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Abstract 

 
 

The influence of the hormonal milieu on functional prostaglandin and oxytocin 
receptors and their downstream signal pathways in isolated human myometrium 

 

Deborah Peninnah Fischer 
 
Although prostaglandins (PG) and oxytocin are crucial mediators of uterine 
contractility, their receptor-mediated effects during the menstrual cycle, pregnancy 
and labour are not fully understood. The aim of this thesis was to elucidate the 
functional expression of EP, FP, TP and oxytocin receptors in isolated human 
myometrium relative to myocyte mRNA and signal transduction pathways. 
 
Myometrial samples were obtained from consenting non-pregnant and pregnant 
donors. Functional techniques were used to determine isometric muscle contractions. 
Primary uterine myocytes and fibroblasts were cultured at term to identify stimulated 
changes in calcium (Ca2+), cyclic adenosine monophosphate (cAMP) and mRNA.  
 
Myometrial strips exhibited spontaneous contractions, which were most active mid-
cycle under oestrogenic conditions. At this time intrinsic contractility and 
responsiveness to uterotonins decreased towards the fundus. PGE2 produced bell-
shaped responses with predominant utero-relaxant effects mediated via the EP2 
subtype. Although activity was partially restored by PGE2 through EP3/1 receptors, 
tissue excitation was more pronounced at FP, TP and oxytocin receptors. Despite high 
FP mRNA expression, the lower segment uterus was particularly responsive to 
U46619 and oxytocin at term pregnancy. Even so, Ca2+ mobilisation by oxytocin was 
greater via principal release from intracellular stores. Incubations with atosiban, 
progesterone and a rho-kinase inhibitor reduced oxytocin-stimulated Ca2+ transients. 
EP2 also attenuated oxytocic effects but this appeared to be mediated through cAMP 
rather than Ca2+ signalling pathways. With advancing labour, intrinsic myogenic 
activity declined in parallel with oxytocin desensitisation. However, TP-induced 
contractions were continued in the lower parturient uterus. 
 
These findings demonstrate that PG and oxytocin receptor expression are regulated in 
a hormone-dependent temporal and spatial manner. EP2-mediated cAMP formation 
appears to promote uterine quiescence, whilst TP receptors may control muscle tonus 
during parturition. These receptors and their messenger systems represent effective 
tocolytic targets for uterine hypercontractile disorders, such as dysmenorrhoea and 
preterm labour. 
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Chapter 1: Introduction 

 
 

 

1.1 The human uterus 

The uterus is a dynamic organ. During the reproductive years, it responds to the 

hormonal milieu (Europe-Finner et al., 1994; Lopez Bernal, 2001; Blanks et al., 2007) 

and to physical stimuli, such as the arrival of a blastocyst (Lim et al., 2002; Critchley 

& Saunders, 2009). Maternal physiological adaptations to the menstrual cycle, 

pregnancy and parturition can be dramatic. Even so, some events may be 

accompanied by common gynaecological disorders, including excessive blood loss 

(menorrhagia), menstrual cramps (dysmenorrhoea) and premature labour.  

The uterus, a hollow fibromuscular organ, is supported deep within the pelvic cavity 

by broad, round and uterosacral ligaments. At puberty the uterus is pyriform in shape 

with two anatomical regions, the body or corpus and the cervix. The isthmus, a slight 

constriction, marks the junction of the cervix and the body. In a non-pregnant adult, 

the uterine body narrows from the fundus caudally to the cervix, which projects 

through the anterior wall of the vagina (Figure 1.1).  

The uterine wall is composed of three layers: the outer serosa, the thick muscular 

layer (myometrium) and the inner mucosal membrane (endometrium), tapering the 

uterine cavity. In the non-gravid state, myometrial tissue can be further structured into 

external (stratum supravasculare), mid (stratum vasculare) and inner (stratum 

subvasculare) layers. Even so, the boundaries between each stratum are not well 

defined. 
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Figure 1.1: Anterior view of the uterus, uterine tubes and associated ligaments. Cut 
sections of the uterus and vagina illustrate their internal anatomy (Seeley et al., 2006). 
 
 
 

1.2 The menstrual cycle 

The menstrual cycle is controlled by episodic changes in ovarian hormone secretion, 

which prepare the uterus to receive a fertilised ovum. In non-pregnant healthy women 

of reproductive age, the complete cycle is approximately 28 days in length. By 

convention, menses marks the first 4-5 days of the cycle, during which endometrial 

tissue is sloughed together with blood from ruptured arteries. After menstruation, 

circulatory oestrogen gradually rises due to its secretion by ovarian granulosa and 

theca cells within the developing dominant follicle. The binding of oestrogen to its 

abundant uterine receptors causes the endometrial cells and, to a lesser extent, the 

myometrial cells to proliferate (Yin et al., 2007). Moreover, oestrogen induces the 

synthesis of specific receptors for progesterone (refer to Page 8). This primes the 
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uterus for progesterone binding after ovulation, signified by the transformation of the 

follicular cavity into the corpus luteum (Figure 1.2).  

The subsequent luteal phase is dominated by progesterone secretion from the corpus 

luteum, concentrations of which peak at 7.48 ± 3.86 ng/ml between days 18 to 24 of 

the cycle (Erden et al., 2005). During this phase, as well as antagonising oestrogen, 

progesterone suppresses myometrial activity and thickens the endometrial lining. 

Spiral arteries also fully develop in preparation for pregnancy. However, without 

successful fertilisation and implantation of the ovum, the corpus luteum regresses and 

progesterone and oestrogen synthesis declines. With the withdrawal of steroid 

support, uterine spiral arteries constrict causing ischaemia and oxidative damage to 

the endometrium. The shedding of the endometrial tissue then prepares the uterus for 

the next menstrual cycle. 
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Figure 1.2: During a typical menstrual cycle, luteinising hormone (LH) stimulates the 
production of androgens by theca cells in the ovary, providing a substrate for 
oestrogen synthesis by ovarian granulosa cells. Follicle-stimulating hormone (FSH) 
facilitates follicle maturation and oestrogen-dependent proliferation of endometrial 
and myometrial cells. A mid-cycle surge in LH triggers ovulation, followed by a drop 
in FSH and LH release. At the site of the ruptured follicle a corpus luteum develops. 
This secretes progesterone and causes endometrial cells to differentiate and stabilise. 
If pregnancy is not established, menstruation results from endometrial shedding 
secondary to the rapid decline in oestrogen and progesterone synthesis from the 
demise of the corpus luteum (adapted from www.sciencedaily.com).  
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1.3 Myometrial structure 

Although the myometrium is predominantly composed of smooth muscle cells, it also 

contains a heterogeneous arrangement of fibroblasts, blood vessels, lymphatic vessels 

and immune cells embedded in a matrix of connective tissue. In humans, the 

myometrial fibres tend to be oriented in a longitudinal direction close to the serosa 

and gradually form a circular muscle layer next to the endometrium (Weiss et al., 

2006). However, the interconnection between bundles and numerous interspersed 

oblique fibres reduce any clear distinction between layers. 

Human myometrial cells are long (300-600µm), narrow (5-10µm) and generally 

spindle-shaped (Finn & Porter, 1975). The complex cytoskeletal structure enables 

contractile forces to be generated within each cell and then transmitted through the 

myometrium via gap junctions, directly linking adjacent cells. Interaction with 

connective tissue collagen fibres facilitates the electrical coupling and transforms the 

uterus from its intrinsic relaxed state into an effective contractile syncytium. Although 

suppressed during pregnancy, the synchronous uterine contractions are phasic in 

nature and driven by action potentials propagated by pacemaker cells (Marshall, 

1962). This myogenic activity imparts directional force essential for progressive 

cervical dilation and delivery of the foetus at parturition.  

The structural basis of contractions involves actin and myosin filaments, which form 

cross-bridges to generate force. Myosin is a hexamer composed of two identical heavy 

chains and four light chains. As well as possessing actin binding-sites, myosin 

hydrolyses ATP to provide the energy required for contraction. As with other types of 

smooth muscle, the interaction between actin and myosin is regulated by the enzyme 

myosin light chain kinase (MLCK) (Word et al., 1994). Action potentials depolarise 

the cell membrane causing calcium (Ca2+) influx through voltage-operated channels 
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(Somlyo et al., 1994). A crucial rise in intracellular-free Ca2+ promotes the binding of 

Ca2+ to calmodulin, which activates MLCK phosphorylating myosin light chain 

(MLC20). As a result, myogenic activity is stimulated and amplitude, duration and 

frequency of contractions are enhanced. By contrast a rapid reduction in Ca2+ 

availability due to extrusion through the plasma membrane and Ca2+ uptake into the 

sarcoplasmic reticulum leads to muscle relaxation (Word et al., 1994). This 

mechanism helps to maintain the uterus in an auto-inhibited, quiescent state during 

pregnancy.  

 

1.4 Pregnancy 

After conception, the uterus becomes conducive to blastocyst attachment and 

implantation to establish pregnancy. Embryonic trophoblast cells and maternal 

endometrial tissue develop to form the placenta, a specialised vascular region required 

for nutrient and waste product exchange between the mother and conceptus. Although 

blood supplies remain separate, the remodelling of arteries within these structures 

assists the progressive rise in uterine blood flow throughout gestation. Moreover, to 

protect the conceptus, the velocity of blood is slowed by the convoluted and dilated 

nature of terminal arteries supplying the endometrial decidua. This also acts to 

mediate steroid hormone transfer, important for embryo implantation and the timing 

and onset of parturition. 

 

1.5 The role of ovarian steroids in the uterus 

Changes in the hormonal milieu, especially ovarian steroid secretions, directly target 

the myometrium, endometrium and uterine vasculature. Whilst progesterone is crucial 

in preparing the endometrium during the luteal phase, a rise in oestrogen is required 
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for blastocyst metabolism and attachment (Lim et al., 2002). As a result, the release of 

both ovarian hormones coordinates uterine events in a spatiotemporal manner. 

With the onset of pregnancy, steroidogenesis is enhanced initially by conceptus signal 

cascades on the functional corpus luteum and then superseded by the foeto-placental 

unit. Interferon-τ is considered to be the recognition signal that has roles in 

embryogenesis and foetal development (Asselin et al., 1997). Circulatory 

progesterone and oestrogen concentrations continue to increase throughout pregnancy 

(Table 1.1); this promotes uterine quiescence to accommodate the development and 

growth of the foetus. To reduce the capacity for myogenic activation, progesterone in 

the presence of oestrogen suppresses gap junction dynamics within the uterus 

(Garfield et al., 1980). As gap junctions are transmembrane channels between 

myometrial cells, the absence of direct cytoplasmic linkage during pregnancy limits 

electric and metabolic communication (Garfield, 1984; Riemer et al., 1998). This 

prevents synchronised contractions of the uterus. Nevertheless, in humans, labour is 

preceded by increased myometrial gap junction formation, identified by the elevated 

expression of connexin isoforms (Cx) 43, 26, 40 and 45, which constitute the channels 

between cells (Kilarski et al., 2000; Di et al., 2001). Although cellular mechanisms 

have not been fully elucidated, the rise in Cx43 transcripts, mRNA and protein 

expression correlate to oestrogen treatments ( Kilarski et al., 2000; Di et al., 2001) 

and oestrogen-mediated gene regulation (Grummer et al., 2004). Therefore, in 

contrast to progesterone, heightened oestrogen may be integral for priming the uterus 

for parturition.  
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Table 1.1 Plasma progesterone and oestrogen concentrations in women during the 
luteal phase of the cycle and late pregnancy (Johnson et al., 1995). 
 
Steroid Progesterone Oestriol Oestrone 17β Oestradiol 
Luteal phase (ng/ml) 11 - 0.2 0.2 
Pregnancy (ng/ml) 125-200 113 53 15 

 

Whilst plasma progesterone increases throughout gestation, oestriol synthesis is 

promoted at term by foetal cortisol secretion, which elevates the oestrogen: 

progesterone ratio. In contrast to other species, progesterone withdrawal is not 

detectable in humans at parturition. This implies that the hormonal control of 

parturition may involve a regulated change in myometrial receptors or their signalling 

pathways.  

Two main isoforms of the human progesterone receptor (PR) exist encoded by a 

single gene. Despite being independently regulated, PR-A is a truncated form of PR-

B, lacking the first 164 N-terminal amino acids. Due to receptor co-expression in 

myocytes, the relative proportions of each PR subtype have been proposed to regulate 

uterine activity during pregnancy. PR-A dominantly represses the transcriptional 

activity mediated by PR-B (Giangrande & McDonnell, 1999; Pieber et al., 2001), and 

a substantial increase in the myometrial PR-A: PR-B ratio has been identified at term 

labour in humans (Smith et al., 2002) and non-human primates (Haluska et al., 2002). 

In addition to reducing the active suppression of genes required for parturition, the 

increased expression of PR-A has been associated with enhanced myometrial 

responsiveness to oestrogen via the oestrogen receptor (ER)-α (Mesiano, 2001). This 

suggests that the interaction between PR and ER in human myometrium may 

contribute to coordinating the preparatory phase of labour.  
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1.6 Mechanisms of human parturition 

The onset of parturition is under tight endocrine control. Although functional 

progesterone withdrawal is pivotal in the human parturition cascade (Astle et al., 

2003), other maternal and foetal mechanisms are required to prepare the uterus for 

labour. In women, this process is only partially understood. 

Relative myometrial quiescence during pregnancy is maintained through the 

autocrine-paracrine actions of putative inhibitors, such as progesterone, prostacyclin, 

relaxin, parathyroid hormone-related peptide, nitric oxide and corticotrophin-releasing 

hormone. These compounds may both impede or stimulate uterine contractility via 

different signalling pathways (Challis et al., 2000). In late pregnancy, a shift in 

genomic mechanisms is proposed to diminish the production of inhibitory agents and 

concomitantly upregulate contractile-associated proteins (CAPs), including gap-

junctions, agonist receptors and proteins encoding ion channels (Norwitz et al., 1999; 

Challis et al., 2000). Stimulation can then produce synchronised contractions of the 

uterus; this is predominantly orchestrated by prostanoids acting as uterotonins (Figure 

1.3). 

Concurrent to the establishment of regular uterine contractions, the effacement and 

dilation of the uterine cervix facilitates the passage of the foetus during labour. 

Cervical changes involve connective tissue remodelling, mediated by a decline in 

matrix metalloproteinase inhibitors (Becher et al., 2004). Distension of the uterus and 

maturation of the foetal pituitary-adrenal axis appear to have only a supportive rather 

than essential role in labour (Lopez Bernal et al., 1993; Alfaidy et al., 2001;). 

However, alterations in both Ca2+ metabolism and prostaglandin synthesis are 

implicated as crucial parallel mechanisms, which coordinate the timing of parturition 

(Weiss, 2000).  
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Figure 1.3: Hormones involved in the regulation of pregnancy and parturition. 
Labour-onset is preceded by an increase in the myometrial progesterone receptor 
(PR)-A: PR-B ratio, together with elevated oestrogen receptor (ER)-α expression. 
Oestrogen activation increases the genes encoding for contractile-associated proteins 
(CAPs), including oxytocin (OT) and prostaglandin (PG) receptors, cyclooxygenase 
(COX)-2, rho-associated coiled coil-forming protein kinase (ROCK) and connexin-
43. These enhance myometrial responsiveness to uterotonins and promote labour 
contractions.  
 
 
 

1.7 Prostanoids 

Prostanoids are classified as prostaglandins (PGs) and thromboxane (TXA), 

consisting of a cyclopentane and cyclohexane ring respectively. Naturally existing 

PGs are further subdivided into prostaglandin (PG) D, E, F and I, according to slight 

modifications of the ring structure. Due to their chemical and metabolic instability, 

prostanoids act as local mediators and maintain homeostasis in a variety of tissues and 

cells (Tsuboi et al., 2002). Although integral to inflammatory, ovulatory and luteolytic 

processes, changes in prostanoids are also essential in the initiation and maintenance 

of labour, reflected by changes in their biosynthesis (Giannoulias et al., 2002; Jabbour 

& Sales, 2004). 
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1.7.1 Prostanoid biosynthesis 

As part of the eicosanoid family, the PGs are regulated through a common 

biosynthetic pathway (Figure 1.4). In humans the primary precursor of PGs is 

arachidonic acid, a C20 esterified fatty acid stored in membrane phospholipids. To 

liberate free arachidonic acid for PG production, cytosolic phospholipase A2 (PLA2) 

translocates from the cytosol to the cell membrane upon activation by Ca2+. 

Alternatively, phospholipase C (PLC) and diacylglycerol lipase indirectly catalyse the 

process. Free arachidonate is subsequently converted to form the unstable 

intermediate endoperoxide PGH2. This requires oxidation by the cyclooxygenase 

enzyme (COX), of which three isoforms exist (Chandrasekharan et al., 2002). Despite 

catalytic and structural similarities, COX-1 is expressed in most cells whereas 

hormones, growth factors and cytokines are necessary to readily induce COX-2 and -3 

(Morita, 2002). Following the biosynthesis of PGH2, the endoperoxides are rapidly 

converted to the series-2 bioactive PGs by specific prostaglandin and thromboxane 

synthases. These terminal enzymes are named according to the prostanoid produced, 

such that PGD2 PGE2, PGF2α, PGI2 and TXA2 are synthesised by their respective 

synthases denoted PGDS, PGES, PGFS, PGIS and TXS (Narumiya et al., 1999). 

Transporters mediate the rapid efflux of the newly synthesised PGs, facilitating local 

PG receptor binding. 
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1.7.2 Prostanoid receptors 

PGs transmit their signals via rhodopsin-type seven transmembrane receptors that 

couple to different guanine nucleotide-binding (G) proteins and downstream effector 

systems. Each receptor type, classified as DP, EP, FP, IP and TP, is based on 

respective sensitivities to the five primary prostanoids PGD2 PGE2, PGF2α, PGI2 and 

TXA2 (Coleman et al., 1994). Separate genes encode a further four EP subtypes (EP1-

4), differing in structure, signalling pathways and pharmacological action. A ninth 

subtype has recently been identified in mast cells of PGD2 as a potent agonist at the 

chemoattractant receptor-homologous molecule expressed on T helper 2 cells 

(CRTH2) (Hirai et al., 2001). Through use of alternative splice variants, two isoforms 

of EP1 have been cloned in the rat, whilst two TP and nine variants of the EP3 receptor 

have been identified in humans (Negishi et al., 1993; Pierce & Regan, 1998), in 

conjunction with two ovine FP isoforms (Pierce et al., 1997). In each receptor type 

similar binding properties are maintained due to splice variant modifications 9-12 

amino acids into the carboxyl-terminal domain. As a result, prostanoid receptor 

isoforms mainly differ in terms of localisation, G-protein coupling and agonist-

induced desensitisation (Negishi et al., 1993). Molecular cloning techniques have 

improved the analysis of prostanoid subtype ligand binding properties and signal 

transducing pathways (Table 1.2; Figure 1.4).  
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PGE2-9-ketoreductase 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
Figure 1.4: The biosynthetic pathway of the series-2 prostanoids (PGs) and their 
metabolites derived from arachidonic acid (adapted from Bos et al., 2004). 
Arachidonic acid is metabolised by cyclooxygenase (COX)-1 or COX-2 to the 
unstable endoperoxide PGH2. Thromboxane (TxA2), PGD2, PGE2, PGI2 and PGF2α 
are generated from this common precursor by individual PG synthase enzymes 
(TxAS, PGDS, PGES, PGIS and PGFS) before eliciting biological effects at their 
cognate cell surface receptors.  
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Prostanoid receptors can be broadly divided into relaxant (DP, EP2, EP4, IP) and 

contractile (EP1, EP3, FP, TP) groups according to their actions on smooth muscle 

cells. Except for EP1, specific G protein species have been identified for each 

prostanoid receptor (Kiriyama et al., 1997), classified according to their α-subunit 

(Table 1.2).  

 

Table 1.2: Signal transduction pathways of prostanoid and oxytocin receptors. The 
Gαq and Gαi proteins increase and potentiate uterine contractility, whilst Gαs 
proteins cause muscle relaxation. Corresponding secondary messengers mediate 
effects via inositol trisphosphate (IP3) and changes in cyclic adenosine 
monophosphate (cAMP) (Narumiya et al., 1999; Tsuboi et al., 2002; Hata & Breyer, 
2004). 
 

Type Subtype Isoforms G Protein Second messenger 
DP  DP Gαs cAMP 

  CRTH2 (DP2) Gαi cAMP,   Ca2+   IP3 
EP    EP1 EP1, EP1-variant (rat)  Unknown Ca2+,  low  IP3 

 EP2  Gαs cAMP 
    EP3 EP3-1a, 1b, II, III, IV, V, VI, e, f  Gαi, Gαs, Gαq cAMP, IP3 
 EP4  Gαs cAMP 

FP     FP-A & FP-B (ovine)          Gαq IP3 
IP   Gαs, Gαq, Gαi  IP3,   cAMP 
OT   Gαi, Gαq          Ca2+,    IP3 
TP  TPα Gαs, Gαq, Gα12,13, Gαh IP3,    cAMP 

  TPβ Gαi, Gαq, Gα12,13 IP3,    cAMP 
 
 
 
 
Among the different receptors DP, EP2, EP4 and IP have a profound inhibitory effect 

on contractility by stimulating the Gαs protein coupled to adenylyl cyclase (AC). In 

contrast, TP, FP and EP1 receptors enhance strong contractile effects through Gαq and 

Gαi proteins. Gαq activates PLC, catalysing the production of diacylglycerol and 

inositol 1,4,5-trisphosphate (IP3), whilst Gαi inhibits cyclic adenosine monophosphate 

(cAMP). The resultant Ca2+ mobilisation is essential for the actions of uterotonins, 
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especially towards term pregnancy (Shlykov & Sanborn, 2004). Although associated 

with a general decline in cAMP, EP3 may conversely increase AC activity depending 

on the splice variant and cell type (Narumiya et al., 1999). Nevertheless, it is likely 

that cross-communication of downstream signalling pathways potentiate all 

prostanoid effects in the myometrium. 

 

1.7.3 Prostanoids in the myometrium 

PGs have long been implicated in regulating uterine contractility via myometrial 

receptors. In the non-pregnant and term pregnant state, functional studies on the 

human myometrium have characterised the expression of heterogeneous DP, EP, FP, 

IP and TP receptors (Senior et al., 1992; Senior et al., 1993). Differences in the 

response to PGs, both regional and hormone-related, indicate either altered receptor 

populations or the production of uterine contractile-associated proteins (Myatt & Lye, 

2004). In addition, the expression of prostanoid receptors varies with tissue 

distribution. The TP receptor, for instance, is predominantly localised in platelets and 

blood vessels, EP1 in fibroblasts, FP in renal cells and EP2 and EP4 in smooth muscle 

cells (Narumiya et al., 1999; Bos et al., 2004). In the myometrium these reflect 

uterine physiology and activity, especially towards the onset of parturition. 

 

1.7.4 Prostaglandin receptors in pregnancy and parturition 

PG synthesis and receptor expression are intimately involved in the parturition 

process. This involves the switch between relaxant to contractile receptor populations. 

Unlike DP, which is least abundant in human myometrium, the main arachidonic acid 

metabolite in uteri from non-pregnant and term pregnant donors is prostacyclin (PGI2) 

(Christensen et al., 1983). As well as an increase at menstruation, PGI2 synthesis is 
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augmented during pregnancy to reduce myogenic activity and regulate uterine and 

placental blood flow. Pregnancy maintenance is also related to an increase in 

relaxatory EP receptor responses, primarily EP2 (Senior et al., 1993; Brodt-Eppley & 

Myatt, 1999), in conjunction with elevated coupling of Gαs-proteins to AC in 

response to PGE2 (Europe-Finner et al., 1994; Europe-Finner et al., 1997).  The 

concomitant rise in uterine cAMP formation activates cAMP-dependent protein 

kinase A (PKA) to phosphorylate MLCK. This promotes myometrial relaxation by 

reducing the affinity for the Ca2+-calmodulin complex and inhibiting voltage-gated 

Ca2+ channels (Word et al., 1994). The reduction in cAMP at labour indicates a loss 

of this inhibitory pathway (Europe-Finner et al., 1994; Lopez Bernal et al., 1995). 

The onset of labour is associated with elevated PG synthesis within the uterus. This 

increase, particularly in PGE2 and PGF2α production by the foetal membranes and 

decidua, coincides with augmented COX-2 expression (Erkinheimo et al., 2000). 

Others have reported no change in COX-2 mRNA at parturition but differences in 

contractile receptor responsiveness (Sparey et al., 1999; Giannoulias et al., 2002). 

Although downregulated during pregnancy (Matsumoto et al., 1997), the expression 

of human myometrial EP3 and FP receptors increase dramatically at parturition 

(Brodt-Eppley & Myatt, 1999). A concurrent loss of EP2 receptors (Astle et al., 2005) 

and withdrawal of PGIS in myometrium at term pregnancy may also contribute to the 

labour process (Giannoulias et al., 2002).  

PGE2 is important in myometrial contractility as, clinically, PGE1 and PGE2 

analogues are used for the induction of labour and for cervical ripening. Even so, 

other uterotonic agents such as PGF2α and oxytocin contribute to successful 

parturition, their functional roles determined by gene knockout mice. As PGF2α is a 

luteolytic agent, impaired parturition in FP-deficient mice was attributed to the 
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absence of a decline in progesterone and a lack of oxytocin receptor expression 

(Sugimoto et al., 1999). Aberrant COX-1 genes are related to parturition failure, 

whereas COX-2 defects cause infertility with abnormalities in ovulation, fertilisation, 

implantation and decidualisation (Lim et al., 1997). In addition, gene ablation of EP2 

receptors inhibited ovulation in mouse models (Tilley et al., 1999), whereas the 

failure to close the ductus arteriosus at birth in EP4-deficient mice caused neonatal 

deaths (Nguyen et al., 1997). As oxytocin also stimulates ovarian PGF2α release in a 

positive feedback manner (Chibbar et al., 1993), it is likely that a balance of factors 

and signalling pathways ultimately regulate uterine activity. These complex 

interrelated receptor cascades are not well defined in humans and need further 

elucidation. 

 

1.7.5 TP receptors in parturition 

The TP receptor gene has been localised in the human myometrium, foetal 

membranes and placenta (Swanson et al., 1992), corresponding to functional roles in 

uterine contractility and vascular tone. The TP splice variants have been identified in 

human myocytes from both non-pregnant and pregnant donors (Moore et al., 2002; 

Moran et al., 2002) although little is known about TP receptors in relation to labour-

onset. 

The two receptor isoforms, TPα and TPβ, differ exclusively in their carboxyl-terminal 

domains (Raychowdhury et al., 1994). While both mediate identical ligand binding, 

each isoform exhibits critical differences in signalling and patterns of expression, 

indicative of distinct pathophysiological roles (Miggin & Kinsella, 1998; Moore et al., 

2002). The TPα receptor activates AC, increasing cAMP production through Gαs 

(Hirata et al., 1996). By contrast, in addition to inhibiting AC through Gαi-protein 
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coupling, TPβ stimulates intracellular Ca2+ via the IP3 pathway. Due to the synergism 

of signal cascades, this mechanism enhances myogenic contractility. 

Both TP receptors activate RhoA, a small GTPase, stimulating the two target proteins, 

rho-associated coiled coil-forming protein kinase (ROCK)I and its isoform ROCKII 

(Amano et al., 2000). By direct phosphorylation of MLC20 and inactivation of myosin 

phosphatase, the uterus becomes sensitised to Ca2+ (Figure 1.5).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.5: Thromboxane stimulates phospholipase C (PLCβ) production of inositol 
trisphosphate (IP3) and diacylglycerol (DAG). IP3 releases Ca2+ from the sarcoplasmic 
reticulum intracellular stores. Upon binding with calmodulin (Cal), cytosolic-free 
Ca2+ activates myosin light chain kinase (MLCK), which catalyses MLC20 
phosphorylation and induces uterine contractility. Activation of the rho-associated 
coiled coil-forming protein kinase (ROCK) pathway inhibits MLC20 phosphatase 
(MLCP), denoted by X, preventing MLC20 dephosphorylation; this sensitises the 
uterus to Ca2+ and potentiates contractility. 
 
 
 

The increased myometrial contractility in non-pregnant donors was irrespective of the 

phase of the menstrual cycle (Senior et al., 1992; Senchyna et al., 1999), suggesting 

that small changes in steroid hormones or related transcription factors do not 

influence TP affinity and density. In contrast, ROCKI isoforms have been reported to 

both upregulate (Moore et al., 2000; Moore & Lopez Bernal, 2003) and remain 

unaltered during human pregnancy (Friel et al., 2005). However, an apparent increase 
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in RhoA mRNA at parturition implies a role for ROCKI in the preparatory phase and 

activation of pregnancy (Lartey et al., 2007). Moreover, aberrant ROCKI expression 

has been associated to uterine contractile dysfunctions, such as preterm labour or 

prolonged full term labour (Moore & Lopez Bernal, 2003; Lartey et al., 2007). 

Therefore greater understanding and control of these proteins may improve tocolytics 

for labour-associated disorders.  

 

1.8 Oxytocin biosynthesis 

Oxytocin is one of the most potent uterotonic agents used for augmenting uterine 

contractions during labour (Fuchs et al., 1985; Wathes et al., 1999; Nilsson et al., 

2003). As a nonapeptide hormone, oxytocin is primarily synthesised in the 

paraventricular and supraoptic nuclei of the hypothalamus with storage and release 

from the posterior pituitary. Local production from the gravid uterus and chorio-

decidua is also well documented (Chibbar et al., 1993), suggesting that oxytocin may 

act by both endocrine and paracrine mechanisms to promote parturition.  

 

1.8.1 Oxytocin receptors in pregnancy and parturition  

Although systemic oxytocin concentrations do not correlate with the progression of 

labour (Dawood et al., 1978) an increase in pulse frequency and the number of 

myometrial oxytocin receptors have been reported (Fuchs et al., 1984; Kimura et al., 

1996; Riemer & Heymann, 1998). Oxytocin has been shown to bind to its cognate 

myometrial Gαq and Gαi receptors for enhanced phasic and tonic uterine activity 

(Phaneuf et al., 1993; Riemer & Heymann, 1998; Wathes et al., 1999). During 

pregnancy, myometrial oxytocin mRNA transcripts increase 100-fold at 32 weeks and 

300-fold at parturition relative to the receptors expressed in the non-gravid uterus 
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(Kimura et al., 1996). This would likely sensitise the uterus to oxytocin immediately 

prior to labour-onset (Keelan et al., 1997). Even so, in the absence of maternal and 

foetal oxytocin, the delivery of a litter ends successfully at the same gestational age as 

wild-type mice (Young et al., 1996; Nishimori et al., 1996). Similarly in knockout 

mice deficient for both oxytocin and COX-1, labour contractions are timely but 

prolonged and neonatal deaths occur from maternal failure to establish lactation 

(Gross et al., 1998). This indicates possible compensatory or redundant mechanisms 

for oxytocin in the parturition process. Nevertheless, as only a few oxytocin receptors 

exist in the peripheral system (Kiss & Mikkelsen, 2005) and oxytocin stimulates 

preterm and term human uteri (Fuchs et al., 1984; Wathes et al., 1999; Nilsson et al., 

2003), the oxytocin receptor is considered a suitable target in the management of 

preterm labour.  

 

1.9 Preterm labour 

Preterm birth, defined as parturition before 37 weeks (259 days) of gestation, is a 

major obstetric problem related to perinatal mortality and morbidity. In Western 

countries, although only 6-10 percent of deliveries are premature, the associated 

complications result in more than two-thirds of perinatal deaths (Lumley, 2003). This 

is most severe with both early gestational age and low birth-weight infants. Over the 

past 20-30 years, advances in neonatal medicine and perinatal care have reduced 

mortality rates (Tucker et al., 2004). However, this has been counterbalanced by 

increased short-term morbidity and long-term physical and mental disability in infant 

survivors of very preterm birth. The immature development of foetal organs in third 

trimester of pregnancy is linked to a high prevalence of respiratory distress syndrome. 

Moreover, preterm delivery contributes to 50% of childhood neurological disabilities, 
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including subnormal cognitive function, cerebral palsy, blindness and deafness (Hack 

et al., 2000). As a result, the cost in terms of neonatal intensive care, long-term 

treatment and emotional trauma suffered by the parents are considerable. Therefore 

many risk factors have been identified in women to anticipate preterm delivery for 

improving neonatal outcome. 

Despite the multiple aetiologies of preterm birth, poor socio-economic status is 

principally associated with an increased risk of spontaneous preterm delivery. 

Contributing factors include increased frequency of cigarette smoking, nutritional 

deprivation, greater use of recreational drugs such as cocaine, psychological stress and 

involvement in heavy physical work. Nevertheless, these lifestyle risk factors have not 

been shown to exert independent adverse effects on pregnancy outcome (Slattery et 

al., 2002). 

 
Table 1.3 The factors known to be associated with preterm delivery (Steer, 2005). 
 

Factors associated with preterm delivery 

Spontaneous (70-80%) Iatrogenic (20-30%) 
Spontaneous rupture of the membranes Hypertension/ pre-eclampsia 

Infection Diabetes 
Multiple pregnancy Intrauterine growth restriction 

Cervical dysfunction/ uterine malformation  
Placental haemorrhage  

Malnutrition, stress  
 
 
 
 
Previous low neonatal birth weight or preterm delivery increases the prospect of 

subsequent premature births by 2.5-fold, implying the recurrence of active causal 

factors in subsequent pregnancies (Mercer et al., 1999). A high incidence of preterm 

labours has also been associated with low maternal body mass index, height below 

1.46m and very young or older maternal age groups (Steer, 2005). Large racial and 

ethnic disparities have been reported in the USA (Regan et al., 2005) but are not as 
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notable in other developed countries (Steer, 2005). Moreover, regardless of race, 

approximately half of all twin pregnancies that reach 20 weeks of gestation end 

prematurely (Gardner et al., 1995), linked to a high incidence of pre-eclampsia, 

placental abruption and uterine over-distension. Even so, some cases of preterm birth 

are iatrogenic because of maternal illness or developing foetal compromise (Table 

1.3). 

Systemic, intrauterine or genital tract-infections, arising at a preterm period of 

gestation, have been directly linked to the onset of labour (Keelan et al., 2003). In 

response to bacterial endotoxins, leukocytes infiltrate the uterus and cytokines and 

other inflammatory mediators are produced. The resulting augmentation of PG 

synthesis and activation of metalloproteinases are postulated to be principal 

mechanisms of infection-driven preterm labour. Although antibiotic treatments can 

reduce maternal infection, a meta-analysis of neonatal outcome showed an associated 

increase in functional impairments and cerebral palsy (Kenyon et al., 2008).  

 

1.10 Current treatments for preterm labour 

At present no effective diagnostic indicators exist for preterm labour. The only 

absolute proof is contractions of the uterus, accompanied by the progressive dilation 

of the cervix. However, by this time, tocolytic drugs and antibiotics are relatively 

ineffective, suppressing contractions temporarily in high-risk patients but rarely 

preventing preterm births (Caritis, 2005). Placebo-controlled studies suggest that 

current treatments only prolong pregnancy for 24-48 hours. This provides time to 

arrange transfer of the mother and the neonate to specialist care units and to 

administer glucocorticoids, which enhance foetal maturity and neonatal survival. Even 
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so, tocolytics are associated with a number of adverse maternal and foetal effects 

(Table 1.4).  

Table 1.4 Tocolytic therapies used clinically for preterm labour and their associated 
adverse effects (Plested & Lopez Bernal, 2001; Goldenberg, 2002; Meis et al., 2005; 
Papatsonis et al., 2009). 
 

Drug Mechanism Major side effects & comments 

Nifedipine Ca2+ blocker 
Maternal hypotension, altered uteroplacental blood flow, 
foetal tachychardia. Recommended by Papatsonis et al., 
2009. 

Ritodrine, 
Terbutaline 

β2-adrenergic 
agonists 

Cardiac arrhythmias, pulmonary oedema, myocardial 
ischaemia. Limited efficacy due to adverse effects and 
rapid desensitisation. 

Atosiban 
Oxytocin 
antagonist 

Maternal nausea, hyperglycaemia and headaches; no 
reported foetal side effects. 

Indometacin 
COX 

inhibitor 

Maternal gastrointestinal disturbance, ductus arteriosus 
constriction, lack of amniotic fluid. Not used >32 wks 
gestation. 

Magnesium 
sulphate 

Ca2+ 
antagonist 

Respiratory arrest, cardiac arrest, maternal nausea and 
headaches. Often used in pre-eclampsia. 

17-α-hydroxy-
progesterone 
caproate 

Progesterone 
agonist 

Fatigue, depression and headaches. Reduced incidence of 
preterm labour only in high-risk patients with a history of 
previous spontaneous premature deliveries.  

 
 
 
Current tocolytics include Ca2+ channel blockers, β2-mimetics, magnesium sulphate, 

COX inhibitors, progesterone analogues and oxytocin receptor antagonists. Recent 

trends have favoured agents with lower maternal side-effect profiles. These include 

Ca2+ channel blockers and oxytocin receptor antagonists, which are better tolerated 

than β2 agonists (Coomarasamy et al., 2002; Kashanian et al., 2005). To improve 

treatments all aspects of delayed labour, minimised side effects to mother and foetus 

and long-term health implications have to be evaluated. Agents with potential 

beneficial pharmacological properties include FP receptor antagonists, oxytocin 

antagonists and more novel inhibitory receptor agonists, such as those that target the 

EP3 receptor.  
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1.11 Aims 

The overall aim of this thesis is to investigate the functional expression of EP, FP, TP 

and oxytocin receptors in isolated human myometrium during the menstrual cycle, 

term pregnancy and parturition. At present, the relationship between PGs and 

oxytocin is not well elucidated. Whilst it is recognised that PG and oxytocin receptors 

modulate uterine contractions, cellular effects are dependent on the type of receptor 

engaged, coupled to divergent signalling pathways. Their responses have been 

difficult to define pharmacologically due to the moderate selectivity of some synthetic 

analogues (Coleman et al., 1994; Wilson et al., 2004). Section I of this thesis will 

address the effects of PGs and oxytocin using a range of standard and novel receptor 

agonists and antagonists. Assessment of their roles in smooth muscle contractility will 

be investigated using functional immersion and superfusion assays and tissues from 

different hormonal stages.  

PG and oxytocin receptors are subject to hormonal and gestational-dependent 

regulation. Although precise endocrine changes remain elusive, progesterone is 

associated with uterine quiescence whilst oestrogen promotes PG and oxytocin-

induced contractions (Thornton et al., 1999). This is regulated in a temporal and 

topographical manner (Giannopoulos et al., 1985; Adelantado et al., 1988; Brodt-

Eppley et al., 1999; Smith et al., 2001). To study total uterine function in the non-

pregnant state, spontaneous activity and PG and oxytocin receptor function will be 

investigated according to anatomical location and the stage of menstrual cycle of the 

donor. During pregnancy and parturition, in accordance with ethical constraints, 

myometrial specimens will only be recovered from the lower uterine segment. In this 

lower region, myogenicity and agonist-mediated contractions will be measured to 

identify the changes in PG and oxytocic effects at term and preterm pregnancy and 
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labour. As previous functional studies using human tissues obtained during labour are 

limited, the results of this thesis should particularly enhance knowledge of the 

parturient uterus. 

In conjunction with in vitro studies, a primary cell culture model will be developed to 

examine the separate functions of uterine smooth muscle cells and fibroblasts at term 

pregnancy (Section II). By establishing a method for the high throughput screening of 

compounds, PG and oxytocin-induced activation of Ca2+ (Wray, 1993) and cAMP 

signals (Europe-Finner et al., 1997; Price et al., 2000) will be studied relative to 

receptor mRNA. In conjunction with the results from Section I, cellular and molecular 

studies should clarify the contribution of receptors or messenger targets that culminate 

in opposing actions on myometrial tone.  

Using these methods, it may be possible to develop better therapeutic strategies to 

prevent or control myometrial disorders caused by uterine hypercontractility. 
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Chapter 2: Materials and Methods 

 
 

 

2.1 Surgical specimens 

Human uterine smooth muscle was excised and donated for research from: 

- Longitudinal, full-thickness sections of the anterior uterus from non-pregnant 

donors, taken at hysterectomy. 

- Transverse, anterior, lower uterine segments from pregnant, non-labouring and 

labouring donors, taken at Caesarean section. 

 

2.2 Approval and ethical consent 

Ethical approval for all studies was obtained from the Local Regional Ethics 

Committees: Bradford Hospital NHS Trust and the University of Bradford Ethics 

Committee. All women who donated tissue gave informed written consent before 

surgical procedures were performed. Uterine specimens from non-pregnant donors 

were obtained from the Yorkshire Clinic and the Nucleus Theatres at the Bradford 

Royal Infirmary and samples from pregnant donors were collected from the Maternity 

unit at the Bradford Royal Infirmary. Patient consent forms and information sheets are 

included in the Appendix (Figures A1, A2, A3 and A4). 
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2.3 Uterine smooth muscle 

Longitudinal uterine specimens, taken at hysterectomy, were pale with visible 

distinctions between dense muscle, serosa and cervical tissue (Figure 2.1). In contrast, 

transverse muscle from pregnant donors was highly vascular, especially in samples 

taken after labour-onset. 

 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
Figure 2.1: Uterine biopsies taken from a) non-pregnant and b) term pregnant, non-
labouring donors. 
 

2.3.1 Non-pregnant donors 

Human myometrial samples were obtained from pre-menopausal women undergoing 

hysterectomy for benign disorders, such as menorrhagia and dysmenorrhoea (Figure 

2.2). At the time of surgery, none of the donors were using oral contraceptives or had 

received any hormone therapy. The stage of menstrual cycle was recounted to the 

nearest week and recorded on patient information forms. Donor ages ranged from 29 

to 52 years (median 42 years) and 80 percent of uteri were removed during the 

follicular stage of the menstrual cycle. Specimens were excised from the anterior wall 

of the corpus uteri and a ligature was tied at the fundus to indicate orientation. 

 

a) 

b) 

Myometrium 

Serosa 
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Figure 2.2: Reasons recorded on patient information forms for hysterectomy for the 
treatment of benign disorders. 
 

2.3.2 Pregnant donors not in labour 

Segments of the upper margin of lower uterine muscle were obtained from preterm 

(33-36+6 weeks) and term (37-41 weeks) pregnant women, aged between 19 to 44 

years (median 30 years), undergoing elective, non-emergency Caesarean section. 

During this routine operation and due to ethical restrictions, myometrium was only 

removed from the superior edge of the transverse incision site, whilst fundal tissue 

was not available for biopsy. Subjects with maternal metabolic diseases, multiple 

foetuses or after labour-onset were grouped and analysed separately.  

 

2.3.3 Pregnant donors in labour 

At emergency Caesarean section, after delivery of the foetus and placenta, transverse 

myometrial biopsies were excised from the upper edge of lower uterine segments 

from labouring donors. Labour was defined as the presence of regular uterine 

contractions with early, mid and late labour in patients identified at 0-2.5cm, 3-8.5cm 

and ≥9cm cervical dilation respectively. Donors were between 18 and 37 years of age 

(median 29 years) at preterm (32-36+2 weeks) and term (37-42 weeks) gestations. The 

menorrhagia 
pelvic pain 

dysmenorrhoea 
previous endometrial ablation 

35% menorrhagia 
& dysmenorrhoea 
 
 
2% fibroids & 
dysmenorrhoea 
 
7% fibroids & 
menorrhagia 
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indications for Caesarean delivery included foetal distress, failed progression of 

labour, breech presentation, previous Caesarean sections, placental abruption, 

maternal pregnancy-induced hypertension, epilepsy and asthma.  

 

Table 2.1: Patient characteristics for term pregnant, not in labour (n=129), early-mid 
(n=35) and late (n=17) labouring donors. 
 

  Term pregnancy Early-mid labour Late-labour 
Donor details n   % n   % n   % 
White British 89   69.0 17   48.6.7 6   35.3 
Pakistani/ Indian 10   7.8 11   31.4 7   41.2 
Other ethnic groups 12   9.3 2   5.7 1   5.9 
Details not recorded 18   14.0 5   14.3 3   17.6 
Previous abortions/ miscarriages 33   25.6 12   35.3 2   14.3 
Previous labours 61   60.4 14   41.2 3   21.4 
Previous Caesarean sections 88   68.8 13   61.9 4   28.6 
Cigarette smokersa 32   24.8 8   23.5 2   11.8 
Medical conditionsb 18   14.0 11   32.4 7   41.2 
Current medication 15   11.6 10   29.4 7   41.2 

 

a Patients smoked 3 to 20 cigarettes per day throughout pregnancy 
b Medical conditions included: gestational diabetes, pregnancy-induced hypertension, asthma, 
epilepsy, sickle cell anaemia, Streptococcus B infections and Crohn’s disease. 
 

2.4 Compounds 

Agonists and antagonists used in functional studies were prepared as a 10mM stock 

solution according to the manufacturers’ advice (Table 2.2). Serial dilutions were 

made with 0.9% w/v normal saline and kept on ice throughout experiments. 

 

2.4.1 Solutions 

Prior to immersion and superfusion assays, Krebs’-Heinseleit physiological salt 

(Krebs’) solution (pH 7.4) was freshly prepared at the following composition (mM): 

NaCl 118.9; KCl 4.7; KH2PO4 1.2; MgSO4 1.2; CaCl2 2.5, NaHCO3 25.0, glucose 

10.0 and oxygenated with 95% O2 and 5% CO2. 
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Table 2.2: Agonists and antagonists used to identify functional receptors in human myometrium. Time-matched vehicles, matched for solvent, 
caused no effect on myogenicity of tissue strips. The key indicates line colour on concentration-effect curves. 
 

Compound Key Receptor 
target Action Chemical name Stock 

Vehicle Source 

AGN201734 
Elworthy et al. (2004) 

 EP4 agonist 7-2-[(E)-3-hydroxy-4-(3-trifluoromethyl-phenyl)-phenyl)-
but-1-enyl]-5-oxo-pyrrolidin-1-yl)-heptanoic acid) ethanol Allergan Inc., USA 

AGN211329 
Belley et al. (2005) 

 EP3 antagonist 3-(-2-(3-[2-2, 6-dichloro-benzloxy)-3-methyl-phenyl]-allyl]-
phenyl)-acrylic acid ethanol Allergan Inc., USA 

AGN211330 
Belley et al. (2005) 

 EP2 agonist 1-(benzyloxy-2-vinylbenzene)-2-bromocinnamic acid ethanol Allergan Inc., USA 

AH13205 
Coleman et al. (1994) 

 EP2 agonist trans-2-(4-(1-Hydroxyhexyl)phenyl-5-oxocyclopentane- 
heptanoic acid DMSO Sigma-Aldrich, UK 

AH-6809 
Coleman et al. (1994) 

 EP1, EP2, EP3 
& DP1 

antagonist 6-Isopropoxy-9-xanthone-2-carboxylic acid DMSO Cayman chemicals, 
USA 

Atosiban 
Nilsson et al., (2003) 

 OTR antagonist 1-(3-mercaptopropanoic acid)-2-(O-ethyl-D-tyrosine)-4-L-
threonine-8-L-ornithine-oxytocin 

0.1% BSA 
in dH2O Sigma-Aldrich, UK 

Butaprost 
Gardiner (1986) 

 EP2 agonist 9-oxo-11α, 16S-dihydroxy-17-cyclobutyl-prost-13E-en-1-oic 
acid, methyl ester 

ethanol Cayman Chemicals, 
USA 

Caspase-3 Inhibitor 
Moore et al., (2002) 

 Caspase-3 (6, 
7, 8 & 10) inhibitor (3S)-3-[[(2S)-2-[(2S)-2-acetamido-3-methylbutanoyl]amino 

propanoyl]amino]-4-oxobutanoic acid DMSO Calbiochem, USA 

CP533,536 
Li et al., (2003); 
Paralkar et al. (2003) 

 
EP2 agonist 3-[(4-tert-butyl-benzyl)-pyridine-3-sulfonyl-amino)-methyl)-

phenoxy]-acetic acid sodium salt ethanol Allergan Inc., USA 
a Pfizer compound 

GR32191B 
Lumley et al. (1989) 

 TP antagonist 7-[5-[[(1, 1’-biphenyl)-4-yl] methoxy]-3-hydroxy-2-(1-
piperidinyl) cyclopentyl]-4-heptanoic acid ethanol GlaxoSmith-Kline, 

UK 
GW627368x 
Wilson et al. (2006) 

 EP4 antagonist (N-(2-[4[(4,9-diethoxy-1-oxo-1,3-dihydro-2H-
benzo[f]isoindol-2-yl)phenyl]-acetyl]benzene-sulphonamide DMSO GlaxoSmith-Kline, 

UK 
Indometacin 
Durn et al. (2010) 

 COX inhibitor 1[p-chlorobenzoyl]5-methoxy-2-methlindole-3-acetic acid ethanol Sigma-Aldrich, UK 
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L-902688 
Billot et al. (2003) 

 EP4 agonist 5-(3-Hydroxy-4-phenyl-but-1-enyl)-1- [6-(1H-tetrazol-5-
yl)-hexyl]-pyrrolidin-2-one. ethanol Allergan Inc., USA 

Lanthanum chloride 
Fu et al. (2000) 

 Ca2+ channels inhibitor trichlorolanthanum ethanol Sigma-Aldrich, UK 

Nifedipine 
Phillippe & Basa (1997) 

 L-type Ca2+ 
channels inhibitor dimethyl2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-

3,5-dicarboxylate ethanol Sigma-Aldrich, UK 

ONO-D1-004 
Oka et al. (2003) 

 EP1 agonist 4-[2-[(1,2,3)-3-hydroxy-2-[3-hydroxy-5-methylnon-1-enyl]-
5-oxocyclopentyl]acetyl]cyclohexane-1-carboxylic acid ethanol Allergan Inc., USA 

Oxytocin 
Noe et al. (1999) 

 
OTR agonist 

(1-(2-amino-2-oxoethylamino)-4-methyl-1-oxopentan-2-yl)-
1-(19-amino-7-(2-amino-2-oxoethyl)-10-(3-amino-3-

oxopropyl)-13-sec-butyl-16-(4-hydroxybenzyl)-pentaoxo-
1,2-dithia-pentaazacycloicosane 

dH2O Sigma-Aldrich, UK 

Prostaglandin E2 
Coleman et al. (1994) 

 EP1-4 agonist 9-oxo-11α, 15S-dihydroxy-prosta-5Z,13E-dien-1-oic acid ethanol Cayman Chemicals, 
USA 

Prostaglandin F2α 
Coleman et al. (1994) 

 FP agonist 9α, 11α, 15S-trihydroxy-prosta-5Z, 13E-dien-1-oic acid, tris 
(hydroxymethyl) aminomethane salt 

ethanol Cayman Chemicals, 
USA 

Rho-kinase inhibitor 
Ikenoya et al. (2002) 

 ROCK inhibitor (S)-(+)-2-Methyl-1-[(4-methyl-5-
isoquinolinyl)sulfonyl]homopiperazine, 2HCl dH2O Calbiochem, USA 

SQ29,548 
Ogletree et al. (1985) 

 
TP antagonist 

[1S-[1α,2α(Z),3α,4α]]-7-[3-[[2-
[(phenylamino)carbonyl]hydrazino]methyl]-7-
oxabicyclo[2.2.1]hept-2-yl]-5-heptanoic acid 

ethanol Cayman Chemicals, 
USA 

Sulprostone 
Schaaf et al, 1981 

 EP3/1 agonist N-(methylsulfonyl)-9-oxo-11α,15R-dihydroxy-16-phenoxy-
17,18,19,20-tetranor-prosta-5Z,13E-dien-1-amide 

ethanol Cayman Chemicals, 
USA 

Thapsigargin 
Fomin et al. (1999) 

 
Ca2+-ATPase inhibitor 

6-(acetyloxy)-4-(butyryloxy)-3-dihydroxy-3,6,9-trimethyl-8-
([(2Z)-2-methylbut-2-enoyl]oxy)-2-oxo-2,3,4,5,6,7,8,9-

decahydroazuleno[4,5]furan-7-yl octanoate 
ethanol Sigma-Aldrich, UK 

U46619 
Coleman et al. (1994) 

 TP agonist 9,11-dideoxy-9α,11α-methanoepoxy-prosta-5Z, 13E-dien-1-
oic acid 

ethanol Cayman Chemicals, 
USA 

 

Alterative code names for the EP3 antagonist AGN211329:  L-826266 (Belley et al., 2005), the caspase-3 inhibitor: Z-D(OMe)E(Ome)VD(OMe)-
FMK (Moore et al., 2002) and the rho-kinase inhibitor: H1152 (Shum et al., 2003). 
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2.5 Tissue collection and preparation 

Immediately following surgical removal of uterine specimens, the biopsies were 

places in Krebs’ solution for transport to the laboratory. The uterine samples were 

then trimmed of endometrial, serosal, fat and fibrous tissue and dissected to produce 

strips (10 x 2 x 3mm) of predominantly longitudinal muscle. Myometrial strips were 

then set-up for functional studies using immersion and superfusion techniques. 
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2.6 Immersion 

Vilhelm Magnus (1871-1929) first introduced the idea of suspending an isolated 

portion of smooth muscle in a chamber containing a nutrient fluid and measuring 

changes in tissue tone. Traditional organ baths used by Sir Henry Dale (1875-1968) 

were modified for this study. The dissected strips of myometrium were mounted 

longitudinally in individual 8ml water-jacketed muscle baths (York Glassware 

Services, York, UK), containing aerated (95% O2, 5% CO2) Krebs’ solution at 37°C 

(Figure 2.3). Immersed tissue strips were maintained at a constant temperature and pH 

(Table 2.3) with the volume of Krebs’ solution adjusted via a tap and overflow 

system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2.3: Immersion equipment used to examine functional receptors in the isolated 
human uterus and a myometrium sample anchored to a tissue holder. 
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Table 2.3: Changes in the pH of Krebs’ solution over time whilst equilibrating human 
myometrial strips (n=3). Results are expressed as means ± S.E. 
 

Equilibration Time: 0hrs 3hrs 6hrs 
pH of Krebs’ solution: 7.42 ± 0.03 7.41 ± 0.03 7.39 ± 0.07 
 
 
 
Changes in tension were measured after attaching myometrial strips to isometric force 

transducers (Grass Instruments Inc., Rhode Island, USA), connected to a personal 

computer (Dell Inc) via bridge amplifiers (AD Instruments, Hastings, UK). Traces 

were recorded digitally on a PowerLab data acquisition system running Microsoft 

Chart v5.4 software (sampling frequency 2Hz; AD Instruments, Hastings, UK). 

 

Muscle baths were refilled with Krebs’ solution and an initial, optimum resting 

tension of 2g was applied to each strip (Morrison et al., 1993; Slattery et al., 2001). 

Isolated tissues from non-pregnant and term pregnant donors were equilibrated for a 

minimum of 60 and 90 minutes respectively or until regular phasic contractions had 

developed (Figure 2.4). This myogenic activity was recorded over a subsequent 30-

minute period before addition of the study drug and remained stable for at least 5 

hours (Popescu et al., 2006; Figure 2.4), demonstrating the viability of tissue strips 

within immersion baths. In myometrium from labouring donors, experiments were 

initiated after 2.5 hours of equilibration, regardless of the presence or absence of 

contractile activity.  
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Figure 2.4: Equilibration for regular contractions to develop in myometrium taken at a) hysterectomy (fundus) (n=10) and b) elective Caesarean 
section from term pregnant, non-labouring women (n=10). Contractile activity was measured as the integrated area under the curve (g.s), 
expressed as means ± S.E. Univariate ANOVA with Bonferroni’s post-hoc test showed an increase in myogenic activity compared to the activity 
established between 0-30 minutes of tissue set-up **p<0.01; ***p<0.001.  
Traces are representative of stable contractions developed by immersed vehicle control strips after equilibrating for a) 60 and b) 90 minutes. 
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Although 89 percent of tissues were set-up within a 2-hour post-operative period, the 

samples that could not be processed immediately were stored in oxygenated Krebs’ 

solution at room temperature for up to 18 hours. As well as no obvious signs of 

bacterial contamination, ambient temperatures avoided the reduction in spontaneous 

activity observed with tissues stored at 4ºC (personal communication, Hutchinson, 

2005). Similar myogenic responses to prostanoid compounds between fresh and 

stored tissues have been previously demonstrated (Hillock & Crankshaw, 1999; Popat 

& Crankshaw, 2001) and maintenance of tissue viability was validated in this study 

(Figure 2.5). As a result, data from fresh and stored tissues were pooled and 

collectively analysed.  

  

 

 

 

  

 

  

 

 
Figure 2.5: Spontaneous activity of isolated myometrium from a) non-pregnant (n=4) 
and b) pregnant (n=4) donors set-up for immersion within 2 or 18 hours of surgery. 
All hysterectomy samples were fundus-end and excised during the follicular stage of 
the menstrual cycle. Regular myogenicity was measured over 30 minutes as the 
integrated area under the curve (g.s) and expressed as means ± S.E. 
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2.6.1 Administration of drugs 

Following tissue equilibration, vehicle and drugs were added to immersion baths at a 

maximum volume of 8µl to prevent fluctuations in temperature and pH. Tissue strips 

were randomly assigned treatments and cumulative concentration-effect curves were 

constructed at 30-minute intervals, using log unit concentration increases. The 

concentration range of agonists [10-12M to 10-5M] was adjusted to encompass full 

concentration-effect curves and spanned at least 5 log units. Responses were 

expressed as a percentage of hypotonic shock (details in Section 2.6.3). 

 

 

 

 

 

 

 

 

 

 
Figure 2.6: Concentration-response curves for PGE2 in myometrium from term 
pregnant donors added in a cumulative (n=12) and a non-cumulative (n=5) manner to 
immersion baths. Traces show the changes in regular spontaneous activity with 
additions of PGE2 a) at 10-6M, b) at 10-5M and c) added sequentially to myometrial 
strips. 
 

By pooling successive agonists, a wide range of compounds could be assayed per 

donor tissue and individual drug effects were directly comparable to the same 

myometrial strip. Moreover, similar responses to PGE2 in cumulative and non-
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cumulative treatments indicated that myometrial receptors did not desensitise during 

experiments (Figure 2.6).  

In some cases, at least one tissue strip from the same biopsy was challenged for 30 

minutes with an antagonist before the addition of time-matched agonist 

concentrations. This served to validate the selectivity of agonists on receptors. Some 

agonist-treated tissue strips were washed with fresh Krebs’ solution and equilibrated 

for 30 minutes to re-establish contractile activity (Figure 2.7). However, this was 

avoided when testing antagonists due to difficulties in complete removal of lipophillic 

compounds (Nilsson et al., 2003). 

 

 

 

 

 
Figure 2.7: Representative traces of myometrial strips from a) non-pregnant and b) 
term pregnant, non-labouring donors after refilling immersion baths with fresh Krebs’ 
solution. Washing tissue caused a brief period of quiescence before the return of 
myogenic activity. 
 

 

2.6.2 Measurement of tissue activity 

Myometrial activity was quantified as the integrated area under the contraction curve, 

which accounted for changes in contractile frequency, duration and amplitude. To set 

the lower base tension for area calculation, integral above mean settings were applied 

using Chart v5.4. Data were measured over 30-minute epochs (Thornton et al., 1999) 

as this time-period of activity most clearly distinguished drug-induced effects from 

spontaneous contractions (Figure 2.8).  

Tissue wash Tissue wash 

30 minutes 

3g 9g 

a) b) 



  Chapter Two: Materials & Methods 

  Page 39
   

spont act 10-9M 10-8M 10-7M 10-6M 10-5M
0

25

50

75

100

125

150

175

5 minutes 10 minutes 20 minutes 30 minutes

***
***

*
*****

a b a
b

c

Log concentration of U46619 (M)

%
 h

yp
ot

on
ic

 sh
oc

k

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Spontaneous activity and the concentration-effect of U46619 in 
myometrial strips from term pregnant, non-labouring donors (n=6) measured at 5, 10, 
20 and 30-minute intervals after agonist additions to muscle baths. Results are 
expressed as means ± S.E. and analysed using repeated measures ANOVA with 
Bonferroni’s post-hoc test; *p<0.05; **p<0.01; ***p<0.001 for the reduction in 
measured activity over a) 5, b) 10 and c) 20 minutes compared to 30-minute responses 
to U46619. 
 

 

 

 

 

 

 
Figure 2.9: A representative trace showing the concentration-dependent increase in 
contractile activity to U46619 in an isolated myometrium taken at term pregnancy, not 
in labour. The trace was measured over a) 5, b) 10, c) 20 and d) 30 minutes after 
U46619 additions to the immersion bath.  
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2.6.3 Normalising responses 

 
 
 
 
 
 
 
Figure 2.10: Traces showing unique 30-minute profiles of spontaneous activity from 
parallel myometrial strips taken from the same piece of isolated uterine tissue donated 
at term pregnancy. 
 

Traces of spontaneous activity were unique for each muscle strip and functionally 

idiosyncratic (Figure 2.10). This was attributed to the intrinsic variability between 

donor hormonal states and the differences in receptor dominance, cell types and 

filament composition of myometrial strips (Crankshaw, 2001; Popat & Crankshaw, 

2001). To reduce intra- and inter-assay variations, the data were therefore normalised.  

Previous functional studies have quantified agonist-induced responses (T) as a ratio of 

the background activity (B) (Senior et al., 1991; Duckworth et al., 2002). However, 

this would not have represented isolated myometrium taken at late labour, which 

frequently lacked background contractility. Instead, measured responses were 

expressed as a percentage of a reference contraction, induced by displacing the Krebs’ 

solution with distilled water (Popat & Crankshaw, 2001). This hypotonic shock was 

performed after the final drug incubation to avoid disrupting receptor and tissue 

activity. In addition, compounds interacting with G-protein coupled receptors would 

not alter the reference contraction, mediated via Ca2+-activated potassium and 

chloride channels.  

Preliminary experiments were conducted on isolated myometrium to ensure that the 

reference contraction was reliable and reproducible. Compared to sustained 

contractions by potassium chloride (KCl), maximal tissue responses to distilled water 

30 minutes 

10g 10g 6g 
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were higher in amplitude and declined more steadily with time (Figures 2.11 & 2.12). 

As a result, hypotonic shock was used to normalise response data in this study. 

 
 
 
 
 
 
 
 
 
 
 
Figure 2.11: Reference contractions induced by the displacement of Krebs’ solution in 
immersion baths with a) distilled water (hypotonic shock) and b) potassium chloride 
(KCl, 60mM) in myometrial strips from term pregnant, non-labouring donors 
displaying regular spontaneous activity. Traces show that the contraction by KCl was 
sustained but lower in amplitude than that produced by hypotonic shock. 
 
 
 
 

 
Figure 2.12: A comparison between the reference contractions induced by distilled 
water (hypotonic shock) and potassium chloride (KCl, 60mM) in myometrial strips 
from term pregnant donors (n=5). Activity was measured as a) the integrated area 
under the contraction curve over 30 minutes and b) the amplitude of contractions.  
Results are expressed as means ± S.E. 
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2.7 Superfusion 

The superfusion technique was performed in parallel to the immersion procedure to 

measure myometrial responses to bolus doses of compounds. Although first described 

by Finkleman (1930), the method was modified to allow direct administration of test 

substances into the superfusate (Gaddum et al., 1939). 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.13: Superfusion apparatus for functional studies using isolated human 
myometrium. 
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Each uterine segment was secured to a metal tissue holder, and mounted 

longitudinally within a glass superfusion chamber (York Glassware Services, York, 

UK), heated to 37°C (Figure 2.13). After aerating with 95% O2: 5% CO2, the Krebs’ 

solution was driven through heating coils within the superfusion chamber by a 

Watson & Marlow MHRE peristaltic pump at a rate of 2ml min-1 (Senior et al., 1991). 

A short section of re-sealable silicon tubing (Watson-Marlow Bredel Pumps Ltd., 

Cornwall, UK) was used to direct the constant flow of Krebs’ solution out of the 

chamber and over the suspended myometrial strip.  

Isometric tissue contractions were recorded using force transducers (Grass 

Instruments Inc., Rhode Island, USA) at a passive tension of 2g (Senior et al., 1991; 

Duckworth et al., 2002). The signals were amplified, digitally converted and stored in 

a personal computer (Dell Inc.) by PowerLab data acquisition software running 

Microsoft Chart v5.4 (sampling frequency 2Hz; AD Instruments, Hastings, UK). 

Tissue strips from non-pregnant and pregnant donors were equilibrated for at least 60 

and 90 minutes respectively or until regular phasic contractions were achieved. This 

mechanical activity was measured and analysed over the following 30 minutes. 

Compared to the immersion set-up, the development of tissue strip contractions were 

attenuated in amplitude rather than frequency (Figure 2.14), suggesting that fluid 

tension facilitated the contractile force of immersed myometrium. As the spontaneous 

activity of isolated tissues from labouring donors was more sporadic, experiments 

were initiated after 2.5 hours of equilibration. 

 

 

 



  Chapter Two: Materials & Methods 

  Page 44
   

        AUC     Frequency     Amplitude
0

250

500

750

1000

1250

1500

0

1

2

3

7

8

9

Immersion Superfusion

***

*

Measurement of activity

A
re

a 
un

de
r 

th
e 

cu
rv

e 
(g

.s)

Frequency (N
o)   A

m
plitude (g)

        AUC     Frequency     Amplitude
0

250

500

750

1000

1250

1500

0

1

2

3
4

6

8

Immersion Superfusion

*** *

Measurement of activity

A
re

a 
un

de
r 

th
e 

cu
rv

e 
(g

.s)

A
m

plitude (g)   Frequency (N
o)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.14: Spontaneous activity measured as area under the curve (AUC), frequency 
(number) and amplitude (g) of contractions over 30-minute intervals before the 
addition of test drugs in myometrium taken at a) hysterectomy and b) term elective 
Caesarean section using immersion and superfusion techniques. Results were 
expressed as means ± S.E and analysed using one-way ANOVA with Bonferroni’s 
post-hoc test; *p<0.05; ***p<0.001 compared to contractions established in immersed 
tissue strips. 
Traces show the intrinsic activity developed by isolated myometrium equilibrated in 
immersion and superfusion apparatus.  
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2.7.1 Administration of drugs 

Agonists were injected directly into the Krebs’ superfusate through re-sealable silicon 

tubing using a 100µl glass micropipette (Hamilton Co., Nevada, USA). For a 

consistent flow rate and accurate dosing, the maximum volume of agonist 

administered was 10µl. After tissue equilibration, vehicle and dose-response curves 

were constructed sequentially and doses, ranging from 10-14mol to 10-7mol, were 

adjusted according to drug potency. Tissues were treated at 30-minute intervals or 

until the resumption of baseline activity. This corresponded to immersion 

measurements and was sufficient to wash drugs from the tissues for uniform 

responses to repeated sub-maximal doses (Griffiths et al., 2006).  

In parallel studies, 30 minutes prior to agonist dosing, antagonists were added to 

superfusate reservoirs for constant perfusion over the tissue. Muscle strips from the 

same biopsy were also assigned as time-matched vehicle controls with intrinsic 

activity sustained for the duration of each experiment (Figure 2.15). Only one dose-

response curve was completed per tissue strip, after which the Krebs’ solution in the 

reservoir was replaced with distilled water and perfused for 30 minutes. This induced 

a large hypotonic contraction unique to each myometrial strip (Popat & Crankshaw, 

2001).  

 

2.7.2 Measurement of tissue activity  

Equivalent to immersion recordings, excitatory myometrial responses were measured 

immediately after dosing as the integrated area under the contraction curve over a 30-

minute period. This was expressed as a percentage of the activity integral induced by 

30 minutes of hypotonic shock. 
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Figure 2.15: Traces showing the activity of myometrial strips from a) non-pregnant 
and b) term pregnant, non-labouring donors equilibrated in the superfusion apparatus. 
Vehicle controls demonstrated that there was no temporal effect on frequency and 
amplitude of contractions. 
 
 
 

The hypotonic shock varied between non-pregnant and pregnant donor groups, with 

more transitory contractions reflecting smooth muscle remodelling and changes in 

proteins encoding ion channels during pregnancy (Challis et al., 2000). Even so, when 

measured as the area under the curve, responses to hypotonic shock were consistent 

regardless of the stage of menstrual cycle or gestational state (Table 2.4). This was 

applicable for both immersion and superfusion experiments validating further this 

method of data normalisation. 
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Table 2.4:  The mean force of contractions induced by hypotonic shock (distilled 
water) in myometrial strips taken at menses (n=6), follicular (n=13) and luteal (n=5) 
stages of the menstrual cycle and at term pregnancy, not in labour (n=20), early-mid 
(n=13) and late (n=11) labour equilibrated in immersion and superfusion apparatus. 
Results were measured for 30 minutes as the integrated area under the curve (g.s) and 
expressed as arithmetic means ± S.E. The hypotonic shock was not significantly 
different, regardless of assay technique. 
 

 Immersion Superfusion 
Stage of Menstrual Cycle Hypotonic shock (g.s) Hypotonic shock (g.s)
Menses 2093 ± 170 2282 ± 277 
Follicular 2294 ± 123 2071 ± 125 
Luteal 1996 ± 121 2234 ± 154 
Stage of Gestation Hypotonic shock (g.s) Hypotonic shock (g.s)
Term pregnancy 2161 ± 388 2260 ± 133 
Early-mid labour 2115 ± 367 2290 ± 467 
Late labour 1777 ± 185 1809 ± 266 

 
 
 
 
For inhibitory studies using superfusion, tissue myogenicity was not always re-

established within the 30-minute intervals. As a result, the inhibitory response to 

agonists was expressed as the extended time between spontaneous contractions. 

Agonists were administered immediately following the repolarisation phase of a 

contraction to avoid superimposing responses on background activity. This time 

period was measured from the point of agonist injection to the recurrence of a 

spontaneous contraction, measuring at least 80 percent of the previous contraction 

peak height (Senior et al., 1991). Any initial excitatory responses were excluded from 

this measurement and background activity was corrected by subtracting the time 

interval between preceding regular contractions (Figure 2.16).  
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Figure 2.16: A sample trace showing measurement of the inhibitory period induced by 
PGE2 added as bolus doses to myometrium from term pregnant, non-labouring 
donors. The response was measured as the time in minutes between agonist 
administration and the re-establishment of a defined spontaneous contraction minus 
the standard time between contractions before agonist dose administration.  
 
 
 
2.8 Choice of technique 

The contractile activity and receptor function of myometrial strips were comparable in 

immersion and superfusion studies, indicating the merits of using either technique. 

Due to the highly regulated tissue environments, each system provided data that were 

reliable and reproducible. 

When added to immersion baths in a cumulative manner, the contact time of 

compounds could be determined and prolonged drug incubations mimicked in vivo 

conditions. Whilst limited compounds were conserved in muscle baths, the chemically 

unstable compounds were better identified using superfusion (Gaddum et al., 1939). 

As bolus doses were immediately washed, the constant perfusion of the Krebs’ 

superfusate reduced any potential interactions of endogenous tissue metabolites. 

Therefore, both techniques were useful in characterising the receptors involved in 

myometrial activity of the isolated human uterus. 
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2.9 Statistical analysis 

Data were first tested for normality using a Kolmogorov-Smirnov test. To examine 

the relationship between agonist concentrations and treatment, contractile activity of 

myometrial strips was compared using a student’s t-test or one-way/ two-way analysis 

of variance (ANOVA) in a mixed model. Post-hoc comparisons were performed using 

Bonferroni’s adjustment. Estimates of the maximal effect (Em) and inhibitory (pIC50) 

or excitatory (pEC50) curve mid-points were calculated for agonists and antagonists at 

different stages of the menstrual cycle, term pregnancy and parturition using non-

linear regression (GraphPad Prism 4.0, San Diego, CA, USA). When Em was not 

reached, constraints for the lower asymptote were set at greater than zero to avoid 

curves that tended to infinity. For competitive antagonists, pA2 values were also 

estimated as a measure of affinity using the Schild’s equation. Results were expressed 

as arithmetic means ± S.E. and significance was attributed at p<0.05.  
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Chapter 3: Non-pregnant 

 

Functional prostanoid receptors in isolated non-gravid myometrium 
 

 

3.1 Introduction 

The uterus undergoes dramatic changes during the menstrual cycle, facilitating sperm 

transport, ovum fertilisation and implantation of the developing blastocyst. In the 

absence of pregnancy, the corpus luteum involutes and the resultant withdrawal of 

progesterone causes cyclic degradation and shedding of the superficial endometrial 

layer (menstruation).  This involves a process of tissue injury and spiral arteriole 

vasoconstriction predominantly mediated by elevated PGF2α, PGE2, COX enzymes, 

oxytocin and endothelin-1 (Marsh et al., 1995; Smith et al., 2007). Further increases 

in circulatory prostanoids and oxytocin have been associated with common 

gynaecological disorders, including menorrhagia (excessive menstrual blood loss) and 

dysmenorrhoea (painful periods) (Adelantado et al., 1988; Noe et al., 1999; Dawood 

& Khan-Dawood, 2007; Smith et al., 2007). Despite the accompanied 

hypercontractility of the uterus (Leyendecker et al., 2004; Altunyurt et al., 2005; 

Kataoka et al., 2005; Dawood & Khan-Dawood 2007), myometrial responsiveness to 

PGs and oxytocin receptor agonists remain unclear. 

To identify functional uterine PG and oxytocin receptor populations, in vitro studies 

were performed using myometrial biopsies taken at hysterectomy from pre-

menopausal women (aged 29 to 52 years). Phasic myometrial activity and receptor-

mediated effects were assessed according to the stage of menstrual cycle and excision 

site under physiological conditions. These results also provided a baseline comparison 

for gestational tissues taken before and after labour-onset. 
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Chapter 3.2: Results 
 

 

 

3.3 Samples from non-pregnant donors 

Although harvested at total hysterectomy, 83 percent of the provided uterine 

specimens were incomplete longitudinal sections taken from the fundus and adjoined 

upper corpus muscle. This corresponded to the fewer assays using lower segment 

tissues from non-pregnant donors. The orientation of uterine muscle was denoted by a 

ligature aligned with the upper serosal edge and experimental tissues were excised 

from the mid-uterine wall >5mm from either the endometrial or serosal surfaces. 

Regardless of regional location and stage of menstrual cycle, samples were 

equilibrated for 89 minutes (range: 77 to 153 minutes) to facilitate the development of 

regular phasic activity. In spite of intra- and inter-donor variations, myogenic 

contractile profiles were distinct in frequency and amplitude; this was particularly 

manifest during the different stages of the menstrual cycle.  

 

3.4 Myogenic activity at different stages of the menstrual cycle 

All myometrial strips obtained from non-pregnant donors at hysterectomy developed 

spontaneous activity. The undulating activity was most frequent, but sporadic during 

the menstrual phase of the cycle (Figure 3.1). However, the overall myogenicity was 

only at 37.2 ± 1.38 percent hypotonic shock due to the low amplitude of contractions 

(Table 3.1). In tissues taken mid-cycle from the fundus, the amplitude of contractions 

was 3.1 and 1.5 fold greater than myometrium from menstrual (p<0.001) and luteal 

phases, when contractions were slow and phasic. The rank order of myogenic activity 

was follicular > luteal > menstrual stages. Moreover, variation was exhibited 
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topographically during the follicular phase with activity 20 percent greater in lower 

compared with fundus-end tissues (p<0.001). This was due to the differences in 

amplitude rather than frequency of contractions. 

 

3.5 Indications for hysterectomy 

Hysterectomies were performed for benign gynaecological disorders, including 

menorrhagia, dysmenorrhoea and fibroids. All donors were premenopausal and use of 

oral contraceptives or hormone therapies had been discontinued for 6-8 weeks prior to 

surgery. Thereby, the only medications noted on patient forms for 3 individual donors 

were aspirin and Ventolin. Despite the different indications for hysterectomy, phasic 

contractile activity was not influenced by donor symptoms or underlying disease 

states (Table 3.2).  

 

3.6 Longitudinal and transverse myometrial sections. 

Although myometrial strips were dissected longitudinally for functional studies, the 

spontaneous contractions generated by transversely cut sections gained comparable 

intensity following equilibration in organ baths (Table 3.3). This was observed in both 

fundus and lower segment samples. 
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Figure 3.1: Spontaneous contractions of immersed myometrial strips taken at 
hysterectomy. Myometrium was excised from fundus (n=20) and lower (n=4) 
segment uterine muscle at the different stages of the menstrual cycle. After 
equilibration, myogenic activity was measured as 30 minutes area under the curve and 
expressed as a percentage of 30 minutes hypotonic shock. Data are arithmetic means 
± S.E. and statistics were performed using univariate ANOVA with Bonferroni’s post-
hoc adjustment; **p<0.01; ***p<0.001 reduction in contractility compared with 
tissues taken during the follicular stage from afundus and blower segment tissues. 
 
Traces display typical spontaneous activity of immersed 1) upper and 2) lower 
segment isolated myometrium obtained from non-pregnant donors during i) menses, 
ii) follicular and iii) luteal stages of the menstrual cycle. Each trace represents a 30-
minute time period. 
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Table 3.1: Spontaneous activity measured as amplitude (g) and frequency of 
contractions over 30-minute intervals before the addition of study compounds in 
myometrium taken at hysterectomy (n=3-5). Myogenic profiles were evaluated 
according to menstrual cycle stage and uterine location using the immersion 
technique. Results are expressed as means ± S.E. and analysed using one-way 
ANOVA with Bonferroni’s post-hoc adjustment; *p<0.05; **p<0.01; ***p<0.001 for 
myogenic contractions compared to fundus end tissues taken at amenses, bfollicular 
and cluteal phases of the cycle. 
 

 Location Fundus Lower 
Stage of cycle Menses Follicular Luteal Follicular 
Amplitude (g) 1.3 ± 0.2 3.9 ± 2.6***a 2.6 ± 0.4*a 4.4 ± 0.6*b; ***ac 

Frequency (No) 9.9 ± 0.6 7.8 ± 1.3*a 6.7 ± 0.5**a 8.4 ± 1.7 
 
 
 
 
 
Table 3.2: Spontaneous activity of myometrial strips equilibrated in immersion baths 
and categorised according to the main indications noted on patient information forms. 
Uterine samples were harvested from non-pregnant donors with each group in the 
follicular stage of the menstrual cycle (n=3-5). Data were measured as 30 minutes 
area under the curve, expressed as a percentage of 30 minutes hypotonic shock (HS) 
and results are arithmetic means ± S.E. 
 

Indications Menorrhagia Dysmenorrhoea Menorrhagia & 
dysmenorrhoea 

Menorrhagia & 
fibroids 

Activity (%HS) 47.0 ± 2.3 46.8 ± 1.9 51.5 ± 2.9 50.9 ± 2.2 
 
 
 
 
 
Table 3.3: Spontaneous activity of immersed myometrial strips dissected 
longitudinally or transversely across fundus and lower segment uterine muscle (n=3). 
Myometrial samples were obtained at hysterectomy in the non-pregnant state. 
Following equilibration, regular myogenic activity was measured as 30 minutes 
integrated area under the curve and expressed as a percentage of 30 minutes hypotonic 
shock. Results are arithmetic means ± S.E. 
 

Location Fundus Lower segment 
Dissected fibres Longitudinal Transverse Longitudinal Transverse 
Activity (%HS) 36.0 ± 0.8 37.3 ± 1.8 53.7 ± 3.0 54.1 ± 1.8 
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3.7 Characterisation of EP receptors using PGE2 and EP analogues 

PGE2 is well characterised in its targeting of EP1-4 receptors (Coleman et al., 1994). 

To broadly identify myometrial responsiveness, PGE2 was assayed in the absence and 

presence of indometacin and across the different phases of the menstrual cycle.  

 

3.7.1 Indometacin on myometrial responses to PGE2 

Indometacin, a non-selective COX inhibitor, has been shown to block myometrial PG 

biosynthesis at 10-6M (Durn et al., 2010). In immersion studies, PGE2 alone 

diminished contractions in a concentration-dependent manner (10-10M to10-6M), with 

relative stimulation at 10-5M (Figure 3.3). Pre-incubation with indometacin (10-6M) 

did not significantly alter myogenic contractions or responses to PGE2 (F (1, 35) = 

0.55; ns). Therefore, to mimic physiological responses, indometacin was omitted from 

the Krebs’ solution in all further immersion and superfusion experiments. 

 

3.7.2 Myometrial EP receptors during the menstrual cycle 

Responses to PGE2 were similar in fundus-end myometrium taken at hysterectomy 

from non-pregnant donors at different stages of the menstrual cycle (F (2, 77) = 1.56; 

ns; Figure 3.4). PGE2 attenuated myogenic activity (10-10M to 10-6M) to an analogous 

extent at each phase of the menstrual cycle. At the highest concentration of 10-5M, 13 

percent stimulation relative to contractions at 10-6M was achieved. However, this 

varied between donors and appeared to be most pronounced, but not significantly so, 

in myometrium collected during the menstrual and luteal stages. With predominant 

collection of follicular stage tissues and comparable responses to PGE2, myometrial 

tissues were grouped irrespective of phase in functional studies. 
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Figure 3.3: Concentration-effect curves for PGE2 alone and in the presence of 
indometacin (10-6M) on isolated fundus-end myometrium from non-pregnant donors 
(n=4). Contractility was measured as 30 minutes area under the curve and expressed 
as a percentage of 30 minutes hypotonic shock. Results are arithmetic means ± S.E. 
Indometacin, the non-selective COX inhibitor, did not influence tissue myogenicity or 
responsiveness to PGE2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.4: Concentration-effect curves and representative traces showing the 
response to PGE2 in isolated fundus-end myometrium taken at a) menses (n=4), b) 
follicular (n=8) and c) luteal (n=4) phases of the menstrual cycle. PGE2 was added in 
a cumulative manner to organ baths at 30-minute intervals and results are expressed as 
arithmetic means ± S.E. 
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3.7.3 Inhibitory effects of EP2 agonists on myogenic activity 

In immersed fundal myometrial strips from non-pregnant donors, the EP2 mimetics 

butaprost and CP533,536 evoked concentration-dependent inhibition of myogenic 

activity (10-10M to 10-5M) via a reduction in the frequency and amplitude of 

contractions (F (2, 90) = 35.54; p<0.001; Figure 3.5). Similar potency values were 

shown by respective pEC50 values at 6.87 ± 0.47M and 6.99 ± 0.43M and a 3.2-fold 

and 4.0-fold decline in myogenicity (Table 3.4).  

 

3.7.4 EP4 agonist effects on myogenic activity 

Compared to the sustained myogenicity with time-matched controls, the EP4 agonist 

AGN201734 (10-10M to 10-6M) attenuated contractions in a concentration-dependent 

manner (F (1, 82) = 37.15; p<0.001; Figure 3.5). The gradual reduction in activity 

from 46.2 ± 2.78 to 21.7 ± 4.13 percent of hypotonic shock plateaued at 10-6M with 

9.2 percent relative excitation at 10-5M. Despite similar biphasic curves and potency 

values, the efficacy of AGN201734 was lower than PGE2 (Table 3.4). 
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Figure 3.5: Concentration-effect curves and typical traces for the EP2 agonists a) 
butaprost, b) CP533,536 and the EP4 mimetic d) AGN201734 compared to c) vehicle 
in human fundal myometrium obtained from non-pregnant women (n=6-7). Agonists 
(10-10M to 10-5M) were added in a cumulative manner at 30-minute intervals to 
immersed myometrial strips. Results are expressed as arithmetic means ± S.E. and 
significant differences were determined using two-way ANOVA with Bonferroni’s 
post-hoc test; **p<0.01; ***p<0.001 compared to vehicle controls. 
 
 
 

Table 3.4: Mean pIC50 values (M) and percentage reduction in myogenicity for PGE2, 
butaprost, CP533,536 and AGN201734 concentration-effect curves in immersed 
myometrium from non-pregnant, pre-menopausal donors (n=6-9). 
 

Agonists: PGE2 Butaprost CP533,536 AGN201734 
pIC50 7.7 ± 0.2 6.9 ± 0.5 7.0 ± 0.4 7.7 ± 0.3 
% decrease 68.4 68.7 75.3 56.7 
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Figure 3.5: Vehicle, utero-relaxant effects and representative traces of a) PGE2,          
b) butaprost and c) AGN201734 in human fundus-end myometrial tissue from non-
pregnant women in the follicular stage of the cycle (n=3-5). Tissue strips were 
suspended in superfusion baths and bolus doses of agonists (10-11mol to 3x10-7mol) 
and vehicle were administered directly into the superfusate after a contraction of 
similar amplitude to the myogenic activity. Results are expressed as means ± S.E. 
with statistical analysis performed using two-way ANOVA with Bonferroni’s post-
hoc adjustment; *p<0.05; ***p<0.001 for EP agonists compared with vehicle 
controls. 
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Using the superfusion technique, bolus doses of the EP mimetics evoked immediate 

responses in fundus-end myometrial strips from non-pregnant donors (Figure 3.5). 

Whilst myogenic contractions were sustained with time-matched vehicles, PGE2 and 

AGN201734 exhibited biphasic responses (10-7mol to 3x10-7mol), consisting of an 

initial contraction followed by a period of inhibition (F (2, 84) = 54.37; p<0.001). 

Despite the higher potency of PGE2 (pEC50: 8.41 ± 0.23M), delays in contractility 

were analogous for PGE2 and AGN201734 at 3x10-7mol (F (1, 36) = 2.30; ns). This 

was observed as a significant reduction in the frequency of contractions before normal 

spontaneous activity was restored. 

Unlike PGE2 and AGN201734, exposure to butaprost produced a dose-related 

suppression of tissue activity without exerting tissue excitation (F (1, 48) = 145.2; 

p<0.001). The complete cessation of contractions reached 52.3 ± 5.38 minutes, which 

was 1.5 and 1.7-fold longer than challenge with PGE2 and AGN201734 respectively. 

Due to the restricted bolus volume, maximal responses were not achieved for 

AGN201734 or butaprost. 

 

3.7.5 EP agonists in the presence and absence of GW627368x 

To more fully characterise functional receptors, responses to EP agonists were 

examined alone and in the presence of the EP4 antagonist GW627368x (10-6M; 

Wilson et al., 2006). As shown by time-matched vehicle controls, GW627368x had 

no effect on the myogenic activity of fundus-end uteri from non-pregnant donors (F 

(1, 48) = 0.77; ns; Figure 3.6). Likewise, the concentration-related inhibitory effects 

of butaprost (F (1, 48 = 0.41; ns) and PGE2 (F (1, 36 = 1.32; ns) were unchanged, 

regardless of pre-incubation with GW627368x. Even so, GW627368x displaced the 

AGN201734 curve rightwards (F (1, 48) = 4.13; p<0.05). This was shown by a 
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change in pEC50 values (p<0.001; Table 3.5) and also by the estimate of pA2 (see 

below), rather than the percentage reduction in spontaneous activity. 

 
 
 
Table 3.5: Mean pEC50 values (M) and the percentage reduction in myogenicity for 
concentration-effect curves to EP agonists (10-10M to 10-5M) using immersed 
myometrial strips in the presence (treated) and absence (control) of the EP4 antagonist 
GW627368x (10-6M). Human myometrium was harvested from non-pregnant donors 
at hysterectomy (n=4-6). Data are shown as arithmetic means ± S.E. and statistical 
analysis was performed using Student’s t-tests; ***p<0.001 for AGN201734 pEC50 
values of control compared with treated groups. 
 

Control Treated 
EP agonists 

pEC50 % decrease pEC50 % decrease 
PGE2 8.4 ± 0.2 69.7 8.6 ± 0.2 70.2 
butaprost 7.5 ± 0.5 71.4 7.2 ± 0.4 68.5 
AGN201734 7.5 ± 0.2 51.9 5.3 ± 0.3*** 41.1 
 
 
 

To estimate the pA2 value for GW627368x, the Schild’s equation was applied where 

KB was the dissociation constant of the antagonist: 

 (EC50 antagonist/ EC50 agonist) -1 = [antagonist]/ KB pA2 = -log (KB) 

∴ (4.6x10-6M/ 1.3x10-7M) –1 = [10-6M]/ KB pA2 = -log (3x10-8M) = 7.53 
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Figure 3.6: a) Vehicle and concentration-effect curves for b) PGE2, c) butaprost and d) 
AGN201734 in isolated fundus-end myometrium donated by non-pregnant women at 
hysterectomy (n=4-6). Myometrial strips were incubated alone or in the presence of 
the EP4 antagonist GW627368x (10-6M), with agonists (10-10M to 10-5M) added in a 
cumulative manner at 30-minute intervals to immersion baths. Results are expressed 
as means ± S.E.  
Traces show typical myometrial responses to i) AGN201734 alone and ii) pre-
incubated with GW627368x (10-6M) in immersed fundus-end samples harvested mid-
cycle. 
 
 
 

a) b) 

c) d) 

 5g 4g 
i) AGN201734 ii) GW + AGN201734 30 minutes 30 minutes 

10-7M Hypotonic shock10-6M 10-5M 10-7M Hypotonic shock10-6M 10-5M
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3.7.6 Excitatory EP agonists on myogenic activity 

Using the immersion technique in fundus-end uterine samples, time-matched vehicle 

controls maintained myogenicity (Figure 3.7). Although the EP1 agonist ONO-D1-

004 had no effect on phasic contractions (F (1, 48) = 1.32; ns), excitation was evoked 

in response to the EP3/1 agonist sulprostone (F (1, 72) = 8.79; p<0.001). As a result, 

myogenic activity was elevated from 48.3 ± 2.39 to 60.1 ± 2.17 of the hypotonic 

shock value; this was sustained by sulprostone (10-6M to 10-5M), without adjusting 

the muscle tonus. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.7: Concentration-effect curves and representative traces for a) vehicle, b) the 
EP3/1 agonist sulprostone and c) the EP1 mimetic ONO-D1-004 in fundus-end uterine 
samples obtained from non-pregnant donors (n=4-7). Time-matched vehicles and 
spasmogens were added in a cumulative manner (10-10M to 10-5M) to individual organ 
baths at 30-minute intervals. Results are arithmetic means ± S.E. with significance 
determined using multivariate ANOVA with Bonferroni’s post-hoc test; *p<0.05; 
**p<0.01 for responses to sulprostone compared with vehicle controls. 
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3.7.7 Topographical effect of EP receptor agonists 

After obtaining full-thickness longitudinal sections of the uterus at total hysterectomy, 

upper and lower segment myometrial strips were dissected from the cephalic and 

caudal extremities. To determine regional responsiveness to uterotonins, contractile 

parameters were established using immersed tissues from donors in the follicular 

stage of the menstrual cycle. Despite the 1.2-fold higher spontaneous activity 

exhibited by lower segment tissues compared with the fundus (p<0.001; Figure 3.1), 

the concentration-dependent trends of EP agonists were similar (Figures 3.8 & 3.9; 

Table 3.6). With PGE2, butaprost and AGN201734, the monophasic in vitro utero-

relaxant effects were more pronounced towards the cervix (p<0.001). Although 

differences were manifest between 10-10M to 10-7M (p<0.001), myogenic responses 

subsided to 15.7 ± 2.41 hypotonic shock at 10-5M. This was equivalent to the abolition 

of activity at 10-5M in fundus-end tissues.  

By contrast, the EP3/1 mimetic sulprostone evoked concentration-dependent excitation 

in myometrial strips, with peak contractility at 10-6M (F (1, 42) = 50.62; p<0.001). 

Compared with time-matched vehicle controls, contractions were augmented by 23.7 

and 25.1 percent in upper and lower tissue strips respectively. This demonstrated 

parallel responses to sulprostone, regardless of uterine topographical location (Table 

3.6). 
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Figure 3.8: Concentration-effect curves for a) PGE2, b) butaprost, c) AGN201734 and 
d) sulprostone in fundal and lower human myometrium taken at the follicular stage of 
the menstrual cycle (n=4-6). After equilibration in immersion baths, responses to EP 
mimetics were measured as 30 minutes integrated area under the curve and expressed 
as a percentage of 30 minutes hypotonic shock. Results are arithmetic means ± S.E.  
 
 
 
 
Table 3.6: Mean pEC50 values (M) ± S.E. for PGE2, butaprost, AGN201734 and 
sulprostone concentration-effect curves in immersed upper and lower segment 
myometrium from non-pregnant, pre-menopausal donors (n=4-6). 
 

Agonists Region  PGE2 Butaprost AGN201734 Sulprostone 
pEC50 Fundus 7.9 ± 0.1 7.3 ± 0.5 7.5 ± 0.2 6.9 ± 0.5 
pEC50 Lower 7.6 ± 0.2 6.6 ± 0.6 7.2 ± 0.1 7.2 ± 0.4 
 

a) b) 

c) d) 
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Figure 3.9: Typical traces showing the concentration-effect of a) PGE2, b) butaprost, c) AGN201734 and d) sulprostone (10-10M to 10-5M) in 
immersed lower segment myometrium from non-pregnant donors. Agonists were added to organ baths at the time-points indicated by the arrows.
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3.8 Topographical responsiveness to PGF2a and U46619 

The spasmogens PGF2α and U46619 increased the amplitude and frequency of 

contractions in myometrial tissues from non-pregnant donors whilst maintaining a 

constant baseline tension (Figures 3.10 & 3.12). At the fundus-end, PGF2α elicited a 

monophasic excitatory response (pEC50: 6.9 ± 0.80M), parallelled by the effect of 

U46619 in immersed tissue strips (pEC50: 6.8 ± 0.27M). Activity was increased to 

59.3 ± 2.43 and 65.2 ± 5.86 percent hypotonic shock respectively (Figure 3.11). 

Likewise in superfused tissues, bolus doses of PGF2α (F (1, 30) = 16.73; p<0.001) and 

U46619 (F (1, 30) = 13.44; p<0.001) augmented myometrial contractions by 2.6 and 

2.4-fold compared with time-matched controls. This demonstrated their similar 

efficacy and potency values in upper myometrial strips. 

In lower segment immersed tissues, PGF2α stimulated activity to 83.1 ± 10.4 percent 

hypotonic shock at 10-6M, after which the response was attenuated (F (1, 30) = 71.27; 

p<0.001; Figure 3.10). A similar concentration-related excitatory effect was observed 

with U46619; although contractions reached 104.5 ± 10.2 percent of the hypotonic 

shock value at 10-5M (F (1, 40) = 30.93; p<0.001). Therefore, a topographical gradient 

to both PGF2α and U46619 was observed, with responsiveness enhanced in lower 

segment uteri compared with fundus-end tissues. 
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Figure 3.10: Concentration-effect curves and representative traces for a) PGF2α and  
b) U46619 in 1) fundus and 2) lower segment human myometrium from non-pregnant 
donors in the follicular stage of the cycle (n=4-6). Myogenic activity was recorded per 
30-minute agonist incubation in the immersion apparatus and expressed as a 
percentage of 30 minutes hypotonic shock. Results are arithmetic means ± S.E. with 
significance determined using a multivariate ANOVA and Bonferroni’s post-hoc test; 
*p<0.05; ***p<0.001 for fundus compared with lower segment tissue responses. 
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Figure 3.11: Vehicle and excitatory dose-responses for PGF2α and U46619 in fundus-
end myometrium harvested from non-pregnant donors in the follicular stage of the 
menstrual cycle (n=4). Using the superfusion technique, myometrial responsiveness to 
bolus doses of agonists were measured over a 30-minute period (area under the curve) 
and expressed as a percentage of 30 minutes hypotonic shock. Data are arithmetic 
means ± S.E. and statistical analysis was performed using two-way ANOVA with 
Bonferroni’s post-hoc adjustment; ***p<0.001 for responsiveness to uterotonins at  
10-7mol compared with time-matched vehicle controls. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.12: Representative traces showing the responses of upper segment uterine 
tissues taken mid-cycle to bolus doses of a) PGF2α and b) U46619 (10-9mol to         
10-7mol) in superfusion baths.  
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 Chapter 3.9: Discussion 
 

 

The results show that myometrial strips exhibited spontaneous activity relative to the 

stage of menstrual cycle and site of excision under in vitro conditions. Contraction 

amplitude was most pronounced during the follicular phase and was attenuated during 

menses. In contrast to the outer myometrial layers, sequential contractions are known 

to develop from the stratum subvasculare of the myometrium (Kunz et al., 1996; Noe 

et al., 1999; van Gestel et al., 2003). As the expression of oestrogen and its cognate 

receptors peak mid-cycle in this sub-endometrial layer (Noe et al., 1999), this 

suggests that the oestrogenic milieu is crucial in mediating uterine peristalsis. 

The acute rise in oestrogen during the periovulatory period of the follicular phase 

coincides with an increased expression of ERα, implying positive feedback within the 

uterus (Lecce et al., 2001). In addition to increasing cellular division and growth, 

oestrogen exerts uterotrophic effects, which enhance myometrial contractility and 

excitability via the upregulated expression of gap junctions (Garfield et al., 1980; 

Kilarski et al., 2000). In accord with previous functional studies (Hutchinson, 2005), 

contractions in this study were highest in myometrium taken at the follicular stage. 

Myogenic activity declined and was more sporadic in tissues taken during menses 

corresponding to a reduction in circulatory oestrogens and decreased uterine 

expression of ERα and PR-A (Ijland et al., 1998). This infers that the myogenic 

activity established in vitro maintained the receptor profile and hormonal influences 

of the donor at the time of hysterectomy. 

Whilst the underlying control of uterine activity is not well understood, it is 

recognised that paracrine ovarian steroids modulate myometrial transcriptional 

activity via specific growth factors, enzymes, hormones and receptors. The genomic 
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and non-genomic effects of oestrogen increase the expression of uterine progesterone 

receptor (PR) isoforms PR-A and PR-B (Lecce et al., 2001). PR-B mediates the 

proliferation of endometrial and, to a lesser extent, myometrial cells in the luteal 

phase, whilst the expression of PR-A suppresses progesterone effects in the follicular 

phase of the menstrual cycle (Ijland et al., 1998). The reported decrease in excitability 

of the uterine musculature in the luteal phase by magnetic resonance imaging (Bulletti 

et al., 1998) was reflected in the reduced spontaneous activity of isolated myometrial 

strips taken from non-pregnant donors at this stage. This quiescence was therefore 

likely to be facilitated by progesterone diminishing contractile associated proteins 

(CAPs) gene expression in the uterus (Garfield et al, 1980) as well as the paucity of 

oestrogen action. 

Myogenic activity was 10 percent greater in isolated lower segment tissues compared 

to the fundus; this seemed to reflect the physiological state of the uterus. The apparent 

functional regionalisation of the uterus may be attributed to the highest local 

expression of progesterone receptors in the fundus (Lye et al., 1998; Challis et al., 

2000, 2002). Moreover, the close apposition of the venous drainage of the ovary and 

ovarian bursa would enable sex steroids to reach the fundus prior to the lower 

segment of the uterus. This may facilitate spatial-hormonal effects, altering receptor-

binding properties and myometrial contractions. As a result, autocrine and paracrine 

influences are likely to affect regional variation within the uterus. 

In women of reproductive age, the structural and functional polarity of the non-gravid 

uterus has been discerned using magnetic resonance imaging, video-

vaginosonography and immunohistochemistry. Whilst the internal layer or junctional 

zone consists of mainly circular running fibres, the myofilaments in the thick mid 

layer are oriented obliquely to the axis of the muscle fibre (Weiss et al., 2006). As 
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well as sustaining forceful and prolonged contractions (Wray et al., 2001), this fibre 

arrangement may explain the uniform myogenic contractions in this study regardless 

of longitudinal or transverse incisions. Uterine smooth muscle composition also 

decreases caudally from the fundus towards cervix, with connective tissue 

composition at 38 and 68 percent of the dry-defatted tissues for the uterine body and 

cervix respectively (Leppert & Yu, 1991). Moreover, myocyte density is greater at the 

myometrial-endometrial surface compared to the middle stratum vasculare (Weiss et 

al., 2006), perhaps accounting for the intra-donor variation in spontaneous 

contractility. 

During the follicular phase, synchronised contractions of the uterus are primarily 

directed towards the fundus and fallopian tubes, facilitating the rapid transport of 

potential sperm (Kunz et al., 1996). Without conception, uterine activity decreases 

and is manifest as short and asymmetric bi-directional waves (Ijland et al., 1998; 

Bulletti et al., 2002). This may facilitate blastocyst implantation and the local supply 

of nutrients and oxygen during the luteal phase of the menstrual cycle. In addition, the 

caudal contractile direction at menses would assist uterine emptying. Even so, primary 

and secondary dysmenorrhoea (Leyendecker et al., 2004; Altunyurt et al., 2005; 

Kataoka et al., 2005; Dawood & Khan-Dawood 2007) and endometriosis (Bulletti et 

al., 2002) are associated with hyperactivity of the uterus, whilst chronic uterine 

infections attenuate contractile force (Hirsbrunner et al., 2006; Laird et al., 2003). 

Due to benign gynaecological conditions, it is recognised that the myometrial 

specimens taken for this study may have displayed compromised characteristic 

functions. Even so, over a third of the women at hysterectomy have normal uteri 

removed (Clarke, 1995) and myogenic activity could not be distinguished between 

samples, regardless of patient disorder. This demonstrates that menstrual cycle 
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dysfunctions, which contribute to major morbidity in reproductive health, require 

further elucidation at a cellular level. 

The Spanish pathologist and Nobel laureate Santigo Ramon y Cajal discovered cells 

thought to have a pacemaker role in propagating smooth muscle contractility. These 

interstitial cells of Cajal have abundant thin cytoplasmic processes, numerous 

mitochondria, intermediate filaments and caveolae, which are localised between 

muscle bundles and layers to provide a pathway for the transmission of depolarisation 

(Ciontea et al., 2005; Popescu et al., 2006). Their regional distribution and 

inappropriate electric impulses has been implicated in reduced fecundity in adolescent 

females (Dixon et al., 2009). This appeared to be manifest as unstable baseline 

contractions in specimens inhibited by PG agonists or obtained at menses. As 

interstitial cells of Cajal express oestrogen and progesterone receptors (Cretoiu et al., 

2006), their activation may vary temporally and spatially across the menstrual cycle. 

The over-expression of oestrogen and progesterone receptors in symptomatic uterine 

leiomyomata (fibroids), which are benign neoplasms of the smooth muscle cell, may 

also be responsible for abnormal contractile status (Severino et al., 1996; Kunz et al., 

2000). Moreover, with endometriosis, the heightened retrograde activity facilitating 

the dissemination and implantation of endometrial tissue outside the uterine cavity is 

oestrogen-dependent and decreases the propensity for a typical menstrual cycle 

(Bulletti et al., 2002). Therefore, ovarian hormones contribute to the subtle and 

transient changes in uterine activity according to pathology (Kataoka et al., 2005). 

Even so, increases in PG synthesis that promote the inflammation, fibrosis and 

adhesion formation are symptoms of these conditions. Consequently, to elucidate 

uterine physiology and pathophysiology, contractile responses to exogenous PGs were 

examined. 



  Chapter Three: Non-pregnant 

  Page 74
  

PGE2 and PGF2α were the first abundant vasoactive substances to be detected in 

menstrual fluid and the endometrium (Pickles, 1967). These bioactive autacoids and 

their endoperoxide precursors diffuse through the walls of the effluent veins of the 

endometrium to reach the myometrium (Baird et al., 1996). For PGE2 biosynthesis, 

membrane-derived arachidonic acid is liberated by phospholipases and metabolized to 

the labile intermediate PGH2 by COX enzymes. Of the three co-existing isoforms in 

myometrial cells, COX-1 is constitutively expressed, whereas COX-2 and COX-3 are 

inducible by inflammatory, mitogenic and physical stimuli (Murakami et al., 1999). 

Downstream of the COX pathway, the conversion of PGH2 to PGE2 is catalysed by 

cytosolic and membrane-bound PGE synthase (cPGES and mPGES). Although the 

mechanisms are obscure, perturbed PGE2 pathways have been particularly associated 

with reproductive disorders. 

Whilst fibroids attenuate PG output (personal communication, Durn, 2009), the 

overproduction of PGE2 and EP mRNA expression has been correlated to 

menorrhagia (Hofmann et al., 1983; Adelantado et al., 1988; Smith et al., 2007) and 

the hyperalgesic effects of dysmenorrhoea (Sales & Jabbour, 2003). In addition, 

COX-1 and COX-2 expression are elevated in women with menorrhagia (Smith et al., 

2007). To prevent uterine PG generation, non-steroidal anti-inflammatory drugs 

(NSAIDs) have been employed as tocolytic agents that block COX signalling 

cascades. Indometacin, a well characterised NSAID, is widely reported to inhibit 

endogenous PG biosynthesis in vitro (Crankshaw, 2001; Jabbour & Sales, 2004) and 

to remove intrinsic tonus for a stable resting tension (Dong et al., 1986). To determine 

the role of endogenous prostanoids in uterine contractility, myogenic responsiveness 

to PGE2 was assessed relative to the effect of indometacin. 
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Despite the presence of mPGES, COX-1 and COX-2 mRNA in human myometrium 

(Slater et al., 1999; Giannoulias et al., 2002; Sooranna et al., 2006), nonselective 

blockade of COX enzymes with indometacin [1µM] in this study did not influence 

spontaneous contractility or myometrial responses to PGE2. However, at higher 

concentrations, the reported complete abolition of myogenic activity (Sawdy et al., 

2003; Cao et al., 2004) implicates indometacin effects that are unrelated to PG 

production. This was substantiated by its direct attenuation of PGF2α-induced Ca2+ 

release (Landen et al., 2001; Smith & Langenbach, 2001; Sawdy et al., 2003) and 

inhibition of gap junction formation (Garfield et al., 1980). Due to its ambiguous 

mechanisms, the addition of indometacin was omitted from all other functional 

studies. 

PGE2 exhibits diverse effects on smooth muscle contractility via EP1-4 receptor 

subtypes (Coleman et al., 1994), which are likely expressed on uterine myocytes as 

well as the interstitial cells of Cajal. By acting through divergent intracellular 

signalling pathways, a functional complement of heterogeneous uterine EP receptors 

has been identified. In isolated human non-gravid myometrium, time-matched 

vehicles sustained myogenicity throughout the duration of experiments. However, 

challenge with PGE2 produced different types of response curves (Popat & 

Crankshaw, 2001), predominantly consisting of initial contractions before profound 

inhibition of myogenic activity (Senior et al., 1991; Hillock & Crankshaw, 1999; 

Popat & Crankshaw, 2001). In contrast, the observed biphasic response to PGE2 in 

this study was characterised by concentration-dependent inhibition followed by partial 

restoration of contractility. This trend was uniform across the different phases of the 

menstrual cycle.  
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In premenopausal women, circulatory PGE2 increases in conjunction with uterine 

activity at the follicular phase of the cycle (Maslow et al., 2004) and also at 

menstruation (Rees et al., 1984; Adelantado et al., 1998). This corresponds to the 

spatial and temporal expression of PGE synthase, EP4 receptors and COX-2 in human 

epithelial cells (Milne et al., 2001). In ruminant endometrium and myometrium, 

whilst EP4 receptors were undetectable, EP2 mRNA and protein peaked mid-cycle 

(Arosh et al., 2003). EP2 receptor expression correlated well with upregulated 

antiapoptotic genes and vascular endothelial growth factor (VEGF) (Jones et al., 

1998). Due to the associated epithelial cell proliferation, angiogenesis and 

microvascular tube formation, roles of PGE2 in decidualisation, menses, blastocyst 

implantation and embryonic development have been proposed (Lim & Dey, 1997; 

Arosh et al., 2003; Critchley & Saunders, 2009). Little is known of the cyclic 

expression pattern of EP subtypes in human non-gravid tissues. Even so, endothelial 

EP2 and EP4 receptors were expressed throughout the menstrual cycle without 

modulation (Milne et al., 2001) together with the ligand binding affinity of PGE 

(Giannopoulos et al., 1985). If transposed to the human myometrium, this would 

account for the observed consistent functional responsiveness to PGE2. To elucidate 

further uterine EP receptor targets, the effect of PGE2 was compared with selective EP 

analogues. However, due to limited myometrial specimens, tissues recovered from 

different stages of the menstrual cycle were combined. 

Even though PGE2 binds to its receptor subtypes with a rank order of affinity of EP3III 

>EP4 >EP2 >EP1 (Kiriyama et al., 1997; Abramovitz et al., 2000), its actions are also 

dependent on receptor density and signal transduction gain. With the abundant 

expression of EP2 or EP4 subtypes in uterine muscle (Katsuyama et al., 1995), the 

observed inhibitory effects on myogenic activity indicate that either of these EP 
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subtypes were engaged. In addition, treatment with PGE2 evoked a concentration-

dependent increase in cAMP (Arosh et al., 2003); this has been shown to directly 

impair mitogen-activated protein (MAP) kinase activity and Ca2+ signalling for utero-

quiescence (Sanborn et al., 1998).  

To identify the functional significance of EP2 receptors, test compounds included 

butaprost (Gardiner, 1986) and CP533,536 (Li et al., 2003; Paralkar et al., 2003). As a 

methyl ester, butaprost was shown to have a 40-fold lower affinity for EP2 compared 

to the non-commercially available free acid form of the molecule (Abramovitz et al., 

2000). Even so, both butaprost and the pyridyl sulphonamide CP533,536 are well 

documented for high selectivity at the EP2 receptor. Respective Ki values for EP2 were 

110nM and 50nM with negligible binding affinity at other EP or PG receptor subtypes 

(Kiriyama et al., 1997; Li et al., 2003; Paralkar et al., 2003). Accordingly, butaprost 

and CP533,536 were equipotent in this study at attenuating myogenic activity in a 

monophasic concentration-dependent manner. In immersion studies using human and 

guinea pig isolated myometrium, similar utero-relaxant effects were observed for 

butaprost (Hillock & Crankshaw, 1999; Popat & Crankshaw, 2001) and for 

CP533,536 (Lebel et al., 2004; Terry et al., 2007), re-enforcing the presence of 

operative EP2 receptors in non-gravid uterine tissue.  

Functional EP4-mediated responses were distinguished using AGN201734 (Elworthy 

et al., 2004). As a lactam, this synthetic agonist is reported to confer greater than 

1000-fold selectivity for EP4 (Elworthy et al., 2004). Nevertheless, in immersion 

studies, AGN201734 produced biphasic curves with an initial reduction in myogenic 

activity followed by relative excitation. Although its efficacy was lower, the potency 

of AGN201734 was 6-fold higher than butaprost and CP533,536. Contractile 

responses, followed by a period of inhibition, were conversely elicited in superfused 
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myometrial strips. These profiles mimicked the in vitro effects of PGE2 and indicated 

that EP4 receptors contributed to utero-relaxation in fundus end myometrial segments 

with some off-target mechanisms displayed, perhaps at EP1 and EP3 receptors.  

When compared to other EPs, the EP4 receptor is a less compact structure with a long 

intracellular third loop and C-terminus (Regan et al., 1994). Of these receptors, the 

amino acid sequence of the relaxant EP2 and EP4 subtypes exhibit only 38 percent 

homology (Toh et al., 1995). As a result, their signalling pathways are not identical. 

The mechanisms of EP2-induced cAMP accumulation mainly involve phosphorylation 

of glycogen kinase-3 (GSK-3) by protein kinase A (PKA), whereas EP4 receptors also 

activate phosphatidylinositol kinase (Fujino et al., 2005; Fujino & Regan, 2006). This 

downstream activation of IP3 and Ca2+ by EP4 may account for the evoked contractile 

responses to AGN201734. Moreover, murine EP4 receptors contain 38 serine and 

threonine residues. In response to PGE2, these putative phosphorylation sites were 

shown to produce rapid desensitisation (Nishigaki et al., 1996) and internalisation 

(Desai et al., 2000) of EP4 but not EP2 receptors. Deactivation of the EP4 subtype may 

also have contributed to restored myogenic activity with incubations and bolus doses 

of AGN201734. Even so, in order to clarify the identity of EP receptor subtypes, an 

EP4 receptor antagonist was used. 

Although EP4 was purported to be devoid of action (Hillock & Crankshaw, 1999), the 

tested EP4 antagonist AH23848 has since been shown to have moderate selectivity at 

EP4 over EP1-3 and IP receptors (Abramovitz et al., 2000; Jones & Chan, 2001). 

Instead, GW627368x was assayed due its more potent EP4 selectivity in human 

(Wilson et al., 2006), piglet (Wilson et al., 2003) and rabbit (Jones & Chan, 2005) 

preparations. Despite additional TP receptor binding, GW627368x displayed at least 

100-fold greater affinity for EP4 over the other PG receptors (Wilson et al., 2006). 
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This was observed with GW627368x-mediated antagonism of the EP4 receptor 

agonist AGN201734. The rightward displacement of the AGN201734 log 

concentration-effect curve with an estimated pA2 value of 7.5 indicated competitive 

inhibition at EP4 receptors. However, GW627368x did not alter responses to PGE2, 

butaprost or spontaneous contractions in fundus segment tissues strips. Moreover, in 

the presence of the antagonist, PGE2 produced maximal inhibition of the tissue and 

was the most potent agonist tested (pEC50: 8.4 ± 0.2M). This implies that, despite the 

presence of EP4 receptors, the EP2 subtype is predominantly involved in PGE2-

induced utero-relaxation. 

To evaluate the contribution of excitatory EP receptors, concentration-effect curves 

for sulprostone (Schaaf et al., 1981) and ONO-D1-004 (Oka et al., 2003) were 

constructed. Despite high affinities for EP1 and FP receptors, sulprostone is most 

potent at EP3 (Coleman et al., 1994; Kiriyama et al., 1997; Abramovitz et al., 2000). 

By contrast, ONO-D1-004 displays 70-fold higher selectivity at EP1 than at the other 

EP receptors (Oka et al., 2003). In accord with previous functional studies, 

sulprostone evoked significant myometrial contractility (Senior et al., 1991; Popat & 

Crankshaw, 2001). However, ONO-D1-004 produced negligible uterotonic effects. 

This may be attributed to the lower binding affinity of ONO-D1-004 compared to 

sulprostone with respective Ki values of 150nM and 0.6nM at EP1 (Oka et al., 2003) 

and EP3 receptors (Kiriyama et al., 1997). Even so, activation of the EP3 subtype is 

consistent with the greater EP3 mRNA expression relative to EP1 receptors (Astle et 

al., 2005; Sugimoto & Narumiya, 2007). On the basis of contraction, these results 

indicate that EP3 receptors are predominant in non-gravid human myometrium and 

may contribute to the excitatory component of PGE2 responses. Nevertheless, the 



  Chapter Three: Non-pregnant 

  Page 80
  

profound utero-relaxation exerted by PGE2 implicates that inhibitory EP-coupled 

pathways exceed EP1 and EP3-mediated effects within this tissue.  

The polarity of functional EP receptors was compared in upper and lower segment 

human myometrium harvested at the follicular phase of the menstrual cycle. Marked 

relaxatory responses to PGE2, butaprost and AGN201734 were displayed in lower 

segment tissues relative to the fundus. The differences in spontaneous activity may 

have potentiated this regional effect, whereas excitatory responses to the highest 

concentration of these agonists were absence from lower segment uteri. Along the 

length of the uterus, however, functional EP3 and EP1 receptors were manifest with an 

identical contractile profile stimulated by sulprostone.  

In longitudinal sections, uterine smooth muscle density depreciates from the fundus-

corpus area to the lower segment in parallel with a decrease in PGE-binding affinity 

(Hofmann et al., 1983; Giannopoulos et al., 1985). This gradient conversely reflects 

blood flow into the lower uterus before distribution to the fundus. During the peri-

ovulatory phase, the intrinsic intensity of lower uterine peristalsis and EP1 and EP3-

mediated effects may aid retrograde contractions. As the concentration of PGE2 in 

seminal plasma is considerable (Templeton et al., 1978; Muller et al., 2006), this 

could facilitate the transport of sperm towards the distal end of the fallopian tubes. 

Although the topographical distribution of EP receptors in the non-gravid uterus is not 

well defined, only genetic EP2 knockout mice exhibit ovulation, fertilisation and peri-

implantation defects (Tilley et al., 1999). Therefore, EP2 receptors are a vital 

prerequisite for the successful establishment of pregnancy. 

Anatomical responsiveness to PGF2α and U46619, a stable thromboxane mimetic 

(Coleman et al., 1994), were also investigated in follicular stage non-gravid human 

myometrium. These spasmogens enhanced myogenic contractions in a concentration-
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dependent manner. As in previous immersion (Word et al., 1992; Hutchinson, 2005; 

Janicek et al., 2007) and superfusion (Rees et al., 1984; Senior et al., 1992) studies, 

the contraction profiles displayed an initial tonic increase in force magnitude followed 

by a marked rise in frequency. Responses to both PGF2α and U46619 were of similar 

potency, with greater FP and TP-mediated activity in lower compared to upper 

segment myometrium. For PGF2α, this was contrary to the reported functional uterine 

FP topography in the rat (Oropeza et al., 2002), mouse (Griffiths et al., 2006) and 

porcine myometrium (Cao et al., 2005). In human tissues, the gradient of uterine 

PGF2α binding sites also decreased from the fundus to the lower uterine body 

(Hofmann et al., 1983; Giannopoulos et al., 1985). However, polarised regional FP-

mediated effects appear to be reduced under oestrogen-primed conditions (Word et 

al., 1992; Griffiths et al., 2006). This might explain the observed PGF2α sensitivity 

superimposed on the higher intrinsic contractions of cervical region tissues in this 

study. 

Both PGE2 and PGF2α are principal metabolites of the human endometrium. As well 

as a peak in PGF2α output (Downie et al., 1974), maximal FP receptor expression and 

signalling have been identified in endothelial and perivascular cells during the 

follicular phase of the menstrual cycle (Milne & Jabbour, 2003). This promotes 

endometrial thickening in case of ovum fertilisation (Milne & Jabbour, 2003) and 

luteal regression under non-pregnant conditions (Sugino et al., 2004). Moderate 

activity in the upper uterine region may also facilitate blastocyst implantation. 

However, PGF2α consistently stimulates myometrial contractions with the greatest 

uterotonic contractions at menses (Rees et al., 1984; Myatt & Lye, 2004; Hutchinson, 

2005). This is speculated to facilitate the expulsion of endometrial debris from the 

uterine lumen. Activation of FP receptors by PGF2α results in tyrosine 
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phosphorylation, phosphatidylinositol hydrolysis and subsequent intracellular Ca2+ 

flux. Even so, at high concentrations, PGF2α can also bind with EP1, EP3 and TP 

receptors (Coleman et al., 1994; Narumiya et al., 1999; Breyer et al., 2001). Whilst 

functional EP receptor interactions have not yet been confirmed, responses to PGF2α 

remain unaltered in the presence of selective TP antagonists (Hutchinson, 2005; 

Griffiths et al., 2006). This indicates that the excitation evoked by PGF2α is not due to 

off-target TP activity.  

U46619 is a potent and stable thromboxane A2 mimetic (Coleman et al., 1994) with 

full contractile activity in non-gravid uterine smooth muscle preparations (Senior et 

al., 1992; Senchyna & Crankshaw, 1999; Hutchinson, 2005). At putative TP receptors 

(Kiriyama et al., 1997; Abramovitz et al., 2000), TP receptor antagonists reduced 

U46619-induced excitation in isolated myometrial strips (Hutchinson, 2005; Griffiths 

et al., 2006). This confirms the operational expression of TP receptors in the human 

uterus.  

Responsiveness to U46619 increased from the fundus towards the cervix in this study. 

In contrast, TP receptor activation was reported to be homogeneous in non-gravid 

human myometrium regardless of tissue excision site (Senchyna & Crankshaw, 1999). 

As differences in spontaneous contractility were not mentioned, anatomical variations 

may reflect the mechanical properties of the uterus. Even so, it is likely that the 

hormonal milieu could also account for these regional effects. Progesterone is 

associated with a decrease in TP receptor mRNA (Minshall et al., 2001) and TP 

binding affinity (Swanson et al., 1992). However, in porcine uterine muscle, the 

fundus-corpus area has more abundant TP receptors with lower binding affinity than 

cervical end tissues (Cao et al., 2004). Since two TP isoforms exist (Hirata et al., 

1991; Raychowdhury et al., 1994), their expression ratio may account for regional 
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contractile effects. As a result, the roles of thromboxane in myometrial contraction, 

vascular tone and vascular haemostasis are likely to be intricately regulated. This 

could be important for reducing menstrual blood loss during menses (Dawood & 

Khan-Dawood, 2007). Nevertheless, FP and TP-deficient mice were fertile (Sugimoto 

et al., 1997; Kobayashi & Narumiya, 2002), indicating supportive rather than essential 

roles in non-pregnant reproductive processes. 

In summary, this study confirms the heterogeneous array of functional EP, FP and TP 

receptors in the non-gravid human myometrium. Despite the gradient of spontaneous 

myometrial activity, responses to PGE2 were consistent throughout the menstrual 

cycle and along the length of the uterus. This indicates that the complement of 

inhibitory to excitatory EP subtypes does not alter topographically. In accord with 

crucial effects on fertility (Tilley et al., 1999), PGE2-induced utero-relaxation was 

predominantly mediated by the EP2 receptor. Conversely, the spasmogens PGF2α and 

thromboxane stimulated contractions. Enhanced TP and FP responsiveness related to 

the greater phasic motility at the lower segment of the uterus during the follicular 

phase of the cycle. This may facilitate retrograde contractions for successful oocyte 

fertilisation and implantation of the blastocyst. A balance in these PG receptor 

populations is likely to contribute to the total function of the uterus. 
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Chapter 4: Term pregnancy 
 

Functional prostanoid receptors in isolated myometrium at term pregnancy 
 

 

4.1 Introduction 

Throughout the majority of pregnancy the uterus is maintained in a state of functional 

quiescence. As term approaches, integrated changes in hormonal, chemical and 

mechanical signals transform uterine contractures to contractions. This is mediated by 

the upregulated cascade of genes for CAPs, which include connexin-43, ion channel 

proteins and agonist-mediated receptors (Challis et al., 2000). As a result, the uterus is 

primed for parturition.  

Myometrial prostanoid receptor proteins mediate responses via G-proteins coupled to 

distinct and complex signal transduction pathways (Coleman et al., 1994; Narumiya et 

al., 1999). Despite their similarities in structure, DP, EP2, EP4 and IP receptors inhibit 

smooth muscle activity whilst EP1, EP3, FP and TP receptors mediate contraction. 

Functional studies on the isolated human myometrium have characterised 

heterogeneous DP, EP2, EP3, FP, IP and TP receptor subtypes at term pregnancy 

(Senior et al., 1993; Hutchinson, 2005). However, responses have been difficult to 

distinguish pharmacologically due to a paucity of highly potent and selective PG 

ligands (Wilson et al., 2004). With the development of novel agonists and antagonists 

and the donation of tissue at elective Caesarean section, the aim of the present study 

was to characterise further functional PG receptors in isolated late gestational 

myometrium, taken prior to labour-onset (38-41 weeks). 
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Chapter 4.2: Results 
 

 

 

4.3 Myometrial activity of isolated term gravid tissues 

After equilibration, spontaneous regular contractions developed in lower myometrial 

segments from non-labouring, term pregnant donors (39.3 ± 0.4 weeks gestation). 

This phasic activity was maintained by vehicle controls (Figures 2.4b & 2.15b) with 

contractile episodes of 2-3 minutes duration, followed by relatively longer periods of 

quiescence. The mean amplitude and frequency of contractions were relatively 

uniform regardless of patient clinical profiles. This included factors such as ethnicity, 

smoking, hypertension and diabetes (Table 4.1). Whilst increased parity tended to 

reduce the contractile frequency, a history of abortions or miscarriages was associated 

with transitory contractions at lower amplitude (F (5, 283) = 2.84; p<0.05) (Figure 

4.1). Nevertheless, variations in spontaneous activity were analogous between 

myometrial strips from the same and different biopsies with mean coefficents of 

variance at 17.1 and 16.8 percent respectively. Of the 757 myometrial strips 

investigated using the immersion technique, 5.4 percent were devoid of myogenic 

activity; these were excluded from the dataset. 
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Table 4.1: Contractility exhibited by immersed myometrial strips from term pregnant, non-laboring patients. Donor groups were distinguished by 
different ethnic, social and pathophysiological backgrounds with results measured over 30-minute periods of phasic activity after equilibration 
and expressed as arithmetic means ± S.E. Measurements of % hypotonic shock, amplitude and frequency of myogenic contractions were 
uniform, regardless of donor groups. 
 

Patient info: White Indian subcontinents Black Non-smokers smokers diabetics Hypertensives 
number: 10 7 4 10 10 3 3 
% hypotonic shock 48.0 ± 2.50 48.7 ± 2.97 54.5 ± 5.93 46.5 ± 2.29 47.3 ± 2.49 49.0 ± 0.67 46.5 ± 6.73 
Amplitude (g) 5.4 ± 0.43 5.3 ± 0.40 5.0 ± 0.76 5.5 ± 0.72 5.2 ± 0.32 5.4 ± 0.34 5.4 ± 0.90 
Frequency (/ 30 mins)   3.0 ± 0.19 3.4 ± 0.63 3.5 ± 0.58 3.3 ± 0.28 3.6 ± 0.40 3.3 ± 0.75 3.3 ± 0.54 

 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1: The a) % hypotonic shock and b) amplitude and frequency of spontaneous contractions exhibited by myometrial strips from term 
pregnant donors who had previously experienced abortions/ miscarriages (Ab/Mis), none or up to six previous live births (n=42). After 
equilibration in the immersion apparatus, regular phasic activity was measured for 30 minutes (area under the curve) with data expressed as 
arithmetic means ± S.E. Univariate analysis showed significance; *p<0.05 compared to myometrium from nulli and primiparous women. 

a) b) 
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4.4 Myometrial EP receptors at term pregnancy 

In lower segment uteri obtained from term pregnant, non-labouring donors, PGE2  

(10-10M to 10-5M) evoked a predominant inhibitory effect on myogenicity via a 

reduction in the amplitude of myometrial contractions (F (1, 92) = 23.86; p<0.01; 

Figure 4.2). Myogenic activity was attenuated by 40 percent and some excitation was 

observed at 10-5M. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2: Concentration-effect curves and representative traces for a) vehicle and b) 
PGE2 in isolated uterine muscle obtained from non-labouring term pregnant donors 
(n=9). Vehicle and PGE2 (10-10M to 10-5M) were added to immersion baths in a 
cumulative manner at 30-minute intervals. Results are expressed as arithmetic means 
± S.E. and data were analysed using a two-way ANOVA mixed model with 
Bonferroni’s post-hoc test; **p<0.01 compared to the time-matched vehicle control. 
 
 

 8g

30 minutes

Hypotonic 
shock 10-7M 10-6M 10-5M 

 7g

Hypotonic 
shock saline ethanol saline

a)  

b)  



  Chapter Four: Term pregnancy 

  Page 88
  

4.5 Inhibitory effects of EP2 agonists on myogenic activity 

The EP2 receptor agonists butaprost, CP533,536, AH13205 and AGN211330 

attenuated myogenic activity in a monophasic concentration-dependent manner in 

immersed myometrial strips obtained at term pregnancy. Butaprost and CP533,536 

produced a gradual decline in contractility with the complete cessation of activity at 

10-5M in some tissue strips (F (2, 137) = 29.65; p<0.001; Figure 4.3a).  

Compared to the maintained activity of vehicle controls, AH13205 and AGN211330 

predominantly suppressed contractions between 10-6M and 10-5M (F (5, 60) = 9.64; 

p<0.001; Figure 4.3b). This corresponded to their weaker potency values in relation to 

butaprost and CP533,536 (Table 4.2). Even so, none of the EP2 mimetics evoked 

excitatory responses in isolated term gestational myometrium. 

 

 

4.6 EP4 agonist effects on myogenic activity 

The concentration-effect curves for the EP4 mimetics AGN201734 and L-902688 

exhibited different responses in myometrial strips obtained at term pregnancy.  

AGN201734 induced a biphasic response, progressively inhibiting spontaneous 

activity (F (1, 59) = 5.15; p<0.05; Figure 4.4) until contractions were stimulated at  

10-5M. However, L-902688 produced no significant effect compared to vehicle, 

despite the decrease in contractile activity at 10-5M from 45.8 ± 3.30 to 39.0 ± 3.57 

percent hypotonic shock (F (1, 41) = 0.43; ns; Figure 4.4). 
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Figure 4.3: Vehicle, concentration-effect curves and typical traces for EP2 agonists    
a) butaprost, b) C533,536, c) AGN211330 and d) AH13205 on immersed lower 
segment myometrium taken at term gestation (n=6-10). Responses were measured 
over a 30-minute period as area under the curve, expressed as percentage hypotonic 
shock and presented as arithmetic means ± S.E. Statistical significance was 
determined by two-way ANOVA with Bonferroni’s post-hoc test; **p<0.01 for 
AGN211330 and ***p<0.001 for butaprost, CP533,536 and AH13205 compared with 
time-matched vehicle controls.  
 
 
Table 4.2: Mean pIC50 values (M) and percentage reduction in myogenicity for EP2 
agonist concentration-effect curves in immersed myometrium from term pregnant, 
non-labouring donors (n=4-10). 
 

Agonists: butaprost CP533,536 AH-13205 AGN211330 
pIC50 6.78 ± 0.26 6.62 ± 0.44 5.84 ± 0.56 5.73 ± 0.54 
% decrease 54.9 72.7 59.4 39.5 
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Figure 4.4: Vehicle and the concentration-effects of EP4 agonists AGN201734 and   
L-902688 in isolated myometrium obtained at term pregnancy, not in labour (n=4-6). 
Agonists were added in a cumulative manner to immersion baths at 30-minute 
intervals with responses measured as area under the curve as a percentage of 
hypotonic shock. Data are expressed as arithmetic means ± S.E. and statistical 
analysis was performed using two-way ANOVA with Bonferroni’s post-hoc test; 
*p<0.05 for AGN201734 compared with responses to vehicle.  
 
 
 
The effects of PGE2, butaprost and AGN201734 were also demonstrated in 

myometrial strips obtained from non-labouring donors using the superfusion 

technique (Figure 4.5). Unlike the immersion baths, responses were immediate and 

myogenic activity was restored before the addition of successive agonist 

concentrations. Bolus doses of PGE2 and AGN201734 produced a biphasic effect, 

consisting of an initial contraction followed by a period of inhibition at all doses 

tested. Whilst AGN201734 delayed contractions for up to 37.4 ± 23.62 minutes (F (1, 

24) = 10.34; p<0.01), the period of inhibition was extended by a third with doses of 

PGE2 (F (1, 24) = 54.50; p<0.001). Butaprost did not evoke tissue excitation and, at 

the highest dose of 3x10-7mol, activity was suppressed for 75.5 ± 20.37 minutes (F 

(1,30) = 22.85; p<0.001). Maximal responses to EP agonists were not achieved due to 

the restricted volume of bolus doses that could be administered into the superfusate.  
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Figure 4.5: Vehicle and inhibitory dose-response curves with representative traces for 
a) PGE2, b) butaprost and c) AGN201734 in isolated myometrium from term 
pregnant, non-labouring donors (n=4). Tissue strips were suspended in superfusion 
baths with bolus doses of agonist and vehicle administered into the superfusate after a 
contraction of similar magnitude to the myogenic activity. Results are expressed as 
arithmetic means ± S.E. and two-way ANOVA with Bonferroni’s post-hoc test 
showed statistical significance; *p<0.05; **p<0.01; ***p<0.001 for EP agonists 
compared to vehicle. 
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4.7 Excitatory EP agonists on myogenic activity 

In immersion baths, whilst myogenicity was not affected by the EP1 agonist ONO-D1-

004 (F (5, 54) = 0.245; ns), the EP3/1 agonist sulprostone evoked a 27.8 percent 

increase in the frequency and amplitude of contractions (F (1, 72) = 8.90; p<0.01; 

Figure 4.6). This excitatory response reached 59.4 ± 2.59 percent hypotonic shock at 

10-6M.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.6: Vehicle and concentration-effect curves (10-10M to 10-5M) for the EP1/EP3 
agonists sulprostone and ONO-D1-004 in isolated myometrium taken at Caesarean 
section from non-labouring donors (n=4-7). Treatments were added to individual 
organ baths and, every 30 minutes, agonist or vehicle applications were measured as 
area under the curve. Data are expressed as a percentage of the final contraction 
induced by hypotonic shock and analysed using two-way ANOVA with post-hoc 
Bonferroni’s adjustment; **p<0.01 for sulprostone compared to vehicle.  
 
Traces represent the typical myometrial responses to a) vehicle, b) sulprostone and    
c) ONO-D1-004 in tissue strips obtained at term pregnancy. 
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Using the superfusion technique, sulprostone displayed a monophasic contractile response (Figure 4.7). Following bolus doses of sulprostone, 

contractions increased by 54.0 percent to reach 61.2 ± 8.21 percent hypotonic shock at 10-7mol (p<0.01). Although resultant contractions were 

quantitatively of a similar magnitude to immersion, the overall increase was more pronounced in superfusion experiments.  

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.7: Vehicle and dose-response curves to bolus doses of the EP3/1 agonist sulprostone in isolated myometrium obtained from term 
pregnant, non-labouring donors (n=4). Responses were measured over a 30-minute period (area under the curve) and expressed as a percentage 
of hypotonic shock. Data are arithmetic means ± S.E. and two-way ANOVA with Bonferroni’s post-hoc test indicated statistical significance; 
**p<0.01 compared to vehicle.  
 

Representative traces show vehicle and dose-related excitation evoked by sulprostone added at the time points indicated by the arrows.

30 minutes
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Table 4.3: Mean pIC50 values (M) and percentage decrease in myogenicity for 
concentration-effect curves to EP agonists (10-10M to 10-5M) using immersed 
myometrial strips in the presence (treated) and absence (control) of the EP4 antagonist 
GW627368x (10-6M). Isolated human myometrium was obtained from donors at term 
pregnancy (n=3-6). Results are expressed as arithmetic means ± S.E. and significance 
was determined using paired t-tests; **p<0.01 for treated compared to control pEC50 
values of AGN201734.  
 

Control Treated 
EP agonists 

pIC50 % decrease pIC50 % decrease 
PGE2 8.4 ± 0.37 33.6 8.4 ± 0.36 36.8 
Butaprost 7.1 ± 0.47 47.0 7.5 ± 0.51 46.5 
CP533,536 6.6 ± 0.44 73.1 7.4 ± 0.92 60.6 
AGN211330 7.2 ± 1.62 41.1 6.5 ± 0.20 34.0 
AH13205 6.2 ± 0.53 54.9 6.9 ± 1.10 44.2 
AGN201734 8.4 ± 0.50 29.7      6.2 ± 0.35** 15.9 
L-902688 7.3 ± 0.64 20.8 6.6 ± 0.56 24.8 
 
 
 
 
4.8 EP agonists in the presence and absence of GW627368x 

In order to more fully characterise the EP receptors, EP agonists were tested in the 

presence of the EP4 antagonist GW627368x. At 10-6M, GW627368x did not 

significantly alter the spontaneous activity of immersed human myometrial strips 

obtained at term pregnancy (Figure 4.8). Likewise, GW627368x did not modify the 

profile of PGE2-induced contractions nor the maximal inhibitory effects of the EP2 

agonists butaprost, CP533,536, AGN211330 and AH13205 (F (10, 43) = 1.70; ns; 

Table 4.3; Figure A5).  

With EP4 agonists, despite the lack of effect of L-902688, GW627368x produced a 

rightward displacement of the AGN201734 concentration-effect curve, sustaining 

activity between 10-8M to 10-6M. The pA2 value was estimated at 8.1 and the pIC50 

value for AGN201734 was significantly attenuated in the presence of the EP4 

antagonist (F (5, 5) = 2.51; p<0.01; Table 4.3). 
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Figure 4.8: Vehicle and responses to PGE2, AGN201734 and L-902688 in the 
presence and absence (control) of the selective EP4 antagonist GW627368x (10-6M) in 
isolated human myometrium taken at term pregnancy (n=3-6). Agonist concentration-
effect curves were performed in immersion baths at 30-minute intervals and expressed 
as percentage of the final contraction induced by hypotonic shock. Results are 
arithmetic means ± S.E. 

a) b) 

c) d) 
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4.9 EP agonists in the presence and absence of AH6809 

Due to its lack of specificity, the EP1, EP2, EP3 and DP antagonist AH6809 was used 

at a concentration of 10-5M. The presence of AH6809 alone did not affect tissue 

myogenicity (F (1, 83) = 0.10; ns; Figure 4.9). However, AH6809 significantly 

antagonised PGE2, producing a rightward displacement of the biphasic curve with an 

estimated pA2 value of 7.2 (Figure 4.9; Table 4.4). Unlike PGE2 alone, AH6809 fully 

inhibited the contractile response characteristically produced at 10-5M (F (1, 59) = 

5.01; p<0.001). 

Each EP2 agonist elicited concentration-dependent inhibitory effects in the rank order 

of potency: butaprost > CP533,536 > AH13205 > AGN211330 (Table 4.4). In the 

presence of AH6809, activities were shifted rightwards and similar monophasic 

inhibitory curves were produced for butaprost, CP533,536 and AH13205 (Figure 

4.10) with pA2 values of about 5.5. This displacement was significant for CP533,536 

at 10-6M (F (1, 60) = 13.16; p<0.05). Even so, the effect of AH6809 was more 

pronounced with AGN211330, preventing the typical decline in activity at 10-5M (F 

(1, 36) = 8.06; p<0.01; Figure 4.10). 

AH6809 did not antagonise either of the EP4 agonists AGN201734 or L-902688 and 

had no effect on the EP1 agonist ONO-D1-004. Although the excitation evoked by 

sulprostone was potentiated in the presence AH6809, this response was variable (F (1, 

60) = 1.99; ns; Figure A6; Table 4.4). 
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Table 4.4: Relative pEC50 values (M) and the percentage change in activity for EP 
agonists determined in isolated lower segment myometrium obtained at Caesarean 
section from non-labouring donors (n=4-8). Agonists were added to parallel 
myometrial strips in the absence (control) or presence (treated) of the EP1, EP2, EP3 
and DP receptor antagonist AH6809 (10-5M). Data are shown as arithmetic means ± 
S.E. and statistical analysis was performed using paired t-tests; *p<0.05 for % change 
in AGN211330; ***p<0.001 for PGE2 pEC50 values of control compared with treated 
groups. 
 

Control Treated 
EP agonists 

pEC50
+ % change pEC50 % change 

PGE2 8.4 ± 0.37 33.6     6.0 ± 0.25*** 61.6 
butaprost 7.1 ± 0.47 47.0 6.2 ± 0.33 57.7 
CP533,536 6.6 ± 0.44 73.1 5.5 ± 0.21 66.4 
AGN211330 5.8 ± 0.56 41.1 5.1 ± 1.20 1.5* 

AH13205 6.4 ± 1.23 54.9 6.2 ± 0.71 52.8 
AGN201734 8.1 ± 0.34 29.7 7.7 ± 0.06 28.5 
L-902688 7.3 ± 0.64 20.8 7.7 ± 0.39 19.5 
Sulprostone 7.4 ± 0.64 20.6 8.2 ± 0.39 44.7 
ONO-D1-004 7.3 ± 0.35 5.6 7.8 ± 0.82 7.5 
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Figure 4.9: Vehicle and concentration-effect curves for PGE2 in the absence (control) 
and presence of the EP1, EP2, EP3 and DP receptor antagonist AH6809 (10-5M) in 
myometrial strips from term pregnant, non-labouring donors (n=6-8). Vehicle and 
PGE2 (10-10M to 10-5M) were added to immersion baths at 30-minute intervals with 
myometrial activity expressed as a percentage of the final contraction induced by 
hypotonic shock. Results are arithmetic means ± S.E. and statistical analysis was 
performed using two-way ANOVA with Bonferroni’s adjustment; ***p<0.001 for 
PGE2 compared to PGE2 incubated with AH6809.  
 
Representative traces showing the effects of vehicle and PGE2 in the absence (a, c) 
and presence (b, d) of AH6809 (10-5M) on isolated late gestational myometrium. 
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Figure 4.10: In vitro utero-relaxant effects of the EP2 agonists a) butaprost,                
b) CP533,536, c) AGN211330 and d) AH13205 in human lower segment 
myometrium obtained from term pregnant, non-labouring women (n=4-8). EP 
agonists (10-10M to 10-5M) were added in a cumulative manner at 30-minute intervals 
to isolated myometrial biopsies either alone (control) or in the presence of AH6809 
(10-5M). Results are expressed as arithmetic means ± S.E. and statistical analysis was 
performed using two-way ANOVA with Bonferroni’s post-hoc test; *p<0.05; 
**p<0.01 compared to control EP myogenic activity.  

a) b) 

c) d) 
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4.10 Contractile EP agonists in the presence and absence of AGN211329 

At 10-6M, the EP3 antagonist AGN211329 maintained myogenic activity at 47.5  ± 

6.89 percent hypotonic shock in vehicle-treated myometrial strips from term pregnant, 

non-labouring donors (Figure 4.11). Although the inhibitory phase of PGE2-induced 

activity was extended by 13.4 percent in the presence of AGN211329, the excitation 

exhibited at 10-5M was equivalent (F (1, 47) = 0.94; ns). Likewise, responses to 

sulprostone and ONO-D1-04 were not altered by AGN211329. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.11: a) Vehicle and concentration-effect curves (10-10M to 10-5M) for b) PGE2 
and the EP1/3 agonists c) sulprostone and d) ONO-D1-004 in isolated late gestational 
myometrium from donors not in labour (n=3-6). Increasing concentrations of EP 
agonists were added to parallel immersed myometrial strips either alone or in the 
presence of the EP3 antagonist AGN211329 (10-6M). Activity was determined over 
30-minute periods (area under the curve) and expressed as percentage hypotonic 
shock. Data are shown as arithmetic means ± S.E. 

a) b) 

c) d) 
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4.11 Relative uterotonic effects of PGF2α and U46619 

The spasmogens PGF2α and U46619 increased both the amplitude and frequency of 

phasic contractions without elevating the muscle tonus in myometrium from term 

pregnant, non-labouring donors. Using immersed myometrial strips, PGF2α elicited an 

excitatory monophasic response (Figure 4.12). This reached 77.1 ± 6.3 percent 

hypotonic shock, which was significant compared to sustained myogenicity with time-

matched controls (F (1, 55) = 26.55; p<0.001). Using the superfusion technique, 

contractions were evoked immediately after bolus doses of PGF2α. In contrast to 

immersion, enhanced activity was sigmoidal in shape, reaching 64.4 ± 2.64 percent 

hypotonic shock at 10-7mol (F (1, 60) = 49.66; p<0.001).  

U46619 augmented myogenic activity to 137.6 ± 19.2 percent hypotonic shock, which 

was nearly 2-fold higher than the concentration-effect curves generated by PGF2α. 

When added to the same organ bath, U46619 and PGF2α did not produce synergistic 

effects (Figure 4.14). In addition to the increase in amplitude, U46619 enhanced the 

duration of contractions and between 10-6M and 10-5M responses were potentiated (F 

(1, 55) = 83.56; p<0.001).  

 

4.11.1 Antagonism of U46619 with SQ29,548 and GR32191B 

Whilst the TP antagonists SQ29,548 (10-6M) and GR32191B (10-6M) had no effect on 

myogenicity, each suppressed U46619 concentration-effect curves in immersed and 

superfused isolated term gestational myometrium (Figures 4.15 & 4.16) with 

estimated pA2 values of 6.5 and 7.0 respectively. The reduction in U46619-induced 

contractility was notable with the addition of TP antagonists between repeated doses 

of U46619. 
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Figure 4.12: Vehicle, concentration-effect curves and typical traces for PGF2α in 
myometrium from term pregnant, non-labouring donors set-up using a) immersion 
(n=7) and b) superfusion techniques (n=7). PGF2α was respectively added in a 
cumulative manner to immersion baths and administered as bolus doses to the 
superfusate. Results are expressed as arithmetic means ± S.E. and statistical 
significance was determined using two-way ANOVA with Bonferroni’s post-hoc test; 
*p<0.05; ***p<0.001 for PGF2α compared with vehicle. 
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Figure 4.13 Representative traces showing the excitatory effects evoked by PGF2α 
compared to the thromboxane mimetic U46619 in myometrium from term pregnant 
donors, before labour-onset. Agonists were added at 30-minute intervals to the 
immersion apparatus.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.14: Concentration-effect curves for the uterotonin U46619 a) alone or in the 
presence of either TP antagonist b) SQ29,548 (10-6M) or c) GR32191B (10-6M) in 
myometrium from term pregnant, non-labouring donors (n=6-7). U46619 (10-9M to 
10-5M) was added to immersion baths in a cumulative manner and maximal responses 
for excitation are expressed as percentage hypotonic shock. Data were analysed using 
two-way ANOVA mixed model with Bonferroni’s post-hoc adjustment and expressed 
as arithmetic means ± S.E.; *p<0.05; ***p<0.001 significant attenuation by 
aSQ29,548 and bGR32191B compared with U46619 alone. 
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Figure 4.15: Concentration-effect curves for U46619 in the absence (control) and presence of the TP receptor antagonists SQ29,548 (10-8mol) or 
GR32191B (10-8mol) in myometrial strips from term pregnant, non-labouring donors (n=4-8). Bolus doses of U46619 (10-11mol to 10-7mol) 
were added to the superfusate immediately after myogenic contractions with activity expressed as a percentage of the final contraction induced 
by hypotonic shock. Results are arithmetic means ± S.E. and statistical analysis was performed using two-way ANOVA with Bonferroni’s 
adjustment; *p<0.05; **p<0.01; ***p<0.001 for U46619 alone compared to tissues superfused with aSQ29,548 and bGR32191B.  
 
Representative traces show the excitatory responses evoked in isolated gestational myometrium by a) repeated doses of U46619 (10-8mol) and  
b) antagonised by the addition of GR32191B (10-6M) into the superfusate. 
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 Chapter 4.12: Discussion 
 

 

The results show that late gestational human myometrium exhibited spontaneous and 

agonist-induced contractions in functional in vitro studies. Compared to the non-

gravid state (Chapter 3), myometrial tissue had been subjected to hypertrophy, 

hyperplasia and stretching due to the 400-fold increase in uterine volume during the 

course of pregnancy (Shynlova et al., 2010). The consequential changes in cell 

signalling and mechanotransduction pathways were manifested as well-defined 

intrinsic contractions in immersion and superfusion systems. This may reflect the 

lower segment uterine function to prevent premature delivery of the foetus. Even so, 

due to a lack of definitive markers, the imminent timing of parturition and related 

preparatory stage of tissues were unknown in this study. 

In spite of differences in donor clinical profiles, variations in myogenic activity did 

not relate to groups at high risk of preterm labour, including heavy smoking status and 

those with pathophysiological conditions. This indicates that compensatory changes in 

uterine physiology are responsible for pregnancy maintenance. Compared to 

uncomplicated normal pregnancies, isolated myometrium from diabetics have 

previously been shown to achieve similar isometric forces (Kaya et al., 1999). 

Likewise, the increased vascular resistance in preeclamptic pregnant women was 

related to peripheral rather than myometrial blood vessels (Wimalsundera et al., 

2005). This suggests that the haemodynamic changes to the uterus during pregnancy 

may minimise inter-donor variations. 

Spontaneous contractions of myometrial strips were also not affected by donor parity. 

The distension of the parturient uterus at term to fill almost the entire abdominal 

cavity may have standardised differences between individuals. Similarly, no 
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correlation was found between patient parity and the peak frequency of in vivo uterine 

electromyograph recordings (Maner et al., 2003). Even so, the contractile amplitude 

of isolated myometrium was relatively attenuated in women with a history of previous 

abortions or miscarriages. The timing and manner of pregnancy termination was not 

disclosed on patient information forms but accounted for 26 percent of donors.  

Distinct contractile profiles between and within donor tissues reflected differences in 

myometrial tensile strength (Buhimschi et al., 2006). This included variations in 

muscle content, the distribution and number of PG receptors, gap junctions, ion 

channel proteins, pacemaker cells, signal transduction pathways and endogenous PG 

production. In particular, the upregulated decidual synthesis of PGE2 and PGF2α has 

been reported for miscarriage and for preterm labour (Calder, 1990). This suggests 

that an aberrant release of endogenous PGs may be responsible for changes in uterine 

motility leading to pregnancy-related disorders. 

Increasing intrauterine PGE2 synthesis during the third trimester of pregnancy 

implicates its pivotal role for regulating myometrial tonus (Soloff, 1989). This was 

demonstrated in the present study by use of PGE2 and selective analogues for EP1-4 

receptors. In immersed myometrium taken from term pregnant, non-labouring donors, 

PGE2 attenuated contractions in a concentration-dependent manner followed by 

relative tissue excitation. Bell-shaped responses to PGE2 were also observed using 

superfusion techniques and corroborated previous functional studies (Word et al., 

1992; Senior et al., 1993). 

In lower segment myometrium, PGE2 was the most potent agonist tested with 

predominant utero-relaxatory effects (pEC50: 8.4 ± 0.37M). To mediate inhibition, 

PGE2 has been shown to augment intracellular cAMP in human myometrial cells 

(Oger et al., 2002; Asboth et al., 1997), suggesting the involvement of Gαs coupled 
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EP2 and EP4 receptors. Due to their common pathways and co-localisation, the 

physiological significance of these receptors remains obscure. Nevertheless, higher 

proportions of serine and threonine residues in the carboxyl-terminal tail of EP4 

distinguish it from EP2 (Regan et al., 1994). Accordingly a variety of selective 

agonists have been developed, which were used to determine the relative effects of 

EP2 and EP4 in isolated myometrial tissue. 

For EP2, the selective agonists assayed included butaprost (Gardiner, 1986), 

CP533,536 (Li et al., 2003; Paralkar et al., 2003), AH13205 (Coleman et al., 1994) 

and AGN211330 (Belley et al., 2005). The EP2 analogue butaprost was synthesised 

by replacing the α-carboxylic moiety with a methyl ester. In contrast, CP533,536 was 

a non-prostanoid pyridyl sulfonamide, AH13205 a heptanoic acid and AGN211330 an 

ortho-substituted cinnamic acid. Using myometrial strips in this study, the rank order 

of potency for EP2-mediated inhibition was butaprost = CP533,536 > AH13205 > 

AGN211330. In accordance with superfusion, butaprost attenuated activity in a 

monophasic concentration-related manner (Senior et al., 1993; Duckworth et al., 

2002). Although these studies employed the commercially available methyl ester, 

cellular de-esterification of butaprost to its free acid form would have enabled 

butaprost to attain full agonist potency (Abramovitz et al., 2000; Wilson et al., 2004; 

Alexander et al., 2007). The EP2 agonist, AH13205 only possessed modest affinity at 

EP2 receptors, but was essentially inactive at human EP1 and EP3 receptors (Coleman 

et al., 1994). The decline in activity with AH13205 indicated functional EP2 receptors 

in the isolated myometrium. In addition, AGN211330 was identified as a full EP2 

agonist, with some TP receptor activity (Belley et al., 2005). However, the low 

potency in this study (pEC50: 5.73 ± 0.54M) corresponded to its recent classification 

as an EP2 agonist with only partial EP2 affinity (personal communication, Woodward, 



  Chapter Four: Term pregnancy 

  Page 108
  

2007). Myocyte stimulation with PGE2 and EP2 agonists were also shown to produce 

similar rises in cAMP (Asboth et al., 1997), which indicates further predominant EP2 

receptor binding.  

To determine EP4 receptor action, concentration-effect curves for AGN201734 

(Elworthy et al., 2004) and L-902688 (Billot et al., 2003) were performed on 

myometrial strips. Each ligand was composed of a lactam template and maintained 

natural stereochemistry at C-12 and C-15 for optimal EP4 activity. Even so, 

myometrial responses to AGN201734 mimicked the biphasic response of PGE2, 

whilst L-902688 only attenuated myogenic activity at 10-5M.  This was surprising as 

each agonist had respectively demonstrated a 1000-fold greater affinity to EP4 

compared with the other EP receptors (Elworthy et al., 2004) and PG receptors (Billot 

et al., 2003). Even so, as the heptanoic acid moiety of AGN201734 is similar in 

structure to PGE1 analogues, it is plausible that AGN201734 either activated EP4 or 

exhibited off-target agonist potency at IP receptors. A common structural motif of 

some IP and EP4 receptor agonists has been demonstrated in human (Abramovitz et 

al., 2000; Wilson et al., 2004), porcine (Jones & Chan, 2001), guinea pig and rabbit 

preparations (Jones & Chan, 2005). As a result, EP4 activation was further 

investigated by use of the selective EP4 antagonist, GW627368x (Jones & Chan, 

2005; Wilson & Giles, 2005). 

Despite its affinity for human TP receptors, GW627368x is a highly potent and 

competitive EP4 antagonist (Wilson et al., 2006; Alexander et al., 2007). The 

selectivity of GW627368x was 100-fold greater for EP4 receptors over the EP2 

subtype (Jones & Chan, 2005; Wilson & Giles, 2005; Wilson et al., 2006). This was 

demonstrated in the present study, since GW627368x produced no effects in vehicle 

and EP2-treated myometrial strips. However, with EP4 agonists, the addition of 
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GW627368x caused a rightward displacement of AGN201734 curves, without 

affecting responses to L-902688. These contradictory results increased the ambiguity 

of EP4-mediated events. However, as GW627368x failed to shift PGE2-induced 

responses, it seems most likely that EP2 is the dominant functional isoform in the 

lower uterus at term pregnancy.  

Both EP2 and EP4 transcripts are highly expressed in isolated human lower uterine 

segments at term gestation (Leonhardt et al., 2003; Astle et al., 2005; Sooranna et al., 

2005; Grigsby et al., 2006), which confounds further the diversity of their actions. 

However, with only 38 percent homology between transmembrane domains, it has 

been reported that EP2 and EP4 receptors differ in their sensitivity and additional 

signalling pathways. The agonist-induced desensitisation (Nishigaki et al., 1996) and 

PGE2-mediated internalisation (Desai et al., 2000) of EP4 receptors may attribute to 

the lower PGE2-stimulated cAMP formation in EP4 compared to EP2-transfected cells 

(Fujino et al., 2002; Fujino et al., 2005). In addition, although both stimulate adenylyl 

cyclase, the EP2 receptor is mediated through a cAMP/ PKA-dependent mechanism, 

whereas the EP4 receptor predominantly activates phosphatidylinositol 3-kinase 

(PI3K) and extracellular signal-regulated kinase (ERK)-dependent systems (Fujino et 

al., 2002) via a cAMP-inhibitory G-protein (Gαi; Fujino & Regan, 2006). Moreover, 

the induction of early growth response factor-1 (ERG-1) by PI3K and ERK regulates 

the growth and motility of cells (Sheng et al., 2001). This implicates the involvement 

of EP4 receptors in uterine remodelling during pregnancy. Gene transcription by 

ERG-1 further enhances PGE synthase, inflammatory responses and hyperalgesia 

(Naraba et al., 2002; Slater et al., 2006). As a result, myometrial EP4 receptors may 

primarily mediate PG synthesis, inflammation and nociception whilst EP2 receptors 

appear to be more functional in maintaining uterine quiescence.  
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To identify responses to EP1 and EP3 analogues in gravid human myometrium, 

concentration-effect curves for sulprostone (Schaaf et al., 1981) and ONO-D1-004 

(Oka et al., 2003) were constructed. As a stable acyl sulphonamide, sulprostone 

showed affinity for both EP3 and EP1 receptors (Coleman et al., 1994; Alexander et 

al., 2007) with Ki values of 0.60 and 14nM respectively (Kiriyama et al., 1997). The 

excitatory responses to sulprostone were monophasic using immersion and 

superfusion techniques, indicating the absence of EP2 (Coleman et al., 1994) and EP4 

receptor activation (Wilson et al., 2004). A decline in the majority of EP3 receptors, 

including EP3-II mRNA and increased EP3-VI transcripts by term gestation (Matsumoto 

et al., 1997; Wing et al., 2003; Astle et al., 2005) may have reflected the 10-fold 

reduction in the potency of sulprostone compared with the non-pregnant state (Senior 

et al., 1993). However, the signalling cascades and transcriptional mechanisms for 

each of the EP3 splice variants have yet to be elucidated. 

In contrast, the novel EP1 receptor agonist, ONO-D1-004, produced negligible 

myogenic effects on tissues relative to time-matched vehicle controls. Although 

highly selective for the mouse EP1 receptor, the binding affinity of ONO-D1-004 was 

relatively weak with a Ki value of 150nM (Kiriyama et al., 1997). Moreover, its 

potency was 8-fold lower than PGE2 (Oka et al., 2003). Therefore, rather than 

discounting the influence of EP1 receptors, the population of myometrial EP receptors 

was further examined by use of selective antagonists. 

AH6809 has been used as a putative EP1 antagonist for receptor classification 

purposes (Coleman et al., 1994). However, in human recombinant receptors, the 

affinity of AH6809 was equipotent for EP1 and EP2 receptors (Woodward et al., 1995) 

with further weak, but specific antagonism displayed at human EP3 and DP receptors 

(Keery & Lumley, 1988; Kiriyama et al., 1997; Abramovitz et al., 2000). As the pA2 
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for AH6809 has been reported to be between 5.3 and 7.0 (Keery & Lumley, 1988; 

Meja et al., 1997; Abramovitz et al., 2000), it was added at 10-5M to competitively 

block functional receptors. 

Accordingly, AH6809 had no effect on spontaneous myometrial activity or responses 

to the EP4 receptor agonists AGN201734 and L-902688 in this study. However, a 

notable change in the concentration-effect curves for PGE2 was elicited in the 

presence of AH6809 with an apparent pA2 value of 7.2. Between 10-10M and 10-7M, 

the relative enhancement of contractions indicated the antagonism of EP2 receptors. 

However, the subsequent 2.6 ± 0.21 fold attenuation in activity may have represented 

blocking of EP1 and EP3 receptors, enabling PGE2 to target relaxatory EP receptors. 

Despite the lower affinity of the EP2 mimetics (pA2 values: 5.3 to 5.7), the inhibitory 

effects of PGE2 with AH6809 were similar to butaprost, CP533,536 and AH13205. 

This implies that high concentrations of PGE2 couple to functional EP2 receptors due 

to their prevalence in lower myometrial tissue at term pregnancy. The full antagonism 

of AGN211330 also demonstrated its weak affinity for EP2 receptor sites. 

In accord with previous functional studies (Senior et al., 1993), AH6809 did not alter 

contractile responses to the EP3/1 agonist sulprostone. With AH6809 having 50-fold 

greater affinity for EP1 over EP3 receptors (Abramovitz et al., 2000), this suggests a 

paucity of functional EP1 receptors in isolated human myometrium. It would also 

substantiate the lack of excitation observed with the EP1 agonist ONO-D1-004. Even 

so, AH6809 decreased the height of the PGE2-induced Ca2+ peak in myometrial cells 

(Asboth et al., 1997), which was displayed as the loss of contractility by PGE2 at     

10-5M. This suggests that AH6809 can effectively block EP1/3 receptors when 

inhibitory receptors supersede contractile EP receptor function in late gestational 

lower myometrium. 
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Unfortunately, the EP3 receptor antagonist, AGN211329, did not modify excitatory 

responses to PGE2 and sulprostone in this study. This was in contrast to its reported 

high affinity for EP3 receptors in transfected human embryonic kidney cells (Belley et 

al., 2005) and guinea pig vas deferens and tracheal tissues (Clarke et al., 2004). The 

lack of inhibitory effect, however, was also determined using isolated mouse uterus 

(Griffiths et al., 2006) and additional antagonism for AGN211329 was shown at DP, 

EP4 and TP receptors using recombinant human receptors (personal communication, 

Woodward, 2007). Functional data on EP3 receptor activation has been particularly 

limited due to the multiple splice variants and the cross-reactivity of ligands. Whilst 

EP3 antagonists are just emerging, potent selective antagonists for EP2 receptors are 

yet to be developed (Woodward et al., 1995; Alexander et al., 2007). As a result, a 

more comprehensive pharmacological classification of EP receptor function still 

remains to be established. 

Unlike PGE2, PGF2α elicited monophasic excitation in isolated lower tissues taken at 

term pregnancy. Uterotonic responses were quantitatively similar to previous 

superfusion and immersion studies (Wikland et al., 1984; Word et al., 1992; Senior et 

al., 1993; Crankshaw & Dyal, 1994; Friel et al., 2005; Hutchinson, 2005), indicating 

the presence of myometrial FP receptors. This was verified by the 16-phenoxy FP 

analogues fluprostenol and 17-phenyl PGF2α, which produced equivalent in vitro 

myogenic contractions (Senior et al., 1993; Hutchinson, 2005). High affinity for FP 

receptors was calculated in the rank order of PGF2α = fluprostenol > PGD2 > PGE2 > 

U46619 > iloprost with Ki values of 2.1, 2.7, 5.4, 65, 112 and 920nM respectively 

(Abramovitz et al., 1994). Although PGF2α was reported to also bind to EP1 and EP3 

receptors with significant affinity (Kiriyama et al., 1997; Breyer et al., 2001), PGF2α-

induced contractility was 23 percent more pronounced in this study compared to 
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sulprostone. This indicates the predominant involvement of FP-mediated effects on 

uterine motility. 

Human FP receptors consist of 359 amino acid residues with a predicted molecular 

mass of 40,060Da (Abramovitz et al., 1994). Despite the clone of a second FP 

carboxyl-terminal splice variant from ovine (Pierce et al., 1997) and bovine corpus 

luteal cells (Ishii & Sakamoto, 2001), only one isoform has so far been identified in 

human tissues. To support pregnancy, uterine FP mRNA expression was shown to 

decline with gestational age in humans (Matsumoto et al., 1997; Brodt-Eppley & 

Myatt, 1999; Sooranna et al., 2005) and in rats (Brodt-Eppley & Myatt, 1998). At 

term pregnancy, the human gene for myometrial FP receptors was downregulated by 

45 percent compared with the non-pregnant state (Matsumoto et al., 1997). This 

correlated with a decrease in the potency of PGF2α-induced contractions (Senior et al., 

1992; Senior et al., 1993) also observed in the present study. 

Although FP receptors are coupled to Gαq, the postreceptor actions of PGF2α are still 

uncertain. Signalling pathways are mediated via IP3 to enhance intracellular Ca2+ 

entry (Carrasco et al., 1996). However, functional studies have also suggested 

involvement of the Ca2+-independent RhoA pathway (Woodcock et al., 2006) and 

required adenosine-5’-trisphosphate (ATP) treatment to potentiate activity (Ziganshin 

et al., 2005). Challenge using the stable thromboxane mimetic, U46619, in this study 

augmented myometrial contractility by 1.8-fold above PGF2α, without enhancing 

responsiveness to PGF2α. This indicates differences in FP and TP receptor densities 

and specific signalling cascades to generate uterine force.  

The best characterised of the synthetic thromboxane analogues is U46619 (Coleman 

et al., 1994). As a potent and full contractile agonist, U46619 produced dynamic 

contractions in isolated human myometrium taken at term pregnancy. Significant 
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antagonism of U46619 was shown with selective TP antagonists SQ29,548 (Ogletree 

et al., 1985) and GR32191B (Lumley et al., 1989). These compounds both have Ki 

values at 13nM (Tsuboi et al., 2002) and respective pA2 values of 6.5 and 7.0, which 

confirmed TP-mediated responses in this study. In addition, SQ29,548 did not alter 

PGF2α-induced activity in myometrium obtained near term (Hutchinson, 2005; 

Griffiths et al., 2006); this demonstrates the paucity of off-target PGF2α action at TP 

receptors. 

The expression of thromboxane A2 synthase and splice variants TPα and TPβ has 

been identified in human myocytes and vasculature at term pregnancy (Swanson et 

al., 1992; Hirata et al., 1996; Sooranna et al., 2005). Although both TP isoforms 

exhibit identical ligand binding, each oppositely regulates adenylyl cyclase activity 

(Hirata et al., 1996). TPα receptors increase cytoplasmic cAMP, whilst TPβ receptors 

inhibit cAMP and stimulate PLC-IP3 and RhoA-mediated pathways (Moore et al., 

2002). U46619 activates PLC at lower concentrations than adenylyl cyclase (Hirata et 

al., 1991; Moore et al., 2002), which may account for the contractile effect of U46619 

in intact myometrial strips. Even so, the relative distribution of each TP subtype has 

yet to be discriminated in late gestational myometrium. 

In uterine myocytes, U46619 produced a transient rise in IP3 and intracellular Ca2+, 

consistent with TPβ receptor activation (Moore et al., 2002). Chronic challenge with 

U46619 generated two target mediators in the TP signalling cascade, rho-associated 

coiled coil-forming protein kinase (ROCKI; p160 ROCKI) and its isoform ROCKII 

(Kureishi et al., 1997; Moore et al., 2002; Moran et al., 2002; Moore & Lopez Bernal, 

2003). These activate the small G-protein RhoA, which sensitises the uterus to Ca2+. 

For further Ca2+ sensitisation, U46619 induced the cleavage of the p160 ROCKI 

protein to yield p130 ROCKI by caspase-3 (Moore & Lopez Bernal, 2003), associated 
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with enhanced uterine contractility and apoptosis (Coleman et al., 2001). Although 

the caspase-3 inhibitor Z-DEVD-FMK blocked this pathway (Moore et al., 2002; 

Moore & Lopez Bernal, 2003), it caused no appreciable effect on U46619-induced 

activity in the present study. This suggests that the expression of each ROCK protein 

type has similar efficacy on myometrial contractions.  

Specific inhibitors of the RhoA cascade have been investigated as smooth muscle 

relaxant agents. SQ29,548 has been shown to promote increased proteolysis of pre-

existing p160 ROCKI to p130 ROCKI (Moore et al., 2002). Even so, in myometrial 

strips the caspase-3 inhibitor did not reverse SQ29,548 actions, indicating that 

attenuated U46619 responses were blocked at cognate TP receptor sites. Use of the 

specific ROCKI and ROCKII inhibitor, Y-267632, also reduced smooth muscle 

contractility (Moran et al., 2002). This demonstrates ROCK protein involvement in 

spontaneous myometrial activity. Upregulated expression of the ROCK isoforms was 

shown in rat and human myometrial tissues either during the third trimester of 

pregnancy (Niiro et al., 1997; Moore et al., 2000) or after labour-onset (Friel et al., 

2005). Therefore, ROCK has the potential to regulate uterine contractions in a Ca2+-

independent manner during late gestation. In addition, U46619 stimulates mitogenesis 

and hypertrophic growth of uterine smooth muscle cells via mitogen-activated protein 

kinase (MAPK) cascades (Miggin & Kinsella, 2001). Accordingly, thromboxane may 

also influence muscle tone and uterine remodelling during pregnancy. 

In summary, this study demonstrates the heterogeneous population of functional EP, 

FP and TP receptors in lower segment myometrium from term pregnant, non-

labouring donors. To maintain quiescence, EP agonists induced predominant utero-

relaxant effects; this was primarily mediated by EP2 rather than EP4 receptors. Despite 

the multitude of isoforms, some excitation was elicited via EP3 receptors, whilst 
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responsiveness to the EP1 agonist ONO-D1-004 was negligible. Even so, functional 

EP3 and EP1 receptors appeared to represent a minor component of the overall 

receptor complement in this tissue. In contrast, activated FP receptors augmented 

myometrial activity with contractions further potentiated by the TP mimetic U46619. 

As EP, FP and TP receptors also contribute to hyperplasia and hypertrophy, it is likely 

that these receptors facilitate uterine distension and maintain myometrial tone 

throughout the majority of pregnancy. 
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Chapter 5: Labour 
 

Functional prostanoid receptors in isolated myometrium during parturition 
 

 

5.1 Introduction 

Successful parturition requires powerful and coordinated uterine contractions, in 

conjunction with cervical ripening and dilation. This is synchronised by changes in 

local maternal, foetal and mechanical factors (Keelan et al., 2003; Hertelendy & 

Zakar, 2004). Even so, due to its complexity, the physiological and molecular 

mechanisms underlying the transition from uterine quiescence to activation are not 

fully understood.  

Compelling evidence has shown that PGs, particularly those produced within the 

intrauterine tissues, are central in the initiation and progression of labour. In late 

pregnancy, enhanced PGE2 and PGF2α biosynthesis by intrauterine tissues precedes 

labour-onset (Gibb, 1998), whilst clinical applications of PGE analogues are widely 

used for labour induction, cervical effacement and to maintain patency of the ductus 

arteriosus. Moreover, in terms of tocolysis, many PG synthesis inhibitors can prolong 

gestation via temporary suppression of myometrial contractility (Vermillion & 

Landen, 2001). Even so, the functional dynamics of myometrial PG receptors during 

parturition have yet to be elucidated. 

To better understand parturient uterine function, myometrial responsiveness to 

selective EP analogues, PGF2α and U46619 were investigated in this study in lower 

segment myometrium obtained from labouring donors. After the onset of regular, 

painful in vivo uterine contractions, labour was categorised at cervical dilations of     

0-2cm, 3-8.5cm and 9-10cm for early, mid and late stages respectively. Myometrial 
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responses to PGs were examined to improve the efficacy of available tocolytics for 

labour-associated disorders. 
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Chapter 5.2: Results 
 

 

 

5.3 Myogenic activity at term pregnancy and labour 

Spontaneous contractions varied markedly between donor tissues taken at different 

stages of pregnancy and labour (Figure 5.1). In immersed isolated myometrium, the 

greatest activity was exhibited by samples taken at term (39.3 ± 0.4 weeks gestation) 

from pregnant non-labouring donors. By the early stages of parturition, myogenicity 

was variable and decreased by 14.9 percent (F (1, 18) = 1.34; ns). This group included 

patients labouring for 1.5 to 8 hours, with cervical dilation at 0-2cm; two donors 

presented placental praevia. Myometrial contractions substantially declined by 2.6 and 

3.3-fold in tissues collected during the mid (F (1, 18) = 47.33; p<0.001) and late (F (1, 

18) = 96.41; p<0.001) stages of labour. These groups were determined by cervical 

dilation at 3-8.5cm and 9-10cm respectively, correlating with the reduction in both the 

frequency and amplitude of in vitro contractions. Of the myometrial strips, 59 percent 

were devoid of rhythmic undulating myogenic activity late after labour-onset. This 

may have related to the relatively prolonged duration of labour in fully dilated donors. 

Even so, labour-associated pharmacological compounds, such as entonox and 

syntocinon, did not influence in vitro spontaneous myometrial contractions (Table 

5.1). 
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Figure 5.1:  Spontaneous activity of lower segment myometrial strips obtained from 
term pregnant donors, not in labour (n=10) and in early (n=9), mid (n=9) and late 
(n=9) stages of labour. Labour was defined as regular uterine contractions with early, 
mid and late stages categorised at 0-2cm, 3-8.5cm and ≥9cm cervical dilation 
respectively. Myometrium was immersed, equilibrated for up to 2.5 hours and 
myogenic activity was measured as 30 minutes area under the curve and expressed as 
a percentage of 30 minutes hypotonic shock, regardless of the presence of phasic 
activity. Results were displayed as arithmetic means ± S.E. and significant differences 
were identified using univariate ANOVA with Bonferroni’s post-hoc adjustment: 
***p<0.001 reduction in spontaneous activity relative to tissues taken at term 
pregnancy and early labour. 
 
Representative traces show typical activity of isolated myometrium equilibrated in 
immersion baths from donors at term pregnancy a) not in labour and after labour-
onset at cervical dilations of b) 2cm, c) 5-6cm and d) 9cm. 
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Table 5.1: Spontaneous contractions of donated lower segment myometrium obtained 
during labour. Early, mid and late stages of labour were defined as regular in vivo 
contractions at cervical dilations of 0-2cm, 3-8.5cm and 9-10cm respectively. In 
addition to epidural anaesthetics, labouring women had been given entonox or 
pethidine for analgesic relief, Phenergan or Maxolon to prevent nausea and vomiting 
and/ or syntocinon to induce or accelerate labour before donation of tissues. These 
pharmaceutical agents did not influence myogenic activity established using the 
immersion technique, measured for 30 minutes after the equilibration period as area 
under the contraction curve.  
 

 Entonox/ Pethidine n Phenergan/ Maxolon n Syntocinon n
Early labour 1143.4 ± 172.4 4 1170.1 ± 207.7+ 1 n/a 0 
Mid labour 569.4 ± 92.9 5 417.2 ± 80.3 6 614.5 ± 107.2 4 
Late labour 174.0 ± 20.7 5 157.7 ±17.3 2 128.5 ± 12.5+ 1 

 

+Mean activity of 6-8 myometrial strips from the same biopsy 
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Figure 5.2: Trace showing the concentration-effect of PGE2 relative to spontaneous 
activity of myometrium obtained at 32 weeks of gestation from a fully dilated donor.  
 
 
 

 

5.4 Myometrial EP receptors after labour-onset 

In lower segment myometrium taken at term early labour, PGE2 caused a biphasic 

response, similar to that observed before parturition. PGE2 (10-8M to 10-6M) initially 

attenuated the amplitude and frequency of myogenic contractions by 2.1-fold (F (1, 

60) = 15.98; p<0.001), with tissue excitation subsequently evoked at 10-5M (Figure 

5.3a). This corresponded to the profile of myometrial strips taken preterm, at 32 

weeks of gestation from a fully dilated donor (Figure 5.2). However, by mid and late 

stage term labour, PGE2 (10-8M to 10-5M) fully inhibited myogenic activity in a 

monophasic concentration-related manner (Figures 5.3b & 5.3c). This was achieved 

by PGE2 suppressing contractile amplitude until the threshold was no longer reached. 

Compared to spontaneous activity, the main effects of PGE2 were significant for both 

mid (F (1, 72) = 7.03; p<0.01) and late (F (1, 60) = 4.31; p<0.05) stages of term 

parturition. 

  4g 
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Figure 5.3: Vehicle and concentration-effect curves for PGE2 in lower myometrium obtained from term pregnant donors in a) early (n=6), b) mid 
(n=7) and c) late (n=6) stages of labour. Labour was defined as in vivo contractions accompanied by cervical dilation at 0-2cm, 3-8.5cm and 9-
10cm respectively. Vehicle and PGE2 were added to individual organ baths at 30-minute intervals and excitatory responses to PGE2 were only 
evoked at 10-5M during early labour. Results are expressed as arithmetic means ± S.E. and univariate analysis using Bonferroni’s post-hoc test 
showed significant differences ***p<0.001 for PGE2 compared to vehicle. 
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Figure 5.4: Vehicle, concentration-effect curves and representative traces for the EP2 
agonists a) butaprost, b) CP533,536, c) AGN211330 and d) AH13205 in immersed 
myometrial strips taken at term, early labour (n=4-6). Early labour was defined as 
painful contractions accompanied by cervical dilation between 0-2cm. Myometrial 
responses to EP2 agonists were measured over 30-minute intervals as area under the 
curve, expressed as percentage hypotonic shock and presented as arithmetic means ± 
S.E. Statistical significance was determined using multivariate ANOVA with 
Bonferroni’s post-hoc adjustment; *p<0.05 for butaprost and AH13205; **p<0.01 for 
CP533,536 and AGN211330 compared with vehicle treatments. 
 
Table 5.2: Mean pIC50 values (M) for EP2 agonist concentration-effect curves (10-10M 
to 10-5M) in immersed myometrium from term pregnant donors after labour-onset   
(0-2cm cervical dilation; n=4-6). Results are expressed as arithmetic means ± S.E. 
 

EP2 agonists butaprost CP533,536 AGN211330 AH13205 
pIC50 6.20 ± 0.30 6.02 ± 0.55 5.81 ± 0.29 6.03 ± 0.19 
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5.5 Inhibitory effects of EP2 agonists on myogenic activity 

The steady and active nature of phasic myometrial contractions in tissues obtained 

early after labour-onset enabled inhibitory agonists to be assayed at this stage of 

parturition. Using immersed myometrial strips butaprost, CP533,536, AH13205 and 

AGN211330 attenuated myogenic activity in a linear concentration-dependent manner 

(Figure 5.4). This was achieved primarily between 10-7M and 10-5M due a reduction 

in both the amplitude and frequency of contractions. The rank order of potency was 

similar between EP2 agonists with AGN211330 having least efficacy (Table 5.2). 

Inhibitory responses were due to the main effects of butaprost (F (1, 48) = 9.35; 

p<0.01), CP533,536 (F (1, 54) = 16.75; p<0.001), AH13205 (F (1, 36) = 6.23 p<0.05) 

and AGN211330 (F (1, 36) = 15.52; p<0.001). 

 

 

5.6 EP4 agonist effects on myogenic activity 

In isolated myometrium obtained during early labour, the steady decline in myogenic 

activity for the EP4 agonist AGN201734 (10-8M to 10-5M) did not reach statistical 

significance (F (1, 48) = 2.85; ns; Figure 5.5). In comparison, the effects of L-902688 

were more variable. Contractions were predominantly maintained until 10-5M, 

whereby L-902688 attenuated activity from 55.5 ± 4.0 to 34.6 ± 18.6 hypotonic shock 

(F (1, 36) = 0.37; ns); this corresponded to its low potency value (Table 5.3). Even so, 

neither of the EP4 agonists altered myometrial tonus or induced excitatory responses. 
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Figure 5.5: Vehicle and concentration-effect curves for EP4 agonists AGN201734 and 
L-902688 in isolated myometrium obtained from term pregnant, early labouring 
donors (n=4-5). The contractions associated with labour were accompanied by 
cervical dilation between 0-2cm. Vehicle and EP4 agonists (10-10M to 10-5M) were 
added to immersed myometrial strips in a cumulative manner at 30-minute intervals. 
Results are expressed as arithmetic means ± S.E. 
 
 
 
 
Table 5.3: Mean pIC50 values (M) determined for the EP4 agonists AGN201734 and 
L-902688 (10-10M to 10-5M) using myometrium obtained from donors during early 
labour at emergency Caesarean section (n=4-5). Concentration-effect curves were 
performed using the immersion technique and results are expressed as arithmetic 
means ± S.E. 
 

EP4 agonists AGN201734 L-902688 
pIC50 7.53 ± 1.04 5.69 ± 0.86 
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Figure 5.6: Vehicle and concentration-effect curves for the EP1/3 agonists ONO-D1-
004 and sulprostone in myometrium obtained from donors in a) mid and b) late stages 
of term parturition (n=4-7). In vivo contractions accompanied by cervical dilation at 
3-8.5cm and 9-10cm respectively were used to distinguish the stages of labour. 
Immersed myometrial responses to EP1/3 agonists were measured over 30-minute 
periods as area under the curve and expressed as a percentage hypotonic shock. 
Results are arithmetic means ± S.E. and statistical significance was determined using 
two-way ANOVA with Bonferroni’s post-hoc test; **p<0.01 for sulprostone 
compared with vehicle. 
 
Typical traces show myometrial tissue in organ baths, contracting in response to 
sulprostone (10-7M to 10-5M). Myometrium was obtained from donors after the onset 
of a) mid and b) late stages of labour. 
 
 

 4g  5g 
30 minutes 30 minutes 

a) b) 

a) b) 

10-7M Hypotonic shock10-6M 10-5M 10-7M Hypotonic shock10-6M 10-5M 
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5.7 Excitatory EP agonists on myogenic activity 

To ensure that responses were apparent, contractile agonists were primarily added to 

tissues with low myogenic activity. Although the EP1 agonist ONO-D1-004 did not 

evoke excitation either at mid (F (1, 48) = 0.18; ns) or late (F (1, 42) = 2.15; ns) stages 

of term labour, the EP3/1 agonist sulprostone produced a monophasic increase in 

activity (Figure 5.6). Despite a lack of significance compared with vehicle controls (F 

(5, 66) = 0.70; ns), sulprostone exhibited a main treatment effect at mid labour (F (1, 

66) = 9.36; p<0.01). This was better displayed during late labour with a 2-fold 

increase in activity at 10-5M relative to intrinsic contractions (F (5, 66) = 8.70; 

p<0.01). Using superfused tissues, the excitatory responses to bolus doses of 

sulprostone were observed throughout parturition; this included tissues taken early 

after labour-onset (Figure 5.9.1).  

 

5.8 Contractile effects of PGF2α 

PGF2α produced concentration-dependent excitation in uterine muscle obtained during 

early, mid and late stages of parturition (Figures 5.7 & 5.9.2). In immersed 

myometrial strips, the increase in activity was nearly 60 percent higher in tissues 

taken during mid-term labour rather than late labour at 10-5M (p<0.001). Whilst 

during mid labour PGF2α augmented myometrial contractions in a monophasic 

manner, by late labour, responsiveness was attenuated and was sigmoidal shaped (F 

(1, 50) = 22.18; p<0.001). The excitation evoked by PGF2α was more pronounced in 

superfused tissues with the greatest phasic activity reaching 48.7 ± 4.4 percent 

hypotonic shock early after labour-onset. In a late labour preterm myometrial sample, 

the PGF2α-induced contractile response increased to a similar extent from 25.8 to 46.1 

percent hypotonic shock between 10-7M and 10-5M (Figure 5.8).  
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Figure 5.7: Concentration-effect curves and representative traces for PGF2α in 
myometrium obtained from term pregnant donors at a) mid and b) late stages of 
labour (n=6-7). Labour was defined as in vivo contractions with respective stages 
determined at 3-8.5cm and 9-10cm cervical dilation. PGF2α was added to organ baths 
in a cumulative manner at 30-minute intervals with responses were measured as area 
under the curve relative to the contraction achieved by hypotonic shock. Results are 
expressed as means ± S.E. and statistical analysis was performed using multivariate 
ANOVA with Bonferroni’s post-hoc test; p<0.001 contractions in response to PGF2α 
at 10-5M for mid compared to late labour.  
 
 
 
 
 
 
 
 
 
 
 
Figure 5.8: Representative traces for PGF2α in myometrium obtained at 32 weeks 
gestation from a fully dilated donor. Responses to PGF2α were similar regardless of 
agonist addition to a) immersed and b) superfused myometrial strips.  
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Figure 5.9: Representative traces showing the contractile effect of increasing bolus doses of 1) sulprostone, 2) PGF2α and 3) U46619 superfused 
on lower segment myometrium obtained during parturition at emergency Caesarean section. Labour was defined as in utero contractions with a) 
early, b) mid and c) late stages determined by cervical dilations at 0-2cm, 3-8.5cm and 9-10cm respectively. 
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5.9 Maintained uterotonic effects of U46619 

The thromboxane mimetic U46619 reliably produced a contractile phenotype in 

myometrial strips obtained during parturition. U46619 induced substantial tissue 

excitation and particularly enhanced contractile frequency. In immersed tissue strips 

during mid stage labour, activity was increased from 14.7 ± 2.6 to 89.7 ± 13.0 percent 

hypotonic shock. These contractile responses were substantially higher than in tissues 

taken during late term labour (p<0.001), despite the 13.6 percent attenuation of 

activity at 10-5M (p<0.05; Figure 5.10). Concentration-effects of U46619 reached 42.7 

± 6.6 percent hypotonic shock in myometrium obtained during late labour. Even so, 

responses to U46619 were greatly augmented in relation to the low amplitude and 

frequency of spontaneous contractions (F (1, 55) = 23.36; p<0.001). U46619-induced 

excitation was also maintained throughout parturition in superfused tissues (Figure 

5.9.3) as well as in the late labour sample obtained at 32 weeks of pregnancy (Figure 

5.11). In addition, the caspase-3 inhibitor had no effect on the augmented contractile 

frequency and amplitude of U46619 concentration-effect curves at mid and late stages 

of term parturition (Figures 5.12 & A7). 

 
 
5.10 TP antagonism by SQ29,548 and GR32191B 

Neither TP antagonists SQ29,548 (10-6M) or GR32191B (10-6M) affected myogenic 

activity. However, both antagonists suppressed U46619-induced contractions in 

myometrium taken at mid and late stages of term labour (Table 5.4).  
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Figure 5.10: Concentration-effect curves and representative traces for U46619 in 
myometrial strips from donors at a) mid and b) late stages of labour (n=6-7). Mid and 
late labour was categorised at 3-8.5cm and 9-10cm cervical dilation respectively. In 
all immersed myometrial strips, addition of the stable thromboxane mimetic U46619 
provoked contractile responses relative to spontaneous activity. This was measured as 
area under the curve relative to the contraction induced by hypotonic shock. Results 
are expressed as means ± S.E. and statistics were performed using two-way ANOVA 
with Bonferroni’s adjustment; *p<0.05; ***p<0.001 for U46619-induced contractions 
in samples taken at mid compared with late labour. 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.11: Representative traces showing the concentration-effect and dose-
response of U46619 in myometrial strips set-up using a) immersion and b) 
superfusion techniques. The muscle biopsy was obtained from a fully dilated donor at 
32 weeks of gestation.  
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Table 5.4: Mean pEC50 values (M) and maximal excitatory responses (Em) for 
U46619 (10-9M to 10-5M) in the absence and presence of either SQ29,548 (10-6M) or 
GR32191B (10-6M) in myometrium from term pregnant donors in mid (n=6-8) and 
late stages of labour (n=5-8). Maximal responses for excitation are expressed as 
percentage hypotonic shock. Data were analysed using univariate ANOVA mixed 
model with Bonferroni’s post-hoc test and results were expressed as arithmetic means 
± S.E. Excitatory responses to U46619 were significantly different in myometrium 
taken at mid labour compared with alate gestation (p<0.001). Responses to U46619 
were also attenuated by action of SQ29,548 in cmid labour (p<0.001) and dlate labour 
(p<0.001) with similar antagonism by GR32191B at emid and flate labour  
 

 U46619 alone + SQ29,548 + GR32191B 
 pEC50 Em pEC50 Em pEC50 Em 
Mid labour 7.1 ± 0.2 106.2 ± 9.6 6.2 ± 0.5 28.7 ± 9.9c 6.7 ± 0.3 39.3 ± 14.1e 

Late labour 6.8 ± 0.1 56.9 ± 9.7a 6.1 ± 0.3 21.0 ± 7.6d 6.2 ± 0.6 20.1 ± 0.7f 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.12: Mean U46619-induced excitation in the presence or absence of the 
caspase-3 inhibitor (10-6M) on myometrial strips obtained at a) mid (n=6-8) and b) 
late (n=5-8) stages of labour. The caspase-3 inhibitor had no effect on contractions 
potentiated by U46619. Mid and late labour were defined at 3-8.5cm and 9-10cm 
cervical dilation respectively. Results are expressed as means ± S.E. 
 

a) b) 
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 Chapter 5.11: Discussion 
 

 

During parturition, regular and forceful uterine muscle contractions develop in a 

caudal direction from the fundus towards the cervix. These were exhibited as well-

defined spontaneous contractions in immersed (Hutchinson, 2005) and superfused 

myometrial tissues obtained early after labour-onset. However, as labour progressed 

into mid and late stages, the frequency and amplitude of phasic contractions in lower 

segment myometrial strips declined by 2.6 and 3.3-fold respectively. This would 

likely correspond to extensive in utero collagen tissue remodelling, which facilitates 

cervical effacement and dilation for delivery of the foetus (Leppert, 1995). 

To soften and retract the cervix prior to labour-onset, metalloproteinase inhibitors 

decrease the stability of collagen, whilst the water, glycosaminoglycan and 

noncollagenic protein content of tissues increase (Osmers et al., 1993). Cervical 

dilation and myometrial remodelling are advanced by the concurrent apoptosis of 

smooth muscle cells (Leong et al., 2008). Since muscle bundles transmit action 

potentials within the uterus, the changes in cellular composition would attenuate 

myometrial excitability (Wray et al., 2001; Blanks et al., 2007). Moreover, the 

presenting foetus exerts a constant tension against the cervix and begins stretching 

and passively dilating the lumen. This may further contribute to the reduction in 

myogenic activity observed with labour progression in this study. 

The attenuated myogenic force in lower segment tissues during labour was consistent 

with the topographical changes in contractile-associated protein expression and Ca2+ 

transients (Astle et al., 2005; Riley et al., 2005). For the uterus to act in synchrony, 

specialised pacemaker cells transduce electrical signals via gap junctions between 

myocytes (Kilarski et al., 2000; Duquette et al., 2005). These gap junction transcripts 
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become more pronounced in upper rather than lower segment myometrium during 

labour (Sparey et al., 1999), facilitating the vigorous spontaneous contractions of 

isolated fundus myometrium towards the cervix (Griffiths et al., 2006). At parturition, 

less sensitive isoforms of Ca2+-activated potassium channels are expressed in isolated 

lower segment tissues (Curley et al., 2004) whilst Ca2+-ATPase activity is reduced 

with uterine dystocia (Zyrianov et al., 2003). As a result, contractile constituents may 

have been depleted in prolonged labours, contributing to the low intrinsic myometrial 

activity. 

In this study, emergency Caesarean sections were performed due to labour-associated 

disorders. Indications included foetal distress, breech presentation, previous 

Caesarean sections, labour dystocia, placental abruption, maternal pregnancy-induced 

hypertension, epilepsy and asthma. Due to the limited sample numbers, no exclusion 

criteria were applied. Pharmacological medications provided for analgesia, nausea-

relief and to augment labour did not influence in vitro myogenic activity. In addition, 

similar tensile strengths of uterine muscle were demonstrated with intact and 

previously scarred tissues (Buhimschi et al., 2006). Even so, it was recognised that the 

tissue properties in this study may not have resembled uterine muscle obtained from 

normal, uncomplicated labours. 

Despite a high incidence of premature deliveries (Lumley, 2003), only one late labour 

myometrial biopsy was donated at 32 weeks of gestation. The spontaneous 

contractions by immersed preterm myometrial strips were twice as active as biopsies 

harvested from fully dilated donors at term. This suggests differences in preterm and 

term parturition cascades.  

Although functional progesterone withdrawal is a prerequisite for labour, its 

mechanisms are unclear. As systemic progesterone does not decline before labour-
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onset in women (Boroditsky et al., 1978), events appear to be mediated by 

biochemical changes within the uterus. These include the upregulation of cognate 

progesterone receptor (PR)-A, which repress PR-B function (Pieber et al., 2001; 

Mesiano et al., 2002), association of PR with nuclear factor kappa B (NF-κB) and a 

reduction in steroid receptor co-activators (Allport et al., 2001). Moreover, the 

progesterone block is positively correlated to rising oestrogen receptor-α (ERα) 

mRNA (Winkler et al., 2002). In the presence of ERα, oestrogen treatments have 

been shown to increase connexin-43 transcripts (Garfield et al., 1980; Kilarski et al., 

2000; Di et al., 2001; Grummer et al., 2004), COX-2 and oxytocin receptors 

(Mesiano, 2001; Mesiano et al., 2002), which are required for transient myometrial 

contractions. Thereby, the close apposition of placental oestrogen to the uterine 

fundus may attribute to forceful contractions, which dissipate towards the cervix for 

parturition to succeed. In addition, the heightened spontaneous activity observed in 

this study implicates sustained oestrogenic effects during preterm relative to term 

deliveries. Nevertheless, rather than exogenous steroids, uterotonins are crucial 

mediators in orchestrating and driving labour contractions (Challis et al., 2000). 

Profound increases in PG synthesis and metabolism by foetal membranes and 

myometrium precede the initiation and progression of labour (Gibb, 1998; Durn et al., 

2010). The biosynthetic capacity for PGs, especially of amnion-derived PGE2, is 

elevated prior to term and preterm labour in women (Gibb, 1998; Olson et al., 2003). 

This corresponds to the increased activities of PLA2 type-IIA and COX-2 in amniotic 

and lower myometrial tissues that catalyse PG output (Slater et al., 1999; Slater et al., 

2004; Sooranna et al., 2006). Concurrently, the conversion of active PGs into inactive 

15-keto metabolites by chorionic prostaglandin dehydrogenase (PGDH) diminishes 

(Cheung et al., 1992). This would facilitate passage of PGE2 from the amnion to the 
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underlying maternal decidua and myometrium for activation of spontaneous term and 

preterm labour (Giannoulias et al., 2005).  Moreover, at labour-onset, microsomal 

synthase mPGES-1 expression is upregulated within lower rather than upper segment 

myometrium and vasculature (Sooranna et al., 2006). The PGE2-induced 

vasodilatation and tissue remodelling (Kimura et al., 1995) perhaps reflected the dark 

red pigmentation observed in tissues obtained during late labour. 

PGE2 is associated with both inhibitory and excitatory mechanisms (Senior et al., 

1993). This was demonstrated using immersion and superfusion techniques in this 

study. Using myometrial strips obtained from labouring donors, PGE2 attenuated 

contractions in a concentration and dose-dependent manner. Relative tissue excitation 

was displayed at 10-5M in early term and late preterm labour samples. Despite limited 

functional data, this biphasic response corresponded to heterogeneous EP1-4 receptor 

subtypes within plasma and nuclear membranes of myometrial cells (Coleman et al., 

1994; Bhattacharya et al., 1999; Leonhardt et al., 2003). However, in the latter stages 

of term parturition, full cessation of myogenic activity was exhibited. These results 

substantiate a previous in vitro study using myometrium obtained during active labour 

(Wikland et al., 1984). Excitatory responses to PGE2 were solely at the fundus whilst 

lower myometrial activity was suppressed; this indicates a regional change in the 

complement of functional EP receptor subtypes. 

Myometrial responses to specific EP agonists during human labour were not 

previously examined. In this study, inhibitory compounds were tested in tissues 

harvested early after labour-onset, corresponding to the stability of active myogenic 

contractions. To determine EP2 receptor function, concentration-effect curves for 

butaprost (Gardiner, 1986), CP533,536 (Li et al., 2003; Paralkar et al., 2003), 

AH13205 (Coleman et al., 1994) and AGN211330 (Belley et al., 2005) were 



  Chapter Five: Labour 

  Page 138 
 

constructed. In accord with myometrial biopsies from non-labouring donors, each EP2 

agonist attenuated spontaneous activity in a monophasic concentration-dependent 

manner (10-7M to 10-5M). Despite marginal differences between EP2-mediated 

inhibitions, the rank order of potency was butaprost > CP533,536 = AH-13205 > 

AGN211330. 

EP2 receptors have particularly been implicated in labour-associated events due to 

altered temporal and regional myometrial expression. EP2 receptors decline towards 

term gestation (Brodt-Eppley & Myatt, 1999; Leonhardt et al., 2003), although remain 

unaltered (Brodt-Eppley & Myatt, 1999; Astle et al., 2005; Sooranna et al., 2005) or 

increase during parturition (Grigsby et al., 2006). With advancing gestation with or 

without labour, the expression of total EP2 mRNA and nuclear EP receptors were 

more intense in lower compared with upper myometrial segments (Astle et al., 2005; 

Grigsby et al., 2006). This corresponds to consistent EP2 responses in myometrial 

strips obtained before and after labour-onset.  

Although EP4 mRNA and protein expression are abundant in lower segment 

myometrial tissue (Leonhardt et al., 2003; Astle et al., 2005; Grigsby et al., 2006), 

EP4 agonist AGN201734 (Elworthy et al., 2004) and L-902688 (Billot et al., 2003) 

effects were moderate. Whilst AGN201734 produced a gradual decline in 

spontaneous activity (10-8M to 10-5M), L-902688 solely attenuated contractions at   

10-5M. As these ligands have high affinity for EP4 receptors (Elworthy et al., 2004; 

Billot et al., 2003), the low responses may relate to poor receptor-effector coupling in 

isolated human myometrium. Nevertheless, myometrial EP4 mRNA and protein 

expression did not change regardless of gestational age, labour and regional location 

(Leonhardt et al., 2003; Astle et al., 2005; Grigsby et al., 2006). This suggests that 

EP4 may mediate PGE2-induced inflammatory responses (Slater et al., 2006) or 
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cervical ripening (Schmitz et al., 2001) rather than the functional suppression of 

myometrial activity. 

Using myometrial strips from mid and late stages of labour, the novel EP1 agonist 

ONO-D1-004 (Oka et al., 2003) did not influence myogenicity compared with time-

matched controls. This was surprising as the expression of EP1 subtypes was detected 

in upper and lower segments at term pregnancy (Astle et al., 2005; Grigsby et al., 

2006) and increased further in lower (Astle et al., 2005) or both lower and upper 

myometrial segments during labour (Grigsby et al., 2006). However, as ONO-D1-004 

has poor binding affinity and low potency values (Kiriyama et al., 1997; Oka et al., 

2003), alternative agonists such as 17-phenyl PGE2 are required to elucidate EP1 

function.  

By contrast, the EP3/1 agonist sulprostone (Schaaf et al., 1981) evoked myogenic 

contractions in both immersed (10-6M to 10-5M) and superfused (10-8mol to 10-7mol) 

tissue strips. Contractile responses were displayed at each stage of parturition. This 

was associated with the maintained expression of EP3 mRNA before and after labour-

onset. For uterine emptying, EP3 receptors were predominantly expressed in the 

fundus compared with lower segment myometrial biopsies (Astle et al., 2005; Grigsby 

et al., 2006). However, as PGE2 did not produce a contractile phenotype during late 

labour, the predominant inhibitory EP2 receptors may supersede EP1/3 mediated 

effects. Thereby, a shift in EP receptor dynamics and secondary signal cascades are 

likely to regulate labour-onset and postpartum involution.  

PGF2α elicited monophasic excitatory responses in isolated lower myometrium taken 

after labour-onset. The spasmogenic activity was quantitatively similar to previous 

superfusion and immersion studies (Wikland et al., 1984; Hutchinson, 2005). This 

was related to a transient rise in intracellular Ca2+ release in both intact myometrium 
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and myocytes (Carrasco et al., 1996; Shlykov & Sanborn, 2004). During pregnancy, 

myometrial FP mRNA was shown to decrease relative to the non-pregnant state 

(Matsumoto et al., 1997; Sooranna et al., 2005); this corresponded to the decline in 

potent PGF2α-induced contractions (Senior et al., 1992; Senior et al., 1993). At term 

parturition, human FP receptor expression significantly increased indicating hormonal 

and physiological influences on PG receptors (Brodt-Eppley & Myatt, 1999). Even so, 

this study showed that tissue responsiveness to PGF2α was attenuated through early, 

mid and late stages of labour in lower segment myometrial strips. Weak responses 

were also observed in superfusion, with marked stimulation by PGF2α evoked only in 

paired fundus end specimens taken during active labour (Wikland et al., 1984). This 

topographical difference in FP receptor activity parallels the decline in smooth muscle 

content of cervical tissue compared to the fundus (Adelantado et al., 1988). Moreover, 

instead of modulating activity, it is plausible that FP receptor populations mediate 

PGF2α-stimulated glycosaminoglycan activity for uterine compliance in the lower 

segment during labour (Weiss, 2000). This may account for the high PGF2α synthesis 

in lower myometrial segments at this time (Durn et al., 2010). Combined doses of 

PGE2 and PGF2α suppressed contractile activity in lower isolated myometrium after 

labour-onset (Wikland et al., 1984). Whilst reflecting a high PGE2 binding affinity, 

this also indicates the predisposition of the lower uterus to relax in order to subserve 

the birth process.  

The thromboxane mimetic U46619 potentiated contractions in isolated human 

myometrium taken after labour-onset. Significant attenuation with TP antagonists 

SQ29,548 (Ogletree et al., 1985) and GR32191B (Lumley et al., 1989) confirmed 

constitutive TP-mediated responses in this study. As SQ29,548 failed to shift PGF2α 

concentration-effect curves in myometrium obtained during labour (Hutchinson, 
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2005; Griffiths et al., 2006), off-target PGF2α activation was not displayed. TPα and 

TPβ splice variants have been identified in human myocytes and vasculature from 

both non-pregnant and term pregnant donors (Moore et al., 2002; Moran et al., 2002). 

However, little is known about labour-associated changes in human TP receptor 

function and expression.  

Despite a 2-fold reduction in U46619-induced contractile activity between early and 

late stages of labour, tissue excitation was significantly augmented compared with 

initial low myogenic contractions. At late gestation, urinary thromboxane excretion 

has been shown to increase and heighten during labour (Noort & Keirse, 1990), 

alongside thromboxane synthase (Swanson et al., 1992), augmenting uterine activity. 

This implicates a maintained function for TP receptors during the parturition-process. 

Two target mediators in the TP signalling cascade, ROCKI and its isoform ROCKII 

sensitise the uterus to Ca2+ (Kureishi et al., 1997) and may account for the potentiated 

contractile responses in this study. Aberrant ROCKI expression has been associated 

with uterine contractile dysfunctions such as preterm and prolonged labour at term 

(Moore & Lopez Bernal, 2003). Moreover, an increase in RhoA mRNA at parturition 

implies thromboxane involvement in the preparatory and stimulatory phases of labour 

(Noort & Keirse, 1990). This corresponded to the enhanced U46619 response at 

preterm late labour in this study. As a result, cognate TP receptors may control uterine 

tone required for foetal descent during labour and possibly uterine involution 

postpartum.  

For further Ca2+ sensitisation, U46619 induced the cleavage of the p160 ROCKI 

protein to yield p130 ROCKI by caspase-3 (Moore & Lopez Bernal, 2003), associated 

with enhanced uterine contractility and apoptosis (Coleman et al., 2001; Leong et al., 

2008). Although the caspase-3 inhibitor Z-DEVD-FMK blocked this pathway (Moore 
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et al., 2002; Moore & Lopez Bernal, 2003), no significant effect on U46619-induced 

activity was observed in the present study. This may be attributed to already high 

caspase-3 in myometrial cells resulting from shrinkage, oedema and apoptosis with 

tissue remodelling (Leong et al., 2008). It also suggests that p160 and p130 ROCKI 

proteins have similar efficacy for enhanced Ca2+ sensitisation in the uterus.   

In conclusion, this study showed that myometrial EP, FP and TP receptors are 

dynamic in nature at term pregnancy and during parturition. It seems likely that a 

change in the balance of these receptors and signal transduction pathways would 

mediate the transition from uterine quiescence to activation. Despite ethical 

constraints limiting research to the lower uterus in the present study, TP receptor 

function seemed to predominate. Therefore, targeting TP receptors or their 

downstream regulatory pathways in the parturient uterus may help to improve 

tocolytic therapy for labour-associated disorders. 



   

  
 

 
 
 

Section II: 
Myometrial cell assays 
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Chapter 6: Methods for myometrial cell assays 
 

Cell culture models to assess intracellular signalling pathways 
 

 

6.1 Introduction  

Cell culture methodology was developed to separate and purify smooth muscle cells 

and fibroblasts from uterine biopsies taken at term pregnancy. The primary cell 

culture model enabled aspects of the human myometrium to be studied without the 

influence of endogenous steroid hormones. Despite the reported change in myometrial 

cell morphology from the in vivo state (Hongpaisan, 2000), cell cultures retain many 

characteristics of the intact tissue (Pressman et al., 1988; Carrasco et al., 1996). This 

includes sensitivity to PG and oxytocin agonists, measured by intracellular Ca2+ 

mobilisation (Thornton et al., 1999) and signal transduction pathways (Phaneuf et al., 

1993).  

 

The aim of this study was to isolate pure cultures of smooth muscle cells and 

fibroblasts from term gravid human myometrium. Subsequent optimisation and 

development of FLIPR and RT-PCR techniques were performed. By characterising 

myometrial cell populations, the contribution of PG and oxytocin-mediated 

intracellular Ca2+ and cAMP release could be assessed relative to receptor mRNA 

expression (Chapter 7). Study of these intracellular and molecular events would 

facilitate the high throughput screening of drugs to improve tocolysis for preterm 

labour. 
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Chapter 6: Cell Materials & Methods 
 

 

6.2 Materials 
 
Table 6.1: Materials used in this study were purchased from the following sources: 
 

Company Town County/ State Country 
Alpha Innotech Corporation San Leandro California USA 
Ambion Austin Texas USA 
Amersham Biosciences Björkgatan Uppsala Sweden 
BDH Laboratory Supplies Poole Dorset UK 
Becton-Dickinson Franklin Lakes New Jersey USA 
Bio-Rad Laboratories Hercules California USA 
Calbiochem Nottingham Nottinghamshire UK 
Cayman Chemicals Ann Arbor Michigan USA 
Cellgro Inc. Pensacola Florida USA 
Costar Lowell Massachusetts USA 
Decon Laboratories Ltd. Hove East Sussex UK 
EMD Chemicals Inc. Gibbstown New Jersey USA 
Fisher Scientific Ltd. Loughborough Leicestershire UK 
Gibco BRL Inchinnan Renfrewshire UK 
Invitrogen Ltd. Paisley Greater Glasgow UK 
Invitrogen Ltd. Carlsbad California USA 
Molecular Devices Sunnyvale California USA 
Perkin Elmer Waltham Massachusetts USA 
PromoCell GmbH Sickingenstraße Heidelberg Germany 
Qiagen Valencia California USA 
Riedel-de-haen Seelze Hanover Germany 
Roche Ltd. Grenzacherstrasse Basel Switzerland 
Serologicals Corporation Norcross Georgia USA 
Sigma Chemicals Co. Poole Dorset UK 
Vector Laboratories Burlingame California USA 
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6.3 Compounds and solutions for cell culture 
 
Table 6.2.1: Enzyme solution A diluted in Hanks’ balanced salt solution (HBSS) for 
initial collagen dissociation of myometrial tissues. 
 

Enzyme Solution A Final Conc. Source Catalogue No 
HBSS w/o phenol red, CaCl2 or MgSO4 Promocell C-40390 
Dispase enzyme solution (grade 2) 10mg/ml Roche (BD) 354235 
Calcium chloride 2.5mM Riedel-de-haen 12074 
Magnesium chloride 0.9mM Sigma M8266 
 
 
Table 6.2.2: Enzyme solution B for cell isolation from myometrial biopsies; in the 
final working solution, elastase was omitted. 
 

Enzyme Solution B Final Conc. Source Catalogue No 
HBSS w/o phenol red, CaCl2 or MgSO4 Promocell C-40390 
Collagenase type II 300U/ml Sigma C6885 
DNAse I type IV 30U/ml Sigma D5025 
Elastase type I 2U/ml Sigma E1250 
Fatty acid-free bovine serum albumin  1mg/ml Sigma A8806 
 
 
Table 6.3.1: Fully defined Dulbecco’s modified eagles medium (DMEM) A for 
culture of myocytes and fibroblasts. 
 

Basic defined medium Concentration Source Catalogue No 
DMEM with high glucose & sodium bicarbonate Sigma D6171 
Foetal calf serum 10% Sigma F6178 
L-glutamine 2mM Promocell C-42210 
HEPES solution 25mM Sigma H0887 
Penicillin (10,000U/ml) Streptomycin (10mg/ml)  Sigma P0781 
Amphotericin B 2.5ng/ml Sigma A2942 
Basic defined medium was also used with Waymouth’s Medium MB 752/1, 
Invitrogen 31220-023 or PromoCell C-73440, instead of DMEM A. 
 
 
Table 6.3.2: Fully defined DMEM B with reduced oestrogen content for seeding cells. 
 

Basic defined medium Concentration Source Catalogue No 
DMEM with high glucose and without phenol red  Sigma D1145 
Charcoal stripped foetal calf serum 1% Sigma F6765 
L-glutamine 2mM Promocell C-42210 
HEPES solution 25mM Sigma H0887 
Penicillin (10,000U/ml) Streptomycin (10mg/ml)  Sigma P0781 
Amphotericin B 2.5ng/ml Sigma A2942 
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Table 6.3.3: Fully defined DMEM C to culture cells for FLIPR assays. 
 

Basic defined medium Concentration Source Catalogue No 
DMEM with high glucose, L-glutamine & pyruvate Invitrogen 11995-065 
Foetal calf serum 10% Invitrogen 14040-133 
Geneticin 200µg/ml Invitrogen 10131-027 
Hygromycin B 200µg/ml Invitrogen 10687-010 
 
 
Table 6.3.4: Fully defined DMEM D with reduced oestrogen content for seeding cells 
in FLIPR assays. 
 

Basic defined medium Concentration Source Catalogue No 
DMEM with high glucose and without phenol red Sigma D1145 
Charcoal stripped foetal calf serum 1% Sigma F6765 
L-glutamine 2mM Promocell C-42210 
Penicillin-Streptomycin (10,000U) Amphotericin B (25µg) Gibco 15240-062 
 
 
Table 6.4: Solutions for cell trypsinisation. 
 

Compounds for cell passage Concentration Source Catalogue No 
Trypsin-EDTA solution 0.25% Sigma T4049 
Foetal calf serum 20% Sigma F6178 
  
 
Table 6.5: Preparation of coverslips (22mm2) and slides for cell or tissue adhesion. 
 

Compounds for coverslips Concentration Source Catalogue No 
Urea 1mM Sigma U2709 
Decon 90 5% Decon Lab Ltd. 1310-58-3 
Bovine fibronectin 50µg/ml Sigma F1141 
Ethanol 70% Fisher Scientific E/0400/17 
Poly-L-lysine solution 0.01% w/v Sigma P8920 
 
 
6.4 Compounds and solutions for cell assays 
 
Table 6.6: Buffers and solutions for immunocytochemistry & immunohistochemistry. 
 

Buffers for immunofluorescence Concentration Source Catalogue No 
HBSS without phenol red  Promocell C-40390 
Phosphate buffered saline (PBS) 0.01M Sigma P3813 
Tween 20 1.1g/ml Sigma T2700 
Bovine serum albumen (BSA) 10% Sigma A3059 
Paraformaldehyde solution 4% Sigma P6148 
Sodium hydroxide (NaOH) 1N Sigma S8045 
Mounting medium with DAPI      1.5µg/ml Vector Laboratories    H1200 
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Table 6.7: Solutions to quantify intracellular cyclic AMP (cAMP). 
 

HitHunter cAMP XS+ assay (Cat No: 90-0075L) Volume Catalogue No 
cAMP XS+ Lysis Buffer 76ml 30-213 
cAMP XA+ EA Reagent 200ml 30-352 
cAMP XS+ ED Reagent 100ml 30-353 
cAMP XS+ Antibody Reagent 50ml 30-354 
cAMP XS+ Standard (250µM) 13ml 30-355 
Galacton-Star® 4.0ml 10-069 
Emerald-IITM 20ml 10-068 
 
 
Table 6.8: Agonists and antagonists used to identify functional receptors in human 
myocytes and fibroblasts.  
 

Compound Receptor target Stock vehicle Source Catalogue No 
AH13205 EP2 DMSO Sigma A9102 
AH6809 EP1, EP2, EP3, DP1 DMSO Sigma A1221 
Atosiban Oxytocin receptors  0.1% BSA in dH2O Sigma A3480 
β-oestradiol Oestrogen α & β ethanol Sigma E2257 
Butaprost EP2    ethanol Cayman Chemicals     13740 
Caspase-3 inhibitor II DMSO Calbiochem 264155 
EDTA Ca2+ chelator DMEM D Sigma E6758 
Indometacin COX inhibitor ethanol Sigma I7378 
LaCl3  Ca2+ channel blocker        ethanol Sigma L4131 
Nifedipine L-type Ca2+ channels    ethanol Sigma N7634 
Oxytocin  Oxytocin receptors DMEM D Sigma O3251 
Progesterone Progesterone A & B        ethanol Sigma P6149 
PGE2 EP1-4    ethanol Cayman Chemicals     14010 
PGF2α FP    ethanol Cayman Chemicals     16010 
Rho-kinase inhibitor    DMEM D Cayman Chemicals     555550 
SQ29,548 TP    ethanol Cayman Chemicals     19025 
Sulprostone EP1, EP3    ethanol Cayman Chemicals     14765 
Thapsigargin    Ca2+-ATPase inhibitor    ethanol Sigma T9033 
U46619 TP           ethanol Cayman Chemicals     16450 
 
 
Table 6.9. Solutions for SuperScript III one-step quantitative RT-PCR system. 
 

Solutions for SuperScript III one-step RT-PCR Source Catalogue No 
DNase/ RNase free water Gibco 10977-015 
PCR supermix Invitrogen 10572 
Platinum PCR supermix Invitrogen 11306-016 
Run mix 2X Invitrogen 52202 
SuperScript III RT/ Platinum Taq mix Invitrogen 52118 
SuperScript III Invitrogen 12574 
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6.5 Isolated myometrium for cellular and molecular studies 

Uterine tissue was obtained from term pregnant women (aged 22-38) undergoing 

elective Caesarean sections before the onset of labour (n=17). To standardise myocyte 

cultures, women associated with any major complication of pregnancy, such as 

hypertension, pre-eclampsia and diabetes were excluded from cellular and molecular 

studies. Other exclusion criteria included donors taking prescription medicines and 

those who smoked. All donors signed informed written consent forms prior to 

surgery; this was in accordance with ethical approval from the Bradford Hospital 

NHS Trust and the University of Bradford Ethics Committee (Figure A2).  

 

At Caesarean delivery, full-thickness uterine biopsies were taken from the upper 

margin of lower transverse incisions. These were transported to the laboratory in 

sterile Krebs’ solution and processed for cell dispersion within 2 hours of excision. 

Adherent decidua, serosa, fat and connective tissues were trimmed using a sterile 

scalpel and the remaining myometrium was washed several times in sterile Hanks’ 

balanced salt solution (HBSS) to clean and remove residual mesentery and blood. 

Isolated myometrium was further processed for primary cell culture using explant or 

enzymatic digestion techniques. 

 

6.6 Primary cell culture 

Myometrial biopsies (~0.5g) were minced using a McIlwain Tissue chopper (Mickle 

Laboratory Engineering, Guilford, UK) into pieces <1mm3 and washed in HBSS.  
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6.6.1 Myometrial explant cultures 

For crude explant cultures, 30-50mg of minced myometrial tissues were added to 

0.5ml basic defined Dulbecco’s modified eagles medium (DMEM A), containing 10% 

v/v foetal calf serum (FCS) and 1% v/v antibiotic and antimycotic solutions. The 

explant suspensions were aliquoted into 25cm2 culture flasks or onto sterile treated 

coverslips in 35mm culture dishes (Section 6.10). These containers were carefully 

inverted to improve explant adhesion and DMEM A was added beneath to create a 

humidified atmosphere (Figure 6.1). After incubating at 37°C (5% CO2) overnight, 

the culture flasks and dishes were returned to their upright position and explants were 

submerged with fresh basic defined medium. The medium was changed every other 

day thereafter with cells maintained under the same conditions until sub-confluence. 

 
 
 
 
a)   b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.1: Myometrial explants adhering to treated coverslips in culture dishes         
a) inverted overnight and b) subsequently returned to an upright position. Addition of 
basic defined medium and incubation at 37°C facilitated myometrial cell growth. 
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6.6.2 Enzymatic dispersion of myometrium 

The technique for enzymatic myometrial cell isolation was based on a protocol 

previously described by Phaneuf et al. (1993) with some adaptations. Between 0.5-

1.0g of the minced tissue was placed in 10ml HBSS (solution A) containing calcium 

chloride (CaCl2; 2.5mM), magnesium chloride (MgCl2; 0.9mM) and dispase 

(10mg/ml), which was incubated at 37°C for 1-2 hour with continuous stirring. After 

washing in Ca2+- and magnesium- (Mg2+) free HBSS, the mesh of softened tissue was 

triturated. Cell dispersion was achieved in the same solution, supplemented with 

collagenase (300U/ml), elastase (2U/ml), DNAse I (30U/ml) and fatty acid free-

bovine serum albumen (BSA; 1mg/ml) (solution B) at 37°C with gentle shaking. 

After 2 hours, the cell suspension was transferred to a centrifuge tube and washed 

three times with HBSS by centrifugation at 450g (~1200rpm). Basic defined medium 

composed of DMEM A, 10% v/v FBS, 100IU/ml penicillin, 10mg/ml streptomycin 

and 2mmol/l L-glutamine was used to resuspend the final cell pellet. 

 

6.7 Cell number and viability 

Before plating, a trypan blue exclusion assay was performed to determine cell number 

and viability.  The cell suspension was diluted 1:1 with 0.4% v/v trypan blue solution 

and 10µl of this mixed solution was added to each chamber of a Neubauer 

haemocytometric slide with a coverslip in place. Using the 10x focus on the Olympus 

CK40 microscope, live (unstained) and dead (trypan blue positive) cells were counted 

in five 1mm2 grids per chamber and an average was calculated per grid from the two 

chambers. Since the depth was 0.1mm, each grid represented a total volume of 

0.1mm3 or 10-4cm3.  
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The total number of cells and cell viability was therefore determined using the 

following calculations: 

 

 Cells/ ml = average cell count per grid x 104 x dilution factor 

 Total cells = Cells/ ml x volume of original cell suspension (ml) 

 % cell viability = total viable cells (unstained)/ total cells x 100 

 

If cells were too concentrated to count, the cell suspension was diluted further and the 

dilution factor was adjusted accordingly. In all cases cell viability was greater than 82 

percent (Table 6.10). 

 

6.8 Optimising isolation parameters 

Although cell viability with the trypan blue exclusion assay was at 90 percent using 

the method outlined by Phaneuf et al., (1993) (Section 6.6.2; Table 6.10), enzyme 

combinations were altered to optimise tissue digestion. Dissociation with trypsin and 

collagenase for 1 hour (Karasinski et al., 2000) increased cell damage by 8.9 percent. 

However, by omitting elastase from the digestion step, the yield and viability of cells 

was improved. As a result, elastase was subsequently excluded from solution B in the 

digestion process. 
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Table 6.10: Enzymatic digestion of minced isolated myometrium following exposure 
to solution A. The composition of enzyme solutions was based upon protocols 
described by a) Phaneuf et al. (1993), b) Fomin et al., (1999) and c) Karasinski et al., 
(2000). Cell number and viability were quantified using a haemocytometer and trypan 
blue exclusion assays; approximately 100,000 to 1,000,000 cells were isolated per 
gram of myometrial tissue. 
 

 
Collagenase 

(U/ml) 
Elastase 
(U/ml) 

DNase I 
(U/ml) 

FAF BSA 
(mg/ml) 

Total cell number 
(range; n=6) 

Average cell 
viability (%) 

a 300 2 30 1 1.2x105 – 1.1x106 90 ± 10.8 
b 300 0 30 1 1.1x105 – 1.3x106 94 ± 6.5 
 Collagenase 

(U/ml) 
Trypsin 

(%) 
DNase I 
(U/ml) 

FAF BSA 
(mg/ml) 

Total cell number 
(n=1) 

Cell viability 
(%) 

c 300 0.1 0 1 5.2x105 82 
 

FAF BSA: Fatty acid-free bovine serum albumen. 
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6.9 Purification of myometrial cells 

Different techniques were applied to purify smooth muscle cells from fibroblasts. The 

cell suspension was initially separated using Percoll two-phase discontinuous density 

gradient (Amersham Biosciences, Uppsala, Sweden). This consisted of the following 

solutions: 

 
Table 6.11: 10X Ads buffer composition in 100ml milli-Q water. 
 

10X Ads buffer Volume added Source Catalogue No 
Sodium chloride (NaCl) 6.8g Sigma S5629 
HEPES 4.76g Sigma H3784 
Sodium dihydrogen phosphate (NaH2PO4) 0.12g Sigma S5011 
Glucose 1.0g Sigma G7021 
Potassium chloride (KCl) 0.4g Sigma P5405 
Magnesium sulphate (MgSO4) 0.1g Analar 203726 
 
 
These substances were dissolved in milli-Q water to a final volume of 100ml. After 

adjusting the pH to 7.35 with 1N NaOH, the 10X Ads buffer was filter sterilised 

(Nalgene, 0.20 µm) and stored at 2-8°C. 

 

For 1X Ads solution preparation, the 10X Ads buffer was diluted with sterile dH2O. 

Percoll (density = 1.130g/ml) was diluted 9:1 with 10X Ads buffer to formulate the 

Percoll stock (density: 1.110g/ml). Gradients of Percoll for the top (density: 

1.059g/ml) and lower (density: 1.082g/ml) layers were prepared by diluting Percoll 

stock with 1X Ads buffer at ratios of 9:11 and 13:7 respectively. 

To establish the Percoll interface, 5ml top layer Percoll was transferred into a 15ml 

centrifuge tube. For this layer to rise, 5ml lower layer Percoll was added a drop at a 

time to the bottom of the tube. This two-phase Percoll gradient was overlaid with the 

myocyte/ fibroblast cell suspension (1x10-6 cells). By centrifuging for 20 minutes at 

2500g (~3000rpm), room temperature in a Mistral 3000 centrifuge, myocytes 
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sedimented at the Percoll interface, whilst fibroblasts and non-myocyte cells 

aggregated on the upper surface.  

Individual bands of cells were carefully removed, resuspended in DMEM A and 

centrifuged at 450g for 5 minutes. Despite the observed cell pellets, once seeded in 

flasks, recovery of viable Percoll-enriched myocytes and fibroblasts was poor. 

Therefore, alternative methods to this gradient fractioning were explored. 

 

Following enzymatic dissociation, myometrial cells were plated into 25cm2 vent-cap 

culture flasks (Costar, Lowell, Massachusetts, USA) at a density of 0.5-2x104 cells/ 

ml and stored at 37°C in a water-saturated atmosphere containing 5% CO2. To purify 

cultures based on differential adhesion, after 18 hours the supernatant containing late 

adherent cells was centrifuged at 450g for 5 minutes, resuspended and transferred to a 

separate 25cm2 flask with fresh basic defined medium added to both cultures. This 

preplating technique has been shown to isolate rapidly adherent fibroblast cells from 

myocytes (Hongpaisan, 2000; Rouger et al., 2007). The media was changed every 48 

hours thereafter to enhance cell proliferation. Culture growth and cell morphology 

were repeatedly examined using a phase contrast microscope (Olympus CK40) with 

pictures imaged using a JVC digital colour video camera (Figure 6.4). Near 

confluence, the cells were harvested using trypsin (Section 6.11). 

 

6.10 Coating coverslips for cell adhesion 

To enable myometrial cells to anchor, move and proliferate, the sterile flasks, plates 

and dishes were composed of treated polystyrene plastic (Costar, Lowell, 

Massachusetts, USA). However, when plating cells on glass coverslips (Ultima, 

22mm2), fibronectin was added as an extracellular matrix coating to facilitate the 
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attachment of cell surface cytoplasmic proteins, such as integrins and α-actinin 

(Sinanan et al., 2008). 

The coverslips were cleaned using 5% v/v Decon 90 detergent followed by urea 

(1mM). After rinsing with sterile 1x phosphate buffered saline (PBS) and ethanol in a 

laminar flow hood, glass coverslips were incubated with 50µg/ml bovine fibronectin 

for 30-45 minutes at room temperature. The coverslips were then rinsed with PBS and 

secured in 6-well plates or 35mm Petri dishes with tissue explant or cell suspensions 

(5x104 cells/ ml) added immediately. Following a 30-minute incubation in a water-

saturated atmosphere at 37°C, Petri dishes were flooded with media and incubated 

overnight. 

 

A time-lapse video was performed using Adobe Premiere software with images taken 

at 0 and 18 hours showing cell adhesion to a fibronectin-coated glass coverslip 

(Figure 6.2). To maintain cell pH and temperature, HEPES buffer (25mM) was added 

to the culture medium and a heating stage (RS) set to 38°C was used. 

 

 

 

 

 

 

 

 

Figure 6.2: Isolated primary myometrial cells incubated on a fibronectin-coated slide 
at 37°C for a) 0 hours and b) 18 hours under a phase contrast microscope (x10) 
equipped with a JVC digital camera. The rapid adhesion properties have been 
associated with cultures enriched in fibroblast cells (Rouger et al., 2007). 

a) 0 hours b) 18 hours 
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6.11 Harvesting cells 

To passage cells for subculture, myocytes were harvested upon reaching a semi-

confluent state. This was achieved after removing the conditioned medium by adding 

0.25% trypsin containing 2mM ethylendiamine tetra-acetic acid (EDTA) to the cell 

flasks. As a Ca2+ chelator, EDTA worked synergistically with the protease enzyme 

trypsin to cleave cell-matrix adhesion proteins. Thereby, as monitored under the phase 

contrast microscope (Figure 6.3), after 5-15 minutes at 37°C, the cells were rounded 

and detached from the flask surface. Due to its inhibitor proteins and divalent cations, 

FCS was immediately added to neutralise trypsin action. The cells were then 

centrifuged at 450g for 5 minutes and the cell pellet was diluted with fresh medium 

for culture or for freezing.  

 

  

 Figure 6.3: Trypsin-EDTA incubated at 
37°C/ 5% CO2 for 3 minutes in a flask 
of cultured myocytes. The rounding of 
the cells visualised under a phase 
contrast microscope (x10) indicates 
near detachment from the flask surface. 

 
 

 

6.12 Preservation, storage and recovery of cultured cells 

For freezing and storage of cells near confluence, the cells were trypsinised, harvested 

and counted (Sections 6.7 & 6.11). Following centrifugation at 450g for 5 minutes, 

the supernatant was discarded and the remaining cell pellet was resuspended at a final 

density of 1x106 cells/ ml in freshly prepared DMEM A, containing 10% v/v dimethyl 

sulfoxide (DMSO) and 10% v/v FCS. This freezing medium both prevented 

crystallisation of water, which would lyse cells during cryopreservation, and also 
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provided nutrients during the thawing process. The cells were stored in a cryovial 

within a freezing container (Nalgene Ltd., Ridderstraat, Neerijse, Belgium) at -80°C, 

which was transferred to liquid nitrogen the following day.  

Frozen cells were recovered within a year of storage. The cells were quickly thawed 

in a 37°C water bath, diluted in pre-warmed basic defined medium and plated for 

culture.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.4: Images of primary human a) fibroblasts and b, c, d) smooth muscle cells 
dissociated from myometrial biopsies and visualised under magnifications of a-b) x25, 
c) x4 and d) x40. Cell populations were separated using differential adhesion and each 
culture formed a typical whorl pattern near confluence. As myocytes and fibroblasts 
were difficult to distinguish morphologically, both immunohistochemistry and 
immunocytochemistry staining techniques were employed. 

a) Fibroblasts x25 b) Myocytes x25 

c) Myocytes x4 d) Myocytes x40 
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6.13 Solutions for immunofluorescent staining 

The purity of cell cultures was assessed using immunohistochemistry and 

immunocytochemistry techniques. The protein markers assayed included α-actinin, 

actin, desmin, vimentin and anti-human fibroblast surface protein to distinguish 

between myocytes and fibroblasts. 

 

6.13.1 Phosphate buffered saline (PBS) 

PBS was prepared by dissolving a sachet of 10x PBS in 1 litre of autoclaved milli-Q 

water for a working solution of 1x PBS (0.01M, pH 7.4). 

 

6.13.2 Wash buffer (PBS-Tween 0.5%) 

The mild detergent Tween 20 was added to PBS (0.01M, pH 7.4) at 0.5% v/v and 

stored at 2-8°C.  

 

6.13.3 Blocking buffer 

After addition of 1g BSA (Fraction V) to 100ml PBS-Tween (0.05%), the blocking 

buffer was heat inactivated at 65°C for 15 minutes and cooled. This was diluted to 3% 

v/v and 1% v/v working solutions using PBS-Tween (0.5%). 

 

6.13.4 Paraformaldehyde fixing buffer 

To prepare 4% paraformaldehyde-fixing buffer, PBS (0.01M) was pre-heated to 65°C 

and 4g of paraformaldehyde powder was added in a fume hood. This was maintained 

at 65°C for 15 minutes and then stirred at a low heat until the paraformaldehyde 

solution became clear.  After cooling, the pH was adjusted to 7.35 ± 0.5 with 1N 

sodium hydroxide (NaOH) and this fixing solution was stored in the dark. 
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6.13.5 Permeabilising buffer 

The permeabilising buffer was composed of the following substances (Table 6.12) 

dissolved in milli-Q water to a final volume of 100ml. The pH was adjusted to 7.2 

using 1N NaOH and this buffer was then filter sterilised (Nalgene, 0.20 µm) and 

stored at 2-8°C. 

 
 
Table 6.12: Permeabilising buffer composition in 100ml milli-Q water. 
 

Permeabilising buffer Volume added Source Catalogue No 
Sucrose 10.3g EMD Chemicals 102745C 
Sodium chloride (NaCl) 0.292g Sigma S5629 
Magnesium chloride (MgCl2) 0.06g Sigma M8266 
HEPES 0.476g Sigma H3784 
Triton X-100 0.5ml Sigma 9284 
 

6.13.6 Primary & secondary antibodies 

 
Table 6.13: Characteristics of primary antibodies diluted in 1% blocking solution for 
immunofluorescence. 
 

Primary antibody Donor species Working dilution Source Cat No 
α-actinin Mouse 1:200 Sigma A5044 
Fibroblast surface protein     Mouse 1:100 Sigma F4771 
Vimentin Goat 1:100 Sigma V4630 
Desmin Rabbit 1:100 Sigma D8281 
 
 
Table 6.14: Secondary conjugated antibodies diluted in 1% blocking solution for 
immunofluorescence, stored in dark to prevent photobleaching. 
 

Secondary antibody   Conjugate 
Working 
Dilution 

Protein target Source Cat No 

Alexafluor 488, rabbit 
anti-mouse IgG 

FITC 
(green) 

1:200 
α-actinin, 

Fibroblast protein 
Invitrogen A11059 

Alexafluor 568, rabbit 
anti-goat IgG 

TRITC 
(red) 

1:200 Desmin Invitrogen A11079 

Goat anti-rabbit IgG 
FITC 

(green) 
1:50 Vimentin Sigma F0382 
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6.14 Immunohistochemistry of myometrial sections 

To identify cell subsets in isolated human myometrium, tissue biopsies obtained at 

term pregnancy were cut to approximately 1 cm3 using a surgical blade (size 23). The 

specimens were submerged in optimal cutting temperature (OCT; a cryoprotective 

compound) in cuvettes, which were frozen and stored at -20°C.  

 

6.14.1 Preparation of poly-L-lysine coated slides 

Glass slides (BDH Laboratory Supplies, Poole, Dorset, UK) used for immunostaining 

were cleaned thoroughly to eliminate contamination. The slides were individually 

spaced on a slide carrier, soaked in 5% Decon 90 detergent for 5 minutes and washed 

twice with distilled water. After transferring to 100% ethanol, the slides were placed 

in a heated drying cabinet until the ethanol had evaporated. To optimise tissue section 

adherence, the slides were soaked in 0.01% w/v poly-L-lysine solution for 5 minutes 

and left to dry overnight. 

 

6.14.2 Preparation of frozen sections using the cryostat 

Myometrial biopsies frozen in the cryo-embedding substance OCT were left to thaw 

at room temperature. The chamber of the cryostat (Leica CM 1800) was adjusted to    

-25°C and a small disc of OCT was frozen onto the metal chuck. Once thawed, the 

myometrial tissue was placed in fresh OCT using forceps, which was then mounted 

on the metal chuck to freeze. Further layers of OCT were added and frozen to fully 

embed the tissue. Tissue sections were cut at 10µm using the cryostat and placed onto 

poly-L-lysine coated slides for storage at -20°C. 
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6.15 Immunofluorescent staining of myometrial sections and cells 

Before immunostaining, frozen sections were immersed in cold PBS for 5 minutes 

within a Coplin Jar and a small region above and below each tissue section was 

blotted with Whatman paper. To retain solutions during incubation steps, a liquid-

repellent slide marker pen (PAP pen, Sigma Chemicals, Poole, Dorset, UK) was used 

to encircle the tissue sections. For myometrial cells, coverslips with subconfluent 

cultures (Section 6.10) were washed three times with HBSS to remove medium. All 

preparations were fixed in 4% paraformaldehyde for 5 minutes at 37°C.  

Staining for α-actinin, desmin and vimentin was performed by rinsing slides and 

coverslips with PBS-Tween (0.5%) before treating with a permeabilising buffer 

containing 0.5% solution of the detergent Triton X-100 (Table 6.12). After washing 

twice, the cells and myometrial sections were blocked with a 3% BSA solution to 

minimise non-specific background staining. Fibre-free Whatman filter paper was used 

to decant the buffer. The tissue sections and cells were then incubated with primary 

monoclonal antibodies at their optimal concentrations (Table 6.13). To visualise 

proteins after a further three washes, secondary antibodies conjugated to a 

fluorochrome were incubated for an hour at 37°C; this corresponded to the donor 

species of the primary antibody (Table 6.14). The slides and coverslips were 

subsequently kept in the dark to prevent photobleaching. After three washes with 

PBS, cells stained with the α-actinin antibody were incubated for a further hour at 

room temperature with phalloidin-tetramethylrhodamine B isothiocyanate (1µg/ml), a 

toxin that binds to polymeric filamentous actin.  Three final washes with PBS were 

performed and coverslips were mounted on glass slides (BDH Laboratory Supplies, 

76mm x 26mm) using 1.5µg/ml DAPI (Vector Laboratories, Burlingame, California, 

USA). This mounting medium was used to counterstain cell nuclei and the edges of each 
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coverslip were sealed using clear nail varnish. Negative controls were performed in 

parallel, except that tissues and cells were treated with a solution of 1% v/v BSA in 

PBS without primary antibody. The slides were stored in the dark at 4°C for up to two 

days before imaging.  

 
 
Table 6.15: Overview of the procedure used to fix, permeabilise and stain intracellular 
protein markers. 
 

Step Procedure Temperature Time 
1 Aspirated medium and washed 3 times with HBSS 37°C 5 minutes x 3 
2 Fixed with 4% paraformaldehyde solution 37°C 5 minutes 
3 Washed 3 times with PBS-Tween (0.5%) 37°C 5 minutes x 3 
4 Incubated with permeabilising solution 4°C 5 minutes 
5 Washed 2 times with PBS-Tween (0.5%) 37°C 5 minutes x 2 
6 Incubated with 3% blocking solution 37°C  1 hour 
7 Incubated with primary antibody solution 37°C  1 hour 
8 Washed 3 times with PBS-Tween (0.5%) 37°C 5 minutes x 3 
9 Incubated with secondary antibody in dark 37°C  1 hour 

10 Washed 3 times with PBS on shaker in dark RT 5 minutes x 3 
11 Rinsed with milli-Q purified water and DAPI used to mount the coverslips on to 

slides. Once dry, slides were stored in dark at 4°C until examined under microscope. 
RT: room temperature 
 

6.15.1 Immunostaining for fibroblast surface proteins 

Unlike the above protocol (Section 6.15; Table 6.15), to detect fibroblast surface 

proteins the permeabilising step and addition of Tween 20 to wash and blocking 

buffers were omitted. This ensured that the integrity of the cell membrane remained 

intact and also prevented the monoclonal antibody from binding to cytosolic proteins. 

 

6.15.2 Fluorescence microscopy 

After immunostaining, tissue sections and cell cultures were viewed and 

photographed under a Nikon 32 phase contrast microscope equipped with a camera. 
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ACT-2U software was used to capture both fluorescent and bright field pictures; these 

images were superimposed using Adobe Photoshop version 6. 

 

6.16 Intracellular Ca2+ recordings 

To determine receptor-mediated intracellular Ca2+ signalling, a fluorescence-based 

assay was adopted. This was performed using a fluorometric imaging plate reader 

(FLIPR-Tetra; Molecular Devices).  

To prepare plates for the FLIPR system, myometrial smooth muscle cells and 

fibroblasts (passages 1-5) were harvested at 80-90% confluence using trypsin (Section 

6.11). The cells were diluted 100-fold into 10ml saline and total cell number was 

determined using a Coulter Counter (Beckman-Coulter Z2 Cell Counter). Following 

centrifugation at 450g for 5 minutes, myocytes and fibroblasts were resuspended in 

fresh basic defined medium C (Table 6.3.3) and plated at optimal concentrations 

(Chapter 7). The cells were then dispensed at 100µl or 50µl/ well into poly-D-lysine-

coated, black-wall and clear-bottom 96-well or 384-well plates (Becton-Dickinson, 

New Jersey, USA), covered and incubated overnight at 37°C under 5% CO2. 

 

6.16.1 Preparation of buffers for FLIPR 

 
Table 6.16: HBSS-HEPES buffer 
 

Stock solutions Volume added Source Catalogue No 
10x HBSS 600ml Gibco 14065-056 
1M HEPES buffer 120ml Gibco 15630-080 
 

Distilled water was added to prepare 6 litres of HBSS-HEPES buffer. The pH was 

adjusted to pH 7.4 using 1N NaOH and the buffer was then filter sterilised and stored 

at ambient room temperature for up to 2 weeks.  
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Table 6.17: Dye-loading buffer (2µM fluo-4) 
 

Solutions Final Concentration Source Catalogue No 
Fluo-4 AM dye 2µM Invitrogen F-23917 
Pluronic acid 0.02% Invitrogen P-3000MP 
 

The stock fluo-4 dye (2mM) was diluted in DMSO and pluronic acid was added at 

20%. To prepare the dye loading buffer, the fluo-4 mixture was diluted 1000-fold with 

HBSS-HEPES buffer. This was stored in the dark at room temperature and used on 

the same day.  

 

6.16.2 Standard agonist plates 

Test drugs were prepared at 10-2M in the appropriate diluent and stored at -20ºC 

(Table 6.8). 

To prepare standard agonist plates, all wells in a 96-well V-bottom Greiner plate were 

pre-filled with HBSS-HEPES buffer. Stock agonists (10-2M) were diluted to 4x10-4M 

with buffer and further diluted 10-fold in Row H for a working concentration of  

4x10-5M. The agonists were serially diluted 1:10 up the plate, leaving Row A with 

buffer alone as a negative control. Similarly for 384-well V-bottom Greiner plates, 

two serial dilutions were prepared from Rows H and P, with Rows A and I saved as 

blanks. The plates were stored at 4ºC and used on the same day after equilibrating to 

room temperature. 

 

6.16.3 Standard antagonist plates 

Antagonists (10-2M) were diluted in HBSS-HEPES buffer to 4 times the required final 

concentration. For negative controls, buffer was pipetted into columns 1-3 of 96-well 

V-bottom Greiner plates. Antagonists were then added to each of 24 wells in the three 

adjacent columns. Blank wells (columns 1-3; 13-15) and antagonists were plated in an 
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equivalent manner for 384-well plates, with a total of 6 antagonists assayed. These 

plates were stored at room temperature in the dark before use on the same day.  

 

In incubation experiments, compounds prepared in DMEM B were added to adherent 

plated cells, substituting the original seeding medium. Plates were incubated for 24 

hours before agonist additions using the FLIPR. 

 

6.16.4 FLIPR assay 

To determine intracellular Ca2+ responses, the cells were washed twice with HBSS-

HEPES buffer using a Microplate Cell Washer (BioTek Instruments, Winooski, 

Vermont, USA) leaving a resting volume of 50µl and 25µl in 96- and 384-well plates 

respectively. The cells were then incubated with the cytoplasmic Ca2+ indicator fluo-4 

dye in the acetylmethyl form (fluo-4 AM, 2µM) at 37°C for 45 minutes in the dark. 

During this time, the FLIPR was started, equilibrated to 39°C and an optics signal test 

was performed at set excitation/ emission wavelengths of 470-495nm/ 515-575nm 

using ScreenWorks software. 

To remove extracellular fluo-4 AM dye, myocytes and fibroblasts were washed three 

times with HBSS-HEPES solution leaving 100µl or 50µl buffer in each well of 96- or 

384-well plates. The FLIPR system was then loaded with disposable black tips 

alongside agonist and antagonist plates. After equilibrating at 37°C for 3 minutes, cell 

plates were placed in the FLIPR instrument and treated with antagonists for 4 minutes 

before an additional 4 minutes of agonist stimulation. A fluorescent signal emitted 

from the binding of cytosolic free Ca2+ with fluo-4 AM dye was detected using the 

FLIPR camera at an exposure time of 0.4 seconds. Fluorescence was also captured at 

excitation and emission wavelengths of 400nm and 506nm for Ca2+-bound and free 
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dye respectively. Average changes in these fluorescent light units (FLU) were 

calculated for triplicate wells. 

 

Responses were normalised relative to the maximum signal from control agonist wells 

and a 4-parametric sigmoidal curve was used to fit each data set. The background 

signal (negative control) of buffer alone was also taken into account using the 

following equation:  

 
 % Change in FLU   =  (average FLU - background) x100 

                                                                                                                                                                                                                                                                                                                                                                                   

 (average FLU (control wells) - background) 
 

 

 
6.17 Metabolic response assay: MTT 

To identify changes in cell proliferation, cytotoxicity was quantified using the yellow 

tetrazolium dye, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide 

(MTT). For this assay, stock MTT (5mg/ml) was diluted 1:10 in phenol red-free 

medium (DMEM B), which was added to adherent cells in 96-well plates at 37°C for 

4 hours. During this time, the mitochondrial succinate-tetrazolium reductase system 

and cytoplasmic pyridine nucleotide cofactors within viable cells reduced the MTT to 

a blue/ purple, water-insoluble formazan salt. Following exposure to MTT, the 

conditioned media was aspirated and the formazan formed was solubilised by addition 

of 100µl DMSO per well. Colour development was read in a Bio-Rad plate reader at 

630nm. 
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6.18 cAMP assay for smooth muscle cells  

The cAMP assay was performed according to the HitHunter cAMP XS+ kit protocol 

(GE Healthcare Ltd., Buckinghamshire, UK). This was used for the quantitative 

determination of cAMP from cells and is based upon the complementation of the large 

enzyme acceptor (EA) and small enzyme donor (ED) fragments of Escherichia coli β-

galactosidase (β-gal). For this assay, the cAMP from cell lysates and ED-labelled 

cAMP (ED-cAMP) compete for antibody binding sites. In the bound state, the 

activated β-gal enzyme produces a luminescent signal, which indicates the presence 

of intracellular cAMP.  

 

6.18.1 Reagent preparation 

Each reagent was equilibrated to ambient room temperature before use and protected 

from light during all incubations. 

Lysis buffer/ antibody (Ab) working solution was gently mixed at a ratio of 3:1. 

cAMP XS+ ED/ lysis/ chemiluminescent (CL) substrate working solution was 

pipetted as a mixture. Galacton-star, Emerald-II and the Lysis buffer were gently 

mixed by inversion at a ratio of 1: 5: 19 before mixing with equal parts of ED at a 

ration of 1:1. 

To activate adenylyl cyclase and increase intracellular cAMP, forskolin was added to 

cells. Stock forskolin (9mM) was diluted 10-fold in PBS to 900µM and ten 3-fold 

serial dilutions were prepared. These dilutions were 3-fold higher than the final plate 

concentration. 
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6.18.2 Standard curve 

A cAMP standard curve was run to test the performance of cAMP XS+ kit reagents. 

The stock cAMP standard (2.5x10-4M) was diluted 1:8 with PBS and nine 3-fold 

serial dilutions of cAMP were then prepared using PBS as the diluent for a final range 

of 2.35x10-10M to 4.63x10-6M. PBS alone was used for zero standards. Zero and 

cAMP standard dilutions were dispensed at 10µl/ well, followed by 5µl/ well PBS, 

5µl/ well antibody reagent and 20µl/ well of ED/ CL/ Lysis mix. These compounds 

were incubated for 60 minutes at room temperate. After the addition of 20µl/ well EA, 

the plate was incubated for a further 4 hours at room temperature before the 

luminescent signal was read at 1 second/ well using a Victor Light precisely 1420 

Counter (Perkin Elmer, Waltham, Massachusetts, USA).  

 

6.18.3 Cell-based assay 

Myocytes were harvested (Section 6.11), counted and resuspended in PBS to the 

appropriate cell density. Isobutylmethylxanthine (IBMX, 0.5mM), an inhibitor of 

phosphodiesterase, was also added to the cell suspension to prevent the degradation of 

cAMP. The assay was performed in triplicate per condition within a white OptiPlate-

384 (Perkin-Elmer, Waltham, Massachusetts, USA). Controls included cAMP 

measurements in untreated cells and substitution of PBS for ED reagent to obtain 

background enzyme fragment complementation (EFC) signal.  

 

6.18.4 Optimal cell conditions 

Myocytes were trypsinised, washed, resuspended and diluted in IBMX-PBS solution 

for seeding densities of 2.5k, 5k, 10k, 20k and 40k cells/ well. Cell suspensions were 

added at 10µl/ well into the white OptiPlate-384 and treated with 5µl forskolin or PBS 
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as a zero control. To determine optimal conditions for cAMP induction, 3-fold 

forskolin for working concentrations of 5.1x10-9M to 3x10-4M were incubated with 

cells for 30 minutes at 37°C. Antibody reagent and ED/ Lysis/ CL Working Solution 

were added at 5µl and 20µl/ well respectively for 60 minutes incubation at room 

temperature. All cells were then treated with 20µl/ well EA solution for 4 hours at 

room temperature and the luminescence signal was read on the Victor Light plate 

reader (Table 6.18). 

   

6.18.5 Agonist-induced cAMP production 

The titre of myocytes in the preliminary assay established optimal cell density at 20k 

cells/ well (Figure 6.5). Based on this cell number, the EC80 concentration of 

Forskolin was calculated to be 10µM. To account for the working 3-fold dilution-

factor, concentration-effect curves for PG and oxytocin agonists (3x10-11M to      

3x10-5M) were constructed using 30µM forskolin. The 10µl/ well seeded myocytes 

were then incubated with 5µl of each agonist at 37°C for 30 minutes. After addition of 

the antibody reagent and ED/ CL/ Lysis mix at 5µl and 20µl/ well respectively, the 

plate was incubated for 60 minutes at room temperature. EA solution was then 

dispensed at 20µl/ well before a 4-hour incubation step at room temperature and the 

chemiluminescent signal was read on the Victor Light plate reader.  
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Table 6.18: Overview of the 3-reagent addition protocol for the HitHunter cAMP XS+ 
assay to perform a standard curve and cell-based assay in a 384-well plate format. 
 

Steps Standard curve Steps Cell-based assay 
1 10µl diluted cAMP standard 1 10µl cells (20µl/ well) 
2 5µl PBS 2 5µl agonists in 30µM forskolin 
3 5µl antibody reagent 3 30 minutes incubation at 37°C 
4 20µl ED/Lysis/CL solution 4 5µl antibody reagent 
5 1 hour incubation at RT 5 20µl ED/Lysis/CL solution 
6 20µl EA reagent 6 1 hour incubation at RT 
7 4 hours incubation at RT 7 20µl EA reagent 
8 Read luminescence signal 8 4 hours incubation at RT 
  9 Read luminescence signal 

 

RT = room temperature 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.5: Standard curve for cAMP and forskolin-induced cell response data after 
subtraction of background relative luminescence units (RLU). Myocytes were seeded 
at different densities with optimal responsiveness determined in this preliminary assay 
at 20,000 cells/ well. Results are arithmetic means ± S.E. and two-way ANOVA with 
Bonferroni’s post-hoc test showed statistical significance; **p<0.01; ***p<0.001 for 
RLU compared to 2,500 cells/ well. 
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6.19 Protocol for mRNA isolation 

The reverse transcription polymerase chain reaction (RT-PCR) technique was applied 

to myocytes to analyse changes in gene transcripts. To avoid degradation by 

exogenous ribonucleases (RNases) and obtain high-quality RNA, the work area was 

cleaned thoroughly with 70% ethanol and RNaseZap solution (Ambion, Austin, 

Texas, USA). Gloves were changed on a regular basis and all plastics were supplied 

as sterile, DNase and RNase-free. In addition, glassware was either sprayed with 

RNaseZap or rinsed with 0.1% (w/v) diethyl pyrocarbonate (DEPC)-treated water 

(Sigma Chemicals Co, Poole, Dorset, UK) followed by autoclaving. 

 

6.19.1 Effects of PGs and oxytocin on myocyte transcription 

Myocytes were grown in a monolayer in 7x15cm2 Petri dishes (passages 1-3; n=6). At 

about 80 percent confluence, myocytes were either exposed to vehicle (DMEM B), or 

to combinations of agonists and antagonists (Table 6.19). Although all cells were 

harvested at 24 hours incubation, oxytocin was added at 21 hours for a 3-hour 

exposure time. 

 

Table 6.19: Myocytes were incubated with vehicle (DMEM B), oxytocin, the 
oxytocin antagonist atosiban, U46619 or the TP antagonist SQ29,548 at the following 
concentrations and incubation times before harvesting for RNA isolation. 
 

Compounds Concentration(s) Incubation Time 
Atosiban 10-5M 24 hours 
Oxytocin 10-6M 3 hours 
Atosiban  + Oxytocin 10-5M         + 10-6M 24 hours   + 3 hours 
U46619 10-6M 24 hours 
SQ29,548 10-6M 24 hours 
SQ29,548 + U46619 10-6M         + 10-6M 24 hours   + 24 hours 
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6.20 Purification of mRNA 

mRNA was extracted using RNeasy Mini Kits (Qiagen, Valencia, California, USA) 

following the manufacturer’s instructions. Before the start of experiments, RNA gels 

were prepared alongside the buffers. 

 

6.20.1 RNA agarose gels 

Electrophoresis tanks were cleaned with detergent solution, thoroughly rinsed with 

RNase-free water and then sprayed with ethanol and allowed to dry before use. Each 

RNA gel was prepared by mixing 0.5g agarose with 45ml of distilled water in a glass 

bottle. This solution was microwaved for 1-2 minutes to dissolve and sterilise the 

agarose mix. After cooling to about 65°C, 10x denaturing gel buffer at 1:10 dilution 

and 3µl ethidium bromide were added to the agarose gel mixture in a fume cupboard. 

This solution was immediately poured into an electrophoresis Sub-Cell (Bio-Rad, 

Hercules, California, USA) with 8 or 15 prong combs in place according to sample 

numbers. The final 1% agarose gel was covered and left to set without the addition of 

buffer.  

 

6.20.2 Preparation of buffers 

The running buffer 10X MOPS (Serological Corporation, Norcross Georgia, USA) 

and 10X TAE buffer (Cellgro Inc., Pensacola, Florida, USA) were diluted 1:10 with 

distilled water and stored for up to 1 week at 4°C before use. Buffer RPE concentrate 

was diluted 4-fold in 100% ethanol to obtain a working solution and stored at room 

temperature for use in all subsequent experiments. Buffer RW1 was provided as a 

working solution and stored at room temperature. To inhibit RNase function,            
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β-mercaptoethanol (β-ME) was diluted in buffer RLT at 10µl/ml in a fume hood. This 

was stored at room temperature for up to 1 month before use.  

 

6.20.3 Cell lysis 

After 24 hours incubation with vehicle or compounds (Table 6.19), the conditioned 

medium was removed from Petri dishes and myocytes were washed with PBS. The 

cells were then harvested with trypsin-EDTA (Section 6.11), transferred to individual 

centrifuge tubes and total cell number was determined using a Coulter Counter 

(Beckman-Coulter Z2 Cell Counter). Trypsinised cell mixtures were subsequently 

centrifuged for 5 minutes at 300g (~12,000rpm) and the supernatant was completely 

aspirated. As total cell count was below 5x106 cells (range: 1.0x10-6 to 4.4x106 cells), 

the cell pellets were resuspended in 350µl buffer RLT containing β-ME. This lysed 

the cells before RNA isolation. The high guanine-thiocyanate content of this buffer 

also inactivated endogenous RNases to ensure purification of intact RNA. 

 

6.20.4 Lysate homogenisation 

The cell lysates were directly added into individual QIAshredder spin columns 

(Ambion, Austin, Texas, USA), placed in 2ml collection tubes and centrifuged for 2 

minutes at 8,000g (~15,000rpm), 25°C. By shearing the high molecular weight 

genomic DNA and cellular components, the QIAshredder reduced the viscosity of 

lysates and improved RNA yields. Cleared lysates were then mixed in collecting tubes 

with 350µl ethanol to create appropriate conditions for RNA binding to the RNeasy 

membrane. 
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6.20.5 RNA elution 

Samples were transferred to individual RNeasy spin columns, placed in 2ml collection 

tubes and centrifuged for 15 seconds at 8,000g, 25°C. After discarding the flow-

through, 700µl buffer RW1 was added to the RNeasy spin columns and centrifuged 

for 15 seconds at 8,000g, 25°C to wash the spin column membrane. Two further 

washes were performed for each sample by the addition of 500µl buffer RPE to the 

RNeasy spin columns with centrifugation for 15 seconds and then for 2 minutes at 

8,000g. This was followed by a further 2-minute centrifuge without buffer to dry the 

spin column membranes and remove any residual ethanol. After placing in a new 

1.5ml collection tube, 50µl RNase-free water was directly added to each spin column 

membrane. To elute the RNA, tubes were centrifuged for 1 minute at 8,000g, 25°C. 

These samples were kept on ice or aliquoted and stored at -70°C to avoid RNA 

degradation. 

 

6.21 Quantification of mRNA 

After extracting RNA from smooth muscle cells, 1µl mRNA was diluted 100-fold 

with TE buffer (Qiagen, Valencia, California, USA) into a cuvette. Optical densities 

(OD) were read for each RNA sample on a Beckman DU640 spectrophotometer at 

260nm (A260) and 280nm (A280). The cuvette was washed with RNase-free water and 

TE buffer was used as a blank between absorbance readings. To calculate 1) RNA 

content and 2) estimate RNA purity, the following equations were used: 

 

1) RNA concentration (µg/ml) = [OD (A260) x40 (constant) x100 (dilution factor)] 

 

2) A260/ A280 ratio 
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A ratio value of 1.5 and above was indicative of low RNA contamination. Denaturing 

agarose gel electrophoresis was also used to confirm the purity of RNA samples. 

 

6.21.1 Examining RNA integrity  

To eliminate DNA for RNA purification, deoxyribonuclease I (DNase I) was added to 

10µg RNA samples on ice (Equation 1) together with DNase buffer and DEPC-treated 

water (Table 6.20). The tubes were incubated for 15 minutes at 25°C. The addition of 

10µl of EDTA solution (25mM) to the reaction mixture inactivated the DNase I. This 

was heated for 10 minutes at 65°C on a heat block and transferred back to the ice. 

After removing the volume required for gel electrophoresis, samples were aliquoted 

for storage at -70°C for use in reverse transcription, prior to amplification. 

 
 
Table 6.20: Solutions added in the following order to an RNase-free eppendorf on ice. 
 

DEPC-treated water (µl) 10x DNase I buffer (µl) 10µg RNA sample (µl) DNase I (µl) 
*  10 = 1µg/ RNA (µg/ml) x 10 10 

 

*DEPC-treated water (µl) = 100µl - 20µl - RNA sample (µl) 
 
 

To examine RNA integrity, 10µl of DNase-treated RNA (1µg) was added to 10µl 

isopropanol and 1µl glycoblue (Ambion, Austin, Texas, USA). Following 

centrifugation for 10 minutes, 8,000g at 4°C, the supernatant was aspirated and the 

sample was air dried for 5 minutes. Blue RNA precipitates were resuspended with 3µl 

DEPC-treated water and 15µl NorthernMax Formaldehyde Load dye (Ambion, 

Austin, Texas, USA) on ice. To denature the RNA, these samples were incubated at 

70°C, placed on ice for 2-3 minutes and briefly spun.  
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Gel electrophoresis was run in 1X MOPS buffer at 80V/ cm after loading the DNase-

treated samples into each well. RNA was visualised by ethidium bromide staining on 

a UV light box. The larger ribosomal RNA bands 28S and 18S at an intensity ratio of 

2:1 indicated that cellular mRNA was intact (Figure 6.6). The RNA was then reverse-

transcribed into complementary DNA (cDNA); this was used as a template for PCR.  

 

6.21.2 Reverse transcription and PCR 

To perform RT-PCR, sense and antisense primers were designed using the computer 

software D-LUX programme (Invitrogen, Carlsbad, California, USA). PCR primer 

pairs were 23-25 nucleotides in length with similar A/T and G/C content for optimal 

annealing conditions (Table 6.22).  

DNase-treated RNA was converted into cDNA using the Platinum Taq Maloney 

murine leukaemia virus (M-MLV) reverse transcription system (Invitrogen, Carlsbad, 

California, USA). Each reaction mix, prepared on ice in a 0.5ml eppendorf tube in a 

reaction volume of 30µl contained the following: SuperScript III reverse transcription 

buffer (deoxyribonucleotide trisphosphates (dNTP; 0.4mM), magnesium sulphate 

(MgSO4; 6mM)), RNase-free water, sense and antisense primer pairs (10µM each), 

total RNA (100ng), 2x reaction mix and 200IU M-MLV Superscript III RT Platinum 

Taq (Table 6.21). Control RNA samples with Supermix of Platinum Taq M-MLV 

without the reverse transcription enzyme were included to confirm that no genomic 

DNA contamination was present. 

The tubes were placed in a PCR Sprint thermal cycler (Thermo Scientific, New York, 

USA) and set to run the reverse transcription programme: incubation for 30 minutes at 

50°C to allow cDNA synthesis from mRNA by reverse transcription. This was 

followed by denaturing samples at 94°C for 2 minutes to inhibit reverse transcription 
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activity. cDNA amplification was subsequently carried out by 35 cycles of denaturing 

at 94°C for 15 seconds, annealing at 57°C for 30 seconds and elongation at 68°C for 

30 seconds. PCR products were finally heated at 68°C for 7 minutes and either stored 

at 4°C or placed on ice for immediate analysis by agarose gel electrophoresis. 

 
 
 

 

 

 
 
 
 
 
 
 
Figure 6.6: Intact RNA (1µg) samples from treated myocytes were run on a 1% 
denaturing agarose gel. The 28S and 18S ribosomal RNA bands were visualised on a 
light box with an even background smear of cellular mRNA for each sample.  
 
 
 
 
 
Table 6.21: The following solutions were added to 0.2ml thin-wall PCR tube on ice: 
 

Sample Control (µl) β-actin (µl) PGs (µl) 
Super mix of Platinum Taq 25 0 0 
2x Reaction mix 0 15 15 
RNase-free water 3 10 10 
10µM Human β-actin (sense) 1 1 0 
10µM Human β-actin (antisense) 1 1 0 
10µM Human PG primers (sense) 0 0 1 
10µM Human PG primers (antisense) 0 0 1 
Human mRNA 100ng/µl  0 1 1 
SuperScript III RT Platinum Taq 0 2 2 

 
 

28S 

18S 
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Table 6.22: PCR primer sequences. The accession number of each sequence for the 
EMBL/ Genbank/ DDBJ data library is provided. 
 

PCR primers Sequence nt Size Accession No 
s 5’-GTA CCA CTG GCA TCG TGA TGG AC-3’ 513 

β-actin 
as 5’-GAG TTG AAG GTA GTT TCG TGG ATG-3’ 915 

403 NM_001101 

s 5’-GGT ATC ATG GTG GTG TCG TGC ATC-3’ 875 
EP1 as 5’-CAG GAT GTG GTT CCA GGA GGC AAG-3’ 1112 

238 L22647 

s 5’-TGG CAT CTG ACT GTG TAG AAC AGG-3’ 876 
EP2 as 5’-CTC CGC TCC TGA TAA TGA TGT TGA-3’ 1211 

336 NM_000956 

s 5’-CTC CGC TCC TGA TAA TGA TGT TGA-3’ 998 
EP3 as 5’-CTT CTC CGT GTG TGT CTT GCA GTG-3’ 1194 

197 NM_198716 

s 5’-GAT GGT CAT CTT ACT CAT TGC CAC-3’ 1309 
EP4 as 5’-CTT GGC TGA TAT AAC TGG TTG ACG-3’ 1494 

186 NM_000958 

s 5’-GTG CTT TAT CCA GAT GGT CCA CG-3’ 595 
DP 

as 5’-CCA TGA GGC TGG AGT AGA GCA CAG-3’ 971 
377 U31332 

s 5’-CAA CAC CAG CAT CCG CTA CAT CGA-3’ 84 
CRTH2 as 5’-CAC GAA GAG GAT GAC TCC ATT CTC-3’ 280 

197 AB008535 

s 5’-CAG CAC AGA CAA GGC AGA TCT CAT C-3’ 772 
FP 

as 5’-GAT TCC ATG TTG CCA TTC GGA GAG-3’ 1155 
384 NM_000959 

s 5’-CCT CTG CTC CTG TGG GAA AGG AG-3’ 1063 
IP 

as 5’-GCT TCT GCT TTG GAC GAC GTT CC-3’ 1192 
130 L29016 

s 5’-GTG GAG ATG ATG GCT CAG CTC CTG-3’ 735 
TP 

as 5’-CAG CAC TGT CTG GGC GAT GAA GAC-3’ 1024 
290 NM_201636 

s 5’-TGG CCT CCT ACA CGT ACT TCT ACC-3’ 1891 Oxytocin 
receptor as 5’-TGG TCA CCA ATC CTA TAT TTA CCG-3’ 2125 

235 NM_000916 

 
 

     

s 5’-GGT TGG GAA TAA GAA GGA TCT TCG-3’ 233 
Rho A 

as 5’-GCC ATA TCT CTG CCT TCT TCA GGT-3’ 571 
339 L25080 

s 5’-TTA AGA ATC TAA CCC TGC AAC TGG A-3’ 2917 
ROCK I 

as 5’-CAA TTC ATT TTG TAA CAA CAG CCG-3’ 3288 
372 NM_005406 

s 5’-GTG TGT GGC AGT ATT TTA GTA CCG-3’ 5481 
ROCK II 

as 5’-TTT GAG GCC ACT TCT TCC CAG TTG-3’ 5860 
380 NM_004850 

s 5’-CTC TAT GAC GCC TTC GAG AGC AAG-3’ 1609 
MLCK 

as 5’-GTG GTA CTT CTC ATC TGT GAT CCG-3’ 1914 
306 NM_182493 

s 5’-TTT CGA GCT AGA TCC CAC CAC TCT-3’ 972 IP3 
receptor as 5’-ATT AGT ACA TAG GTG TCT GAG CCG-3’ 1376 

405 D26070 

s 5’-GAA CTT TAC AAG GGT GTG TTG GCG-3’ 772 
Telokin 

as 5’-TGG CCT CCT ACA CGT ACT TCT ACC-3’ 1091 
320 U40712 

 

s: sense; as: antisense; nt: nucleotides 
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6.22 DNA electrophoresis 

RT-PCR products were analysed using a 3% pre-cast ready agarose gel (Bio-Rad, 

Hercules, California, USA), which was placed in an electrophoresis tank containing 

1X TAE buffer. A total of 10µl of each PCR product was combined with 2µl of DNA 

loading dye (Ambion, Austin, Texas, USA) to aid loading and to monitor the 

progression of the product through the gel during electrophoresis. Once the PCR 

products and negative controls were carefully loaded into the wells, 10µl of standard 

DNA fragments (1Kb plus DNA ladder; Invitrogen, Carlsbad, California, USA) was 

loaded on the left side of the gel for sizing. The tank was set to run at a constant 

100V/ cm for approximately 25 minutes when the DNA fragments were sufficiently 

resolved. Images of PGs, oxytocin and protein DNA products were then captured 

using a UV transilluminator UVP at a wavelength of 312nm and analysed with Fluor 

Chem H2 software (Alpha Innotech, Leandro, California, USA). 
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Competing 
cAMP from 
cell lysates 

6.23 Summary diagram of cell-based assays 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.7: An overview schematic principle of the assays performed to develop an in 
vitro cell culture model for myocytes and fibroblasts. To isolate and characterise cell 
populations, enzymatic digestion, differential adhesion and immunocytochemistry 
techniques were performed on myometrial tissue taken at term pregnancy. Changes in 
Ca2+, cAMP and gene transcripts were assessed using the FLIPR-Tetra, a competitive 
cAMP assay based upon the complementation (EFC) of enzyme fragments (EA and 
ED) and RT-PCR respectively. Measurements were used to screen the effects of 
uterotonic agents on normal and pathological downstream signalling cascades. 
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Chapter 7: Uterine myocytes & fibroblasts 
 

Signal transduction in myometrial cells at term pregnancy 
 

 

7.1 Introduction 

The uterus adapts to the physiological process of pregnancy by achieving enormous 

expansion whilst sustaining muscle tone (Yu & Lopez Bernal, 1998). Such dynamic 

tissue remodelling depends on cell hyperplasia and hypertrophy, alongside smooth 

muscle cell (myocyte) and fibroblast interactions (Varayoud et al., 2001; Ono et al., 

2007; MacCannell et al., 2007; Wu et al., 2008; Shynlova et al., 2010). In response to 

mechanical stretch and biochemical stimuli, myometrial smooth muscle exhibits 

considerable plasticity, mediated in part by actin polymerisation (Taggart & Morgan, 

2007) and the recruitment of additional signalling proteins (Berridge, 2008). 

Gestational-related changes in the temporal and tissue-specific expression of PG and 

oxytocin receptors then contribute to the transition from uterine quiescence to 

contractility (Charpigny et al., 2003; Grigsby et al., 2006). This activates secondary 

signalling cascades, principally targeting cAMP, IP3 and intracellular Ca2+ pathways. 

The cAMP system suppresses myometrial activity, whereas IP3 generation and Ca2+ 

release augment contractions. Although PGs and oxytocin participate in cellular 

events, the signal transduction systems that orchestrate these striking changes at term 

gestation are not fully understood. 

This chapter focuses on the structural, functional and molecular aspects of myometrial 

cells at term pregnancy. As well as characterising primary cell cultures, PG and 

oxytocin-induced activation of signalling pathways involving Ca2+ and cAMP were 

studied relative to receptor mRNA. By using this cell culture model, high throughput 

screening of potential tocolytics could be performed. In particular, the nature of EP2-
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based interactions that antagonise oxytocic contractile effects (Duckworth et al., 

2002) would be investigated to develop a PG based therapy for preterm labour. 

Alongside responses in functional studies, these results would help to elucidate the 

contribution of receptors or messenger targets in regulating myometrial contractility. 
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Chapter 7.2: Results 
 

 

 

7.3 Immunostaining of uterine smooth muscle cells and fibroblasts  

Morphologic features of uterine cell populations were assessed using immunoassay 

and bright field images. The ultrastructure was identified with markers for smooth 

muscle actin, α-actinin, vimentin and desmin, generally used to characterise 

myometrial cells (Hongpaisan, 2000; Lopez Bernal & TambyRaja, 2000; Montes et 

al., 2002). In myometrial sections, positive expression and uniform distribution of 

these cytoskeletal elements were demonstrated (Figure 7.1). However, as clarity was 

compromised by tissue thickness, the structural components of monolayer primary 

cultures of myometrial cells were visualised.  

 

Images of myocytes and fibroblasts cultured by differential adhesion techniques were 

captured under a phase contrast microscope (Figure 7.2). Smooth muscle cells and 

fibroblasts each displayed a central oval nucleus containing several nucleoli. In their 

cytoplasm, bright field pictures revealed prominent dense bodies located throughout 

the bundles of thin filaments. These were interspersed with less discernable large 

areas of ribosomes, rough endoplasmic reticulum, mitochondria and Golgi complexes. 

Despite their characteristic flat, elongated and spindle-shaped morphologies, 

myocytes tended to be about 5-10µm narrower than fibroblasts. Likewise, the 

protruding flat sheets of membrane-enclosed cytoplasm, lamellipodia, were observed 

at polar ends in myocytes but were more spread in fibroblasts. Due to these subtle 

differences, immunocytochemistry was performed to distinguish cell types. 
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Figure 7.1: Typical micrographs showing sections of human myometrium taken at 
term pregnancy. Using immunohistochemistry techniques, sections were stained with 
a) vimentin (red) and b) desmin (green) at x10 magnification. Actin (red) and α-
actinin (green) were also imaged at c) x10 and d) x40 magnifications. Staining by the 
fluorescent DNA-binding probe DAPI (blue) indicated the uniform positive staining 
of cell filaments and proteins throughout myometrial tissue sections.  
  
 
 

a) Vimentin (x10) b) Desmin (x10) 

d) Actin & α-actinin (x40) c) Actin & α-actinin (x10) 
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Figure 7.2: Phase contrast micrographs of primary a) smooth muscle and b) fibroblast 
cells cultured from human myometrium at term pregnancy (passages 1-2). Cells were 
separated by differential adhesion techniques and photographed at x100 
magnification. Bright field images of cells show nuclei (N), black arrows indicate 
bundles of contractile filaments, and blue arrows more prominent dense bodies 
dispersed throughout the cytoplasm. In control fluorescent images of the same cells  
(c & d), nuclei were labelled with the fluorescent DNA-binding probe DAPI (blue). 
The green background staining was barely visible due to the addition of secondary but 
not primary antibodies.  
 
 
 

N

N

a) 

b) 

c) 

d) 
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7.4 Positive staining for α-actinin and actin 

All nuclei were labelled with the fluorescent DNA-binding probe DAPI (blue). In the 

absence of primary antibodies, negative controls displayed very low background 

fluorescence (Figure 7.2). Even so, myocytes and fibroblasts showed positive double 

immunostaining for smooth muscle actin and α-actinin (Figure 7.3). The peripheral 

region largely consisted of a dense meshwork of thin actin filaments. These 

microfilaments were arranged into parallel bundles with fewer actin filaments in the 

central region close to the nucleus. As a cross-linking protein, α-actinin was highly 

dispersed throughout the cytoplasm and staining was punctate. Towards the nucleus, 

the co-localisation of α-actinin with actin was evident in merged images for myocytes 

and fibroblasts. For each cell phenotype, staining intensity and alignment of 

cytoskeletal structures were similar. Although colour intensity related to the plane of 

focus, mixed cell populations and myometrial tissue in explant cultures were also 

positive for α-actinin and actin (Figure 7.5). 

 

7.5 Positive staining for intermediate filaments 

Immunostaining of the two intermediate filaments vimentin and desmin were 

analogous in both primary myocyte and fibroblast cultures (Figures 7.4 & 7.5). The 

cells expressed abundant interconnected networks of vimentin with branches 

extending from the nuclear envelope to junctions in the lipid membrane. 

Distinguished in this longitudinal arrangement, all isolated myometrial cells and 

explant tissue stained positive for vimentin.  

Desmin was also detected in the cytoplasm of myometrial cells, even in their 

proliferating state. With attachment to the dense plaques, desmin filaments were 

closely packed in a more centrally located position when cells were elongated. Fewer 
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specks of desmin were also present at the cell periphery in both smooth muscle cells 

and fibroblasts. In myometrial explants, due to the difficulties in focusing on raised 

and flat surfaces together, the tissue was brighter than desmin-labelled cells. 

 

7.6 Positive staining for fibroblast surface proteins  

To better distinguish between smooth muscle cells and fibroblasts, immunostaining 

was performed using a fibroblast antigen. This monoclonal antibody was reported to 

recognise fibroblast surface proteins on human fibroblasts as well as macrophages and 

blood monocytes (Singer et al., 1989; Esterre et al., 1992; Ronnov-Jessen et al., 

1992). Even so, this study showed identical staining patterns in myocytes, fibroblasts 

and explant tissues (Figures 7.4 & 7.6). The punctate staining of scaffold proteins 

extended over the surface to the periphery of each cell. Searches through the literature 

indicated that specific conjugation of this fibroblast-associated marker and alternative 

smooth muscle specific antibodies, such as smoothelin, had not previously been tested 

to distinguish any cultures of both myocytes and fibroblasts in the uterus. As a result, 

differences in proliferation rate, morphology and intracellular events were used to 

characterise myometrial cell types. 
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Figure 7.3: Phase contrast micrographs showing the co-expression of longitudinal 
actin filaments and α-actinin in primary cultures of a) myocytes and b) fibroblasts. 
Cells were cultured from myometrium taken at term pregnancy and separated by 
differential adhesion techniques (passages 1-2). Actin filaments (red), α-actinin 
(green) and cell nuclei, labelled with the fluorescent DNA-binding probe DAPI, (blue) 
were individually photographed at x100 magnification before images were merged.  

a) Actin & α-actinin (x100) 

b) Actin & α-actinin (x100) 
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Figure 7.4: Phenotypic assessment of a) smooth muscle cells and b) fibroblasts 
cultured from myometrium taken at term pregnancy and separated by differential 
adhesion techniques (passages 1-2). Positive expression of 1) filamentous vimentin,  
2) desmin and 3) anti-human fibroblast surface protein (AFSP) were detected in both 
cell types using immunocytochemistry. All nuclei were labelled with the fluorescent 
DNA-binding probe DAPI (blue). Photographs of these cytoskeletal proteins and 
nuclei were taken at x100 magnification and superimposed. 
 

1a) Vimentin (x100) 1b) Vimentin (x100) 

2a) Desmin (x100) 2b) Desmin (x100) 

3a) AFSP (x100) 3b) AFSP (x100) 
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Figure 7.5: Phase contrast micrographs showing 1) bright field and 2) fluorescent 
images of primary cells cultured for 7-10 days from myometrial explant tissue taken 
at term pregnancy. Positive expression of a) actin (red) and α-actinin (green),            
b) vimentin and c) desmin filaments were detected in cells and explant tissues using 
immunocytochemistry. All nuclei were labelled with the fluorescent DNA-binding 
probe DAPI (blue). Photographs of these cytoskeletal proteins and nuclei were taken 
at x20 magnification and superimposed. 

1a)  2a) Actin & α-actinin (x20) 

1b)  2b) Vimentin (x20) 

1c)  2c) Desmin (x20) 
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Figure 7.6: Micrographs showing myometrial cells formed from explant tissue after 
14 days in primary culture. Uterine tissue was excised at term pregnancy. A consistent 
pattern of reactivity for anti-human fibroblast surface protein (AFSP) was expressed 
in all cells and explant tissue using immunocytochemistry. Nuclei were labelled with 
the fluorescent DNA-binding probe DAPI (blue) and photographs of the cells taken at 
a) x20 and b) x100 magnifications were superimposed.  
 

 

a) AFSP (x20) 

b) AFSP (x100) 
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Chapter 7.7: Results - FLIPR 
 

 

 

7.8 Optimising agonist-induced Ca2+ readings 

Receptor-mediated mobilisation of Ca2+ was assessed using the FLIPR-Tetra 

(Molecular Devices, Sunnyvale, California, USA). In preliminary studies to optimise 

cell parameters, myocytes were seeded in 96-well plates overnight at 15k, 30k and 

60k cells/ well (Figures 7.7 and 7.8). Stimulation with vehicle (DMEM D), PGE2 and 

U46619 for 4 minutes evoked little flux in intracellular-free Ca2+. Even so, PGF2α 

increased the Ca2+ signal by nearly 2-fold (p<0.05), whilst exposure to oxytocin 

significantly augmented Ca2+ transients at all seeding densities (P<0.001). Since 

maximum responses were observed with 30k cells/ well, this plating density was 

continued for all FLIPR assays performed in 96-well plates.  

 

7.9 Responsiveness to PGs and oxytocin 

When oxytocin was assayed separately, the concentration-dependent increases in Ca2+ 

flux to PGE2, PGF2α and U46619 were observed above 10-7M (Figure 7.9). Whilst 

vehicle evoked negligible Ca2+ release, exposure to PGF2α (10-5M) peaked at 316 ± 

26.75 FLU counts; this signal was attenuated by 17 and 93 percent in response to 

U46619 and PGE2 respectively. As oxytocin-induced Ca2+ transients were more 

robust and reached better limits of detection at 1435 ± 53.20 FLU counts, oxytocin 

was used as the predominant agonist to study intracellular Ca2+ oscillations. 
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Figure 7.7: Primary myocytes cultured from isolated myometrium obtained at term 
pregnancy were seeded overnight at densities of 15k, 30k and 60k cells/ well in 96-
well plates (n=4). After loading with fluo-4 AM dye (2µM), cells were exposed to 
vehicle (DMEM B), PGE2, PGF2α, U46619 or oxytocin at 10-6M for 4 minutes. Ca2+ 
transients, indicated by emitted fluorescence, were recorded using the FLIPR. Data 
are arithmetic means ± S.E. and statistics were performed using univariate ANOVA 
with Bonferroni’s post-hoc adjustment; *p<0.05; ***p<0.001 elevation in Ca2+ flux 
compared with avehicle and b15k cells/ well for the same agonist.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.8: Typical Ca2+ mobilisation in primary human myocytes seeded at 15k, 30k 
and 60k cells/ well and incubated with the Ca2+ sensitive fluo-4 AM dye. The 
screenshot traces recorded on the FLIPR represent myocyte responses to PG and 
oxytocin agonists (10-6M) with oxytocin challenge inducing the largest Ca2+ release. 
 
 
 

15k cells/ well

30k cells/ well

60k cells/ well

Vehicle PGE2 U46619 PGF2α Oxytocin 
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Figure 7.9: Vehicle (DMEM D) and concentration-dependent changes in intracellular-
free Ca2+ for PGE2, PGF2α, U46619 and oxytocin using FLIPR. Primary myocytes 
from term pregnant donors were seeded at 30,000 cells/ well and Ca2+ was detected 
using the fluo-4 AM indicator dye. Signals peaked at 316 ± 26.75 and 1435 ± 53.20 
FLU counts for plates run in the absence and presence of oxytocin respectively.  
 
 
 
7.10 384-well plate validation 

In later experiments, the cell seeding density was also validated for 384-well plates. 

To determine cell titre, several dilutions of myocytes and fibroblast populations were 

serially prepared (Figures 7.10 & 7.11). Responses to oxytocin (10-6M) peaked at 5k 

cells/ well before the signal plateaued (p<0.001). Accordingly for optimal Ca2+ 

recordings, the cell seeding density in 384-well plates was adjusted to 5k cells/ well.  

 

7.11 Intracellular-free Ca2+ in myocytes and fibroblasts 

When directly compared between cell types, oxytocin-induced Ca2+ mobilisation was 

nearly 2-fold higher in myocytes than fibroblasts (p<0.001). Therefore, to better 

distinguish Ca2+ release in fibroblasts, subsequent assays for each cell population 

were performed separately. 

Vehicle PGF2α U46619 PGE2

10-8M 

10-7M 

10-6M 

10-5M 

4 mins

Oxytocin



  Chapter Seven: Myometrial cells 

  Page 195 
 

       0.6       1.25        2.5         5        10
0

20

40

60

80

100

120

Smooth muscle cells Fibroblasts

***

*** ***

***

*** ***

a

a

c

abcd

ab abc

abcd

**

Cell Number (k cells/ well)

%
 F

LU
 c

ou
nt

s

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.10: Intracellular Ca2+ flux induced by oxytocin (10-6M) in primary myocytes 
and fibroblasts cultured from myometrial biopsies (n=8). Cells were seeded overnight 
at titrations of 600 to 10k cells/ well in 384-well plates. After loading with fluo-4 AM 
dye, responses to oxytocin were read using the FLIPR and calculated as % change in 
fluorescence units over baseline (% FLU). Statistics were performed using univariate 
analysis with Bonferroni’s post-hoc test; **p<0.01; ***p<0.001 compared to cell 
seeding densities of a0.6k, b1.25k and c2.5k cells/ well and between dmyocyte and 
fibroblast responses. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.11: Changes in intracellular free Ca2+ after addition of oxytocin at 10-6M in 
duplicate to fluo-4 AM loaded primary myocytes (n=4) and fibroblasts (n=4) from 
term pregnant donors recorded on the FLIPR. Typical Ca2+ profiles for smooth muscle 
cells were higher than fibroblasts over 4 minutes of oxytocin stimulation. 
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7.12 Pre-incubation with FP and TP agonists 

Although PGF2α (10-6M; p<0.001) and U46619 (10-6M) challenge each mobilised 

Ca2+ (Figures 7.7, 7.8 & 7.9), pre-incubation with these uterotonic agents did not 

affect the concentration-dependent signals evoked by oxytocin in myocytes (pEC50: 

9.17 ± 0.02M) and fibroblasts (pEC50: 8.98 ± 0.03M; Figure 7.12). In smooth muscle 

cells, even the 8.6 percent attenuation in maximal oxytocin-induced Ca2+ signals after 

exposure to both PGF2α and U46619 was not significant (F (1, 48) = 2.87; ns).  

 
  
 
a) smooth muscle cells b) fibroblasts 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.12: Concentration-effect curves for oxytocin (10-11M to 10-5M) in 
combination with vehicle, PGF2α (10-6M) and U46619 (10-6M) for a) myocytes and  
b) fibroblasts. Primary cells cultures from myometrial tissue taken at term pregnancy 
(n=4) were incubated with the Ca2+ indicator fluo-4 AM dye (2µM) and washed. 
Changes in fluorescence counts from baseline (% FLU counts) were detected using 
the FLIPR-Tetra. Pre-incubation with the FP and TP agonists did not evoke a 
synergistic effect on oxytocin-induced Ca2+ transients. 
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1a)  1b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a)  2b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.13: Changes in intracellular free Ca2+ by atosiban on oxytocin-induced Ca2+ 
curves in human myometrial 1) smooth muscle cells and 2) fibroblasts. Cells were 
loaded with the Ca2+ indicator fluo-4 AM dye (2µM), washed and exposed to vehicle 
(DMEM D) or atosiban at concentrations of a) 10-7M to 10-5M or b) 10-10M to 10-8M 
for 4 minutes before stimulation with oxytocin (10-11M to 10-5M) for 4 minutes. Data 
are expressed as arithmetic means ± S.E. and multivariate analysis showed statistical 
significance; *p<0.05; **p<0.01; ***p<0.001 rightward shift for atosiban at a10-5M, 
b10-6M, c10-7M and d10-8M compared to vehicle. 
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Table 7.1: Mean pEC50 values (M) for concentration-effect curves to oxytocin (10-11M 
to 10-5M) in myocytes and fibroblasts (n=8) pre-incubated with vehicle (DMEM D) or 
atosiban (10-9M to 10-5M) for 4 minutes. Primary cells were cultured from 
myometrium harvested at term pregnancy. Results are expressed as arithmetic means 
± S.E. and significance was determined using one-way ANOVA with Bonferroni’s 
post-hoc test; *p<0.05; ***p<0.001 for atosiban shifted curves compared to vehicle. 
 

 Vehicle 
Atosiban 
(10µM) 

Atosiban 
(1µM) 

Atosiban 
(0.1µM) 

Atosiban 
(10nM) 

Atosiban 
(1nM) 

Smooth muscle cell s     
pEC50 8.7 ± 0.1  6.5 ± 0.1*** 7.1 ± 0.1*** 8.2 ± 0.1* 8.5 ± 0.2 8.9 ± 0.03 
Fibroblasts     
pEC50 8.9 ± 0.1 6.9 ± 0.2*** 7.7 ± 0.1*** 8.3 ± 0.2* 8.7 ± 0.1 8.7 ± 0.04 

 
 

 
 
a) b) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.14: Representative Schild plots for human myometrial a) myocytes and       
b) fibroblasts obtained at term pregnancy. Cells were pre-incubated with atosiban   
(10-7M to 10-5M) before concentration-effect curves for oxytocin (10-11M to 10-5M) 
were performed using the FLIPR-Tetra.  
 
 
 
 

7.13 Pre-incubation with atosiban 

In myocytes and fibroblasts, challenge with oxytocin induced a concentration-

dependent increase in intracellular-free Ca2+. The resultant sigmoidal curve plateaued 

at 98.8 ± 0.79 percent fluorescent counts with a pEC50 of 8.8 ± 0.1M (Figure 7.13; 

Table 7.1). Although no change was evoked in the upper asymptote, the oxytocin 

antagonist atosiban (10-7M to 10-5M) produced parallel rightward shifts of the 
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oxytocin curve. Using Schild plot analysis, pA2 values of 7.55 and 7.56 were 

calculated for myocytes and fibroblasts (Figure 7.14). Atosiban at 10-7M displaced 

oxytocin-induced Ca2+ transients by a pEC50 value of 0.57 ± 0.15M (F (1, 32) = 2.85; 

p<0.05). Higher concentrations of atosiban further shifted the oxytocin-effect curve to 

the right (F (2, 64) = 263; p<0.001). The observed change in peak Ca2+ signals was 

displayed in screenshots from the FLIPR (Figure 7.15). Whilst responses to oxytocin 

were attenuated by atosiban at 10-8M in myocytes (F (1, 64) = 5.64; p<0.01), lower 

concentrations of atosiban did not competitively antagonise or modify the profile of 

oxytocin in either cell type. 
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1a) Vehicle + oxytocin (10-6M) 1b) Atosiban (10-5M) + oxytocin (10-6M) 
 
 
 
 
 
 
 
 
 
 
 
2a) Vehicle + oxytocin (10-7M) 2b) Atosiban (10-5M) + oxytocin (10-7M) 
 
 
 
 
 
 
 
 
 
 
 
3a) Vehicle + oxytocin (10-8M) 3b) Atosiban (10-5M) + oxytocin (10-8M) 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.15: Screenshot images of Ca2+ transients in primary myocytes in response to 
oxytocin at 1) 10-6M, 2) 10-7M and 3) 10-8M pre-incubated with either a) vehicle 
(DMEM D) or b) atosiban for 4 minutes. Fluorescent change counts were detected 
using the FLIPR camera from the binding of intracellular-free Ca2+ with fluo-4 AM 
dye at excitation and emission wavelengths of 400nm and 506nm respectively. 
Oxytocin-induced Ca2+ release was attenuated in the presence of atosiban at 10-5M. 
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Table 7.2: Mean maximum percentage fluorescent count (Em) and effective half 
maximal concentrations (pEC50) (M) for smooth muscle cells (n=4) pre-exposed to 
vehicle (DMEM D), EP receptor agonists (10-6M) or an EP3 antagonist (10-5M) for 4 
minutes before stimulation with oxytocin (10-11M to 10-5M). Data are expressed as 
arithmetic means ± S.E. EP receptor compounds evoked no effect on oxytocin-
induced Ca2+ release curves. 
 

 Smooth muscle cells 
 Vehicle PGE2 Butaprost CP533,536 AGN211330 AGN211329 

Receptor target EP1-4 EP2 EP2 EP2 EP3 antag 
Em 100.5 100.5 104.0 104.3 98.2 99.0 
S.E. 0.3 2.9 2.7 1.0 4.8 1.3 
pEC50 8.91 8.78 9.04 8.98 8.69 8.97 
S.E. 0.05 0.2 0.04 0.04 0.1 0.03 

 
 

Table 7.3: Mean maximum percentage fluorescent count (Em) and effective half 
maximal concentrations (pEC50) (M) for fibroblasts (n=4) pre-exposed to vehicle 
(DMEM D), PGE2 (10-6M), butaprost (10-6M) or the EP3 receptor antagonist 
AGN211329 (10-5M) for 4 minutes before stimulation with oxytocin (10-11M to       
10-5M). Data are expressed as arithmetic means ± S.E. EP receptor compounds 
evoked no effect on oxytocin-induced Ca2+ release curves. 
 

 Fibroblasts 
 Vehicle PGE2 Butaprost AGN211329 

Receptor target - EP1-4 EP2 EP3 antag 
Em 100.2 102.5 100.4 97.5 
S.E. 1.12 2.1 2.2 1.8 
pEC50 8.82 8.88 8.80 8.87 
S.E. 0.1 0.2 0.1 0.1 

 

 
 
7.14 Pre-incubation with EP receptor compounds 

Treatments with oxytocin (10-11M to 10-5M) depolarised the membrane of smooth 

muscle cells. This was characterised by Ca2+ influx, which plateaued at 100.5 ± 0.3 

percent fluorescence counts (pEC50: 8.91 ± 0.05M; Table 7.2). Pre-incubation with 

PGE2 or the EP2 receptor agonists butaprost, CP533,536 and AGN211330 did not 

alter the sigmoidal oxytocin-effect curve (F (4, 120) = 1.44; ns). Likewise, PGE2 and 

butaprost had no affect on oxytocin-induced Ca2+ release in fibroblasts (F (2, 72) = 

1.53; ns). Although the EP3 receptor agonist AGN211329 induced a transient rise of 

41.2 ± 5.15 percent fluorescent counts, the effect of oxytocin on cytosolic-free Ca2+ 

remained unaltered in both cell populations. 
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Figure 7.16: Concentration-effect curves for oxytocin alone (10-11M to 10-5M) and in 
combination with a caspase-3 inhibitor (2x10-5M) and rho-kinase inhibitor (3x10-5M) 
for a) myocytes and b) fibroblasts. Primary cells cultures from myometrial tissue 
taken at term pregnancy (n=4) were incubated with the Ca2+ indicator fluo-4 AM dye 
(2µM) and washed. Cells were exposed to vehicle (DMEM D) or inhibitors and 
oxytocin each for 4 minutes with changes in fluorescence detected using the FLIPR-
Tetra. Data are expressed as arithmetic means ± S.E. and statistical significance was 
determined using two-way ANOVA with Bonferroni’s post-hoc test; **p<0.01 for 
caspase-3 inhibitor compared to vehicle. 
 

 
 
7.15 Effects of rho-kinase compounds on oxytocin signalling 

In primary myometrial cells, oxytocin mobilised intracellular-free Ca2+ in a 

concentration-dependent manner reaching 99.6 ± 2.25 percent fluorescence counts 

between 10-7M and 10-5M (Figure 7.16). To elucidate their contribution on oxytocin-

induced transduction pathways, rho kinase compounds were investigated as described 

by Moore & Lopez Bernal (2003). Challenge with the caspase-3 inhibitor potentiated 

the oxytocin-effect curve by 10.2 and 8.1 percent fluorescence counts in myocytes (F 

(1, 48) = 8.77; p<0.01) and fibroblasts respectively (F (1, 48) = 1.45; ns). Short 

exposure to caspase-3 and rho-kinase inhibitors alone did not influence oxytocin-

induced Ca2+ transients. Despite the 5.7 percent reduction in fluorescence counts in 

myocytes, pre-incubation with both inhibitors for 4 minutes had no large effect on 

oxytocin signalling in either cell type. 
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Figure 7.17: Concentration-effect curves for oxytocin (10-11M to 10-5M) pre-incubated 
with vehicle (DMEM D), indometacin (10-6M) or EDTA (2x10-3M) for 4 minutes. 
Primary cells were cultured from myometrial tissue taken at term pregnancy (n=4). 
After loading with fluo-4 AM dye (2µM), Ca2+ flux was read using the FLIPR and 
calculated as percentage change in fluorescence units over baseline (% FLU). 
Exposure to indometacin and EDTA did not alter oxytocin signalling. 
 
 
 
a) b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.18: a) Concentration-effect curves for oxytocin (10-11M to 10-5M) pre-
incubated with oxytocin (10-6M) for 0, 3, 16 and 24 hours. Primary smooth muscle 
cells were cultured from myometrial tissue excised at term pregnancy (n=4). After 
loading with fluo-4 AM dye (2µM), responses to oxytocin were measured as 
percentage change in fluorescence units over baseline (% FLU) using the FLIPR. 
Results are expressed as arithmetic means ± S.E. and statistical significance was 
determined using multivariate ANOVA with Bonferroni’s post-hoc test; ***p<0.001 
for oxytocin incubated over 3, 16 and 24 hours compared to 0 hours.  
 
b) FLIPR traces showing the decline in Ca2+ transients by oxytocin (10-11M to 10-5M) 
when myocytes were pre-incubated with oxytocin (10-6M) for 3, 16 and 24 hours.  

10-8M
10-7M
10-6M
10-5M

10-9M
10-10M
10-11M
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7.16 Pre-incubation with indometacin and EDTA 

Pre-incubation with indometacin, a non-selective COX inhibitor (10-6M) and 

ethylenediaminetetraacetic acid (EDTA), a Ca2+ chelating agent (2x10-3M), for 4 

minutes had no effect on Ca2+ influx within smooth muscle cells (Figure 7.17). 

Challenge with indometacin (pEC50: 8.81 ± 0.25M) and EDTA (pEC50: 9.12 ± 0.15M) 

similarly had no effect on oxytocin, which mobilised Ca2+ in a concentration-

dependent manner (pEC50: 9.07 ± 0.04M; F (2, 72) = 0.49; ns). 

 

7.17 Pre-incubation with oxytocin. 

Oxytocin at 0 hours (vehicle) liberated intracellular-free Ca2+ in a concentration-

dependent manner, reaching 99.3 ± 0.82 percent fluorescence counts above 10-7M 

(pEC50 of 8.83 ± 0.19M; Figure 7.18a). When smooth muscle cells were pre-

incubated with oxytocin (10-6M), oxytocic responses were attenuated in a time-related 

manner (p<0.001). Exposure to oxytocin for 3 hours produced an oxytocin-induced 

sigmoidal curve, which was 23 percent lower and 0.8 log M right shifted compared to 

oxytocin at 0 hours. Whilst challenge with oxytocin for 16 hours diminished oxytocin-

induced Ca2+ transients by nearly 90 percent (pEC50: 6.81 ± 0.37M; F (1, 48) = 1163; 

p<0.001), pre-incubation with oxytocin for 24 hours suppressed Ca2+ influx by a 

further 2.5 fold (pEC50: 3.37 ± 2.81M; F (1, 48) = 1276; p<0.001). This marked 

decline in Ca2+ mobilisation was manifest in the 4-minute traces recorded on the 

FLIPR (Figure 7.18b). 
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Figure 7.19: Concentration-effect curves for oxytocin alone (10-11M to 10-5M) and in 
combination with 17-β oestradiol (E2; 10-6M to 10-8M) and progesterone (P4; 10-6M to 
10-8M) in primary myometrial smooth muscle cells obtained at term pregnancy (n=4). 
Once exposed to vehicle (DMEM D) or steroid hormones for 24 hours, the cells were 
loaded with fluo-4 AM dye (2µM) before intracellular Ca2+ responses to oxytocin 
were measured using the FLIPR. Data are expressed as arithmetic means ± S.E. and 
statistical significance was determined using two-way ANOVA with Bonferroni’s 
post-hoc adjustment; *p<0.05; **p<0.01 respectively for E2 (10-6M & 10-7M) and P4 
(10-6M) compared to vehicle. 
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Figure 7.20: Cell viability for vehicle (DMEM B) and treatments with 17-β oestradiol 
(E2; 10-6M) and progesterone (P4; 10-6M) for 24 hours. Myocytes were cultured from 
myometrial tissue taken at term pregnancy (n=4) and seeded at a density of 30k cells/ 
well. Cytotoxicity was quantified using MTT dye (0.5mg/ml), which was reduced to a 
purple formazan salt by viable cells; this was visualised at a) x4 and b) x25 under a 
phase contrast microscope. Compared to vehicle controls, incubation with the steroids 
did not significantly alter cell proliferation or apoptosis.  
 
 
 
7.18 Steroidogenic effects on oxytocin signalling 

To elucidate the effect of steroid hormones on oxytocin-mediated Ca2+ signalling 

pathways, myocytes were exposed to vehicle or combinations of progesterone and 

17β-oestradiol for 24 hours as described by Backlin et al. (2003). In vehicle-treated 

cells, oxytocin evoked a concentration-dependent Ca2+ flux, which plateaued at 100.7 

± 1.33 percent fluorescence counts with a pEC50 value of 8.61 ± 0.23M (Figure 7.19). 

17-β oestradiol at 10-6M and 10-7M augmented oxytocin-induced Ca2+ transients by 

24 percent (p<0.05), without shifting the curve (pEC50: 8.28 ± 0.29M and pEC50: 8.36 

± 0.24M respectively). Exposure to progesterone (10-6M) attenuated oxytocic 

responses by 28 percent fluorescence counts (p<0.01), but also had no effect on the 

position of the curve (pEC50: 8.86 ± 0.07M). The performed MTT assay indicated that 

this was not associated with cell proliferation, which was uniform irrespective of 

b) x25 
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steroid treatment (Figure 7.20).  The effects of oxytocin on Ca2+ oscillations were 

restored in myocytes pre-incubated with a combination of oestrogen and progesterone. 

 

7.19 The effects of Ca2+-channel blockers on oxytocin 

The mechanisms of oxytocin-induced Ca2+ release were initially assessed using the L-

type Ca2+ channel blocker, nifedipine. To inhibit these cell membrane channels, 

myocytes were pre-treated with vehicle and nifedipine (10-5M to 10-7M) for 4 minutes 

before stimulation with oxytocin (10-11M to 10-5M; Table 7.4). For each 

concentration-effect curve, oxytocin mobilised Ca2+ until a plateau phase was 

sustained between 10-7M and 10-5M. Nifedipine at 10-5M increased oxytocic effects 

from 104.3 ± 2.01 to 122.0 ± 9.02 percent fluorescent counts (p<0.01), without 

shifting the curve. Although exposure to nifedipine at 10-6M and 10-7M also enhanced 

Ca2+ influx, the <9 percent change was not significant compared to vehicle (F (2, 72) 

= 2.60; ns).  

 

The combined effects of thapsigargin, lanthanum chloride (LaCl3) and nifedipine on 

oxytocin-induced responses in myometrial cells were subsequently investigated to 

elucidate localised Ca2+ dynamics. LaCl3 (25µM) and thapsigargin (2µM) were 

chosen due to their respective inhibition of store-operated Ca2+ channels (Fu et al., 

2000) and endoplasmic reticulum Ca2+ pumps (Fomin et al., 1999; Kupittayanant et 

al., 2002; Wray & Shmygol, 2007). As before, uterine myocytes responded to 

oxytocin with a concentration-dependent increase in Ca2+ transients, followed by a 

plateau at 100.5 ± 1.54 percent fluorescent counts (pEC50: 8.66 ± 0.23M; Figures 7.22 

and 7.23). Potent responses to oxytocin were maintained in the presence of LaCl3 

alone and together with nifedipine (pEC50: 8.53 ± 0.28M and 8.81 ± 0.20M 
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respectively). Whilst exposure to nifedipine alone augmented oxytocin-induced Ca2+ 

signalling by 16.5 percent (F (1, 48) = 9.36; p<0.01), thapsigargin attenuated Ca2+ 

transduction mechanisms. The 20 percent decrease in oxytocic effects (F (1, 48) = 

10.39; p<0.01) may relate to the direct mobilisation of intracellular-free Ca2+ by 

thapsigargin (Figure 7.21). Even so, this reduction was potentiated in the presence of 

both nifedipine and LaCl3 (p<0.001). 

 
 
 
Table 7.4 Maximal responses (Em) and effective half maximal concentrations (pEC50) 
(M) for myocytes challenged with nifedipine at 10-5M, 10-6M or 10-7M for 4 minutes 
before stimulation with oxytocin (10-11M to 10-5M) (n=4). Data are expressed as 
arithmetic means ± S.E. and analysed using multivariate ANOVA with Bonferroni’s 
post-hoc test; **p<0.01 for nifedipine (10-5M) compared to vehicle. 
 

 Vehicle Nifedipine (10µM) Nifedipine (1µM) Nifedipine (0.1µM) 
Em 104.3 ± 2.01 122.0  ± 9.02** 113.3 ± 5.11 107.3 ± 5.48 
pEC50 9.3 ± 0.11 9.1 ± 0.14 9.4 ± 0.07 9.3 ± 0.17 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.21: Concentration-dependent changes in intracellular-free Ca2+ for myocytes 
challenged with oxytocin (10-11M to 10-5M) for 4 minutes after pre-incubation with 
vehicle (DMEM D), thapsigargin (2x10-6M), lanthanum chloride (LaCl3; 25µM) or 
nifedipine (10µM) for 4 minutes. To detect Ca2+, primary smooth muscle cells from 
term pregnant donors were loaded with the Ca2+ indicator fluo-4 AM dye (2µM) for 
60 minutes and washed. Traces were recorded using the FLIPR-Tetra.  
 

LaCl3 Thapsigargin Vehicle Nifedipine 

  

4 mins 
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Similar trends were observed in fibroblasts (Figures 7.24 and 7.25). The characteristic 

concentration-effect curve evoked by oxytocin reached a plateau at 101.6 ± 0.86 

percent fluorescence counts (pEC50: 8.93 ± 0.12M). Again LaCl3 alone and with 

nifedipine did not alter temporal changes in Ca2+, whilst challenge with nifedipine 

(10-5M) increased oxytocic effects by 18 percent (F (1, 48) = 10.81; p<0.01). 

Responses to thapsigargin and oxytocin were marginally more pronounced in 

fibroblasts compared to myocytes. Thapsigargin alone and in the presence of 

nifedipine decreased oxytocic effects by 13 percent (F (2, 72) = 6.02; p<0.05). 

Conversely, thapsigargin with oxytocin at 10-11M stimulated relatively high Ca2+ 

release, reaching 27.0 ± 6.20 percent fluorescence counts; this created a more linear 

sigmoidal curve. Thapsigargin combined with LaCl3 further suppressed oxytocin-

mediated Ca2+ influx to 70.9 ± 7.72 percent fluorescence counts (p<0.001). In both 

myocytes and fibroblasts, pEC50 values were consistent throughout. 
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Figure 7.22: Concentration-effect curves (left) for oxytocin (10-11M to 10-5M) pre-
incubated with combinations of vehicle (DMEM D), nifedipine (nifed; 10-6M), 
lanthanum chloride (LaCl3; 2.5x10-5M) and thapsigargin (thaps; 2x10-6M). To detect 
Ca2+ flux, primary smooth muscle cells obtained at term pregnancy were loaded with 
Ca2+ fluo-4 AM indicator dye (2µM; n=4). Ca2+ channel blockers and oxytocin were 
each added to cell plates for 4 minutes using the FLIPR-Tetra. Data are expressed as 
arithmetic means ± S.E. and analysed using two-way ANOVA with Bonferroni’s post-
hoc test; *p<0.05; **p<0.01; ***p<0.001 for nifedipine (red), thapsigargin (blue), 
nifed + thaps (green) and LaCl3 + thaps (purple) compared to vehicle. 
 
Figure 7.23: Bar chart (above) showing the effects of nifedipine (nifed; 10-6M), 
lanthanum chloride (LaCl3; 2.5x10-5M) and thapsigargin (thaps; 2x10-6M) on oxytocin 
at 10-6M in human myocytes (n=4). Responses to oxytocin were read using the FLIPR 
and calculated as % change in fluorescence units over baseline (% FLU). Univariate 
ANOVA showed statistical differences; ***p<0.001 compared to oxytocin (black), 
nifed (red), LaCl3 (green) and thaps (blue) alone.   
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Figure 7.24: Concentration-effect curves (left) for oxytocin (10-11M to 10-5M) pre-
incubated with combinations of vehicle (DMEM D), nifedipine (nifed; 10-6M), 
lanthanum chloride (LaCl3; 2.5x10-5M) and thapsigargin (thaps; 2x10-6M). To detect 
Ca2+ flux, primary myometrial fibroblasts obtained at term pregnancy were loaded 
with Ca2+ fluo-4 AM indicator dye (2µM; n=4). Ca2+ channel blockers and oxytocin 
were each added to cell plates for 4 minutes using the FLIPR-Tetra. Data are expressed 
as arithmetic means ± S.E. and analysed using two-way ANOVA with Bonferroni’s 
post-hoc test; *p<0.05; **p<0.01 for nifedipine (red), thapsigargin (blue), nifed + 
thaps (green) and LaCl3 + thaps (purple) compared to vehicle. 
 
Figure 7.25: Bar chart showing the effects of nifedipine (nifed; 10-6M), lanthanum 
chloride (LaCl3; 2.5x10-5M) and thapsigargin (thaps; 2x10-6M) on oxytocin at 10-6M in 
human fibroblasts (n=4). Responses to oxytocin were read using the FLIPR and 
calculated as % change in fluorescence units over baseline (% FLU). Univariate 
ANOVA showed statistical differences; ***p<0.001 compared to oxytocin (black), 
nifed (red) and LaCl3 (green) alone. 
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Figure 7.26: Concentration-effect curves for oxytocin (10-11M to 10-5M) pre-incubated 
with a) vehicle (DMEM D), indometacin (10-6M), EDTA (2x10-3M) and atosiban   
(10-7M); b) vehicle, PGE2 (10-6M), butaprost (10-6M) and PGF2α (10-6M); c) vehicle, 
caspase-3 inhibitor (2x10-5M), rho-kinase inhibitor (3x10-5M) and SQ29,548 (10-6M); 
d) vehicle, nifedipine (10-5M), lanthanum chloride (2.5x10-5M) and thapsigargin 
(2x10-6M) for 24 hours. Primary smooth muscle cells were cultured from myometrial 
tissue excised at term pregnancy (n=4). After loading with fluo-4 AM dye (2µM), 
responses to oxytocin were measured as percentage change in fluorescence units over 
baseline (% FLU) using the FLIPR-Tetra. Results are expressed as arithmetic means ± 
S.E. and statistical significance was determined using multivariate ANOVA with 
Bonferroni’s post-hoc test; ***p<0.001 compared to vehicle. 
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Figure 7.27: Concentration-effect curves for oxytocin (10-11M to 10-5M) pre-incubated 
with a) vehicle (DMEM D), indometacin (10-6M), EDTA (2x10-3M) and atosiban   
(10-7M); b) vehicle, PGE2 (10-6M), butaprost (10-6M) and PGF2α (10-6M); c) vehicle, 
caspase-3 inhibitor (2x10-5M), rho-kinase inhibitor (3x10-5M) and SQ29,548 (10-6M); 
d) vehicle, nifedipine (10-5M), lanthanum chloride (2.5x10-5M) and thapsigargin 
(2x10-6M) for 24 hours. Uterine fibroblasts were cultured from myometrial tissue 
excised at term pregnancy (n=4). After loading with fluo-4 AM dye (2µM), responses 
to oxytocin were measured as percentage change in fluorescence units over baseline 
(% FLU) using the FLIPR-Tetra. Results are expressed as arithmetic means ± S.E. 
and statistical significance was determined using multivariate ANOVA with 
Bonferroni’s post-hoc test; *p<0.05; ***p<0.001 compared to vehicle. 
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7.20 The effects of overnight incubations on oxytocin 

To identify their prolonged effects on the oxytocin cascade PGs, rho-kinase 

compounds and Ca2+ channel blockers were exposed to myometrial cells for 24 hours 

before oxytocin challenge (10-11M to 10-5M). In myocytes, pre-incubation with 

vehicle (DMEM D) did not influence typical oxytocin-stimulated Ca2+ entry, which 

plateaued at 100.6 ± 1.13 above 10-7M (pEC50: 9.0 ± 0.12M; Figure 7.26). The 

transient rise in Ca2+ was consistent in the presence of the COX inhibitor indometacin 

(F (1, 48) = 1.27; ns), the TP antagonist SQ29,548 (F (1, 48) = 0.19; ns) and PG 

agonists PGE2, butaprost and PGF2α (F (3, 96) = 0.51; ns).  

Overnight pre-incubation with the oxytocin antagonist atosiban (10-5M) also did not 

alter Ca2+ signals (F (1, 48) = 3.88; ns); this was in contrast to the results for short-

term atosiban treatments (Figures 7.13 & 7.15; Table 7.1). In the presence of the Ca2+ 

chelator EDTA (2x10-3M), the concentration-response curve for oxytocin was 

displaced 1.33 log M rightward, accompanied by a 57 percent reduction in peak Ca2+ 

release (F (1, 48) = 758.7; p<0.001). Likewise, 24-hour incubation with rho-kinase 

but not caspase-3 inhibitors attenuated oxytocin-induced Ca2+ transients. Although 

Ca2+ mobilisation plateaued at 69.2 ± 2.94 fluorescence counts (F (1, 48) = 169.6; 

p<0.001), the oxytocin-effect curve was not shifted to the right (pEC50: 8.98 ± 

0.15M). Myocytes challenged overnight with nifedipine (10-5M; L-type) and 

lanthanum chloride (2.5 x 10-5M; store-operated) Ca2+ channel blockers did not 

modify the profile of oxytocin. Even so, 24-hour exposure to thapsigargin (2x10-6M), 

an inhibitor of endoplasmic reticulum Ca2+-ATPase, completely prevented oxytocin-

induced cytosolic Ca2+ influx (p<0.001).  
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In fibroblasts, oxytocin similarly mobilised intracellular-free Ca2+ in a concentration-

dependent manner, reaching a sustained plateau at 101.4 ± 0.32 fluorescence counts 

(pEC50: 8.9 ± 0.08M; Figure 7.27). No changes in integrated Ca2+ elevation were 

evoked by 24-hour pre-incubation with indometacin (F (1, 48) = 3.31; ns), SQ29,548 

(F (1, 48) = 3.89; ns), PGE2, butaprost or PGF2α (F (3, 96) = 1.78; ns). The sigmoidal 

uterotonic action of oxytocin was also unchanged after overnight exposure to atosiban 

(10-5M; F (1, 48) = 1.69; ns), the caspase-3 inhibitor (F (1, 48) = 0.047; ns) and Ca2+ 

channel blockers nifedipine and lanthanum chloride (F (2, 72) = 0.69; ns). Unlike in 

myocytes, external Ca2+ sequestered by EDTA (2x10-3M) suppressed oxytocin-

induced Ca2+ transients by 28 percent (F (1, 48) = 80.27; p<0.001), without shifting 

the curve (pEC50: 8.92 ± 0.17). Even so, pre-treatment with the rho-kinase inhibitor 

had a more pronounced effect, decreasing peak fluorescence counts to 59.1 ± 3.14 

percent (F (1, 48) = 404.0; p<0.001). Again challenge with thapsigargin for 24 hours 

totally blocked the stimulatory effect of oxytocin on Ca2+ channel activity. 
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Chapter 7.21: Results - cyclic AMP 
 

 

 

7.22 Agonist-induced cAMP formation in myocytes  

Agonist activation of cAMP was quantified to elucidate alternative intracellular 

signalling pathways (Figure 7.28). In smooth muscle cells, 30-minute oxytocin 

treatments produced a moderate monophasic increase in relative luminescence units 

from 3099 ± 858 to 6877 ± 909, which was not significant compared to vehicle (F (1, 

48) = 3.26; ns). Butaprost conversely augmented cAMP formation by 18-fold in a 

concentration-dependent manner (F (1, 48) = 451; p<0.001). When pre-incubated at 

10-6M, butaprost also enhanced oxytocin-mediated cAMP mobilisation by nearly 100 

percent (F (1, 48) = 23.11; p<0.001; pEC50: 6.66 ± 0.11M). This concentration-related 

increase in liberated cAMP was analogous to the curve evoked by U46619 (F (1, 48) 

= 25.46; p<0.001; pEC50: 6.54 ± 0.26M). Even so, in myocytes treated with PGE2, 

cAMP signalling substantially increased 22-fold (F (1, 48) = 1148; p<0.001) and 20-

fold (F (1, 48) = 692.3; p<0.001) above basal cAMP respectively. 
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Figure 7.28: Myocyte cAMP flux for vehicle (DMEM D) and concentration-effect 
curves (10-11M to 10-5M) for a) butaprost, oxytocin and oxytocin together with 
butaprost (buta; 10-6M) and b) PGE2 and U46619. Primary smooth muscle cells were 
cultured from myometrium harvested at term pregnancy (n=4) and agonist treatments 
were pre-incubated for 30 minutes. Free cAMP was measured using a competitive-
based immunoassay with cell-response signals, relative luminescence units (RLU), 
directly proportional to the presence of intracellular cAMP. Results are expressed as 
arithmetic means ± S.E. and analysed using two-way ANOVA with Bonferroni’s 
post-hoc test; *p<0.05; **p<0.01, ***p<0.001 for a butaprost, b buta + oxytocin,          
c PGE2 and e U46619 compared to vehicle.  
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Chapter 7.23: Results - RT-PCR 
 

 

 

7.24 PG, oxytocin and rho-related mRNA expression in uterine myocytes 

Qualitative mRNA expression for PGs, oxytocin receptors and target proteins in Ca2+ 

sensitisation was determined using RT-PCR in uterine myocytes harvested at term 

pregnancy. As well as their relative contribution in signal transduction pathways, the 

effects of vehicle (DMEM D), PG and oxytocin treatments were assessed. Only high 

quality, intact RNA was assayed, as shown by the clear 28S and 18S ribosomal RNA 

bands imaged before RT-PCR (Figure 6.6). In each PCR reaction, the absence of 

product in control RNA samples confirmed that no genomic DNA contamination had 

occurred (Figures 7.30 & 7.32). 

 

Myocyte mRNA was normalised as a percentage of the housekeeping gene β-actin, 

which was highly expressed at 377bp. All primer sets yielded RT-PCR products of the 

expected sizes (Table 6.21; Figures 7.30 & 7.32). DP and MLCK were the only 

amplified transcripts showing marked multiple bands; this indicated poor primer 

design. Of the EP isoforms, EP2 receptor expression was most abundant at 40 ± 2.12 

percent of β-actin (p<0.001; Figure 7.29). Although the density of EP1 mRNA was 

2.4-fold lower (p<0.001), only negligible compliments of EP3 and EP4 receptors could 

be detected. At 107.9 ± 2.58 percent β-actin, the expression of FP mRNA was 

considerably higher than the EP subset and other PGs (p<0.001). Despite greater 

effects on Ca2+ transients, oxytocin receptors were half as abundant as FP receptor 

transcripts. Even lower was the expression of DP and TP mRNA, followed by IP 
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receptors at 15.6 ± 1.31 percent of β-actin (p<0.001). The chemoattractant receptor 

homologous molecule (CRTH2) was used as a negative control due to its expression 

only on T helper cells (Hirai et al., 2001). Therefore, CRTH2 was absent from the 

purified PCR products. 

 

To address rho-related pathways that regulate uterine sensitisation, the relative 

expression of smooth muscle specific proteins were also investigated (Figures 7.31 & 

7.32). Although the structure of telokin is identical to the C-terminus of MLCK, its 

expression was most abundant at 92.2 ± 1.42 percent β-actin. The density of RhoA 

and ROCKI bands were only 6.8 percent (p<0.05) and 11.5 percent (p<0.001) lower 

respectively. Inositol trisphosphate receptors (IP3R), which mediate Ca2+ release into 

the cytosol, were still abundant at 66.7 ± 1.69 percent β-actin and ROCKII isoforms 

were two-thirds lower at 22.6 ± 1.85 percent β-actin (p<0.001). Surprisingly, the 

detection of MLCK mRNA was only very faint. 

 

7.25 Effects of PG and oxytocin compounds on mRNA transcription 

As well as the above vehicle (DMEM D) treatments, myocytes were exposed to 

U46619 (10-6M), SQ29,548 (10-6M) and the oxytocin antagonist atosiban (10-6M) for 

24 hours. Due to the rapid desensitisation of receptors (Phaneuf et al., 1998; Plested & 

Lopez Bernal, 2001), oxytocin (10-6M) was only incubated with cells for 3 hours. The 

expression of PG, oxytocin and rho-related mRNA was consistent regardless of 

uterotonin or antagonist challenge (Tables 7.5 & 7.6). As a result, post-receptor 

transcriptional events appeared to be unchanged. 
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Figure 7.29: Relative expression of β-actin, EP1-4, CRTH2, DP, FP, IP, TP and oxytocin 
receptor (OTR) mRNA detected in human myocytes taken at term pregnancy (n=5). The 
density of each mRNA band was quantified using Fluor-Chem IS-8000 programme and 
normalised as a percentage of β-actin. Results are expressed as arithmetic means ± S.E. 
and analysed using univariate ANOVA with Bonferroni’s post-hoc test: ***p<0.001 for 
a EP1 and b EP2 compared to the other EP receptors and for PG mRNA compared to c the 
other PG receptors and to d DP alone.  
 
 
Figure 7.30: Representative agarose gel stained with ethidium bromide and 
photographed showing relative β-actin, PGs and oxytocin receptor (OTR) mRNA 
expression in human uterine myocytes taken at term pregnancy. PCR products were 
absent from the reverse transcriptase negative control lane and β-actin was used as a 
loading control. A 1Kb plus DNA ladder was run alongside for molecular weight sizing. 
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Figure 7.31: Relative expression of β-actin, RhoA protein, ROCKI, ROCKII, MLCK, 
IP3 receptors and telokin mRNA detected in human myocytes taken at term pregnancy 
(n=5). The density of each mRNA band was quantified using Fluor-Chem IS-8000 
programme and normalised as a percentage of β-actin. Results are expressed as 
arithmetic means ± S.E. and analysed using univariate ANOVA with Bonferroni’s 
post-hoc test: *p<0.05; ***p<0.001 compared to a RhoA and b all other mRNA 
transcripts, excluding β-actin.  
 
 
 
 
 
 
 
 
 
 
 
Figure 7.32: Representative agarose gel stained with ethidium bromide and 
photographed showing relative β-actin, RhoA, ROCKI, ROCKII, MLCK, IP3 
receptors and telokin mRNA expression in human uterine myocytes taken at term 
pregnancy. PCR products were absent from the reverse transcriptase negative control 
lane and β-actin was used as a loading control. A 1Kb plus DNA ladder was run 
alongside for molecular weight sizing. 
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Table 7.5: The effects of vehicle (DMEM D), oxytocin (10-6M), atosiban (10-6M), U46619 (10-6M) and SQ29,548 (10-6M) on PG and oxytocin 
mRNA receptor expression in smooth muscle cells cultured from myometrium at term pregnancy (n=5). Except for 3-hour oxytocin treatments, 
cells were incubated with agonists and antagonists for 24 hours. The density of mRNA transcripts were analysed with Fluor Chem IS-8000 and 
expressed as a percentage of β-actin ± S.E. Compared to vehicle, mRNA expression did not significantly change. 
 

mRNA Vehicle Oxytocin Atosiban Atosiban + OT U46619 SQ29,548 SQ + U19 
EP1 14.7 ± 2.84 14.2 ± 2.80 14.8 ± 3.02 13.2 ± 3.12 19.6 ± 4.12 18.0 ± 4.81 19.3 ± 2.58 
EP2 36.2 ± 6.88 42.3 ± 4.43 37.0 ± 5.30 41.5 ± 3.79 33.5 ±11.04 43.3 ± 5.41 44.0 ± 5.77 
EP3 4.0 ± 2.05 4.73 ± 2.42 4.7 ± 2.06 5.0 ± 2.41 5.3 ± 2.42 5.3 ± 2.03 5.4 ± 2.43 
EP4 1.6 ± 0.54 1.7 ± 0.74 2.1 ± 0.38 1.8 ±0.31 1.8 ± 0.81 1.5 ± 0.57 1.4 ± 0.67 
DP 31.7 ± 4.8 32.3 ± 4.11 32.4 ± 4.69 29.9 ± 6.80 32.2 ± 7.91 31.9 ± 3.47 38.1 ± 6.35 
FP 107.2 ± 9.26 106.0 ± 5.35 115.0 ± 11.87 104.6 ± 8.99 107.7 ± 7.17 106.6 ± 5.64 108.3 ± 6.43 
IP 11.5 ± 2.28 10.6 ± 1.84 13.8 ± 3.49 15.34 ± 3.59 15.9 ± 5.27 16.8 ± 3.09 18.9 ± 3.54 
TP 23.6 ± 8.24 25.6 ± 6.21 28.9 ± 6.10 31.2 ± 10.01 30.5 ± 10.20 35.2 ± 5.77 35.3 ± 7.17 
OT 53.2 ± 4.77 53.2 ± 5.56 49.7 ± 8.52 52.1 ± 4.66 50.5 ± 11.40 58.8 ± 2.96 60.1 ± 3.22 

 
 

Table 7.6: The effects of vehicle (DMEM D), oxytocin (10-6M), atosiban (10-6M), U46619 (10-6M) and SQ29,548 (10-6M) on rho-related mRNA 
expression in smooth muscle cells cultured from myometrium at term pregnancy (n=5). Except for 3-hour oxytocin treatments, cells were 
incubated with agonists and antagonists for 24 hours. The density of mRNA transcripts were analysed with Fluor Chem IS-8000 and expressed 
as a percentage of β-actin ± S.E. Compared to vehicle, mRNA expression did not significantly change. 
 

mRNA Vehicle Oxytocin Atosiban Atosiban + OT  U46619 SQ29,548 SQ + U19 
RhoA 85.2 ± 6.04 81.9 ± 7.18 85.9 ± 4.99 87.8 ± 3.44 83.9 ± 3.61 84.4 ± 4.52 89.9 ± 4.64 
ROCK I 78.5 ± 5.61 74.0 ± 4.53 81.6 ± 6.49 84.6 ± 1.97 79.8 ±3.71 78.0 ± 4.87 89.6 ± 2.98 
ROCK II 21.6 ± 3.19 27.4 ± 2.79 17.9 ± 4.17 18.1 ± 4.22 20.7 ± 4.82 19.6 ± 3.57 20.3 ± 5.60 
MLCK 2.1 ± 0.67 1.8 ± 0.43 2.0 ± 0.41 1.7 ± 0.19 2.11 ± 0.46 2.9 ± 0.56 2.9 ± 0.60 
IP3 61.2 ± 4.38 69.8 ± 3.66 62.3 ± 4.77 65.7 ± 2.84 65.4 ± 5.44 67.6 ± 5.12 72.75 ± 3.21 
Telokin 93.3 ± 3.90 90.3 ± 4.58 89.5 ± 4.99 92.0 ± 3.85 91.6 ± 2.97 89.8 ± 5.17 95.3 ± 2.69 
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 Chapter 7.26: Discussion 
 

 

In this study, smooth muscle cells and fibroblasts were isolated from human 

myometrial biopsies taken at term pregnancy. Although myocytes occupy most of the 

tissue volume, functional coupling with fibroblastic cells propagate electrotonic 

signals, contributing to the mechanical syncytium required for labour contractions 

(Lopez Bernal et al., 1993; Koumas et al., 2003; MacCannell et al., 2007). Myogenic 

activity is mediated through the ATP-dependent binding of myosin to actin, which is 

augmented by PG and oxytocin in the absence of autonomic innervation (Wray, 

1993). The associated liberation of intracellular-free Ca2+ was induced by uterotonins 

in this study; however, oxytocic effects were most pronounced. In spite of the noted 

similarities between myometrial cell populations, subtle distinctions in their 

morphologies and signalling mechanisms may be of physiological importance in 

preparing the uterus for pregnancy and labour. 

Myometrial cells are composed of intracellular filamentous systems that govern 

structural integrity and contraction. In the uterus, myometrial smooth muscle cells are 

arranged in bundles embedded in a matrix of connective tissue that enhance the 

transmission of contractile forces (Yu & Lopez Bernal, 1998) without directly altering 

Ca2+ flux (Shaw et al., 2006). In this study, uterine cryotome sections and cultured 

myometrial cells were similarly arranged in parallel arrays. This myofilament lattice, 

interspersed with focal adhesion dense plaques, was identified to envelop a centrally 

located nucleus by phase contrast microscopy. In isolated cells, immunocytochemistry 

was subsequently performed to characterise the distribution and intrinsic activity of 

myocyte and fibroblast populations in term gravid human myometrium. 
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Superficially, monolayer cultures of myometrial smooth muscle cells and fibroblasts 

exhibited similar morphologies. Although each cell type was fusiform in shape, 

myometrial fibroblasts were larger flattened cells with many processes that extended 

from the periphery. Due to their abundance in motile cells, these lamellipodia 

protrusions have been associated with cell survival, migration and aggregation to 

mediate tissue remodelling of the myometrium and pubic symphysis during 

pregnancy and delivery (Moraes et al., 2004). These ultrastructural features may also 

account for the faster attachment of fibroblast cells compared to myocytes, which 

constituted the basis of the adhesion separation technique. As the actin polymer 

constituents also have an integral role in traction and force generation, staining for 

smooth muscle specific α-actin was employed.  

Of the six different isoforms, α-actin and γ-actin are the major constituents of 

myometrial smooth muscle cells (Shynlova et al., 2005). In the uterus, these thin 

filaments have directly been shown to activate myosin-ATPase activity in a Ca2+- 

dependent manner for the development of tension (Borovikov et al., 1996). By 

binding with cross-linking proteins, such as α-actinin, filamentous actin forms 

complex architectures that enhance the mechanical response (Tseng et al., 2005). In 

both myometrial cell types, double immunofluorescent images showed strong co-

localisation of α-actin and α-actinin markers. Although expression of these proteins 

appeared consistent in this study, a greater abundance of actin filaments has 

previously been indicated in myocytes compared to myometrial fibroblasts taken from 

non-pregnant women (Casey et al., 1984). In contrast to the increase in γ-actin 

polymers, the expression of α-actin has been reported to decline (Skalli et al., 1987) 

or remain high (Shynlova et al., 2005) with the progression of pregnancy. Mechanical 

stretch is thought to contribute to this switch from α-actin to the γ isoform in smooth 
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muscle cells at late gestation due to enrichment in stress fibres and focal adhesion 

sites (Katoh et al., 2001; Wang et al., 2006). This may account for the similarities in 

myocyte and fibroblast structural phenotypes in the term gravid uterus. 

To identify further the cytoskeletal assembly, specific antibodies against desmin and 

vimentin were employed. These intermediate filaments displayed prominent 

networks, associated with providing mechanical integrity for myometrial cells (Leoni 

et al., 1990; Hongpaisan, 2000; Tang, 2008). In this study, filamentous vimentin was 

distributed throughout the cytoplasm, whereas desmin was located at the dense bodies 

of each cell. Spatial reorganisation and co-localisation of these filaments with the type 

IV protein synemin have been shown to regulate cell shape and alignment of 

myofibrils by linking intercellular apparatus (Gimona, 2008). This appears to 

facilitate mechanical transduction in smooth muscle tissues, contributing to mitosis 

and force development (Wang et al., 2006). In myometrial cells at term pregnancy, 

the upregulation of desmin content (Leoni et al., 1990) and genes encoding for 

intermediate filament-associated proteins have been related to the hypertrophic shape 

change and preparation of the cell architecture for labouring contractions (Salomonis 

et al., 2005; Shynlova et al., 2010). The positive immunostaining for both 

intermediate filaments in this study was therefore indicative of a smooth muscle 

contractile phenotype for both myocytes and fibroblasts.  

Distinguishing features of myometrial cell types were evaluated further using a 

monoclonal antibody against fibroblast surface protein. Immunocytochemistry 

showed dispersed fine staining of the cell surface, with slightly stronger granular 

staining over the perinuclear region. This was in accord with the ultrastructural pattern 

of antigen immunoreactivity detected on the cell surface of human fibroblasts 

(Ronnov-Jessen et al., 1992), tissue macrophages and peripheral monocytes (Singer et 
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al., 1989). Despite its reported lack of expression in vascular smooth muscle cells 

(Ronnov-Jessen et al., 1992), all myometrial cells stained positive for the fibroblast-

associated antigen in this study. With fibroblasts and endothelial cells comprising an 

estimated 5 to 10 percent of myometrial cell types in a digestion (Hongpaisan, 2000; 

Duquette et al., 2005), it is likely that the surface protein was present on smooth 

muscle cells as well as fibroblasts. This suggests that an alternative cytoskeletal 

marker would be required for the absolute identification of cell subsets. However, 

lineage-specific monoclonal antibodies were limited and even several smooth muscle-

associated antigens, including smoothelin, calponin, h-caldesmon and vinculin were 

positively expressed in some fibroblastic cells (Esterre et al., 1992; Lazard et al., 

1993; Hasegawa et al., 2003; D’Addario et al., 2002). Despite the concerted smooth 

muscle phenotype, cultured flasks appeared to contain enriched cell populations. This 

was based on differences in their morphology and the faster proliferation rate of 

fibroblasts compared with myocytes (Casey et al., 1984; Phaneuf et al., 1993; 

Hongpaisan, 2000; Rouger et al., 2007). To characterise separate contractile functions 

of these cells, PG and oxytocin-induced post-receptor signalling cascades were next 

assessed. 

PG and oxytocin agonists are known to modulate spontaneous uterine activity via 

functional excitation-contraction coupling between myometrial cells. The 

transmission of action potentials is reported to originate from myometrial Cajal-like 

interstitial cells, which are responsible for the endogenous pacemaker system (Ciontea 

et al., 2005; Young, 2007; Allix et al., 2008). Although undetected in primary cell 

cultures in this study, the Cajal-like interstitial cells are dependent on Ca2+ signalling 

cascades for generating the coordinated activity of ion channel pumps and exchanges 

throughout uterine muscle (Berridge, 2008). To induce phasic myometrial 
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contractions, Ca2+ in combination with calmodulin activates myosin light chain kinase 

(MLCK). This enzyme phosphorylates 20kDa myosin light chains (MLC20), 

enhancing both adenosine trisphosphatase (ATPase) activity and cross-bridge 

formation between the myosin head and actin filament (Word et al., 1994; Sanborn, 

2001). This activation only occurs when cytosolic Ca2+ reaches the threshold above 

resting potential for regenerative membrane depolarisation. Perturbations of this 

pathway are likely to cause untimely parturition (Word et al., 1994; Riley et al., 2005) 

and so the effects of PGs and oxytocin on Ca2+ release were tested using the FLIPR-

Tetra system. 

Cell loading with the Ca2+-sensitive fluo-4 AM dye indicated concentration-dependent 

stimulation of Ca2+ transients by PG and oxytocin agonists. Even so, low amplitude 

PG-induced responses were at the limits of detection, whilst oxytocic effects were 

marked in this study. Oxytocin, EP1, EP3, FP and TP receptors activate phospholipase 

C (PLC) β1, β2 or β3 through large heterotrimeric G-proteins (Phaneuf et al., 1996; 

Sanborn et al., 1998). Due to the induction of β1 and β2 isoforms during pregnancy, 

PLC efficiently hydrolyses phosphatidylinositol 4,5-bisphosphate (PIP2) to release IP3 

and diacylglycerol (DAG) (Somlyo et al., 1999; Hurd et al., 2000). In myometrial 

tissue, IP3 binding to its cognate receptors on the endoplasmic reticulum liberates 

stored Ca2+ into the cytosol; this is vital for sustained uterotonic contractile activity at 

term (Yamada et al., 1994; Sanborn, 2001). By contrast, DAG activates protein kinase 

C (PKC) leading to the phosphorylation of cellular proteins. A direct correlation 

between intracellular Ca2+ transients, MLC20 phosphorylation and temporal force 

development has been shown in mouse (Matthew et al., 2004) and human myometrial 

tissues (MacKenzie et al., 1990; Word et al., 1990; Woodcock et al., 2004; Jie et al., 

2007). Therefore, based on the ability of PGs to modulate contractions (Chapter 4), 
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induce abortion during pregnancy as well as parturition and to treat postpartum 

haemorrhage, the minor Ca2+ flux detected using the FLIPR-Tetra was surprising.  

In primary cultures of human myometrial cells, PGE2 was shown to elevate cytosolic 

Ca2+ with peak depolarisation only 1.5-fold (Thornton et al., 1992) and 4-fold (Asboth 

et al., 1996) lower than oxytocin. The respective addition of PGE2 at 140µM and 

20µM relative to the 10µM stimulation of cells in this study may account for some of 

the discrepancies between results. In particular, chronic exposure to PGE2 is more 

likely to evoke biochemical changes rather than act through EP receptor sites. The 

effect of PGE2 may also be attributed to cross-reaction with the FP receptor (Kiriyama 

et al., 1997; Breyer et al., 2001), especially with PGF2α evoking large Ca2+ 

oscillations in primary human myocytes (Phaneuf et al., 1993; Fu et al., 2000). The 

expression of FP receptors was particularly abundant in myometrial cells compared to 

TP receptors in this study. Moreover, PGF2α was reported to be equipotent with 

oxytocin using a myometrial cell line (Molnar & Hertelendy, 1990), whilst U46619 

produced either a marginal Ca2+ release (Himpens & Somlyo, 1988) or analogous 

Ca2+ transients to PGE2 (Asboth et al., 1996; Moore et al., 2002). Whilst the trend in 

results was similar, it appeared that use of fura-2 tetraoxymethylester loaded cells 

with an epifluorescence microscope was more sensitive than the FLIPR-Tetra system 

for Ca2+ flux detection. However, due to its potent uterotonic effects, Ca2+ signalling 

pathways for oxytocin were further investigated.  

Despite the clinical significance of oxytocin as a pharmaceutical agent for augmenting 

uterine contractions during dysfunctional labour, its role in parturition is 

controversial. For myometrial depolarisation to occur, challenge with oxytocin has 

been shown to elevate inward Ca2+ and sodium (Na+) flux, in exchange for the 

outward flow of potassium (K+) and chloride (Cl-) ions (Thornton et al., 1992; 
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Rezapour et al., 1996; Shmigol et al., 2001). This change in ionic gradient produces 

an initial transient followed by slower repolarisation essential for effective excitation-

contraction coupling (Thornton et al., 1992). In human myometrium, whilst the 

resting membrane potential is generally between -45 and -50mV (Inoue et al., 1990), 

the threshold for activation becomes lower at term pregnancy (Sanborn, 2001). These 

action potentials are driven through large conductance Ca2+ channels and are 

potentiated by reduced sensitisation of prevalent voltage-dependent K+ channels (Szal 

et al., 1994; Korovkina et al., 2006).  

In this study, oxytocin mobilised intracellular Ca2+ in a concentration-dependent 

manner. This was almost 2-fold higher in uterine myocytes compared to fibroblasts, 

suggesting that cultures of enriched cell populations were isolated in this study. The 

results were substantiated by the higher incidence of typical oxytocin-generated Ca2+ 

transients (Hongpaisan, 2000) and electrotonic coupling (MacCannell et al., 2007) in 

myocyte cultures, compared to cultures contaminated with fibroblasts. As fibroblasts 

are the main effector cells in the cervix (Montes et al., 2002), such changes in action 

potential waveform could promote uterine contractions without modulating the cervix. 

The larger Ca2+ flux within smooth muscle cells may also relate to their extensively 

developed sarcoplasmic reticulum for enhanced Ca2+ storage (Sanborn, 2001) and 

high-density functional oxytocin receptors (Fuchs et al., 1984). 

For uterine contractions to proceed efficiently at term it is likely that Ca2+ signals are 

regulated by oxytocin in conjunction with other autacoids and hormones. Through 

DAG stimulation of PKC, oxytocin has been shown to activate the mitogen-activated 

protein kinase (MAPK) cascade promoting PG biosynthesis in human myometrial 

(Hoare et al., 1999; Molnar et al., 1999) and decidual cells (Fuchs et al., 1984; 

Asselin et al., 1997). The uterotonic action of these PGs may increase the 
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concentration of oxytocin receptors (Melin, 1993) and initiate crosstalk between 

pathways for positive or negative feedback loops, which could impact Ca2+ 

homeostasis (Sanborn, 2007). In particular, it is thought that heightened myometrial 

responsiveness to circulatory oxytocin and locally produced PGs may promote 

parturition (Molnar et al., 1999; Lopez Bernal & TambyRaja, 2000). As a result, 

possible cumulative effects of PGs on oxytocin-induced Ca2+ signalling were assessed 

in this study.  

Upon ligand binding, oxytocin interacts with two G-proteins of the Gαi and Gαq/11 

subfamily, determined according to pertussis toxin (PT) sensitivity (Phaneuf et al., 

1993; Phaneuf et al., 1996; Sanborn et al., 1998). Although PGF2α also operates 

through a PT-resistant pathway (Gαq), unlike oxytocin, a non-selective protein kinase 

inhibitor has been shown to partly inhibit PGF2α induced IP3 formation (Phaneuf et 

al., 1996). This suggests that PGF2α may also activate an alternative G-protein 

pathway via Gα13 (Cao et al., 2005), phospholipase A2 (Hertelendy & Molnar, 1995) 

or stimulate PLC-γ through the phosphorylation of tyrosine kinase receptors (Carrasco 

et al., 1996). Similarly, TPα and TPβ coupling proteins include Gαq/11, Gα12/13 and 

Gαi subunits and so signal via alternative transduction mechanisms (Vezza et al., 

1999; Moore et al., 2002). Despite these different routes of activating Ca2+ entry, 

short or 24-hour incubation of cells with combinations of PGF2α and U46619 did not 

amplify oxytocic Ca2+ signals. This lack of synergism may be attributed to the paucity 

of large PG-induced Ca2+ oscillations detected by the FLIPR-Tetra in this study.  

Likewise, oxytocin-evoked Ca2+ fluxes were not altered by the presence of PGE2 or 

the COX-inhibitor indometacin. In myometrial cell cultures, PGE2 was shown to 

elevate Ca2+ entry via voltage-sensitive membrane channels, without release from 

intracellular Ca2+ stores (Molnar & Hertelendy, 1990; Thornton et al., 1992). This 
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suggests that PGE2 binds to high affinity EP1 receptors coupled to Gαi without PLC 

activation (Thornton et al., 1992). Even so, the use of pharmacological analogues has 

since shown predominant Ca2+ signalling via the low affinity EP3 receptors coupled to 

Gαq and the PLC inositol messenger system (Asboth et al., 1996). Surprisingly in this 

study, addition of the EP3 antagonist AGN211329 immediately evoked Ca2+ transients 

in smooth muscle cells and fibroblasts. This indicates partial agonist activity, perhaps 

at FP receptor sites which stimulate the IP3-Ca2+ cascade. In contrast, PGE2 and EP2 

receptor agonists activate the cyclase adenylyl cascade, inhibiting Ca2+ transport 

through intracellular and extracellular membrane channels (Sanborn, 2001; Sanborn et 

al., 2005; Yuan & Lopez Bernal, 2007). Nevertheless, as the complex downstream 

events of cAMP also involve phosphorylation of MLCK (Word, 1995) and PLC target 

proteins (Sanborn et al., 2005), PGE2 and EP compounds did not appear to modulate 

oxytocic effects on Ca2+ influx in this study.  

Although the local paracrine effects of oxytocin are unclear, the uterus is sensitised to 

oxytocin mid-cycle (Janicek et al., 2007) and just before labour-onset (Keelan et al., 

1997). This correlates with the density of myometrial oxytocin receptors and their 

relative contractile effects (Richter et al., 2006; Janicek et al., 2007). In this study 

(Figures A8 & A9), responsiveness to oxytocin was potentiated in lower, but not 

fundal regions of non-gravid myometrium obtained during the follicular phase. This 

corresponds to the enhanced topographical distribution of oxytocin receptors towards 

the cervix around ovulation (Richter et al., 2004; Steinwall et al., 2004), perhaps 

facilitating retrograde sperm transport at this time of the menstrual cycle. Despite the 

reported low or negligible expression of myometrial oxytocin mRNA (Kimura et al., 

1996; Fuchs et al., 1998; Helmer et al., 1998; Steinwall et al., 2004; Wing et al., 

2006), uterotonic activation was notable in this study. Such responsiveness indicates 
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the potential involvement of oxytocin in the pathogenesis of primary dysmenorrhoea 

(Liedman et al., 2008) or preterm labour (Phaneuf et al., 2000).  

Compared to the non-gravid condition, uterine sensitivity to oxytocin is enhanced at 

term pregnancy by an increase in oxytocin binding to its cognate cell surface 

membrane receptors (Fuchs et al., 1984). Similarly high expression of oxytocin 

receptor mRNA was detected in this study. The potent spasmogenic responses were 

observed in vitro as concentration-dependent phasic activity with superimposed tonic 

contractions. Whilst the mRNA expression is reported to be 10 to 100-fold higher at 

late gestation (Fuchs et al., 1984; Kimura et al., 1996; Riemer & Heymann, 1998; 

Terzidou et al., 2005), oxytocin receptors were 300-fold higher in the parturient uterus 

compared to myometrium in the non-gravid state (Kimura et al., 1996). Even so, other 

studies have shown a lack of change in mRNA expression with labour-onset 

(Charpigny et al., 2003; Havelock et al., 2005; Tattersall et al., 2008). This suggests 

that the increase in oxytocin receptor sensitivity may be of greater importance in 

activating parturition alongside its role in preventing postpartum haemorrhage and 

establishing lactation (Kimura et al., 1996; Zeeman et al., 1997; Tattersall et al., 

2008; Turton et al., 2009).  

To block specific receptor binding activity, the oxytocin antagonist atosiban was 

incubated with myocytes and fibroblasts. Atosiban is a synthetic derivative of 

oxytocin and possesses equal affinity for oxytocin and vasopressin V1a receptors 

(Nilsson et al., 2003). In contrast to oxytocin, circulatory arginine vasopressin and the 

expression of myometrial V1a receptors remain constant during late pregnancy and 

labour (Maggi et al., 1990; Helmer et al., 1998). Thereby, oxytocin rather than V1a 

receptors more likely represents a therapeutic target for parturition. 
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In smooth muscle cells and fibroblasts, atosiban caused parallel rightward shifts of the 

oxytocin effect curves in a competitive and concentration-dependent manner. This 

corresponds to reports that atosiban attenuates oxytocin-stimulated IP3 production and 

intracellular-free Ca2+ release with pEC50 values of 4.7 and 6.8 (Fuchs et al., 1984; 

Phaneuf et al., 1994). In this study, the pA2 for atosiban was 7.6 in both myocytes and 

fibroblasts. Likewise, atosiban reduces the amplitude and frequency of myometrial 

contractions in vitro with pA2 values of 7.6, 7.8 and 5.9 for immersed (Wilson et al., 

2001; Pierzynski et al., 2004) and superfused myometrial strips (Duckworth et al., 

2002). The enhanced inhibitory effect of atosiban may reflect its relative equilibration 

in the immersion rather than superfusion apparatus. Atosiban alone was also shown to 

reduce basal myogenic contractions, without partial agonism, indicating high 

functional activity of constitutive oxytocin receptors (Buscher et al., 2001; Wilson et 

al., 2001; Duckworth et al., 2002). Nevertheless, exposure to atosiban or vehicle for 

24 hours, followed by drug removal from the cell plates, did not influence cell 

responsiveness to oxytocin in this study. This confirmed a lack of intrinsic activity on 

Ca2+ channels and oxytocin transduction pathways as well as the competitive 

antagonistic properties of atosiban. 

With the promising reduction of uterine contractility in clinical trials (Akerlund et al., 

1987), atosiban was registered in 2002 on the indication of delaying imminent preterm 

birth. Even so, the efficacy and beneficial use of atosiban as a tocolytic agent is 

controversial. Early reports showed that intravenous infusions of atosiban were at 

least as effective as β-agonists in prolonging pregnancy with few maternal side effects 

(Goodwin et al., 1996; Coomarasamy et al., 2002). However, systematic literature 

reviews have since determined that atosiban and the more selective oxytocin 

antagonist barusiban were no better than placebo in delaying parturition or improving 
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neonatal outcome (Papatsonis et al., 2009; Thornton et al., 2009). This paucity of in 

vivo effect may be attributed to oxytocin receptor changes in the physiology or 

pathophysiology of the parturient uterus.  

It is acknowledged that myometrial oxytocin receptors lose hormonal responsiveness 

with repeated or prolonged oxytocin treatments (Phaneuf et al. 1994; Brenninkmeijer 

et al., 1999; Plested & Lopez Bernal, 2001). This homologous desensitisation was 

confirmed by a decline in oxytocin-induced Ca2+ transients in myocytes following 

continuous exposure to oxytocin. Although the mechanisms are unclear, the three 

intracellular loops and C-terminal tail of the oxytocin receptor are rich in putative 

phosphorylation sites for G-protein coupled receptor kinases or other kinases, such as 

PKA, PKC and calmodulin-dependent protein kinase II (Carrasco et al., 1996; Plested 

& Lopez Bernal, 2001; Willets et al., 2009). These kinases are thought to activate β-

arrestin for steric hindrance and uncoupling of G-proteins from receptors 

(Brenninkmeijer et al., 1999; Plested & Lopez Bernal, 2001). In primary myometrial 

cell cultures, the progressive decrease in oxytocin-stimulated PLC pathways 

correlates with a substantial loss of oxytocin binding sites (Phaneuf et al., 1994; 

Phaneuf et al., 1997). This process maintained the expression of total oxytocin 

receptor protein. To reverse the desensitisation of these oxytocin receptors, oxytocin 

was pre-incubated with atosiban (Phaneuf et al., 1994). However, on the basis of 

clinical practice outcomes, very early therapeutic intervention with atosiban would be 

necessary to successfully delay preterm labour. 

Desensitisation of oxytocin receptors is likely to occur in vivo during the course of 

spontaneous and induced labour at term (Bossmar et al., 1994; Phaneuf et al., 1998; 

Liedman et al., 2009). The decline in tissue responsiveness to oxytocin was observed 

in this study (Figure A10). Although the most potent contractions were evoked at term 
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and in tissues harvested shortly after labour-onset, oxytocin caused little effect in 

isolated myometrium from fully dilated donors. This may be attributed to the transient 

decrease in myometrial oxytocin binding sites (Fuchs et al., 1984; Bossmar et al., 

1994) and the steep decline in oxytocin mRNA with labour progression (Phaneuf et 

al., 1998; Liedman et al., 2009). During this time, plasma oxytocin concentrations 

remain stable (Dawood et al., 1978; Thornton et al., 1992), whilst the local production 

of oxytocin in intrauterine tissues and the frequency of pulsatile oxytocin release are 

elevated (Fuchs et al., 1991; Chibbar et al., 1993). Due to the slow process of 

oxytocin receptor desensitisation, the myometrium maintains its oxytocin-mediated 

effects for several hours during active labour. This may be an important feature of 

regulating early labour-contractions rather than the advanced stages of the birth 

process. 

Mechanical stretch and cervical effacement may also modulate myometrial sensitivity 

to oxytocin. The distension of the uterus in clinical conditions, such as multiple 

pregnancies and polyhydramnios, is associated with a marked increase in myometrial 

and decidual oxytocin mRNA and the increased risk of preterm labour (Fuchs et al., 

1991; Turton et al., 2009). Moreover, oxytocin receptor mRNA and oxytocin gene 

promoter activity are elevated in primary human myocytes exposed to acute stretch 

(Terzidou et al., 2005). In contrast, the lowest numbers of oxytocin receptor sites are 

located near the cervical end of the uterus at term pregnancy (Fuchs et al., 1984; 

Havelock et al., 2005). As the cervix effaces into lower segment tissue following long 

episodes of labour, this perhaps would also account for the observed attenuated 

responsiveness to oxytocin. 

In this study, 17β oestradiol enhanced oxytocin-induced Ca2+ transients, whilst 

exposure to progesterone attenuated responses. The changes in Ca2+ flux were not 
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associated with cell proliferation, which was uniform irrespective of steroid treatment, 

and were restored in myocytes pre-incubated with a combination of oestrogen and 

progesterone. These effects concur with changes in the ovarian hormonal milieu that 

influence further myometrial responsiveness to oxytocin (Word et al., 1992). 

Throughout most of pregnancy, progesterone promotes utero-quiescence by genomic 

and non-genomic mechanisms. Its predominant actions, mediated via the progesterone 

receptor (PR)-B isoform, are associated with the repression of many genes, including 

gap junctions (Garfield et al., 1980) and oxytocin receptor transcription (Soloff et al., 

1983). As a result, electrical coupling between cells, Ca2+ oscillations and in vitro 

oxytocin-induced myometrial contractions are attenuated (Thornton et al., 1999; 

Chanrachakul et al., 2005). Acute progesterone treatments have also been shown to 

inhibit transmembrane Ca2+ entry (Fomin et al., 1999) and deplete Ca2+ stores 

(Gehrig-Burger et al., 2010) by direct interaction with oxytocin receptors (Grazzini et 

al., 1998). Therefore, progesterone most likely reduced oxytocin receptor binding or 

intrinsic receptor activity in this study, decreasing cytosolic-free Ca2+.   

Although in most mammals parturition is associated with a marked decline in 

maternal progesterone, in humans, circulatory progesterone (Darne et al., 1987) and 

total PR in myometrium and decidua remain elevated (Haluska et al., 2002). Instead 

the myometrial PR-A: PR-B mRNA expression ratio increases from late pregnancy to 

spontaneous labour at term. This shift to the PR-A isoform represses PR-B mediated 

transactivation and may contribute to the reputed functional progesterone withdrawal 

at labour-onset (Pieber et al., 2001; Mesiano et al., 2002). Other proposed 

mechanisms include increased transcription nuclear factor kappa B (NF-κB) activity, 

inactivating PR-sensitive promoters (Allport et al., 2001), elevated progesterone 

metabolism (Astle et al., 2003) and a reduction in steroid receptor co-activators at 
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term (Condon et al., 2006). Oestrogen priming is also a necessary for PR function 

(Backlin et al. 2003; Thijssen, 2005). In accord, oestrogenic phenol red and serum-

containing growth medium appeared to maintain functional PR dynamics even after 

removal from seeded primary cells in this study. Also, unlike other studies (Sadovsky 

et al., 1992; Severino et al., 1996), the presence of functional oestrogen receptors in 

cultured uterine cells was confirmed. 

It is well accepted that oestrogens assist the development, growth and differentiation 

of the myometrium via oestrogen receptor (ER)-α as a transcription regulator. Despite 

the constant rise in systemic oestrogen before labour (Walsh et al., 1984; Darne et al., 

1987), oestrogens, particularly 17β-oestradiol, increase the formation of uterine gap 

junctions (Garfield et al., 1980; Dong & Yallampalli, 2000; Kilarski et al., 2000) and 

oxytocin receptors (Fuchs & Fuchs, 1984; Richter et al., 2004). Although analysis of 

the human oxytocin promoter does not reveal classical palindromic oestrogen 

response elements, eleven putative transcription motifs have been identified (Kimura 

et al., 1999; Terzidou et al., 2005). In addition, oestrogen-dependent transcription of 

Ca2+ channels in the parturient uterus has been proposed (Garfield et al., 1998; 

Dalrymple et al., 2004). These factors may account for the heightened oxytocin-

induced Ca2+ mobilisation in both myocytes and fibroblasts. Therefore, under 

oestrogenic conditions at term pregnancy, the enhanced sensitivity to oxytocin and 

resultant Ca2+ influx may facilitate uterine contractions; this could be an important 

prerequisite for the parturition process in women. 

Although oestrogen enhances myometrial excitation-contraction coupling, the relative 

contributions of localised Ca2+ dynamics have yet to be established. Extracellular Ca2+ 

entry through membrane voltage-gated Ca2+ channels principally mediates action 

potentials and sustained force development in the human gravid myometrium 
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(Somlyo & Somlyo, 1994; Sanborn et al., 2005; Wray et al., 2005). These L-type 

dihydropyridine-sensitive channels are upregulated during the parturition process 

(Longo et al., 2003). Consequently, nifedipine, an L-type Ca2+ channel blocker, is 

used as a tocolytic agent to delay preterm labour (Papatsonis et al., 2009). In vitro 

studies show that nifedipine attenuates both myogenic and oxytocin-induced 

contractions (Phillippe & Basa, 1997; Parkington et al., 1999) and either reduces 

(Young et al., 1993; Fu et al., 2000) or does not affect Ca2+ oscillations (Burghardt et 

al., 1999). However, in both primary myocytes and fibroblasts, exposure to nifedipine 

alone augmented oxytocin-induced Ca2+ signalling. Although the mechanisms for this 

are unknown, nifedipine appears to prevent the release of cytosolic-free Ca2+ from the 

cells. 

As well as nifedipine, the inhibitor lanthanum chloride has been shown to block store-

operated Ca2+ channels (Fu et al., 2000; Young, 2002; Kim et al., 2005; Moynihan et 

al., 2008). Activation of these plasma membrane channels, termed either Ca2+ release 

activated currents or capacitative Ca2+ entry, is triggered via the emptying of Ca2+ 

from intracellular stores. In human myometrial cells, the Ca2+ release channels in the 

sarcoplasmic reticulum are gated by ryanodine and IP3 receptors. Whilst ryanodine 

receptors are expressed, functional units do not appear to be formed in human uterine 

smooth muscle cells (Kupittayanant et al., 2002). In contrast, mRNA encoding for the 

three IP3 isoforms are present in myometrial tissue (Shmygol & Wray, 2004) and the 

predominant type I isoform was displayed in myocytes. Oxytocin-generated IP3 

induces a global Ca2+ rise in myocytes contributing to potent oxytocic contractile 

effects (Luckas et al., 1999; Shmygol &Wray, 2004). In this study, responses to 

oxytocin were maintained in the presence of lanthanum chloride alone and together 

with nifedipine. Whilst lanthanum chloride was previously shown not to affect 
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Ca2+ waves (Young, 2002), it tempered additional Ca2+ entry. This may correspond 

with its role of mediating a low and sustained influx of Ca2+ to replenish the 

sarcoplasmic reticulum (Wray et al., 2005; Berridge, 2008). Therefore, this store-

operated system may facilitate Ca2+ homeostasis following cell depolarisation.  

Another mechanism for refilling intracellular Ca2+ stores is via the sarcoplasmic 

reticulum Ca2+-ATPase. The expression of this ATPase is upregulated from term 

pregnancy to labour, suggesting a functional role in potentiating myometrial 

contractions (Tribe et al., 2000). As a specific inhibitor of sarcoplasmic reticulum 

Ca2+ pumps, thapsigargin depletes intracellular Ca2+ stores without a concomitant rise 

in IP3 (Fomin et al., 1999). Accordingly, thapsigargin directly mobilised intracellular-

free Ca2+ in uterine myocytes and fibroblasts. Although oxytocin signalling was 

reduced, functional studies show that Ca2+-ATPase inhibitors decrease contractile 

frequency but enhance spontaneous uterine force (Kupittayanant et al., 2002). This 

suggests that Ca2+ sequestered into these stores regulates myometrial contractions.  

Combined incubations of thapsigargin with the L-type channel blocker nifedipine 

attenuated further oxytocin transduction pathways, associated with Ca2+ mobilised 

from both intracellular and extracellular pools. However, Ca2+ influx was even lower 

in the presence of lanthanum chloride, indicating the synergistic uptake of Ca2+ via 

ATPase and store-operated channels. To identify the contribution of each system, 24-

hour treatments with the strong Ca2+ chelating agent ethylenediaminetetraacetic acid 

(EDTA) and with thapsigargin were performed. Similar to previous studies (Thornton 

et al., 1992; Kupittayanant et al., 2002), the removal of extracellular Ca2+ using 

EDTA did not completely suppress Ca2+ signals. However, thapsigargin abolished 

Ca2+ release within myometrial cells. Taken together, these results suggest that in 

spite of the Ca2+ boost from the extracellular milieu, the sarcoplasmic reticulum is 
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particularly important for oxytocin-mediated uterine contractions. Even so, these 

effects would also depend on other membrane channels, secondary messenger 

cascades and the sensitivity of the uterus to Ca2+ (Taggart et al., 1999; Somlyo & 

Somlyo, 2000). 

As well as liberating cytosolic Ca2+, oxytocin stimulates the GTPase RhoA and 

ROCK cascade (Woodcock et al., 2004). This signalling process is Ca2+-independent 

and involves direct phosphorylation of MLC20 and inactivation of the myosin binding 

subunit of MLC20 phosphatase (Kimura et al., 1996; Amano et al., 2000). As this 

maintains MLC20 in a phosphorylated state, the uterus becomes sensitised to Ca2+. In 

vitro studies show that myometrial tissues are more responsive to Ca2+ and oxytocin 

in the term pregnant compared to the non-gravid state (Word et al., 1993; Riley et al., 

2005). This corresponds to the dramatic increase in RhoA mRNA, but not protein 

(Friel et al., 2005; Lartey et al., 2007), and elevated ROCKI and ROCKII mRNA and 

protein expression in rat (Niiro et al¸ 1997) and human myometrium at term 

pregnancy (Moore et al., 2000; Moran et al., 2002; Moore & Lopez Bernal, 2003). 

Although conflicting reports have been published (Friel et al., 2005; Lartey et al., 

2006), it is likely that the ROCK pathway is involved in augmenting uterine 

contractions during labour (Niiro et al., 1997; Moore et al., 2000; Moran et al., 2002; 

Lartey & Lopez Bernal, 2009).  

RT-PCR using total RNA revealed relatively high expression of RhoA and ROCKI in 

primary uterine myocytes compared to ROCKII at term pregnancy. The detection of 

ROCK proteins was also similar in human myometrial tissue (Moran et al., 2002; 

Friel et al., 2005). As the two ROCK isoforms have only 64 percent homology in 

sequence structure (Ishizaki et al., 1996) each isoform may have distinct functions. 

With abundant expression in the uterus, ROCKI may be the primary effector of RhoA 
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for actin myofilament assembly and indirect regulation of MLCK phosphorylation. 

However, despite the wide distribution of MLCK in smooth muscle tissues (Word et 

al., 1993; Moore & Lopez Bernal, 2001), MLCK transcripts showed faint and 

multiple banding after gel electrophoresis in this study. Therefore, it is likely that the 

complementary sequences of primers for MLCK were poorly designed and the 

experiments need repeating. In contrast the protein telokin, whose sequence is 

identical to the C-terminus of smooth muscle MLCK (Ito et al., 1989), was richly 

expressed in myocytes. In vitro, telokin blocks the unphosphorylated S2 region of the 

myosin head to competitively inhibit MLCK binding (Katayama et al., 1995). Smooth 

muscle telokin also acts a negative modulator of Ca2+ sensitisation by enhancing 

MLC20 phosphatase activity (Khromov et al., 2006). Such events resulting in utero-

relaxation and may be important before labour-onset. 

The contribution of rho on oxytocin-mediated Ca2+ transduction signals was 

investigated in this study. Agonist activation of RhoA has been shown to increase the 

stability of the p160 ROCKI isoform (Moore & Lopez Bernal, 2003) for enhanced 

tonic phase myogenic activity (Kupittayanant et al., 2001). As a result, several 

inhibitors of serine/ threonine protein kinase have been manufactured to block RhoA 

effects for smooth muscle relaxation (Uehata et al., 1997; Kupittayanant et al., 2001; 

Oh et al., 2003; Woodcock et al., 2004; Lartey & Lopez Bernal, 2009).  

Although the cyclohexane carboxamide Y-27632 is the most widely used ATP-

competitive inhibitor with equal potency against ROCKI and ROCKII (Fu et al., 

1998; Moran et al., 2002; Uehata et al., 1997; Ikenoya et al., 2002), the 

isoquinolinesulfonamide rho-kinase inhibitor was chosen for pre-incubation with 

myometrial cells. This was reported to be more potent, selective and membrane-

permeable than Y-26732 (Ikenoya et al., 2002; Sasaki et al., 2002). Unlike short 



 Chapter Seven: Myometrial cells 
  
  

  Page 242

exposure to the rho-kinase inhibitor, challenge for 24 hours attenuated oxytocin-

induced Ca2+ transients by up to 50 percent. This reduction was more pronounced in 

uterine fibroblasts than myocytes, indicating a larger involvement of rho transduction 

signals in these fibroblastic cells. Pharmacological inhibition of ROCK by Y-27632 

(Somlyo & Somlyo, 1998) or by ADP ribosylation (Otto et al., 1996) has also been 

shown to decrease oxytocin-induced Ca2+ sensitisation of uterine smooth muscle cell 

force. The mechanism of inhibiting this agonist-mediated Ca2+ pathway is not well 

understood. Even so, RhoA is known to promote cell migration and actin myofilament 

assembly, regulating the formation of stress fibres and lamellipodia protrusions 

(Matsumoto et al., 1997; Kawabata et al., 2004; Katoh et al., 2001; Lartey et al., 

2007). Therefore, it is likely that RhoA in fibroblasts improves the capacity and 

mechanotransduction properties of the gravid uterus by contributing to uterine 

hypertrophy and hyperplasia (Varayoud et al., 2001). In fibroblasts, the enhanced 

RhoA may also reflect their morphological features and faster proliferation rate 

compared to myocytes. Moreover, tissue remodelling is associated with the caspase-3 

effector, which is anti-contractile and activates cell hypertrophy at mid-gestation and 

apoptosis at term (Shynlova et al., 2010) by cleaving ROCKI (Sebbagh et al., 2005). 

It is possible that caspase-3 reduces the cell viability of fibroblasts over myocytes 

during postpartum involution, enabling the uterus to return to its non-gravid smooth 

muscle phenotype.  

To conversely assess the effects of enhanced ROCK activity, the caspase-3 inhibitor 

Z-DEVD-FMK was used in this study. Inhibition of caspase-3, a cysteine-dependent 

protease, prevents the cleavage of four putative functional domains within ROCKI 

(Ishizaki et al., 1996; Moore et al., 2002; Moore & Lopez Bernal, 2003), without 

affecting ROCKII (Sebbagh et al., 2005). This blocks the irreversible proteolysis of 



 Chapter Seven: Myometrial cells 
  
  

  Page 243

pre-existing active p160 ROCKI to yield relatively inactive p130 ROCKI (Moore et 

al., 2002; Moore & Lopez Bernal, 2003). Despite the enhanced p160 stability, 

treatment with the caspase-3 inhibitor caused negligible effects on oxytocin-induced 

Ca2+ transients in both uterine myocytes and fibroblasts. This may reflect the 

mechanism of ROCK generating actomyosin cross-bridging and force generation at a 

constant concentration of intracellular-free Ca2+.  

The lack of effect on oxytocin-induced Ca2+ mobilisation was substantiated by the TP 

receptor antagonist SQ29,548. Unlike caspase-3 inhibition, chronic stimulation with 

SQ29,548 mediates cleavage of the C-terminal autoinhibitory domain of p160 ROCKI 

to produce p130 ROCKI (Moore & Lopez Bernal, 2003). In spite of promoting 

apoptosis, p130 ROCKI has been shown to irreversibly stimulate Ca2+ independent 

pathways (Moore & Lopez Bernal, 2003). Due to the contrast in results, this suggests 

that the rho-kinase inhibitor may have targeted an alternative pathway. As well as the 

six possible rho effectors identified in human myometrium (Lartey et al., 2007), the 

rho-kinase inhibitor has been reported to have weak affinity binding with other 

serine/threonine kinases, including protein kinase A (PKA) and PKC (Ikenoya et al., 

2002; Sasaki et al., 2002). Due to their reported interaction with Ca2+ transport 

systems (Sanborn et al., 1998), these kinases may have altered the Ca2+ dynamics 

observed in this study. In this regard, the secondary messenger cAMP cascade was 

also investigated. 

Activation of the effector enzyme adenylyl cyclase through Gαs is responsible for 

generating cAMP from ATP for muscle relaxation (Price & Lopez Bernal, 2001). 

Whilst the exact mechanisms remain obscure, cAMP-dependent PKA is reported to 

phosphorylate MLCK, inhibit PLC activation and block Ca2+ entry via K+ channels 

and Ca2+ pumps (Sanborn et al, 1998). As a result, cAMP attenuates the oxytocin-
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stimulated PLC pathway in rat myometrium (Anwer et al., 1990), but not in human 

myometrial cells (Phaneuf et al., 1993). In both species, the expression of Gαs 

increases throughout gestation and declines during labour (Europe-Finner et al., 1994; 

Sanborn et al., 1998) by a mechanism that is reported to involve alternative splice 

variants of Gαs (Europe-Finner et al., 1997). This may contribute to the loss of 

quiescence at labour-onset.  

As well as the diterpene forskolin, PGE2 and butaprost were shown to substantially 

increase cAMP in primary cultures of human myocytes. The formation of cAMP by 

the specific EP2 receptor agonist butaprost was nearly as potent as PGE2, which 

activates EP2, EP3-II, EP3-IV and EP4 receptors coupled to Gαs (Coleman et al., 1994; 

Regan et al., 1994; Kotani et al., 1995). Accordingly, previous studies have shown 

weaker Gαs binding by EP4 receptors than EP2 (Fujino et al., 2002) and a paucity of 

elevated cAMP in EP4-mediated PGE2 signalling (Pozzi et al., 2004). This indicates 

that EP4 receptors have a minor role in generating cAMP compared to the EP2 

subtype. As PGE2 also acts through EP1 and EP3 pathways coupled to Ca2+ influx and 

inhibition of adenylyl cyclase respectively (Regan et al., 1994; Asboth et al., 1997), 

the results also suggest that EP2-induced cAMP signalling predominates at term 

pregnancy.  

Of the EP receptor transcripts in cultured human myocytes, EP2 mRNA was more 

abundant than EP1, whilst the complement of EP3 and EP4 subtypes was low. A 

similar pattern of dominant EP2 expression over EP4 receptors was reported in late 

gestational myometrial cells (Erkinheimo et al., 2000) and lower segment biopsies 

(Brodt-Eppley & Myatt, 1999; Leonhardt et al., 2003; Astle et al., 2005; Grigsby et 

al., 2006). Given that EP2 receptors are more prevalent in the lower uterus, this further 

substantiates EP2-mediated PGE2 signalling for relaxation of the uterus. In both upper 
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and lower segments, EP1 transcripts are upregulated with labour (Astle et al., 2005), 

converse to the decreases in EP3 at late gestation (Matsumoto et al., 1997; Wing et al., 

2003; Astle et al., 2005). Unlike EP1 receptors, staining for EP3 proteins is weak and 

diffuse in myometrial smooth muscle cells (Astle et al., 2005) or only expressed by 

stromal and epithelial cells (Leonhardt et al., 2003). This was consistent with the low 

detection of EP3 in this study. Therefore, direct changes in the relative expression of 

EP2 and EP1 receptors are more likely to mediate functional myometrial effects. 

To elucidate the underlying mechanisms of EP2 on oxytocin receptors, uterine smooth 

muscle cells were pre-incubated with butaprost. As butaprost is shown to antagonise 

oxytocin-induced contractions, this EP2 receptor agonist has suggested tocolytic 

effects (Duckworth et al., 2002). In this study, the attenuated responses to oxytocin 

were inversely related to an increase in cAMP formation, without affecting Ca2+ 

release. As each receptor-binding site is distinct (Coleman et al., 1994; Kimura et al., 

1996), butaprost is likely to attenuate oxytocin-induced myometrial excitation through 

cAMP transduction mechanisms. In addition to implicating cAMP as a major 

component for maintaining utero-quiescence at term, the results suggest that a balance 

in these receptors and their downstream pathways influence the timing of labour-

onset.  

Gene transcripts for DP, EP1-4, IP, FP, TP, oxytocin receptors and contractile elements 

were detected in uterine myocytes in this study. Although the receptors are temporally 

and spatially regulated in the uterus, the underlying genomic changes are not well 

understood (Havelock et al., 2005). To regulate gene transcription, myometrial EP 

and FP receptors are reported to co-localise in the nuclear membrane (Bhattacharya et 

al., 1998; Leonhardt et al., 2003; Astle et al., 2005) together with COX enzymes for 

PG biosynthesis (Spencer et al., 1998). PGs have also been hypothesised to directly 
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interact and increase the expression of oxytocin receptors (Wing et al., 2006). Even 

so, pre-incubation of myocytes with combinations of U46619 and SQ29,548 or 

oxytocin and atosiban had no genomic effect on mRNA expression. It is possible that 

higher concentrations of these compounds, a longer duration of exposure or the 

measurement of translated proteins would have shown a more marked response in this 

study. Other endocrine factors, including oestrogen, progesterone or inflammatory 

cytokines may have also been required for transcription (Mohan et al., 2004). Even 

so, further studies would be needed to clarify their complex regulation. 

Taken together, these studies show that myometrial cells can be used as a model of 

the gravid uterus for high throughput screening of drugs. Whilst primary cell cultures 

showed similar ultrastructures, uterine fibroblasts had a lower capacity for Ca2+ 

release but higher sensitivity to the ROCK pathway than myocytes. This may have 

important implications in uterine tissue remodelling and postpartum involution. 

Compared with PGs, oxytocin-induced contractility and Ca2+ oscillations were of 

greater amplitude. However, complex Ca2+ and cAMP signalling pathways are part of 

a multiplicity of downstream events at term gestation. As it is probable that a loss of 

uterine quiescence is pivotal to successful parturition (Price & Lopez Bernal, 2001), 

maintaining EP2 receptors or intrinsic adenylyl cyclase activity may represent a novel 

tocolytic approach for hypercontractile uterine disorders, such as preterm labour. 
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Chapter 8: Final discussion 
 

 

The main aim of this thesis was to determine the functional expression of EP, FP, TP 

and oxytocin receptors in isolated human myometrial tissues. PGs and oxytocin have 

a critical role in orchestrating the changes between uterine quiescence and 

contractility. It is suggested that uterine receptor function is regulated by the hormonal 

milieu (Lopez Bernal, 2001), as well as the structural composition of the uterus 

(Luckas & Wray, 2000). This was demonstrated in the present study by changes in the 

in vitro responsiveness to PGs and oxytocin during the menstrual cycle, pregnancy 

and labour. 

Under physiological conditions, myometrial tissue strips exhibited sustained 

spontaneous contractions, which were most pronounced during the follicular phase of 

the cycle. The decline in fundus tissue activity through the luteal phase to sporadic 

contractions at menses corresponded to progesterone action at cognate PR-B receptors 

(Bulletti et al., 1998; Ijland et al., 1998) and the decrease in oestrogen and ERα 

expression at this time (Noe et al., 1999). Topographical differences were also shown 

mid-cycle with the most active contractile waves generated by lower segment non-

gravid myometrium. Although not anatomically defined (Wray et al., 2001), these in 

vitro intrinsic action potentials indicated the presence of pacemaker Cajal-like 

interstitial cells (Ciontea et al., 2005; Young, 2007). During the periovulatory period, 

this is reported to direct the retrograde transport of potential sperm (Kunz et al., 1996; 

Bulletti et al., 1998).   

With pregnancy, the uterus undergoes dramatic expansion whilst remaining relatively 

quiescent. The changes in tissue remodelling involve two growth phases of cell 

hyperplasia followed by cell hypertrophy, primarily within the distensible lower 



 Chapter Eight: Final discussion 
  
  

  Page 248

segment tissue (Luckas & Wray, 2000; Shynlova et al., 2010). At Caesarean section, 

only lower segment gestational myometrium was available to study. This tissue was 

used in functional studies (Section I) and myometrial cell cultures (Section II) to 

elucidate better the underlying mechanisms of uterine contractility.  

At term, in vitro contractions were defined and up to 5-fold greater in amplitude, 

although less frequent, than tissues obtained from non-gravid donors. As well as 

mechanical stretch and foetal signalling, the elevated plasma oestrogen to 

progesterone ratio in late gestation may account for these changes in activity (Johnson 

et al., 1995). Progesterone represses the transcription of contractile-associated 

proteins (Garfield et al., 1980; Soloff et al., 1983) and also directly interacts with 

oxytocin receptors to maintain utero-quiescence (Grazzini et al., 1998). Conversely 

oestrogens activate the oestrogen response element on target genes for enhanced 

myogenic activity. In particular, 17β-oestradiol is shown to enhance the formation of 

gap junctions in the late gestational uterus for coordinated excitation-electrical 

coupling between cells (Garfield et al., 1990; Dong & Yallampalli, 2000; Kilarski et 

al., 2000). In this study, 17β-oestradiol also elevated oxytocin-induced Ca2+ release, 

whilst progesterone counteracted this effect. This confirms the importance of the sex 

steroids in sensitising the myometrium to stimulatory agonists. 

Mechanical responses to PGs and oxytocin reflected tissue spontaneous activity and 

appeared to be spatially and temporally regulated during the menstrual cycle. At the 

fundus, bell-shaped responses to PGE2 consisted of concentration-dependent utero-

relaxation, followed by partial restoration of activity. This demonstrated PGE2 

coupling at EP receptor subtypes (Coleman et al., 1994) in addition to the possible 

activation of FP receptors (Kiriyama et al., 1997). Corresponding to other studies 

(Senior et al., 1991; Popat & Crankshaw, 2001) use of sulprostone and ONO-D1-004 
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showed excitatory effects through the EP3 subtype and only a small compliment of 

EP1 receptors (Senior et al., 1991). In contrast, the selective agonists butaprost and 

AGN201734 attenuated myogenic activity via EP2 and EP4 subtypes respectively. 

Despite their presence, EP4 receptors are reported to be devoid of function (Hillock & 

Crankshaw, 1999), and did not contribute to PGE2-mediated utero-relaxation in this 

study. This suggests a prominent role for EP2 receptors in the non-gravid uterus. 

As little is known about the topography of functional PG receptors, responsiveness to 

PGs and oxytocin was investigated according to anatomical location in follicular 

phase myometrium. The inhibitory effects of PGE2, butaprost and AGN201734 were 

more pronounced towards the cervix, whereas active EP3/1 receptors were uniform. 

This may relate to the more abundant EP2 receptors in the lower segment tissues 

(Astle et al., 2005) or presence of EP4 receptors within uterine arteries that branch 

into the lower uterus before reaching the fundus and ovary (Baxter et al., 1995). The 

apparent functional regionalisation may also reflect total uterine physiology. 

Epithelial and vascular cells of the endometrium synthesise PGE2 and co-express EP2 

and EP4 receptors (Milne et al., 2001; Arosh et al., 2003). Through cellular 

proliferation and angiogenesis, the associated endometrial thickening at the fundus 

may reduce uterine activity for blastocyst attachment and implantation. On the 

contrary, PGE2 within the seminal plasma is likely to intensify intrinsic retrograde 

contractions for sperm delivery to the upper uterus (Templeton et al., 1978).  

Similar to PGE2, the uterotonic effects of PGF2α, U46619 and oxytocin were greater 

in lower segment myometrium compared to the fundus. This corresponds to the 

fundus to cervix gradient of oxytocin receptors around ovulation (Richter et al., 2004; 

Steinwall et al., 2004) but not the reported decrease in PGF-binding affinity 

(Hofmann et al., 1983; Adelantado et al., 1988) and homogeneous distribution of TP 
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receptors (Senchyna & Crankshaw, 1999). As a result, it is likely that the hormonal 

milieu and mechanical properties of the uterus account for these regional differences. 

This is further implied in mice knockout studies with only the EP2 subtype vital for 

successful establishment of pregnancy (Tilley et al., 1999). Even so, interactions 

between the receptor subtypes and their downstream effector signals are proposed to 

compensate for overall reproductive outcomes (Lopez Bernal et al., 2001; Duckworth 

et al., 2002). This was investigated further at term pregnancy. 

PGE2 is particularly important in the induction of labour by mediating both cervical 

compliance and myometrial activity (Gibb, 1998). Functional EP1-3 receptors have 

been characterised at term (Senior et al., 1993) with the temporal and tissue-specific 

expression of EP receptors shown over the course of pregnancy and labour (Astle et 

al., 2005; Grigsby et al., 2006; Sooranna et al., 2006). In this study, PGE2 and 

AGN201734 caused predominant utero-relaxatory effects with excitation re-

established at 10-5M. The EP2 agonists were consistent in mediating uterine 

quiescence, whilst the other EP4 mimetic L-902688 produced no response. The reason 

for this discrepancy in EP4 action was unclear. However, in cultured myocytes, 

similar EP2 and PGE2-induced elevations in cAMP were observed and the EP4 

antagonist GW627368x did not modify the profile of PGE2-induced contractions. 

These data suggest that PGE2 supports utero-quiescence via activation of the EP2 

subtype.  

PGE2 also serves as an uterotonin via the EP1 and EP3 receptor complement during 

pregnancy. To mediate excitation, EP1 receptors couple to Ca2+ influx whilst EP3 

inhibits adenylyl cyclase (Coleman et al., 1994; Narumiya et al., 1999). In functional 

studies, sulprostone evoked moderate stimulation at EP3/1 receptors, whilst ONO-D1-

004 and the EP3 antagonist AGN211329 produced negligible effects. Only minimal 
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Ca2+ mobilisation was induced by PGE2 in cultured human myocytes and fibroblasts; 

however, EP3/1 and EP2 receptor stimulation of myometrial strips were greater at term 

gestation than in follicular phase tissues (Table 8.1). This corresponds to previous 

functional studies (Senior et al., 1991; Senior et al., 1993) and the reported 

upregulated (Grigsby et al, 2006) or maintained expression of EP1 transcripts with 

advancing gestation and labour (Astle et al., 2005). Given the abundance of EP2 

mRNA over EP1, EP3 and EP4 receptors in primary uterine myocytes at term, the 

results further indicate predominant effects via EP2 receptors, whilst EP1/3 receptors 

regulate muscle tonus. This suggests that these receptors may be crucial tocolytic 

targets for maintaining utero-quiescence before parturition. Nevertheless, further 

studies using more selective compounds including ONO-AE-248 and ONO-AE1-329 

for EP3 and EP4 receptors respectively are still required to comprehensively elucidate 

EP1-4 receptor function. 

In late pregnancy, PGF2α-induced myogenic contractions were two-fold higher than in 

the non-gravid state (Table 8.2). This was inconsistent with the reported decrease in 

myometrial FP gene expression towards term (Matsumoto et al., 1997; Sooranna et 

al., 2005), perhaps reflecting differences in gestational age. In this study, however, 

U46619 was more potent than PGF2α and neither showed additive effects. This 

substantiates previous studies showing a lack of off-target PGF2α action at myometrial 

TP receptors (Hutchinson, 2005; Griffiths et al., 2006). Within uterine myocytes, 

exposure to PGF2α produced greater Ca2+ transients than U46619 via the abundant 

expression of FP mRNA over TP receptors. Even so, uterine sensitivity to TP 

activation indicates that alternative signalling cascades are involved.  
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Table 8.1: pEC50 values (M) and the percentage change in myogenicity for 
concentration-effect curves to EP agonists (10-10M to 10-5M) in immersed lower 
segment myometrial tissues obtained during the follicular phase (n=4), at term 
pregnancy (n=4-10) and during early labour (n=4-6). Early labour was defined as 
regular in vivo contractions at a cervical dilation of 0-2cm with % change calculated 
from baseline activity as a change in % hypotonic shock. Results are expressed as 
arithmetic means ± S.E. and univariate analysis was performed using Bonferroni’s 
post-hoc test; *p<0.05 for % difference in response to AGN201734 at early labour 
compared to the follicular phase of the menstrual cycle. ND = not determined. 
 

  Follicular phase Term pregnancy Early labour 
EP agonist Receptors pEC50 % change pEC50 % change pEC50 % change 

PGE2 EP1-4 7.6 ± 0.1 73.5 8.4 ± 0.4 33.6 8.1 ± 0.4 52.9 
Butaprost EP2 6.2 ± 0.4 83.1 7.1 ± 0.5 47.0 6.2 ± 0.3 45.2 

AGN201734 EP4 8.0 ± 0.1 68.2 8.1 ± 0.3 29.7 7.5 ± 1.0 31.5* 
Sulprostone EP3/1 7.0 ± 0.1 25.1 7.4 ± 0.6 20.6 ND ND 
 
 
 
 
Table 8.2: pEC50 values (M) and the percentage increase in myogenicity for 
concentration-effect curves to FP, TP and oxytocin agonists in immersed lower 
segment myometrial tissues obtained during the follicular phase (n=4), at term 
pregnancy (n=5-7) and during early labour (n=5-6). Late labour was defined as donors 
at full dilatation (9-10cm) with % change calculated from baseline activity as a 
change in % hypotonic shock. Results are expressed as arithmetic means ± S.E. and 
univariate analysis was performed using Bonferroni’s post-hoc test; *p<0.05 for % 
increase in response to U46619 for term pregnancy and late labour compared to the 
follicular phase of the menstrual cycle. N = no response. 
 

  Follicular phase Term pregnancy Late labour 
Agonists Receptors pEC50 % change pEC50 % change pEC50 % change 

PGF2α FP 7.0 ± 0.2 51.4 6.8 ± 1.8 100.3 6.1 ± 0.7 36.7 
U46619 TP 6.2 ± 0.2 81.6 7.3 ± 0.5 267.5* 6.8 ± 0.1 322.0* 

Oxytocin oxytocin 7.5 ± 0.7 132.1 7.4 ± 0.4 271.0 N N 
 
 
 
 

Signal transduction via RhoA and ROCK are important in sensitising the uterus to 

Ca2+. Challenge with U46619 is shown to generate p160 ROCKI and ROCKII, which 

maintains MLC20 phosphorylation (Moore et al., 20002; Moran et al., 2002; Moore & 

Lopez Bernal, 2003) and may account for the enhanced contractile responses at term 

in this study. Further Ca2+ sensitisation is mediated by irreversible caspase-3 cleavage 
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of p160 ROCKI to p130 ROCKI (Moore & Lopez Bernal, 2003). Despite the lack of 

change in caspase-3 inhibited tissues, the rho-kinase inhibitor attenuated Ca2+ 

signalling. This was more pronounced in fibroblasts over myocytes, suggesting a role 

for fibroblast-directed cell migration and apoptosis in tissue remodelling during 

pregnancy as well as postpartum involution. 

In functional studies, oxytocin-induced myogenic contractions were twice as high at 

term than in follicular stage tissues, relating to the upregulated expression of oxytocin 

receptors before labour-onset (Fuchs et al., 1984; Kimura et al., 1996; Terzidou et al., 

2005). Within primary uterine myocytes, Ca2+ influx by oxytocin was over 13-fold 

greater than that stimulated by PGF2α or U46619, perhaps due to principal Ca2+ 

release from the intracellular stores. Compared to oxytocin, PG responses were at the 

limits of detection. Whilst this implied the significance of oxytocin-induced Ca2+ 

signals, a more sensitive method such as the fura-2 loaded cell system (Asboth et al., 

1998) should replace use of the Flipr-tetra in further studies. 

Limitations of the Flipr-tetra may also account for the paucity of effect by butaprost 

on oxytocin-induced Ca2+ transients. However, the reported EP2-mediated attenuation 

of oxytocic effects in vitro (Duckworth et al., 2002) appeared to be mediated through 

cAMP rather than the Ca2+ signalling pathway in this study. This confirms cAMP as a 

major pro-relaxant mediator at term pregnancy and indicates that a decrease in uterine 

Gαs coupled receptors may lead to labour-onset.  

Successful parturition requires coordinated contractions of the uterus in a caudal 

direction for delivery of the foetus. This involves the differential expression of uterine 

PG, oxytocin receptors and gap junction proteins to transmit action potentials in 

syncytium (Sparey et al., 1999; Astle et al., 2005; Grigsby et al., 2006). Functional 

progesterone withdrawal is a considered a pivotal event for labour-onset, but its 
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mechanisms are unclear. In humans, plasma progesterone remains high until 

postpartum delivery of the placenta (Broditsky et al., 1978; Darne et al., 1987). 

Instead a rise in nuclear PR-A receptors, which act as a transrepressor of the PR-B 

isoform, may mediate the timing of labour (Pieber et al., 2001; Mesiano et al., 2002). 

Since PG receptors are also important mediators of parturition, novel functional 

effects were demonstrated in this study. 

Spontaneous contractions were attenuated in lower segment myometrial strips with 

advancing labour. During this time the extracellular collagen matrix in the cervix 

remodels and effaces upwards against the presenting foetus. The associated changes 

in tissue physiology include an increase in cervical fibroblasts within the lower uterus 

(Montes et al., 2002) as well as reduced ATPase activity (Zyrianov et al., 2003). 

Within cell culture systems, Ca2+ mobilisation was two-times lower in fibroblasts 

compared to myocytes. This may be a mechanism to moderate uterine resistance at 

the cervical end for controlled foetal passage. 

In parallel with PGE2 effects at term, predominant utero-relaxation was followed by 

relative contractility in tissues obtained early after labour-onset. In the latter stages of 

labour, however, the contractile component of the PGE2 curve was suppressed. In 

vitro studies also confirmed the loss of PGE2-mediated contractions in the lower, but 

not upper segment parturient uterus (Wikland et al., 1984); this corresponds to a 

regional change in the EP receptor complement.  

Due to its temporal and topographical distribution, EP2 receptors are particularly 

implicated in the parturition process. In the lower segment uterus, EP2 mRNA and 

protein expression decreases towards term (Brodt-Eppley & Myatt, 1999; Leonhardt 

et al., 2003), but either shows no change (Brodt-Eppley& Myatt, 1999; Astle et al., 

2005; Sooranna et al., 2006) or increases with advancing labour (Grigsby et al., 
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2006). The abundance of EP2 receptors in the lower compared with the upper uterus in 

pregnancy and labour relates to the continued relaxatory effects in myometrial strips 

at this time. For EP4 receptors, a reduction in mRNA expression from the non-gravid 

to term gravid state (Sooranna et al., 2006) also corresponds to the attenuated 

myometrial responses to AGN201734 in this study. However, no change in EP4 

receptors is reported by gestational age or anatomical location (Astle et al., 2005; 

Grigsby et al., 2006). As a result, the EP4 subtype may be responsible for cervical 

ripening (Schmitz et al., 2003) or vasodilatation (Baxter et al., 1995), rather than for 

modulating contractions during labour. 

In the lower uterus obtained during labour, ONO-D1-004 had no effect on myogenic 

activity. This was in contrast to the reported presence of myometrial EP1 receptors at 

this time (Astle et al., 2005; Grigsby et al., 2006). Although a more potent EP1 

agonist is required to clarify function (Kiriyama et al., 1997; Oka et al., 2003), it is 

suggested that EP1 receptors mediate intracellular signalling pathways rather than 

promote contractility pre and postpartum (Grigsby et al., 2006). Conversely with 

advancing labour, sulprostone and PGF2α stimulated weak in vitro myogenic 

contractions of low amplitude and frequency. This is consistent with the reported 

contractility induced by PGE2 and PGF2α only in paired fundus end specimens 

obtained during active labour (Wikland et al., 1984). The results also reflect the 

relative abundance of EP3 (Astle et al., 2005; Grigsby et al., 2006) and FP mRNA in 

upper rather than lower segment tissues (Grigsby et al., 2006). As well as to promote 

uterine emptying, this may contribute to the relaxant phenotype of the lower uterus 

during parturition (Figure 8.1). 
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Figure 8.1: A summary diagram showing a proposed model for labour-onset in the 
lower segment human uterus. For the majority of pregnancy, progesterone (P4) 
dominantly represses uterine activity. At term, increases in oestrogen (E2), myometrial 
progesterone receptor (PR)-A and oestrogen receptor (ER)-α correspond with a rise in 
contractile associated proteins (CAPs). Of the PG receptors, uterorelaxation is 
predominantly mediated via the EP2 receptor. This is coupled to the adenylyl cyclase 
pathway, which also attenuates oxytocic effects. Oxytocin stimulates potent 
intracellular-free Ca2+ flux to drive muscle contractions. The small GTPase RhoA and 
rho-kinase (ROCKI) pathway further sensitises the uterus to Ca2+ by phosphorylating 
(p) myosin light chain (MLC20) directly and indirectly through inactivation of myosin 
phosphatase (MPS). With the onset and progression of labour, the expression of 
functional PG and oxytocin receptors are decreased (red), maintained or upregulated 
(yellow). To facilitate the delivery of the foetus, the overall decline in myogenic 
activity relates to the relaxation and stretch of the lower segment uterus.  
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Responsiveness to U46619 was enhanced in lower segment myometrial strips taken 

after labour-onset relative to low spontaneous contractions. Increased thromboxane 

synthesis at parturition (Noort et al., 1990; Swanson et al., 1992) alongside ROCK 

protein expression (Noort & Keirse, 1990; Friel et al., 2005) likely potentiates its 

contractile effects during active labour. Accordingly, thromboxane may maintain 

muscle tonus in the lower uterine segment as well as contribute to postpartum 

involution of the uterus. However, functional oxytocin desensitisation was observed 

with advancing labour and chronic oxytocin pretreatments. As the untimely loss of 

oxytocin receptor function is associated with labour-associated disorders (Rezapour et 

al., 1996), accurate diagnostic indicators would be crucial to allow for early 

therapeutic intervention. This would particularly be useful for improving the efficacy 

of atosiban clinical treatments.  

Although myometrial responses to PG and oxytocin agonists were comparable, 

immersed tissue strips developed more stable phasic contractions of higher amplitude 

than tissues superfused with Krebs’ solution. This approach was particularly suitable 

for myometrium from labouring donors with intrinsically low myogenic activity. In 

spite of the larger volumes of antagonists required for superfusion, the findings 

complemented immersion studies and clarified direct agonist effects on receptor 

activation. Given the limited number of myometrial tissues taken in menstrual, luteal 

and preterm states, a wider range of these samples would assist future research. 

Subject to ethical approval, paired fundus and lower segment tissues would also 

enable functional regionalisation to be defined during pregnancy and labour. 

Based on the primary cell culture experiments in this study, cell isolation could be 

applied to tissues taken from differing hormonal and gestational states. This would aid 

direct comparisons of intracellular signalling events relating to the original tissue 
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dynamics. In screening for suitable tocolytics, receptor-binding studies would indicate 

the efficacy of receptor-effector coupling; this would be of particular interest for 

myometrial EP1 and EP4 receptors. By reconstituting cells into a collagen matrix 

(Dallot et al., 2003) or onto a polyglactin mesh (Young et al., 2002), the measurement 

of cellular contractile responses would also support immersion and superfusion 

studies. This use of cells in a regulated microenvironment may enhance understanding 

of the mechanisms that transform the uterus from a quiescent to an active state. 

It would also be beneficial to clarify uterine properties throughout pregnancy and 

during the involution process postpartum. Due to ethical constraints in women, the 

use of an animal model would be of great importance. Previous studies using mice 

indicate that the uterus expresses similar PG receptors to the human, but it more 

resembles expected fundus rather than lower segment characteristics (Griffiths, 2007). 

This is complicated further by the species-specific differences in the parturition 

process. As a result, the animal models alone would not be sufficient to translate into 

human uterine function.  

Taken together, the findings of this thesis have clarified further EP, FP, TP and 

oxytocin receptor functions in isolated myometrium taken during the menstrual cycle, 

pregnancy and at different stage of labour. Primary myocytes and fibroblasts models 

of the gravid uterus indicate that EP2 receptors are crucial in attenuating oxytocic 

effects via cAMP signal cascades. Oxytocin action corresponds to myogenic profiles 

and was desensitised in the lower uterus with advancing labour. However, TP-

mediated effects were maintained. These receptors and their secondary messenger 

systems therefore represent effective myometrial targets for uterine hypercontractile 

disorders. The identification of therapies with minimal side effects for the 

management of women’s reproductive health remains an important challenge.
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Figure A1: Copy of consent form used to obtain smooth muscle samples from non-
pregnant donors. 
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Figure A2: Copy of consent form used to obtain smooth muscle samples from 
pregnant donors. 
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Uterine Smooth Muscle Research 
 
 Postgraduate Studies 
 School of Pharmacy 
 Richmond Road 
 University of Bradford 
 BRADFORD 
 Telephone: (01274)234669 or 232323 ext. 4732/ 4675 
 
 
 Debbie Fischer, Anna Griffiths & Dr. K.M. Marshall 
 

Patient Number: 
 

 

Age:  
Blood pressure (mmHg): 
 

/ 

Last Menstrual Period: 
 

 

Reason for Hysterectomy: 
 

 

Ethnicity:  
Consultant:  
Any current medication: 
 

 

 
 
 
 
Figure A3: Patient information form for uterine muscle taken at hysterectomy from 
non-pregnant donors. 
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Uterine Smooth Muscle Research 
Miss Debbie Fischer, Miss Anna Griffiths, Dr. Kay Marshall 

 
Reproduction Research Group, School of Pharmacy, University of Bradford 

        Tel: 234669, 232323 ext. 4732 or 4675 
 
 Date: 
 Time of delivery: 
 

Patient Number 
 

 

Duration of Pregnancy  

Blood Pressure (mmHg)  
Number of previous pregnancies  
Number of previous labours 
 

 

Number of previous caesareans  
Age  
Ethnicity  
Consultant  
Does the mother smoke? 
If so, how many per day? 

 

Does the mother suffer from any 
of the following: 

- hypertension 
- pre-eclampsia/ PH 
- diabetes-IDDM 
                 NIDDM 
                 Gestational  
- Rh factor 
- Other (please state) 

 

Any current medication  
Anaesthetic: 
General/ Spinal 

 

If labouring: duration (hrs) 
stage of labour + dilation (cm) 

 

Drugs used in labour 
 

 

 
 
 
Figure A4: Patient information form for myometrial tissue taken at Caesarean section 
from pregnant donors. 
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Figure A5: In vitro uterorelaxant effects of the EP2 agonists butaprost, CP533,536, 
AGN211330 and AH13205 on myometrial strips from term pregnant donors (n=3-6). 
Agonists (10-10M to 10-5M) were added to organ baths in a cumulative manner at 30-
minute intervals in the presence and absence of the EP4 antagonist GW627368x     
(10-6M). Responses were measured over a 30-minute period as area under the curve, 
expressed as percentage hypotonic shock and presented as arithmetic means ± S.E. 
 
 
 

a) b) 

c) d) 
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Figure A6: The lack of effect of the EP1, EP2, EP3 and DP antagonist AH6809 on 
concentration-activity curves for a) AGN201734, b) L-902688, c) sulprostone and    
d) ONO-D1-004 in myometrial strips from term pregnant, non-labouring donors  
(n=4-6). Agonists were added to parallel organ baths at 30-minute intervals either 
alone or after preincubation of tissues with AH6809 (10-5M). Responses were 
measured over a 30-minute period as area under the curve, expressed as percentage 
hypotonic shock and presented as arithmetic means ± S.E. 

a) b) 

c) d) 
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Figure A7: Concentration-effect curves for U46619 alone or in the presence of either 
TP antagonist SQ29,548 (10-6M) or GR32191B (10-6M) in lower myometrium 
obtained from term pregnant donors in a) mid (n=6-8) and c) late (n=5-8) stages of 
labour. Labour was defined as in vivo contractions with respective stages determined 
at 3-8.5cm and 9-10cm cervical dilation. U46619 was added to organ baths in a 
cumulative manner at 30-minute intervals with responses measured as area under the 
curve relative to the contraction achieved by hypotonic shock. Results are expressed 
as means ± S.E. and statistical analysis was performed using multivariate ANOVA 
with Bonferroni’s post-hoc test; *p<0.05; ***p<0.001 for aGR32191B and bSQ29,548 
compared to U46619 alone. 
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Figure A8: Concentration-effect curves for oxytocin in fundal (n=4) and lower (n=4) 
segment human myometrium taken at the follicular stage of the menstrual cycle. After 
equilibration in immersion baths, responses to oxytocin were measured as 30 minutes 
integrated area under the curve and expressed as a percentage of 30 minutes hypotonic 
shock. Results are arithmetic means ± S.E. with analysis performed using two-way 
ANOVA with Bonferroni’s post-hoc adjustment; **p<0.01; ***p<0.001 for 
responsiveness to oxytocin in fundus compared with lower segment tissue strips.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A9: Representative traces showing the excitatory effects evoked by oxytocin in 
a) fundal and b) lower segment myometrium harvested from non-pregnant donors 
during the follicular phase of the cycle. Agonists were added to the immersion 
apparatus at 30-minute intervals.  
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Figure A10: Vehicle, concentration-effect curves and representative traces for 
oxytocin in myometrial strips obtained from donors at a) term pregnancy, not in 
labour (n=5), b) mid (n=5) and c) late stages of labour (n=6). Mid and late labour was 
categorised at 3-8.5cm and 9-10cm cervical dilation respectively. In myometrial strips 
from fully dilated donors, the addition of the stable thromboxane mimetic U46619 
(10-6M) provoked contractile responses relative to spontaneous activity, indicating 
tissue viability. Responses were measured as area under the curve relative to the 
contraction induced by hypotonic shock. Results are expressed as means ± S.E. and 
statistics were performed using two-way ANOVA with Bonferroni’s adjustment; 
**p<0.01; ***p<0.001 for oxytocin-induced contractions compared to vehicle. 
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