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Abstract 

Chenopodium album is considered one of the most important weeds adversely affecting 

agricultural production due to its highly competitive influence on field crops. Chemical 

herbicides have increased the efficiency of farming, but recently problems of herbicide-

resistant weed populations and herbicide residues in soil, water, food products and effects 

on non-target organisms have increased, consequently, other methods of control of weeds 

by using specific fungi as herbicides have been suggested. The purpose of this research was 

to evaluate the biological control of the weed Chenopodium album by the fungus Ascochyta 

caulina. Some of the factors which control dormancy and germination of Chenopodium 

album seeds have been investigated to understand better the weed population dynamics. 

The results showed that seeds from two populations (UK and Libya) differ in their response 

to factors such as light, chilling, and burying in soil. This could have implications for 

effective control of the weed in different regions. 

Two formulations of mycoherbicides (Tween 80 and Gelatine based applications) were 

tested in the laboratory, and showed promise in reducing growth of the weed, especially the 

formula of Tween 80. There was extensive shoot fresh and dry weight reduction of 

inoculated Chenopodium album, as well as reduced root growth. Highest disease severity 

rates were observed on plants in the first three week of life. A field trial revealed similar 

results but less disease severity was observed, possibly because of dry weather. However, it 

was concluded that the fungus Ascochyta caulina is a potentially useful biological control 

agent but many factors still can be modified in relation to application of the mycoherbicide 

to increase its efficacy. 
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Chapter1: General introduction  

Weeds are considered one of the most important factors adversely affecting agricultural 

production worldwide due to their high competitive ability against crops in the field 

(Zimdahl, 2007). For example in recent years, agriculture in Libya has shown a high 

density of weeds, to an extent that they have made considerable losses in the crop’s yield, 

although figures of economic losses in Libya due to weed growth in crops fields are not 

available. The size of losses of crop due to weeds in North Africa and Middle East 

countries more generally have been recorded as 19.5% on vegetable crops and 5.8% on 

fruits (Elazzabi, 2000). In United States agriculture, weeds cause a reduction of 12% in 

crop yields; this represents about $33 billion in lost crop production annually. In addition, 

another $4 billion is spent each year in the US on herbicides to control these weeds in 

crops, and more than $3 billion for cultural and other methods of control (Pimentel et al., 

2005). Parker and Fryer (1975) estimated the losses due to weeds to be as large as 50% in 

tropical crops and approximately 11.5% of total potential production worldwide. Zoschke 

and Quadranti (2002) reported that a 13.2% loss of agricultural production could be 

attributed to the competitive effects of weeds world-wide, which makes the control of 

weeds an essential element of productive agriculture.  

Management of weeds is a necessary but expensive challenge, and chemical weed control 

accounts for over $14 billion spent annually on herbicides (Kiely et al., 2004), Weeds are 

the most important of the economic and environmental pest problems, and they are the 

target of much of the chemicals applied throughout the world. Thus, herbicides comprise 

47% of the world agrochemical sales, and insecticides 29% and most of the rest being 
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fungicides (Woodburn, 1995). Weeding, usually by hand, accounts for up to 60% of total 

pre-harvest labor input in the developing world (Webb & Conroy, 1995). Invasive weeds 

cause significant environmental damage, because they are  free of their natural enemies and 

competitors, and very often have high population sizes and are able to displace native 

species, a problem which has only recently begun to be recognized  (McFadyen, 1998). 

Chemical herbicides have increased the efficiency of farming and have become safer and 

more effective, but more recently there have arisen problems of herbicide-resistance which 

results from regular exposure of a weed population to an herbicide, leading to a 

predominance of genotypes that can survive and grow when treated with herbicide 

concentrations that are normally lethal in untreated weed populations. There have also been 

increasing problems of the buildup of herbicide residues in soil, water and food products, 

and effects on non-target organisms. However, governments have started responding to 

public pressure by reducing the use of herbicides to levels of around 50% of previous use 

(Schroeder et al., 1993). 

Understanding weed ecology could lead to more effective weed prevention and control by 

providing us with a basic understanding of the population of weeds in natural and managed 

systems because firstly, weeds more susceptible to herbicides are replaced by resistant 

species; secondly, monoculture species are problematic if using only one strategy to control 

them; thirdly, it is very expensive to maintain sites and herbicides are usually harmful to the 

overall environment; and fourthly, study of the ecology and biology of the weeds enables 

the  determination of the weak point in the life cycle of the weed so that a control 

management strategy can be based around it (Booth et al., 2003). 



3 

 

1.1 Agricultural weeds 

Of the total number of 300,000 plant species in the world, only a few thousand are thought 

to behave as weeds (Rossiter & Riha, 1999). About 200 species or 0.08% of the total 

number are recognized as major problems in world agriculture (Holm et al., 1977). Holm et 

al., (1977) suggested that these 200 species account for 90% of the loss in world food crops 

to weeds. Only about 25 species or 0.01% of the total cause the major weed problems in 

any one crop. The presence of weeds in a crop leads to an increased total number of plants 

within a certain area; given that the crop density is already set at a level that optimizes yield 

for that crop in that environment, the presence of weeds will lead to a reduction in the 

average yield of the crop, since weeds compete with crop plants for nutrients, soil moisture 

and sunlight (Rao, 2000). 

Man played an important role in changing the environment by altering the crop husbandry 

practice and by maintaining a weed-free monocrop or multicrop culture. Problems caused 

by weeds are the low productivity of crop and livestock production, the low soil fertility 

and post-harvest losses.  

Today most countries are faced with the need to develop alternatives to conventional weed 

control methods to comply with the demand for pesticide reductions to solve the various 

problems mentioned previously.  There is increased interest in using biological controls and 

organic farming (McFadyen, 1998). 
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1.1.1 Definition of the term weed 

Weeds may be a trouble in the garden, affect humans as poisonous plants or as sources of 

aeroallergens, and invade natural ecosystems, as well as interfering with crops.  The most 

common definition of a weed is “a plant growing in a place where it is not desired” 

(Buchholtz, 1967). A plant may be considered a weed in one situation and a desirable plant 

in another; for instance, White Clover Trifolium repens L. is usually considered a weed in 

lawns, but it can be a desirable groundcover used to improve soil conditions and prevent 

soil erosion on slopes in reclamation landscapes (Bradshaw & Chadwick, 1980). Weeds 

become of economic significance in connection with farming, where weeds may damage 

crops when growing in fields and poison domesticated animals when growing on pasture 

land. Weeds are usually plants that are very abundant, invasive, competitive, harmful, 

destructive, or difficult to control. Zimmerman (1976) believes that the term “weed” should 

be used to describe plants that have all the following characteristics: (1) they colonize 

disturbed habitats, (2) they are not members of the original plant community, (3) they are 

locally abundant, and (4) they are economically of little value. 

Some common methods used to classify weeds are by taxonomic relationships, life history, 

habitat, physiology, and degree of undesirability. Weeds and invasive plants can also be 

classified by ecological behavior related to invasion and evolutionary strategies related to 

carbon allocation. 

Weeds may be classified by placing them into three groups according to their life cycle: 

Annual weeds (most common) germinate, grow, flower, and produce seeds within one year; 

Biennials weeds produce leaves and store food the first year and the second year they 
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flower, produce seeds, and die; and Perennial weeds live on from year to year, in many 

cases the tops die to the ground, but the roots persist. 

Another way of classifying plants is to group them by ‘strategies’ on the basis of the 

characteristics of their life cycle, competitive ability etc. Many weeds would be placed in 

the ruderal strategy (Grime et al., 1988); such weeds have a short life cycle, are fast-

growing, produce many quite small seeds, which often form a persistent seed bank, and 

also are often relatively weak competitors. 

Grime, (1984) suggests that most herbaceous weed species fall into one of two combined 

strategies, competitive ruderal or stress-tolerant competitors. Plants possessing the 

competitive ruderal strategy have rapid early growth rates and competition between 

individual plants occurs before flowering. Such plants occupy fertile sites and periodic 

disturbance (e.g., annual tillage) favors their abundance and distribution. Many annual, 

biennial, and herbaceous perennial weed species found on arable land fit the criteria for the 

competitive ruderal tactic. 

Chenopodium album is one of the ruderal annual weed species, shows considerable 

phenotypic plasticity, a much branched taproot, and it thrives on all soil types and over a 

wide range of pH values (Grime, 1984).     

1.1.2 Competition between weeds and agricultural crops 

“Competition is a struggle between a crop and a weed for a resource that is in short supply” 

(Zimdahl, 2004). Weeds compete with agricultural crops for space, light, moisture, 

nutrients, and carbon dioxide. Factors such as planting date, planting depth, row spacing, 
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seeding rate, soil moisture, soil fertility, and soil pH have an influence on the competitive 

advantage of the crop or weed. In a field infested with weeds it is possible to identify 

different components of the overall competitive effect: (1) intraspecific competition 

between plants of the cultivated species; (2) interspecific competition between plants of the 

cultivated species and weed species; (3) interspecific competition between plants of the 

different weed species; (4) intraspecific competition between plants of the same weed 

species. Interactions between weeds and crops and within weeds should be considered in 

studies of crop yield loss and in strategies for weed management (Combellack & Friesen, 

1992). Weeds have been able to reproduce, survive, and compete for centuries, at least 

partially due to their diversity. Species of weeds, and sometimes biotypes within species, 

can vary greatly in their growth habits and ultimately in their ability to compete with crops. 

Zimdahl (2004) in his book (Weed-Crop Competition) made three main conclusions. 

Firstly, weeds do compete with crops and reduce yield and quality. Secondly, weed science 

will benefit from closer integration with plant ecology, especially with regard to the study 

and understanding of plant coexistence. Thirdly, modeling has become an important aspect 

of modern weed management and will likely become more important to future systems. 

Zimdahl continued to stress the importance of basic ecological theory and principles and 

their incorporation into weed science and weed management systems.  

1.1.3 The control of weeds 

Weed control is an essential part of crop production systems. This is partly to limit the 

reduction in crop yields outlined above and also because weeds may reduce crop quality, or 

produce chemicals which are harmful to crop plants (allelopathy). As well, weeds left 

uncontrolled may harbor insects and diseases and produce seeds or rootstocks which infest 
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the field and affect future crops. There are several methods of weed control (Tu et al., 

2001), which include:  

1. Cultural and mechanical weed control methods  

 Crop competition; usually one of the cheapest and best methods of weed 

control; usually the plant which starts first and is growing under ideal 

conditions will have the competitive advantage.  

 Crop rotation; by rotating the crops, many of the cultural practices and 

herbicide programs are changed, this often will reduce the population of 

specific weeds which were able to flourish in the previous crop.  

 Fire; flaming is a form of thermal weeding which causes dehydration of the 

affected weed tissues.  

 Mechanical burial; this method is most effective on annual weeds in which 

all the growing points can be buried. Burial is usually less effective on 

perennial weeds which have underground stems and roots and have the 

ability to regrow from these underground storage organs.  

 Mowing; is another method of mechanical control; it is usually most 

effective on tall growing annuals, and not as effective on short growing 

plants or perennials. 

2. Chemical weed control methods; since 1950, herbicide use has increased 

dramatically; the new herbicides rapidly resulted in revolutionary changes in weed 

control strategies in industrialized countries. The sale and use of herbicides have 

become increasingly subject to government regulations in Europe and America. 
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Restrictions enforced in this way require that side effects should be considered. The 

increased reliance on herbicides with the same mode of action as each other has 

resulted in weeds that are resistant to those herbicides. 

3. Biological weed control methods; by using biological agents such as fungi or 

insects to control targeted weeds. Biological weed control as a practical tool has not 

been utilized to a great extent in controlling weeds. There have been certain 

examples of successful biological control programs, but these have been 

uncommon.  

 

1.2 The target weed Chenopodium album1 L 

The research described in this thesis focused on one of the most important and widespread 

weeds of agriculture, Chenopodium album L. It is one of the most troublesome annual 

weeds, and is known by many common names (fat-hen, lambsquarters, lamb's-quarters, 

white goosefoot, and common lambsquarters) (Figure 1.1); it belongs to the family 

Chenopodiaceae and originates in Europe.  

                                                             
1 Nomenclature of species follows Flora Europaea (Tutin et al., 1993) 
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Figure  1.1 Photo of Chenopodium album plant.  

One study ranked it as one of the five most widely distributed weeds in the world (Holm et 

al., 1977).  Chenopodium album is competitive with more than 40 crop species worldwide 

and is considered a principal weed by corn and soybean producers in the United States 

(Holm et al., 1977). It ranks as an important weed in potatoes, sugar beet and vegetables 

worldwide and it reduces the yield of any crop in which it occurs; it is one of the most 

abundant weeds in a number of agricultural crops in Europe and the world (Schroeder et 

al., 1993).  

Chenopodium album was itself eaten as a vegetable from Neolithic times until the 16th 

century, when it was replaced by spinach and cabbage (Mitich, 1988). Chenopodium album 

may act as a host for various pests of insect, nematode and virus species that affect 

important crops (Thurston, 1970). Better quantification of the effects of field margin strips 
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on crop performance through their influence on pest predators, parasites and pollinating 

insects is needed (Marshall & Moonen, 2002).  Gooch (1963) found that Chenopodium 

album was a contaminant in 39% of all the commercial carrot Daucus carota seed samples 

examined at an official seed testing station in England. A study of changes in the weed 

flora of southern England between the 1960s and 1997 suggests that Chenopodium album is 

one of the weeds that have become more common (Marshall et al., 2003). In a survey of 

arable weeds in Britain 1971-73, Chenopodium album was common to abundant in half the 

survey areas and rare in the rest (Chancellor, 1977). Chenopodium album is a very 

competitive weed, which profits from high nitrogen levels. Li and Watkinson, (2000) 

studied the competition between Chenopodium album and Daucus carota for nutrients and 

it  appears that Chenopodium album shows a broader response to nutrient availability than 

carrot and may well reflect the different selective regimes experienced by crops and weeds. 

When Chenopodium album plants are not controlled, they can absorb considerable amounts 

of phosphorus that otherwise would be available for lettuce (Lactuca sativa) crops (Santos 

et al., 2004). At the same time there is strong evidence for an allelopathic effect of 

Chenopodium album on different crops and plant species. Qasem and Hill (1989) 

investigated the allelopathic effect of Chenopodium album and Senecio vulgaris on tomato 

growing in a glasshouse: the results showed that Chenopodium album had an effect through 

this mechanism while Senecio vulgaris did not. Also Qasem and Hill (1994) investigated 

the inter- and intra-specific competition between Chenopodium album and Senecio 

vulgaris; the results showed that differences between the weeds in inter and intraspecific 

competition were closely related to the growth of their root systems. In another study 

Qasem and Hill (1993) studied the competitive effects of Chenopodium album and Senecio 
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vulgaris on tomato, lettuce and cabbage and they found that both weeds severely reduced 

the growth of the three crops.  

Damage caused by Chenopodium album competition has been well documented in field 

crops: for example, in barley (Hordeum vulgare), Chenopodium album has been reported to 

reduce yield by 36% (Conn & Thomas, 1987); and in corn fields (Zea mays L.) and 

sugarbeet  (Beta vulgaris L.), yield reductions of 11% and 48% respectively have been 

associated with interference by  Chenopodium album (Schweizer, 1983 , Beckett et al., 

1988). In vegetable crops, season-long competition by Chenopodium album has resulted in 

36% yield reduction in tomato Lycopersicon esculentum Mill. (Bhowmik & Reedy, 1988). 

 

1.2.1 Distribution, habitat, strategy, characteristics and life cycle of 

Chenopodium album  

Chenopodium album is a native summer annual weed found on cultivated land and waste 

places. It originated in Europe but is now found throughout the world from Asia and Africa 

to North America (Williams, 1963). For example Zahran and Willis (2009) mentioned that 

the species occurs commonly in cultivated lands of winter crops in all regions of Egypt. It 

occurs throughout Britain but is less frequent in the north and west (Figure 1.2). 
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Figure  1.2 Hectad distribution map of Chenopodium album in Britain and Ireland; 

each dot represents at least one record in a 10 km of the national grid  

(BSBI Maps Scheme).  

In the UK Chenopodium album is not recorded above 380 meters, it is common on sandy 

loams and frequent on clay but less abundant on calcareous soils and gravel (Williams, 

1963). It grows best on fertile soils and manuring increases its frequency. It can grow up to 
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3 meters tall. It is more frequent in spring-sown than autumn-sown crops. Chenopodium 

album is also a common garden weed. It is a very variable plant and is sometimes treated as 

an aggregate species. It shows morphological plasticity in response to soil fertility and plant 

density.  Chenopodium album is known to hybridize with related species but the hybrids are 

difficult to identify due to the variability of the main species. Chenopodium album seeds 

germinate from early spring through autumn, seeds mature late in the season from August 

onwards (Grime et al., 1988). Seed numbers per plant have been variously estimated at 20 

to 3,500, while a large plant could produce 500,000 seeds (Holm et al., 1977); most mature 

seeds are small black (1 -1.5 mm) and shiny but about 3% are large and light brown (Baksh 

et al., 2006). Seeds are dormant when ripe and can remain viable in soil for up to 40 years 

at a depth greater than 45 cm, where the conditions are relatively constant, and also occur 

as a contaminant of crop seed (Williams, 1963). Chenopodium album depends on seed in 

the strategy of reproduction and it germinates mainly in the spring and it forms a persistent 

seed bank (Williams, 1963). Chenopodium album is a rapidly growing summer annual 

weed sensitive to photoperiodism and the life cycle in nature is completed in four months. 

Seeds germinate throughout the summer to August and most seedlings appear in the spring 

(Williams, 1963).  

 

1.2.2 Herbicide resistance 

Herbicides are often the most reliable and least expensive method of weed control 

available, but the utility of herbicides is being threatened by the appearance of herbicide-

resistant weeds. Herbicide resistance is the inherited ability of a plant to survive and 

reproduce after exposure to a dose of herbicide that would normally be lethal to the 
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majority of plants from non-agricultural areas (Holt et al., 1993). Due to the wide use of 

herbicides as a primary method of weed management, herbicide-resistant weed species 

have become an increasing problem in many cropping systems. Herbicide resistance was 

first reported in early 1957 with the weed species common groundsel (Senecio vulgaris L.) 

in California, which was shown to be resistant to herbicides in the triazine chemical class 

(Ryan, 1970).   

Resistance may occur naturally due to selection where the herbicide is the selection 

pressure. Susceptible plants are killed while herbicide resistant plants survive to reproduce 

without competition from susceptible plants. If the herbicide is continually used resistant 

plants successfully reproduce and become more dominant in the population 

Since 1957 there have been many more reported cases; Zimdahl (2004) reported more than 

100 cases of herbicide resistance in 15 herbicide chemical families and Quimby et al., 

(2002) stated that there were more than 300 examples of resistance for various weed 

species to various herbicides. 

Herbicide-resistant weeds have been identified in 21 European countries, with the highest 

number of resistant biotypes found in France (30), Spain (26), United Kingdom (24), 

Belgium (18) and Germany (18). These 21 European countries represent 36% of the 59 

countries world-wide in which herbicide resistant weeds have so far been detected. Since 

1978 the increase in the number of new cases of herbicide resistant weed biotypes have 

been relatively constant, averaging nine new cases per year (Ian, 2009) (Figure 1.2).   
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Figure  1.3 The chronological increase in the number of herbicide-resistant weeds for 

several  herbicide classes (Ian, 2009).  

There are a number of herbicides registered for use in control of Chenopodium album but 

weed scientists face complex and difficult challenges because it has developed resistance to 

some herbicides. Bettini et al., (1987) proved that Chenopodium album possesses very 

different and stable levels of resistance to the herbicide atrazine. Chenopodium album has 

become the prevalent species in glyphosate-resistant soybean fields, recent reports 

suggesting that Chenopodium album is difficult to control with glyphosate (Micheal & Ian, 

2005). Triazine resistant Chenopodium album was discovered in the early 1970s, triazine-

resistant plants have been reported in four Chenopodium species and the most frequently 

reported triazine-resistant species is Chenopodium album (Ian, 2009). 
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1.3 Biological control of weeds with plant pathogens 

Three main methods are used for control of weeds: mechanical, chemical, and biological 

(Tu et al., 2001). Mechanical control includes mowing, hoeing, cultivation, and hand 

pulling. Chemical control involves the use of herbicides. Biological weed control is an 

approach using living organisms to control or reduce the population of a selected, 

undesirable, weed species, whilst leaving the crop unharmed (TeBeest et al., 1992), The 

objective of weed biological control is not the eradication of weeds but the reduction and 

establishment of a weed population to a level below the economic threshold (Wapshere et 

al., 1989).  Since 1980, eight bioherbicides have been registered; at least 15 new 

introductions of biocontrol agents have occurred and more than 100 micro-organisms have 

been identified as having the potential for weed biocontrol (Charudattan, 2001). The 

success rate of biological control has been about 50% according to two studies. Julien and 

Griffiths (1998) reported a 47% success rate (partial or complete control) worldwide.  

There are three approaches for biological weed control that have been used: 1) The classical 

or inoculative approach; 2) The inundative biological control or bioherbicide approach 

(Mortensen, 1986); 3) The system management approach. These three approaches are 

described in more detail below. They differ in their ecological response rather than 

technological aspects. In the classic approach the control of the target host is dependent 

upon self maintenance and natural dispersal of the biological agent (Templeton et al., 

1979), while the inundative approach works faster than the classical approach because of 

the avoidance of the wait period for inoculum development and pathogen distribution 

(Charudattan, 2001) and the system management approach  which is based on management 
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of a weed pathosystem to maximize the spread and severity of the pathogen (Müller-

Schärer & Frantzen, 1996). 

1.3.1 The classical approach 

This approach involves the importation and release of one or more natural enemies that 

attack the target weed from the weed’s native land into areas where the introduced weed 

has became a problem because of the absence of its natural enemies in the area of 

introduction. The classical strategy differs from the inundative strategy primarily in that it 

is an ecological rather than a technological response to a weed problem. The objective of 

classical biological weed control is generally not eradication of the weed species, but the 

self-perpetuating regulation of the weed population at acceptable low levels (Wapshere et 

al., 1989). One of the successful examples was the use of a rust fungus (Puccinia 

chondrillina Bubak & Sydenham) against a weed (Chondrilla juncea L.) of Mediterranean 

origin in southeast Australia,  the infestation of wheat was reduced by more than 99% to 

densities approaching those in the native range, and with benefits estimated at $15 million 

per year (Butt et al., 2001). 

 

1.3.2 The inundative approach 

The inundative approach involves the periodical application of the native agent (usually a 

fungus) in a high concentration to control the target weed in a method similar to a chemical 

herbicide and no seasonal residue is expected (Templeton et al., 1979 , Charudattan & 

Walker, 1982 , Auld & McRae, 1997). The inundative biological weed control strategy was 

first introduced by Daniel et al., (1973). The occurrence of severe epidemics in natural 
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weed populations is often limited because the weed hosts display low susceptibility to the 

pathogen, exhibit strong defense mechanisms, or the weed population is spatially dispersed. 

Mycoherbicides usually employ indigenous pathogens that are endemic to reduce weed 

populations; a single application of the mycoherbicide may be sufficient or repeated 

applications may be required throughout a season. Successful inundative applications of 

mycoherbicides include control of yellow nutsedge (Cyperus esculentus L.) in the United 

States with Puccinia canaliculata, and control of northern Jointvetch (Aeschynomene 

virginica) in rice in Arkansas with Colletotrichum gloeosporioides fsp. Aeschynomene 

(Charudattan & Dinoor, 2000). The difference to classical biological control is that 

bioherbicide agents may not spread rapidly on their own, and may not cause epidemics the 

following year (Hall & Menn, 2001). 

 

1.3.3 System management approach  

Biological control as a single measure is not an optimal process for weed control; instead 

an integrated approach to control all the weeds in a given crop should be used.  An 

integrated weed management strategy combines the use of complementary weed control 

methods (mechanical and chemical) resulting in more effective, long term weed 

management outcomes. Integrated control requires planning, as often the timing of one 

control method can enhance (or inhibit) the effect of another.  

This strategy requires the fundamental knowledge of the underlying mechanisms of the 

crop production system and is aligned with the view of modern agro-ecology, in which 

complete eradication of weeds is not desirable. Biological weed control agents have to be 
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seen as stress factors and as an integral part of a well-designed pest management strategy, 

not as the sole treatment, (Müller-Schärer & Frantzen, 1996). The clean crop option is 

slowly being replaced by an approach that understands weed control as the management of 

the crop’s environment (reduction of weed-induced yield losses).  

The system management approach is thus not aimed at eradicating the weed to obtain a 

weed free crop but is directed at reducing weed induced crop losses. It is intended not only 

for extensive agro-ecosystems, but also for the use in intensive agriculture. The system 

management approach is aimed at managing a weed pathosystem in such a way to stimulate 

disease epidemics on the target weed population and reducing the competition exerted by 

the weed on a crop (Müller-Schärer & Rieger, 1998). 

 

1.4 The use of mycoherbicides 

A bioherbicide is defined as a plant pathogen used as a weed-control agent through 

inundative and repeated applications of its inoculum. Competition from chemical 

herbicides represents a major difficulty that has prevented registration and commercial use 

of several bioherbicide candidates with good prospects. Bioherbicides such as Devine® and 

Collego® have been available since the 1960s in the USA and China. The inundative 

biological weed control strategy was first introduced by Daniel et al., (1973), who applied 

an inundative dose of an endemic, indigenous pathogen, Colletotrichum gloeosporioides 

(Penz.) Sacc. f.sp. aeschynomene, to destroy the annual weed northern jointvetch 

(Aeschynomene virginica L.). Pathogens are applied as a massive dose of inoculum (spores 
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or mycelium), and usually employ indigenous pathogens that are endemic to reduce weed 

populations. In the case of fungal pathogens, the inundative approach became known as 

‘the mycoherbicide approach’ (Charudattan & Walker, 1982), as described in section 1.3 

above. 

As stated by Charudattan and Dinoor  (2000), several biological, technological, and 

economical constraints may restrict the development and practical use of bioherbicides, for 

example, moisture and temperature conditions existing under field conditions are often 

insufficient in meeting the environmental requirements of the bioherbicide candidate for 

spore germination and host penetration. A biocontrol formulation (a mixture of the spores 

with material to improve biocontrol efficacy) constitutes a means by which this problem 

may be overcome, in order to give effective and constant weed control over a range of 

environmental conditions (Connick et al., 1991a). According to Templeton et al., (1979) 

the application of bioherbicides is especially advantageous for controlling parasitic weeds, 

for weeds which are difficult to control by the use of chemical means, or in small-scale and 

specialized crops where the development of specific chemical herbicides is too expensive. 

However, if development costs of bioherbicide are kept low, products can be produced 

more cheaply than chemical herbicides (Mortensen, 1986). 

1.4.1 Formulation of mycoherbicides 

Formulation of a bioherbicide is the key for successful biological control and can be 

defined as the mixing of the biologically active pathogens with inert carriers and other 

adjuvant, to give a product, which can be effectively delivered to the target weed (Rhodes, 



21 

 

1990 , Boyette et al., 1996 , Connick et al., 1998). The formulation of the mixture to be 

applied and inoculum production are often limiting factors in the development of a 

mycoherbicide. In small-scale experiments the method of spore production is often not 

important. However, large-scale application requires mass production of inoculum, which 

must be as low-cost as possible, while product quality is maintained. A major constraint to 

rapid development and marketing of mycoherbicides is the need to develop appropriate 

formulations.   

A major obstacle to the use of mycoherbicides is to overcome the dew requirement that 

exists for several mycoherbicides. In addition, appropriate formulations can also reduce the 

dosage of inoculum required to kill weeds, thus potentially reducing the cost of 

mycoherbicides (Amsellem et al., 1990). Formulation and delivery systems can greatly 

improve the field performance of a given dose of a mycoherbicide (Hall & Menn, 2001), 

and therefore efforts are made to develop effective formulation and delivery systems to 

improve the bioherbicidal potential of plant pathogens. A range of antidesiccants as 

humectants, emulsions, and invert emulsions have been tested  for formulations of  several 

mycoherbicides (Amsellem et al., 1990 , Connick et al., 1991b , Boyette, 1994),  For 

example, water-in-oil (invert) and oil-in-water emulsions have been developed which 

greatly reduce or eliminate the free-moisture (dew) requirements necessary for weed 

infection and mortality by plant pathogens (Shabana, 2005). Formulation of a bioherbicide 

ideally should result in a product that has low cost, long shelf-life, no difficulty of 

application, efficacy, stability in the environment and be environmentally safe (Amsellem 

et al., 1991 , Auld et al., 2003). The selection of an appropriate formulation that can 

improve stability and viability may reduce inconsistency of field performance of several 
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potential biocontrol agents (Auld & Morin, 1995). Formulation options are to create the 

suitable environment in which spores of the antagonist can germinate and infect the host 

weed (Womack et al., 1996). 

The most significant difference between herbicides and bioherbicides is that in the latter the 

active ingredients are living organisms, which are capable of reproducing in the 

environment and normally require time to develop after application in order to control the 

target weed or pest (Charudattan & Dinoor, 2000). Therefore, the formulation must provide 

conditions that retain viability during preparation, storage and application and favor the 

survival of the agent in the environment. The mode of action through which a biological 

agent suppresses its target includes production of toxins, parasitism or competition, each 

mode of action requires a different set of formulations (Rhodes, 1990). One of the difficult 

phases of formulation is to overcome the dew requirement of mycoherbicides, and the use 

of oils in formulations for spraying has shown great potential for enhanced efficacy of 

mycoherbicides, where the need for high humidity is also overcome. Bioherbicides often 

depend on the dew in the field for their efficacy; and this constraint can be reduced or 

eliminated by appropriate formulation (Amsellem et al., 1990 , Connick et al., 1991b , 

Womack et al., 1996). Formulation research attempting in part to overcome this problem 

may come via the development of novel liquid formulations, for instance the search for a 

formulation solution may come from applying technology used in other industries such as 

the cosmetic and personal care industry or the pharmaceutical or food or surface coating 

industries which deal in water based products that employ techniques such as gels, 

emulsions, films and encapsulation. An adaption from any of these products may provide a 

practical water- retaining bioherbicide formulation.  
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However, formulation persists as a constraint to commercial development of many potential 

mycoherbicides; even though this has not been a problem with several commercial 

bioherbicides because they are used in irrigated systems. Therefore, reduction in dew 

dependence is a principal aim in the formulation of many potential bioherbicides; liquid 

formulations have the potential to produce infections soon after application provided they 

remain moist on the target plant surface. Several attempts to improve water-holding 

capacity in liquid formulations have been made (Auld, 1993). The development of 

formulations can involve mixing or blending of active ingredient, such as spores with 

nutrient, inert carriers or components that reduce the need for long periods of high 

humidity. Some formulations have been shown to greatly enhance the pathogenicity of 

spores against weeds (Sandrin et al., 2003 , Shabana, 2005). Chandramohan and  

Charudattan  (2003) used a multiple pathogen mix for effective control of three broadleaf 

weeds, seedlings were inoculated with a mixture of four fungal pathogens targeting these 

weeds, and all weeds were killed within 6 weeks without loss of efficacy or alterations in 

host specificity of each fungus in the mixture. Smith and Hallett (2006) confirmed that half 

the recommended label rate of glyphosate (0.315 kg. ha-1) was needed for control of 

common waterhemp (Amaranthus rudis Sauer) when combined with the fungus 

Microsphaeropsis amaranthi (Ell. and Barth.) inoculated within 1–3 days of herbicide 

treatment. The selection of an appropriate formulation that can improve stability and 

viability may reduce variation of field performance of several potential biocontrol agents   

(Zidack & Quimby, 2001). The emulsion enhances mycoherbicide efficacy by stimulating 

conidia germination by protecting the conidia during a dew-free period, hence, increasing 

weed infection when dew occurred. 



24 

 

Oil suspension emulsions of mycoherbicides have been investigated as less expensive, easy 

to prepare alternatives to oil invert emulsion formulations, as they can be applied with 

conventional spray equipment and effectively used at relatively reduced volumes.  Egley 

and Boyette (1995) found that after a 24–72 hour dew delay, 89–97% control of Sesbania 

exaltata was achieved using conidia formulated in an unrefined corn oil emulsion. 

Experiments conducted with a number of potential mycoherbicides have demonstrated that 

an invert emulsion allowed infection to occur in the absence of available water (Boyette et 

al., 1993) and reduced the need to apply high dosages of inoculum (Amsellem et al., 1990). 

It must be stressed that any effective formulation must be capable of being applied with 

traditional spraying equipment (Greaves & Macqueen, 1990). 

 

1.4.2 Factors influencing efficacy of mycoherbicides 

It is estimated that there are over 200 plant pathogens that have been or are under 

evaluation for their potential as bioherbicides (Charudattan, 2001). In general, most 

mycoherbicides do not damage non-target organisms, are not toxic to mammals and do not 

contaminate soil or groundwater (Auld & McRae, 1997). The most frequent constraint of a 

mycoherbicide is imposed by environmental conditions after application, the effectiveness 

of the primary infection of the mycoherbicide relying on temperature and humidity (McRae 

& Auld, 1988 , Makowski, 1993 , Shabana, 1997 , Zhang & Watson, 1997 , Pfirter & 

Defago, 1998). Researchers have shown that some of these constraints can be overcome 

through formulation based approaches, some herbicides are known to increase disease 

severity in crops and a combination of herbicides and pathogens has been suggested as an 

alternative strategy for weed control (Weaver & Lyn, 2007). Several studies of potential 
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bioherbicides in combination with chemical herbicides have reported synergistic or additive 

effects (Heiny, 1994). For example the effectiveness of Colletotrichum coccodes in control 

of velvetleaf was enhanced by low doses of the plant growth regulator thidiazuron 

(Wymore et al., 1988). Boyette (2006) found that a surfactant greatly improved the 

bioherbicidal potential of the pathogen Colletotrichum gloeosporioides for control of 

sicklepod Senna obtusifolia, a serious weed pest. The use of various crop oils (Auld, 1993 , 

Egley & Boyette, 1995 , Ghorbani, 2000 , Sandrin et al., 2003 , Boyette, 2006) and invert 

emulsions (Amsellem et al., 1990 , Boyette et al., 1993 , Womack et al., 1996 , Shabana, 

2005) have resulted in improved bioherbicide efficacy and performance of several 

biocontrol fungi. 

 

1.4.3 Mycoherbicide products on the market 

The number of mycoherbicides that have reached the market is quite low, due to a number 

of constraints that obstruct their development. These include: technological problems, such 

as difficulties in producing large amounts of inoculum, through fermentation processes, or 

formulations that ensure high stability during shelf life; commercial limitation, usually the 

small size of the markets; and biological constraints imposed by climate after application, 

since fungal conidia generally require free water, or at least exposure to high humidity, to 

germinate and to infect the plant, and frequently moisture is not available for long enough 

after application. Similarly, the conidia may be inhibited by low or high temperatures, by 

UV radiation or lack of available nutrients. Most of these constraints can be reduced or 

eliminated by appropriate formulation   (Greaves et al., 1998). Currently, five fungi and one 
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bacterium are registered as bioherbicides in Canada, Japan, South Africa and the United 

States (Charudattan & Dinoor, 2000) (Table 1.1). 

  

Table  1.1 Registered mycoherbicides, adapted from Charudattan, Dinoor  (2000) 

Pathogen Target weed Crop Trade name Manufacturer 

Phytophthora 

palmivora (Butl.) 

Stranglervine or 
milk weed 

Morrenia odorata  
Citrus groves DeVine® Abbott Labs. Chicago,  

IL, USA 

Colletotrichum 
gloeosporioides f. 

sp. aeschynomene 

Northern   
jointvetch 

Aeschynomene 
virginica 

irrigated Rice and 
soybean 

 

Collego® 

 

Pharmacia &Upjohn 
Kalamazo, MI; Encore 

Technologies, 

Minnetonka, MN 

Colletotrichum 
gloeosporioides 

f. sp. malvae 

Round-leaved 
mallow  

Malva pusilla 

Vegetable crops 
and strawberries 

 

BioMal® 

 
Philom Bios 

Saskatoon, Canada 

Puccinia canaliculata 

(Schw.) 

 

Yellow nutsedge 
Cyperus esculentus 

Sugarcane, potato, 
maize, cotton and 

soybean 
Dr. BioSedge® Tifton Innovation 

Crop., Tifton, GA 

Cylindrobasidium laeve 
(Pers.) Chamuris  

Black and golden 
wattle tree 

Acacia spp. 

Cut trees in tree 
plantations Stumpout® developed in South 

Africa 

Xanthomonas campestris 
pv. Poae  

Annual blue grass  

Poa annua 
Golf courses 

grasses  Camperico® Japan  

 

 

DeVine®:  The product is based on Phytophthora palmivora, a fungus pathogen of 

Morrenia odorata, a noxious plant infesting citrus groves. It is sold as liquid suspension of 

chlamydospores (around 6 x 105 spores ml-1), to be applied on the soil surface. It causes 

stem necrosis and plant death within 1-6 weeks after the application, depending on plant 

age. 
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Collego®: This is a commercial product based on the fungus Colletotrichum 

gloeosporioides f.sp. aeschynomene. It is used in the United States for biological control of 

Aeschynomene virginica, a legume weed infesting rice and soybean crops. It consists of 

dried spores which are applied in liquid suspension. It attacks leaves and stems, as well as 

seeds and seedlings. Lesions can be visible 7- 10 days after the application, and produce 

between 90 and 100% weed control. 

BioMal®: It contains spores of Colletotrichum gloeosporioides (Penz.) Sacc. f. sp. malvae. 

It is used to control Malva pusilla (round-leaved mallow) in Canada and USA. The most 

effective period of application is at an early stage, although it can be effective at any stage 

of weed growth. The wettable powder formulation disperses easily in water and is applied 

as a spray to the weed.  BioMal® is formulated by using silica gel as a carrier. It provides 

over 90% control of the target weed.  

Dr. Biosedge®: Contains the active ingredient Puccinia canaliculata, for use in control of 

yellow nutsedge. It causes a rust disease on its host plant Cyperus esculentus. It has been 

reported to be effective in controlling the target weed using the inundative approach. Dr. 

BioSedge, has been developed and registered for sale. Unfortunately, the stumbling block 

has been availability of the product because mass-production of this obligate pathogen is 

difficult and therefore relatively expensive.  

Camperico®: An isolate of Xanthomonas campestris pv. poae, a wilt-inducing bacterium, 

isolated in Japan from Poa annua. It is registered in Japan as the bioherbicide to control 

annual bluegrass in golf courses. The bacterium in Camperico® is applied immediately after 

golf course grasses mowing. 
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Stompout®: It has been developed in South Africa and is based on Cylindrobasidium laeve 

to control Acacia species introduced from Australia. The basidiospores are packaged in 

small bags, and are suspended in sunflower oil before application. 1-2 ml is applied with a 

brush on the cut surface of weeds. The fungus within 6-12 months is able to colonize the 

stump preventing the weed resprouting and causing its death. The application allows an 

almost complete control of the plants. 

 

1.4.4 The future of mycoherbicides 

The use of mycoherbicides to control weeds provides an environmentally-friendly 

approach, which is one of the benefits of the mycoherbicide strategy. Generally, most 

mycoherbicides have no effect on non-target organisms, are not poisonous to mammals and 

do not contaminate soil or groundwater (TeBeest & Templeton, 1985). As noted in section 

1.4, bioherbicides have been available since the 1960s in the USA and China, but the fact 

that there have been few reported successes of bioherbicides could be due to the lack of 

attention given to the special requirements of a living organism. From scientific and 

practical perspectives, inundative control of weeds with indigenous fungi is a successful 

and promising technology. In spite of the commercial limitations on the development of 

mycoherbicides, research in this field has been sustained by the public’s demand for non-

chemical, weed control alternatives.  

The future development of mycoherbicides for use in integrated pest management systems 

is reliant on research directed to (a) finding endemic pathogens of major weeds (b) 

developing methods for mass production of stable spores, and (c) studying disease cycles to 
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understand the principal constraints to epidemic build-up of the disease. However, 

mycoherbicides are considered as complementary components of current Integrated Weed 

Management (IWM) systems rather than as alternatives to chemical herbicides. Advances 

in technologies, with the public support and financial aid, and more scientific research, will 

all contribute in the progress of the ‘science of biological weed control’. 

 

1.5 Ascochyta caulina as a mycoherbicide 

Ascochyta caulina (P. Karsten) v.d. Aa and v. Kesteren is a plant pathogenic fungus which 

is specific to Chenopodium album, causing necrotic lesions on the leaves and stems. It has 

been suggested as a potential mycoherbicide to this weed (Kempenaar, 1995), which as 

discussed in section 1.2 is important and widespread in arable crops throughout Europe, 

America and many other places  (Schroeder et al., 1993 , Sheppard et al., 2006). To 

investigate its potential as a biocontrol agent, the fungus has been tested in glasshouse and 

field experiments (Scheepens et al., 1997). Formulations containing different combinations 

of Ascochyta caulina conidia, the phytotoxins from the fungus and low doses of herbicides 

have been tested (Vurro et al., 2001). Significant improvement in the efficacy of the fungus 

was achieved in glasshouse trials with an aqueous formulation containing PVA (0.1% v/v), 

Psyllium (0.4% w/v), Sylgard 309 (0.1% v/v), nutrients and conidia (5 x 106 spores ml-1 ) 

(Netland et al., 2001). The extracellular, hydrophilic phytotoxins produced by Ascochyta 

caulina were purified and their structures determined and the main toxins, named 

ascaulitoxin trans-4-amino-D-proline and the aglycone of ascaulitoxin, have shown 

promising herbicidal properties (Evidente et al., 2000). Field trials have investigated the 
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performance of Ascochyta caulina conidia applied at different developmental stages of 

Chenopodium album either as a single treatment or combined with sub-lethal doses of 

herbicides or with the fungal phytotoxins. With the available formulation, favorable 

weather conditions are needed to obtain infection in the field. The efficacy of the strain of 

Ascochyta caulina used so far has proved to be inadequate to justify its development as a 

bioherbicide. This is probably due to its low virulence.  

Thus the fungal species shows potential as a host specific biocontrol agent, but further work 

needs to be performed to find the right formulation and application to Chenopodium album 

before it could be recommended for mycoherbicide use. This forms the focus of the work 

performed in this thesis. 

 

1.6 Aims and objectives of the thesis 

The aims of this study were: 

1. To enhance the disease efficacy of Ascochyta caulina applied to Chenopodium 

album in order to increase the potential for using this fungus as a mycoherbicide to 

control the weed species.  

2. To assess whether the mycoherbicide control achieved under laboratory conditions 

can also be achieved under field conditions. 

3. To investigate the effect of different conditions on germination of seeds of 

Chenopodium album, with particular emphasis on how these differ in populations 

from two distinctive geographical regions. 
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4. To assess whether the results obtained in the UK could be applied to control 

Chenopodium album in Libya. 

 

Specific objectives of this project were: 

 To optimize the biocontrol agent efficacy of Ascochyta caulina using different 

strategies such as searching for a new formula for the delivery of the pathogen 

Ascochyta caulina by using vegetable oil emulsion to minimize the period of time that 

higher humidity is required.  

 To identify the stage of Chenopodium album most affected by the fungal pathogen 

Ascochyta caulina in order to determine the appropriate time for applying the 

mycoherbicide.  

 To study the factors affecting germination of seeds of Chenopodium album. 

 To use populations of Chenopodium album from the UK and from Libya, to determine 

whether climate conditions in the two geographical areas influence germination 

requirements, and whether infection response is similar.  

 To test the developed formulation on Chenopodium album plants grown under field 

conditions and assess survival and growth rates. 
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Chapter2: Effect of environmental conditions on the germination 

of Chenopodium album seeds 

2.1 Introduction 

To make any control measure of weeds effective weed controllers must reduce the weed 

seed population (seed bank) in the soil, and studying factors controlling dormancy and 

germination is necessary to determine the optimum seed germination conditions and hence 

to understand the behavior of weed seed banks during a crop cycle. Temperature is the 

single most important factor regulating germination of non-dormant seeds in irrigated, 

annual agroecosystems at the beginning of the growing season where light, nutrients, and 

moisture are typically not growth limiting (Garcia-Huidobro et al., 1982). Species produce 

dormant seeds, which can accumulate in the soil, forming a seed bank, and can survive 

many years and escape mechanical and chemical weed control. Seeds lose dormancy when 

many factors for breaking dormancy are available; these environmental factors comprise 

temperature, nitrate, light (both quality and quantity), moisture and gasses. Weed seeds are 

strongly influenced by temperature (Taylorson & Hendricks, 1972). The breaking of 

primary dormancy is therefore influenced by the temperature and its fluctuation. Dormancy 

of winter annual weeds is broken by high temperatures and of summer annual weeds by 

low temperatures (Baskin & Baskin, 2000), while Weaver et al., (1988) mentioned that 

weed seedling emergence is affected by soil moisture and temperature.   

Every seed population has a specific temperature range within which germination of its 

non-dormant seeds can take place. The rate of germination increases steadily with 



33 

 

increasing temperature from a minimum temperature up to an optimum and then decreases 

rather steeply (Fenner & Thompson, 2005).   

Light is one of the most important environmental factors that interact with temperature to 

regulate seed germination in many plant species, but light requirement for germination may 

vary with temperature (El-Keblawy, 2003). In seeds, temperature influences integration of 

partial processes as dormancy continues or is overcome; each species appears to have its 

own specific temperature requirements for germination. The effect of rising temperature on 

weed seedling emergence is consistent from year to year within a given species, making 

temperature the most predictable factor governing seedling emergence (Weaver et al., 

1988).  

The time of weed emergence relative to that of the crop is important in determining the 

outcome of weed and crop competition, the earlier the weeds emerge, the more able they 

are to compete for resources. The timing of seedling emergence is also a crucial factor in 

predicting when application of herbicides or mycoherbicides will be most effective. 

A number of factors may influence germination of Chenopodium album seed. Seed 

polymorphism, soil temperature, nitrate content of soil, and light all seem important or 

effective in the breaking of dormancy of the seeds (Williams, 1963 , Holm et al., 1977 , 

Grime et al., 1981) Chenopodium album is one of the most widely controlled summer 

annual weeds in the world and its seeds show considerable polymorphisms which influence 

their response to environmental conditions (Williams & Harper, 1965, Karssen, 1970).  
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Germination response of Chenopodium album to temperature exhibited clear trends that 

depended on the geographic region from which the plants originated (Ascough et al., 2007). 

The optimum temperature of Chenopodium album seeds depends on their origin and on the 

year. This optimum temperature for germination of seeds of Chenopodium album lies 

between 10- 25°C. 

In this chapter various other aspects of the germination requirements of Chenopodium 

album will be studied in four experiments. These aspects include whether the seeds have 

been chilled or buried, the age of the seeds since collection, and also whether seed sourced 

from two populations subject to very different climatic conditions will show any 

differences in germination behavior. The temperature conditions under which germination 

occurs will be monitored for comparisons of the effect of this parameter as well.  

There are two different seed forms on one plant: brown seed and black seed, the brown 

seed has a thin seed coat and can germinate after the harvest, while the black seed has a 

thick seed coat and is dormant; brown seeds are larger than black seeds, and the surface of 

the black seeds is either smooth or reticulate (Williams & Harper, 1965). The seeds 

collected from the Organic Bracken Farm from Bradford contained many brown seeds, but 

the Libyan seeds did not contain any brown seeds, and the differences in germination 

behavior between black and brown seeds will therefore also be examined, as the proportion 

of black/brown seeds might affect the response of the two populations.  

In obtaining some information on the extent of variation in seed dormancy caused by 

location and seed polymorphism, the aim of these experiments is not only to increase 

understanding of the general germination behavior of this species and to aid in predictions 
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for its control, but also to assess whether the predictions would be the same for the two 

contrasting populations from different geographical regions.   

2.2 Materials and methods 

2.2.1 Seed material used and general experimental procedures 

Matured seeds of Chenopodium album L. were collected near Leeds/Bradford airport, 

Yeadon, West Yorkshire (N53° 78' 33", W1° 75' 00") in September 2006. Seeds were also 

collected from Libya (Janzur, 17 km west of Tripoli, N32° 81' 72", E13° 01' 11") in August 

2007. The last group of seeds which was used in study of polymorphism was collected 

from Bradford, Organic Bracken Farm, Syke Lane, Hipperholme, West Yorkshire, (N53° 

45' 38", W1° 50' 32" in September 2008. Seeds were dried by spreading on paper sheets, 

seeds of Chenopodium album were separated and cleaned from tunics which may cause the 

inhibition of germination (Holm et al., 1977) and then they were stored at a laboratory 

temperature in unscrewed plastic bottles until they were used in the experiments.  

All experiments were conducted using the same general procedure. Seeds were incubated in 

9 cm Petri dishes on two layers of filter paper (Whatman No. 2) and soaked with distilled 

water; each Petri dish contained evenly spaced 20 seeds, 10 replicates for each weed 

population (i.e. Libyan and UK). After exposure of the seeds to any initial treatment, 

germination tests were carried out in a growth cabinet under laboratory conditions. 

Germination was tested under a light intensity of 78 µmol m-2 s-1 and 14/ 10h light interval. 

The light intensity was measured using a conversion formula that assumed each single 

tubular fluorescent lamp produces approximately about 1000 lux which is approximately 

13-14 µmol m-2 s-1. Seed germination was recorded daily at the same time and the 
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experiment stopped when no further germination occurred for five consecutive days; 

protrusion of the radicle of more than 1mm from the testa was the criterion for germination. 

The dishes were moistened with distilled water at intervals as required. The maximum and 

minimum temperature was recorded daily in °C, and the mean of the maximum values and 

the mean of the minimum values were calculated. At the end of each experiment, 

germination percentage and germination rate were determined, and the duration of the 

period over which the experiment ran was recorded (in days). 

2.2.2 Viability test (tetrazolium test) 

To ensure that the seeds used for the experiments were viable and of high quality, each 

batch of 50 seeds was subjected to a viability test using the tetrazolium technique described 

by Lakon (1949). It is a fast, reliable viability test, widely known as the TZ test. It 

determines the percentage of live and dead seeds in a sample within 24-48 hrs, regardless of 

the dormancy level of the seeds, while a germination test takes 3-4 weeks to be completed 

in those freshly harvested and possessing high levels of dormancy. The embryos of live 

seeds stain red while the embryos of dead seeds do not stain (Porter et al., 1947). Abnormal 

seeds exhibit a different pattern of staining.  

2.2.2.1 Principles of the tetrazolium test 

The Tetrazolium Test (TZ) is a biochemical test, used to differentiate between live and 

dead embryos based on the activity of the respiration enzymes in seeds (Smith, 1952). 

During seed hydration, the activity of dehydrogenase enzymes increases resulting in the 

release of hydrogen ions, which reduces the colorless tetrazolium salt solution (2,3,5-

triphenyl tetrazolium chloride) into formazan, a red compound. Formazan stains living cells 
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which are respiring with a red color, while dead cells which are not respiring remain 

colorless. The viability of seeds is interpreted according to the staining pattern of seed 

tissues (Bennett & Loomis, 1949). 

2.2.2.2 The test procedure 

Preconditioning (hydration): During preconditioning, seeds are hydrated by placing them in 

water or between wet paper towels. As the seeds take up water, dehydrogenase enzymes 

become active which later react with TZ to indicate viability (Throneberry & Smith, 1955). 

Preconditioning is generally conducted under temperatures favorable for germination. 

Seed Preparation (cutting or puncturing): During seed preparation, seeds are either cut or 

punctured to facilitate entry of the TZ solution into the embryo. Some weed species are 

known to have hard small seeds, and this process is performed under the microscope for 

accuracy. Not all seeds require special preparation. For instance, many dicotyledonous 

seeds such as beans, peas, and small legumes are placed directly into TZ without piercing 

or cutting. Such seeds are predominantly embryo and readily absorb TZ.   

Staining: During staining, seeds are placed in a TZ solution (usually 1.0 or 0.1 %), and 

placed in an oven at about 38°C to speed up the staining reaction. Respiring embryos will 

stain; however, storage tissue such as the endosperm of grasses will not stain. The general 

rule is: use 0.1% TZ when the seed is bisected through the embryo before it is put in TZ; 

use 1.0% TZ when the seed is bisected laterally or diagonally, or pierced, or when no 

preliminary incisions are needed as for legumes. The length of the staining period varies 

with species. If seeds are kept too long in the TZ solution, they will become overstained, 

making evaluations more difficult. 
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Evaluation: Evaluation requires the most practice. Some seeds (such as grasses) may be 

placed in a clearing solution (such as 85% lactic acid) in order to clearly see through the 

seed coat to evaluate the staining pattern. 

The purpose of this work was to determine estimated viability of a batch of seeds before a 

germination test was performed. In this work the seeds of Chenopodium album were held 

by forceps and punctured and part of the seed coat was removed, using a fine needle under 

a binocular microscope. This   allowed hydration of the seed tissue. The seeds were then 

kept in 1.0% tetrazolium solution on a hotplate at 30-40°C for 2-3 hours to speed up the 

reaction, after that seeds were washed with distilled water, and examined under a binocular 

microscope by removing the remains of the seed coat to examine the stained embryo to 

determine the viability of the seed. Seed viability indicates that the seed is capable of 

germinating under suitable germination condition. 

2.2.3 Specific experimental procedures 

Four experiments were performed in order to test different aspects of the germination 

behaviors of Chenopodium album seeds. All the experiments followed the general 

experimental procedures indicated in section 2.2.1, and the specific differences between the 

procedures are indicated below. 

2.2.3.1 Experiment 1 

The seeds of Chenopodium album exhibit polymorphism and in Chenopodium album some 

seeds are brown and most are black, the seed coats also being smooth and reticulate 

respectively. Both these different seed forms may be found on the same plant (Williams, 
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1963), and there is evidence that the early seeds shed by the plant usually contain a higher 

than normal proportion of brown seeds (Williams & Harper, 1965). These polymorphic 

seeds differ in their requirements for germination by responding to chilling and burying 

differently. Because the seeds which were used (collected from Bradford, Organic Bracken 

farm) contained a lot of brown seeds (Mean ± 1 SE of 14.3 ± 0.918 % based on counting 8 

lots of 100 seeds) the influence of seed morph was tested; seeds were six months old before 

being used. Two hundred brown seeds and two hundred black seeds were counted out and 

placed in 10 Petri dishes per seed type, each containing 20 seeds of Chenopodium album. 

The Petri dishes were then placed in a growth cabinet, and the general experimental 

procedures followed as described in section 2.2.1.   

2.2.3.2 Experiment 2 

Jursik et al. (2003) mentioned that the length of primary dormancy varied in Chenopodium 

album from 10 to 100 days depending on the date of ripening and on the year. Holm, et al., 

(1977) mentioned that primary dormancy length differs between populations and between 

individuals from the same population. 

Dormancy is broken during cold periods of the year and induced as warmer periods 

progressed. This experiment aimed to study the extent of dormancy in the two populations 

from very different climates, and also to assess the influence of seed age on this dormancy. 

Seeds for the experiment came firstly from the Janzur site in Libya; secondly from 

Bradford, Yeadon; and thirdly from the Organic farm in Bradford. The trial was conducted 

one week after collecting the UK seeds from the organic farm and about two weeks after 

collecting of Libyan seeds. The Yeadon seeds were about two years old.   
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The general experimental procedures were followed using 40 Petri dishes (10 replicates 

each of old and new seeds, Libyan and UK populations). 

 

2.2.3.3 Experiment 3 

The changes in dormancy of seeds as a result of burying and chilling were investigated in 

this experiment, again testing for differences between the Libyan and UK populations. 

Sufficient Chenopodium album seeds were buried in envelopes made of fine mesh nylon 

gauze in loam based compost (John Innes No. 2) in a 10-cm diameter plastic pot to a depth 

of about 10cm and the pot watered till saturation. The envelopes were surrounded by soil to 

avoid any light reaching the seeds during burying. The pot was kept in a cold room (5°C ± 

1°C) for one month, while the seeds that were chilled but not buried were kept on a shelf in 

the cold room in the dark. Seeds were then taken out, cleaned with distilled water and put in 

Petri dishes each with 20 seeds and 10 replicates of each treatment. The Petri dishes were 

then placed in a growth cabinet, and the general experimental procedure was followed. 

 

2.2.3.4 Experiment 4 

In this experiment all the factors were studied in combination, namely the effect of chilling, 

chilling plus burying, and nothing being treated; the region (seeds from the UK and Libya); 

and age (new seeds and old seeds) of Chenopodium album. The investigation of the 

combined effect of these factors on seed germination of Chenopodium album was 

undertaken with a view towards the development of strategies for a better control of this 

weed through understanding the triggers for enhanced and synchronized germination.  
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A total of 80 Petri dishes were used for the various combinations, with 10 replicates of 

each. Seeds used were from The Janzur site in Libya and the organic farm site and Yeadon 

in the UK. New seeds were those used within one month of collection, while old seeds were 

obtained from previous collections. Burial and chilling procedures were as described for 

Experiment 3. The general experimental procedures described in section 2.2.1 were then 

followed. 

 

2.2.4 Statistical analysis 

For each experiment the three variables measured were analyzed separately, namely total 

percentage germination, duration of the experiment (in days) and rate of germination (total 

germinated seeds divided by the number of days required to obtain total germination). 

However, since percentage germination is a bounded parameter (i.e. has an upper 

maximum of 100%) a transformation is required, the angular transformation of Fisher (Zar, 

1984) was applied to maintain homogeneity of variance and these transformed data were 

also analyzed.  

Comparing the responses of black and brown seeds in Experiment 1 was performed using a 

t-test. Experiments 2 and 3 were analyzed using a 2-factor analysis of variance (ANOVA) 

with replication, where the interaction term could also be tested for. Experiment 4 was 

analyzed by a 3-factor ANOVA (Zar, 1984). Data analysis used MINITAB® version 15.   
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2.3 Results 

Considering the results of the initial TZ test, the viability of the Libyan seeds was higher 

and reached 97%, while the UK seeds were assessed to be 91% viable, the difference could 

be referred to the great variability in the environmental conditions.  

A summary table of the results from all four of the other experiments is given in Table 2.1. 
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Table  2.1 Summary of the experiments of seed germination (L. C. means laboratory condition, B+C means burying plus 
chilling, C means chilling) 

No. of 
experiment Age* Date Condition Source of seeds Germination 

percent Germination rate Duration 
days 

Average temp. 
°C 

1 New 03/2009 L. C. 
Black seeds 72% 3 24 21/15 

Brown seeds 57% 3.8 15 20/15 

2 

fresh 

09/ 2008 L. C. 

UK 0% * 0/200  

27/20°C 

fresh Libya 31% 62/19= 3.3= 1.7 19 
new Libya  47.5% 94/23= 4.1= 2.1 23 
old Libya  74% 148/22= 6.7= 3.4 22 
new UK  62% 124/27= 4.6= 2.3 27 
old UK  55% 110/27= 4.1= 2.1 27 

3 New 10/08 

B + C UK 73% 146/20= 7.3= 3.7 20 27 /17.5 
C   UK 78.5% 157/15= 10.5= 5.6 15 28/18.5 

B  + C Libya 42.5% 85/9= 9.4= 4.7 9 28/18.5 
C Libya 47% 94/19= 4.9= 2.5 11 28/19 

4 

New 2009 

01/09 

B + C UK 78.5% 197/7= 28.1= 11.2 7 

20/15°C 

Old 2006 B + C UK 82% 164/7= 23.4= 11.7 7 
New 2009 B + C Libya 49.5% 99/7= 14.1= 7.1 7 
Old2007 B + C Libya 71% 142/9= 15.8= 7.9 9 

New 2009 C UK 88% 176÷32=5.5=2.25 32 
Old 2006 C UK 44% 88÷31=2.8=1.4 31 
New 2009 C Libya 29% 58÷15=3.9=1.95 15 
Old 2007 C Libya 69.5% 139÷19=7.3=3.65 19 
New 2009 L. C. UK 81.5% 163÷23=7.1=3.55 23 
Old 2006 L. C. UK 59.5% 119÷29=4.1=2.05 29 
New 2009 L. C. Libya 28.5% 57÷11=5.2=2.6 11 
Old 2007 L. C. Libya 69.5% 139÷20=6.95=3.5 20 
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2.3.1 Results of experiment 1 

Brown seeds germinated more rapidly than black seeds, with peak germination after only 

four days compared to eight days for the black seeds (Figure 2.1). Therefore the rate of 

germination was significantly different for the two morphs (Table 2.2). The duration data 

were highly significantly different (P < 0.001; Table 2.2) reflecting the more rapid 

completion of germination for the brown seeds (Figure 2.1).  
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Figure  2.1 Germination curves of black and brown seeds of Chenopodium album 

showing the percentage of the seeds that germinated on each day separately.  

The vertical bars indicate + 1 S.E. 

  

The overall percentage germination results were just significantly different but, when using 

the angular-transformed data rather than the original percentages, the two seed morphs 
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were not found to be different, although close to significance (Table 2.2). The peak 

germination percentages on days 4 and 8 were of about the same value (33% versus 36%). 

Thus overall these results show that the two seed morphs differ in the timing of their 

germination, with brown seeds germinating earlier, but not in the total amount of 

germination.    

 

Table  2.2 Analysis by t-test of the germination data for black and brown seeds of 

Chenopodium album. Data include the total percentage germination, the angular 

transformation of the percentage, the duration of germination in days and the rate of 

germination. Key to significance:  

P > 0.05, N.S.; P < 0.05, *; P < 0.01, **; P < 0.001, ***. 

Variable 

Black and Brown seeds 

df T. value p Significance 

Germination % 16 2.18 0.045 * 

Arcsine % 16 2.06 0.056 N.S. 

Duration 17 8.54 < 0.001 *** 

Rate 12 -2.47 0.029 * 

 

 

2.3.2 Results of experiment 2 

Libyan new and old seeds germinated more rapidly compared with UK populations, with 

peak germination after 3 and 4 days respectively compared to 5 and 9 days for UK seeds 

(Figure 2.2). Therefore the rates of germination were highly significantly different between  
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Figure  2.2 Results over time of germination of Chenopodium album seeds of two 

different ages and from two contrasting populations (Libya and the UK) showing the 

percentage of the seeds that germinated on each day separately.  

The vertical bars indicate + 1 S.E. 

 

 

the two populations (Table 2.3, Figure 2.3). The duration data were highly significant for 

the two ages but not significant between regions (Table 2.3). The interactions for both 

germination rate and particularly for duration were also significant. Also the total 

germination percentage without transformation or when using angular-transformed data 

showed the two populations to have very high significant differences when considering 

both age (Figure 2.3) and region (with germination of new seeds from UK being greater 
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than the other population Figure 2.3), as well as their interaction (since UK old seeds 

germinated less than the Libyan population). 

  

Table  2.3 Effect of seed ages and region of origin (Libya and UK) and their 

interactions on germination percent and other variables of Chenopodium album. 

Abbreviations listed are: (df) the degrees of freedom, (F) ANOVA test value,  

and (p) probability; further details of the variables and a key to the levels of 

significance are given in Table 2.2. 

Variable 
Age Region Interaction 

df F p Sig. df F p Sig. df F p Sig. 
Germination 

% 2 107.88 < 0.001 *** 1 19.42 <  0.001 *** 2 23.90 0.000 *** 

Arcsine % 2 150.77 < 0.001 *** 1 38.76 < 0.001 *** 2 42.40 0.000 *** 

Duration 2 71.42 < 0.001 *** 1 2.46 0.123 N.S. 2 36.18 0.000 *** 

Rate 2 21.84 < 0.001 *** 1 20.99 < 0.001 *** 2 4.08 0.022 * 
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Figure  2.3 Results for four parameters of germination of Chenopodium album seeds of 

two different ages and from two contrasting populations (UK and Libya); 5% Least 

Significant Difference values for the percentage germination, arcsine percentage, 

duration and germination rate respectively are: 0.88, 4.64, 0.398, 0.148. 

  

2.3.3 Results of experiment 3 

The seeds started germinating on the first day and seeds from the chilling/burying treatment 

showed the highest germination rate. Analysis of germination of seeds of Chenopodium 

album under the treatment of effect of chilling and chilling/burying for the different regions 

is shown in Table 2.4. There is no clear difference in sensitivity of seeds from the different 

regions to the chilling treatment and chilling/burying on their own. 

Treating seeds of Chenopodium album with a combination of chilling/burying resulted in 

65% germination of UK seeds compared with 55% in Libyan seeds (Figure 2.4). This 
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difference between regions was also highly significant using the arcsine transformed data 

(Table 2. 3). There was no significant effect on duration or rate due to chilling or burying 

treatments by themselves (Table 2.4), but there was a separate effect of region on duration 

(Libyan seeds did not take so long to complete their germination), and a very significant 

interaction between treatment and seed origins (Table 2.4, Figure 2.4) 

 

 

Figure  2.4 The influence of treatment effect of chilling and chilling/burying on four 

germination parameters (details in Fig 2.3) of seeds of Chenopodium album, 5% Least 

Significant Difference values for the percentage germination, arcsine percentage, 

duration and germination rate respectively are: 7.77, 5.698, 1.178, 0.207. 
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Table  2.4 Effect of chilling and chilling /burying and region and their interactions on 

germination percentage, germination rate and duration of seeds of Chenopodium 

album. Abbreviations listed are: (df) the degrees of freedom, (F) ANOVA test value, 

and (p) probability; the level of significance is indicated by symbols given in table 2.2. 

Variable 
Treatment  Region Interaction 

df F p Sig. df F P Sig. df F p Sig. 

Germination 
% 1 0.60 0.443 N.S. 1 68.46 < 0.001 *** 1 0.15 0.700 N.S. 

Arcsine % 1 1.94 0.173 N.S. 1 49.53 < 0.001 *** 1 0.22 0.641 N.S. 

Duration 1 0.11 0.738 N.S. 1 51.81 < 0.001 *** 1 31.62 < 0.001 *** 

Rate 1 0.19 0.664 N.S. 1 1.02 0.318 N.S. 1 29.06 <0.001 *** 

 

 

2.3.4 Results of experiment 4  

There was a highly significant influence of all three factors of age, treatment and region on 

the length of time before total seed germination was reached and on the rate in which 

germination was achieved. The germination percentage, however, was not significantly 

influenced by seed age, but it was affected by the other two factors (Table 2.5). 
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Table  2.5 Germination of seeds of Chenopodium album in response to the factors of 

seed age, chilling/burying treatments and geographical region. Variables and symbols 

as in Tables 2.2 and 2.3. 

Variable Age Treatment  Region 
 df F p Sig. df F p Sig. df F p Sig. 

Germination 
% 1 3.79 0.054 N.S. 2 4.77 0.010 * 1 29.34 < 0.001 *** 

Arcsine % 1 2.59 0.110 N.S. 2 4.24 0.017 * 1 4.24 0.017 * 

Duration 1 49.3
4 < 0.001 *** 2 108.57 < 0.001 *** 1 40.41 < 0.001 *** 

Rate 1 8.36 0.005 *** 2 183.73 < 0.001 *** 1 10.60 < 0.001 ** 

 

 

The results concerning each of the three factors are illustrated in order to aid clarity; Figure 

2.5 shows the effects of seed age, the effects of the treatment (laboratory condition, chilling 

and chilling/burying), and the differences between the two regions.  
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Figure  2.5 Influence of laboratory condition (L.C.), chilling (C.), and chilling/burying 

(C.B.) on four parameters of seed germination of Chenopodium album for (a) new 

seeds and old seeds (b), 5% Least Significant Difference values for the percentage 

germination, arcsine percentage, duration and germination rate respectively are: 

93.82, 59.988, 194.93, 0.215. 
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Figure 2.5 shows that chilling/burying of Chenopodium album seeds increased germination 

slightly but not significantly (Table 2.5). The Libyan population showed the highest percent 

of germination with old seeds across all treatments, while with the UK population the new 

seeds germinated more (Figure 2.5). This pattern was essentially repeated with the arcsine 

transformed germination data, and with the germination rate. The duration data are 

therefore greatest for the UK old seeds as they take longer to complete germination. 

Chilling/burying of the old seeds of the UK population of Chenopodium album appears to 

have the effect of increasing germination while it has only a limited effect on Libyan old 

seeds. Also the figure 2.5 shows the two populations of seeds responded in different ways 

by taking a different length of time to germinate, the Libyan old seeds usually respond 

faster when untreated but the UK old seeds respond faster after chilling/burying. 

 

2.4 Discussion 

This chapter has explored certain aspects of the germination behavior of Chenopodium 

album seeds in order to obtain a better picture of the likely triggers for germination of this 

species, and therefore to be able to predict more accurately when might be a suitable time 

to apply the mycoherbicide treatment. The seed bank is one of the main targets in weed 

research because it is considered as an enormous reservoir of viable dormant weed seeds 

present in agricultural soils (Schonbeck & Egley, 1980). Particularly in UK, where seeds 

will be showing dormancy overwinter and then will germinate in the spring, understanding 

when emergence is likely to happen should be very helpful. A notable focus in this chapter 
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has also been whether there are any differences between seeds from UK populations and 

those from a region with very different climate conditions, namely Libya. 

One difference that was found between the two populations was in the percentage of brown 

seeds recorded; no brown seeds were recorded at all in the Libyan population, while a value 

of 14.3 ± 0.92% was found in the UK population. When tested (Experiment 1), it was found 

that the brown seeds germinated more rapidly than did the black seeds, which confirms the 

findings of Williams and Harper (1965) who also noted a similar difference in germination 

rate of the two morphs. In the context of the UK population, the presence of these two 

morphs may represent a form of ‘bet-hedging’, so that not all Chenopodium album seeds 

respond in the same way to environmental triggers, and hence not all germination will 

happen at once. This makes prediction of precise emergence times, and therefore the timing 

of mycoherbicide spraying, more difficult. The situation in Libya may be more uniform, 

and hence prediction might be easier there.  

The results from Experiment 2 also demonstrated that both Libyan new and old seeds 

germinated more rapidly compared with those from the UK. However, the final 

germination percentage was higher in new than old UK seeds, but higher in old rather than 

new Libyan seeds. 

Williams and Harper (1965) have previously found chilling of Chenopodium album seeds 

increased germination from about 30% to about 65% provided a minimum of 21 days of 

exposure to cold was experienced. The present results (experiment 3 and 4) confirmed 

results such as those of Chu et al., (1978) that chilling, and especially chilling combined 

with burying in the dark, stimulated greater germination. The present study showed that 

88% of treated seeds would germinate under optimal conditions of 20°C and discontinuous 
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light, with maximum germination obtained in less than 10 days. However, the results also 

showed a very significant interaction between seed treatment and seed origins. Thus 

chilling and burying resulted in 60 % overall germination of UK seeds, but only 55 % in 

Libyan (experiment 3) seeds; and increased germination from about 62%  (Experiment 2) 

to 88% (experiment 4) in the UK population while appearing to have no major effect on 

Libyan seeds (experiment 4). Also, the UK new seeds germinated more rapidly than those 

from Libya following treatment.  

Overall, therefore, besides confirming the effects of chilling treatments in breaking 

dormancy of Chenopodium album seeds, and confirming the differing germination 

behaviors of the two seed morphs, the experiments described in this chapter have 

demonstrated that there are notable differences in germination behavior of seeds from the 

two regions of the UK and Libya. This is perhaps not surprising, given the findings 

reported in Williams, (1963) that show the requirements in this species differ not only from 

one population to another but also from one plant to another. The length of primary 

dormancy can also vary over similar scales (Holm et al., 1977), with the strength of 

primary dormancy being strongly influenced by the day length during the seed ripening 

period (a long day promotes the production of strongly dormant seeds, but short day 

promotes non-dormancy, so that seeds produced in late summer will germinate direct 

immediately). Hence the species is highly variable, it is clear that, with such a variable 

weed species that is also found in so many different geographical regions, it will be difficult 

to make general predictions of the sort that would be useful for targeting spraying that can 

be applied equally throughout the range of the species.  
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Chapter3:  Evaluation of the bioherbicide formulation efficacy 

of Ascochyta caulina on different life stages of the weed plant 

Chenopodium album     

3.1 Introduction 

As indicated in section 1.4.1 chapter 1, when developing a biocontrol agent it is important 

to identify methods that can increase the effectiveness and/or reduce the cost of a biocontrol 

treatment (TeBeest et al., 1992). This may include creating optimum conditions for 

germination of the biological agent. The development of a formulation can involve mixing 

or blending of active ingredients, such as spores with nutrients, inert carriers or components 

that reduce or decrease the long period of high humidity which is very often necessary for 

successful germination of fungal spores or propagules. It is vital that the application of the 

formulation does not affect germinability and vigor of growth of the bioagent (Weaver et 

al., 2007). The invert (water-in-oil) emulsions can provide a favorable micro-environment 

around the spores during the infection process, thereby reducing the time of dew needed as 

well as the amount of inoculum (Amsellem et al., 1990 , Connick et al., 1991b , Boyette et 

al., 1993), but unfortunately emulsions are difficult to apply with standard equipment. 

Some formulations have been shown to greatly enhance the pathogenicity of spores against 

weeds (Mintz et al., 1992). For example application of Alternaria cassiae Jurair & Khan on 

sicklepod Cassia obtusifolia seedlings in invert emulsions without a dew period gave 88% 

mortality compared to 0% mortality when applied as conidial suspension (Zidack & 

Quimby, 2001). Oil-in-water emulsions can be applied with standard equipment. The 

potential of a mycoherbicide has to be tested under field conditions in combination with the 
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crop. However, the importance of environmental conditions on spore germination has been 

recognized since the early stages of mycoherbicides research (TeBeest et al., 1978 , 

TeBeest & Templeton, 1985). Two important environmental components that limit spore 

germination and consequently the effectiveness of biological control agents are temperature 

and moisture (TeBeest et al., 1992). The development of an effective bioherbicide requires 

a comprehensive understanding of the pathogen involved the biology and population 

dynamics of the target weed, the optimum requirements for disease development in the 

host-pathogen system, and the virulence of a mycoherbicide candidate to confirm its 

effectiveness. 

Many studies have been done on the use of Ascochyta caulina to control Chenopodium 

album (Kempenaar, 1995 , Mendi, 2001 , Ghorbani et al., 2002 , Stamatis, 2002 , Ghorbani 

et al., 2006). Formulations containing different combinations of Ascochyta caulina, the 

phytotoxins from the fungus and low doses of herbicides have been tested, and significant 

improvement in the efficacy was achieved in glasshouse trials. However, they have still 

suffered from the limitations discussed previously, particularly in respect of difficulties of 

maintaining a long enough period for the fungus to become established on the host in field 

strategies.  

However, none of the previous trials have focused on the use of the formulae of oils with 

the fungus to optimize the efficacy of the mycoherbicide to control the Chenopodium 

album, which as indicated in chapter one is a promising alternative way of formulating 

fungal applications. 
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The primary objective of the research described in this chapter is to optimize the biological 

control agent of the weed Chenopodium album by applying the pathogenic fungus 

Ascochyta caulina more effectively as a microbial herbicide (mycoherbicide) by developing 

a new chosen formula. This is because, as mentioned above, as far as practical application 

is concerned, two major challenges remain: to increase the activity of the fungus on 

Chenopodium album, and reduce its dependency on environmental conditions. The 

increased activity of the fungus will hopefully be aided by the choice of strain of the 

pathogen, since different strains can vary markedly in their activity on the host. The 

requirements to overcome the dependency on high air humidity will be met by 

experimenting with two formulae, (Tween 80 and Gelatine), and by using soybean oil 

because it has been found to be the ideal alternative to paraffinic oil (Womack et al., 1996). 

A further objective is to compare the effects of using the formulations on plants of different 

ages (life stages), in order to assess when application of the mycoherbicide would be most 

effective in the life cycle of the weed. Thus, the activity of the most promising novel 

formula will be tested under laboratory conditions and different plant developmental stages 

to find out the most susceptible stages to the mycoherbicide. 

 

3.2 Materials and methods 

3.2.1 Inoculum source 

The biological control agent used in this study was Ascochyta caulina (P. Karsten) v.d. Aa 

and v. Kesteren. Large differences in pathogenicity between strains of Ascochyta caulina 



59 

 

have been demonstrated (Kempenaar, 1995). For this study a stock of Ascochyta caulina 

strain 1058 was obtained from Italy (Istituto Tossine e Micotossine da Parassiti Vegetali). 

The origin of this strain of Ascochyta caulina was isolated from a diseased leaf of 

Chenopodium album, supplied by Dr. P. C. Scheepens (Department of Crop and Production 

Ecology, Wageningen University and Research Centre, The Netherlands) and is maintained 

on potato dextrose agar medium as a single-spore culture in the Collection of Istituto 

Tossine e Micotossine da Parassiti Vegetali, CNR, Bari, Italy (ITEM 1058). 

The active stock cultures were maintained on Oatmeal agar (Sigma Co. LTD. Poole UK) at 

4°C. Starter cultures were prepared by aseptically transferring small mycelium pieces from 

stock cultures to Oatmeal Agar plates and storing at 22°C in continuous light. 

 

3.2.2 Inoculum production and spore preparation  

The mass production and storage of the inoculum source is a crucial step in the 

development of a potential mycoherbicide. The mass production of Ascochyta caulina on 

different solid substrates has been previously investigated and Oat Meal Agar was found to 

be the most suitable (Mendi, 2001). The stock culture of the fungus used in this thesis was 

sub-cultured on Oatmeal agar (72.5g Sigma Co. Ltd, Poole UK, added to one liter distilled 

water shaken and autoclaved at 121°C for 15 minutes at 1.1 atmosphere) in Petri dishes 

(9cm diameters, Bibbly Sterilin Ltd., Stone, Staffs, UK.). Each Petri dish contained 

approximately 25 ml of the media. Ascochyta caulina spores from stock cultures of stored 

Oatmeal Agar were streaked on the surface of the media of Oatmeal Agar plates and 
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incubated in an incubator (Gallenkamp, Economy incubator with fan size 2) at 22°C under 

continuous cool white florescent lamps positioned on shelves to shine from outside through 

the glass door of the incubator (florescent lamp 8W) for a period of 2-3 weeks. The effect 

of light on many fungi is to stimulate the production of spores or fruiting bodies, with short 

exposures to sunlight or ultraviolet rays often being a useful method of inducing 

sporulation in cultures (Leach, 1967). After a two week period, surfaces of inoculated 

media were completely covered with mycelium growth. After 2- 3 weeks the spores 

(conidia) of the fungus were harvested by flooding the agar plate cultures with 10 ml of 

distilled water for three hours (three hours of incubation of the fungal cultures were 

sufficient to release most of the spores from the pycnidia (Kempenaar, 1995)). The culture 

surface was then pressed or scraped lightly by spatula in order to release more spores and 

then the resulting spore suspension filtrate was mixed by magnetic stirrer (Stuart Scientific, 

Magnetic stirrer SM1, made in UK) for one hour to release again more spores from 

pycnidia and break the fungal mycelia. After that the liquid was poured off and filtered 

through a double layer of muslin to remove mycelium fragments. Conidia concentration of 

the collected suspension was estimated by examination on a haemocytometer (Hawksley, 

double cell, Thoma, UK) under a light microscope (40X objective lens) the suspension was 

adjusted with distilled water to the desired density value for inoculation  (1 × 106 spores  

ml-1). Freshly harvested conidia were used as inoculum for all experiments. 

 

3.2.3 Plant production 

Mature seeds of Chenopodium album were collected from Bradford near Leeds Bradford 

airport (Yeadon, West Yorkshire N53° 78' 33", W1° 75' 00") August 2006 and seeds 
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collected from Libya (Janzour 17 km western of Tripoli – Libya (N32° 81' 72", E13° 01' 

11") in September 2007 and stored in plastic bottles at room temperature until used. In all 

experiments plants were grown from seeds of Chenopodium album which were germinated 

in Petri dishes with moist filter paper (Whatman No. 2) and then the germinated seeds of 

the first and second day (which were few in number) discarded from the Petri dish and 

seeds which germinated on the third day (when sufficient germinated) were transferred to 

plastic pots (10 cm diameter, 10 cm depth) containing loam based compost (John Innes 

number 2). Plants were grown in a growth cabinet (average daily temperatures were 

between 20- 15°C day/ night, mean relative humidity was about 50%, and mean daily light 

intensity was 78 µmol m-2 s-1 with a photoperiod of 14: 10 hours light to dark). Pots were 

watered with tap water as required. In this study five life stages, each one week older than 

the previous one, were used from age of one week till five weeks, using one single plant in 

each pot (Figure 3.1). A total of 90 plants were used in this experiment divided into three 

treatments or groups: group one was treated with a formula of Tween 80, group two was 

treated with a formula of Gelatine and the third group was a control with untreated plants. 

Each group consisted of 30 plants, 6 replicate plants of each the five life stages. The 

Chenopodium album plants were monitored for a period of 10 days. 
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Figure  3.1 Different life stages of the weed plant Chenopodium album, age in weeks 

starting from one week on the left to week six on the right.  

  

3.2.4 Oil emulsion preparation 

Particular efforts were made to investigate the most suitable formulation to reduce the dew 

requirement, in an attempt to overcome environmental constraints on disease expression. 

Under natural conditions, the invert emulsion formulations and the vegetable-oil emulsion 

formulations have been found to give better results than aqueous formulation (Shabana, 

2005), and these have been experimented with here. 

Simple vegetable oil emulsion containing 10% oil and 1% of an emulsifying agent showed 

promise in reducing dew dependence in controlled environment studies using 

Colletotrichum orbiculare (Auld, 1993 , Sandrin et al., 2003); this type of formulation was 

first recognized by Quimby et al., (1988). These formulations have been shown to 

overcome dew requirements and reduce the spore concentrations required (Amsellem et al., 
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1990 , Boyette et al., 1993 , Womack et al., 1996). Soybean oil has been found to be 

particularly suitable and ideal alternative to paraffinic oil (Womack et al., 1996)   

The first formula (Tween 80) of mycoherbicide used in these experiments consisted of 445 

ml fungal spore suspension plus 50 ml soybean oil plus 5 ml Tween 80 emulsifying agent 

(Tween 80, Fisher Scientific UK. Limited). 

The second formula (Gelatine) of mycoherbicide consisted of 445 ml fungal spore 

suspension plus 50 ml soybean oil plus 5 grams Gelatine as emulsifying agent (Gelatine, 

Sigma). Soybean oil was found to be an ideal alternative to paraffinic oil (Womack et al., 

1996), and the two emulsifying agents were used because they were found to be 

nonfungitoxic and capable of emulsifying the more polar oil phases. In summary, Gelatine, 

and Tween 80 were useful components for bioherbicide formulations to increase conidial 

germination and mycelia growth. Saxena and Pandy (2002) used Tween 80 with Alternaria 

alternata to control Lantana camara and they achieved good results with this surfactant. 

Pfirter and Defago (1998) modified the formulation with Tween 80 and enhanced the 

pathogen viability during infection. Pfirter et al., (1999) used Tween 80 with vegetable oil 

emulsion to prepare Stagonospora convolvuli mycoherbicide to control field bindweed, 

while Zhang et al., (2003) found that Gelatine stimulated conidial germination in the 

Phoma isolates by releasing conidia from the effect of self-inhibition of germination at 

1×108 conidia ml-1 for Phoma medicaginis. 

The oil formulation was prepared in a volumetric flask by adding the soybean oil and the 

1% of emulsifying agent and mixed by a vortex (Griffin vortex stirrer S37-890) at high 

speed for one minute.  The aqueous phase, containing the spore suspension was added to 
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the oil phase and vortexed again for an additional one minute to give a final concentration 

of (1 × 106 spores ml-1). 

3.2.5 Testing viability of fungal spores after formulation 

To determine the effect of the mycoherbicide on spore germination, two hundred µl of the 

mixture were spread with a sterile glass rod on a sterile glass slide containing water agar 

medium and placed on two wood match sticks inside a Petri dish with a moistened filter 

paper to keep the humidity high inside the Petri dish (Figure 3.2). Three replicates were 

prepared.  

 

 

Figure  3.2  Microscope slide with water agar inside the Petri dish 

  

The Petri dishes and their contents were incubated at 22°C for 24 hours. After incubation 

the slides were removed from the Petri dishes and each covered with a glass cover slip. 

Fifty spores per slide were counted under a microscope at 400× magnification, and the 
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percentage of spores germinated was calculated as an average of the three replicates of 

every experiment. Germination of the spores was judged to have occurred if the protrusion 

of a germ tube was clearly visible from the conidia. 

 

Figure  3.3 Spores of the fungus starting to form mycelium 

  

The results of this viability test showed that the two formulae had no marked negative 

effect on the germination of the spores of the fungus Ascochyta caulina (Figure 3.3), with 

the average percentage germination of the Tween 80 formula being 98% and the formula of 

Gelatine giving 95%. 

 

3.2.6 Inoculation procedure and weed control assessment 

In all experiments plants were sprayed to run-off with the relevant treatment using a manual 

operated sprayer (Solare 1 liter hand spray, active products UK  Ltd.) from approximately 

20 cm distance, inoculation was performed on all five plant ages namely one, two, three, 
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four,  and five week old seedlings at a conidia density of (1 × 106 spores ml-1). Suspensions 

were applied to the upper and lower sides of leaves if possible, and plants were returned to 

the original growth cabinet immediately after inoculation. Control plants were sprayed only 

with water oil emulsion emulsified with Tween 80 without the biocontrol agent (fungal 

spores). Temperature (in °C) and humidity (percentage Relative Humidity) were recorded 

daily. Disease severity and differences among treatments were assessed after 10 days by 

using four parameters: disease severity rating, fresh and dry-weight determinations, and 

root length, these are described below. 

 

3.2.6.1 Assessment of Disease Severity Rate 

The disease severity was assessed initially for each leaf on a plant according to a scale 

rating from 0- 6 where: 

0 = no symptoms, 1 = < 6%, 2 = 6- 25%, 3 = 26- 75%, 4 = 76- 95%, 5 = > 95% of leaf 

surface with necrosis, 6 = leaf dead (Pfirter & Defago, 1998). 

The Disease Severity Rate for an individual plant is then calculated using the formula: 

Disease Severity Rate =   

Where:  nx is the number of leaves with rating x  

             N is the total number of treated leaves of the same plant.   
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3.2.6.2 Assessment of fresh and dry weight parameters of plant growth 

Live plants were cut at the soil level line and the above ground biomass weighed fresh, then 

dried in an oven (GENLAB Limited Model No. N200SF) at a temperature of 70ºC for 48 

hours and weighed again. The dry weight reduction was calculated by comparing the dry 

weight in inoculated and control plants. 

 

3.2.6.3 Assessment of root length 

Remains of the living roots after cutting the shoots were measured by a ruler. The pots were 

saturated with water and after that the pot was put under running water to release the roots 

from the soil, the roots cleaned with water; measurement of the root length was recorded in 

centimeters.  

 

3.2.7 Experimental design for Experiments 5 and 6 and data analysis 

A complete randomized block design was used in the experimental design, with different 

life stage and different treatments as the factors; statistical analysis was performed using 

Minitab® version 15 software. Two way ANOVA with interaction procedures were used. 

Experiment 5 was repeated (Experiment 6) to confirm the conclusions reached. 

 

3.2.8 Experimental design for Experiment 7 

To confirm the results of the effect of mycoherbicide, a small observation experiment was 

carried out on the UK and Libyan populations of Chenopodium album. Five life stages 
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were chosen starting from the age of one week, with four replicate plants from each life 

stage, growing two plants in each pot. The same numbers of plants at the various life stages 

were used from each population but without mycoherbicide treatment as a control. For this 

experiment, the formula with Tween 80 only was used.  

The plants were kept in the growth chamber after spraying with the mycoherbicide, and 

after 30 days were assessed visually, recording plants simply as being living or dead.   

   

3.3 Results 

In order to facilitate comparison between the two experiments (5 and 6), the results 

presented below are organized parameter by parameter, including the results from both 

experiments in the relevant section. 

 

3.3.1 Results from Experiments 5 and 6 for Disease Severity Rate                                                                   

The results from experiment 5 for Disease Severity Rate are given in Table 3.1 for the two 

treatments involving the fungal pathogen; there was no evidence of disease on any of the 

control plants, and the results are not presented in the table. Disease symptoms ranged from 

slight necrosis on cotyledons and leaves of old stages, to extensive necrotic lesions 

spreading to all leaves and stems of young stages of inoculated plants. Mortality of 100% 

was observed in the first three life stages. 
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Table  3.1 Results from Experiments 5 and 6 for Disease Severity Rate; values are the 
percentage of plants showing symptoms of disease 

No. Life stage 
Experiment 5 Experiment 6 

Tween  80 Gelatine Tween 80 Gelatine 

1 1 100% 100% 100% 100% 

2 1 100% 0% 100% 50% 

3 1 100% 100% 100% 100% 

4 1 100% 0% 100% 0% 

5 1 100% 50% 100% 100% 

6 1 100% 0% 100% 0.63% 

7 2 75% 1.25% 100% 65.63% 

8 2 100% 7.5% 100% 1.50% 

9 2 57.5% 7.5% 100% 1.50% 

10 2 75% 57.5% 100% 100% 

11 2 57.5% 50.13% 100% 100% 

12 2 100% 15% 100% 0.71% 

13 3 81.7% 15% 100% 25.36% 

14 3 75% 5.83% 100% 65.28% 

15 3 58.3% 8.67% 100% 32.9% 

16 3 24.17% 43.33% 100% 100% 

17 3 24.17% 50% 100% 67.8% 

18 3 24.17% 40.8% 100% 1.07% 

19 4 64.29% 21.5% 100% 65.6% 

20 4 62.5% 21.75% 100% 46.25% 

21 4 75% 6.5% 100% 54.69% 

22 4 62.5% 24% 100% 23.4% 

23 4 62.5% 21.75% 100% 12.18% 

24 4 87.5% 21.75% 100% 22.50% 

25 5 60% 23% 100% 16.7% 

26 5 60% 23.25% 100% 40.6% 

27 5 58% 23% 100% 36.36% 

28 5 39.5% 23.25% 100% 38.5% 

29 5 70% 22.5% 100% 43.8% 

30 5 39.5% 23.25% 100% 40.5% 
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When these results were analyzed by ANOVA (Table 3.2), the differences between 

treatments were very highly significant (p < 0.001), and the life stages also were highly 

significantly different (p < 0.01). However, there was not a significant interaction 

between these two factors (Table 3.2). This indicates that both factors are having a 

marked effect, but as there is no interaction the two factors are influencing the results 

independently of each other.   

Table  3.2 Disease Severity Rate results for experiment 5 analyzed by two-factor 

ANOVA with replication. Significance levels are denoted by: 

 N.S. p > 0.05; ** p < 0.01; *** p < 0.001. 

Source Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Square F- value Probability Significance 

Treatments 1 27554.3 27554.3 57.6 < 0.001 *** 

Life stage 4 8799.2 2199.8 4.59 0.003 ** 

Interaction 4 3117.4 779.3 1.6 0.182 N.S. 

Error 50 23939.2 478.8    

Total 59 63410.1     

 

In order to explore these results further, the surface plot for the two treatments have been 

drawn (Figure 3.4). It shows that the mycoherbicide formula of Tween 80 has a great effect 

on the weed plant, while the formula of Gelatine has some but a lesser effect (Figure 3.4). 

Also, the effect of the fungus is most pronounced at the youngest life stage especially with 

the Tween 80 formulation where there was nearly 100% infection, while at all other life 

stages the results are lower and less variable (Figure 3.4). Thus the fungus has an effect at 

all life stages, but is most effective if applied within approximately the first week after 

seedling emergence. 



71 

 

Tween80

0

50

1

100

2 3 4 Gelatine
5

DSR

Treatments

Life stage- age in weeks

 

Figure  3.4 Surface plot of Severity Disease Rate % (DSR) results for the two 

treatments and five life stages included in Experiment 5,  

(Least Significance Difference = 17.889; n=12; p ≤ 0.05). 

 

The results for Disease Severity Rate from experiment 6 are also given in Table 3.1. 

Analysis of variance calculations show again a very highly significant difference (p < 

0.001) in treatment effects (Table 3.3). However, in contrast to the results from experiment 

5, there is no significant effect demonstrated due to the life stages (Table 3.3). There is also 

no significant interaction effect (Table 3.3). 
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Table  3.3 Disease Severity Rate results of experiment 6 analyzed by two-factors 

ANOVA with replication.  Significance levels are denoted by: 

 N.S. p > 0.05; ** p < 0.01; *** p < 0.001. 

Source Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Square F -value Probability Significance 

Treatments 1 45184.9 45184.9 67.90 < 0.001 *** 

Life stages 4 993.9 248.5 0.37 0.827 N.S. 

Interaction 4 993.9 248.5 0.37 0.827 N.S. 

Error 50 33273.8 665.5    

Total 59 80446.6     

 

The surface plot of Disease Severity Rate (DSR) results for the two treatments and five life 

stages included is shown in Figure 3.5. As with the results from Experiment 5, they show 

that the mycoherbicide formula of Tween 80 has a great effect on the weed plant (nearly 

100% of plants affected), while the formula of Gelatine has less effect although still about 

40% of plants were affected (Figure 3.5). The Tween 80 formula has essentially the same 

effect at all life stages, but the Gelatine formula has a greater effect at the youngest life 

stage in common with the results from Experiment 5; however, the difference between this 

stage and others is much less pronounced than in the previous experiment. 
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Figure  3.5 Surface plot of Disease Severity Rate % (DSR) results for the two 

treatments and five life stages included in Experiment 6, 

(Least Significance Difference = 21.105; n=12; p ≤ 0.05). 

 

 

3.3.2 Results from Experiments 5 and 6 for biomass 

The impact of the mycoherbicides on Chenopodium album biomass in experiment 5 was 

to decrease the fresh weight (Table 3.4). 
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Table  3.4 Results from Experiments 5 and 6 for biomass (weight in grams) (T – Tween 

80 formula treatment, G- Gelatine formula treatment, C- Control treatment). 

Plant 

No. 

Life 

stage 

Experiment 5 Experiment 6 

Fresh weight Dry weight Fresh weight Dry weight 

T G C T G C T G C T G C 

1 1 0 0.026 0.028 0 0.003 0.002 0 0 0.013 0 0 0.001 

2 1 0 0.016 0.028 0 0.001 0.002 0 0.005 0.007 0 0.003 0.000 

3 1 0 0.019 0.028 0 0.002 0.002 0 0 0.014 0 0 0.001 

4 1 0 0.015 0.029 0 0.001 0.002 0 0.007 0.010 0 0.001 0.001 

5 1 0 0.013 0.020 0 0.001 0.002 0 0 0.016 0 0 0.001 

6 1 0 0.015 0.017 0 0.001 0.001 0 0.005 0.019 0 0.001 0.002 

7 2 0 0.023 0.033 0 0.002 0.003 0 0.012 0.041 0 0.002 0.001 

8 2 0.006 0.028 0.029 0 0.003 0.003 0 0.009 0.043 0 0.002 0.002 

9 2 0 0.044 0.040 0 0.005 0.004 0 0.012 0.036 0 0.003 0.003 

10 2 0 0.012 0.032 0 0.001 0.003 0 0 0.035 0 0 0.001 

11 2 0 0.019 0.030 0 0.002 0.003 0 0 0.032 0 0 0.002 

12 2 0.015 0.022 0.039 0 0.002 0.004 0 0.058 0.048 0 0.006 0.004 

13 3 0.016 0.095 0.185 0.003 0.004 0.010 0 0.015 0.066 0 0.002 0.030 

14 3 0.023 0.122 0.308 0.003 0.006 0.022 0 0.021 0.083 0 0.003 0.002 

15 3 0 0.089 0.273 0 0.007 0.017 0 0.032 0.059 0 0.005 0.003 

16 3 0 0.074 0.239 0 0.004 0.014 0 0 0.077 0 0 0.001 

17 3 0 0.096 0.261 0 0.004 0.015 0 0.022 0.063 0 0.003 0.002 

18 3 0 0.096 0.207 0 0.002 0.010 0 0.084 0.169 0 0.004 0.004 

19 4 0.201 0.423 0.993 0.023 0.043 0.069 0 0.047 0.276 0 0.006 0.010 

20 4 0.191 0.450 1.162 0.023 0.040 0.089 0 0.092 0.225 0 0.012 0.014 

21 4 0.181 0.662 1.084 0.022 0.060 0.088 0 0.073 0.202 0 0.008 0.009 

22 4 0.192 0.657 0.969 0.013 0.058 0.080 0 0.091 0.162 0 0.005 0.006 

23 4 0.098 0.405 1.325 0.005 0.040 0.112 0 0.116 0.211 0 0.009 0.007 

24 4 0.134 0.546 0.779 0.016 0.054 0.057 0 0.063 0.129 0 0.006 0.007 

25 5 0.525 1.610 2.861 0.062 0.178 0.226 0 0.096 0.146 0 0.005 0.007 

26 5 1.024 1.712 2.640 0.135 0.193 0.213 0 0.093 0.198 0 0.009 0.015 

27 5 1.040 1.222 3.356 0.134 0.145 0.197 0 0.077 0.615 0 0.006 0.042 

28 5 0.875 2.042 3.135 0.126 0.229 0.227 0 0.066 0.318 0 0.003 0.019 

29 5 0.628 1.946 2.864 0.093 0.206 0.262 0 0.089 0.560 0 0.009 0.035 

30 5 0.871 1.460 2.385 0.122 0.156 0.202 0 0.087 0.293 0 0.008 0.021 

 
 

Both individual factors (treatments and life stage) were very highly significant (p < 0.001; 

Table 3.5), and there was also a very highly significant (p < 0.001) interaction term. In 

view of the significant interaction, it is necessary to consider both factors together, rather 
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than separately, and this is shown by a surface plot of the results in Figure 3.6. It can be 

seen that, unsurprisingly, there is a greater biomass with the older life stages; however, this 

increase with stage is most marked in the control treatment and least with the Tween 80 

treatment (the Gelatine treatment being intermediate). 

  

Table  3.5 Analysis of variance results of Experiment 5 of the shoot fresh weight of all 

treatments and life stages. 

Source 
Degrees 

of 
Freedom 

Sum of 
Squares 

Mean 
Square F -value Probability Significance 

Treatments 2 6.31 3.16 153.80 P < 0.001 *** 

Life stages 4 41.05 10.26 500.01 P < 0.001 *** 

Interaction 8 8.95 1.12 54.50 P < 0.001 *** 

Error 75 1.54 0.02    

Total 89 57.85     
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Figure  3.6 Surface plot of fresh weight results (in grams) for the three treatments and 

five life stages included in Experiment 5,  

(Least Significance Difference = 0.094; n=18; p ≤ 0.05). 

  

The results from Experiment 5 for shoot dry weight (Table 3.4) show very much the same 

pattern of statistical significances (Table 3. 6) as for fresh weight, and the surface plot of 

the results again shows much the same pattern, although with these data the difference 

between the Tween 80 results and those of the Control are not so pronounced as for the 

fresh weights. 
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Table  3.6 Results of the analysis of variance for Experiment 5 of the shoot dry weights 

(g) of all treatments and life stages. 

Source 
Degrees 

of 
freedom 

Sum of 
Squares 

Mean 
Square F- value Probability significance 

Treatments 2 0.022655 0.0113277 58.78 P < 0.001 *** 

Life stage 4 0.387484 0.0968710 502.70 P < 0.001 *** 

Interaction 8 0.027905 0.0034881 18.10 P < 0.001 *** 

Error 75 0.014453 0.0001927    

Total 89 0.452497     
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Figure  3.7 Surface plot of dry weight results (in grams) for the three treatments and 

five life stages included in Experiment 5, 

(Least Significance Difference = 0.0092; n=18; p ≤ 0.05). 
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This reduction in biomass due to the treatments can be summarized as in Table 3.7. It 

shows that the Tween 80 resulted in a higher reduction in weight, whether measured as 

fresh weight or dry weight, than did the Gelatine treatment, and both gave a greater 

reduction of fresh weight than of dry weight. 

 

Table  3.7 Fresh and dry weight values (in grams) of all three treatments and percent 

of reduction for the two mycoherbicide treatments (Tween 80 and Gelatine) compared 

to the control in Experiment 5. 

Treatment Fresh 
weight 

Dry 
weight 

% of reduction fresh 
weight 

% of reduction dry 
weight 

Tween 80 6.02 0.78 76% 69% 

Gelatine 13.96 1.45 45% 25% 

control 25.38 1.94   

 

 

Thus, in this experiment, the Tween 80 treatment of mycoherbicide would be considered 

more successful in reducing the growth of the weed than would the Gelatine treatment.  

The results from Experiment 6 for both fresh and dry weight are given in Table 3.4.  

Table  3.8 Results of the analysis of variance for experiment 6 of the fresh weights of 

all three treatments and five life stages. 

Source 
Degrees 

of 
Freedom 

Sum of 
Squares 

Mean 
Square F -value Probability Significance 

Treatments 2 0.30388 0.151938 52.93 P < 0.001 *** 

Life stages 4 0.24909 0.062272 21.69 P < 0.001 *** 

Interaction 8 0.25961 0.032451 11.31 P < 0.001 *** 

Error 75 0.21528 0.002870    

Total 89 1.02786     
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When considering the fresh weight results for Experiment 6, there was also a very highly 

significant (p < 0.001) ANOVA result for both factors and for their interaction (Table 3.8). 

In contrast to the results from experiment 5, however, the largest F–value is for the 

treatments rather than the life stages, and none of the F-values are as large as the 

corresponding values in Table 3.6. The same overall conclusions regarding the treatments 

can be drawn, however, as can be seen from the surface plot in Figure 3.7; the Tween 80 

reduces the growth more than does the Gelatine, and both substantially reduce growth 

compared to the control. 

Control

G0.0 elatine

0.2

0.4

1

0.6

2 3 4 Tween80
5

Fresh weight

Treatments

Life stages - age in weeks

 

Figure  3.8 Surface plot of fresh weight results (in grams) for the three treatment and 

five life stages included in Experiment 6, 

(Least Significance Difference = 0.0359; n=18, p ≤ 0.05). 
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Considering the dry weight values (Table 3.4), again essentially the same conclusions can 

be drawn from the ANOVAs as for the fresh weights (Table 3.9). Thus, there are highly 

significant effects of treatment, of life stage and of their interaction, with the treatment 

effect leading to the largest F-value. These results are illustrated with a surface plot in 

Figure 3.9. 

 

Table  3.9 Analysis of variance results of Experiment 6 of the dry weights of all 

treatments and life stages. 

Source 
Degrees 

of 
Freedom 

Sum of 
Squares 

Mean 
Square F - value Probability Significance 

Treatments 2 0.0010675 0.0005337 24.32 P < 0.001 *** 

Life stage 4 0.0010080 0.0002520 11.49 P < 0.001 *** 

Interaction 8 0.0010866 0.0001358 6.19 P < 0.001 *** 

Error 75 0.0016457 0.0000219    

Total 89 0.0048078     

 

 

The effect of the different treatments applied on the growth of Chenopodium album plants 

in experiment 6 is illustrated in Figure 3.10. Clearly, both mycoherbicide applications 

resulted in markedly reduced growth compared to the control. Also, there was a slightly 

lesser reduction in growth with the Tween 80 treatment than with the Gelatine. 



81 

 

Control

G
0.000

0.015

elatine

0.030

1

0.045

2 3 4 Tween80
5

Dry weight

Treatments

Life stages- age in weeks

 

Figure  3.9 Surface plot of results of experiment 6, showing the dry weight (in grams) 

of all treatment and life stages,  

(Least Significance Difference = 0.0044; n=18; p ≤ 0.05). 
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Figure  3.10 Effect of application of different formulae of mycoherbicides on 

Chenopodium album plants grown in a growth cabinet in pots, experiment 6. Plants 

are pictured 10 days after the plants were sprayed, with the Tween 80 treatment on 

the left, Gelatine treatment in the middle and control (Tween 80 emulsifier but no 

fungal spores) on the right. 

  

 

3.3.3 Results from Experiments 5 and 6 for root length 

The results for the root lengths from Experiments 5 and 6 are given in Table 3.10. 
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Table  3.10 Results of Experiments 5 and 6 for root length of Chenopodium album, all 

values are in cm. 

No. Life stage 
Experiment 5 Experiment 6 

Tween 80 Gelatine Control Tween 80 Gelatine Control 

1 1 0 2.2 3.0 0 0 3.5 

2 1 0 2.0 2.4 0 2.5 3 

3 1 0 2.5 3.2 0 0 2.5 

4 1 0 3.0 3.2 0 2 3 

5 1 0 3.0 3.0 0 0 2.5 

6 1 0 3.2 2.5 0 3.5 2.5 

7 2 0 2.5 3.0 0 4 5.5 

8 2 2.2 4.5 4.8 0 4 6 

9 2 0 4.0 4.5 0 4.5 5 

10 2 0 3.0 5.2 0 0 6.5 

11 2 0 3.0 2.5 0 0 6 

12 2 2.5 4.0 4.2 0 5.5 6.5 

13 3 5.0 4.0 4.0 0 3 6.5 

14 3 4.2 6.0 4.5 0 7 6 

15 3 0 3.7 5.5 0 4.5 5.5 

16 3 0 5.0 3.5 0 0 7.5 

17 3 0 4.0 3.5 0 5.5 6 

18 3 0 4.0 4.6 0 6 9 

19 4 5.5 4.0 4.0 0 7.5 8.5 

20 4 6.0 3.8 6.0 0 6.5 8.5 

21 4 4.5 6.0 8.0 0 7 10 

22 4 4.0 5.5 4.5 0 8 7.5 

23 4 4.0 5.5 5.5 0 8.5 8.5 

24 4 3.5 4.0 5.0 0 6.5 8 

25 5 5.5 7.0 9.5 0 6 9 

26 5 5.0 6.0 6.0 0 8 8 

27 5 4.0 5.0 5.0 0 8.5 9.5 

28 5 6.5 7.5 8.5 0 8 8.5 

29 5 5.0 7.5 6.5 0 9.5 9.5 

30 5 7.0 7.5 7.0 0 9.5 12 

 

 

Both individual factors (treatments and life stage) were very highly significant (p < 0.001, 

Table 3.11) but there was a non significant (p < 0.080) interaction. As with the shoot fresh 
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weight values for this experiment, the life stage gave rise to the largest F-value with these 

results. 

  

Table  3.11 Analysis of variance for the results of Experiment 5 of the root length. 

Source 
Degrees 

of 
Freedom 

Sum of 
Squares 

Mean 
Square 

F - 
value Probability Significance 

Treatments 2 76.05 38.03 25.59 P < 0.001 *** 
Life stage 4 316.92 79.23 53.32 P < 0.001 *** 

Interaction 8 22.02 2.75 1.85 0.080 N.S. 
Error 75 111.45 1.49    

Total 89 526.45     
 

 

The results are illustrated graphically in Figure 3.11. Although the interaction term was not 

significant for these results, they are illustrated by a surface plot in order to facilitate 

comparison with the results of dry weight later. The diagram shows that there was little 

difference between the control and treated plants in the last two life stages, but that in the 

first three life stages there was a substantial difference between the control and those 

sprayed with the fungus; however, there was no difference between the root length under 

the Tween 80 and Gelatine treatments. 
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Figure  3.11 Surface plot of treatments of Experiment 5, showing root length (in cm), 

(Least Significance Difference = 0.818; n=18, p ≤ 0.05). 

 

  

The results for root length (in cm) from Experiment 6 are included in table 3.10, and the 

ANOVA results are given in table 3.12.  

 

 

 

 

 

 



86 

 

  

Table  3.12 Analysis of variance for the results of Experiment 6 of the root lengths. 

Source 
Degrees 

of 
Freedom 

Sum of 
Squares 

Mean 
Square F - value Probability Significance 

Treatments 2 715.51 357.75 248.44 P < 0.001 *** 
Life stages 4 234.85 58.71 40.77 P < 0.001 *** 
Interaction 8 124.97 15.62 10.85 P < 0.001 *** 

Error 75 108.00 1.44    

Total 89 1183.32     
 

 

In this experiment there was a very highly significant (p < 0.001) interaction (Table 3.12) 

which was not found in experiment 5. The reason for this difference can be seen if the 

surface plots in Figures 3.11 and 3.12 are compared: in Figure 3.12 there is almost no 

growth in root length over time at all for the Tween 80, a result that was not found in Figure 

3.11 where all treatments showed reasonable growth in the later stages and where the 

differences in root length between treatments were most marked in the earlier stages. In 

Experiment 5, the control was different from the other two, which were similar; however, 

with the results of Experiment 6 the control treatment gave rise to the larger roots and 

Tween 80 the smallest, with Gelatine being intermediate at all life stages. The treatments 

gave rise to the largest F-value in Experiment 6, in contrast to the ANOVA results in 

Experiment 5. 
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 3.12 Surface plot of results of Experiment 6 of the root length (in cm) of all treatment 

and life stages, (Least Significance Difference = 0.8; n=18; p ≤ 0.05). 

 

 

  

3.3.4 Results from experiment 7 

The observation of this experiment was continued for a month to observe the effect of 

Formula of fungus plus Tween 80 on the two populations (Libya and UK) of weed plants.  

Temperature and humidity was recorded and mean of temperature was 20°C and the 

relative humidity 50%. The results showed that many plants died after use of 

mycoherbicides, but that some plants could recover and start growing again (Table 3.13) 
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Table  3.13 Observation experiment of the effect of fungus plus Tween 80 or control 

(Tween 80 but no fungal application) on the two population of the weed plant.  

(X = dead plant and L= live plant). 

Life stage 

Libya UK Control UK control Libya 

N
o. of plants 

dying 

Percentage 
dying 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

1 × × × × × × × × L × × × × L × × 14 88% 

2 × × × × × × L L × L L × L L L × 9 56% 

3 × × × × × × × L L L × × L L × L 10 63% 

4 L L L L L L L × L L L L L L L L 1 6% 

5 L L × L × × × L L L L L L L L L 4 25% 

6 × × × L × × × L L L L L L L L L 6 38% 

N
o. of plants 

dying 

16 16 7 5  average 

Percentage 
dying 

67% 67% 29% 21% 44 46% 

 

 

In general, there was a marked difference between the control plants and those that were 

sprayed with the mycoherbicide, although even with the control plants not all of them 

survived; the numbers surviving were 16/48= 33% when treated with the mycoherbicide, 

and 36/48= 75% of the control plants. 
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There were notable differences between the life stages, since most at life stage one and 

several of life stage 2 and 3 died even in the control treatment; however, almost all the 

stage 4 plants survived, even when treated with the fungus, while at stages 5 and 6 several 

plants died, but all of them from the fungus treatment. Comparing the mortality of the 

Libyan and UK populations, there was no difference when sprayed with the fungus, and 

little difference with the controls. 

Overall, these results demonstrate that the mycoherbicide will be able to have a marked 

effect on the mortality of Chenopodium album plants, particularly on older life stages (since 

mortality in the earlier life stages was unconnected with the fungus). Also, the populations 

of Chenopodium album from the two regions responded similarly to the fungus, as well as 

showing similar mortalities in the various life stages 

 

3.4 Discussion 

The goals of the work described in this chapter were to test the usability of Ascochyta 

caulina as a mycoherbicide for the control of Chenopodium album by: finding a usable new 

formulation by which the fungal preparation could be applied; by assessing whether there 

was any differential effect of the fungus on the various life stages of the weed plant; and 

also by finding out whether both the weed populations from the very different regions, 

Libya and the UK, were affected by the mycoherbicide.  

The results from Experiment 5 showed that the mycoherbicide attacked both young and 

older plant leaves, causing foliar disease and defoliation, especially in the young stages of 

growth of the seedlings. Ascochyta caulina caused severe necrosis of almost 100% of the 
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leaf surface of Chenopodium album, especially the three first life stages, whereas 

inoculated plants (control) displayed no disease symptoms. The experiment also showed the 

Tween 80 formula to be better than Gelatine at inducing fungal attack. The conclusions 

from this experiment, relating to the Disease Severity Rating, would be that Tween 80 

should be used, and would be most effective if applied shortly after seedling emergence. 

The conclusion from the biomass values, the Tween 80 however consider slightly more 

effective result than did the Gelatine. With both fresh and dry weight values, the above 

ground biomass was significantly reduced in plants sprayed with the fungus. Root lengths 

were also significantly shorter with the fungal treatments, but here both fungal preparations 

were equally effective in causing the growth reduction. Also, the effect was most marked in 

the early stages of growth for this parameter.  

Essentially the same experiment was repeated (Experiment 6), and the results gave broadly 

the same conclusions as before. This gives added confidence in the validity of the results 

and the conclusions drawn from them. There were some slight differences in the results 

from the two experiments, the main differences being that treatments were more important 

than life stages (in giving a large F-value); and that the Tween 80 gave much less root 

growth than did the Gelatine treatment in Experiment 6 (in Experiment 5 the  two 

formulations gave similar results).  

Experiment 7 showed that the mycoherbicide was effective in killing off many more of the 

Chenopodium album plants than died in the control treatment; the fungus effects were most 

marked in stages 5 and 6, since the mortality in the early stages also occurred in the 
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untreated control (presumably due to the susceptibility of seedlings to dying during the 

establishment phase, as discussed by Grubb, (1977), in respect of the regeneration niche). 

Taking all these results together, they indicated that the new oil-based formulations for 

applying the mycoherbicide appear to work in reducing the growth of Chenopodium album 

under laboratory conditions, and hence may control the weed sufficiently within a crop. Of 

the two formulations, on balance the Tween 80 proved more effective in more 

circumstances and on more parameters of growth, although the Gelatine formula was also 

reasonably effective in some circumstances. Besides causing necrotic symptoms, the effect 

of fungus is to reduce biomass and root length (experiment 5 and 6) and sometimes death of 

the plant (Experiment 7), so therefore the formulations could potentially work in reducing 

weed growth provided they can successfully be applied under field conditions. The results 

under these laboratory conditions indicate considerable potential to reduce effective 

competition of the weed which would allow the crop to get established and hence pre- empt 

niche space (which then might be enough to inhibit the weed sufficiently to prevent 

economic losses). The results also suggest that the same formulation of the mycoherbicide 

could work in other regions such as Libya and therefore might be of wider applicability 

than just in the UK. 

In these growth cabinet studies (experiment 5 and 6) the young plants were inoculated 

when they were approximately seven days old, and harvested when they were 17 days old. 

Also, in Experiment 7 the effects of the fungus only up to the forth life stage were 

monitored. Clearly, additional studies will be needed to evaluate the response of more 

mature, larger, Chenopodium album plants to Ascochyta caulina. 
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However, if spraying of the plants could be achieved while the weed plants are still small, 

as the current results suggest would be desirable, then this may not be so much of a 

limitation. Also, the response of plants to infection under field conditions needs to be tested 

to see whether the formulation could be effectively applied under less controlled 

conditions. This is the crucial next step in testing the potential of the application and use of 

this mycoherbicide, and forms the focus of the following chapter. 
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Chapter4:  Field efficacy of formulated spore suspensions of 

Ascochyta caulina for the control of Chenopodium album 

4.1 Introduction 

Many studies have been conducted to test the use of the fungus Ascochyta caulina as a 

microbial herbicide to control Chenopodium album, and recent experiments using that 

fungus are encouraging. The influences of spore density, additives to spore suspension and 

the environmental factors of temperature and wetness duration on the host–pathogen 

interaction have been investigated (Kempenaar et al., 1996). Ghorbani et al., (2006) used 

this fungus to study the effect of plant age, temperature and humidity on virulence of 

Ascochyta caulina on Chenopodium album but he did not use any kind of formulation, only 

a solution of sylgard and nutrient and yeast extract to keep the fungus active. Also Einhorn 

(2002) used the spore suspensions of the fungus combined with a very low dose of 

rimsulfuron in a field experiment and he achieved some success, however in spring it was 

difficult to find the favorable conditions for the fungus of both moisture and temperature. 

The previous chapter has demonstrated considerable success in controlling the growth of 

Chenopodium album using Ascochyta caulina with an appropriate formulation under 

laboratory conditions. The aim of this experiment is to explore the extent to which this 

control can be achieved under field conditions. 

Vegetable oil suspension emulsion of the potential mycoherbicide Ascochyta caulina was 

evaluated in a field trial. Oils improved mycoherbicide activity in comparison with spores 

applied in water only. As has been noted earlier (chapter 3) a major obstacle to the use of 
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mycoherbicide as a foliar pathogen is the need for at least 6 - 10 hours of dew on the leaf 

surface to enable the fungal propagules to germinate, grow, infect, and colonize the weed. 

Auld (1993) and Shabana et al., (1995) demonstrated,  in  controlled environment studies, 

that in the absence of dew, oil suspension emulsions of Colletotrichum orbiculare gave 

significantly better anthracnose development on Bathurst burr, Xunthium spinosum L., than 

aqueous suspensions.  

In an attempt to improve the efficacy of the mycoherbicide in the field, the application of 

Ascochyta caulina on the weed plant Chenopodium album was assessed, using the 

formulations tested in the laboratory in chapter 3. It was hoped that this would create the 

optimum conditions for production of highly virulent mycoherbicide and hence the ability 

of the two formulations to control or suppress the weed plant, to overcome the lack of dew 

in the field by formulating the inoculum in oil emulsion. Thus the objective of the present 

experiment was to test the effectiveness of oil emulsion formulations of spore suspensions 

on disease establishment and plant death in a field trial. 

 

4.2 Materials and methods 

The field experiment was conducted in May 2008 to evaluate the efficacy of formulations 

of Ascochyta caulina to reduce Chenopodium album. Two formulations were used namely 

(1) formula of Tween 80 and (2) formula of Gelatine. The experiment was carried out 

during May 2008 in a garden plot in Bradford, (Ingleby Road, West Yorkshire, N53° 47' 

29", W1° 45' 38"). A single batch of seeds of Chenopodium album was collected from a 
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field population at Bradford, Bradford Organic Bracken Farm, Syke Lane, Hipperholme, 

West Yorkshire, (N53° 45' 38", W1° 50' 32") for use in the experiment. Seeds were 

incubated in Petri dishes on Whatman filter paper No. 2 at room temperature, moistened 

with distilled water. After three days all germinated seeds were removed and thrown away, 

so that only seeds that germinated on the fourth day were used.  One germinated seed was 

planted per pot of 10 cm diameter and 10 cm depth. The plastic pots were filled with 

compost of John Innes No. 2 compost and placed in a growth cabinet at room temperature 

and watered as necessary. Growth cabinet conditions were 20/15 °C day/ night temperature, 

14 hour photoperiod, and average light intensity of 78 µmol m-2 s-1. The process of 

germination and planting out was repeated at one-week intervals to produce the plants of 

the five different life stages. All seedlings were of approximately the same size within each 

life stage. There were three replications of each of the five life stages (i.e. 15 plants) for 

each treatment, the two fungal formulations and untreated controls. Seedlings were then left 

to establish themselves for five weeks in the growth cabinet before taking them to the field 

plot. 

 

4.2.1 Preparation of the mycoherbicide formulations 

The same procedure was followed as in chapter 3 for preparation of the two formulations 

(see section 3.2.4). The first formula (Tween 80) of mycoherbicide used in these 

experiments consisted of 445 ml fungal spore suspension plus 50 ml soybean oil plus 5 ml 

Tween 80 emulsifying agent, and the second formula (Gelatine) of mycoherbicide consisted 

of 445 ml fungal spore suspension plus 50 ml soybean oil plus 5 grams Gelatine as 
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emulsifying agent, and the two formulae of mycoherbicides were prepared for use in the 

field in the same day. 

 

4.2.2 Preparation of the plants and plots 

The test plot of 12 m2 was divided into three sub-plots (2m ×2m), one for each treatment, 

by placing two separating spaces across the plot (25 cm) as shown in Figure 4.1. The choice 

of which sub-plot had which treatment applied to it was decided at random, but within each 

sub-plot all plants were treated equally. The presence of the gap between plots prevented 

the different sprays from contaminating adjacent plots. The same number of 15 pre-

prepared holes was dug in each sub-plot distributed evenly and the pots containing the 

seedlings were sunk into the holes so that the rim was level with the top of the soil, to avoid 

damage to the seedlings during transferring, also, it was tried to avoid any not the same 

effect of other factors on the weed plants like, closure to the walls, shadow. 

 

 

Figure  4.1 Design of plots for the field experiment (Experiment 8). Plants within each 

block were randomized as to their location. 
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4.2.3 Mycoherbicide application procedure and weed assessment 

The mycoherbicide of both formulae were applied in late evening, applications were made 

two hours before sunset using a hand spray, and plants were sprayed till the run-off of 

liquid occurred. Ten days after inoculation plants were taken back to laboratory, and 

assessed for Disease severity rate (DSR), also the fresh and dry weight of living above 

ground biomass and root length per pot were assessed and measured. Completely collapsed 

seedlings were considered dead. The results for Disease Severity Rate were assessed with 

same method as in chapter 3 where the disease severity was assessed initially for each leaf 

on a plant according to a scale rating from 0- 6 and the following formula was used 

Disease Severity Rate =   

Dry weight was obtained by cutting aerial parts at soil level, the above-ground biomass 

weighed fresh then drying put in special paper bags for two days (48 hours) at 70°C in the 

oven before reweighing them. The dry weight reduction was calculated by comparing the 

dry weight in inoculated and control plants. Remains of the living roots after cutting the 

shoots were measured using a ruler. The roots were released from the soil by water, the 

roots cleaned and measured in centimeters. 

 

4.2.4 Data analysis 

Data were analyzed by 2 -factor ANOVA, with the factors being treatment and life stage, 

using MINITAB® version 15.   
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4.3 Results 

The results are analyzed and given for every parameter in their separate section. 

 

4.3.1 Result of the Experiment 8 for Disease Severity Rate 

The results from the field experiment for Disease Severity Rate are given in Table 4.1. The 

mycoherbicide attacked young and old plant leaves causing clear symptoms. Disease 

symptoms ranged from slight necrosis on cotyledons and leaves of old stages, to extensive 

necrotic lesions spreading to all leaves and stems of young stages of inoculated plants. The   

disease severity was particularly noticeable for life stages 2 to 5, especially on the plants 

treated with Tween 80 (Table 4.2). There was no disease evident on the untreated control 

plants. The plants treated with the Gelatine formulation showed some disease, but much 

less than that with the Tween 80.  
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Table  4.1 Result of Experiment 8 for Disease severity rate. 

No. Life stage % of Disease Severity Rate 
Tween 80 formula Gelatine formula 

1 1 0 0 
2 1 40 5 
3 1 46 22 
4 2 11.5 14 
5 2 100 14 
6 2 97 33.5 
7 3 37 15 
8 3 81  9 
9 3 54 19.5 
10 4 41 11 
11 4 45 17 
12 4 64 3 
13 5 69 12 
14 5 78 20 
15 5 65 30.5 

 

    

Table  4.2 Summary table of average values of Disease Severity Rate for each life 

stage. 

Life stage  Tween 80 Gelatine  Control 
1 28.7 9 0 
2 69.5 20.5 0 
3 57.3 14.5 0 
4 50 10.3 0 
5 70.7 20.8 0 
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Table  4.3 Two –factor analysis of variance of the results for Disease Severity Rate, for 

the factors of mycoherbicide treatment and life stage, together with their interaction. 

(Key to significance levels: *** = p < 0.001; N.S. = No significance, p > 0.05). 

Source 
Degrees of 

Freedom 

Sum of  

Squares 

Mean 

Square 
F - value Probability Significance 

Treatments 2 24463.8 12231.9 43.06 < 0.001 *** 

Life stages 4 2004.1 501.0 1.76 0.162 N.S. 

Interaction 8 1900.7 237.6 0.84 0.578 N.S. 

Error 30 8522.3 284.1    

Total 44 36891.0     

 

 

  

The results, analyzed by a 2 factor ANOVA (Table 4.3), showed that the differences 

between treatments was very highly significant (p < 0.001), and between the life stages 

were also significantly (p < 0.01). However, there was no significant effect of life stage, nor 

was there a significant interaction between these two factors (Table 4.3).   

These results are illustrated as a surface plot in Figure 4.2. It can be seen that the Tween 80 

formulation generally gave higher disease severity rating values than either the Gelatine or 

Control treatments. There were some differences between the life stages with this 

parameter, but no consistent trend with increasing life stage, and as indicated above the 

results for life stage are not significantly different 

 

 



101 

 

Tween80

G
0

elatine

50

1

100

2 3 4 Control
5

DS R

Treatments

Life stages- age in weeks

 

Figure  4.2 Surface plot of Disease Severity Rate % (DSR) results for Chenopodium 

album in relation to mycoherbicide treatments and life stages,  

(Least Significance Difference = 15.97, n = 9 and p ≤ 0.05). Note the reversed order of 

the treatments compared to previous figures, to aid clarity. 

  

4.3.2 Results of Experiment 8 for fresh weight and dry weight   

The results from the field experiment (Experiment 8) for fresh weight are given in Table 

4.4. Growth and development of Chenopodium album was affected by the kind of formula 

of mycoherbicides. It is clear from the mean values (Table 4. 5) and the surface plot (Figure 

4.3) that both formulations reduced the growth of the weed plant compared to the Control, 
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especially in the later life stages, with Tween 80 reducing growth slightly more than the 

Gelatine. 

Table  4.4 Fresh weight values (g) from above-ground biomass of Chenopodium album 

in experiment 8. 

Plant No.   Life stage 
Fresh weight in grams 

Tween 80 Gelatine Control 

1 1 0.028 0.118 0 

2 1 0.031 0.116 0 

3 1 0.035 0.122 0.088 

4 2 0.140 0.511 1.995 

5 2 0.113 0.576 0.335 

6 2 0.050 0.335 0.661 

7 3 0.259 0.833 1.427 

8 3 0.321 0.963 1.091 

9 3 0.373 0.880 1.132 

10 4 1.073 1.099 2.517 

11 4 0.827 0.991 2.156 

12 4 0.691 0.955 2.051 

13 5 1.292 1.643 3.802 

14 5 1.550 1.820 3.202 

15 5 1.139 1.141 1.872 

 

 

 

 

  



103 

 

Table  4.5 Summary table of average values of fresh weight (g) for each life stage, 

together with the percentage change in the treated plant values compared to the 

control plants. 

Life 
stage 

(weeks) 
Control Tween 80 

Change % 
from control Gelatine 

Change % 
from control 

1 0.029 0.030 + 3.4% 0.12 + 310.3% 

2 0.997 0.101 - 89.9% 0.47 - 52.5% 

3 1.213 0.318 - 73.8% 0.89 - 26.5% 

4 2.241 0.864 - 61.4% 1.02 - 54.7% 

5 2.959 1.327 - 55.2% 1.54 - 48.1% 

 

 

Table  4.6 Two –factor analysis of variance of the results for fresh weight for the 

factors of mycoherbicide treatment and life stage, together with their interaction. 

(Key to significance levels: *** = p < 0.001; * = p < 0.05). 

Source 
Degrees 

of 
Freedom 

Sum of 
Squares 

Mean 
Square F - Value Probability Significance 

Treatments 2 7.32 3.66 26.40 < 0.001 *** 
Life stages 4 19.38 4.84 34.92 < 0.001 *** 
Interaction 8 3.30 0.41 2.98 0.014 * 

Error 30 4.16 0.14    
Total 44 34.17     

 

 

Analysis of variance indicated that the treatments and life stage were very highly 

significant (both p < 0.001, Table 4.6), and there was also a significant (p < 0.05) 

interaction term between the two factors. This interaction can be seen in the surface plot for 

these results in figure 4.3 where the surface slopes from front left up to back right in the 

diagram, with later life stages (unsurprisingly) giving greater fresh weights, but especially 

in the control plants. 
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Figure  4.3 Surface plot of Fresh weight results (in grams) for Chenopodium album  

in relation to mycoherbicide treatments and life stages: 

 (Least Significance Difference = 0.06; n=9; p ≤ 0.05). 

 

  

Values of the dry weight of the plants from Experiment 8 are given in Table 4.7, with the 

mean values for the different life stages and treatments summarized in Table 4.8, and the 

ANOVA calculations for these results shown in Table 4.9 

The results indicate a substantial reduction in the dry weights of the treated plants 

compared to the controls (Table 4.8), with Tween 80 sometimes producing similar and 

sometimes more substantial reductions than these due to the Gelatine formulation. 
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Table  4.7 Dry weight results (g) from the field experiment (Experiment 8). 

Plant No.   Life stage Dry weight in grams 
Tween 80 Gelatine Control 

1 1 0.004 0.007 0.005 
2 1 0.006 0.005 0.007 
3 1 0.001 0.009 0.004 
4 2 0.012 0.052 0.174 
5 2 0.012 0.058 0.021 
6 2 0.008 0.034 0.046 
7 3 0.044 0.094 0.167 
8 3 0.058 0.102 0.099 
9 3 0.061 0.107 0.098 
10 4 0.168 0.150 0.341 
11 4 0.129 0.131 0.240 
12 4 0.099 0.122 0.245 
13 5 0.253 0.282 0.542 
14 5 0.294 0.260 0.493 
15 5 0.202 0.172 0.266 

 

 

 

 

Table  4.8 Summary table of average values of dry weight for each life stage, together 

with the percentage change in the treated plant values compared to the control plants. 

Life 
stage  Control  Tween 80 Change % 

from control Gelatine  Change % 
from control 

1 0.005 0.004 - 20% 0.007 + 0.2% 

2 0.080 0.011 - 86.3% 0.048 - 40% 

3 0.121 0.054 - 55.4% 0.101 - 16.5% 

4 0.274 0.132 - 51.8% 0.134 - 51.1% 

5 0.434 0.249 - 42.6% 0.238 - 19.6% 
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Table  4.9 Two –factor analysis of variance of the results for dry weight for the factors 

of mycoherbicide treatment and life stage, together with their interaction.  

(Key to significance levels: *** = p < 0.001; * = p < 0.05). 

Source 
Degrees 

of 
Freedom 

Sum of 
Squares 

Mean 
Square F -value Probability Significance 

Treatments 2 0.07 0.04 13.84 < 0.001 *** 
Life stages 4 0.52 0.13 48.26 < 0.001 *** 
Interactions 8 0.05 0.01 2.43 0.037  * 

Error 30 0.08 0.00    
Total 44 0.73     

 

 

Both treatments and life stage were very highly significant factors (p < 0.001, Table 4.9), 

and there was a significant (p < 0.05) interaction term between the two factors. It can be 

seen from a surface plot of these results (Figure 4.4.) that the two mycoherbicide treatments 

are suppressing the growth of the plants compared to the control, especially in the later life 

stages. There is not much difference, however, between the dry weight values for the two 

fungal treatments at any of the life stages, which is also evident from the percentage 

reduction values in Table 4.8 
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Figure  4.4  Surface plot of Dry weight results (in grams) for Chenopodium album in 

relation to mycoherbicide treatments and life stages,  

(Least Significance Difference = 0.00, n=9, p ≤ 0.05). 

  

 

4.3.3 Results of the root length measurements for experiment 8  

The results for root length from Experiment 8 are given in Table 4.10. 
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Table  4.10 Root length results from the field experiment (Experiment 8). 

Life stage Replicate Length of root of  treatments in cm 
Tween 80 Gelatine Control 

Life stage 1 
1 5 7 2 
2 0 5 6 
3 4 5 6.5 

Life stage 2 
1 6 9 11.5 
2 6 7.5 8 
3 5 8 8 

Life stage 3 
1 10 10.5 11 
2 8.5 10.5 7 
3 6.5 11.5 12 

Life stage 4 
1 8.5 9 26 
2 10 9 24 
3 11 10 30 

Life stage 5 
1 15.5 12 22 
2 10.5 14 30 
3 14 14 28 

 

 

The mean values for the different life stages and treatments are shown in Table 4.11. It can 

be seen from these and the ANOVA results in Table 4.12 that the treatments with the 

fungus gave substantially shorter root length than the control, especially at the later life 

stages. There was relatively little difference in the percentage values for the two 

formulations. 

Table  4.11 Summary, table of average values of each life stage for root length. 

Life stage Control Tween 80 Change % 
from control Gelatine Change % 

from control 
1 4.8 3.0 - 37.5% 5.7 + 18.8% 
2 9.2 5.7 - 38% 8.2 - 10.9% 
3 10 8.3 - 17% 10.8 + 8% 
4 26.7 9.8 - 63.3% 9.3 - 65.2% 
5 26.7 14.7 - 44.9% 13.3 - 50.2% 
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Table  4.12 Root length values of the field experiment analyzed by 2 way ANOVA. 

(Key to significance level: *** = p < 0.001). 

Source 
Degrees 

of 
Freedom 

Sum of 
Squares 

Mean 
Square F- value Probability Significance 

Treatments 2 466.54 233.27 52.75 < 0.001 *** 
Life stages  4 1073.08 268.27 60.66 < 0.001 *** 
Interactions 8 513.46 64.18 14.51 < 0.001 *** 

Error 30 132.67 4.42    
Total 44 2185.74     

 

 

As well as both factors, Treatments and Life stage, being very highly significant (p < 

0.001) as shown in Table 4.12, there was also a very highly significant interaction between 

the two factors (p < 0.001). This is reflected in the surface plot, which shows little 

difference between treatments in the earlier life stages, but a much bigger increase in root 

length in the control plots in life stages 4 and 5 (Figure 4.5.). 
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Figure  4.5  Surface plot of root length results (cm) for Chenopodium album in relation 

to mycoherbicide treatments and life stages,  

(Least Significance Difference = 1.99, n=9; p ≤ 0.05). 

 

  

4.4 Discussion 

The potential of emulsions with low oil content and emulsions made from vegetable oils 

was investigated. Oil emulsions are promising in dew-free conditions. Evaluations of these 

products in large-scale field trials are necessary to confirm the results from miniplot trials. 

Oil suspension emulsions may simply aid wetting of the plant surface at low (0.5- l %) 

concentrations. Amsellem et al., (1991) were unsure whether invert emulsions using high 

oil concentrations (> 20%) assist mycoherbicides by retaining water for spore germination 
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or by damaging plant cuticle. There was evidence in their study of formula Tween 80 

improving mycoherbicidal effects. Environmental factors are more variable under field 

conditions than in the growth cabinet studies by Auld (1993), which may explain why he 

demonstrated a significant improvement in performance of the mycoherbicide in a 10% oil 

suspension emulsion, compared with water, under conditions of no dew of herbicidal 

activity. 

In the present experiment the Disease Severity Rate was particularly increased by the 

Tween 80 formulation, the Gelatine being much more similar to the control values.  

However, in this experiment the disease severity was lower than the values obtained in the 

experiments in the laboratory (Experiment 5 and 6). Possibly this could be attributed to the 

fact that the young leaves are more vulnerable and seem to be less resistant and easy to 

infect than the old one because the cuticle layer of wax still not very hard while under 

higher humidity this constraint could be defeated, whereas in the laboratory more humid 

conditions contributed to an increased disease rating for Chenopodium album. The Tween 

80 formula (Disease Severity Rate of 41%) tended to be superior to the Gelatine formula 

(Disease Severity Rate of 25%), the majority of plants of first, second and third life stages 

were killed before ten days and, on the remaining plants, lesion development was poor and 

this could be show that the Tween 80 work better under field condition and humidity which 

was available during the night and early morning could help the formulation of 

mycoherbicide in starting the infection. 

All three of the measures of growth (fresh weight, dry weight and root length) showed 

essentially the same pattern of results, namely that both mycoherbicide formulations 
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reduced the plant growth compared to the controls, especially in the later life stages, and 

that Tween 80 tended to reduce growth more than did the Gelatine. Thus, overall, this study 

shows that the mycoherbicide had considerable potential to reduce the growth of 

Chenopodium album even though the weather during the day was not very suitable and had 

a negative influence on the mycoherbicide.   
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Chapter5: General discussion and conclusions 

5.1 Introduction 

The research described in this thesis has focused on the current advances in bioherbicide 

research through a brief review and discussion of the basis, the progress, the restraints, and 

the prospects of this approach to weed control; and in particular on the possibility of control 

of Chenopodium album by the fungus Ascochyta caulina. Since this species is one of the 

most widely distributed weeds in the world (Holm et al., 1977) and is an important weed in 

corn and soybean fields (Frick & Thomas, 1992), the control of it by use of a 

mycoherbicide could be an important contribution to reducing crop losses. As Warren 

(1998) has pointed out, a good deal of increased agricultural productivity has resulted from 

improved crop breeding, nutrition, and pest management, of which weed management has 

been a major factor. 

One of the main targets in weed research is the enormous reservoir of viable dormant weed 

seeds present in agricultural soil (Wesson & Wareing, 1969), and the factors that control 

dormancy or trigger germination of the seeds. One aim of this present research was to study 

the effect of some factors on seed germination, and therefore on the early seedling growth, 

of Chenopodium album and to determine what variations there are in the populations from 

two very different geographical regions, namely Libya and the UK. These aspects are 

discussed in section 5.2. 

The development of a mycoherbicide involves three major phases or stages: 1) discovery, 

2) development, and 3) deployment (Templeton et al., 1979).  Phase 1 had already been 

explored by other workers; thus in a previous study, an isolate (ITEM 1058) had been used 
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to demonstrate that the fungal pathogen, Ascochyta caulina, was pathogenic and had 

potential as biological control agent of Chenopodium album (Scheepens et al., 1997). The 

development phase involves the determination of optimum conditions for spore production 

(Mendi, 2001); while the deployment phase involves determination of optimum conditions 

for infection and disease development especially under field conditions, and this is the 

focus of the present research to overcome the problem of environmental factors such as 

unfavorable moisture and/or temperature conditions. This has been done by developing a 

new formulation for Ascochyta caulina, in the light of recent research on formulation which 

has shown the potential for invert (water-in-oil) emulsions for mycoherbicides (use of low 

concentrations of vegetable oils with an emulsifying adjuvant) (Connick et al., 1991b , 

Daigle & Cotty, 1992). These formulations and their efficacy are discussed in section 5.3. 

In the field, the use of mycoherbicides is based on the fundamental epidemiological 

principles of plant pathology, and weed disease is the result of the interaction among the 

host weed, the pathogen and the environment (referred to as the disease triangle Kavanagh, 

2005). Formulation and application methods need to be as insensitive as possible to 

overcome the problem of environmental fluctuations. After testing the new formulation in 

the laboratory, a field trial was performed to assess the deployment of the fungus under 

these conditions. These aspects are discussed in section 5.4 below. 

Finally, the main conclusions arising from this work, and recommendations for future 

research, are made in sections 5.5 and 5.6 respectively. 
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5.2 Effect of environmental conditions on Chenopodium album seed 

germination 

 Cheam (1985) claimed that seed dormancy is perhaps the single most important 

characteristic in weeds that enables them to survive and persist. A large number of 

Chenopodium album seeds in the soil persist because of seed dormancy. This ability to 

persist for many years poses a continuous weed control problem. For any control measure 

to be effective in the long term it must greatly reduce the weed seed population in the soil.  

Seed germination begins with imbibitions of water. The rate and extent of imbibitions may 

be governed by the surrounding soil water potential. Many authors have reported that 

germination of Chenopodium album seeds depends on the presence of light (Henson, 1970 , 

Vincent & Roberts, 1977 , Roberts & Benjamin, 1979 , Bouwmeester & Karssen, 1993 , 

Jursík et al., 2003).      

 Other environmental factors also promote or inhibit seed germination. The seasonal 

germination pattern depended almost entirely on the fluctuations in field temperature 

(Bouwmeester & Karssen, 1992); these authors, however, reported that germination can 

occur whenever the field temperature is between about 5 and 25°C and moisture, light and 

sufficient nitrate are available. Murdoch et al., (1989) concluded that alternating 

temperatures were clearly an effective dormancy breaking agent.  

Results from the germination experiments described in chapter 2 showed, firstly, that there 

was a difference in the frequency of the polymorphic seeds in the two populations, from 

Libya and the UK, and also that the dormancy and germination patterns varied markedly as 

well. The fact that the Libyan population consisted entirely of black morph seeds which 
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germinate readily after harvesting (Bouwmeester & Karssen, 1993), and that older seeds 

from the UK were more dormant than Libyan seeds, indicate that the environmental 

triggers for germination in the two populations are very different as might be expected, 

with the Libyan population having less variability and less need for longer term dormancy. 

The main inhibition to germination in Libya is likely to be lack of sufficient moisture, 

rather than temperature limitations, which probably accounts for the reduced longer term 

dormancy as well as the reduced response to chilling compared to the UK seeds. The fact 

that new seeds from Libya show greater dormancy than equivalent ones from the UK may 

be a reflection of the conditions under which the parent plants were growing, but may also 

be an adaptation to avoid immediate germination unless sufficient moisture is present 

(whether from rainfall or from irrigation of crops).   

The emergence behavior of weed species in relation to cultural and meteorological events 

was studied by Grundy et al. (2003). Dissimilarities between populations in dormancy and 

germination ecology, between maturation conditions and seed quality and burial site 

climate all contribute to potentially unpredictable variability. Their study showed that there 

is a relationship between the climatic conditions of the burial sites and the relative amount 

of the flush of emergence of Chenopodium album. It is interesting that the pattern of 

dormancy for this species appears to contrast with that of another widespread weed species, 

Senecio vulgaris. In the latter case, UK populations tend not to show initial dormancy of 

seeds (although this has been found to relate to the time of year in which the seeds are 

produced), while fresh seeds from the few Mediterranean populations studied showed 

strong innate dormancy over a wide temperature range (Ren & Abbott, 1991). It has been 

suggested that this difference is due to a shift to a winter annual life cycle in the warmer but 
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drier environment of the Mediterranean (Ren & Abbott, 1991). If this is indeed the case in 

Senecio vulgaris, it does not appear that Chenopodium album shows a similar response. 

Clearly, further study of the germination and emergence behavior of the Libyan population 

of Chenopodium album is needed to enable greater understanding and prediction of the 

response of the weed species to environmental conditions in the country. 

From other studies and this study we can conclude that seasonal variation in dormancy 

relief pattern may interact with the rainfall pattern early in the growing season to modify 

weed seedling emergence and this will affect the ease or difficulty of weed control for that 

year. As an example Everman et al., (2008) investigated the effects of various intervals of 

weed interference on peanut yield, and they predicted a critical period of weed control, 

found to be from 3 to 8 weeks after planting, the peanut yield decreased as weed 

interference intervals increased. It will be important for Chenopodium album to account for 

local and seasonal variation in dormancy biology when interpreting predictions from 

models and selecting integrated weed management strategies.  

  

5.3 Factors influencing the pathogenicity of Ascochyta caulina against 

Chenopodium album 

 Biological control research is expanding and new strategies are being sought for alternative 

methods of weed control for integration into weed management systems. The endemic 

pathogen could be completely destructive to its weed host by using a massive dose of 

inoculum at a particular vulnerable stage of weed development (Daniel et al., 1973) but 
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crop losses could also be reduced by achieving a quantitative reductions in the growth of 

the weed through a less destructive application of the pathogen. 

Fungi have potential for use as mycoherbicides in a manner similar to chemical herbicides. 

The formulations of mycoherbicides are developed for different reasons associated with 

manipulation (including handling and application), stabilization or shelf-life, and efficacy 

(Weaver et al., 2007). Formulations containing different combinations of Ascochyta 

caulina conidia, its phytotoxins, and low-dose herbicides have been tested (Evidente et al., 

1998 , Evidente et al., 2000 , Vurro et al., 2001). A significant improvement in the efficacy 

of the fungus was achieved in glasshouse trials by (Netland et al., 2001) with an aqueous 

formulation containing PVA (polyvinyl alcohol, 0.1 percent v/v), Psyllium (a plant derived 

polysaccharide, 0.4 percent w/v), Sylgard 309 (a surfactant, 0.1 percent v/v), nutrients, and 

conidia (5 x 106 ml-1). The formulation of spores of Ascochyta caulina in a vegetable oil 

emulsion significantly improved the effectiveness of the pathogen. The oil emulsion was 

easy to prepare, could be sprayed using standard equipment and was not toxic to Ascochyta 

caulina spores. The oil emulsion may provide a favorable microenvironment around the 

spores during the infection process, either by retention of the water present in the emulsion 

or by inducing an exogenous supply of water, possibly from leaf tissue cells (Greaves et al., 

1998). Once applied as a mycoherbicide in the field the effectiveness of Ascochyta caulina 

may be enhanced through weakening by crop shading or by adding sub-lethal dosages of 

herbicides. To overcome free moisture requirements of many plant pathogens, humectants, 

antidesiccants and oils have been added successfully to spray solutions to delay 

evaporation. This characteristic makes them suitable to be used within a mycoherbicide 

formulation.  
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Reduction or enhancement of vigor, aggressiveness, or fitness of the pathogens associated 

with changes in physical or nutritional conditions could significantly influence 

performance. Numerous studies of plant pathogens have demonstrated the enhancing effect 

of nutrient amendments on growth of pathogens. Enhanced infectivity through increased 

spore viability, spore germination and infection structure development are thought 

responsible for the nutritional effect. However, few studies have evaluated the effect of 

nutritional amendments on biological weed control pathogen performance. For example, 

pH, surfactants and nutrients greatly influenced germination of Alternaria cassiae conidia 

and these results corresponded to increased disease severity on sicklepod seedlings Cassia 

obtusifolia L. (Daigle & Cotty, 1992). Invert (water in-oil) emulsions can retard 

evaporation, thereby decreasing the length of time that additional free moisture is required 

for spore germination and for infection (Quimby et al., 1988 , Daigle & Cotty, 1992). 

The importance of moisture on disease development by plant pathogens has been well 

documented, and most studies demonstrated a positive correlation between the length of the 

dew period and the extent of disease (TeBeest et al., 1992). The successful use of the 

mycoherbicide Collego® can be attributed to the high relative humidity in rice and soybean 

fields in which it is used (Templeton et al., 1979). In the present study, the two emulsifiers 

Tween 80 and Gelatine were used with the intention to delay evaporation and provide the 

inoculum with moisture for an extended period, especially under field conditions. Both 

adjuvants, Tween 80, and Gelatine significantly increased disease severity compared to the 

standard treatment. 



120 

 

In the present work, the efficacy of formula of Tween 80 in controlling Chenopodium 

album shoots was much lower in experiment 5 than in experiment 6, and because both 

experiments were carried out under almost the same conditions, the most likely reason to be 

different could be attributed to the relative humidity which was higher in the second 

experiment (about 60% compared to 45 % in the first experiment). The reduction in 

biomass in experiment 6 of fresh weight by formula Tween 80 was 76% and dry weight 

was 69% while it was 45% for fresh weight and was 25% for dry weight in experiment 5. 

Nonetheless, both experiments showed a similar response of the plants to the 

mycoherbicide, namely a notable reduction in growth of the weed plants. Therefore there is 

good evidence that the use of the mycoherbicide coupled particularly with the Tween 80 

formulation has been successful in attempting to control the quantitative growth of the 

weed. Experiment 7 also demonstrated that it could influence the mortality rate as well, 

which would also contribute to a reduction in the competitiveness of the weed growing 

within a crop.   

Addition of adjuvants also can influence other aspects of infection and disease 

development. Control of redroot pigweed Amaranthus retroflexus L. by Microsphaeropsis 

amaranthi was increased with the addition of certain fatty acids, but the compounds had 

minor effects on spore germination or development of infection structures (Weidemann et 

al., 1995). Several formulations of invert emulsion type were used in their study, and in the 

present work Tween 80 and Gelatine were used as the emulsifiers with soybean oil. 

So far, most of the research on the efficacy of mycoherbicides for biological control of 

invasive weeds was performed and successful under controlled conditions (i.e. 
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greenhouses), thus, one of the main task of this study was to investigate the efficacy of the 

formulation to control Chenopodium album under field conditions. During the season 

(2008) the main objective was to determine the effective formulation of the formulated 

fungal isolates, applied singly to control Chenopodium album. These treatments have been 

compared with the control, and the oil invert emulsion formulation showed a potential to be 

used as a delivery system to control Chenopodium album under field conditions.  

Both formulations were able to delay the growth of Chenopodium album, especially the 

Tween 80 formula reduced the total biomass of Chenopodium album shoots and induced 

disease symptoms on all growth stages of Chenopodium album plants, irrespective of the 

weather (which was very dry). Relatively low levels of weed mortality were achieved under 

these field conditions (50% with the Tween 80 formula and 15% for the Gelatine formula), 

but particularly with the Tween 80 results this would still be a valuable reduction in weed 

competitiveness, even when the environmental conditions were not especially favorable to 

the use of the mycoherbicide. The field conditions under which the treatment is applied still 

need to be optimized taking into consideration the environmental conditions and use of 

mycoherbicide early in the season, especially as  biomass reductions in Chenopodium 

album were greater when plants were treated at an earlier growth stage. Generally, 

temperature has not been considered to be as critical as moisture for mycoherbicide 

development, since most pathogens studied were infectious over a wide range of 

temperatures (TeBeest et al., 1992). 

Thus the overall outcome from these studies is that in investigating the performance of 

Ascochyta caulina conidia applied at different developmental stages of Chenopodium 
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album with the available formulations (particularly Tween 80), successful reductions in 

weed growth were achieved in the laboratory and the field, but that favorable weather 

conditions are still needed to obtain the most successful infection in the field. The impact of 

the disease was less when plants were treated at later growth stages and little biomass 

reduction was observed in sprayed plants. However, the field efficacy of this fungus under 

different weather conditions needs to be studied further. 

 

5.4 Constraints in use of Ascochyta caulina as a mycoherbicides 

 “Perhaps the biggest single constraint to development and marketing of mycoherbicides is 

the need to develop an appropriate formulation. This is a complex requirement, needing a 

major research input. Even if produced for a restricted niche market, a mycoherbicide will 

be used in a range of widely differing conditions determined by geographical location and 

cropping system with their attendant pest control regimes” (Greaves & Macqueen, 1990).  

Success in one country often results in attempts to repeat results in other areas of the 

introduced range– sometimes these attempts succeed, sometimes they fail: which is an 

indication that success can be a function of interaction of an invasive plant with local biotic 

and abiotic conditions (Weaver et al., 2007). One positive feature of the present results is 

that the infection responses of plants from the UK and Libya were similar. This suggests 

that this pathogen could be used as a mycoherbicide in both regions. 

The lack of proper epidemiological conditions for infection and disease development has 

been a major obstacle to the development of many pathogens for biological weed control in 

the field, and these conditions often limit the efficacy and therefore the commercial 



123 

 

potential of bioherbicides (Auld, 1993). Development of suitable formulations to improve 

viability and efficacy may counter these obstacles by improved moisture retention, reduced 

drying and UV-irradiation, nutrient supply, evenly diluted and dispersed inoculum or 

improved host-pathogen contact (Charudattan, 1991) and by careful timing of application 

(Walker & Boyette, 1986). Integration of biological control strategies with chemical, 

cultural, and mechanical control practices is essential to a wise use of biological control in 

weed management programs. Because biological strategies control a comparatively narrow 

spectrum of weed species, chemical herbicides are generally required to control the 

complex of weed species. Also, available biological control practices are few compared 

with the many chemical herbicides available for weed control. So, biological control 

strategies must be integrated with chemical herbicide for effective management of weeds 

(Müller-Schärer & Vogelgsang, 2000). Integrated weed management is a systems approach 

incorporating plant breeding, fertilization, crop rotation, chemical and mechanical weed 

control, interspecific plant competition and soil management that need to be combined into 

a method of reducing weed interference and herbicide use while maintaining acceptable 

crop yields.  

The amount of yield loss in crops resulting from weed competition is a function of the time 

of weed seedling emergence relative to the crop (Baldwin & Santelmann, 1980 , Swanton 

& Weise, 1991 , Kropff & Spitters, 1992 , Knezevic et al., 1994 , Chikoye et al., 1995 , 

Dieleman et al., 1995). In this respect, the results of the field trial (Experiment 8) in the 

present work were encouraging, in that the effect of the fungus was not only to increase 

mortality but also to reduce the growth rate of the weed. Therefore, there is likely to be a 

notable reduction in competitiveness of the weed if grown along with a crop. Clearly, 
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assessing the extent of such a reduction, and consequently the extent of increase in crop 

yield, through a full-scale field trial is an important further step that is required in testing 

the effectiveness of Ascochyta caulina as a mycoherbicide.  

 

5.5 Conclusions 

 A future trend in weed management is to find an alternative method of weed control which 

will become more important to vegetable growers in the future to reduce the reliance on 

chemical herbicides. One of the bases of the biological control of weeds is to reduce rate of 

growth, fecundity and general vigor of the host, consequently reduce the weeds competitive 

position in the crop.  

The efficacy of Ascochyta caulina under laboratory and field conditions was improved by 

formulating the spores in an oil emulsion. The oil formulation caused high levels of disease 

severity even with no recorded period of dew after inoculation in the field. The 

mycoherbicide caused necrosis of Chenopodium album leaves and it reduced the above 

ground shoot, thereby affecting the vegetative propagation of the Chenopodium album. 

Neither of the formulae used negatively interfered with the fungus, rather their effects on 

Ascochyta caulina were positive. The results of the work suggest that combinations of 

different methods are much more likely to solve the Chenopodium album problem 

compared to using one method alone in conditions of unfavorable weather. Appropriate 

timing of the application to take advantage of the humidity provided by rain, dew and 
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irrigation in the field would probably have increased the effectiveness of the 

mycoherbicide.  

It is encouraging that disease occurred in the field as a result of the spray application of 

formulated aqueous suspensions of Ascochyta caulina onto Chenopodium album; although 

the disease effects were only moderate under these conditions. Significant improvements 

may well need to be made to its field performance to enable the fungus to be considered a 

serious mycoherbicide candidate.  

Results from this study support the conclusion that Ascochyta caulina has potential as a 

biological weed control agent for Chenopodium album. However, the circumstances of 

weed emergence and of moisture patterns are likely to be quite different in the UK and in 

Libya, and these need to be taken into account with respect to use of the mycoherbicide.  

Biological control of weeds may not work in some areas, even if it does in others. Climate 

variations such as humidity and plant biotype differences may account for some failures in 

the past, the biological control agents require specific conditions to survive. 

In general, several agents are needed to achieve the desired population controls throughout 

the variety of ecological and climatic conditions present in Libya. 

Successful application of biological controls requires more knowledge-intensive 

management. Understanding when and where biological control of plant pathogens can be 

profitable requires an appreciation of its place within integrated pest management systems. 

The effects of inoculum concentration, dew period and plant age on the biocontrol of 

Chenopodium album in Libya needs to be studied under environmental conditions. 
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In conclusion, this mycoherbicide is useful in the field and appears to have the potential to 

help in the biological control of Chenopodium album. 

Increased activity in basic and applied science and in biotechnology have a definite role to 

play in development, implementation, and advancement of this weed control strategy 

(virulence, efficacy, fermentation, formulation, and application are aspects of prime 

importance). Research on control of weeds with biological agents and natural products 

should be conducted with emphasis on optimizing performance in the field environment 

and testing with a wider range of crop plants. 

Scale-up includes the testing of potential formulations of mycoherbicide based on results 

from earlier preliminary testing and performance trials in laboratory and small field trials. 

In relation to the control of Chenopodium album by Ascochyta caulina, in the light of the 

laboratory and small scale field trial results it is now appropriate to focus on the larger field 

scale, the biotic and abiotic constraints to using the mycoherbicide in nature that impact on 

the safety and efficacy of the biological agent for weed control and the economic cost of 

doing so.  One factor limiting commercial interest in biocontrol is the high cost of 

production for most biocontrol agents (due to high cost of substrate, low biomass 

productivity, or limited economies of scale), and an assessment of the extent to which it 

would be limiting with this combination of fungal agent and formulation within relevant 

crops needs to be carried out. Additional testing on a larger scale under field conditions will 

confirm if the formula of Tween 80 has potential as a marketable mycoherbicide for 

Chenopodium album. 
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As a next step testing the validity of using the Tween80 formula under field conditions in 

combination with the crop is vital, and different ecotypes of the weed need to be included 

in such testing since they may react differently to the mycoherbicide and knowledge of 

their behavior in the field is needed. 

The final challenge is to develop an efficient, low cost means of scaling up production of 

fungal material and to develop a formulation to satisfy industrial needs for commercial 

exploitation of this technology. 

 

5.6 Recommendations for future research 

Several lines of further research should be followed in order to develop the possibility of 

using Ascochyta caulina as a mycoherbicide for Chenopodium album. 

1. Although the formulation developed in the present work has proved satisfactory, 

including in a field trial, it may still be possible to modify the formulation to 

improve its efficacy. This might be achieved by increasing the effectiveness of the 

fungus by nutrient enhancement, combinations of adjuvants with complementary 

effects, or cultural methods such as increasing the spore concentration. 

2. Further exploration of the best life stage against which to spray the mycoherbicide 

should be made to determine when the weed plants are most vulnerable to the 

fungus.  

3. The effectiveness of multiple applications of the fungus, or integrated control with 

chemical herbicide, could also be studied. 
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4. When the most appropriate formulation has been found, it will be necessary to scale 

up preparation of the fungus and to perform a large scale field trial where the crop is 

present, so that the effectiveness of the treatment and the extent of yield benefit to 

the crop can be assessed. It will then be possible to determine whether the economic 

yield benefit outweighs the commercial cost of preparing and applying the 

mycoherbicide.  

5. Further studies, particularly on patterns of emergence of the weed in the field, 

should be carried out, along with other germination trials (for example of the effect 

of enhanced moisture from rainfall or of irrigation) to enable more accurate 

predictions of the desired timing of mycoherbicide application. The apparent lack of 

seed polymorphism in Libyan populations of the weed needs confirming, and 

generally the differences in dormancy and germination triggers in a region such as 

Libya which is less well-studied compared to that of the UK need clarifying. 
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