power, Psat [mW] 6
Internal loss, αint [m

−1] 500
Linewidth enhancement factor, α 5
Small signal gain, g0 [m

−1] 15789
Differential modal gain, a [m2] 3.77·10−20
Carrier density at transparency, N0 [m

−3] 1·1024

Table 3.1: Parameter values used in the calculations when comparing to experi-
ments.

that the fitting has only been made by making sure that a reasonable qualita-
tive agreement in the gain curve and standard deviation figure is reached, and no
quantitative fitting procedure has been used. All comparisons of the experiments
to the calculations should therefore be limited to qualitative statements.

The first, and most straight-forward, comparison is to directly look at the
measured and calculated PDFs. These are shown in Fig. 3.14. The top row show
the measurements, and are the same as in Fig. 3.8, together with a non-central
χ2-distribution calculated using the mean and standard deviation extracted from
the measured PDFs as explained in Sec. 3.3. The bottom row show the results
from the three models.

A more detailed comparison by using the central moments will be made later
in this section but first there is a more general comment regarding the models that
can be made directly from the PDFs. The usefulness of analytical expressions for
the PDFs is clearly seen when comparing the tails of the measured and simulated
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Figure 3.14: Measured and simulated PDFs. The top row show measured PDFs
(dots) and non-central χ2-distributions with the same mean and standard devia-
tion. The bottom row show the results of the three different implementations of
the noise model. For the first order case the non-central χ2-distribution was used

PDFs. Since the measurements use a technique where errors are counted using
a bit-error rate test set, the measured PDFs give an indication on how far out
in the tails of the distribution information is needed in order to be able to make
statements about the influence of the noise redistribution on BER values of the
magnitude of that measured by the test set, that is in the order of 10−10 to 10−9.
In Fig. 3.14 it is seen that the simulations do not reach that far out in the tails.
In order to extend the simulations further, within a reasonable simulation time,
more advanced simulation techniques, for example importance sampling, has to
be used or extrapolations has to be made [64].

Although the PDFs in Fig. 3.14 can be studied directly the differences between
the different models are small and it is hard to see. It is easier to compare the
results if we again use the central moments, or more specific, the standard deviation
and skewness. The standard deviation as function of mean power is shown in
Fig. 3.15. The calculated results do not show an equally strong noise suppression
as the measurements at high powers. The overall behavior with increasing input
power, and hence gain compression, is however very similar. The stronger effect
of noise compression in the experiments can to some degree be explained by the
sharper saturation characteristics of the experimental gain curve as compared to
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Figure 3.15: Measured and calculated standard deviation as a function of mean
power for the high input noise case. All three implementations of the model are
plotted (open symbols).

the model as seen in Fig. 3.16. This figure show that the fitted model fairly well
describe the gain level within the interesting range. However the model is not
very successful in describing the slope with which the gain decreases at high input
powers. This slope, as discussed in Sec. 2.1.2 and Sec. 3.3, is the reason for the
noise compression, and a higher slope means a stronger noise compression as seen
in the experiments.
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Figure 3.16: Measured gain of the examined SOA as function of input power

Returning to Fig. 3.15, and comparing the different calculations to each other,
it is seen that they give very similar results. This is of course expected since
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they are all based on the same basic assumptions about the ASE, input noise and
saturation characteristics of the SOA.

Moving on, the skewness as function of mean power is shown in Fig. 3.17.
Again we see that the measurement show a stronger noise redistribution than
the calculations. Comparing the theoretical calculations to each other a clear

0.0 0.2 0.4 0.6 0.8 1.0
-0.1

0.0

0.1

0.2

0.3

0.4

0.5  EDFA meas.
 SOA meas.
 SOA 1:st order
 SOA 2:nd order
 SOA sim.

 

S
ke

w
ne

ss

Mean power (mW)

Figure 3.17: Measured and calculated skewness as a function of mean power for
the high input noise case. In the first order case the non-central χ2-distribution is
used.

difference is seen, which needs further explanation. The first order calculation
does not take the redistribution of the PDF, apart from the suppression of the
width, into consideration and the PDF is the standard non-central χ2-distribution,
which always has a positive skewness. The simulation on the other hand does in
principle include the complete redistribution of the noise. The simulation does
show a shift to negative skewness for high input power, but does not show as
strong redistribution as in the experiment, just as for the standard deviation.
The second order small-signal calculation give more or less identical results as the
simulation, which show that the inclusion of the second order terms in the small-
signal expansion does indeed accurately describe the noise compression as well as
the redistribution of the noise.

3.5.1 Further comparison of noise models

As seen in Sec. 3.5 there are some differences in the results between the three
implementations of the noise model. In this section the differences between the
models, and the limitations of the models, will be investigated further. First some
of the important limitations of the model and the different implementations need
further comments.

As already mentioned the fact that the electric field in the SOA only travels
in one direction means that counter propagating ASE is neglected. Therefore
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the gain saturation from the ASE power needs to be small compared to that due
to the signal power in order for this assumption to hold. The two parameters
controlling this is the input power and the total simulated bandwidth, 1/∆t. A
high input power obviously means that the relative contribution of the ASE is
small. The sampling interval is important since a short interval corresponds to a
wide spectrum and hence a larger ASE power. This can be illustrated by looking
at the steady state solution of Eq. (3.7) and Eq. (3.8) for the power

P (z) = P (0)exp

[∫ z

0

(g − αint)dz
′

]

+

∫ z

0

exp

[∫ z

z′
(g − αint)dz

′′

]

rsp(z
′, ω)dz′

dω

2π
(3.90)

where rsp = ~ω0gnsp sin
2(ω∆t/2)/(ω∆t/2)2 is the rate of spontaneous emission

into the guided mode per unit frequency per unit length. The resulting output
power related to the steady state output power without ASE is plotted against
input power in Fig. 3.18.
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Figure 3.18: Comparison of the output power from the SOA including ASE power
and output power not including ASE. The lines correspond to Eq. (3.90) and the
markers show the results from the simulation (circles) and second order (crosses).

The lines illustrate the solution to Eq. (3.90) for different simulation band-
widths, 1/∆t. It is clearly seen that an increase in bandwidth results in additional
ASE power. In Fig. 3.18 the dependence on input power is also seen, and as
expected the relative importance of the ASE contribution is decreased with in-
creasing input powers.

Together with the analytical solution the results from simulation, circles, and
the second order case, crosses, at a bandwidth of 200 GHz are also shown. The
second order case does not fit as well as the simulations. This might be due to
the limited resolution in frequency that can be used for larger bandwidth in the
second order case, which will be discussed later in this section.



3.5. COMPARISON OF MODELS AND EXPERIMENTS 49

Another limitation that is also somewhat connected to the level of saturation
is the assumption that the carrier noise can be neglected. Shtaif et al. showed
that this assumption holds for fairly strong saturation levels, as long as only inten-
sity noise is considered [44]. However, when phase noise is considered the carrier
noise plays a more important role, especially at higher saturation levels. As seen
in Eq. (3.42), the phase noise also contributes to the intensity fluctuations when
higher order terms are included. The maximum input power used in the calcula-
tions is, however, small compared to the levels where the carrier noise is important
according to Shtaif, but the inclusion of carrier noise should be investigated fur-
ther. The phase, and hence the carrier noise will also be more important when
for example interferometric devices are investigated, since they use cross-phase
modulation.

One assumption that is limited to the small-signal investigations is the consid-
eration of the variations in the electrical field due to noise as small perturbations
to the steady state solution. This seems to imply that the small-signal implemen-
tations would not work for very low signal-to-noise ratios. This is investigated
more closely in Fig. 3.19, where the RIN-spectra for different input signal to noise
ratios are plotted using both the simulations and the first order small-signal cases.
As seen in the figure the small-signal assumption holds nicely down to a SNR of 10
dB at a detection bandwidth of 10 GHz. From this we can conclude that we can
safely use the small-signal analysis and expect it to agree well with the simulations
for more or less any reasonable amount of input noise.
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Figure 3.19: RIN after an SOA for different levels of input signal-to-noise ratio, as
calculated using the simulations (squares) and the first order small-signal analysis
(lines). The input power is -5 dBm.
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Finally, when comparing the models, a few words should be written about
the numerical implementations and how computationally heavy the models are.
The simulation is a direct statistical calculation in the time domain without any
additional tricks to speed up the calculation, e.g. importance sampling. This
means that in order to be able to see the effects of the noise redistribution on the
PDFs, a lot of samples have to be simulated, which in turn leads to long simulation
times. The presented simulations typically uses about 500,000 samples and takes
several hours to complete on an ordinary PC. The simulation, done in this simple
way, is also limited in how far out in the tails of the PDFs one can readily get,
even with very long simulation time on several computers. The second order small-
signal calculations is a matrix calculation, including calculation of all the matrix
elements and then calculating the determinant and inverting the matrix for every
point in the moment generating function. The two last operations can be done very
fast once the eigenvalues and eigenvectors of the matrix has been calculated, but
for large matrices this can take quite some time. The largest problem of the second
order calculations is, however, the scaling of the matrix with the discretization in z
and ω. The number of matrix elements scales as (LzLω)

2, where Lz and Lω is the
number of discrete points in z and ω, respectively. This quickly leads to problems
with limited computer memory as the discretization is made finer. The first order
calculation, on the other hand, is a very fast and efficient tool to calculate the
noise spectra and signal-to-noise ratio, but does not give any information on the
shape change of the PDF.

3.6 Noise suppression in an SOA

Although the previous sections have discussed the noise suppression and redistri-
bution capabilities of the SOA, the SOA as a single component is not a regenerator.
The reason for this is simple. The nonlinear transfer function of the SOA has, as
we have seen, the ability to suppress noise at a high input power corresponding
to the logical one-level of a data signal. However, it does not suppress any noise
at the zero-level and the extinction ratio is furthermore severely degraded since
the zeros experience much higher gain than the ones. This means that the non-
linear SOA can never be used for regenerating a modulated signal. The noise
suppression can, however, be used as soon as the signal is continuous wave, as has
been the case in all our experiments and calculations so far. Such applications are
sometimes referred to as a noise eater and examples of such applications are in
spectrum-sliced WDM systems [65, 66] and in fiber lasers [67]. In this section we
will further investigate some aspects of the noise redistribution in an SOA using
the presented models.

3.6.1 Dynamics of the noise redistribution

The two most important parameters governing the noise redistribution are the
level of gain saturation, as investigated in Sec. 3.5, and the device speed. The
result of the limited optical modulation bandwidth of the SOA on the intensity
noise spectrum was shown in Fig. 3.19 in the previous section. The dip in the
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RIN spectrum is due to the limited speed of the device as dictated by the carrier
dynamics. The noise is thus only suppressed for frequencies within the modulation
bandwidth of the SOA, while the high frequency noise passes unsuppressed.

In Fig. 3.20 the connection between limited modulation bandwidth and signal-
to-noise ratio is shown. The SNR is related to the relative intensity noise spectrum
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non-linear transfer functions.

through

SNR =

(∫ ∞

−∞

|Fe(2πf)F (2πf)|2RIN(2πf)df

)−1

. (3.91)

Assuming a square electrical filter, Fe, with much smaller bandwidth than the
optical filter, F , thus gives an SNR as shown in Fig. 3.20. This figure clearly
show why the measured PDF in Fig. 3.5 ended up in between the limiting cases
of the linear and the static transfer functions. The RIN spectrum in the figure is
calculated, assuming that the input noise dominates over the added ASE noise,
using the first order model and shows how the suppression of the intensity noise
approaches the static case for small frequencies, while for large frequencies the
input signal just passes through unchanged, as in the linear case. The result is a
SNR, or standard deviation if the power is constant, that changes from the static
case for small detection bandwidths to the linear case for large bandwidths. In
the measurements in Sec. 3.3.1 the detection bandwidth was 10 GHz and as seen
in Fig. 3.20 this gives a standard deviation somewhere in between the static and
linear cases, as seen in the experiment.

Since the finite speed of the device results in noise redistribution only within
a limited bandwidth the dependence on carrier dynamics can be investigated by
changing the detection bandwidth. In Fig. 3.21 simulations of the variance (a) and
the skewness (b) are plotted as functions of the detection bandwidth for different
input powers. Since the standard deviation and hence the skewness depends on
the detection bandwidth even without any noise redistribution the curves have
been normalized with the linear case. Furthermore, the curves are normalized
with their respective values at the maximum simulated bandwidth in order to fa-
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Figure 3.21: Normalised simulated standard deviation and skewness as function
of normalised bandwidth.

cilitate comparison between the different input powers. For low input powers, i.e.
small saturation, the amplifier is more or less linear, which means that the differ-
ence between the static and linear transfer functions is small, and the bandwidth
dependence is not dramatic. Hence, both the variance and skewness are fairly
constant. However, for high input powers, i.e. in the gain saturation regime, the
bandwidth is more important due to the gain/carrier dynamics. Both the variance
and skewness show that there is a substantial redistribution of the noise at small
bandwidths. For larger measurement bandwidths, the self-modulation due to gain
dynamics is relatively slow and the redistribution is smaller. This again shows
that the noise redistribution is strongly dependent on the speed of the device as
dictated by the carrier dynamics.

3.6.2 Intensity and phase noise

So far in our investigations we have only looked at the intensity noise of the signal.
Due to the dependence of refractive index on the carrier density in a semiconductor
there is a coupling between intensity and phase modulation. The strength of this
coupling is described by the linewidth enhancement factor, α. Fig. 3.22 shows not
only the intensity noise spectrum but also the phase noise and cross-correlation
spectra.

Just as before a very good agreement between the simulations and the small-
signal calculations is seen in all spectra. The reason the agreement is not perfect
in the imaginary part of the cross-correlation spectra is the limited simulation
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Figure 3.22: RIN spectra (a), phase noise spectra (b), and the spectra of the cross-
correlation between amplitude and phase noise (c) and (d), using simulations (open
squares) and first order small-signal (solid lines) models. The input power is -5
dBm.

bandwidth and the use of the fast Fourier transform. Due to the discrete sampling
in the time domain the spectrum will be periodic. Since the imaginary part of
the spectrum changes sign it will go through zero at the maximum simulation
frequency, given by the sampling period.

The change in the phase noise spectra due to the SOA is opposite that of
the intensity noise. This is because the carrier density fluctuations induced by
the noise, which counteract the intensity noise, modulate the phase through the
change in refractive index and thus enhance the phase noise. Since it is the same
carrier density fluctuations that is responsible for both the suppression of intensity
noise and the enhancement for the phase noise, the two spectra have very similar
shape [44]. The enhancement is largest for small frequencies where the carriers can
follow the intensity fluctuations, while at high frequencies the phase noise remains
more or less unchanged.

3.6.3 Pass-through and wavelength conversion

The SOA can be used for many signal processing functionalities and in many
different configurations, as briefly described in Sec. 2.4. As a single component it
can for example be used for wavelength conversion through cross-gain modulation.
Just as in the case of a single input signal the noise at the output of an XGM setup
consists of two different contributions; the noise added by the SOA in the form
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of ASE and the transfered noise of the input signals. In this section we will
compare the noise redistribution in the two cases of pass-through self-modulation
and wavelength conversion through XGM [68]. The simulations will be used and
is here expanded to include two input signals in accordance with reference [69].

We consider an SOA with two input channels, signal 1 and signal 2, as shown in
Fig. 3.23. In the XGM case we assume the input noise in signal 1 to be dominant,
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Figure 3.23: Concept of cross-gain modulation and pass-through scheme using an
SOA. For XGM the noise is transfered from signal 1 to signal 2 and in the pass-
through case the noise is on signal 2 at the input. In both cases signal 2 is studied
at the output.

and study how it is transferred to signal 2. In the pass-through case we assume
that the dominant input noise is on signal 2. In both cases we examine signal 2 at
the output. In the pass-trough case the purpose of signal 1 is only to make sure
the operating conditions, like gain saturation and carrier lifetime, are the same as
in the XGM case.

All the simulations are performed at a total input power of -5 dBm and an
input signal to noise ratio of the noisy signal of 15 dB at a detection bandwidth
of 10GHz. While keeping the total input power constant three different relative
input powers of the two signals are considered, P1,in=9P2,in, P1,in=P2,in and
P2,in=9P1,in. These operating points are shown in Fig. 3.24 and Fig. 3.25, together
with the intensity transfer functions for the two cases (pass-through and XGM). In
each case the three transfer curves are for fixed input signals P1,in (pass-through)
or P2,in (XGM) given by the operating points.

The noise compression in an SOA due to gain modulation is well understood
for both XGM [70, 71] and pass-through [44, 55]. The simple static picture is
similar to the single signal case, studied previously in this work. A low slope of
the transfer function leads to a narrower noise distribution and a curvature of the
function gives a change in the PDF-shape. From these simplified considerations
the transfer functions can give an indication of what noise redistribution to expect.
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Figure 3.24: Transfer functions of the pass-through case. The three chosen oper-
ating points are shown as circles.
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Figure 3.25: Transfer functions of the XGM case. The three chosen operating
points are shown as circles.

In the pass-through case a high P1 means that a change in P2 does not change the
gain by much, and that the transfer curve is fairly linear. On the other hand, when
P1 is small P2 has a larger impact on the gain and a non-linear transfer function
is the result. Similar considerations can be made in the XGM case and as seen in
Fig. 3.25 this also leads to one extreme with almost linear transfer characteristics
and one with stronger non-linearity.

Now, let us have a look at the results of the simulations. First we look at
the intensity noise spectra of the two cases in order to investigate some of the
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dynamics involved. The spectra, shown in Fig. 3.26, clearly display the different
noise transfer dynamics. The pass-through case show a spectrum similar to what
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Figure 3.26: Examples of RIN-spectra in pass-through and XGM cases.

we have seen previously for a single input signal, with a high-pass characteristic.
This is of course as it should be, since the self-modulation of the intensity through
the gain of the SOA is the same. The role of the other input signal in this case is
just to keep the saturation at the same level as in the wavelength conversion case.

The XGM case shows a differently shaped spectrum with a low-pass character-
istic of the noise and is just the opposite of the pass-through case. The noise at
the output of signal 2 originates from the input signal 1 and is transferred by the
gain modulation. The limited speed of this modulation means that the intensity
fluctuations are only transferred at low frequencies, and hence we get larger noise
for small bandwidth in the XGM case.

Fig. 3.27 shows the output standard deviation normalized with the saturated
gain and with the standard deviation at the input, for the same detection band-
width. The noise suppression due to the low slope of the transfer functions, as seen
in Fig. 3.24 and Fig. 3.25, is seen for both cases. For the XGM this means that a
high P1 results in larger noise suppression, while for the pass-through case a larger
suppression is achieved for large P2. This seems to agree with the intuitive picture
that if the gain saturation is dominated by the signal that is not changed (P2 in
the XGM- and P1 in the PT-case) a change in the weaker signal does not induce a
significant change in the carrier density. Furthermore the different bandwidth de-
pendencies of the two cases, low-pass for XGM and high-pass for pass-through, is
seen. The standard deviation relative to that of the input decreases with increasing
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detection bandwidth for the XGM and increases in pass-through mode. For the
XGM case an interesting interplay between the transferred noise and added ASE
is seen when the same simulation but without ASE is plotted (lines with squares in
Fig. 3.27). The high-pass characteristic of the ASE from the saturated SOA [44]
counteracts the low-pass characteristic of the transferred noise and results in a
fairly constant standard deviation with detection bandwidth. The large relative
influence of the ASE in the low P1 case is due to the small input noise resulting
from the small input power and the constant signal to noise ratio.
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Figure 3.27: Standard deviation normalized with the input standard deviation
and the saturated gain of the amplifier, for both pass-through and wavelength
conversion. The influence by the ASE is shown by also including calculations
where the ASE has not been included (squares).

The skewness of the two cases is shown in Fig. 3.28. For the pass-through case
there is a shift toward smaller skewness for all operating points, in accordance
with [55, 57] and what is expected from the curvature of the non-linear static
transfer function. In the XGM case, however the situation is a bit more complex.
The input intensity noise has a non-central χ2-distribution, in accordance with
Gaussian noise in the optical field. This distribution always has a positive skewness
and when it is transferred through the XGM the high power side of the input
distribution becomes the low power side of the output distribution, and hence the
distribution is mirrored and the output skewness becomes negative. This effect
can be seen for the low P1 case in Fig. 3.28 (right side), although the effect is again
hidden by the added ASE noise, which is non-central χ2-distributed and has a high-
pass characteristic. For higher P1 the mirroring effect is smaller and the curvature
of the transfer function redistributes the noise in the opposite direction compared
to the pass-through case and the skewness at the output is positive. These noise
redistributions are relevant to bit error rate, BER, estimations in a communication
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Figure 3.28: Skewness normalised with the input skewness for the pass-through
and XGM case. The influence by the ASE is shown by also including calculations
where the ASE has not been included (squares).

system since the BER is evaluated in the tails of the probability distributions where
the redistribution due to non-linear transfer functions is large. In both the pass-
through and XGM cases the redistribution skews the distribution in a direction
that counteracts the improvement in SNR expected from the suppression of the
standard deviation of the noise. How large an influence the change in standard
deviation and skewness have on the BER will be investigated next.

3.6.4 Noise suppression and redistribution (σ v.s. γs)

We have just shown that the self and cross-gain modulation in an SOA can change
both the width, i.e. standard deviation, and the overall shape, i.e. skewness, of
the noise distribution as described by the PDF. The question to be answered in
this section is how important these measures are for the BER.

In order to answer this question in a somewhat orderly manner a few assump-
tions has to be made. First of all, only the logical one-level is considered. This
means that a fixed decision threshold has to be chosen since without a zero-level no
optimum threshold can be defined. The second assumption is that this threshold
is the same although the PDF changes. The final assumption is that a PDF with
the shape of a non-central χ2-distribution can be used, and in order to achieve
negative skewness this PDF is simply mirrored at the mean value. All in all, this
is not really a realistic situation but it should allow us to examine the influence of
the skewness and standard deviation of a non-central χ2-like distribution on the
error probability.

The threshold is chosen to be a fixed distance from the mean value and the
standard deviation is kept constant. Since the skewness is a function of both the
standard deviation and the mean value, it is then changed by changing the mean
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value. The error probability is calculated by integrating the PDF from a fixed
distance very far from the mean to the threshold. The point where the integration
starts is chosen such that the error rate does not noticeably change when the
point is moved further away from the mean. Instead of directly integrating the
PDF numerically one could also use the Marcum-Q function, which relates to the
non-central χ2 distribution in a similar way as the error function relates to the
Gaussian distribution [6].

The results are shown in Fig. 3.29.
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Figure 3.29: Error probability as a function of skewness for different standard
deviations. A non-central χ2-distribution is assumed and the error probability of
Gaussian distributions (γs = 0), dashed lines, are plotted for comparison.

The figure show the error probability as a function of the skewness in an interval
around zero, for different standard deviations. The dashed horizontal lines show
the error probability for a Gaussian distribution with the same mean, standard
deviation and threshold. When comparing Fig. 3.29 to the measured and simulated
changes in standard deviation and skewness, Fig. 3.15 and Fig. 3.17, it is clearly
seen that the largest impact on the BER from the noise redistribution in the SOA
would be due to the suppression of the width of the distribution. The influence
of the skewness, although much smaller, is large enough not to be disregarded. A
change from γs = 0.1 to γs = 0, which is well withing what is possible in the SOA,
changes the error rate by about one order of magnitude. It is also seen by the
slopes of the curves that the influence of the skewness increases as the distribution
gets more narrow.

The important conclusion from this is that when a non-linear redistribution of
noise is considered, BER estimations using only the standard deviation, e.g. the
use of the Q-factor, can give substantial under estimations of the BER.
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3.7 Summary

In this chapter the noise redistribution in a saturated SOA was investigated. Direct
measurements of the noise distributions show that the SOA changes both the width
and skewness of the PDFs as compared to linear amplification. Due to the limited
speed of the SOA, as dictated by the carrier life time, the static transfer function
proved to not be an adequate description of the transformation. The measured
PDFs ended up in between the limiting cases of transformation of the input PDF
by the linear and nonlinear static transfer function.

Three different implementations of a model for the SOA including spontaneous
emission noise was introduced for describing the noise redistribution. The small
signal analysis to first order described the changes in noise variance, but could
not describe the change in skewness. When the second order terms are included
the model can describe also the change in PDF shape, and compares well with
direct time domain simulations of the SOA. The strongest point of the small signal
implementation was that the PDFs could be calculated far out in the tails of the
distributions, which is relevant for BER estimations.

The models were used in order to in more detail investigate the noise redistri-
bution in the SOA. The dependence on device speed for both pass-through and
wavelength conversion operation was examined. It was shown that in both cases
the change in skewness counter acted the potential gain in BER that the noise
suppression, as expressed by a smaller standard deviation, indicates. This effect,
although smaller than the improved signal-to-noise ratio, is large enough to be
noticed at relevant levels of BER.



Chapter 4

Modeling of regeneration

Modeling of regeneration is not an easy task. First of all, regeneration is by
definition a non-linear process. There is no linear process that can suppress some
part of a signal and increase another, as discussed in Sec. 2.1.2. Secondly, the
noise has to be considered in some detail, which can be quite challenging, as have
been seen previously in this report. Finally, the devices and physical processes
used for achieving the regeneration can be quite complex and difficult to model
even under linear and deterministic circumstances. In this chapter one method, in
two different ’flavors’, of simplifying the problem to consideration of some central
issues is presented.

4.1 Static transfer function models

The theory used to model regeneration in this section is based on the PDF and
transfer function picture from Sec. 2.1.2. This picture reduces the regenerator to
a memory less transformation of the input signal to the output. This transforma-
tion is represented by the static transfer function, which is just the time-averaged
output power as a function of the input power. The PDF represents the time aver-
aged signal, including noise, to be transformed. This way of modeling regeneration
has been used for optoelectronic repeaters [9], all-optical regenerators [72,73] and
all-optical wavelength converters [74, 75]. The method presented here is a gener-
alization of the model first presented in [73, 76, 77]. The method considers about
’one and a half’ of the three issues stated as difficulties above, namely some of the
nonlinearity and the noise. The non-linearity, calculated, measured or approxi-
mated is considered, but only in a static sense. As seen in Sec. 3.3.1, where the
measured noise distribution was shown to lie in between the linear and static non-
linear case, this assumption will thus give a best case result, only valid for very
large bandwidth regenerators or a small detection bandwidth. Limited consider-
ations of dynamical effects in the form of patterning effects can be included [75],
but this method still use the static transfer functions. The noise is considered in
detail as far as the redistribution of the input intensity noise is considered, but any
phase noise or time dependence are neglected, and the ASE added by the device is
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somewhat troublesome, as will be seen later. No detailed consideration is made as
to the exact physical implementation of the regenerator, but in the next chapter
one possible all-optical approach will be presented.

One example of a non-linear transfer function that could, and in this report
will, be used for regeneration, is shown in Fig. 4.1. It is described by the relations

Pin

Pout

P1PthP0

P0

P1

0

γ

Figure 4.1: Piece-wise linear transfer function with finite extinction ratio. The
stable points P1 and P0 as well as the threshold power Pth are shown.

Pout = P0 + γ(Pin − P0); Pin < Pth

Pout = P1 + γ(Pin − P1); Pin > Pth (4.1)

where γ is the slope of the curve at the zero and one level and Pth is the threshold
value. By varying γ from zero to one, the transfer function can be changed from
an ideal step function (γ = 0) to a linear function (γ = 1). In this section the
strength of the nonlinearity will be expressed as 1− γ, so that a large value, close
to one, represents a strong nonlinearity and a value close to zero a more or less
linear case. The two points labeled P0 and P1, respectively, are the two stable
points where the output power is equal to the input power. Stable points in this
context refer to the situation that any input signal in the vicinity of the points
will be even closer to the stable points at the output. The third point, where
the output equals the input, is situated at the threshold. This point, however, is
unstable, meaning that any signal close to it will be further away at the output.
After the signal has passed a number of regenerators, cascaded after each other,
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the one-level will thus be at P1 and the zero-level at P0, assuming they start at
their respective sides of the threshold. The ratio between the two levels are called
the extinction ratio of the regenerator

ERreg =
P1
P0
. (4.2)

This finite extinction ratio means that even for zero input power, the output
power is non-zero. This is, for example, the case in a wavelength converter where
the input signal modulates a clock- or cw-signal at another wavelength through a
nonlinear gate. If this gate is not completely closed at the zero-level, a finite ERreg
results. For a pass-through regenerator, the regenerator extinction ratio is infinite
since the contribution of the ASE noise to the output power will be considered in
other ways and is not part of the transfer function.

The regenerator described by the transfer function in Fig. 4.1 does not include
any gain, and is hence not really a 2R-regenerator. Furthermore it does not add
any noise to the signal but only redistributes the noise injected at the input.
Any practical regenerator will add noise, either through an active gain component
in the regenerator itself or by introducing additional losses, which have to be
compensated by additional amplification. In order to include gain and noise a
cascade of regenerators, as depicted in Fig. 4.2, is considered. In addition to the
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Figure 4.2: A cascade of regenerators modeled as linear amplifiers compensating
for the link loss and adding noise, and non-linear re-shaping transfer functions.

non-linear elements the cascade consists of optical amplifiers, which are assumed to
exactly compensate the loss of each link in Fig. 4.2. The amplifiers also add noise
in the form of amplified spontaneous emission, which is assumed to be Gaussian
distributed. The attenuator is added to the cascade in order to make sure that
the input power to each new link is kept constant.

This picture obviously describes certain physical implementations of the re-
generator better than others. In general it describes passive re-shaping elements
with external amplifiers, for example fiber based non-linearities with external er-
bium doped fiber amplifiers, fairly well. Regenerators with an active amplifying
medium inside the re-shaping device, such as SOA-based devices, are harder to
conceptually separate in an amplifying and a reshaping part since both functions
are performed by the same device. The picture does, however, include most of the
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central parts of any regenerator, whether they are separated or not. It is a simple
picture leading to a model capable of describing the interplay between different
regenerator and signal properties, as will be shown in this section. The analysis
emphasizes the general properties of regenerators, such as the interplay of noise
and nonlinearity.

4.1.1 Numerical model

Using an approach similar to the one sketched above, Öhlén and Berglind have
developed a numerical model for calculating the evolution of the PDFs for the one-
and zero-level and hence the BER in a cascade of regenerators [9]. The model is not
limited to a specific shape of the transfer function and any measured or calculated
transfer function can be used. The model can thus be used for evaluating the
regenerative properties of a device described by a detailed device model, as will
be done in chapter 5.

The details of the model of reference [9] will not be presented here. The general
principle of the model is to divide the transfer function into two staircase-like
functions with constant values for each step. One of the functions lies above the
proper function and the other one below. By increasing the numerical resolution
the two functions approach the proper function. The probability for the signal to
end up at a specific ’step’ of the function, given a probability distribution at the
input and added random noise, can then be calculated. The transformation of the
input PDF, including the addition of Gaussian noise, can in this way be described
in a transfer matrix formalism:

PDF(n) = TnPDF(0) (4.3)

where T is the probability transfer matrix and PDF(0) is the discrete PDF at
the input of the cascade. Once the transfer matrix is known it is therefore easy
and quick to calculate the PDFs and hence the BER for any number of cascaded
regenerators. The transfer matrix, though, can be a bit cumbersome to calculate,
especially for strong non-linearities where a fine numerical resolution needs to be
used. Another drawback of the approach is that, being purely numerical, it is
quite time consuming to draw more general conclusions regarding the importance
of specific properties of the regenerator, such as non-linearity, extinction ratio and
added noise. In the next section we will present an approximate approach using
similar basic assumptions that allows us to make more detailed investigations of
the interplay between different regenerator properties.

4.1.2 Approximate BER model

The basic assumption of this model, which leads to an expression for the BER in
a cascade of regenerator, is that a piece-wise linear transfer function as described
in Fig. 4.1 is used. This assumption, although it seems to limit the generality
of the approach, is justified by the fact that different forms of transfer functions
but with the same strength of the nonlinearity give very similar BERs [9]. The
piece wise linear transfer functions can significantly simplify calculations and has,
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in different flavors, been used for both pass-through regenerators [72] and wave-
length converters [74]. The approach used here was first presented in [73] and is
here expanded to include a finite extinction ratio of the transfer function, a finite
extinction ratio of the signal entering the cascade as well as the contribution to
the mean power from the added ASE noise.

The noise added by the amplifiers is considered to be Gaussian distributed
with a mean value, P̄ase, and standard deviation, σase. The addition of noise is
mathematically described by a convolution of the input PDF with the PDF of the
noise

PDFout = PDFin ⊗ PDFase, (4.4)

assuming that the ASE is independent of the input noise. The assumption of
Gaussian noise is, as discussed before, only a good approximation for not too
small signal levels, where signal-spontaneous beat noise dominates over for example
spontaneous-spontaneous beat noise. In this investigation Gaussian noise will,
however, be used for all signal levels. Furthermore the same amount of noise,
calculated for the one-level, will be used for both the one- and zero-level. This
overestimates the width of the PDF at the zero-level and hence the BER. The
assumption of a Gaussian distribution, on the other hand, underestimates the
BER since this distribution is symmetric as opposed to a more correct PDF for
a low intensity spontaneous-spontaneous beat noise that has a longer high power
tail. In order to keep the Gaussian approximation, and make the calculations as
simple as possible, it therefore makes sense to calculate the width of the PDFs from
the expressions for signal-spontaneous beat noise at the one-level. However, a next
step in the development of this model could be to more accurately represent the
noise at the zero-level. The convolution expressed, by Eq. (4.4), gives an output
noise variance from the amplifier that is the sum of the input and noise variances,

σ2out,amp. = σ2in,amp. + σ2ase, (4.5)

and a mean power that is

P̄out,amp. = P̄in,amp.G+ P̄ase. (4.6)

The linear transformation used in the regenerators changes the standard deviation
by a factor equal to the slope, γ, and the attenuator just gives a linear change,
Latt.,

σout = Latt.γσin. (4.7)
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The evolution of the variance of the signal in the cascade can thus be described as

σ21 = σ2ase

σ21′′ = (Latt.γ)
2σ21

σ22 = σ21′ + σ2ase = (Latt.γ)
2σ21 + σ2ase

σ22′′ = (Latt.γ)
2σ22

σ2n = (Latt.γ)
2σ2n−1 + σ2ase

= (1 + (Latt.γ)
2 + (Latt.γ)

4 + ...+ (Latt.γ)
2(n−1))σ2ase

=
(Latt.γ)

2n − 1

(Latt.γ)2 − 1
σ2ase (4.8)

where the numbering refers to Fig. 4.2, and a noiseless signal is assumed at the
input of the cascade. As long as equal slope, γ, of the transfer function is assumed
for both the one- and zero-level, Eq. (4.8) is valid for them both.

The ASE noise of the amplifiers thus enters the model in two ways; as a con-
tribution to the mean power of the signal, P̄ase, and as a broadening of the signal
PDF, σase. Since the regenerator is modeled as the combination of a linear ampli-
fier and a non-linear element, the ASE mean power is straight-forward to calculate
using expressions for a linear amplifier from for example [46]. Assuming the noise
figure to be FN = 2nsp [5] the ASE power from the amplifier is

P̄ase = FN(G− 1)~ω0Bo, (4.9)

where Bo is the bandwidth of the optical filter.

When considering the broadening of the PDF, i.e. σase, the picture becomes
somewhat more problematic. The amount of signal-spontaneous beat noise that is
converted to intensity noise described by the PDF is determined by, among other
things, the bandwidth within which the conversion takes place. In the simple
example of an opto-electronic regenerator this is the electrical bandwidth of the
photo detector [46], but for an all-optical device there is no detection and not such
a clear cut physical limitation. It has been argued [72] that the use of an intensity
transfer function, as in this case, does in fact correspond to a detection as far
as conversion from signal-spontaneous beat noise to intensity noise is concerned.
Following this argument, the maximum bandwidth in our picture is the bandwidth
of the optical filter, since ideally there is no ASE outside this bandwidth. The
non-linearity assumed in the model is a static transfer function and as such it
corresponds to an infinitely fast device, i.e. the optical filter would limit the
bandwidth. A real device, however, has a limited speed, as we have seen for the
SOA in Sec. 3.6, and the limit would then be set by the physical limits of the
device, for example the carrier dynamics in an SOA. In this work an effective
limiting bandwidth of the device, BD, different from the filter bandwidth will be
used in order to examine the different influence of the signal-spontaneous beat
noise and the mean ASE power on the BER accumulation in the cascade. In
accordance with this discussion the broadening of the PDF in the regenerator is
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described by [46]

σ2ase = 2FNP̄1,s(G− 1)~ω0BD (4.10)

By using the piece-wise linear transfer function the transformation of the PDF
can be divided into two parts, as seen in Fig. 4.3, which shows the concept of the
transformation. The input-PDF is transferred to the output by a linear trans-
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Pout

Pth
0
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Errors

Linear transformation

Pout

Figure 4.3: Principle of the nonlinear transformation of the PDF. The output
PDF consists of the input PDF transfered by the linear part extended beyond the
threshold, plus a part representing the unrecoverable errors.

formation, using the linear part of the transfer function extended beyond the
threshold. By this extension the same transformation is used for the whole PDF.
The second part of the PDF, the part above the threshold, is also included at the
output as unrecoverable errors, and thus contributes to the accumulation of errors
in the cascade. The output PDF can therefore be described as a linear transforma-
tion of the input PDF plus the part giving errors. This means that the part of the
PDF above the threshold both contributes to the errors in this regenerator and is
transmitted to the next regenerator and potentially contributes to the errors there
as well. Thus this approach over-estimates the BER. The effect is largest for the
linear case and zero for a step function.

The errors, E(σ, P̄ ), for zeros and ones, respectively, after each amplifier can
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be described, using the Gaussian assumption [5], as

E0(σ0, P̄0) =
1

2
erfc

(

Pth − P̄0√
2σ0

)

≈ σ0√
2π(Pth − P̄0)

exp

(

− (Pth − P̄0)
2

2σ20

)

(4.11)

E1(σ1, P̄1) =
1

2
erfc

(

P̄1 − Pth√
2σ1

)

≈ σ1√
2π(P̄1 − Pth)

exp

(

− (P̄1 − Pth)
2

2σ21

)

. (4.12)

where erfc() is the complementary error function, P̄ is the mean value of the
signal and σ its standard deviation. The 1 and 0 refers to the one- and zero-level,
respectively.

The evolution of the BER can be described by noticing that the non-linear
elements do not add any errors, but just collects the errors added by the noise in
the amplifier, and that the attenuator is just a linear loss, which does not change
the BER. Furthermore we analyze the BER for the one- and zero-level separately
so that

BER =
1

2
(BER0 +BER1) (4.13)

where the one- and zero-bits are assumed to appear with equal probability. The
result, which is the same for both ones and zeros, is

BER1 = E(σ1, P̄1)

BER1′′ = BER1

BER2 = BER1 + E(σ2, P̄2)

BER2′′ = BER2

BERn = BERn−1 + E(σn, P̄n) (4.14)

where the numbering refers to Fig. 4.2. The BER is thus completely described
by the evolution of the mean values and standard deviations for the one- and
zero-level of the signal.

The mean value of the two signal levels will evolve in the cascade as:

P̄0,n = (Latt.γ)
n−1P̄0,s +

(Latt.γ)
n−1 − 1

Latt.γ − 1
Latt.(1− γ)P0

+
(Latt.γ)

n − 1

Latt.γ − 1
P̄ase; P̄0,s < Pth

P̄1,n = (Latt.γ)
n−1P̄1,s +

(Latt.γ)
n−1 − 1

Latt.γ − 1
Latt.(1− γ)P1

+
(Latt.γ)

n − 1

Latt.γ − 1
P̄ase; P̄1,s > Pth, (4.15)

where Latt. is the loss in the attenuator, P̄ase is the contribution of the ASE to the
mean power, P0 and P1 are given by Fig. 4.1 and P̄0,s and P̄1,s are the values at
the start of the cascade. This means that signal levels below the threshold move
toward P0 and signal levels above the threshold move toward P1.
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Now, finally, the BER afterN regenerators can be expressed by use of Eq. (4.14),
Eq. (4.15) and Eq. (4.8) as

BER0,N =
1√
2π

N
∑

n=1

σn
[Pth − P̄0,n]

exp

(

− [Pth − P̄0,n]
2

2σ2n

)

(4.16)

BER1,N =
1√
2π

N
∑

n=1

σn
[P̄1,n − Pth]

exp

(

− [P̄1,n − Pth]
2

2σ2n

)

(4.17)

The sum in Eq. (4.16) and Eq. (4.17) cannot, as far as this author knows, be
evaluated analytically. In [73] it was shown that for the special case of infinite
extinction ratio, both for the transfer function and the input signal, and where
the contribution to the mean power by the ASE is neglected, it was possible to get
good analytical approximation to the sums. However, the inclusion of the arbitrary
input ER makes the same approach difficult in this, more general, case. Although
the lack of an analytical expression lessens the direct understanding given by the
model, it is still much easier, and faster, to extract information about the cascaded
regenerator system from Eq. (4.16) and Eq. (4.17) compared to the models in [9]
and [72].

4.1.3 Numerical versus approximate model

How does the approximate BER expression in Eq. (4.16) and Eq. (4.17) compare
to the numerical calculation in [9]? This is examined in Fig. 4.4, where the BER
as a function of number of regenerators has been calculated using the two models.
In the comparison the influence of the ASE mean power has been neglected since
this is not included in the numerical model. The noise figure was 7 dB, the device
bandwidth 20 GHz, the mean power at the input of the amplifier was -23 dBm,
the amplifier gain was 20 dB, the input extinction ratio, ERin, 10 dB and the
regenerator had an ERreg of 40 dB. The parameter values have been chosen to
give a BER around 10−9, which is the normal definition of an error free signal.
With the use of error correction techniques [3] a much higher BER can be accepted
and it might also be interesting to investigate regeneration at larger error rates.
This will, however, not be done here. As seen in the figure the two models give very
similar results, except for the linear case. The reason for the obviously bad result
of the approximate model (BER > 1), in this case, has already been touched upon
when describing the model. It is due to the extra errors introduced by assuming
that the PDF at the output consists of a linear transformation of the input PDF
plus a part that represents the unrecoverable errors. In principle, this adds extra
errors also for stronger non-linearities and only for the ideal step function does
this approximation not give additional errors. However, as seen in the figure the
approximation is a good one already for fairly modest non-linearities.

The strong point of the approximate expression is that it is extremely fast in
computing the BER, which means that it can be used for numerically solving for
different parameters in Eq. (4.16) and Eq. (4.17) assuming a certain BER and
number of regenerators. This can be used to obtain a better understanding of the
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Figure 4.4: Comparison between numerical calculation of BER, according to [9],
and the approximate expression from Eq. (4.16) and Eq. (4.17). The noise figure
was 7 dB, the gain 20 dB, the device bandwidth 20 GHz, the mean input power
into the cascade was -3 dBm, the input signal ER was 10 dB and the regenerator
ER was 40 dB

regenerator cascade, in particular the influence of different parameters. This will
be used in the following sections in order to investigate the different mechanisms
of regeneration.

4.2 The mechanisms of regeneration

Which mechanisms are at play in a regenerator and how do they influence the
BER evolution in a cascade of regenerators? The answers to this question will be
investigated in this section using the approximate model. If nothing else is stated,
the parameter values are: mean input power, Pin = −3 dBm, BD = 20 GHz,
Bo = 125 GHz, FN = 7 dBm, G = 20 dB and the attenuator was used to keep the
output power of the one-level at the same value as the input to the cascade.

4.2.1 Extinction ratio and threshold

The use of a regenerator to suppress the mean power in the zero-bits while leaving
the one-bits unchanged, and hence increase the extinction ratio of the signal, is
probably the most straight forward application of a regenerator. Apart from the
input ER, that might be limited by for example the modulator, partly dropped
channels and noise, the non-linearity of the regenerator has to counteract any
noise power added by the regenerator itself. If the regenerator is of the wavelength
conversion type where the incoming signal modulates the transmission of another
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co-injected signal with a different wavelength, there might also be a limit as to how
much it can increase the ER of the signal due to a finite ERreg of the regenerator
itself.

Let us start by looking at the influence of a finite input extinction ratio. In
Fig. 4.5 the BER as a function of number of regenerators is plotted for an ERreg
of 40 dB and two different values for the input ER, 7 and 15 dB, in both cases
1−γ = 0.25. To fully exploit the improvement in ER in the cascade of regenerators
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Figure 4.5: Comparison of different choices of threshold for two different values of
input ER. The thresholds were either optimized for each regenerator, solid lines,
or held constant at the best value for the input signal, dashed lines, or the best
value for the regenerator, dotted lines. The upper set of lines is for ERin = 7 dB
and the lower set is for ERin = 15 dB, in both cases 1− γ = 0.25.

it is crucial to use the correct decision threshold. This is shown in Fig. 4.5 by
plotting the results for three different choices of threshold. The solid lines show the
result when the threshold is adjusted for each regenerator to give as few errors as
possible at that regenerator. For the dashed lines the threshold was kept constant
for all regenerators at the optimum value for the first regenerator of the cascade.
Finally, for the dotted lines the threshold was set midway between the one- and
zero-levels of the transfer function, i.e. Pth = (P1 + P0)/2.

Obviously the best result is always achieved when the threshold is optimized
for each regenerator. If the optimization is not possible for practical reasons (the
simultaneous optimization of several tens or even hundreds of regenerators seems
like a daunting task) and one fixed threshold needs to be used, Fig. 4.5 gives some
indication on which considerations that have to be made. For a large ERin, in this
case 15 dB, at the input the improvement in the cascade is not that important
and only a small difference is seen between the two choices. The best choice is to
minimize the errors from the first regenerator by choosing the threshold according
to the input. For a bad ERin, 7 dB in this case, the changes through the cascade
can be substantial and the choice of threshold has to be made in relation to how
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many regenerators are cascaded. For a few regenerators it is advantageous to
consider the input signal, while for many regenerators where the signal has been
much more influenced by the non-linear transfer functions, the choice should be
made considering the properties of the regenerator. It should be noted that the
choice of threshold is related to our assumptions. The choice of the midpoint
between the one- and zero-level of the transfer function is due to our assumption
of symmetric noise on the two levels. For another assumption the threshold would
probably have another value. The conclusion that for many regenerators the choice
should be made with regard to the properties of the regenerator rather than the
input is, however, more general. Another note that could be made is that in a
network environment it is hard, if not impossible, to define a specific cascade of
regenerators. Depending on how the signals are switched, dropped and added,
regenerators could in one situation be the first regenerator and in another it could
be the last, or anything in between. From Fig. 4.5 this situation seems to be best
handled by the choice of threshold according to the properties of the regenerator,
since for this choice the BER depends less strongly on the number of regenerators,
and hence it is less important what number in the cascade the regenerator is.

How much the regenerators influence the choice also depends on the strength
of the non-linearity, which is shown in Fig. 4.6. Here a input ER of 10 dB is
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Figure 4.6: Comparison of different choices of threshold; optimized at each re-
generator, solid lines, constant and optimized to the input ER, dashed lines, and
constant and optimized to the transfer function ER, dotted lines. The input ER
is 10 dB and the ER of the transfer function is 40 dB.

considered for two different non-linearities, 1-γ = 0.25 and 0.5. As seen, the
stronger non-linearity give a larger influence on the ER evolution in the cascade
and hence the choice of threshold becomes more important.

In the next figure, Fig. 4.7, where the influence of the ASE mean power on the
BER is examined, the way of presenting the results have been somewhat altered.
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Instead of explicitly showing the BER as a function of number of regenerators, the
relationship between two regenerator parameters is investigated at a specific BER
and a specific number of regenerators. The lines in the figure thus describe the
relation between the two parameters that give a BER of 10−9. The lines divide
the parameter space into regions where the BER is larger or smaller than 10−9.
In this way it is possible to examine the interplay between these two parameters,
for example the need of a stronger nonlinearity as the amount of ASE-power is
increased. In Fig. 4.7 the ASE power is changed by changing the bandwidth of the
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Figure 4.7: Influence of the ASE mean power on the BER, expressed as the non-
linearity required to get a BER of 10−9 after 100 regenerators. Both the input
and transfer function ER are 10 dB.

optical filter. In this way all other parameters can be kept constant. The change
of the optical signal-to-noise ratio (OSNR), here defined as P1,s/Pase, from 5 to 30
dB corresponds to a change in Bo from about 30 nm down to 0.1 nm. It shows that
the reduction in extinction ratio due to the ASE power is fairly insignificant as long
as the OSNR is large enough. As the ASE power increases the need for a stronger
nonlinearity in order to keep a low BER indicates that the ASE has an influence
on the extinction ratio. This means that the mean power from the ASE starts to
influence the BER at a bandwidth of around 1 nm, which in the presented case
corresponds to an OSNR of 20 dB. This influence is, as in the previous examples,
less severe if the threshold can be optimized at each regenerator. In this case the
input and transfer function extinction ratios are the same, 10 dB, in order to only
investigate the influence from the ASE.

Finally the interplay between signal ER and nonlinearity will be investigated.
In Fig. 4.8 the extinction ratio of the regenerators are kept at the same value as
the input ER and the mean power of the ASE is neglected, so that the extinction
ratio of the signal is constant through the cascade. The required nonlinearity for
a BER=10−9 is plotted as a function of the ER. The figure show that an increase
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Figure 4.8: The interplay between ER and nonlinearity for a BER of 10−9 and
100 regenerators. The other parameters were: mean input power, Pin = −3 dBm,
BD = 20 GHz, Bo = 125 GHz, and G = 20 dB

in nonlinearity can compensate for a bad extinction ratio down to a certain limit,
where even an ideal step function does not suffice. This limit is of course higher
for a larger noise figure, as seen in the figure at the low ER end of the curves.

4.2.2 Noise redistribution

Improving the extinction ratio and keeping the noise power at the zero-level low
are not the only ways to regenerate the signal, as we have seen before in this report.
Another important effect is the redistribution of the noise at both the one- and
zero-level, due to the low slope of the transfer function, which has the potential
to make the noise variance smaller.

In this section the interplay between the nonlinearity, noise figure and input
power will be investigated. In Fig. 4.9 the nonlinearity is plotted as a function of
noise figure for different number of regenerators. Two different cases are plotted,
one with -3 dBm mean input power into the cascade and one with 0 dBm. The
input ER was 15 dB and ERreg was 40 dB. The ability of a stronger nonlinearity
to compensate for an increase in noise figure can clearly be seen. For example a
3 dB increase in noise figure around a noise figure of 6 dB in the 0 dBm input
power case can be compensated by a modest decrease of γ of about 10%. Put in
another way this means that it might be beneficial to increase the nonlinearity at
the expense of a higher noise figure, by for example the use of several regenerators
after each other in the same node. The benefit of increasing the nonlinearity is also
greater for a larger number of regenerators, as seen when comparing the curves for
10 and 100 regenerators. This kind of investigation can also be used to compare
the cascading properties of different devices and regenerator types, with known
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Figure 4.9: Non-linearity as function of noise figure for BER=10−9 and different
number of regenerators at mean input power -3 dBm and 0 dBm. The input ER
was 15 dB and the transfer function ER was 40 dB. The other parameters were:
BD = 20 GHz, Bo = 125 GHz, and G = 20 dB

nonlinearity and noise figure.
Looking at the other end of the curve, where the nonlinearity is close to an

ideal step function, γ plays a smaller role, and increasing the nonlinearity above
1− γ = 0.5 seems to make little sense in this case.

In Fig. 4.10 the influence of the nonlinearity on the needed input power to the
amplifier is investigated for different number of regenerators at a noise figure of
7 dB. The gain and the link loss was 20 dB, which means that the mean input
power into the cascade is 20 dB higher than into the amplifier. Again it is seen
that a small increase in nonlinearity can compensate for a signal degradation,
especially for a large number of regenerators. In this case a stronger nonlinearity
can increase the distance a signal can be transmitted between regenerators or
decrease the transmission power needed in the system by improving the power
budget.

4.3 Summary

2R regeneration as a static transfer of PDFs was investigated in this chapter. For
this purpose a simple and efficient model for the BER in a cascade of regenerators
was developed. The model takes the noise, the nonlinearity and the extinction
ratio into consideration and makes it possible to investigate the interplay between
these parameters.

The usefulness of the increase in extinction ratio in a cascade of regenerators
was shown to be closely related to the choice of threshold value in the nonlinearity.
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Figure 4.10: Amplifier input power as function of nonlinearity. The parameters
were: BD = 20 GHz, Bo = 125 GHz, FN = 7 dBm, G = 20 dB, ERreg = 40 dB
and ERin = 15 dB.

If the threshold cannot be optimized at each regenerator the best choice is to
chose a threshold considering the properties of the regenerator itself, rather that
the signal coming into the cascade. Finally the interplay between the amount
of reshaping through the nonlinearity and the other regenerator parameters was
investigated. It was shown that a fairly small increase in nonlinearity, in many
cases, can compensate for a degradation of noise figure, extinction ratio or input
power. These kind of investigation could be used to investigate how the cascading
properties of different regenerators compare to each other and how to best optimize
regenerators.



Chapter 5

SOA-EA regenerators

So far in this report basic noise properties of SOAs and regenerators have been
presented, but not much have been written about real regenerator devices. This
chapter will remedy this, and deal with one example of a simple device with
regenerative properties.

As suggested in Sec. 2.4 there are quite a few different suggestions for imple-
menting all-optical regenerators. However, many of the suggestions for all-optical
regenerators are quite complex, using for example interferometers, optical delays
and polarizers. The device described here on the other hand is quite simple, and
the simplicity of the design is one of its main advantages. The concept was first
suggested in [21, 39] and the ideas were further developed and the specific device
of this investigation suggested by the author in [38,40,77,78].

5.1 Description of the SOA-EA device

The device that will be presented and investigated is a combination of an SOA and
a saturable absorber in the form of an electroabsorber (EA). Previous suggestions
for similar devices have either used just a saturable absorber [19,37,79] or an SOA
with an ion implanted absorber [21]. The single absorber, which can improve the
ER of the signal needs bulky fiber amplifiers to compensate for the insertion loss,
while the ion implanted absorber lacks the possibility to control the absorption
and saturation characteristics in a simple manner. In our suggestion both compo-
nents can be implemented as waveguide devices on the same semiconductor chip
by dividing the waveguide into one section with forward and one with reverse elec-
trical bias, which creates one amplifying and one absorbing section. The use of a
single waveguide for implementing both the gain and the absorber sections, makes
it straight-forward to add several concatenated sections. This gives the poten-
tial to increase the nonlinearity of the device and hence improve the regenerative
properties. The direct electrical control through the electrodes also makes it easy
to adjust and optimize both sections. This structure is very similar to that of a
monolithic mode-locked laser and, as will be shown, the two devices have some
similarities in their physical properties and functionality. A schematic picture of

77
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the device is shown in Fig. 5.1.

…
Fiber

SOA EA SOA EA

SOA EASOA EA SOA EA

…
Fiber

…SOA EA FiberFiber
…

Fiber
…

Fiber
…

SOA FiberFiber
……

Figure 5.1: The simulated module consisting of concatenated SOAs and EAs. The
module is considered as an in-line regenerator, the fiber span is considered as a
constant loss.

First, a theoretical investigation of the device will be made, using the already
presented models. Later in the section some experimental results and comparison
between the experiments and models will be presented.

In the first pair of the simulated device the SOA is 800 µm long and the EA
is 220 µm, in the following pairs the lengths are 500 and 295 µm respectively. We
have investigated devices with one, two and three SOA-EA pairs in order to further
improve the regenerative properties. The long first SOA has the effect that all net
gain comes from this part of the device, the following pairs do not contribute to
the net gain. This choice was made in order to have as much of the total gain as
possible in the beginning of the device, since this will keep the noise figure lower,
based on the experience from concatenation of linear amplifiers and absorbing
elements [8]. All other parameter values used in the calculations are listed in
Table 5.1. Typical parameter values are used, and these may in some cases differ
from what is considered state of the art, which will limit the modulation bandwidth
of the presented devices. However, all-optical signal processing at 40 GHz and
above in both SOAs and EAs have been reported [80, 81], and the fabricated
device that will be presented later in this section has been used for regeneration at
10 Gbit/s [20]. Here we emphasize the analysis and understanding of the nonlinear
device properties, rather than the optimization of device performance.
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Parameter Value
SOA EA

Time constant, τs [ps] 100 100
Saturation energy, Esat [pJ] 2.17 0.54
Internal loss, αint [m

−1] 2000 2000
Linewidth enhancement factor, α 5 5
Small signal gain, g0 [m

−1] 11000 -19158
Differential gain, a [m2] 2·10−20 8·10−20
Carrier density at transparency, N0 [m

−3] 1·1024 0.8·1024

Table 5.1: Parameter values used in the calculations.

5.1.1 Principle of operation

The noise redistribution of the SOA has already been investigated thoroughly in
chapter 3. It was shown that the gain saturation and self modulation of the gain
by the signal can be used to reduce the noise at high input powers, representing
the logical one-level. However, a single SOA is not a regenerator, mainly because
it lacks two important features; noise suppression at the zero-level and extinction
ratio improvement. The SOA actually makes the signal worse in both these ways.
It adds noise to the zero level in the form of ASE and the same gain saturation
that gives the noise suppression at the one-level also decreases the extinction ratio.
The saturable absorber is added in order to remedy this.

The transfer function of the EA modeled in this section is shown in Fig. 5.2.
The useful characteristic of this device is that the absorption is high at low input
powers but bleaches, i.e. becomes lower, at high input powers. This means that
the zero-level of a modulated signal experiences larger absorption loss than the
one-level, and the extinction ratio is thus increased. When it comes to noise redis-
tribution the picture is somewhat less straight-forward. For a single EA the slope
of the transfer function at a specific input power is larger than the corresponding
mean absorption, shown as the dashed line in Fig. 5.2. This results in that for
a varying signal, for example a cw signal with intensity noise, the absorption in
the EA is smaller for a power higher than the mean value, leading to even higher
relative power at the output. For a signal lower than the mean the absorption
is higher, leading to a even lower relative power at the output. The influence on
the noise variance is thus opposite that of the SOA and the signal-to-noise ratio
for a string of ones is decreased. For a string of zeros, however, the concept of
signal-to-noise ratio is not relevant, since the mean power in the zeros should be
as low as possible. The redistribution of the noise, as described by a reduction in
signal variance, has to be viewed in relation to that of a linear amplifier with the
same gain as the complete SOA-EA device. If the slope at the zero-level is lower
than this mean gain the probability density function at the output will be smaller
than for the corresponding linear amplifier.

The short story of the discussion above is that the SOA is good for the ones
and the EA is good for the zeros. By combining the two an s-shaped nonlinear
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Figure 5.2: Transfer function of the modeled SOA and EA (solid line). The non-
linear behavior, due to absorption bleaching and gain saturation, respectively, is
clearly seen. The dashed lines show the transfer function of a linear device with
the same absorption/gain as the devices at the chosen operating point.

transfer function is obtained, which should make all-optical regeneration possible.
The transfer functions for a single SOA and concatenated SOA-EAs with one, two
and three SOA-EA-pairs are shown in Figure 5.3. It should already here be noted
that the component giving these transfer functions have not been optimized, and
that it is possible to obtain much stronger non-linearities [20]. In the example
shown a constant loss, representing for example fiber loss between regenerators,
have been included in the transfer curve. A choice of one-level can be made, within
the limits given by the gain of the device, by changing the amount of fiber loss
in the link between the devices. The gain of the device at the one-level, which
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Figure 5.3: Static transfer functions of the SOA-EA device, including fiber loss,
for one, two and three SOA-EA pairs. The functions are compared to a single
SOA and a linear function, both with the same gain as the SOA-EA devices at
the one-level.

exactly matches the loss of the fiber, is chosen to be around 10 dB for all the
examined devices. This choice was made in order to set the decision threshold, i.e.
the middle crossing point between the non-linear transfer function and the linear
transfer function, approximately midway between the one- and zero-level.

Fig. 5.4 shows the same transfer curves as in Fig. 5.3 but plotted using dB-
scale in order to show the extinction ratio improvement from the EAs. Although
the extinction ratio increases, it is not obvious that the addition of a saturable
absorbing element is advantageous with respect to regeneration. The induced
loss has to be balanced by a larger gain, leading to additional noise. However,
this is in principle not different from the inevitable insertion loss that has to be
outweighed by the degree of reshaping in any regenerator, e.g. interferometric
devices. Furthermore the investigations in chapter 4 indicate that increasing the
nonlinearity might be beneficial even if the noise figure is increased.

5.1.2 Device properties

The properties of the SOA-EA device can be investigated by using the SOA mod-
els introduced in Sec. 3.4 and using the same equations for the EA, Eq. (3.7) and
Eq. (3.8). In this case the characteristic time constant, τs, is an effective carrier
sweep-out time describing the time it takes for the photo-generated carriers to be
swept out of the active region by the applied electrical field. The absorption is
described by a negative value of the gain (g). Both noise terms are assumed to be
zero since there is no ASE in the EA and the carrier noise is assumed to be small
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Figure 5.4: The transfer functions of the devices in dB scale, where the extinction
ratio improvement is clearly shown, for one, two and three SOA-EA pairs.

compared to the ASE in the SOA for the SOA-EA combinations. A more de-
tailed model for the EA dynamics could be used [79]. However, the present model
incorporates the main feature of EA saturable absorption, and suffices for the
present analysis of situations where ultrafast processes like spectral hole-burning
and carrier heating [30] can be neglected.

Noise suppression

Figure 5.5 shows the RIN-spectrum at the one-level of a device with 1,2 and 3
SOA-EA pairs, using the simulations and the first order small-signal calculations.
Figure 5.6 shows the SNR for the same situation and compares the SOA-EA de-
vices to the linear transfer and the static transfer function of the three-pair case.
As seen from the close-up in the insert of Figure 5.5 and also in Figure 5.6 the

noise is, as expected from the transfer function, reduced for low bandwidth and
the reduction is larger for a larger number of SOA-EA pairs, although the redistri-
bution is smaller than for the single SOA (not shown) due to the influence of the
EA. The noise enhancement from the EA is also evident and limits the amount
of noise redistribution for small bandwidth and leads to a noise enhancement for
larger bandwidth. The bandwidth limit, where the noise is enhanced rather than
suppressed, is easily seen in Figure 5.6, and is about 1.8 GHz. As mentioned before
this rather low bandwidth is due to our conservative choice of device parameters
and should not be considered to be a performance limit for this type of device in
general.

From Fig. 5.4 and Fig. 5.5 it is seen that the main advantage of adding more
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Figure 5.5: RIN-spectrum of three SOA-EA pairs for an input power of 0.16 mW,
corresponding to the one-level. The solid, dash-dotted and dashed lines represents
the small-signal analysis of three, two and one SOA-EA pairs, respectively. The
squares show the simulated data for three pairs. The noise enhancement is due to
the EAs and the noise suppression is due to the SOAs. The inset shows a close-up
of the improvement in noise redistribution from more pairs, at low frequencies
(without the simulation for clarity).

SOA-EA pairs comes from increasing the extinction ratio, while only a modest
increase in redistribution at the one-level could be seen. The noise enhancement
of the EA furthermore limits the bandwidth over which noise suppression can be
achieved, compared to the single SOA case.

Pulse compression

The similarity of the structure of the proposed SOA-EA concatenation to a mode-
locked laser has already been mentioned. In this section another similarity, pulse
compression, will be briefly investigated. One example is shown in Fig. 5.7 where
the output pulses after one, two and three SOA-EA pairs are compared to the
input pulse. All pulses are normalized to the peak power of the input pulse. The
pulse compression in the device is quite obvious and it is seen that the narrowing
of the pulse is larger for more pairs. Another effect is a shift of the pulse in time.

The reason for the pulse compression is again the saturation of the gain and
absorption in the different device sections. In the SOA the rising edge of the
pulse experiences higher gain than the peak and especially more than the trailing
edge since the gain has been saturated and has not yet recovered. This leads
to a shift in time in the negative direction compared to the input pulse, and to
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Figure 5.6: SNR as a function of detector bandwidth for one, two and three SOA-
EA pairs compared to a linear transfer and the static transfer function of the
three-pair device.

some degree a broadening of the pulse [60]. The EA again works in the opposite
direction and absorbs more of the rising than the trailing edge and the peak, which
sees the smallest absorption. If the recovery of the absorption is fast enough the
trailing edge of the pulse will also experience higher absorption than the peak.
The combined effects of the two components is that the peak is amplified and the
tails are absorbed, which leads to a narrowing of the pulse. This effect is similar
to the pulse compression in a passively mode-locked laser and the concatenation
of several pairs might be seen as a few round trips in such a laser.

5.2 Noise and regeneration in an SOA-EA

5.2.1 Noise redistribution

We have previously seen that the non-linear noise redistribution in an SOA changed
the shape of the PDFs. In this section the redistribution of noise in the SOA-EA
device will be investigated using the simulated PDFs for both one- and zero-level.

An example of the non-linear redistribution of the PDF is shown in Figure 5.8,
which depicts the simulated noise distribution after a device with three SOA-EA
pairs in the form of a PDF. The Gaussian and non-central χ2 distributions, with
the same mean and standard deviation, are also plotted for comparison. The mean
input power of the cw signal was 0.16 mW for the one-level and 0.03 mW for the
zero-level, i.e. an extinction ratio of 7.3 dB. The input signal had a non-central
χ2 distribution.
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Figure 5.7: Pulse compression in an SOA-EA device with one, two and three
SOA-EA pair/s.

Compared to the SOA this component show redistribution of both the one- and
zero-level, and the stronger non-linearity for the zeros, as seen from the transfer
functions, give a substantial difference between the simulation and the non-central
χ2-distribution in the tail. At the one-level, however the non-linearity is modest
and the approximations fit fairly well with the simulations. Furthermore, the
SOA-EA device is capable of improving the extinction ratio from 7.3 dB at the
input to 11.2 dB at the output.

Due to the excessive computation time required, it is not feasible to simulate the
distribution close to the decision threshold where the BER is evaluated. Instead,
the non-linear redistribution can be approximately taken into account, when the
BER is evaluated, by tail extrapolation [64]. In this method, the tails of the
probability distribution functions are assumed to follow a generalized exponential
distribution

f(x; ν) =
ν

2
√
2σΓ(1/ν)

exp

{

−
∣

∣

∣

∣

x− µ√
2σ

∣

∣

∣

∣

ν}

(5.1)

where Γ() is the gamma function and µ is the mean value. The variance of the
distribution is given by

V ar = 2σ2
Γ(3/ν)

Γ(1/ν)
. (5.2)

A normal (Gaussian) distribution is given by ν = 2. By allowing the exponent
ν in the tail to be different from the one in the central part of the distribution,
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Figure 5.8: Noise distribution after three SOA-EA pairs for a bandwidth of 1.75
GHz. The squares show the result of the simulation and the lines show a non-
central χ2 distribution (solid line) and a Gaussian distribution (dashed line) with
the same mean and variance.

non-linear behavior can be accounted for. The BER contribution from the ’0’-level
is, as usual defined as the integral of the distribution above a certain threshold

BER(t) =

∫ ∞

t+µ

f(x, ν)dx, (5.3)

and the contribution from the one-level as the usual integral from zero to the
threshold. By using the asymptotic expansion for the gamma function, calculat-
ing the BER at a few different pseudo-thresholds (t) in the tail, and fitting the
exponent ν to a plot of the BER versus threshold value, an extrapolation can be
made to the actual decision threshold where we want to estimate the BER. This
fit can be seen as the insert in Figure 5.9 for the zero-level. The fitting is per-
formed using transformed coordinates so that a linear interpolation using the least
squares technique can be used, as seen in the insert. Figure 5.9 shows the BER as
a function of the threshold power for the zero- and one-level. This gives a BER of
approximately 10−8 for the simulated distribution, which should be compared to
a BER of 10−12 for the non-central χ2 distribution and 10−21 for the Gaussian ap-
proximation. It should be emphasized that the extrapolated results based on the
simulations represents an approximation. However, the large differences in BER
again show the importance of using the correct noise distribution when dealing
with regenerators.
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Figure 5.9: Tail extrapolation of the simulated noise distributions at the one- and
zero-level. The squares are the simulated data. The lines are the extrapolation for
the simulation (dotted), the Gaussian approximation (dashed) and the non-central
χ2 distribution (solid), respectively. The insert show the extrapolation technique
with the zero-level of the simulation as an example.

5.2.2 Regeneration and cascadability

We have seen that additional SOA-EA pairs in the regenerator give an increase in
non-linearity and better noise redistribution and extinction ratio improvement for
small bandwidth, but the extra SOAs also add more ASE and the EAs increase
the noise at higher bandwidth. In this section we want to examine how these
two effects influence the cascadability of the devices by estimating the BER. We
have used two different methods to estimate the regeneration capability of the
SOA-EA cascades, the static transfer function and the first order small signal
analysis. For the static case the model presented in [9, 75] and shortly described
in Sec. 4.1.1 was used. The probability density functions for ones and zeros are
assumed known initially and Gaussian noise, representing spontaneous emission
for the SOAs, is then added for each link. The amount of noise added, i.e. the
standard deviation, is calculated using the small-signal analysis and a choice of
bandwidth. The bandwidth limitations will be discussed later.

In the small signal case, the cascadability is investigated by using the Q-factor,
defined as

Q =
P1 − P0
σ1 + σ0

(5.4)

where P1, σ1, P0 and σ0 are the mean power and standard deviation for the one-
and zero-level respectively. The small-signal analysis gives us a possibility to exam-
ine how the bandwidth dependence of the regeneration influences the cascadability
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of the devices.

The choices of bandwidth for these calculations require some further comments.
In reality the use of optical filters between the cascaded regenerators are needed
in order to limit the growth of ASE power that would otherwise saturate the
regenerators and lead to a decrease in ER. Saturation from ASE is not taken
into account in the two models used here, but the ASE power is kept low by the
absorption in the EAs. Furthermore, since the static case only involves transfer of
probability density functions, it is not possible to include the effect of optical band-
pass filters in the cascade. Hence the important limiting bandwidth is the effective
bandwidth of the regenerator, as discussed in Sec. 4.1.2. The standard deviation of
the noise added in each regenerator is thus calculated using an effective bandwidth
of 2 GHz in the static case. For the small signal case no filtering is assumed except
for the final detection bandwidth, which is chosen to be 1 and 2 GHz in order to
show the bandwidth dependence. The choice of such small bandwidth is made in
order to be inside the modulation bandwidth of our devices, which is limited by
the conservative choice of device parameters, as discussed before.

The result for an input signal with a signal to noise ratio for the one-level of
25.5 dB and the same noise variance at the zero-level is shown in Figure 5.10 and
Figure 5.11 for the static and small-signal case, respectively. The BER (static
case) and Q-factor (small-signal case) are plotted versus the number of cascaded
regenerators for one, two and three SOA-EA pairs as well as for a single SOA with
the same gain as the SOA-EA combinations. In the static case the obvious result
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Figure 5.10: BER as a function of cascaded fiber links, including SOA-EA regen-
erators. The BER has been calculated using the static transfer function and ASE
noise for 1, 2 and 3 SOA-EA pairs. The SNR for the one-level at the input was
25.5 dB and the noise variance at the zero-level was the same.
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is the improvement in BER for the regenerators compared to the single SOA and
linear transfer function due to the increase in extinction ratio by the EAs. For few
regenerators the noise of the input signal dominates, but as more ASE accumulates
from several regenerators the BER increases due to the added noise. The BER is
evaluated at the optimum threshold value after each link, and due to the larger
noise redistribution at the zero-level, compared to the one-level, the threshold
value decreases during the first few links as the input noise is redistributed. The
rapid increase in the BER, that occurs at about 10-20 regenerators comes about
when the optimum threshold value cannot decrease further due to the added noise.
If instead a fixed threshold is used this large noise suppression at the zero-level
can not be properly utilised and the BER increases faster due to noise added
at the one-level, as discussed in chapter 4 (not shown). A detection with fixed
threshold should therefore be combined with a symmetric regenerator where the
noise at the zero- and one-level is redistributed more equally. For a large number of
regenerators the BER only increases slowly due to ASE added in each regenerator,
similar to the linear BER degradation with number of regenerators that is obtained
for an ideal step function. It is also seen that the sharper transfer functions do
indeed improve the performance of the system for many regenerators even though
the additional SOA-EA pairs gives additional noise.
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Figure 5.11: BER as a function of cascaded fiber links, including SOA-EA regen-
erators, calculated from the Q-factor from the small-signal analysis for a detection
bandwidth of 1 GHz (a) and 2 GHz (b) .

The small signal analysis with Be=2 GHz ((b) in Figure 5.11) shows a qual-
itative behavior somewhat different from the static case. For few regenerators,
the redistribution of the noise at the ’0’-level and the increase in extinction ratio
keep the Q-factor high and more SOA-EA pairs give a better result. However, for
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many regenerators the noise at the one-level decreases the Q-factor and the single
SOA-EA device gives the best result, as opposed to the static case. For a smaller
bandwidth (Be=1 GHz, (a) in Figure 5.11) the stronger redistribution and smaller
ASE make the Q-factor increase even for many regenerators. It is also seen that
the sharper non-linear transfer function gives a higher Q for more SOA-EA pairs
for the whole cascade at small bandwidth, although the additional pairs add more
noise. Just as in the static case the lack of extinction ratio improvement in the
single SOA gives worse performance. The reason for the large difference between
a detection bandwidth of 1 and 2 GHz can be explained by Figure 5.6 where it is
easy to see the upper bandwidth limit for noise suppression at the one-level.

It should be noted that an increase in Q-value does not imply an improvement
in BER, only an increase in extinction ration and/or decrease of the noise variances
at the one- and/or zero-level. To properly calculate the BER the complete non-
linear transfer of the pdf has to be taken into account, like in the static calculations
above.

The conclusion from this is that a sharper non-linear transfer function can
improve the cascadability of the regenerator at small bandwidths, although the
means to achieve this, i.e. additional SOA-EA pairs, also adds more noise, as also
seen in chapter 4. Further we have seen a strong bandwidth dependence of the
regenerative properties, hence demonstrating the limitations of the static nonlinear
transfer function description, which is only valid for very low data rates. Due to the
possibility of having a simple scheme to investigate the cascadability of all-optical
regenerators and the possibility of evaluating non-linear transformation of the
PDFs, it is nevertheless very attractive for BER estimations. However, measured
and calculated static nonlinear transfer functions should be used with care when
analyzing all-optical regenerators incorporating SOAs, EAs or, in general, devices
with limited modulation bandwidth.

5.3 Optimization

In previous sections it was shown that the SOA-EA regenerator does indeed have
regenerative properties and that these can be improved by concatenating several
amplifier absorber pairs. In this section we want to look closer on the single pair
and investigate how it can be improved by using different device parameters. To
begin, we have chosen somewhat different base parameters in order to achieve a
larger bandwidth over which noise redistribution takes place, as will be seen later.
The new set of parameters are shown in table 5.2. The carrier life time of the SOA
might seem somewhat short, and indeed it is. In order to reach such fast SOAs
special techniques like the use of a holding beam is needed [82,83].

There are, as we have seen, several ways of evaluating the regenerator perfor-
mance. The ones we have looked at are the static non-linear transfer function,
which we want as steep as possible, the intensity noise spectrum, where a noise
suppression over a large frequency range is desirable, and finally the BER accumu-
lation in a cascade of regenerators, which is the final and true test of a regenerator.
Here we will find parameters that give a strong non-linearity in the transfer func-
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Parameter Value
SOA EA

Carrier life time/sweep out time, τs [ps] 25 25
Saturation energy, Esat [pJ] 3.47 varies
Internal loss, αint [m

−1] 400 400
Linewidth enhancement factor, α 2 2
Small signal gain, g0 [m

−1] 11000 -19158
Differential gain, a [m2] 0.75·10−20 varies
Carrier density at transparency, N0 [m

−3] 1·1024 1·1024

Table 5.2: Parameter values used in the calculations.

tion and then look at how the noise spectrum and BER is effected. The objective
is to see to what degree a stronger non-linearity of the SOA-EA gives better BER-
performance.
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Figure 5.12: Transfer functions of the SOA-EA combination for different ratios
between the saturation power for the EA and the SOA.

As shown in Sec. 5.1 the extinction ratio improvement in the EA is central to
the regenerative performance of the device. In order to have a large extinction
ratio improvement a large absorption is desired for small input powers, i.e. for
the zero-level, and no or small absorption at the one-level. These considerations
seems to imply that a large unbleached absorption, which is easily bleached at
higher input powers, i.e. a long EA with low saturation power, is wanted. This is
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also shown in Fig. 5.12

In this figure the transfer functions for a single SOA-EA pair is shown for
different ratios between the saturation power of the SOA, Psat,SOA, and the EA,
Psat,EA. The saturation power of the SOA is held constant, and the length of the
EA is changed in order to keep the gain at the chosen one-level constant. This
means that the EA is made longer when the saturation power is decreased, and the
other way around. A lower saturation power in the EA, combined with a longer
device, leads to stronger non-linearity and larger ER improvement. So far the case
seems pretty clear, since a large non-linearity is wanted, but let us look at some
other issues.

It is hard to see the threshold value on the logarithmic scale of Fig. 5.12, but
as we change the transfer function to a steeper one, the threshold, i.e. the point
between the one- and zero-level giving equal input and output power, also change.
This is shown in Fig. 5.13, which shows the threshold compared to the one-level
for the different saturation power ratios. The fact that the threshold does not vary
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Figure 5.13: Normalized threshold power as function of saturation power ratio.

monotonically with the saturation power ratio will be seen to be important for the
BER. More on this later.

The impact of the change of parameters compared to the previous sections be-
comes clear when looking at the relative intensity noise spectra in Fig. 5.14. The
frequency range over which noise redistribution, though not necessarily noise com-
pression, is seen is increased from about 10 GHz up toward 100 GHz. As before
the EA is seen to increase the RIN at higher frequencies and limits the noise com-
pression that is seen from the single SOA at low frequencies. Stronger saturation
of the EA, i.e lower saturation power, leads to stronger noise enhancement at the
one-level for higher frequencies. What is seen is basically that when the influence
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Figure 5.14: RIN spectra at the one-level, for different saturation power ratios.
The RIN spectrum for the single SOA is plotted for comparison.

of the EA on the transfer function is made stronger, so is its effect on the noise
spectrum.

Another way of looking at the effect seen in Fig. 5.14 is to consider the noise
figure. Here we use a standard noise figure definition [8]

FN =
SNRin
SNRout

, (5.5)

where the input signal-to-noise ratio is for a shot-noise limited signal, in order
to plot the noise figure as a function of input power in Fig. 5.15. Due to the
saturation behavior of the device as seen in the noise spectra, the output signal-
to-noise ration, and hence the noise figure, becomes bandwidth-dependent. At a
somewhat arbitrary choice of bandwidth of 40 GHz the noise enhancement of the
EA is important, as seen in Fig. 5.14, and leads to higher NF for lower saturation
power ratios.

In the comparison of BER below an ideal linear amplifier is included. It is
assumed to have a constant noise figure of 4 dB, as shown in Fig. 5.15.

As before we will now look at how these changes in non-linearity and noise
figure influence the accumulations of errors in a cascade of devices. In the BER-
calculations shown in Fig. 5.16 and Fig. 5.17, a constant link loss equal to the gain
of the device is assumed between the cascaded devices. Since a comparison is
made to a single SOA that has the same parameters as the SOA in the SOA-EA
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Figure 5.15: Noise figure for different saturation power ratios. The noise figure
for the single SOA and a linear amplifier with constant noise figure is included for
comparison.

device, and the gain decreases substantially when the EA is added, the BER is
plotted versus total link loss rather than number of regenerators, in order to get
a more fair comparison.

Remembering the change in threshold for the different cases, two different
input extinction ratios, 10 and 13 dB, are considered in order to investigate the
influence of the strength of the non-linearity compared to the influence of the
threshold value. The noise of the input signal is chosen to give the same BER
after one regenerator in both cases.

The figures show a few different interesting results. The decrease in ER after
the single saturated SOA leads to bad performance even though the gain is higher
than in the other devices. In general, a lower noise figure gives better performance
for few regenerators where the noise redistribution has not yet had a large influ-
ence. This is especially clear when comparing to the low noise linear amplifier.
A sufficiently large nonlinearity can, however, compensate for a high noise figure
when many regenerators are cascaded and the BER only increases slowly, as op-
posed for the linear case. This is seen as a general trend when comparing the
SOA-EA devices with different saturation power ratios. However, for the three
cases with the strongest non-linearity the case is not that clear.

Comparing the cases with Psat,EA/Psat,SOA = 0.1, 0.15 and 0.2 in Fig. 5.16
and Fig. 5.17 one sees a discrepancy from the general trend, where stronger non-



5.3. OPTIMIZATION 95

100 1000

-18

-12

-6

0

ER
in
=13dB

 

 

lo
g(

B
E

R
)

Total link loss (dB)

 P
sat

-ratio = 0.1
 P

sat
-ratio = 0.15

 P
sat

-ratio = 0.2
 P

sat
-ratio = 0.25

 P
sat

-ratio = 0.3
 SOA
 Linear

Figure 5.16: BER as function of cascaded regenerators for different saturation
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linearity gives better BER performance. For the 10 dB case the best performance is
not achieved for the regenerator with the strongest non-linearity, or the regenerator
with the lower noise figure but, for the device with the highest threshold. This
is a similar effect to the one studied in Fig. 4.5 and Fig. 4.6. For a larger input
ER a lower threshold is beneficial while for a worse input ER it might be good
to use a higher threshold. The best performance would of course be achieved if
the threshold can be optimized for each regenerator, but if this is not possible a
trade-off has to be made between accumulating many errors in the beginning or
the end of the cascade, as seen in chapter 4.

A similar situation is shown in more general terms in Fig. 5.18 where the
approximate BER model presented in Sec. 4.1.2 was used to calculate what non-
linearity is needed to give a BER of 10−9 after 100 regenerators as a function of
input extinction ratio for different thresholds. Since this calculation uses different
non-linearity and noise properties than the SOA-EA they should not be compared
directly, but rather in a qualitative way. In this figure, the limiting input extinc-
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Figure 5.18: The influence of input extinction ratio for different values of threshold
power.

tion ratio is seen to vary with the threshold as expected, and a high threshold is
preferable. One can also see that for a higher input extinction ratio, where the ER
improvement from the regenerator is less important, and the BER is dominated
by the noise added by the amplifier at the one-level, much as the situation in
the end of the cascade, the lower threshold is preferable. The two different fixed
thresholds are compared to the case where the optimum threshold is used for each
regenerator. This case obviously gives the best result.

5.4 Regeneration experiments

In order to experimentally show the potential of the concatenation of SOAs and
EAs for regeneration integrated SOA-EA regenerators were fabricated and char-
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acterized. All devices and measurements presented here were made by Lotte Jin
Christiansen at Research Center COM [20]. One example of a two-pair device is
shown in Fig. 5.19, but devices with one pair was also fabricated. The component

kafljæekaæjfkalæ

SOA1

SOA2EA1

EA2

AR

AR

Figure 5.19: SOA-EA device fabricated at COM

has been designed to meet the requirements of a low saturation energy in the EA,
compared to the SOA, and a large small signal absorption. The device is a ridge
waveguide device and the SOAs are 545 µm long and the EAs are 120 µm. The
ridge is angled by 7 degrees and the facets are anti reflection coated to reduce
reflections. A regrowth MOVPE process has been used to implement an active
material with a larger bandgap in the EA sections than in the SOA sections, so
that the EAs are transparent at a wavelength where the SOAs have gain. By in-
creasing the reverse bias on the EAs the absorption, at the signal wavelength, can
then be controlled using the electro absorption effect. The SOA material consists
of five 7.2 nm thick compressively strained InGaAsP quantum wells, and have a
gain peak at 1535 nm. The EA material consists of fifteen compressively strained
10 nm thick wells, and have a photo-luminescence peak at 1480 nm.

As seen before, the transfer function of a regenerator is important and in
Fig. 5.20 the measured static transfer functions of the two-pair device is shown for
a bias voltage over the first EA section from 0 to -1 V, while the second EA section
is completely unconnected. The total bias current to the SOAs is kept constant
at 350 mA. The wavelength was 1500 nm. The transfer functions have for all bias
points a strong nonlinearity with a very sharp threshold. It shows a potential
output extinction ratio of 45 dB for an input extinction ratio of only 5 dB. The
threshold is furthermore seen to be easily adjustable to different input power values
by a simple change of reverse bias over one of the absorbing sections. The increase
in reverse bias both increases the small-signal absorption and decreases the sweep-
out time in the EA. The decreased sweep-out time increases the saturation power.
The combined changes in absorption and saturation power results in the change
in the threshold of the transfer function.

As discussed previously a strong nonlinearity is not enough to achieve a good
regenerator, but also the dynamic properties are important. In Fig. 5.21 the
measuring setup for measuring the regeneration of a modulated signal is shown.
The cw signal from the laser is modulated with a 10 Gbit/s NRZ signal with a
pseudo-random bit sequence, using a Mach-Zehnder modulator. The EDFA and
attenuator ensures that the input power can be adjusted between -10 and 10 dBm.
Polarization controllers are used at the input of the device since this first version
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Figure 5.20: Measured transfer curves of a two-pair SOA-EA device for different
bias voltage on the first EA, the second EA section is completely unconnected, the
total bias current to the SOAs is kept constant at 350 mA.
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Figure 5.21: Experimental setup for measuring receiver sensitivity after regenera-
tion with SOA-EA device
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of the component is very polarization sensitive. The regenerated signal is then
filtered and detected with a preamplified receiver.

In Fig. 5.22 the eye diagrams before and after the regenerator is shown. In
this measurement the wavelength was 1545 nm, the input power was 3dBm and
the bias levels of the four section were 13 mA, 0 V, 245 mA and 0 V, respectively.
As seen an improvement of 5 dB from 2.2 to 7.2 dB is measured. Furthermore the

Input ER = 2.2 dB

2R regenerated ER = 7.2 dB

B

Figure 5.22: Measured eye diagram at the input and output of the two-pair SOA-
EA regenerator

eyes are clear and there is almost no patterning effect. During the experiments
the main improvement seemed to be achieved for the zero-level, while the noise at
the one-level was not suppressed, indicating that the SOAs were not sufficiently
saturated. Similar increases in ER were observed for input powers ranging from
-8 dBm to 5 dBm by only adjusting the bias, which again show the possibility of
adjusting the threshold in an easy manner.

The receiver sensitivity measurements, corresponding to the eye diagrams in
Fig. 5.22, is shown in Fig. 5.23. A receiver sensitivity improvement of 8.5 dB was
measured compared to the back-to-back measurement of the degraded signal.

5.5 Summary

In this chapter the SOA-EA 2R-regenerator was introduced and presented. The
combination of gain saturation in the SOA and absorption bleaching in the EA gave
a nonlinear transfer function. Although the addition of the EA, to some degree,
lessened the effect of noise suppression at the one-level, it gave the possibility
to increase the ER and redistribute the noise at the zero-level. Concatenation
of several SOA-EA pairs resulted in sharper nonlinearity and better regenerating
properties although the noise from the device increased.

The dependence of the nonlinearity on the saturation characteristics of the EA
was investigated. By using a longer EA with lower saturation power a stronger
nonlinearity and larger ER improvement was achieved for the same input power.
The stronger saturation of the EA did, however, give a larger noise figure. Fur-
thermore, it was shown that the largest nonlinearity did not necessarily give the
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Figure 5.23: Measured receiver sensitivity after the SOA-EA regenerator compared
to the back-to-back measurement of the degraded signal.

best cascading performance. It also proved important to adjust the threshold to
fit the operating condition, which agree with the investigations in chapter 4.

Finally experimental results of regeneration in an SOA-EA device was pre-
sented. The experiments showed strong nonlinear transfer functions with an easily
adjustable threshold, a large extinction ratio improvement and an improvement of
the receiver sensitivity compared to the back-to-back measurement of a degraded
signal.



Chapter 6

Conclusions and outlook

6.1 General conclusions

The main general conclusion of this work is that the details of the redistribution
of the noise and the signal in a nonlinear device is central to 2R-regeneration.
The main measure of signal quality is the BER, and the task of regeneration is to
keep the rate of error accumulation in a communication link as low as possible.
Regeneration cannot correct errors and improve the BER, but the best one can
do is to collect the errors accumulated at the point of regeneration and to improve
the signal in such a way that fewer errors are introduced at later stages of the
link. This improvement can be achieved by a nonlinear redistribution of the sig-
nal, which increases the extinction ratio and decreases the width of the probability
density functions, which describes the distribution of the signal and noise at the
logical one- and zero-levels. However, the influence of the nonlinearity on the tails
of these distributions has to be considered when regeneration is concerned, since
it is the overlap of these tails that give errors, when intensity noise is considered.
This means that any description of regeneration has to include, at least in an ap-
proximate way, the noise redistribution around the threshold value of the transfer
function.

In more specific terms the details of noise redistribution in a saturated SOA was
investigated. It was shown, from experiments and theoretical modeling, that this
kind of redistribution not only changes the width of the distributions but also the
overall shape. The same kind of redistributions was observed in simulations of a
2R-regenerator, showing pronounced changes in the tails of the distributions and
hence the BER. Simpler models, and approximate BER estimations based only
on the signal to noise ratio of the signal, does not consider these changes in noise
statistics and can therefore underestimate the BER, and give a poor understanding
of regeneration. The models were used to show that the redistribution depends
not only on the strength of the nonlinearity of the regenerator transfer function,
but also on the speed of the device and on the noise properties of the regenerator
itself.

The noise added by the regenerator is, in addition to the nonlinearity, a very

101
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important characteristic of the device. In general a regenerator transfer function
can always be made sharper by optimizing the design or by cascading several re-
generators at each node. This will, however, increase the amount of noise added
as well. Furthermore, the threshold value of the regenerator, i.e. the value that
separates the one- and zero-level, is important for the cascadability of the regen-
erator. The details of these kind of interplays were investigated using a model for
the BER in a cascade of regenerators. Using simple assumptions of a piece-wise
linear transfer function, Gaussian noise and a nonlinear collection of errors at the
threshold, a quite general model was developed. The calculations show that an
increase in nonlinearity can compensate for other signal impairments, such as an
increase in noise figure or decreased power level. These kind of considerations
can show how to best optimize 2R-regenerators or compare different regenerator
types, when timing jitter is not included. Furthermore, the model showed that
when cascading regenerators in a network environment the threshold value of the
regenerator transfer function should be chosen with considerations to other re-
generator properties, for example noise and extinction ratio, rather than to the
properties of the input signal.

Finally a specific component for 2R-regeneration, consisting of a waveguide
with alternating sections of saturable gain and absorption, was presented and
examined. Both measurements and theory showed the potential for a sharp non-
linear transfer function by concatenation of several sections and device optimiza-
tion. The very simple device showed both an increase in extinction ratio and
improved receiver sensitivity in experiments. Theoretical modeling examined the
noise properties and the cascadability of the device, and showed that several con-
catenated sections can improve the cascadability in a transmission link although
the noise figure is increased. All-in-all the device show great promise as a simple
2R-regenerator.

6.2 Future work

One of the toughest tasks for 2R-regeneration is to combine the nonlinear trans-
formation, device dynamics and noise in a model simple enough for investigating
a cascade of several regenerators. Detailed device models, as the ones presented
in this work, can properly describe the noise and dynamics of single components,
but they are often too cumbersome to use when many devices are cascaded. On
the other hand, simple and fast models using static transfer functions can easily
calculate the PDFs after a large number of regenerators, but, as the investigations
in this work show, these transfer functions can be a long way from the proper
dynamical description of the noise transformation.

Another problem not properly covered in this work is that of patterning effects.
All investigations in this work disregard the effects related to the data modulation
of the signal, although patterning effects is one of the largest problems when con-
sidering all-optical signal processing in semiconductor components. The problem
of properly including these effects is of course connected to the general problem of
using static transfer functions or computationally heavy models. However, there
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have also been suggestions on how to partially include patterning effects in an
otherwise static description [75], that might be investigated further. From a tech-
nological point of view, a general solution to the problems of patterning effects
would further strengthen the potential of all-optical signal processing in semicon-
ductor components.

Another very important part omitted from this work is the third R, re-timing.
To completely regenerate the signal the timing jitter also needs to be suppressed.
If re-timing would be included in the modeling of regeneration in a simple way, it
would greatly improve the usefulness of the theoretical investigations.

Finally, in order to properly compare the performance of regenerators it would
be useful to define relevant and easily measurable figures of merit for a regenerator.
As seen in this report, several properties of the regenerator influence the perfor-
mance. In the literature one will find several different methods of characterizing
regenerators. Although the most complete method is to study the regenerators
in cascaded links or loop experiments, some measures of the performance can be
tested through for example measuring the transfer function or studying extinction
ratio improvement and receiver sensitivity after a single regenerator. There are
however no well defined method of comparing regenerators to each other.

When, or if, all-optical regeneration will be employed in commercial commu-
nication systems is still an open question, which is not considered in this work.
The theoretical investigation and fundamental understanding of the mechanisms
of regeneration, however, is a very challenging and interesting field of research that
needs further work.
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Appendix A

The matrix of the second
order model

The matrix Õ used in Sec. 3.4.1 describes the second order contributions to the
noise distribution. It is a 2M +2Lω×2M +2Lω matrix where M is the number of
discrete steps in z, Lz, times the number of discrete steps in ω, Lω, see Fig. A.1.
It has an internal structure of sub-matrices where each sub-matrix describe the

z

ω
V1

V2

V3

V7

V8

V13

VM

...

...

...

...

Vi

...

...

∆z

∆ω

Figure A.1: The discretization of z and ω and definition of Vi.

contribution of one of all the combinations of ASE amplitude noise (Nρ), ASE
phase noise (Nφ), input amplitude noise (Nρ0 = ρ1(z)δ(z+)/ρs(z)) and input
phase noise (Nφ0 = φ1(z)δ(z+)/ρs(z)), as seen in Fig. A.2.

The matrix elements are given by the following:
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(Nρρρρ, Nρρρρ)

M×M

(Nρρρρ, Nφφφφ)

M×M

(Nφφφφ, Nρρρρ)

M×M

(N φφφφ, N φφφφ)

M×M

(Nρρρρ, Nρρρρ0)

M×Lωωωω

(Nφφφφ, Nρρρρ0)

M×Lωωωω

(Nρρρρ, Nφφφφ0)

M×Lωωωω

(Nφφφφ, Nφφφφ0)

M×Lωωωω

(Nφφφφ0, Nρρρρ0)

Lωωωω×Lωωωω

(Nφφφφ0, Nφφφφ0)

Lωωωω×Lωωωω

(Nρρρρ0, Nρρρρ0)

Lωωωω×Lωωωω

(Nρρρρ0, Nφφφφ0)

Lωωωω×Lωωωω

(Nρρρρ0, Nρρρρ)

Lωωωω×M

(Nρρρρ0, Nφφφφ)

Lωωωω×M

(Nφφφφ0, Nρρρρ)

Lωωωω×M

(Nφφφφ0, Nφφφφ)

Lωωωω×M

j ≤ M M < j ≤ 2M 2M < j ≤ 2M+Lωωωω 2M+Lωωωω < j ≤ 2M+2Lωωωω

2M+Lωωωω < i ≤ 2M+2Lωωωω

2M < i ≤ 2M+Lωωωω

M < i ≤ 2M

i ≤ M

Figure A.2: The internal structure of the matrix Õ.

For i ≤M and j ≤M , that is for (Nρ, Nρ):

Õij = F ∗(ω1)H
∗(z1, ω1)F (ω2)H(z2, ω2)

+ F (ω2 − ω1)M̄ρρ(z1, ω1; z2, ω2)

+ (F ∗(ω1)F (ω2)− F (ω2 − ω1))

α2 (1−H∗(z1, ω1)) (1−H(z2, ω2)) (A.1)

where (z1, ω1) ∈ Vi, (z2, ω2) ∈ Vj and

M̄ρρ(z1, ω1; z2ω2) =
1

2
H(z1,−ω1)H(z2, ω2)

∫ L

0

H(z, ω2 − ω1)

H(z,−ω1)H(z, ω2)

×
[

C(−ω1) + C(ω2) + C(ω2 − ω1) +
1

gs(z)
C(ω2 − ω1) (C(−ω1) + C(ω2))

]

× θ(z − z1)θ(z − z2)dz. (A.2)

Here θ is the Heaviside step function and

C(z, ω) = − 2gsρ
2
s

1 + ρ2s + iωτs
(A.3)
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For M < i ≤ 2M and j ≤M , that is for (Nφ, Nρ)

Õij = F (ω2 − ω1)M̄φρ(z1, ω1; z2, ω2)

+ (F ∗(ω1)F (ω2)− F (ω2 − ω1))α (1−H(z2, ω2)) (A.4)

where (z1, ω1) ∈ Vi−M , (z2, ω2) ∈ Vj and

M̄φρ(z1, ω1; z2ω2) = α

(

1− H(z2, ω2)

H(z1, ω2)

)

θ(z1 − z2)H(z1, ω2 − ω1) (A.5)

For 2M < i ≤ 2M + Lω, j ≤M , that is for (Nρ0 , Nρ)

Õij = F ∗(ω1)H(0, ω1)
∗F (ω2)H(z2, ω2)

+ F (ω2 − ω1)M̄ρ0ρ(z1, ω1; z2, ω2)

+ (F ∗(ω1)F (ω2)− F (ω2 − ω1))

α2 (1−H(0, ω1)
∗) (1−H(z2, ω2)) (A.6)

where (z1, ω1) ∈ Vi−2M , (z2, ω2) ∈ Vj and

M̄ρ0ρ(z1, ω1; z2ω2) =
1

2
H(0,−ω1)H(z2ω2)

∫ L

0

H(z, ω2 − ω1)

H(z,−ω1)H(z, ω2)

×
[

C(−ω1) + C(ω2) + C(ω2 − ω1) +
1

gs(z)
C(ω2 − ω1) (C(−ω1) + C(ω2))

]

× θ(z − z2)dz (A.7)

For 2M + Lω < i ≤ 2M + 2Lω, j ≤M , that is for (Nφ0
, Nρ)

Õij = (F ∗(ω1)F (ω2)− F (ω2 − ω1))α (1−H(z2, ω2)) (A.8)

where (z1, ω1) ∈ Vi−2M−Lω
and (z2, ω2) ∈ Vj

For M < i ≤ 2M , M < j ≤ 2M , that is for (Nφ, Nφ)

Õij = F (ω2 − ω1)M̄φφ(z1, ω1; z2, ω2)

+ (F ∗(ω1)F (ω2)− F (ω2 − ω1)) (A.9)

where (z1, ω1) ∈ Vi−M , (z2, ω2) ∈ Vj−M and

M̄φφ(z1, ω1; z2ω2) =

θ(z2 − z1)H(z2, ω2 − ω1) + θ(z1 − z2)H(z1, ω2 − ω1) (A.10)
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For 2M < i ≤ 2M + Lω, M < j ≤ 2M , that is for (Nρ0 , Nφ)

Õij = F (ω2 − ω1)H(z2, ω2 − ω1)

× α

(

1− H(0,−ω1)
H(z2,−ω1)

)

+ (F ∗(ω1)F (ω2)− F (ω2 − ω1))α (1−H∗(0, ω1)) (A.11)

where (z1, ω1) ∈ Vi−2M−Lω
and (z2, ω2) ∈ Vj−M .

For 2M + Lω < i ≤ 2M + 2Lω, M < j ≤ 2M , that is for (Nφ0
, Nφ)

Õij = F (ω2 − ω1)H(z2, ω2 − ω1)

+ (F ∗(ω1)F (ω2)− F (ω2 − ω1)) (A.12)

where (z1, ω1) ∈ Vi−2M−Lω
and (z2, ω2) ∈ Vj−M

For 2M < i ≤ 2M + Lω, 2M < j ≤ 2M + Lω, that is for (Nρ0 , Nρ0)

Õij = F ∗(ω1)H
∗(0, ω1)F (ω2)H(0, ω2)

+ F (ω2 − ω1)M̄ρρ(0, ω1; 0, ω2)

+ (F ∗(ω1)F (ω2)− F (ω2 − ω1))

α2 (1−H∗(0, ω1)) (1−H(0, ω2)) (A.13)

where (z1, ω1) ∈ Vi−2M , (z2, ω2) ∈ Vj−2M .

For 2M + Lω < i ≤ 2M + 2Lω, 2M < j ≤ 2M + Lω, that is for (Nφ0
, Nρ0)

Õij = (F ∗(ω1)F (ω2)− F (ω2 − ω1))α (1−H(0, ω2)) (A.14)

where (z1, ω1) ∈ Vi−2M−Lω
and (z2, ω2) ∈ Vj−2M

For 2M +Lω < i ≤ 2M + 2Lω, 2M +Lω < j ≤ 2M + 2Lω, that is for (Nφ0
, Nφ0

)

Õij = F ∗(ω1)F (ω2)− F (ω2 − ω1) + F (ω2 − ω1)H(0, ω2 − ω1) (A.15)

where (z1, ω1) ∈ Vi−2M−Lω
and (z2, ω2) ∈ Vj−2M−Lω

For all other elements
Õij = Õ∗

ji (A.16)

Finally, the detection and electrical filtering changes all matrix elements by:
Õij → Fe(ω2 − ω1)Õij .
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List of abbreviation

Abbreviation Complete name
1R Re-amplification
2R Re-amplification and Re-shaping
3R Re-amplification, Re-shaping and Re-timing
ASE Amplified Spontaneous Emission
BER Bit Error Rate
BERT Bit Error Rate Test-set
CGF Cumulant-Generating Function
CW Continuous Wave
DISC Delayed-Interferometer Signal-wavelength Converter
EA Electroabsorber
EAM Electro-Absorption Modulator
EDFA Erbium Doped Fiber Amplifier
ER Extinction Ratio
InGaAsP Indium-Gallium-Arsenide-Phosphide
InP Indium-Phosphide
LD Laser Diode
MGF Moment-Generating Function
MMI Multi Mode Interferometer
MOVPE Metal Organic Vapor Phase Epitaxy
MZI Mach-Zehnder Interferometer
MZM Mach-Zehnder Modulator
NRZ Non-Return to Zero
OEO Opto-Electronic
OOK On-Off Keying
OSNR Optical Signal to Noise Ratio
PDF Probability Density Function
PT Pass-Through
RIN Relative Intensity Noise
RZ Return to Zero
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Abbreviation Complete name
SNR Signal to Noise Ratio
SOA Semiconductor Optical Amplifier
TE Transverse Electric
TF Transfer Function
TM Transverse Magnetic
WDM Wavelength Division Multiplexing
XGM Cross Gain Modulation
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Appendix C

List of symbols

Symbol Description Unit
α Linewidth enhancement factor
αint Waveguide loss m−1

a Differential modal gain m2

A Effective cross-section area m2

Be Detection bandwidth Hz
Bo Optical bandwidth Hz
BD Effective device bandwidth Hz
1− γ Transfer function nonlinearity
γ Transfer function slope
γs Skewness
D Diffusion matrix

Ẽ Envelope of electrical field amplitude
√
W

E Normalized Ẽ
Es Steady state of E
Ep Perturbation of Es
ERreg. Extinction ratio of regenerator
φ Phase of E
φs Steady state phase of E
φi Perturbation of φs of order i

f̃N Langevin force, carriers m−3s−1

fN Normalized Langevin force, carriers

f̃E Langevin force, electric field
√
Wm−1

fE Normalized Langevin force, electric field
F Filter function of optical filter
Fe Filter function of electrical filter
FN Noise figure
g Gain coefficient m−1

g0 Small signal gain coefficient m−1

gs Steady state gain coefficient m−1

gi Perturbation to gs of order i m−1

G Gain
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Symbol Description Unit
h Integrated gain coefficient
h0 Integrated small signal gain coefficient
~ Plancks constant (h/2π) Js
I Current A
kn Cumulant of order n
λ Wavelength m
L Device length m
Lz,t,ω Number of discrete points in z, t and ω
Latt. Attenuator loss
mn Central moment of order n
µ Mean value
nsp Spontaneous emission factor
N Carrier density m−3

N0 Carrier density at transparency m−3

Nρ Real part of fE/Es
Nφ Imaginary part of fE/Es
P Power W
P̄1/0 Mean power of logical one/zero-level W
Psat Saturation power W
Pth Threshold power W
P̄ase Mean ASE power W
P̄1/0,s Mean power of input signal at one/zero-level W
P1/0 Power of one/zero-level of transfer function W
q Elementary charge C
Q Signal quality factor
ρ Amplitude of E
ρs Steady state amplitude of E
ρi Perturbation of ρs of order i
R(τ) Correlation of spontaneous emission noise s−1
σ21/0 Variance of signal power at one/zero-level W2

σ2ase Variance of ASE power W2

τs Carrier life time/Sweep out time s
t Shifted time coordinate s
∆t Sampling interval s
vg Group velocity m/s
V Active volume m3

Vth Threshold voltage V
ω0 Angular frequency of optical carrier wave Hz
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List of Ph.D. publications

F. Öhman, S. Bischoff, B. Tromborg, and J. Mørk. Noise and regeneration in
semiconductor waveguides with saturable gain and absorption. IEEE J. Quantum
Electron., 40:245 – 255, 2004.

F. Öhman, S. Bischoff, B. Tromborg, and J. Mørk. Noise properties and cas-
cadability of SOA-EA regenerators. In Proceedings of LEOS 2002, page 895, 2002.

F. Öhman, B. Tromborg, J. Mørk, A. Aurelius, A. Djupsjöbacka, and A. Berntson.
Measurements of non-linear noise re-distribution in an SOA. In Proceedings of
CLEO 2004, page CtuP5, 2004.

F. Öhman, B. Tromborg, J. Mørk, A. Aurelius, A. Djupsjöbacka, and A. Berntson.
Measurements and simulations of non-linear noise re-distribution in an SOA. IEEE
J. Photon. Technol. Lett., accepted for publication, 2004.

F. Öhman, S. Bischoff, B. Tromborg, and J. Mørk. Noise properties of semi-
conductor waveguides with alternating sections of saturable gain and absorption.
In Proceedings of CLEO/Europe 2003, page CC7T, 2003.

L. J. Christiansen, L. Xu, K. Yvind, F. Öhman, L. Oxenløwe, and J. Mørk. 2R
Regeneration in Concatenated Semiconductor Optical Amplifiers and Electroab-
sorbers. In Proceedings of ECOC 2004, 2004.

J. Mørk, F. Öhman, and S. Bischoff. Analytical expression for the bit error rate of
cascaded all-optical regenerators. IEEE J. Photon. Technol. Lett., 15(10):1479–
1481, 2003.

J. Mørk, F. Romstad, S. Hojfeldt, L. Oxenløwe, K. Yvind, L. Xu, F. Öhman,
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