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Mammography is used to aid early detection and diagnosis systems. It takes an x-ray 

image of the breast and can provide a second opinion for radiologists. The earlier 

detection is made, the better treatment works. Digital mammograms are dealt with by 

Computer Aided Diagnosis (CAD) systems that can detect and analyze abnormalities in 

a mammogram. The purpose of this study is to investigate how to categories cropped 

regions of interest (ROI) from digital mammogram images into two classes; normal and 

abnormal regions (which contain microcalcifications). 

The work proposed in this thesis is divided into three stages to provide a concept 

system for classification between normal and abnormal cases. The first stage is the 

Segmentation Process, which applies thresholding filters to separate the abnormal 

objects (foreground) from the breast tissue (background). Moreover, this study has been 

carried out on mammogram images and mainly on cropped ROI images from different 

sizes that represent individual microcalcification and ROI that represent a cluster of 

microcalcifications. The second stage in this thesis is feature extraction. This stage 

makes use of the segmented ROI images to extract characteristic features that would 

help in identifying regions of interest. The wavelet transform has been utilized for this 

process as it provides a variety of features that could be examined in future studies. The 

third and final stage is classification, where machine learning is applied to be able to 

distinguish between normal ROI images and ROI images that may contain 

microcalcifications. The result indicated was that by combining wavelet transform and 

SVM we can distinguish between regions with normal breast tissue and regions that 

include microcalcifications. 
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Chapter 1 

Introduction 

 

1.1. Breast Cancer and Mammography 

Breast cancer is a potentially fatal disease that is growing in frequency in developed 

countries [1] and is becoming a major public health problem among women. Early 

detection of this disease can aid in decreasing the number of patients dying by 20% 

to 30% [2] because the earlier the detection is made, the better treatment works. 

Breast cancer is the result of abnormal cells that spread beyond the ducts or lobules, 

invading the surrounding tissue and lymph nodes or blood stream. Diagnosis can be 

done by several types of biopsy: fine needle aspiration cytology (with sensitivity of 

90% - 95%); excision biopsy; frozen section biopsy; and by ultrasound; and 

mammography [3]. 

Using mammography is cheaper than biopsy methods and is the most reliable 

method for early detection of this disease. Mammography captures x-ray images of 

breasts which are then interpreted by radiologists to locate any abnormalities that 

may indicate cancerous changes. For several reasons including the different types of 

breast tissues, low contrast images, noise and the presence of other features, this can 

be a difficult job for a radiologist. Mistakes by radiologists might lead to the 

misinterpretation of abnormalities and result in patients dying. By providing an 

independent second opinion, Computer Aided Detection (CAD) or Computer Aided 

diagnosis (CADx) systems [4] could help radiologists in the early detection of breast 

cancer. These systems should be considered as supportive tools that provide 
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radiologists with the potential ability to detect abnormalities earlier and faster. On the 

other hand, it is important for future studies to distinguish between computer-aided 

detection and computer-aided diagnosis systems. The latter CAD system could help 

radiologists to classify the abnormalities as benign or malignant, which would 

provide specificity [5].  

Usually the mammogram process starts by taking an x-ray of the breast to generate a 

hard copy, to be handled by a radiologist. Then the mammogram is interpreted using 

a magnifier to examine different areas of the breast. This is due to the nature of some 

tumour types that are difficult to be seen by the human eye, as they could be less than 

1 mm (i.e. microcalcifications); unlike other types of tumours such as masses. 

Depending on the expertise of the radiologist, she/he then could make a decision of 

what level of risk there is and what treatment is needed. If there is still uncertainty 

about the case, radiologists would then go through the biopsy procedure, a procedure 

which might cause anxiety to the patient. Therefore, by providing a computer system 

that could aid radiologists in interpreting and analysing a mammogram image, 

providing a second opinion, this could improve the chances of detecting and 

diagnosing tumours. However, the final decision is made by the radiologist regarding 

the possibility of the presence of a cancerous tumour.  

 

The original x-ray film is converted to a digital copy that could be read by a 

computer under special applications designed for this specific purpose. Since there 

are several types of digital mammography computer aided systems, radiologists can 

get assistance in different ways. There are computer aided diagnosis systems that can 

analyse a mammogram to give a report of what sort of tumour is detected and in 

what category it is classified. There are computer aided detection systems that can 
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help radiologists in locating any abnormal object. Or there are basic viewing and 

image enhancement systems that provide simple tools such as the ability to zoom in 

on a digital mammogram image, inverting between black and white on the image and 

increase/decrease the grey shades; so that a radiologist could have a clearer look of 

certain areas, or regions, of interest. 

 

1.2. Importance of this Work and Technical Challenges 

Digital mammogram images are grey scale images which can be used to check for 

various breast abnormalities. Among these the main tumour type to be studied is 

microcalcifications, which are the smallest tumour types within the breast, with a 

size less than 1mm across [6, 7].  Therefore, digital mammography is an essential 

process to aid radiologists in studying and diagnosing mammogram images by giving 

them a tool that provides aid with the freedom of selecting certain areas that the 

radiologist is suspicious of. This process aims to provide radiologists with a second 

opinion in studying a mammogram case. Moreover, some of the methods that have 

been adopted are improved to be able to perform their tasks in different environments 

or to detect different types of abnormality (i.e. from detecting masses to 

microcalcifications). 

In order to proceed, microcalcifications and other suspicious objects need to be 

segmented from the background. Since it is an essential step to locate and to take out 

these regions for detailed analyse and not spend unnecessary time analysing the 

background. This needs an efficient segmentation method that can detect potential 

microcalcification peaks. Thus, the use of special filters has been adopted for this 

purpose. The main problem that remains is to distinguish between true positives (i.e. 

microcalcifications) and false positives (i.e. other objects than microcalcifications or 
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artefacts); as some of these artefacts share the same characteristics as 

microcalcifications in shape, size or pixel intensity. Further, it is crucial to keep in 

mind the false negative that represents microcalcifications that are not detected or 

considered as artefact or noise. This has to be considered by configuring the 

thresholding parameters to match their characteristics. Moreover, to test the detection 

against true positive and false positive, regions of interest are cropped prior to the 

segmentation stage into two sets. Each set enclosing images that contain cases with 

microcalcifications and images with normal breast tissue. The first set includes 

regions of interest that represent clusters of microcalcifications and the second set 

represents individual microcalcification.  

It is important to find some unique features that correspond to the microcalcification 

characteristics. These features would be the key to distinguish such an abnormality 

from a normal breast tissue that contains other objects than microcalcification. These 

features then will be needed to classify segmented regions into two classes, normal 

or abnormal. It is of crucial importance to apply a classification method in such a 

way to be able to distinguish and obtain a high level of classification accuracy 

between normal breast tissue and regions that contain microcalcifications, as well as 

maintaining the false positive at its minimum level, since the segmentation process 

will help in locating microcalcifications and any suspicious objects within a cropped 

region of interest. Therefore, yet again a classification process is needed to 

distinguish between regions of interest that contain microcalcifications and those that 

do not. 
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1.3. Aims and Objectives of the Research 

The main reason for the work presented in this thesis is to assist future development 

of the diagnostic uses of digital mammography. This is done by creating a concept 

CAD system that is able to perform detection for suspicious objects within images of 

regions of interest and then to be able to distinguish between normal and abnormal 

objects detected. By investigating how such a problem could be solved, combinations 

of methods and algorithms are modified and improved to achieve high classification 

accuracy results in short times. This could potentially provide assistance to 

radiologists interpreting mammograms by providing a second opinion that would 

draw the attention of the radiologist to some areas that are missed or to confirm what 

the radiologist already suspected.  

Therefore, to sum up the main objectives of this thesis:  

� Presenting the use of different region of interest image sizes (areas show 

cluster of microcalcifications that depends on the cluster size and areas 

showing individual microcalcification); this is to be run under the same 

process. 

� To present modified thresholding filters, to locate abnormality of 

microcalcifications types, that could be applied to regions of interest in 

images provided by radiologists or cropped from a full mammogram image.  

� Proposing the use of wavelet transform for feature extraction; this is by 

investigating different wavelet types and number of features.  

� Plan of using support vector machines to distinguish and categorise between 

normal and abnormal breast tissue regions.  

Basically, a mammographic based diagnosis system is divided into three main stages. 

The first stage is the localisation of potential microcalcifications and other suspicious 
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objects, the second stage is feature extraction which is used to identify the 

information from within segmented regions and finally the classification stage will 

process the extracted features and offer diagnostic decisions.  

In other words, to define the main problems in this study they could be summarized 

by the following points: 

� The low contrast between calcifications and surrounding tissue. When the 

surrounding tissues have similar or higher intensity calcifications are difficult 

to detect. 

� The unpredictable shape, size and location of calcifications; even when found 

in the same cluster, are slightly different. Breast structures such as blood 

vessels or milk ducts and clatter, none of which are related to abnormalities, 

frequently have similar characteristics to calcifications. This can result in 

false positive detections which may cause patients unnecessary anxiety. 

� To be able to provide a proper diagnosis for a mammogram, that will aid 

radiologists in this task; a huge number of samples that contain a variety of 

abnormalities need to be trained in such systems.  

 

1.4. Outlines of the Thesis 

The remainder of the thesis is composed of five chapters. Chapter two presents a 

literature review of various existing methods from the research area of digital 

mammography. This chapter includes three main sections which cover previous 

research on segmentation, feature extraction and classification. 

The particular implementations of the proposed system are discussed in chapters 

three, four and five. Chapter three includes work on segmentation including the 

thresholding techniques applied and the application to different sizes of regions of 
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interest. Chapter four includes work on feature extraction using the discrete wavelet 

transform, applied to the segmented images. A set of features can represent a full 

image or a small region of an image. The quality of the extracted features depends on 

the degree to which they can accurately represent the region and discriminate 

between the different classes. Chapter five includes the work done using the features 

as input to a machine learning process to classify the normal and abnormal cases. 

The conclusion and suggestions for future work are presented in Chapter Six.  
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Chapter 2 

Literature Survey 

 

2.1. Introduction 

In this chapter, we take a closer look at how the literature survey has covered a 

variety of significant studies in digital mammography at different levels of image 

processing namely: segmentation, feature extraction and classification. Some of these 

studies are selected as benchmarks or include methods and algorithms that have been 

modified and applied in this research. Each study has obtained a certain 

mammographic database for different purposes. Some studies have applied their 

methods on more than one database while most of them utilised only one. Several 

studies that have been mentioned in this chapter and their methods applied to the 

same mammographic database that has been used in this research as well. This 

makes it possible to compare results from the authors’ research study with other 

studies. Also an overview of mammogram abnormalities, presented in this chapter, 

investigates the characteristics described in other studies, to help this research study 

handle these abnormalities. 

The rest of this chapter is organised as follows. A description of the MIAS 

mammography database used in the current work is provided in Section 2.2 with an 

overview of the characteristics of different types of breast abnormalities in Section 

2.3. Section 2.4 surveys studies related to segmentation methods that have been 

applied in the mammography area. In Section 2.5 various feature extraction 

techniques from other studies are shown. Then machine learning and classification 
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studies and their results from other studies are presented in Section 2.7. Section 2.7 is 

a short summary. 

 

2.2. Mammography Database 

Selecting a benchmark database makes it easier to compare results obtained with 

those from other studies. For that reason, the images that have been used in the 

present work are the full size images from the Mammographic Image Analysis 

Society (MIAS) database [1]. This database is one of two popular mammography 

databases available in the field of digital mammography; the other is the Digital 

Database of Screening Mammography (DDSM). Moreover, there are other 

mammography databases available but rarely used such as the Nijmegen database 

and the Lawrence Livermore National Laboratories (LLNL) database. 

MIAS is an organization of UK research groups interested in promoting an 

understanding of mammograms. The database contains left and right breast images 

for 161 patients. It contains different types of abnormalities including the type that 

this study is interested in, microcalcifications. Each individual image is accompanied 

by information, which includes the breast type and the abnormality type and location. 

The location of an abnormality is specified using three variables: the x and y 

coordinates of a point and the radius of a circle centred on the point. This database is 

very helpful as expert radiologists have manually determined centres and radii 

appropriate to enclose whole clusters of microcalcifications. The mammogram 

images are available in four sizes: small (4320 x 1600), medium (4320 x 2048), large 

(4320 x 2600) and extra large (4000 x 5200). The largest mammogram image 

comprises about 21 MB of disk space. The mammogram images are digitized with a 

special resolution of 50�m x 50�m and 8 bit grey depth. This database contains 320 

 
 

- 10 -



mammogram images and a database manual provides descriptive information about 

the individual images. The images are divided into categories according to the type 

of the lesion, the severity of the abnormality, and the type of the background breast 

tissue. 

The first category, lesion type, is divided into 7 main subcategories: Normal 

(NORM), Architectural distortion (ARCH), Asymmetry (ASYM), Microcalcification 

(CALC), Circumscribed masses (CIRC), Ill-defined masses (MISC), and Spiculated 

lesions (SPIC). The second category, severity of abnormality, is divided into 2 main 

subclasses: Benign and Malignant. The third category, background tissue, is divided 

into 3 main subclasses: Fatty, Fatty-glandular, and Dense-glandular. In Figure 2.2 

below a sample from the MIAS manual containing seven columns of information, is 

shown. The first column is the name of the mammogram case image where the last 

two letters from the name represent either left breast ‘l’ or right breast ‘r’ and the 

other letter is the size of the mammogram image (i.e. large ‘l’, medium ‘m’ and small 

‘s’). The second column is the type of the breast tissue as mentioned before (i.e. 

Fatty ‘F’, Fatty-Glandular ‘G’ and Dense-Glandular ‘D’). The third column is the 

lesion type and the fourth column is the severity of abnormality. Finally, the last 

three columns represent the location of abnormalities using x-coordinates, y-

coordinates and radius of a circle containing the abnormality. 
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Figure 2.2 MIAS manual of calcifications and normal cases 

 

 

2.2.1 Analysis of the MIAS Database  

A total of 25 mammogram digital images containing microcalcifications exist in the 

MIAS database. The MIAS manual indicates that 20 mammograms have been 

annotated by expert radiologists with circles surrounding clusters of 

microcalcifications. In addition, there are 3 mammograms that have not been 

marked, because the microcalcifications are distributed over most of the breast 

region rather than concentrated at discrete locations. There are also 2 mammogram 

images that have not been marked but nevertheless contain microcalcifications in 

unspecified areas. It is noted that, by taking region of interests (ROI) from the 20 

mammograms that have been expertly marked, 25 clusters of microcalcifications are 

produced. While most of the mammogram images contain just one microcalcification 
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cluster, a few of other mammograms contain more than one cluster. The multi-cluster 

image cases are as follows: 

� mdb223ls with 2 clusters 

� mdb226rm with 3 clusters 

� mdb239ll with 2 clusters 

� mdb249ls with 2 clusters 

Table 2.1 specifies the numbers of benign and malignant clusters and the numbers of 

corresponding images according to the database manual. 

 

Table 2.1 Number of clusters and mammogram images containing microcalcifications 

 Benign Malignant Total 

Mammogram Images 10 10 20 

Cluster of MCs (ROI) 13 12 25 

 

2.2.2 The Characteristics of Breast Abnormalities  

The characteristics of breast tissues can differ from woman to woman. Therefore, 

any abnormalities present can also show different features. Abnormalities that are 

detected in regions of interest (ROI) defined within the breast are divided into two 

main types: Benign and Malignant. Abnormalities are also divided into several types 

as mentioned before: ARCH, ASYM, CALC, CIRC, MISC, and SPIC. However, 

regarding the microcalcifications type as it is the smallest among the rest of tumour 

types it should be considered according to well-established characteristics: shape - 

size - density - number - distribution. 
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2.2.3. Microcalcifications 

Basically, microcalcifications are tiny specks of calcium usually less than 1mm in 

size and between 0.1 and 0.7 mm in diameter [2]. Microcalcifications sometimes 

have subtle appearance with hazy borders [3]. However, most studies in the area of 

mammography agree on describing them showing as bright white spots against the 

darker background of a mammogram [4] [5]. 

One of the important characteristics of microcalcifications is that they group into 

clusters. However, microcalcification clusters are defined differently in several 

papers. Microcalcification clusters are defined as usually at least 3 

microcalcifications within a 1 cm2 region of a mammogram [3]. A cluster is 

considered detected if 2 or more microcalcifications are found within the true circle 

defined by an expert [6]. Gulsrud and Husoy in [7] considered a cluster is to be 

detected if at least one microcalcification is found within the associated ground truth 

circle. Furthermore, classifying a mammogram that includes a cluster of 

microcalcifications is more challenging than doing the same with masses because of 

their unpredictable shapes, size, density and texture. Subsequently, 

microcalcifications are divided into two types: benign and malignant [8] as described 

in the following two sub-sections. 

 

2.2.3.1. Benign Microcalcifications 

A benign microcalcification cluster has a smaller number of components than a 

malignant type, with smaller and rounder shapes. Benign microcalcifications are 

uniform in size and shape and usually appear as coarse, round or oval shapes. Benign 

calcifications are homogeneous and have high-density [9]. Their distribution patterns 
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tend to be scattered or diffuse [10]. Figure 2.3 shows examples of benign 

microcalcifications of different shapes and sizes. 

 

 

Figure 2.3 Images of 1mm x 1mm vignettes containing individual MCs from benign clusters [11] 

 

2.2.3.2. Malignant Microcalcifications 

Malignant microcalcifications within a cluster have a wider variation of sizes 

compared to the benign type. Also malignant microcalcifications display irregular 

shapes with a low-density and inhomogeneous appearance [9]. Furthermore, 

individual malignant microcalcification vary in size and shape, they might appear as 

microscopic and fine, linear branching or stellate-shapes. Moreover, their distribution 

pattern is grouped or clustered, and they are innumerable [10]. 

Malignant microcalcifications are rarely circular in shape and they exhibit sharp 

increases and decreases in intensity [5]. Figure 2.4 shows examples of malignant 

microcalcifications of different shapes and sizes. 
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Figure 2.4 Images of 1 mm x 1 mm vignettes containing individual MCs from malignant clusters [11] 

 

2.2.4. Masses 

Masses are larger than microcalcifications and are divided similarly into two main 

types: benign and malignant. Each has characteristics that may help to identify it 

when detection is attempted. The size of mass lesions considered varies with the 

study. Cheng and Cui in [4] defined mass lesion sizes vary from 1mm to several 

centimetres  Rafayah et al. in [10] divided masses into three sizes: Small (3–15 mm), 

Medium (15–30 mm), Large (30–50 mm), but the latter case is rare. 

Compared with microcalcifications, mass lesions are not only larger but can be of 

different types and shapes which varies from circumscribed to speculate. 

Circumscribed mass lesions have relatively well-defined, smooth boundaries, while 

speculated mass lesions have speculated margins [4]. The benign masses are usually 

rounded and low-density with smooth, sharply defined margins. On the other hand, 

malignant masses usually are high-density, stellate, speculated with poorly defined 

margins [10]. 
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2.3. Segmentation of Microcalcification Regions 

Arodez et al. [5] proposed a filter design is applied in small field mammography that 

is sensitive to the typical appearance of individual microcalcifications and detects 

regions of interest. Small field digital mammograms often contain salt and pepper 

noise and this method takes this into account. The system works by detecting 

microcalcifications in two phases and then enhances the contrast of the results. The 

detection of individual microcalcification in the first phase is done by designing a 

filter with a value that has a response to the difference of average intensity within the 

microcalcification and the average intensity outside its borders. The second phase 

which groups the microcalcifications into clusters, also comprises two parts; first 

noise removal over the whole mammogram which compares the intensity between 

pixels by applying median filter and a threshold keeping the isolated pixels only, that 

represent noise, and then a morphological area opening is applied to remove these 

isolated pixels. In the second part a discrete wavelet transform is applied to enhance 

the mammogram image contrast so that microcalcifications are much clearer. This is 

done by calculating Daubechies wavelets of order 4 and level 5 for the image and 

using only the 5 sets of the details coefficients with zero for the approximation 

coefficient before applying the inverse wavelet transform. After detection, a 

comparison was made with results obtained using the Amira [12] visualisation 

package to confirm that both results provided similar detected regions of interest for 

a group of microcalcifications or to connect isolated microcalcification to the rest of 

the group. This is an interactive evaluation tool which provides a variety of tools to 

assist in processing 2D and 3D images and specifically microcalcifications are 

detected using the isolines visualisation technique. This tool is used on the ROI from 

 
 

- 17 -



the previous step. The isolines technique is used for evaluating microcalcification 

clusters since it connects pixels with the same brightness as illustrated in Figure 2.1. 

 

 

Figure 2.1 Isolines implementation for pixels with similar brightness 

 

The classification method is based on two classification techniques: first the 

mammogram is classified according to Wolfe breast parenchymal patterns [13]; this 

classification technique has four categories based on the breast density as an 

indicator of future cancer risk, they are: primarily fatty 2% (lowest risk), prominent 

ducts <=25% (low risk), prominent ducts >25% (high risk) and dense fibro-glandular 

tissue 45% (highest risk). The second classification is based on LeGal classification 

types for microcalcifications clusters [14], which defines five categories based on the 

degree of the malignancy. 

Melloul and Joskowicz [15] introduced a segmentation method using entropy 

thresholding. Basically, the method consists of two steps, the first is removing the 

background tissue, using a multiscale morphological opening operation 

(morphological top-hat filter). Filtering is performed using a kernel and also 

changing its size to perform multi-scaling. The kernel is given a size varying from 
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smallest to largest for each microcalcification. The second is applying the entropy 

thresholding based on a third-order spatial grey-level dependence matrix to detect 

individual microcalcifications. This is done using third-order space mean. The 

threshold that has been used is the one that separates between the background and 

microcalcifications that have the maximum sum of entropies. This was applied on the 

Mini-MIAS database achieving a mean detection rate of 93.75% for true positives 

and 6.25% for false positives with 2% false negatives. The results were evaluated 

and confirmed by radiologists.. 

Diyana et al. [16] investigated three methods for detecting microcalcifications in 

mammogram images from the mini-MIAS database and made comparisons of 

performances and processing times. The algorithms used in this study included a 

morphological approach, a fractal approach and a high order statistical approach. 

Prior to applying these methods, a pre-processing stage was performed to extract the 

breast region from the background using block region growing. The detection 

algorithms were then applied. The morphological approach implemented opening 

and P-tile thresholding methods; that is erosion and dilation processes are applied on 

the same image in order to separate the microcalcifications from the breast tissue. 

The second fractal method applied divides the image into regions of size 8 × 8 

believed to be suitable for the detection of microcalcification size features and then 

implements the fractal model on each region. The third high-order-statistical 

approach applied is based on the characteristic that microcalcifications are bright 

spots compared with neighbouring pixels. Thus, local intensity maxima are detected 

and ranked according to a high order statistical test performed over sub-bands 

obtained from an adaptive wavelet transform. After comparing the results from the 
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three methods it was found that the morphological approach produced the best results 

with 74% true positives in 3.20 minutes.  

Sentelle et al. [17] investigated a rapid, multi-resolution-based approach combined 

with wavelet analysis to provide an accurate segmentation of possible 

microcalcifications. This approach was implemented on 25 images obtained from the 

Digital Database for Screening Mammography (DDSM). An initial multi-resolution 

approach to fuzzy c-means (FCM) segmentation was employed to quickly 

distinguish medically significant tissues. Tissue areas chosen for high-resolution 

analysis were later divided into multiple windows. Each window, wavelet analysis 

was employed to generate a contrast image, and a local FCM segmentation generated 

an estimation of the local intensity. A simple two-rule fuzzy system is applied 

combining intensity and contrast information to derive fuzzy memberships of pixels 

in the high-contrast, bright pixel class. A double threshold was finally applied to the 

fuzzy membership to detect and segment microcalcifications. 

Stojic et al. [18] applied a method for detecting small-sized brighter regions in 

mammogram images from the mini-MIAS database, based on an adaptive multi-

fractal approach for segmentation and visualization of microcalcifications. Cropping 

images manually into suspicious regions of sizes 128 × 128 or 256 × 256 pixels was 

the first step in the application of their method. This study considered two cases, one 

of them marked as an easy case for radiologists and the other as a hard case. For the 

former case it was reported that the tissue is radiology sparse and microcalcifications 

are visible even to a less-skilled radiologist; by contrast in the latter case the breast 

tissue is very dense causing very poor contrast between abnormality and surrounding 

tissue making microcalcifications extremely difficult to detect even by a skilled 

radiologist. In their study they ascribed several characteristics to microcalcifications. 
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Basically microcalcifications are small brighter local tissue anomalies in 

mammograms not belonging to background tissue. From the geometrical 

interpretation, they are seen as singular sets of points. From the multifractal 

standpoint they are characterizes by both high and low values as they represent sharp 

local changes and rare events. 

Hadhoud et al. in [19] used wavelet decomposition as an enhancement method to 

remove noise from the mammogram images. An orthogonal wavelet was used to 

remove redundancy in the information that is represented by the wavelet coefficients; 

at the same time it provides a corrected reconstruction of the original image. It starts 

by applying a (unspecified) Daubechies family wavelet decomposition. Then a soft-

threshold is applied that involves setting detail coefficients whose absolute values are 

lower than the threshold to zero and then scaling nonzero coefficients to zero. This 

eliminates the discontinuity that is inherent in a hard-threshold. The threshold is 

computed using local statistics from the original mammogram including mean 

intensity, standard deviation, median value, and minimum value. After thresholding, 

reconstruction is performed using the original approximation coefficients and the 

modified detail coefficients. 

 

2.4. Extraction of Features for the Classification of Breast Tissue 

Wavelet decomposition was applied in a previous study by Ferreira and Borges in 

[20] using the mini-MIAS database. Using ‘Haar’ and ‘DB4’ wavelets, it was found 

that extracting the 100 wavelet coefficients largest in magnitude from the 

approximation included enough wavelet features to represent brighter abnormal 

objects. Classification of tumour nature (i.e. normal, benign, and malignant) was 

based on the Euclidean distance. Performances of  83.3% for malignant and 94.4% 
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for normal tissue were achieved using Haar wavelets with corresponding values of 

88.8% and 72.2% using DB4 wavelets. 

Sheshadri and Kandaswamy investigated in [21] the extraction of statistical features 

for the classification of the breast tissue in mini-MIAS mammograms. The 

classification accuracy for breast tissue of this algorithm is nearly 80% and the 

results have been inspected and validated by an expert radiologist. The results show 

the appearance of abnormalities in high density breast tissue. Therefore, the 

extraction of statistical features for the classification of breast tissue should be 

investigated further. The algorithm classifies the pixels from the input image into 

either interior or boundary pixels; the interior pixels include the interior parts of 

texture regions. Then segmentation is performed by applying region growing to the 

interior pixels. Basically the classification is based on the values of the texture 

parameters which are: Average intensity, Average contrast, Smoothness, Third 

moment, Uniformity and Entropy; and also on the standard parameters defined for 

image histograms by ACR-BIRADS (American College of Radiology-Breast 

imaging and Reporting Data Systems). The six statistical features that are used are 

mean, standard deviation, smoothness, third moment, uniformity, and entropy. 

Gulsrud and Husoy investigated in [7], a method applied to mammograms from the 

mini-MIAS database which is based on the extraction of texture features. Their 

detection rate was 1.5% false positives and about 95% true positives. The extracted 

features are used to differentiate between textures that include microcalcification 

clusters and normal tissue. The method employs a single filter whose design is 

optimized with respect to the Fisher criterion [22]. The Fisher criterion uses mean 

and variance to achieve good feature separation and provides a smoothing parameter 
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to be tuned. The tuning of this parameter to optimize the filter requires two sub-

images, one with normal tissue and one with clusters of microcalcifications. 

 

2.5. Classification 

The method of Sheshadri and Kandaswamy in [3] reaches a true positive detection 

rate of 100% with a rate of only 1.5% false positive clusters per image from the mini-

MIAS database. For the classification of detected clusters as benign or malignant, 

their CAD system achieved an overall performance rate of about 75%. Basically, this 

was achieved by manually cropping regions of interest (ROI) from the mammograms 

and processing these parts only rather than the whole mammogram. After cropping 

ROIs, feature extraction is applied for segmentation purposes to divide the region 

into normal tissue or clusters of microcalcifications. Texture feature extraction 

methods are then applied to differentiate between benign and malignant clusters of 

microcalcifications. These methods use digital filters with a filter response energy 

measure that is based on spatial grey level co-occurrence matrices (i.e. second order 

statistical measures of image variation).  

Yu et al. in [23] applied a wavelet filter and a Markov random field (MRF) in order 

to detect microcalcification clusters in mammogram images. The MRF has been 

utilized in various image processing application related to texture modelling and 

discrimination. The MRF is a well-known class of parametric image model whose 

importance deals with a large number of spatial interaction phenomena which can be 

statistically described by MRFs. In this study 20 mammogram images from the mini-

MIAS database were used. First the detection of suspicious regions is based on grey 

levels in the MIAS database in the range of 175 – 226 grey levels and sizes of 

microcalcification clusters varying from 6 to as many as 87 pixels. In order to extract 
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these features from the breast background, a wavelet filter is applied since 

microcalcification clusters have high contrast with respect to their neighbours as well 

as containing high frequency components. Then a threshold of the mean pixel value 

is applied that is set to 10 in order to detect the suspicious regions. In the next stage 

feature extraction is applied using the least-squares-error Markov random field 

method  proposed by Derin et al. [24] in order to identify the texture of the 

microcalcifications. Edge density is found to be a good feature for discriminating 

microcalcification clusters from normal regions. For the classification stage, two 

classifiers were implemented: Bayes and Back Propagation Neural Network 

(BPNN). The Bayes classifier is a statistical classifier, which is designed to minimize 

the error when discriminating between classes. On the other hand, the BPNN can 

achieve lower False Positives rates than Bayes classifiers. As a result, the algorithm 

performance reached a sensitivity of 92% with an average of 0.75 false positives per 

image.  

Papadopoulos et al. in [25] proposed a system that consists of three stages: (1) 

Detection of microcalcifications clusters; (2) Feature extraction from the clusters; (3) 

Classification. It is based on a hybrid intelligent system combining rule-based, 

artificial neural networks (ANNs) and support vector machines (SVMs) with 

Gaussian kernel function methods. This study applied the proposed algorithm on two 

datasets for comparison. Using the Nijmegen database, the correct characterization of 

44 (52%) malignant clusters and the false characterization of 2 (5.8%) benign 

clusters was achieved. Using the MIAS database, the correct characterization of 11 

(61%) malignant clusters and the false classification of 1 (7.6%) benign clusters was 

achieved. To summarise, the final results were: a classification rate of 81% for the 

Nijmegen dataset and 83% for the MIAS dataset. 
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Songyang and Ling in [26] proposed an algorithm to detect the microcalcification in 

mammogram images based on wavelet features and neural networks. They utilized 

median contrast and normalised grey level features obtained by applying the fourth-

level Daubechies-orthogonal wavelet transformation to train a feed-forward NN 

classifier to trace the likelihood map that shows the possibility of the input values 

being a microcalcification. The resulting algorithm was successful in detecting 94% 

of the mean true positives at a cost of one false positive per image and 90% of the 

mean true positives at a cost of 0.5 false positive per image.  

Rafayah et al. in [10] proposed a computer-aided-diagnosis algorithm using a 

wavelet analysis and fuzzy–neural approach for detecting the microcalcification in 

mammogram images. Horizontal, diagonal and vertical detail coefficients from a 

wavelet decomposition of the image coefficients were extracted for feature vectors. 

Normalization of the coefficients, energy and feature reductions were carried out. 

Two classifiers were generated: one processing globally using Neuro-fuzzy classifier 

using 100 coefficients and the other processing locally on cropped ROIs using 35 

coefficients. The classification between normal and abnormal category using 100 

coefficients achieved a classification average of 81.4% while classification between 

benign and malignant calcifications achieved a classification average of 87.5% using 

the 35 coefficients. 

Cheng et al. [27] suggested the use of Fuzzy logic and scale space approaches. The 

first stage of the procedure was to apply a fuzzy-based image enhancement. The 

regions of interest in each image were manually located as rectangular sub-images 

that contain a maximum number of microcalcifications. The Laplacian of Gaussian 

(LoG) filter is then applied on the enhanced images to detect microcalcification 

clusters. The final result of this study was very effective in locating 
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microcalcifications achieving a true positive rate of 90% with a false positive rate of 

1%. This study was applied on images that are obtained from the Nijmegen database 

of mammography. 

 

2.6. Summary 

The reported previous studies mentioned above have achieved valuable results using 

several techniques and methods. Moreover, a number of these studies have combined 

more than one machine learning technique such as neural networks and support 

vector machines in order to classify between several classes of tumour or to 

distinguish between microcalcifications and other suspicious objects. This is likely to 

need a huge computational effort and time consuming training and testing of data. 

Furthermore, the majority of these studies have utilised the mini-MIAS database to 

investigate their methods, rather than the MIAS database of original size images 

which has the advantage of higher resolution with the microcalcifications clearer to 

study besides other mammographic databases such as Nijmegen and DDSM. In a 

number of the studies that have been mentioned above the wavelet transform has 

been used in various ways such as for image enhancement, image segmentation and 

feature extraction in a few. Most of these studies have included the detailed 

coefficients, which include the horizontal, diagonal and vertical coefficients, but a 

few studies have utilised only the approximation coefficients that represent reduced 

resolution images. Moreover, a limited number of wavelet types have been 

investigated, mainly the Haar wavelet and the Daubechies wavelet from order 2 and 

4. Since few studies have used the wavelet transform for feature extractions most 

other studies mainly focus on using statistical features combined with a machine 

learning technique as mentioned in the previous reported studies. These studies 
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achieved not more than 95% of microcalcification detection and 94% of 

classification. 

However, the work that has been presented in this study did manage to tackle most of 

these problems in order to achieve a high accuracy of classification using direct 

methods and techniques. In Chapter 3, a segmentation technique that has been 

adapted from [28] has been modified from detecting masses to detecting 

microcalcifications using only the mean pixel values to compare between a central 

area and its surroundings. This is done on cropped regions of interest (ROI) from 

different sizes that represent clusters of microcalcifications and individual 

microcalcification using the original MIAS database of mammography. Then in 

Chapter 4, the wavelet transform has been utilised at this stage for feature extraction 

using only the approximation coefficients. This scheme was adapted from [20] and 

modified to extract features from black and white images that are thresholded instead 

of grey scale images. Thus, the feature extraction method was applied on cropped 

ROI from the original MIAS instead of the mini-MIAS. In addition, there are six 

different wavelet types that have been investigated from levels 1 and 2 of 

decomposition. Chapter 5 explains the process of a classification method based on 

the wavelet transform features using support vector machine (SVM) that has been 

adapted from different areas of study [29, 30] and modified to suit this area of 

research. This process investigates the classification between normal breast tissue 

and abnormal areas that may contain microcalcifications. 
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Chapter 3 

Microcalcifications Segmentation 

 

3.1. Introduction  

Segmentation in computer vision is the term used for partitioning an image into 

multiple non overlapping regions. Often, these regions are divided into two classes, 

foreground regions of interest and the remaining background region. In the field of 

mammography the process of segmentation is used at different stages to separate the 

breast region from the non-breast region, to remove labels from the image and to 

separate abnormal breast tissue from normal breast tissue [1-5]. These have been 

applied in previous studies as discussed in the previous chapter, while in this chapter 

we focus on applying a direct method of segmentation to a region of interest within 

an image. This is to eliminate the background breast tissue and keep only suspicious 

objects or potential microcalcification in the current case. Applying such a method 

on ROI images that hold normal and abnormal breast tissue would help in the 

following step of features extraction. This process is performed to locate suspicious 

objects within an ROI image and specifically microcalcifications. However, these 

regions still need to be differentiated to assist radiologists in the final diagnosis. This 

technique basically applies a filter on an image to be scanned to compare a middle 

area with its surroundings. Thus, there will not be any additional preceding steps for 

enhancement as image pre-processing. 

This chapter is organised as follows. Section 2 outlines the selection of data for the 

subsequent analysis steps. Section 3 presents a segmentation method involving the 
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design of detection filters to separate the foreground “microcalcifications” from the 

background “breast tissue”. This section is divided into two subsections describing 

the implementations of square and circular filters. Section 4 summarises the chapter 

with examples of the results that have been obtained from the experiments. 

 

3.2. Regions of Interest (ROI) 

Regions of interest are the parts of the mammograms where radiologists find 

abnormalities in the breast tissue such as microcalcifications and masses. However, 

finding these regions automatically is not easy given that these abnormalities are 

small in size and may have similar contrast and brightness to neighbouring regions of 

the breast tissue, making them difficult to spot with the human eye.  

In this research we look at how using cropped regions of interest reduces the time 

spent on the experiments compared with processing full sized mammograms, as well 

as focusing the analysis on regions of interest, cropped manually, which contain 

suspicious objects that need to be studied; rather than getting complex features from 

all over the mammogram image as well as reducing the number of false positives. 

The idea of processing a full mammogram image, covering all the possibilities that 

can be identified, analyzing and storing, then awaiting confirmation by the 

radiologists can be highly beneficial for such systems. However, such 

methods consequently replace the radiologist's opinions in selecting and analyzing 

suspicious regions from the original images. Clinically, digital mammography is only 

considered as a second opinion and complementary to the decisions of the 

radiologists.  

This experiment has used the full MIAS database. In particular, 20 digital 

mammogram images that contain microcalcifications and 50 other digital 
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mammogram images that contain normal, cancer free, breast tissue have been used 

for this study.  

The sizes chosen for the cropped regions are powers of two since this is compatible 

with the usual wavelet transform processing which reduces the width and height of 

the image by half at each level. This will be explained later in Section 4.2 on the 

discrete wavelet transform.  

Two sets of cropped regions of interest were produced. The first set was cropped 

manually and have different sizes to suit the sizes of a single cluster of 

microcalcifications, as highlighted in the MIAS database, and include: eight images 

of size of 128 × 128, nine images of size 256 × 256, seven images of size 512 × 512 

and one image of size 1024 × 1024. There are 25 regions of interest containing 

clusters of microcalcifications and 50 regions of interest containing normal tissue. 

The normal ROI images have the same sizes as the abnormal ROI images. 

The second set of cropped ROI images of size 32 × 32 include individual 

microcalcification and were acquired from previous studies in [6] and [7]. This is 

done by applying two filters, one inside the other, using a size of 9 × 9 for the inner 

mask and 13 × 13 for the outer mask. The average intensity of the inner area of the 

central area should be greater than other neighbours. As well as the average of the 

inner filter should be greater than the surrounding area. This is to increase the 

possibility of detected potential microcalcification. After that, the calculation of the 

mean and standard deviation for the inner area is applied as well as pixel intensity. 

These three values are then considered as an input for a feedforward neural network. 

This neural network is applied to find out the threshold value that separates low level 

intensity and artefacts from microcalcifications; using three inputs (mean, standard 

deviation and pixel intensity), one hidden layer (three hidden nodes) and one output 
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that is the threshold value. An example is shown in Figure 3.1. The total number of 

these cropped microcalcification regions is 220. An equal number of normal regions 

were also manually cropped to a size of 32 × 32.  

 

 

Figure 3.1 Region of interest of size 32×32 containing microcalcifications. 

 

3.3. Image Thresholding  

In this research, to be able to study the abnormalities (i.e. microcalcifications) they 

have to be separated from its surrounding in order to be analysed and examined. 

Therefore, a segmentation stage is needed which basically partitions the image into 

multiple segments or non-overlapping sets of pixels [8]. A thresholding based 

approach is the simplest method of segmentation, which when applied on greyscale 

images, creates binary images [8]; where in this work one binary value represents 

potential abnormality and the other binary value represents background. Moreover, 

further thresholding investigation has been done on 8-bit images keeping the 

background in black and the detected objects with its original grey-scale colour. This 

would provide more information out of the suspicious objects in the following 

chapter. The thresholding process basically provides selected regions for the next 

stage of feature extraction; to avoid the overhead of extracting and analysing features 

over the entire image. 
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The implementation of the thresholding technique has been tested in two forms. First 

it has been applied to full mammogram images using a square filter. In the second 

implementation the thresholding method has been modified to be more focused and 

applied on ROI images with circular filters.  

 

3.3.1. Using Square Filters 

This section describes the first test done on a full mammogram image for 

microcalcifications detection. This thresholding approach has been adapted from a 

previous study by Kom et al. in [9] that investigated breast masses, which are larger 

scale abnormalities, and modified it to fit with this study and especially the much 

smaller microcalcifications. 

This segmentation method uses a filter with two square windows, one inside the 

other, as shown in Figure 3.2. 

 

 

Figure 3.2 Square windows filter used in the adaptive thresholding approach to microcalcification 
detection. 

 

In Figure 3.2, I represents the inner window with a size of 5 × 5 pixels and O 

represents the surrounding border with a size of 20 × 20 pixels. These sizes were 

chosen empirically after testing several sizes for both the inner and outer window 
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including 2 × 2, 3 × 3, 4 × 4, 5 × 5 and 6 × 6 for the inner window and 10 × 10, 13 × 

13, 15 × 15, 18 × 18, 20 × 20 and 22 × 22 for the outer window. These filter sizes are 

more suitable for application on large mammogram resolutions rather than small 

resolution mammograms. The chosen sizes gave the best detection covering all the 

microcalcification peaks for a sample of images within a cluster. These two windows 

are scanned over the whole mammogram image and at each location the averages of 

the inner and border regions are calculated. The following criterion is applied to 

detect abnormal peaks in intensity from background tissue.  

 

IF ((I > m) and (I > O + t)) pixel = 255 Else pixel = 0  (eq. 3.1) 

 

Here I is the inner window intensity average, m is the minimum intensity value of 

microcalcifications, taken to be 120 after checking all microcalcifications pixel 

intensities in mammogram images from the MIAS database, to further confirm this 

value Adobe Photoshop is subjectively tested on microcalcifications; O is the outer 

boundary intensity average and t is a second intensity threshold value that was also 

found empirically and set equal to 10 when it was compared to other threshold 

values. An evaluation will be presented in section 3.3.2 comparing the square filter 

shape with circular filter shape using different threshold values. 

There are two parts to this criterion used to decide whether to label the centre pixel 

with the value 255 to indicate a potential microcalcification pixel. The first part is a 

simple comparison between the inner window of pixel intensity average and the 

minimum intensity value of microcalcifications m. However, the density of breast 

tissue varies between each individual case and microcalcification can be found in 

regions with different background in different parts of a breast and in different 
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mammograms. Therefore, to take account of this variation the second condition was 

added. Only if the inner average exceeds the border average by some minimum 

amount t, found after extensive experiments to be equal 10, is the current location 

marked as a possible abnormal region. 

Figures 3.3 - 3.6 are illustrations from applying the square threshold on full 

mammogram images showing the original mammogram before and after the 

segmentation process. Other examples in Figure 3.7 are showing the location of the 

detected microcalcifications and other suspicious objects from the circular highlight 

made by the MIAS database experts. It is shown that microcalcifications within the 

highlighted areas made by the experts are detected. However, some other particles 

are detected too in other different areas as is clearly visible in Figure 3.7 (b) as well 

as in the other images, on close inspection. More examples of full mammograms in 

Figure 3.8 are available with close-ups of some cases in Figure 3.9, showing how the 

detection technique could also identify other objects that have similar characteristics 

to microcalcifications that are outside of the circle that contains the 

microcalcifications. This similarity could include shape, size or pixel intensity that 

should be tackled and solved. 

 

 - 37 -



�
(a)�Original�Mammogram�(mdb213)� (b)�Detected�microcalcifications�within�a�full�

mammogram�and�other�artefacts�

Figure 3.3 Segmentation process exmaple from full mammogram (mdb213) 
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(a)�Original�Mammogram�(mdb231)� (b)�Detected�microcalcifications�within�a�full�
mammogram�and�other�artefacts�

Figure 3.4 Segmentation process exmaple from full mammogram (mdb231) 
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�
(a)�Original�Mammogram�(mdb238)�

�
(b)�Detected�microcalcifications�within�a�full�

mammogram�and�other�artefacts�

Figure 3.5 Segmentation process exmaple from full mammogram (mdb238) 
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�
(a)�Original�Mammogram�(mdb256)�

�
(b)�Detected�microcalcifications�within�a�full�

mammogram�and�other�artefacts�

Figure 3.6 Segmentation process exmaple from full mammogram (mdb256) 

 - 41 -



 

 
(a) mdb249lm  

 
b) mdb223ls�

(c) mdb241ls 

Figure 3.7 Results from the first implementation of square threshold, where (a) & (b) contain 2 

regions of interest and (c) contains 1 region of interest 
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(a) mdb252rm     (b) mdb248rl 

 
(c) mdb219ll 

Figure 3.8 Results from the first implementation of the threshold technique 
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(a) Close up from mdb252rm 

 
(b) Close up from mdb248rl�

Figure 3.9 A close up from to two mammograms in (a) and (b) showing the detection of other 

artefacts detected 
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3.3.2. Using Circler Filters 

In this section a further modification made to the filter is described. This involved 

changing the shape of the filter’s windows from square to circular; since the circular 

filter has a symmetrical shape with no directional figure, it has a closer match to a 

microcalcification’s shape. This type of filter was applied on regions of interest to let 

the filters scan only specific areas rather than scanning the whole mammogram. This 

way the process of the filter will be more focused on vital parts. 

The choice of circular filter shape was made principally to reduce any directional 

sensitivity in the process which could be introduced by using square or rectangular 

windows. Inevitably, the circular window is an approximation and the smaller the 

size, the greater the departure from a smooth circular shape. The illustration in 

Figure3.10 shows the filter windows that have been used on the ROI images in this 

experiment with radius of 1.5 pixels for the inner filter window and 11 pixels for the 

outer window.  

 

 

Figure 3.10 Circular window filter 
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These sizes were chosen empirically to approximate the previous filter size, and 

these filter radii that have been tested are 1.5, 2, 2.5, 3.5 and 4 for the inner window 

and 12, 11, 9 and 8 for the outer window. Figure 8 shows implementation results 

from different window sizes when applied on a single ROI image and illustrates how 

microcalcifications are detected on some images and missed on others. The size of 

the side of the square region bounding the circular windows is equal to twice the 

outer radius plus one for the centre of the circle. 

This circular filter, which is closer to the shape of microcalcifications, was applied to 

two sets of regions of interest. The first contains 75 regions of interest that are 

focused on clusters of microcalcifications and the second set contains 440 regions of 

interest that are focused on individual microcalcifications. Figures 3.11 and 3.12, 

show two example images. The first example is showing the original image before 

and after the segmentation process using radii size of 1.5 × 1.5 and 11 × 11 for the 

inner and outer filters respectively. This ROI case, mdb223, is from the first dataset, 

with a size of 128 × 128. The example in Figure 8 shows, mdb211 ROI case, after 

applying different sizes of inner and outer filters to compare the amount of 

microcalcifications that are detected. 

 

  
    (a)    (b) 

Figure 3.11 Region of interest from mdb223 with size of 128 × 128 ROI (a) original image, (b) after 
segmentation using inner and outer filters of (1.5, 11) 
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Figure 3.12 Region of interest from mdb211. (a) Original image. (b) Inverted intensity image. 
Applying different filter inner and outer radius sizes (c) 1.5, 11 pixels, (d) 1.5, 9 pixels, (e) 1.5, 8 

pixels, (f) 2, 9 pixels, (g) 2.5, 11 pixels, (h) 2.5, 8 pixels, (i) 3.5, 11 pixels, (j) 3.5, 8 pixels, (k) 4, 12 
pixels, (l) 4, 10 pixels 

 

The best result in this set for thresholding the breast tissue “background” from the 

foreground (i.e. microcalcifications) is shown in Figure 3.8 (c). The original image is 

also shown inverted in Figure 3.8 (b) as this may show microcalcifications clearer to 

the human eye. More examples for different ROI sizes are illustrated below in 

Figures 3.13, 3.14 and 3.15 using the filter radius of 1.5 pixels for the inner window 

and 11 pixels for the outer window. 
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(a) Segmented ROI image of size 512 × 512, before and after 

 
(b) Segmented ROI image of size 512 × 512, before and after 

Figure 3.13 Two examples from the ROI size of 512 × 512 (a) mdb241, (b) mdb249 
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(a) Segmented ROI image of size 256 × 256, before and after 

 
(b) Segmented ROI image of size 256 × 256, before and after 

Figure 3.14 Two examples from the ROI size of 256 × 256 (a) mdb223, (b) mdb238 
 

 

Figure 3.15 Illustration of largest ROI of 1024 × 1024 before and after thresholding 
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The second dataset that includes 32 × 32 pixel size ROI images, generated and 

cropped by AbuBaker et al. in [7], are also segmented using the same filter sizes for 

the inner and outer window. Examples for this ROI size are shown in Figure 3.12. 

Moreover, an example is provided in Figure 3.17 showing a case of the application 

of thresholding filters on connected microcalcifications, making them very close to 

one another or overlapping within the same area. Such cases were cropped 

individually as mentioned in section 3.2 making each microcalcification centred in 

the image. This case is also thresholded using the same filters radii of 1.5 pixels for 

the inner window and 11 pixels for the outer window. 

 

     

     

     

     

     

     

Figure 3.16 Several examples of thresholding, before and after, on 32 × 32 ROI images of individual 
microcalcification 
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Figure 3.17 The original image of a cluster of microcalcifications from mammogram image mdb219 
in (a). individual microcalcifications centred in the images (b), (c), (d) and (e) after cropping into 

size32 × 32 pixels. 

 

The performance of the thresholding technique has been evaluated in Table 1 based 

on the percentage of suspicious objects segmented within a region of interest. This 

evaluation is done between the square filter and the circular filter using different 

threshold values that have been tested on a variety of ROI image sizes. The results 

shown in Table 1 demonstrate an improvement using a circular filter shape rather 

than using a square filter under different thresholding values. In addition, choosing 

the threshold value of 10 matches the size of the (i.e. 1.5 pixels of the inner window 

and 11 pixels for the outer window) filter better than other threshold values.  
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Table 3.1 Thresholding percentage of different thresholding values between square and circle filters 

Threshold�Value� Percentage�of�detected�objects�
using�square�filters�

Percentage�of�detected�
objects�using�circle�filters�

6� 0.0489 0.0635 

7� 0.0310 0.0366 

8� 0.0211 0.0297 

9� 0.0135 0.0204 

10� 0.0102 0.0157 

 

3.4. Thresholding to 8-bit Images 

In this section, the same criterion of thresholding has been applied using Eq. (3.1) for 

both filter shapes (i.e. square and circle). However, the output image this time is an 

8-bit grey scale image. The thresholding technique in this experiment is going to 

locate suspicious objects, keeping the original grey scale colour of the 

microcalcification or any other suspicious objects and removing the background (i.e. 

converting the surrounding breast tissue to black colour). The following Figures 3.18 

and 3.19 are an illustration of different ROI images showing the original image after 

applying the thresholding technique using different thresholding values. 
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Original ROI 
Image 

�
 
 

Threshold 
value = 6 

�
 
 

Threshold 
value = 7 

�
 
 

Threshold 
value = 8 

�
 
 

Threshold 
value = 9 

�
 
 

Threshold 
value = 10 

�
Figure 3.18 Applying circular filter using 1.5 pixels for inner window and 11 pixels for outer window 

using different threshold values 
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�

Original 
ROI Image 

 
 
�

Threshold 
value = 6 

 
 
�

Threshold 
value = 7 

 
 
�

Threshold 
value = 8 

�
 
 
�

Threshold 
value = 9 

 
 
�

Threshold 
value = 10 

�

Figure 3.19 Applying circular filter using 1.5 pixels for inner window and 11 pixels for outer window 
using different threshold values 
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3.5. Summary 

The segmentation stage is implemented using a simple but effective method for 

detecting potential microcalcifications and other suspicious objects in breast tissue 

taking account of variations in tissue density between women and the low contrast 

between the abnormal and normal breast tissues. This method has been applied on:  

� Full mammogram images of various mammogram sizes (i.e. small, medium, large 

and ex-large);  

� A dataset of ROI images that represent clusters of microcalcifications with 

different sizes (i.e. 128 × 128, 256 × 256, 512 × 512 and 1024 × 1024);  

� A dataset of ROI images that represent individual microcalcifications with images 

of size 32 × 32. 

The results were slightly different depending on the threshold filter shape as shown 

in section 3.3.2 in Table 1. The circular filter shape has a higher percentage of 

locating microcalcifications within an image than using the square filter shape and 

that applies also on different thresholding values. The thresholding technique is 

applied to generate two different output images the first is binary ROI images and the 

second is 8-bit grey scale ROI images.  Testing these filters on different images that 

focus on certain areas as in ROI images, rather than on larger areas like full 

mammogram made a slight difference. For instance, using circular filter rather than 

square shape did suit the shape of microcalcifications by either covering a full 

individual microcalcification or by detecting its peak; while the square filter what it 

did is partially cover an individual microcalcification, but still detected the 

microcalcification. Moreover, the number of false positives will be reduced if the 

detection task will be focused only within a region of interest instead of dealing with 
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a whole mammogram. Furthermore, when applying the filter on 32 × 32 images of 

individual microcalcifications the filter should either detect the abnormality or miss 

it; this gives the opportunity to figure out which filter parameter needs to be tuned 

quickly to be able to detect a microcalcification in that area, if it is available. 

However, when applied on full mammogram images these filters can pick up 

suspicious objects that are similar to microcalcifications in shapes, sizes or intensities 

(such as milk ducts or blood veins). The following chapter, feature extraction, will 

help by identifying abnormalities using certain features that could distinguish them 

from other objects.  
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Chapter 4 

Feature Extraction using Wavelet 

Transforms 

 

4.1. Introduction 

This chapter discusses and demonstrates how segments of an image be represented 

by features. Feature extraction is an essential process in the research field of digital 

image interpretation, as it provides condensed information representing much larger 

multi-dimensional data. Feature extraction in mammography is a specific application 

where the features are the key to identifying abnormalities such as 

microcalcifications and masses. The features extracted are utilized in image 

classification, which is the subject of Chapter 5. 

In this chapter, wavelet decomposition is introduced as the main method for feature 

generation. Due to the nature of microcalcifications, which appear as small bright 

dots within a mammogram, they also appear as point discontinuities for the wavelet 

transform [1]. This makes the wavelet transform appropriate to detect 

microcalcifications and for feature generation as it is argued that wavelets have finite 

square supports and are best in capturing point discontinuities and not edges [2].  

Moreover, applying the discrete wavelet transform (DWT) would be more 

appropriate than using the continuous wavelet transform (CWT); since the CWT is 

time consuming and needs a lot of computation, calculating all points on the spatial 
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domain signal. On the other hand, DWT would take samples from the signal and that 

would take less time and computation. Additionally, wavelet transform, when 

applied, will save the location of all pixels within the image that might be useful for 

image reconstructing. 

Furthermore, in this research the use of wavelet decomposition to generate features 

combined with support vector machines for classifications produced satisfying 

results as it will be shown in the following chapter. There are many different types of 

wavelet transforms that can be applied such as Haar, Daubechies, Biorthogonal, 

Coiflets, Discrete Meyer ‘dMey’, and Symlets as well as many different ways of 

defining features. Here the largest approximation coefficients are used as features 

and different numbers of features are tested either by extracting (80 and 100), or by 

extracting the largest 100 and using a reduction method to reduce the number to 10 

coefficients. 

The following section discusses the discrete wavelet transform and the main concepts 

that are useful for this type of research dealing mainly with binary images. Then, in 

Section 3 the minimum Redundancy Maximum Relevance (mRMR) reduction 

method is introduced and applied to wavelet features. Finally, Section 4 describes the 

implementation of the wavelet decomposition steps and how it is linked to the 

classification stage described in Chapter 5. 

 

4.2. Discrete Wavelet Transform 

The discrete wavelet transform (DWT) is a hierarchical sub-band technique, often 

used in multi-resolution pattern recognition [3], which was employed here to extract 

features from the binary images produced by the segmentation process described in 

Chapter 3. The basic steps of the 2-D wavelet decomposition algorithm are shown in 
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Figure 4.1. One application of the transform proceeds as follows. A low-pass and 

related high-pass filter are applied to each row (and column) of the input image. Each 

filtered row (column) is sub-sampled by a factor 2, throwing away half the filtered 

data to arrive at the same number of values as in the original row (column). The low-

pass samples are grouped together and the high-pass samples are grouped together. 

The process can be repeated on the low-pass filtered samples to provide transformed 

data corresponding to a lower resolution. Each discrete wavelet transform has its own 

low-pass and high-pass filter pair and the process can be inverted to proceed from the 

transformed data back to the original data.   

 

 

Figure 4.1 Two dimensional discrete wavelet transform algorithm. 

 

When the DWT is applied, it generates low-pass and high-pass sub-bands that 

contain many coefficients representing different aspects of the image. The wavelet 
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coefficients represent the characteristics of the signal at different resolutions (scales) 

and positions according to the number (level) of times the wavelet is applied [4].  

 

4.2.1. Wavelet Coefficients 

The Wavelet coefficients are divided into low (L) frequency approximation-

coefficients and high (H) frequency detail-coefficients. The high frequency 

coefficients are further divided into detail sub-bands: vertical (LH), horizontal (HL), 

and diagonal (HH) coefficients. The low frequency (LL) approximation-coefficients 

provide a reduced resolution representation of the original image which can be 

transformed again according to the wavelet level applied. Applying wavelet 

decomposition to an image will produce an approximation matrix that is a quarter of 

the original area of an image.  

The decomposition of an image into sub-bands by two applications of the DWT is 

illustrated in Figure 4.2. Each application filters the image in horizontal and vertical 

directions creating the four wavelet sub-bands [5] shown in Figure 4.2. These are 

labelled as follows: 

� Sub-band LL1 represents the horizontal and vertical low frequency 

components of the image, known as the approximation coefficients. In Figure 

4.2 the coefficients in this band are transformed again and replaced by four 

corresponding level 2 sub-band coefficients. 

� Sub-band HH1 represents the horizontal and vertical high frequency 

components of the image, also known as diagonal coefficients. 

� Sub-band LH1 represents the horizontal low and vertical high frequency 

components, known as vertical coefficients. 
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� Sub-band HL1 represents the horizontal high and vertical low frequency 

components, known as horizontal coefficients. 

 

 

Figure 4.2 Simple decomposition map from the wavelet transform level two 

 

Different wavelet transforms can be applied, including Haar, Daubechies, 

Biorthogonal, Coiflets, dMay, and Symlets etc. Each has its own characteristics. The 

MATLAB wavelet toolbox has been used in this study as it provides a variety of 

functions and wavelet types as well as other functions that are useful for this kind of 

application. 

Figure 4.3 shows an example of applying the Haar wavelet, which is the simplest 

wavelet available, to a grey scale ROI image. By inspecting the resulting images it is 

clear that the high frequency coefficients are not focused on the microcalcifications 

cluster, instead the detail sub-bands appears like noisy images. Although not 

apparent from this figure, the approximation coefficients enhance the brightness of 

the abnormalities. 
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Figure 4.3 Haar wavelet decomposition at level 2 on grey scale region of interest; first view 

 

Figure 4.3 shows the default view of wavelet decomposition with the features 

extracted from the top left corner, which is the low frequency image from the second 

level of decomposition. The results are shown more clearly by changing the default 

view to the alternative view, Figure 4.4, that shows all the images from each level 

separately and at the same size. This provides a better view of the differences 

between levels of decomposition especially when looking at the low frequency image 

that produces the approximation coefficients for our features. The figure shows the 

original image at the top and below it are the approximations from level 1 and level 2 

of decomposition showing microcalcifications in a larger area than from the original 

image. 
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Figure 4.4 Haar wavelet decomposition at level 2 on grey region of interest; second view 

 

4.2.2. Feature Extraction from ROI Images 

This part of the experimental work takes the segmented ROI images (i.e. the resultant 

binary ROI image and 8-bit grey scale image) produced by the previous stage for 

analysis by the extraction of unique features. The previous figures showing wavelet 

examples are only illustrations of the basic characteristics. The use of segmented 

ROI images (i.e. binary and 8-bit grey scale) was found to be more successful than 

using original ROI images for extracting features. The examples in the figures below 

illustrate the application of different wavelet decomposition types on different sizes 

of images. Figure 4.5 to 4.7 show the application of Daubechies-2, Haar and dMey 

wavelets level 1 and 2 on a region of size 32 � 32. Moreover, Figures 4.8 to 4.10 

show the application of Haar, Daubechies order 2 and dMey wavelets from level 1 

and 2 on regions of sizes 128 � 128, 256 � 256 and 512 � 512. These figures show 
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level one and level two decompositions; the first image to the left in each row is the 

approximation sub-band and the rest are the high frequency sub-bands. 

 

 

Figure 4.5 Wavelet decomposition results from applying DB-2 wavelet at levels 1 and  
level 2 to a 32 � 32 region of interest 
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Figure 4.6 Wavelet decomposition results from applying Haar wavelet at levels 1 and  
level 2 to a 32 � 32 region of interest 

 

 

Figure 4.7 Wavelet decomposition results from applying dMey wavelet at levels 1 and  
level 2 to a 32 � 32 region of interest 
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Figure 4.8 Wavelet decomposition results from applying Haar wavelet at levels 1 and  
level 2 to a 128 � 128 region of interest 

 

Figure 4.9 Wavelet decomposition results from applying dMey wavelet at levels 1 and  
level 2 to a 256 � 256 region of interest 
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Figure 4.10 Wavelet decomposition results from applying DB-2 wavelet at levels 1 and  
level 2 to a 512 � 512 region of interest 

 

During this study, the approximation coefficients have been used as the target 

coefficients from which to extract features. The selection of the low frequency 

coefficients is suggested by Ferreira and Borges in [6] that used the mini-MIAS 

database as its source. In that study, feature extraction is made on original ROI grey 

scale images using two types of wavelet transform: the Haar wavelet and Daubechies 

wavelet (Db4). However, the use of approximation coefficients in these experiments 

is carried out on segmented binary and 8-bit grey scale images using the largest 100 

approximation coefficients as in [6] in conjunction with investigating further types of 

wavelet transform and different levels of decomposition. Also the use of different 

number of features, such as largest 80 coefficients and largest 10 coefficients, was 

investigated. 

Wavelet decomposition can be done to any level, up to a maximum set by the size of 

the image, depending on the nature of the application it is used for and what data 
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needs to be extracted. The diagram in Figure 4.11 below shows the division of 

wavelet coefficients from level three of decomposition. In the first level of wavelet 

decomposition the original image will generate high frequency coefficients (cD1) 

and low frequency coefficients (cA1). Then level two of decomposition will be 

applied on cA1, which represent a lower resolution of the original image, to generate 

cA2 and cD2. The same process will be applied on cA2 to generate cA3 and cD3. 

nd so on as long as the application requires. 

 

A

 

Figure 4.11 The coefficients resulting from applying wavelet decomposition of three levels 

is combination produced 

atisfying classification accuracy, as shown in Chapter 5.  

 

The wavelet approximation coefficients were found useful in this work when they 

were combined with support vector machines, as th

s
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4.3. Minimum Redundancy Maximum Relevance 

After the initial feature generation, another experiment was conducted to investigate 

if it is possible to reduce the largest 100 wavelet coefficients to a smaller number of 

useful features. This reduction was performed using the minimum Redundancy 

Maximum Relevance (mRMR) approach and software that is available online [7]. 

This software package is basically a feature selection and classifier package used for 

pattern classification. During this experiment the mRMR approach was used to 

reduce the 100 selected largest coefficients to 10 features. This is done to reduce the 

number of features that are fed to the classifier, as this will decrease the amount of 

the computation time for classification.  

The mRMR procedure essentially starts searching for features that suit the criterion 

of maximal relevance using the mean value of all mutual information values between 

individual features and their classes. Then the minimal redundancy criterion is used 

because the feature dependencies can be very large, so only mutual features will be 

selected. Two types of mutual information schemes can be applied, mutual 

information difference (MID) and mutual information quotient (MIQ). 

The features for each region are presented as a row in the file input to mRMR and 

specified as either normal (0.1) or abnormal (0.9). The data in the input format can 

be one of two types either categorized, in terms of discrete category states or 

continuous in terms of numerical values. If it is continuous then the data is 

discretized using two thresholds 

 

Threshold = mean ± alpha � standard deviation (eq. 4.1) 
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where alpha can be either 1 or 2 or 0 or 0.5. This choice affects the actual features 

selected. The outputs are the features that satisfy the mRMR condition (eq. 4.1) and 

are ordered according to their entropy score. 

 

4.4. Practical Implementation of Wavelet Analysis  

First of all, the discrete wavelet transform is applied to the segmented binary images 

cropped using the algorithm in [8]. Transform coefficients are used as extracted 

features from both normal and abnormal regions. 

The wavelet toolbox in MATLAB provides several functions [9] to complete this 

task. These functions require several inputs and these include a matrix which is the 

image data, the level of decomposition required, and the wavelet name.  

The first step in the process is to collect all the image names in a text file. This file is 

to be read by a MATLAB script which calls the wavelet decomposition code which 

processes all the images in sequence to generate the transform coefficients. Then a 

small coded loop is used to extract the largest 100 coefficients in a vector that 

contains the data for an individual image. 

To generate a reduced number of coefficients out of the largest 100 coefficients the 

MATLAB code stores the largest 100 coefficients in a file format that is accepted as 

an input by the mRMR application. Then by applying the threshold condition 

mentioned in (eq. 4.1) this reduces the largest 100 coefficients to 10 coefficients as 

another set of features for the next stage of the classification. Each set of features 

from different wavelet types or from different numbers of features are then tested to 

see how useful they are in a classification system. 
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4.5. Summary 

Feature extraction is an important part of this study. To analyse and study the 

abnormality, in this case microcalcifications, it is necessary to find unique features 

that can distinguish the abnormality from any other surroundings or artefacts that 

have similar shapes or intensities. Therefore, many experiments were carried out at 

this stage to investigate the following: 

� Wavelet decomposition types including, the Haar wavelet, Daubechies wavelet, 

Biorthogonal wavelet, Coifielts wavelet, Discrete Meyer “dMay” wavelet and 

Symlets wavelet. 

� Wavelet decomposition levels including the first two levels of wavelet 

decomposition on all six wavelets types. 

� Different numbers of approximation coefficients have been tested including the 

largest 10, 80 and 100 coefficients. In addition mRMR was used to reduce the 

largest 100 coefficients to only 10 features. 

� Applying the wavelet decomposition on segmented binary and 8-bit ROI images. 

However, after combining these features with support vector machine, at the next 

stage, it was found that the largest 100 approximation coefficients produced the best 

results in the classification stage experiment. The following chapter on the 

classification stage indicates how these features were evaluated on radial bases 

function (RBF) and support vector machine (SVM). 
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Chapter 5 

Machine Learning and Microcalcification 

Classification 

 

 

5.1. Introduction 

Machine learning is a part of the artificial intelligence field where machines or 

computers are developed to imitate the human ability to think by a process of training 

(or related technique) and separate testing. There are two basic types of machine 

learning, supervised and unsupervised techniques. Different fields of studies have 

different learning needs; applying a supervised learning technique means some targets 

classifications are already known, on the other hand, applying an unsupervised learning 

technique means that target classifications are not available and these need to be 

predicted based on the input vector(s) to the system. Both techniques require extensive 

training where for supervised techniques the inputs or the machine parameters need to be 

tuned to match the target, while for unsupervised training machine tuning will be made 

to achieve logical targets. 

In the current research the supervised learning technique was selected for the 

classification task as target class labels (either normal or abnormal) are already known. 

Furthermore, digital mammography systems or computer aided detection/diagnosis 
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systems (CAD systems) are basically considered as a source of second opinions for 

radiologists. Therefore, suggestions made by a digital diagnosis system are studied by       

a radiologist and double checked for any abnormalities that were missed by the 

radiologist. Having a classification stage in this study is essential; since machine 

learning has the ability to distinguish between regions containing microcalcifications or 

other suspicious objects and regions that contain normal breast tissue. This process 

assists radiologists in the diagnosis procedure, since mammography needs a high level of 

experience in diagnosis which in this medical case is radiologists 

Machine learning in this research is focused on classifying region of interest images that 

are cropped manually into two ROI sets; clusters of microcalcifications and individual 

microcalcifications. The classification training will look into regions that contain 

abnormalities, specifically cases that contain microcalcifications, which are extracted 

from mammogram images in the MIAS database. Moreover, features that are extracted 

and using the discrete wavelet transform are fed to machine learning experiments for 

classification purposes. The main purpose of this classification is to distinguish between 

normal breast tissue and breast tissue that is infected with an abnormality of a 

microcalcifications type. In addition, any suspicious objects that have similar 

characteristics will be also diagnosed. 

In this research, the Support Vector Machine (SVM) and the Radial Basis Function 

Network (RBFN) have been tested on the feature data extracted from regions of interest 

of mammogram images. The two approaches, SVM and RBFN, are different in concept 

but they are both types of machine learning algorithms capable of providing data 

classification. 
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The following sections provide more details about Support Vector Machines and Radial 

Basis Function Networks. In addition, experiments and their results are presented. 

 

5.2. Classifiers  

5.2.1. Support Vector Machines 

Support Vector Machines (SVM) are a supervised learning technique that can be used 

for classification and regression [1]. SVMs have a firm statistical foundation and are 

guaranteed to converge to a global minimum during training. They are also considered 

to have better generalisation capabilities than neural networks [2]. SVMs were 

developed by Vapnik in [3] based on statistical learning theory. SVM is known to be an 

excellent tool for binary classification problems, similar to the one here, by seeking the 

optimal separating hyperplane that provides efficient separation of the data and 

maximises the margin. In other words, SVM takes the closest vectors from both classes, 

assuming they are linearly separable, and maximises the distance between them by a 

hyperplane. On the other hand, if the data are not linearly separable, using kernel 

functions, SVM will map the data into a higher dimensional feature space where the data 

can become linearly separable. More information on SVMs can be found in [4] and [3]. 

Support vector machines are applied in the experiments described in the following 

sections to evaluate the quality of different feature extraction sets and feature reduction 

for classification purposes. In this work, there are only two output class labels: normal 

and abnormal. Hence, the classification is binary.  
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5.2.2. Radial basis function (RBF) 

The RBF Network is a powerful interpolation technique that can be efficiently applied in 

multidimensional space. The RBFN approach to classification is based on curve fitting. 

Learning is achieved when a multidimensional surface is found that can provide 

optimum separation of multidimensional training data. In general, the RBFN can model 

continuous functions with reasonable accuracy. The RBFN are a set of functions 

provided by the hidden nodes that constitute an arbitrary “basis” for the input 

patterns[4]. One major advantage of using the RBFN is that the training is usually 

simpler and shorter compared to other neural networks. On the other hand it requires 

greater computation and storage for input classification after the training [5]. 

The RBFN, as illustrated in Figure 5.1, applies a mixture of supervised and unsupervised 

learning modes. The layer from input nodes to hidden nodes is unsupervised, while 

supervised learning exists in the layer from hidden nodes to output nodes. A non linear 

transformation exists from input to hidden space, while a linear transformation exists 

from the hidden to the output space [6]. More information on the theory and 

implementation of RBFNs can be found in [4] and [5]. 
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�

Figure 5.1 RBF network with 2 input and 2 output nodes 

 

5.3. Implementation and Evaluation 

5.3.1. Jack-Knife Technique 

To achieve reliable results, one must follow an appropriate technique for training and 

testing. Therefore, the SVM training and testing was carried out based on the statistical 

Jack-Knife technique [7], which divides the input data into two groups. There is a 

training group which consists of 80% of the samples, randomly selected, and the 

remaining 20% which forms the testing group. This is done to allow accurate statistical 

evaluation of the performance of the classifier, when it is applied on a limited number of 

samples. Thus, the number of training samples from the dataset consisting of individual 

microcalcification ROIs is 352 samples, while 88 samples were used for testing the 

classifier. Moreover, from the second dataset, which contains 25 cluster of 

microcalcification ROIs, 20 samples are selected for training and 5 for testing; and 

likewise for the third dataset from the mini-MIAS database. 
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5.3.2. RBF Implementation 

Two sets of features from cropped regions of interest were fed to an RBFN, the largest 

100 features and the 10 mRMR reduced features generated from Haar and DB2 wavelet 

level 1 approximation. The results were not satisfactory as the accuracy using the largest 

100 features reached 58.27% and the accuracy using the 10 mRMR features reached 

49.8%. For this reason and the better performance of SVM, trials using the RBFN were 

not taken further 

 

5.3.3. SVM Implementation 

After the wavelet features are extracted from cropped regions of interest they are stored 

in a text file format that matches the format required for SVM input. This text file 

contains the input features of a set of images and the corresponding output class labels, 

normal and abnormal. The format is illustrated in Figure 5.2 where each row is a feature 

vector and at the end is the corresponding output class, either 0.1 or 0.9, representing 

normal or abnormal classes respectively.  
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Figure 5.2 Input features and output class labels which are ringed in green or red 

 

These features vectors, illustrated in Figure 5.2, are extracted and gathered from the 

approximation coefficients of wavelet decomposition, this has been explained in Chapter 

4 section 4.4. Basically, after applying wavelet decomposition, the largest numbers of 

features are extracted for individual image to form a vector. This includes normal 

images and images that contain microcalcifications. Then all vectors are collected in a 

text file from all samples processed and adding a label to each vector. 

The SVM learning algorithm used in this work employs the ANOVA kernel. The Anova 

kernel technique was adopted because it produced the best classification performance, in 

a different area of research [2, 8], compared to other types of kernels such as the dot, 

polynomial, neural and radial kernels. The Anova kernel, which is shown in equation 

(eq. 5.1), has two parameters, the gamma (�) parameter and the exponential degree (d) 

parameter. These two parameters control the shape of the kernel. 
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     (eq. 5.1) 

 

An important part of the machine learning process is optimization of the SVM. This is to 

determine the topology and parameters for the learning algorithm that produce the best 

performance. In this work, extensive experiments were carried out to find the optimum 

degree and gamma values. Thus, the gamma value was changed from 1 to 10 in steps of 

1 and for each gamma value the degree values 2, 3 and 4 were used. Hence, a total of 30 

experiments were carried out, for every set of wavelet coefficients features used. For 

each experiment, the Jack-Knife technique was implemented ten times and the average 

value for these ten iterations was found and associated with the experiment.  

There were seven output values generated for every experiment namely true positive 

(TP), false positive (FP), true negative (TN), false negative (FN), accuracy, sensitivity 

and specificity. When a positive object is detected and classified as positive then this is 

called a true positive. However if this object is classified as negative then this is false 

negative. On the other hand, when a negative object is detected and classified as positive 

then this is called a false positive, and when it is classified as negative then this is a true 

negative. Sensitivity is the percentage of patients with disease who test positive and is 

calculated as follows:  

 

  (eq. 5.2) 
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Specificity, on the other hand, is the percentage of patients without disease who test 

negative and is calculated as follows:  

 

  (eq. 5.3) 

 

More information on these performance evaluation measures can be found in [9]. 

Finally, the accuracy output is considered as the main output, more important than the 

other ones. For this study to measure the classification performance between normal and 

abnormal breast tissue and it is calculated as follows:  

 

 (eq. 5.4) 
 

After the SVM algorithm had been applied to several initial data samples from different 

wavelets features and levels, three sets of features were selected to evaluate the 

performance of SVM over these features. The first set contains the largest 100 

approximation coefficients gathered from the wavelet decomposition applied, the second 

set is the reduced number of coefficients from the first set which contain 10 coefficients 

generated by the mRMR technique and the final set contains the largest 80 coefficients 

implemented to investigate the effect on the classification performance results of 

lowering the number of coefficients without carrying out optimisation.  

The following sub sections investigate different issues to find the best classification 

accuracy that this experiment could achieve based on images of regions of interest. This 
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includes investigating: different wavelets transform types and number of coefficients, 

SVM ANOVA kernel parameters tuning and different ROI image sizes. 

 

5.3.3.1 First Series of SVM Experiments 

Results from the first series of experiment presented in figures 5.3 to 5.5 show the 

classification accuracies for three different wavelet transforms using the largest 100 

features and the ROI size of 32 × 32 with degree set to 2 and gamma varying from 1 to 

10. By inspecting these figures it appears that the DB2 wavelet of level 1 performs 

slightly better than the Haar wavelet of level 1 reaching an accuracy of 93.9% when the 

SVM is tuned to degree value 3, while DB4 level 2 is much lower than Haar and DB2.  

 

�

Figure 5.3 Accuracy results using100 features with degree parameter = 2, applied on 3 wavelet 

transforms: Haar level1, Db2 level1 and Db4 level2 
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�

Figure 5.4Accuracy results using 100 features with degree parameter = 3, applied on 3 wavelet 

transforms: Haar level1, Db2 level1 and Db4 level2 

�

Figure 5.5Accuracy results using 100 features with degree parameter = 4, applied on 3 wavelet 

transforms: Haar level1, Db2 level1 and Db4 level2 
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Figures 5.6 to 5.8 present graphs showing the classification accuracies using 10 features, 

extracted by the mRMR from the largest 100 wavelet features, using Haar, DB2 and 

DB4 level 1 and level 2 decomposition. In these results the DB2 wavelets of level 1 and 

2 perform better than other wavelet features shown. However, DB2 level 2 performs 

slightly better than DB2 level 1 achieving an accuracy of 90.6%. 

 

 

Figure 5.6 Accuracy results using 10 features with degree=2 for several wavelet transforms 
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Figure 5.7 Accuracy results using 10 features with degree=3 for several wavelet transforms 

 

Figure 5.8 Accuracy results using 10 features with degree=4 for several wavelet transforms 
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Further tests were carried out using the main wavelet transforms (i.e. Haar and 

Daubechies wavelets with decomposition level 1) using the largest 80 features to 

investigate the variation of classification performance with different numbers of 

features. Table 5.1 and Figure 5.9 compare the results obtained for 80 and 100 features 

for the SVM parameter Degree set to 2, 3, 4 and 5 on individual tests. It is clear that 

Degree value 5 is not as effective as the other values. However, it appears that the 

Daubechies wavelet of order two and level 1 using the largest 100 features performed 

better than the others reaching 93.9% classification accuracy.  

 

Table 5.1 Accuracy results from applying different number of features 

  Deg 2 Deg 3  Deg 4 Deg 5 
DB2 (80) level 1 91.60% 92.20% 91.60% 80% 

DB2 (100) level 1 89.70% 93.90% 93.70% 34.30% 
Haar (80) level 1 91.10% 91.70% 91.50% 78.70% 
Haar (100) level 1 90.90% 92.20% 92.60% 51.10% 
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Figure 5.9 Comparing the SVM classification accuracy between the largest 100 features and the largest 80 

features of DB-2 and Haar wavelets from level 1 decomposition 

 

5.3.3.2 Second Series of SVM Experiments 

In this second series of experiments, more wavelet Transforms were applied to further 

investigate the difference in performances between wavelet types. Moreover, three 

datasets were used in these experiments the first containing ROI images of size 32 × 32 

pixels from the large size images of the MIAS database while the second dataset 

contains images with the following sizes 128 × 128 pixels, 256 × 256 pixels, 512 × 512 

pixels and 1024 × 1024 pixels also from the large size images of the MIAS database. 

The third dataset included in these experiments contains ROI images from the Mini-

MIAS database with a ROI size of 64 × 64 pixels. 
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This series of experiments include the wavelet transforms Biorthogonal 2.6 level 2, 

Biorthogonal 3.3 level 1 and level 2, Discrete approximation of Meyer level 2, Symlets 6 

level 2 as well as the wavelet types that applied earlier, Haar level 1 and level 2 and 

Daubechies 2 level 1 and level 2. 

Starting with the second dataset, that contains a variety of ROI sizes that represent 

clusters of microcalcifications, SVM parameters exponential degree and gamma were 

tuned for each wavelet features several times to investigate the possibilities of 

combining wavelet transforms with support vector machines. Therefore, the exponential 

degree was changed manually from 2 to 10 and for each value the gamma parameter was 

altered automatically from 1 to 10. Looking at the classification accuracies presented in 

Figure 5.10, it appears that the SVM parameter, exponential degree, when tuned to 2, 3 

or 4 achieved a higher accuracy than the rest.  
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Figure 5.10 SVM classification of different wavelet decomposition features represented in percentage 
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Table 5.2 shows the variations in performance in these experiments more clearly and 

Figure 5.11 is a close-up diagram from Figure 5.10 focusing on exponential degree 2, 3 

and 4 only as these values achieved the highest accuracy results. The results show that 

the parameter exponential degree when tuned to 2, 3 or 4 produces acceptable results for 

tissue classification accuracy reaching 95.3% with dMey wavelet on level 2 of 

decomposition and exponential degree = 4. 

 

Table 5.2 Classification performance of best output values from this experiment 

  Bior2.6 level 2 Bior3.3 level 1 Bior3.3 level 2 
Deg 2 88.00% 88% 89% 
Deg 3 90% 88% 88.94% 
Deg 4 89.30% 85.30% 90.00% 
Deg 5 44.70% 50% 44.70% 
Deg 6 49.30% 41.30% 49.30% 
Deg 7 42.70% 42.70% 47.30% 
Deg 8 43.30% 42% 48.70% 
Deg 9 44.70% 49.30% 46% 
Deg 10 44.70% 49.30% 46% 

  dMey level 2 DB2 level 1 DB2 level 2 
Deg 2 95% 90.00% 89.32% 
Deg 3 94.70% 89.30% 90% 
Deg 4 95.30% 88% 91.30% 
Deg 5 44.70% 44.70% 46% 
Deg 6 44.70% 43.30% 43.30% 
Deg 7 42.70% 48% 44.70% 
Deg 8 49.30% 50% 48.70% 
Deg 9 49% 50% 46% 
Deg 10 43% 46% 44.70% 

  Sym6 level 2  Haar level 1 Haar level 2 
Deg 2 89.30% 88% 89.30% 
Deg 3 89% 88% 89.36% 
Deg 4 91.30% 87.30% 88.70% 
Deg 5 42.70% 44.70% 40% 
Deg 6 42.70% 46% 45.30% 
Deg 7 48.70% 50% 45.30% 
Deg 8 41.30% 43.30% 42.70% 
Deg 9 42% 44.70% 44.70% 
Deg 10 48.70% 45.30% 46% 
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Figure 5.11 Close view on the highest classification accuracy using Exponential Degree values 2, 3 and 4 

 

Furthermore, the classification process has been also carried out on cropped segmented 

8-bit grey scale ROI images that represent clusters of microcalcifications. This 

classification test performed slightly better on the 8-bit ROI images than binary images. 

The following table illustrates the classification accuracy percentage followed by a 

graph to represent the accuracy visually. The classification accuracy result from this test 

was 96% using the dMey wavelet from decomposition of level two between regions of 

normal breast tissue and regions with microcalcification abnormality. 
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Table 5.3 Classification accuracy percentage using 8-bit ROI images 

  
Haar level 

2 
db2 level 

2 
bior33 level 

2 
Sym6 level 

2 
dMey level 

2 
Deg 2 0.92 0.947 0.907 0.94 0.96 
Deg 3 0.933 0.927 0.887 0.92 0.947 
Deg 4 0.913 0.927 0.907 0.927 0.953 
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Figure 5.12 Classification accuracy performance using 8-bit ROI images from different wavelet types 

 
 

The same series of experiments were conducted on the first dataset containing ROI 

images of size of 32 × 32 pixels that represent an individual microcalcification in each 

ROI image. All the wavelet transforms applied were from level two decomposition and 

included Haar, Daubechies DB order 2, Bior order 2.6, Bior order 3.3, Sym order 6 and 

dMey wavelets. The classification accuracy results are presented in Table 5.3 and Figure 

5.12 showing the exponential degree tuned to 2, 3 and 4 producing slightly higher results 

than the previous test achieving 96.8% of accuracy. 

 - 92 -



Table 5.4 Actual classification accuracy of 32 × 32 ROI images 

  dMey Sym6 Haar DB2 bior2.6 bior3.3 
Deg 2 79.40% 91% 96.80% 89.30% 95.30% 95.20% 
Deg 3 73.20% 83.90% 91.50% 86.10% 87.60% 88.90% 
Deg 4 76.60% 86.40% 92.30% 87.50% 95.20% 94.90% 
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Figure 5.13 ROI 32 × 32 classification accuracy 

 

The series of experiments were also conducted on the third dataset containing ROI 

images of size 64 × 64 pixels, but this time from the mini-MIAS database. The results of 

the classification accuracy are presented in Table 5.4. This experiment applied six 

different wavelet types on clusters of microcalcifications ROI images from the mini-

MIAS database. This was to investigate if the procedures applied on the ROI images 

extracted from the original MIAS database could be successfully applied on the mini-

MIAS as well. 
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Table 5.5 Actual classification accuracy of 64 × 64 ROI images 

  Haar level 1 DB2 level 1 Bior1.1 level 1 

Deg 2 0.8 0.793 0.767 

Deg 3 0.78 0.8 0.807 

Deg 4 0.753 0.767 0.78 

  Coif level 1   Sym level 1 dMey level1 

Deg 2 0.793 0.78 0.727 

Deg 3 0.82 0.8 0.767 

Deg 4 0.793 0.8 0.727 

 

The results achieved in these experiments enables comparisons to be made with other 

studies on the same images using different methods as presented in Table 5.5. This 

comparison is based on comparing the methods that have been applied, the sizes of the 

images that have been used, from which database images are obtained and finally 

comparing the average classification accuracy (ACC), based on cropped ROI images, 

achieved between normal and abnormal tissue region. 
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Table 5.6 Comparisons with other studies 

 

Algorithm 

 

ACC (%) 

 

Methods 

 

Image size and origin 

 

Rafayah et al. [10] 

 

87.5% 

 

 

DB4 wavelet & fuzzy 

neural 

 

800 × 800 ROI, from 

MiniMIAS 

 

Sheshadri and 

Kamdaswamy [11] 

 

75% 

using optimal filter 

and statistical texture 

features 

 

256 × 256 ROI and full 

image from MiniMIAS 

 

Ferreira and 

Borges  [12] 

 

83.3%  

88.8% 

Haar wavelet,  

DB4 wavelet 

with Euclidian 

distance 

 

64 × 64 ROI, from 

MiniMIAS 

 

Proposed system 

with ROI set 2 

(Binary and 8-bit) 

 

95.3% for 

Binary ROI 

96% for 8-bit 

ROI 

 

dMey wavelet level 2 

with SVM 

 

128 × 128, 256 × 256, 

512 × 512 and 1024 × 
1024 ROIs from Large 

MIAS 

 

Proposed system 

with ROI set 1 

 

96.8% 

 

 

Haar wavelet level 1

with SVM 

 

32 × 32 ROI, from Large 

MIAS 

 

Proposed system 

with ROI set 3 

 

82% 

 

 

Coiflets wavelet level 

1 

with SVM 

 

64 × 64 ROI, from mini-

MIAS 
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5.4. Summary: 

This chapter presents the experiments that have been completed to choose a machine 

learning technique that could handle the wavelet features as an input, and also manage 

the classification output as supervised technique for two output classes. Two different 

types of machine learning, the radial basis function (RBF) and support vector machines 

(SVM) were tried, but the SVM performed much better than the RBF. This is perhaps 

not surprising, since the SVM is said to be guaranteed to converge to a global minimum 

during training and to have better generalisation capabilities than neural networks [2]. 

Furthermore, it is an excellent tool for binary classification problems by seeking the 

optimal separating hyperplane. This provides efficient separation for the data and 

maximises the margin. However, combining feature extraction method with a machine 

learning technique in an optimum manner is a difficult process which takes significant 

time to achieve.  

Although there is more to investigate in the area of machine learning especially SVM, 

the current work has shown that it can handle the classification of microcalcification 

data. The results that have been achieved combining SVM and wavelet decomposition, 

with a classification accuracy reaching 96.8%, are comparable to some of the best in the 

field of mammography and are considered very satisfactory.   
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Chapter 6 

Conclusion and Future Work 

 

6.1. Thesis Conclusion 

This thesis presents recent work towards the design of systems for the automated 

diagnosis of breast cancer by analyzing digital mammogram images to provide 

radiologists with a second opinion. The work presented in this thesis provides a 

contribution to existing systems dealing with digital mammogram images by 

combining discrete wavelet transform (DWT) and support vector machines (SVM)  

with the ANOVA kernel in way that has not been done before. This work done using 

the MIAS database, demonstrates that automated diagnosis of digital mammograms 

can be done using computationally simple methods and algorithms and achieve 

results with high accuracy for the classification between cropped regions of interest 

of normal and abnormal breast tissue.  

There are three main stages in this study and each stage has been implemented 

several times to ensure that the experiments have been properly performed and, 

where necessary, to tune algorithm parameters or function types to give the best 

results. These stages are: (1) separate the background from the foreground that 

contains suspicious objects from within cropped regions of interest; (2) feature 

extraction to represent the characteristics of segmented objects in a compact form; 

(3) classification of regions of interest containing suspicious objects, based on the 

extracted features, into two classes. These stages have been described in Chapters 3, 

4 and 5 respectively.  
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Chapter 3, where the presentation of the practical work starts, focuses on regions of 

interest extracted from whole image. These regions of interest are cropped manually 

based on locations highlighted from the MIAS manual; this has to do with the point 

of view that radiologists can be selecting the region of interest rather than letting the 

system do it automatically. Alternatively, letting the trained system analyse whole 

images will take a little longer. After that, all the regions of interest (ROI) images are 

segmented keeping only suspicious objects. The segmentation process will generate 

new ROI images in two forms; the first is segmented binary ROI images and the 

second is segmented ROI 8-bit images. Chapter 4 describes the implementations of 

the feature extraction method and its organisation for the next stage. Finally, Chapter 

5 presents the classification method used to separate ROI image features into either 

normal region or abnormal region classes. 

The MIAS database has been very useful for this study as it provides a variety of 

cases. There are 25 cases of mammogram images that include microcalcifications. 

These images have been cropped to create a new dataset containing ROI images of 

size 32 � 32 pixels. This size is used mainly to represent individual 

microcalcifications in one image. Another dataset has been created that contains ROI 

images with larger size than the previous one to include clusters of 

microcalcifications and these sizes are: 128 � 128, 256 � 256, 512 � 512 and 1024 � 

1024 pixels. Finally, a third dataset has been also created, this time from the Mini-

MIAS database with a size of 64 � 64 pixels, which also includes clusters of 

microcalcifications. During the segmentation process an evaluation between the 

square filter shape and circular shape has been produced to find that the percentage 

of detecting suspicious objects within a region of interest using a circular filter shape 

is 0.0157% of the image which is higher than the square filter shape of 0.0102% 
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using the threshold value of 10. The procedure of the segmentation is to help the 

system locate microcalcifications or suspicious objects within ROI images for further 

analysis. Since all ROI images may contain abnormalities within an image a 

classification method is needed to be able to distinguish between normal ROI images 

and ROI images that contain microcalcifications. 

The general performance of the system has produced acceptable results  

in terms of measured classification accuracy. The results were evaluated using 

different sizes of regions of interest with results as follows: with the ROI images 

representing individual microcalcification, the accuracy of classification into normal 

and abnormal cases was 96.8 %; with the ROI images that represent cluster of 

microcalcification the accuracy of classification was 95.3 % for segmented binary 

ROI images and 96% for segmented 8-bit ROI images; with the ROI images from the 

mini-MIAS database including clusters of microcalcifications the accuracy of 

classification was 82%. 

 

6.2. Thesis Contribution 

The contributions in this thesis can be summarized as follows: 

� The thresholding technique to detect masses by Kom et al. in [1] was 

modified so that to be able to detect microcalcifications, which are 

considerably smaller abnormalities than masses. This technique assists this 

study to detect microcalcifications, by removing the background surrounding 

the microcalcification, without the need to apply more complex pre-

processing steps such as image enhancement. The filter was able to locate 

microcalcifications in different ROI images either the ones that represent a 

cluster of microcalcifications or images that represent individual 
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microcalcification from datasets that contain normal and abnormal ROI 

images. 

� Using the discrete wavelet transform approximation coefficients to extract 

features from the segmented images (i.e. black and white images and 8-bit 

images) proved to be a powerful tool to extract unique features from the 

dataset of ROI images.   

� Combining the support vector machine, using the ANOVA kernel, with the 

discrete wavelet transform, using approximation coefficients, produced some 

good classification results in this application. To the best of my knowledge 

this type of SVM has not been applied before in the mammography area. 

Additionally, in this study the SVM was found to perform better than radial 

basis function NNs when combined with wavelet transform. This has been 

found also in other areas of research [2-6]. 

� Regions of interest can include different types of information and therefore in 

this study various ROI images have been studied including normal and 

abnormal breast tissue. The ROI images have been divided into two sets, the 

first set represents individual microcalcification with a size of 32 × 32. The 

second set represents cluster of microcalcifications with different sizes 

depends on how big the cluster is, and they are: 128 × 128, 256 × 256, 512 × 

512 and 1024 × 1024. It was found that using the same techniques of 

segmentation, feature extraction and classification on all ROI sizes mentioned 

in this study achieved acceptable results with only slight difference. It was 

not found necessary to use different methods to study individual or clusters of 

microcalcifications. 
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6.3. Suggestions for Future Work  

Although the work in this study reached its main objectives by achieving high 

classification accuracy between normal and abnormal breast tissue, it has also shown 

the need for further investigations to be carried out in particular aspects. 

� At the segmentation stage, the thresholding filters were fixed with radii of 1.5 

pixels for peaks and 11 pixels for the surrounding region in order to detect 

microcalcifications, bearing in mind that the size of individual 

microcalcification is between 0.1 mm and 1.0 mm. Use with different image 

resolutions could mislead the detection process. Therefore, developing filters 

that dynamically adapt to the image resolution would improve the versatility 

of the process. In principle the same approach could be applied to the 

detection of the mass type of abnormality. However, masses should definitely 

be processed with different filter sizes as masses, at between 3mm and 50mm 

in size, are much larger than microcalcifications as mentioned in Chapter 2. 

Furthermore, such research would need a radiologist to be involved to check 

on the process of detection and classification. 

� The feature extraction stage was implemented using discrete wavelet 

transforms by extracting wavelet coefficients and considering only the 100 

largest coefficients, as the DWT produces a large number of coefficients. 

Although several wavelet types have been considered within this study, there 

are many more wavelet types that could be investigated as well as the 

appropriate level of decomposition to be applied. It is interesting to compare 

different wavelet decompositions from different levels as each wavelet has its 

own characteristics. Furthermore, there are other features that could be 
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extracted from wavelet decompositions that may be useful for different types 

of abnormalities. This could lead to many different studies.  

� The support vector machine has been tested in this work using the ANOVA 

kernel and produced satisfactory results when combined with the DWT. 

Although the SVM has been compared with and found to outperform NNs 

using radial basis function, there are other neural networks types and 

structures that could also be investigated. 

� Several mammography databases are available for researchers to study, as 

mentioned in Chapter 2; there are the DDSM, Nijmegen and LLNL. Even 

though this would take considerable effort it could be useful to train a system 

on one database and test it on another. This could increase the efficiency of 

the system to detect a variety of abnormalities and test different densities of 

breast tissue, even though there is no similarity between them. 

� Finally, reconstructing 3-dimensional images from 2-dimensional images 

could improve the diagnosis by making it easier to locate a tumour in the 

breast and identify the size and depth of the abnormality. This could be 

obtained from default views taking mammograms vertically and horizontally.  
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