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Abstract 
Computer Aided Molecular/Mixture design (CAMD) is one of the most promising 
techniques for solvent design and selection. A decomposition based CAMD 
methodology has been formulated where the mixture design problem is solved as a 
series of molecular and mixture design sub-problems. This approach is able to 
overcome most of the difficulties associated with the solution of mixture design 
problems. The new methodology has been illustrated with the help of a case study 
involving the design of solvent-anti solvent binary mixtures for crystallization of 
Ibuprofen. 
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1. Introduction 

Computer Aided Molecular/Mixture Design (CAMD) is a very promising technique for 
design of solvents, (solvent) mixtures and/or formulations for different processes. 
CAMD technique has been used previously for the design of solvents and a review of 
the various solution techniques can be found in Achenie et a1.,(2002). The authors 
define computer aided molecular design as 'Given a set of building blocks and a set of 
target properties, determine the molecule or molecular structure that matches these 
properties'. In this technique the reverse problem of property estimation is tackled, that 
is, for a specified set of properties (target properties), pure compounds or mixtures that 
satisfy the property requirements are determined. The CAMD problem can be posed as 
a mixed integer non-linear programming (MINLP) problem, where a (process-product) 
performance index is optimised subject to constraints such as process models, product 
characteristics, molecular generation rules etc. The resulting MINLP model can be 
solved in many ways. The most direct approach is to completely enumerate the MINLP 
model to give several non-linear programs (NLP) corresponding to fixed values of the 
integer variables. A simple generate and test approach is an example of complete 
enumeration. Achenie et al., however report of developments based on a multi level 
approach, which avoids complete enumeration. For practical solvent and mixture design 
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problems, solving the CAMD MINLP model using standard optimisation approaches 
presents several difficulties. These arise from the need to use highly non-linear and 
complex property models for the prediction of the product-process characteristics, the 
need to relate the product function with the process model (where the process model 
equations are represented as a set of equality constraints), the search space, global 
optimal issues and many more. In this work we have developed a new CAMD 
methodology where the general molecule-mixture design problem (posed as an MINLP 
problem) is decomposed into an ordered set of sub-problems, that combined together, 
represent the original problem definition. The advantage is a more flexible solution 
approach together with easy to solve sub-problems related to various features of the 
molecule-mixture design problem. 

2. Methodology 
A general CAMD problem (Molecular and Mixture design) formulated as an MINLP is 
shown below. 
Min/Max fobj (X, Y) 
S.t Structural constraints: gl (Y) _~0 

Pure component property constraints: g2 (Y) -~0 
Mixture property constraints: g3 (X, Y) _~0 
Process model constraints: g4 (X, Y) _~0 

Y is a vector of integer variables, which are related to the identities of the building 
blocks and/or molecules. X is a vector of continuous variables, which are related to the 
mixture (e.g., compositions) and/or process variables (e.g., flow rates, temperatures 
etc.), fobj is the objective function, which defines the optimisation objective in terms of 
mixture-process (performance) characteristics and/or cost that may be minimized or 
maximized, g~ and g2 are sets of structural (related to feasibility of molecular structure) 
constraints and pure component property (related to properties-molecular structure 
relationships) constraints respectively, g3 and g4 are set of mixture property (related to 
properties-mixture relationships) constraints and process model (related to process- 
molecule/mixture relationships) constraints respectively. 

The general CAMD problem is first decomposed into two parts molecular design and 
mixture design. If we are interested in pure component solvent design then only the first 
part is followed while if we are interested in mixture design both parts are followed (see 
Fig. 1). In the first part (pure component design) the problem is decomposed into four 
sub-problems. The first sub-problem considers the structural constraints that result in 
generation of feasible molecular structures. The second sub-problem considers the pure 
component properties, and the feasible molecular structures from the first sub-problem 
are solved for the pure component properties. Those molecules, which satisfy the pure 
component property constraints, are then passed into the third sub-problem, which 
considers the mixture properties. Those satisfying the mixture property constraints are 
passed on to the final sub-problem where the process model constraints are considered 
along with the objective function and the optimal solvent is identified by either solving 
a smaller MINLP problem or a series of NLP problems or just ranking the solvents 
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according to the performance index, depending on the number of feasible solutions that 
are passed into the final sub-problem. 
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Figure l:Flow diagram of decomposition methodology 

The second part deals with mixture design. In this part promising pure component 
solvents are designed first and then the solvent mixture is identified. The mixture design 
problem is also solved as a series of sub-problems. The first three sub-problems deal 
with the design of pure component solvents and the final two sub-problems deal with 
mixture design. At the end of sub-problem 3, we will have all promising pure 
component solvents. In the fourth sub-problem mixture property constraints concerning 
the miscibility of the solvents among themselves in the mixture (e.g. miscibility of two 
solvents if a binary mixture is designed) is considered. In the final sub-problem the 
process model constraints are considered along with the objective function and the 
optimal mixture is identified by solving a MINLP problem or a series of NLP problems 
or ranking the mixtures according to the performance index. In some mixture design 
problems (such as formulations), it may not be necessary to consider processing issues 
and hence we would not have the process model constraints and the problem becomes a 
simple mixing problem, which would already have been addressed 
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by the miscibility criteria in the sub-problem 4. Hence, for these problems, we will not 
need the sub-problem 5. Also in some cases we might have to identify a mixture whose 
constituents perform different jobs. In that case we would have to formulate and solve 
more than one pure component design problems to identify the constituents and then 
solve the final two sub-problems to identify the optimal mixture. 

3. Case Study: Solvent-Anti solvent design for Ibuprofen 

Ibuprofen is an important pharmaceutical compound, which is usually produced by 
drowning out crystallization. In this method the drug (Ibuprofen) is crystallized out of 
the solution as its solubility decreases and super saturation is generated when a very 
poor solvent called anti-solvent is added. In the simplest and most common drowning 
out process, the anti-solvent is miscible with the mother liquor at all process conditions 
(Frank et al., 1999). The solvent designed should have high solubility for Ibuprofen so 
that the quantity of solvent required is minimal. The choice of solvents directly 
influences the morphology of crystals obtained. So it is extremely important that the 
appropriate solvents and anti solvents re selected. Gordon and Amin (1984), say that 
better shaped crystals (equant shaped) are obtained when solvents having hydrogen 
bonding solubility parameter of atleast 8 Hilderband units are used as against aliphatic 
hydrocarbon solvents, which yield rod or needle shaped crystals. 

3.1 Solvent-Anti solvent property requirements 
The solvent and anti-solvent should be liquid at operating conditions. Hence constraints 
on boiling point (To) and melting point (Tin) are imposed on the designed solvent and 
anti-solvent. The solvent should have very high solubility for Ibuprofen. Usually 

solvents having solubility parameter (//) value close to that of the solute have high 
solubility for the solute. The estimated solubility parameter of Ibuprofen is 19 
MPAl/Z.Hence the designed solvent should have solubility parameter values close to 19 
MPAm.The solvent designed should be able to produce equant shaped crystals. For 
purposes of screening, a constraint on hydrogen bonding solubility parameter (c~H) of the 
solvent is imposed. The designed anti solvent should have low solubility for Ibuprofen. 
A constraint on solubility parameter takes care of this. The solvent and anti solvent 
should be completely miscible in the whole composition range. The mixture should 
have high solubility for the solute at higher compositions of solvent and low solubility 
for the solute at higher compositions of anti-solvent so that the yield will be high. The 
various properties are estimated using group contribution methods. 

3.2 Mathematical formulation 
The overall mixture (solvent-anti solvent) design problem is shown below 
Max Solubility differencefobj (X, Y) 
s.t. Structural constraints: gl (Y) _<0 

Pure component property constraints: g2 (functional groups, group contributions) < 0 

Tb (solvent) > 340; Normal boiling point 

Tm (solvent) < 270; Normal melting point 

18 < c~ (solvent) < 19; Hildebrand solubility parameter 

8n (solvent) > 8; Hansen (Hydrogen-bonding) solubility parameter 
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Tb (anti-solvent) _> 340; Normal boiling point 

Tm (anti-solvent) < 270; Normal melting point 

t~ (anti-solvent) _< 29; Hildebrand solubility parameter 
Mixture property constraints: Solvent-Anti solvent miscibility 

g3 (compound ID, temperature, model parameters, composition) - 0 

Following the second part (see Fig. 1) solves this mixture design problem, as stated in 
the methodology (see section 2). Pure component solvents and anti-solvents are 
designed first and then optimal solvent-anti solvent binary mixture is identified. Since 
solvents and anti-solvents perform different roles and hence have different property 
constraints two molecular design problems need to be formulated and solved. As stated 
in the methodology the first three sub-problems pertain to pure component design. For 
the pure component solvent design, the structural constraints are considered in the first 
sub-problem. In the second sub-problem all feasible molecular structures were solved 
for the four pure component property constraints of the solvent namely boiling point, 
melting point, total solubility parameter and hydrogen bonding solubility parameter. 
Since we do not have mixture property constraints regarding pure solvents we do not 
need the third sub-problem in the methodology. The same applies to the three sub- 
problems of the pure component anti-solvent design where anti-solvent property 
constraints namely boiling point, melting point and solubility parameter are considered. 
Then the fourth sub-problem as per the methodology is solved where the pure 
component solvents and anti solvents are verified for the binary miscibility. In this case 
study the process model constraints are not considered and hence we do not need the 
final sub-problem. Now the optimal solvent is selected by evaluating the performance 
index (objective function) of all the binary solvent-  anti solvent mixtures that satisfied 
all the sub-problems. The sub problems have been solved with the ProCAMD toolbox 
in ICAS (ICAS Documentations, 2002). 

3.3 Results 
For the solvent design in the first sub-problem only acyclic compounds were designed. 
3498 feasible molecular structures were generated in the first sub-problem. In the 
second sub-problem from the 3498 molecules only 55 molecular structures satisfied the 
four pure component property constraints of the solvent. Sub-problem 3 was bypassed 
as solubilities were calculated in sub-problem 2. These generated molecules were 
compared with a database of compounds (to identify if they exist or has been produced 
as a chemical) and 7 of these were found to exist. These seven molecules were selected 
as potential solvent candidates. For the anti-solvent design, also 3498 feasible molecular 
structures were generated in the first sub-problem. In the second sub-problem only two 
out of the 3498 structures satisfied the three anti-solvent pure component property 
constraints. The third sub-problem was again omitted. These two solvents were selected 
as potential anti-solvents. Now in the fourth sub-problem only six pairs were found to 
be completely miscible with each other. As stated before we did not consider the 
process model in the fifth sub-problem- we only need to find the mixture that best 
satify the performance index. This is now simple, as we only need to evaluate the 
performance index for each of the identified six binary mixtures and rank them. The 
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performance index is the difference in the solubility of Ibuprofen at high (0.8 mole 
percent) and low (0.1 mole percent) compositions of solvent. The pair that had the 
highest solubility difference (objective=Solubility (Xl sat, Solvent high, anti-solvent 
low)- Solubility (X2 sat, Solvent low, anti-solvent high)) was Propionic anhydride 
(Solvent)- 1,3 Propylene glycol (Anti solvent), which was therefore selected as the 
optimal solvent and anti-solvent mixture. Gordon and Amin (1984) state that Ibuprofen 
is commercially crystallized from hexane or heptane and the crystals are rod or needle 

shaped and argue that if the 8n value of the solvent is > 8 it is possible to obtain equant 
shaped crystals. Our designed binary mixture should be able to produce better crystals 
as compared to heptane or hexane, since the solvent has higher solubility. Note, 
however, that for final verification, experiments would need to be performed, which is 
outside the scope of this work. 

Table 1: Design Results (Estimated Properties) 

Solvent: Propionic anhydride Anti solvent: 1,3 Propylene glycol 

Tm = 237.34 K 
Tb = 450.62 K 
5H = 8.38 MPA 1/2. 
8 = 19.82 MPA 1/2 

Tm = 235.53 K 
Tb = 453.47 K 
5 = 30.51MPA u2 

4.Conclusions 

This paper presents a new decomposition based methodology for solving mixture design 
problems. The mixture design problem formulated as an MINLP model is solved as a 
series of sub-problems. These sub-problems are sub-set of constraints from the original 
set and are easy to solve. The problem becomes smaller and simpler as each sub- 
problem is solved. The Ibuprofen case study illustrates that the methodology can be 
applied to solve practical solvent design problems. It also shows that CAMD techniques 
can help to reduce the number of alternatives and to design the experiments needed for 
final verification, thereby, saving much time and resources. 
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