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Abstract 

After undergoing a study about current engine modelling and mapping approaches as well 

as the engine modelling requirements for different applications, a major problem found to 

be present is the extensive and time consuming mapping procedure that every engine has 

to go through so that all control parameters can be derived from experimental data. To 

improve this, a cycle-by-cycle modelling approach has been chosen to mathematically 

represent reciprocating engines starting by a complete dynamics crankshaft mechanism 

model which forms the base of the complete engine model. This system is modelled taking 

into account the possibility of a piston pin offset on the mechanism. The derived Valvetrain 

model is capable of representing a variable valve lift and phasing Valvetrain which can be 

used while modelling most modern engines. A butterfly type throttle area model is derived 

as well as its rate of change which is believed to be a key variable for transient engine 

control. In addition, an approximation throttle model is formulated aiming at real-time 

applications. Furthermore, the engine inertia is presented as a mathematical model able to 

be used for any engine. A spark ignition engine simulation (SIES) framework was developed 

in MATLAB SIMULINK to form the base of a complete high fidelity cycle-by-cycle simulation 

model with its major target to provide an environment for virtual engine mapping 

procedures. Some experimental measurements from an actual engine are still required to 

parameterise the model, which is the reason an engine mapping (EngMap) framework has 

been developed in LabVIEW, It is shown that all the moving engine components can be 

represented by a single cyclic variable which can be used for flow model development. 
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𝑇𝐾 Temperature in Kelvin (°K)  

𝑇𝑛𝑒𝑤  Unknown cylinder temperature (°K)  

𝑉  Cylinder volume rate of change (m3/sec)  

𝑉0 Cylinder volume of 𝑃0 (m3)  

𝑉𝑛𝑒𝑤  Cylinder volume of 𝑃𝑛𝑒𝑤  (m3)  

𝑟𝑒𝑞𝑢  Compression ratio equivalence   

𝑅 Gas constant (kJ/kg K)  

𝑘 Ratio of working mixture’s specific heats   
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𝑉𝑇𝑃𝑆  TPS voltage (V)  

𝑉𝑇𝑃𝑆
0  Closed TPS voltage (V)  

𝑉𝑇𝑃𝑆
𝑊𝑂𝑇  Wide open throttle TPS voltage (V)  

𝜃𝑡𝐶  Closed throttle angle (rad)  

𝑇𝑃𝑆 Closed to wide opened throttle %   
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𝑎 Throttle angle (rad)  

  
  

 

CHAPTER 11: Conclusion and future work 

𝐴𝑒𝑥  Exhaust valve flow area (m2)  

𝐴𝑖𝑛𝑡  Intake valve flow area (m2)  

𝐴𝑣  Valve flow area (m2)  

𝑃𝑐𝑦𝑙  Cylinder pressure (kPa)  

𝑃𝑝𝑜𝑟𝑡  Port pressure (kPa)  

𝑉𝑐𝑦𝑙  Cylinder volume (m3)  

𝑁 Engine speed (RPM)  
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CHAPTER 1:  Introduction 

Engine modelling is quite a large field with a plethora amount of knowledge available in 

literature. The main problem encountered is that the models are either too simple to allow 

the implementation of new control strategies or too specific as they were developed for a 

particular application. A process that has been found to be in need of improvement is the 

engine mapping and model calibration. The current use of mean-value engine models and 

mapping procedures result in data that can not be used on other engines while some engine 

phenomena can not be expressed at all. Thus, a physics based modelling approach has been 

chosen to mathematicaly represent the engine while developing a cycle-by-cycle engine 

model which can be used for any desired application such as engine simulation, virtual 

mapping procedure and flow models developement. 

Assuming that a mathematical model about a process or system of interest is available in 

the literature, it is most of the time unclear or difficult to implement it in a particular 

simulation package. This problem is either the outcome of missing information while 

sometimes it is due to the absence of a complete model structure which correctly 

represents the interaction of all presented equations. The mathematical models presented 

in this work have been developed in such a way so that they can form an autonomous 

engine sub-system which allows them to be clearly presented, understandable, and easily 

implemented by the reader, In addition, their sub-system format facilitates the complete 

engine model development or future editing. The sections that follow are a brief 
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introduction to the mathematical modelling terminologies and their main applications for 

analysing SI engines. 

1.1 Mathematical modelling 

The mathematical representation of an actual system that is carried out by correlating input 

and output variables using equations is referred to “mathematical modelling”. It is used on 

systems that need to be optimised, controlled or simulated. There is always a trade-off 

between the model accuracy, simplicity and simulation speed as more accurate models 

usually tend to be more complex. 

The mathematical models are classified into different categories from which some are listed 

below. 

Static vs. Dynamic: Static models do not take into account the time variable. Sometimes 

they describe a system at a particular moment in time or one that does not vary over time. 

On the other hand, dynamic models are mathematical expressions of a system over time 

and usually are represented by differential equations. 

Continuous vs. Discrete: The term “continuous” is used to refer to the model ability to 

represent the system using a constant set of equations. On the other hand, “discrete 

models” variables and equations may switch when a system’s process changes. 

Linear vs. Non-linear: Linear models can be evaluated using the four fundamental 

mathematical operators, addition, subtraction, multiplication and division. A non-linear 

model can have any mathematical operation and non-linearities. 
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Black-box vs. White-box: The terminology “black-box” is used to describe a model that 

contains some unknown operations (Figure 1.1-a). There are cases which some 

experimental data are used within a model to replicate a physical phenomenon and 

because either the phenomenon is not needed to be further analysed or the knowledge is 

not available, then it is used as it is. An example of such a model is a trained neural network 

model which is representing a system. The system’s mathematical model is not known but 

only its input-output relationships. On the other hand, a model is noted as “white-box” 

when everything is mathematically expressed and known (Figure 1.1-b). Practically, every 

model falls in an imaginary category between these two. 

 

 

Figure 1.1: Black-box & white-box models 



CHAPTER 1: Introduction 

 

4 
 

1.2 Engine modelling applications 

The term engine modelling is used whenever an engine is modelled through the use of 

mathematical equations. These equations may describe a complete engine (virtual engine), 

an engine’s process or just a variable. Below are some of the main applications an engine 

model can be used. 

Engine design: Mathematical modelling is used for engine design in order to optimise some 

specific components or systems. Engine sub-systems are usually designed and “tuned” in 

specific softwares depending on the requirements. An intake manifold for example is likely 

to be designed and optimised in a Computational Fluid Dynamics (CFD) package while the 

material selection for the crankshaft mechanism will be done using Finite Element Analysis 

(FEA) software. Engine models can provide typical input data to softwares like these when 

experimental data is not available. 

Mapping and calibration: The process of engine mapping (Figure 1.2) is mainly used by the 

automotive industry which consists of running a particular engine through all its operating 

range while collecting data from which “maps” can be build. The engine maps can then be 

used to build a model so that it can behave like that engine. This type of models is used to 

calibrate the Engine Control Unit (ECU). The equations that are in the engine model are 

used to collect the data and to evaluate variables in the ECU. It is common to have black-

box models representing individual engine dynamics sub-systems as they are simpler and 

achieve a good accuracy. Due to the fact that it is an engine mapping process and not a 

physic based model parameterisation, the maps represent only the engine at the moment 
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and conditions of the mapping procedure.  The engine calibration process includes the 

engine mapping procedure but has in addition the controller calibration parameters, sensor 

calibration and control verifications. Specialised hardware, software and services are 

provided by companies such as AVL1 and FEV2 for this purpose. 

HIL and SIL: Software In-the-loop (SIL) is used to denote the interaction and simulation of 

two virtual systems. The simulation of a vehicle model connected to an engine model is an 

example of a software in the loop application. On the other hand, the term Hardware In-

the-loop (HIL) is used when at least one system is a real hardware under testing through a 

simulation. An example of such a system is an ECU hardware connected to an engine model 

in order to evaluate the ECU’s control algorithms (Figure 1.3). SIL applications and 

configurations are practicaly unlimited with engine modelling. Any engine or vehicle sub-

system can be modelled and then simulated together depending on their developement 

objective. The same applies to HIL application. It can be as simple as a sensor testing, sensor 

algorith developement, any hardware or engine testing. 

Virtual prototyping: All above are steps of the virtual prototyping procedure before 

manufacturing. Successful virtual prototyping procedures will normally lead to flawless 

products which will not have to be redesigned. Virtual prototyping has become very popular 

since the availability of personal computers which lead to a significant amount of software 

and hardware development intended for this sector. 

                                                      
1
 AVL Homepage: http://www.avl.com/ 

2
 FEV Homepage: http://www.fev.com/ 
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Figure 1.2: Typical engine mapping and ECU calibration process 
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Figure 1.3: Typical HIL and SIL engine model configuration 
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Real-time: The main variable during a dynamic simulation is the time. If the time variable in 

the simulation can advance equally or faster than the real time, then the model and the 

simulation are said to have the ability to run in real time. This term is very important when 

an HIL application is required, as it means that the hardware can be used as it is, running at 

its nominal speed. If the model that it has to connect to is not real-time capable, then the 

hardware would have to run at a lower speed (down-clocked) which can compromise the 

hardware testing results. Caution must be taken whenever coming across with the term 

“real-time” as it is widely used these days due to its huge marketing advantage. An engine 

model can be for example real-time capable on a specific application and incapable on 

every other. This is mainly due to the simulation hardware, time step size or calculation 

accuracy used which are rarely presented. 

 

1.3 Cycle-by-cycle modelling vs. mean value modelling  

The main difference between cycle-by-cycle (cyclic) and mean value (MV) engine modelling 

is that the cyclic models require the crankshaft position as an input parameter while MV 

model evaluate all output variables averaged through either a crankshaft revolution (360°) 

or a complete engine cycle (720°). If an engine for instance is modelled using both the cyclic 

and MV type, and assuming all input parameters are constant; MV models output constant 

values while cyclic models produce constant output waveform patterns for each cycle. The 

engine’s intake manifold pressure for example is pulsating due to the individual non-linear 

piston intakes. This pulsating flow can be only represented by a cyclic model (Figure 1.4). 
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Figure 1.4: Cyclic and MV inlet pressure3 

 

In some cases, the complete effect of a phenomenon may disappear with a MV model. Such 

an example is the inertial forces of the reciprocating components which affect the 

crankshaft as a torque. This torque can be simply explained as the force applied by the 

crankshaft to accelerate and decelerate the reciprocating components throughout a 

crankshaft rotation. The inertial torques of all reciprocating components in an engine are 

the cause of the cyclic engine speed fluctuations along with the cyclic cylinder pressures 

which created the need of a flywheel to be attached on the crankshaft to increase its 

rotational inertia.  

                                                      
3
 Edited from: http://www.fluent.com/about/news/newsletters/04v13i2/a15htm 

   Last time accessed: 23 October 2009 
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The total work done on the components, while neglecting frictions, is zero as they return to 

the exact same position in space after each revolution. The output of the inertial torque 

from a mean value model would be a constant zero value as it is the averaged value for 

each revolution which totally hides this phenomenon (Figure 1.5). 

 

Figure 1.5: Piston inertia effect on the crankshaft (@ high speed) 

 

One thing to have in mind is that different engines modelled using a MV type may produce 

the same mean value outputs at similar engine conditions while their cyclic values would be 

totally distinctive as each one will have a different pattern. Assuming a couple of 

turbocharged engines running at the same constant boost pressure; MV models will output 

this constant boost pressure value for their inlet manifold pressures, while cyclic models will 
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produce a unique pressure pattern for each engine with the boost pressure being their 

averaged. 

The loss of information such as these described above is the major reason for choosing a 

cycle-by-cycle modelling type throughout this work. In addition, a cyclic engine model can 

be used to produce mean value outputs without any difficulty. A complete high fidelity 

cycle-by-cycle model could be used in a simulation package for example to evaluate all the 

desired mean value outputs which are needed for ECU calibration. As this process is 

basically the mapping of an engine model, the process can be named “virtual mapping”. 

 

1.4 Contribution  

After studying the SI engine modelling literature, it was found that there is a lack of mean-

value and cycle-by-cycle flow models that could describe a particular engine through all its 

operating range. In addition, the complexity of cycle-by-cycle engine processes is 

responsible for the discrete structure of cyclic models resulting in the difficulty of 

representing the engine in a dynamically continuous structure.  

The current mean-value type of engine mapping is believed to have “flaws” as it has to be 

extensively repeated for every single engine [1, 2]. The problem arises as a result of the 

“mean-value” type of engine mapping and modelling. 

The aim of this project is to develop a generic cycle-by-cycle model structure that can be 

used for cycle-by-cycle engine mapping; virtual engine model development and any other 
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application and configuration an engine model can be used including HIL, SIL and real-time 

applications [3]. This will hopefully facilitate the transition from mean-value engine mapping 

to a cycle-by-cycle mapping as the equations and complete sub-models that are going to be 

presented can be applied to any reciprocating SI engine. In addition to the equations, all the 

description of model parameter evaluation from a physical engine are explained, and 

specific tools were developed as standalone software to obtain typical valvetrain data for 

simulation, or fit the model with actual experimental data. 

 

 

1.5 Structure of the thesis  

CHAPTER 2: Literature review on engine modelling 

A literature review on engine modelling is presented in order to understand the common 

types of modelling techniques currently used and the requirements of an engine model 

depending on its application. The focus then switches to the notation of the mapping 

technique and model structure commonly used which is thought to be the cause for the 

mapping and model calibration problems currently encountered. 

CHAPTER 3: SI engine operation and control 

A brief explanation of the spark ignition engine operation and control is introduced with the 

aim of explaining the components, processes and terms that are going to follow in the 

thesis. 
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CHAPTER 4: Crankshaft mechanism 

The complete formulation of the piston and connecting rod kinematics are shown which form 

the base of cycle-by-cycle models. In addition, all reciprocating cylinder parameters are 

evaluated based on the piston motion. 

CHAPTER 5: Valvetrain 

A variable phasing and variable lift valvetrain model is presented in this chapter from which the 

effective valve flow areas are evaluated. A set of tools has been written as well in MATLAB 

which facilitate the valvetrain model calibration. 

CHAPTER 6: Throttle kinematics 

The formulation of the throttle effective flow area is presented as well as an approximation 

model which may find its use on real-time applications where the model execution speed can 

be crucial. 

CHAPTER 7: Engine inertia 

A mathematical rigid engine inertia model is derived as well as an experimental procedure to 

calibrate a model using transient speed measurements. This model takes into account all 

rotating components that have a constant speed ration with the crankshaft. 

CHAPTER 8: Thermodynamic cycle modelling 

An analysis is conducted to model the reciprocating motion continuously and the importance of 

using variable specific heats during a cycle-by-cycle simulation is evaluated in order to build an 

engine framework that can support this concept. 
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CHAPTER 9: SIES framework development 

The development and structure of the Spark Ignition Engine Simulation (SIES v1.0) 

Framework is illustrated. The framework was developed in the MATLAB/SIMULINK4
 

environment which has shown to be a flexible and invaluable tool for calculations and 

simulations. 

CHAPTER 10: EngMap framework development 

The development of the Engine Mapping (EngMap v1.0) Framework is presented which can 

form the base of the development of cyclic mapping procedures and data acquisition 

applications. The software used for this framework is the National Instruments LabVIEW5
 

because of its flexibility and simplicity to acquiring sensor signals. 

CHAPTER 11: Conclusions and future work 

A further discussion is done around the subject of engine mapping procedures and possible 

improvements are explained. In addition, future framework developments are clarified. 

 

                                                      
4
 Mathworks Homepage: http://www.mathworks.com/ 

5
 LabVIEW Homepage: http:/www.ni.com/labview/ 
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CHAPTER 2:  Literature review on engine modelling 

Mathematical modelling is used on engines since their first appearances. The main objective 

of early engine modelling was to increase the particular power output of an engine. The 

objectives switched to lower the fuel consumption and emissions due to the emission 

regulations introduced in recent years like the EURO 1 emission standards for passenger 

vehicles in 19926. The regulations since then have not stopped becoming more severe 

which keep the field of engine modelling and control continuously evolving so that future 

vehicles can meet these standards. 

The literature review has been divided into four different sections of focus interest. The first 

section deals with the main types of mathematical modelling techniques and structures 

used currently in engine modelling. A review of the engine model applications is following in 

order to understand the requirements needed depending on the model use. Then, the 

controversy between black-box and generic engine modelling is presented by denoting their 

advantages and weaknesses. Finally, the rationality and the ideas feeding this work are 

described as well as some important key elements that have been found in the literature 

that provided insight for the model structure development and application possibilities. 

2.1 Engine modelling approaches 

Over the past years, it can be said that the engine modelling approach switched from a 

mathematical to an experimental based. Literature shows that during the 60s and 70s, the 

                                                      
6
 http://www.ceraclean.com/en/download/PKW_LightVehicles_EU.pdf 

   Date last accessed: 15 July 2009 
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cycle-by-cycle modelling approach was used in order to express the cylinder pressure and 

engine flow [4-9] while the researchers were trying to understand most of the processes 

occurring in the engine. In the beginning of the 80s, electronic advances allowed the 

electronic control units (ECU) to be cost viable for production and their low speed would 

require simple control algorithms [10]. The mean-value engine modelling became the only 

possible approach which could be implemented in the ECUs. Thus, the 80s would mark the 

transition to a mean-value engine modelling requirement, where all parameters and engine 

cyclic depended variables are tried to be expressed as averaged with the less possible 

calculations [11-13]. The installation of electronic controllers on engines increased the 

demand in engine control schemes development, engine mapping procedures, ECU 

calibration algorithms and structures. 

In terms of literature availability between these model types, text books always present a 

more detailed and complete cycle-by-cycle model than journal/papers publications due to 

the complexity of such an entire engine model [14-18]. 

Another type of mathematical modelling used for non-linear models is soft computing 

algorithms. The components of soft computing are fuzzy logic, evolutionary algorithms and 

neural networks which have the ability to describe complex non-linear system input-output 

relationships quite accurately [19-22]. 

2.2 Applications of engine models 

The applications possible of an engine model are almost unlimited. Computer engine 

models are helpful during the design process as they allow a simulation of the engine to be 
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built which speeds up the engine development process, reducing the trial-and-error 

changes before production. They serve as well as a tool to understand the processes and 

phenomena occurring, but can also be used for diagnostic algorithms development for on-

board availability. A very important advantage is that a mathematical model of particular 

engine variable relationships can be developed to estimate quite accurately some variables 

which are difficult or even impossible to measure experimentally on an actual engine [6]. 

This approach can significantly reduce the cost of experimentation as more variables are 

estimated using a minimum amount of sensors and it would be correct to classify these 

engine models in the category of virtual sensors [23]. 

Engine models are widely used in the field of engine control as they facilitate the 

development and testing of control algorithms in real-time or not [24-26]. Sometimes, 

engine controller algorithms are such as that they require a version of the engine model to 

always be available in order to evaluate the control parameters. A real-time engine model is 

then embedded inside the controller. Powertrain controllers usually have an embedded 

vehicle model of which part of it is an engine sub-model providing the availability of 

estimating the particular effects between each vehicle sub-system has on the others [27]. 

The advances in electronics and personal computers gave birth to HIL and SIL simulations 

which can cut cost and production time significantly. A Powertrain Control Module (PCM) 

was connected to a mathematical model (SIMULINK7) of a throttle motor and TPS sensor in 

order to evaluate throttle responses [28]. ECU algorithms were tested in an automotive HIL 

                                                      
7
 SIMULINK Homepage: http://www.mathworks.co.uk/products/simulink/ 
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platform (PiAutoSim8) to investigate its advantages which were very important as ECU signal 

noise levels and other problems could be identified during the testing [29]. A very good 

example of multiple HIL use in one application was the automated map-based ECU 

calibration by simultaneously controlling the engine ECU and dynamometer [30]. 

The type of engine model determines its application possibilities. Mean-value models are 

preferable wherever speed and simplicity is required. A mean-value engine model was used 

in a hybrid powertrain simulation to investigate the maximum allowable transients which 

do not produce irregularities and extreme excursions in the engine air-fuel ratio in order to 

keep the emissions within acceptable range [31]. Mean-value engine models have been 

developed as well for control algorithm developments where the required model inputs can 

be obtained from sensors that are available on engines and can predict engine behaviour 

with the less possible calculations and at an acceptable accuracy for control applications 

that do not require cyclic information [12, 32]. 

On the other hand, cycle-by-cycle modelling is used whenever cyclic data has to be 

estimated. One example is the cylinder pressure estimation that has been developed using 

custom heat release functions for the combustion which was validated to experimental 

pressure profile data [33]. The engine simulated was a direct injection methanol engine. 

Cycle-by-cycle gasoline direct injection (GDI) models have been developed as well for GDI 

torque control [34]. Another application of cyclic modelling has been the simulation of an 

engine model to obtain the variable valve timing (VVT) maps and visualise the effects of the 

VVT control strategy [35]. 

                                                      
8
 PiAutoSim Homepage: http://www.pi-shurlok.com/ 
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Powertrain modellers are interested mostly in cyclic torque as it can be used to predict 

oscillations, vibrations and speed fluctuations when the engine model is connected to a 

powertrain model. The speed fluctuations were successfully correlated to other engine 

variables as the speed is available on an engine due to the fast sampling rate of the 

crankshaft sensor which is used as well for crankshaft position estimation. A model was 

developed to relate the cylinder pressure variations to the speed fluctuations [36] and 

another for estimating the brake torque output in real-time for powertrain control [37]. The 

cyclic speed variations have been modelled as well for a single cylinder diesel engine which 

is designated for transient fuel control [38]. 

2.3 State models Vs generic models 

Some of the literature encountered will be divided in this section into two categories in 

order to clarify the current techniques used. The first category includes the engine models 

encountered in which once the process of model calibration has been completed, it can 

only describe the particular engine from which the data was obtained and not even the 

same engine on some different conditions. Thus, these fitted models can describe only the 

“state of the particular engine” during the experimental data acquisition time. The naming 

convention “state models” has been selected for this reason. 

On the other hand, the term “generic models” is going to be used to express the 

mathematical models that have to be calibrated for a particular engine but their model 

structure can still predict the same engine on a different state or on some cases another 

engine as well. Note that “state models” and “generic models” can be calibrated to estimate 
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variables for any engine; the difference comes in the allowable alterations that can be made 

on an actual engine that would require model re-calibration. 

The main characteristic of “state models” is that they use multidimensional “black-box” 

calibration data. Another characteristic is that they are all mean-value engine models [39-

40]. There is a huge amount of publications that present mean-value engine models due to 

the fact that they are preferred on different fields. An engine model developed in SIMULINK 

which can run in real-time was presented but its main disadvantage is that it requires a 

large model calibration procedure [27]. The same applies to an engine model used for an 

air-fuel ratio control using sliding mode technique [41], air-fuel ratio dynamics modelling on 

a sequentially injection engine [42], and in a diagnosis system which was described as a 

black-box type air flow model to evaluate sensor faults of the intake system [43]. 

The intake system mean value models are usually based on a manifold filling-emptying 

concept in which the intake manifold pressure is estimated by evaluating the mass change 

inside the manifold from the difference between the flow passing through the throttle and 

the air entering the cylinders [44] (Figure 2.1). 

 

Filling – emptying manifold model 

 𝑑𝑃𝑚
𝑑𝑡

=  𝑚 𝑡𝑟 −𝑚 𝑐𝑦𝑙  
𝑅𝑇𝑚
𝑉𝑚

 (Eq. 2.1)  
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Where: 

𝑃𝑚 , 𝑇𝑚  and𝑉𝑚 :  Intake manifold pressure, temperature and internal volume respectively 

 𝑚 𝑡𝑟 :  Mass air flow through the throttle 

 𝑚 𝑐𝑦𝑙 :  Mass air flow into the cylinders 

 

 

Figure 2.1 Intake air flow dynamics 
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Note that multi-dimensional mapped variables are added to (Eq. 2.1) to include the effects 

of the EGR system. The standard orifice isentropic compressible fluid flow equation is 

usually used to describe the flow through the throttle by mapping the discharge coefficient 

𝑪𝑫 as a function of throttle angle and pressure ratio across the throttle [32, 39, 42, 45-47]. 

 

Mass air flow through the throttle [32] 

 
𝑚 𝑡𝑟 =

𝑪𝑫𝐴𝑡𝑟𝑃𝑡𝑟

 𝑅𝑇𝑡𝑟
 
𝑃𝑚
𝑃𝑡𝑟

 
1/𝛾

Υ (Eq. 2.2)  

 

With Υ: 

Un-chocked flow : 
𝑃𝑚

𝑝𝑡𝑟
>  

2

𝛾+1
 

𝛾

𝛾−1
 

 

Υ =  
2𝛾

𝛾 − 1
 1 −  

𝑃𝑚
𝑃𝑡𝑟

 

𝛾−1
𝛾
  

1
2

 (Eq. 2.3)  

 

Choked flow: 
𝑃𝑚

𝑃𝑡𝑟
≤  

2

𝛾+1
 

𝛾

𝛾−1
 

 

Υ =  
2

𝛾 + 1
 

𝛾+1
2 𝛾−1 

 (Eq. 2.4)  
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Where: 

𝑪𝑫:   Discharge coefficient obtained experimentally 

𝐴𝑡𝑟 ,𝑃𝑡𝑟 ,𝑇𝑡𝑟  : Throttle effective flow area, pressure and temperature respectively 

𝑃𝑚 :   Intake manifold pressure 

𝛾:   Gas specific heat ratio 

 

The mass air flow entering the cylinders is evaluated using the volumetric efficiency 

pumping equation [40, 47, and 48+ which requires the mapping of the engine’s volumetric 

efficiency as a function of at least intake manifold pressure and engine speed [22]. 

Mass air flow into the cylinders 

 
𝑚 𝑐𝑦𝑙 = 𝜼𝑽

𝑃𝑚𝑉𝑑
𝑅𝑇𝑚

𝑁

120
 (Eq. 2.5)  

Where: 

 𝑚 𝑐𝑦𝑙 : Mass air flow into the cylinders 

 𝑃𝑚  and 𝑇𝑚 :  Intake manifold pressure and temperature respectively 

 𝑉𝑑  and 𝑁: Engine’s displacement volume and speed respectively 

 𝜼𝑽:  Volumetric efficiency obtained experimentally (multi-dimensional) 

 



CHAPTER 2: Literature review on engine modelling 

 

24 
 

A fuel wall wetting model is required whenever transient engine operations are considered. 

This is due to the fact that some of the injected fuel sticks on the manifold walls and intake 

valves and ports because ECUs inject the fuel when the intake valves are closed [49]. This 

fuel mass is referred as “puddle mass”. Whenever a flow change occur, the amount 

deposited on the walls change as for example during a throttle step which leads to air-fuel 

ratios excursions. This effect is not new but was tried to be mechanically solved on 

carburetted engines using exhaust heat to vaporise the fuel before mixing it with air[50, 51]. 

The puddle mass wall wetting model (Figure 2.2) is described by the following equations 

and requires the mapping of the time constant for fuel vaporisation 𝝉𝒇 and proportion of 

the fuel that is depositing on the manifold 𝑿𝒇.  [10, 19, 40, 41, 45] 

Fuel wall wetting model 

 
𝑚 𝑓𝑓 =

1

𝝉𝒇
 −𝑚 𝑓𝑓 + 𝑿𝒇𝑚 𝑓𝑖  (Eq. 2.6)  

 𝑚 𝑓𝑣 =  1 − 𝑿𝒇 𝑚 𝑓𝑖  (Eq. 2.7)  

 𝑚 𝑓 = 𝑚 𝑓𝑣 + 𝑚 𝑓𝑓  (Eq. 2.8)  

Where: 

 𝑚𝑓𝑖 : mass of fuel injected   𝑚𝑓𝑓 : mass of fuel film (puddle) 

 𝑚𝑓𝑣 : mass of fuel injected reaching the intake valve 

 𝑚𝑓 : mass of fuel entering the cylinder 
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Figure 2.2: Fuel flow dynamics (adapted from [52]) 

 

The exhaust pressure mapping is tried to be avoided due to the cost of sensory equipment 

needed for the measurement of exhaust gases. This is the reason why the exhaust pressure 

is estimated using the air intake information. Different methods can be used to evaluate the 

exhaust pressure, the intake air flow model *53+, the engine’s residual gas map or 
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volumetric efficiency [54]. The downside is that these methods are not applicable when the 

engine is turbocharged. 

The amount of data that has to be collected from an engine just to represent the air and 

fuel flow as shown is immense and usually multidimensional. These multidimensional maps 

increase in complexity whenever a components or effect that is in “contact” to the air, fuel 

or exhaust path can be altered on the engine such as compression ratio, valvetrain 

components and timings [17]. This is the reason why the mapping procedure is reduced by 

mapping the engine on steady state conditions while transient operations are assumed to 

have the same maps. 

On the other hand, cyclic modelling is more generic as it requires less model calibration 

data. Cycle-by-cycle models can simulate for example engine pressure and combustion 

without the need of much of a model calibration. This is due to the fact that the model 

parameters are mostly gas properties and combustion coefficients which are more or less 

same on every engine of the same type. If these parameters were to be mapped, they 

would never exceed a 2-dimensional map. A great example is the Wiebe function heat 

release model which is widely used to model the combustion in cycle-by-cycle models [8, 

55-58]. The only parameter that has to be mapped here is the duration of combustion. 

Wiebe heat release function: 

 
𝑓𝑏 𝜃𝑐 = 𝑒

∝ 
𝜃𝑐−𝜃𝑠
𝜃𝑑

 
𝑛

 (Eq. 2.9)  
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This heat release function evaluates the mass fraction of fuel burnt 𝑓𝑏 𝜃𝑐  at 𝜃𝑐  which is the 

crankshaft angle at which the calculation is done, while 𝜃𝑠  and 𝜃𝑑  is the crankshaft angle at 

which the combustion starts and the duration of the combustion in crankshaft angle 

respectively. The terms ∝ (usually=5) and 𝑛 (usually=2 to 3) are coefficients defining the 

shape of the function curve. 

One dimensional gas and fluid dynamic numerical models are used as well for engine design 

and simulation of engine processes [59-61] but their disadvantage is that they are complex 

and the complete air and gas flow paths have to be divided into small pieces (mesh) to 

evaluate the flow. Their calculation usually requires a large amount of time as it is an 

iterative process. 

2.4 Cycle-by-cycle modelling and mapping 

The current engine modelling and mapping method preferred (mean-value) looks like it has 

reached a critical point. At the beginning of its use, almost no engine had variable air/gas 

flow parameters except maybe an exhaust gas recirculation (EGR) valve and rarely a 

camshaft phasing. Thus, the maps were quite simple compared to what they should be for 

let’s say an engine with variable lift, variable phasing, etc. In addition, control algorithms 

always evolve, becoming more complex, and requiring more accuracy from the engine 

model. Taking the intake system for instance, the unavailability of a proper model to predict 

the flow mixing during the valve overlap period was stated by the authors of [59, 62] and 

the unavailability of an accurate intake manifold dynamic model during warm-up periods in 

[63] which would not have been a problem for a proper cycle-by-cycle model. 
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A cycle-by-cycle modelling approach will facilitate the understanding of the processes 

occurring in the engine. For example, the intake air charge was found to be proportional to 

the intake manifold pressure in *39+ and the authors stated that it was a “surprisingly simple 

relationship”. They also denoted that the intake air charge per stroke is the variable that has 

to be modelled for cylinder intake and not the volumetric efficiency. This simple 

relationship was hidden all this time in the volumetric efficiency maps. A more detailed 

physics based modelling is going to reveal other correlations that will reduce the complexity 

and dimensions of maps required to represent an engine on a mathematical model. As 

correctly stated in [10] mathematical model complexity simplifies the mapping and model 

calibration procedures, which will reduce the ECU calibration costs [12, 31]. 

A more detailed fuel wall wetting model was developed in [64] which resulted in an easier 

calibration. It is my understanding that the models are going to be continuously extended to 

a more physics based approach until they are going to end up to a high fidelity cycle-by-

cycle structure in the future. The future trends were denoted in [65] as being automated 

calibration and adaptive control on a cycle-by-cycle basis. The automated self-learning ECU 

calibration is an attractive field and looks promising [30, 66-69] while the adaptive 

controllers difficulty in the development phase and great potential is stated in [70]. The 

availability of an “engine simulation framework” would facilitate the development and 

algorithm testing. In addition, control engineers, would not have to go through the 

complete cycle-by-cycle modelling as they could directly select the engine variables of 

interest in the model. 
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The GDI control model requirements are a bit different than the port injection engines. The 

moment of fuel injection in a port injection engine is affecting the fuel flow into the cylinder 

and the manifold pressure which rephrases to intake air flow. On a GDI engine, the moment 

of injection in addition affects the fuel flow through the injectors due to the difference in 

cylinder pressure which makes it an important parameter. 

The cycle-by-cycle mapping of an engine may be more expensive due to the need of cyclic 

sensory equipment such us cylinder pressure sensor. The development of new low cost 

cylinder pressure sensors [8] that can be even used for production purposes [71] have made 

this mapping method viable. 

2.5 Guidelines 

The key elements that served as guidelines which were found in the literature are 

presented below. The inlet and exhaust flows are affected by the in-cylinder gas motion, 

port design [72] and manifold sizes [45] while the valve lift affects the intake port speed 

which leads to affecting the fuel vaporisation [73]. In addition, the valve lift undergoes three 

flow regimes as stated in [7, 15, 16] and was experimentally confirmed in [7, 73] which 

denotes the importance of using three different effective flow area models during a 

complete valve lift event. Another important parameter stated in [9] during the intake and 

exhaust flows is the instantaneous piston speed. 

If any engine model must be developed, an EGR system is mandatory sub-model to meet 

current and future emission regulations [74]. In addition, the crankshaft would have to be 

modelled as a flexible component if the model is to be used for cyclic variations [75]. 
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A cycle-by-cycle model structure would have to be continuous for simplicity and calculation 

speed [76] and its accuracy may be increased by the use of variable specific heats for the 

modelled gases [14, 77]. 

New designs on engine sub-systems or complete engines could be easily simulated on a 

complete cycle-by-cycle engine model. For example, the potential use of the Atkinson cycle 

on a diesel engine was simulated in [78]. 

A cycle-by-cycle simulation framework will be able to output the maps doing a virtual 

engine mapping to map mean-value engine models [40]. An engine model developed using 

the GT Power was successfully used to obtain optimum camshaft profiles for a particular 

engine [56]. 

Two identical engines require different fuel and spark advance maps on a map based ECU. 

This is mainly due to the manufacturing tolerances of each individual component and 

maybe assembly variation (i.e. one may have a camshaft timed half a degree differently). A 

virtual engine model can provide insights to which component tolerances compromise 

these variations, and which in what amount. 

The study of the literature inspired the creation of a cycle-by-cycle spark ignition simulation 

framework in MATLAB/SIMULINK which will provide the base of a complete cyclic model 

that could be for any desired application. The structure will have to be modular such as 

different sub-models could be easily implemented and compared. 
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In parallel, a cyclic engine mapping framework is being developed in National Instruments 

LabVIEW for engine flow model development and mapping. Both frameworks have to be 

developed using the same model equations so that the data obtained experimentally 

calibrates correctly the simulation models. The unavailability of a proper light valve flow 

model to be used in cycle-by-cycle simulation explains the reason that the isentropic flow 

equations (Eq. 2.2 - 2.4) are used instead [34, 58], while others totally neglect the intake 

and exhaust flow during simulations [37, 79]. 
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CHAPTER 3:  SI engine operation and control 

The internal combustion engines have been chosen for road transportation over the years 

due to their high efficiency and low production cost. They can be classified using different 

factors such as displacement volume, number of cylinders, number of valves, cylinder 

orientation, camshaft position, valve train type, etc. There is also a classification depending 

on the type of fuel they are burning. The two main types of road vehicle engines used are 

the spark ignition engine (SI engine) and the Diesel Engine. 

The Diesel Engine and fuel was named after its inventor (Rudolf Christian Karl Diesel) which 

included his work and invention in a publication and formed the basis of his work. The 

diesel engine which is also called the Compression Ignition engine (CI engine) causes 

enough pressure and temperature on the fuel to start a spontaneous fuel combustion by 

auto-ignition. On the other hand, the SI engine uses a spark to ignite the fuel following the 

Otto cycle named after Nicolaus Otto which was the first to develop a working engine, 

although he didn’t hold the patents. 

Internal combustion engines haven’t stop evolving since their first appearance. While the 

main objective on earlier years was to increase the power output and reliability, their design 

and electronic control strategies have switched to decrease emissions output and fuel 

consumption over the past years while trying not to compromise the power output. 

The fact that electronic fuel injection systems have been installed on SI engines allowed the 

development of control schemes and algorithms which are since then a constantly evolving 
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field as it allows an on-board real-time processing unit which by reading the engine’s 

sensory system it then evaluates the required actuation for a particular desired effect. 

A brief description of the SI engine components, operation and control is going to be 

presented below as it is always better to understand the subject system before modelling it. 

3.1 SI engine operation 

The SI engine is operating following a repeating cycle of four-strokes which are the intake, 

compression, expansion (or power) and exhaust stroke. 

Intake Stroke: The piston is currently at TDC (Top Dead Centre) with the intake valve open, 

as the piston moves towards BDC (Bottom Dead Centre) fresh air is drawn inside the 

cylinder through the open intake valve. This process (TDC to BDC) is called the intake stroke 

(Figure 3.1). If it is a direct injection engine, meaning that the fuel is injected inside the 

cylinder, then only fresh air is drawn in otherwise it is a mixture of air and fuel. It is 

important to note that on actual engines, not only fresh air is usually drawn in, but in some 

cases (depending on valve timing) exhaust gases may be inducted inside the cylinder 

through the intake valve. 

Compression Stroke: The intake valves close a bit after BDC enclosing the mixture inside the 

cylinder and the piston moves from BDC to TDC increasing the pressure and temperature of 

the mixture (Figure 3.1). The only flow out of the cylinder during this process if the engine 

and components operate correctly may be the flow through the piston rings which is 

referred to as “blow-by” losses. This effect is happening because the pressure inside the 
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cylinder is significantly higher than the crankcase pressure and the piston rings cannot 

perfectly seal the cylinder. 

 

Figure 3.1: Intake and compression strokes 

 

Expansion or Power Stroke: Towards the end of the compression stroke, the spark plug is 

fired which ignites the mixture and the combustion process starts. As the piston passes TDC, 

the gas pressure pushes the piston towards BDC and the cylinder volume is expanded 
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(Figure 3.2). This stroke is usually the only one producing useful work and thus also called 

the “power stroke”. The highest value of cylinder pressure during a cycle usually occurs on 

the first quarter of this stroke. 

Exhaust Stroke: The exhaust valve opens just before BDC to take advantage of the higher 

cylinder pressure which creates momentum in the exhaust manifold and reduces the 

amount of work needed to remove the exhaust gases from the cylinder. Then, the rest of 

the exhaust gases are pushed out by the piston as it moves to TDC (Figure 3.2). 

 

Figure 3.2: Expansion and exhaust strokes 
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The intake valve is opened before TDC for the intake stroke which produces a duration 

which is called “the valve overlap” as both intake and exhaust valves are simultaneously 

open. The remaining gases inside the cylinder are named “residual gases”. They occur firstly 

because at TDC the cylinder volume is not zero, and secondly because a portion of the 

exhaust gases sometimes exit through the intake valves during overlap and low engine 

speeds. These are drawn back inside on the next intake stroke. 

3.2 SI engine control 

The spark ignition engine has evolved from a simple mechanical controlled system to a 

complex electronically controlled when the emission requirements became more 

demanding. In addition, the market competition and environmental global warming over 

the past years have set an aim to reduce the fuel consumption to the minimum possible. 

There are engines that have a large amount of control systems working simultaneously to 

achieve a smooth operation, efficiency and comfort. These can be variable valve timing 

control, idle speed control algorithms, exhaust gas recirculation, spark timing, fuel injection, 

etc. Nevertheless, every control system named above is a field of its own and thus only the 

control of fuel injection and spark timing is going to be described as they are the two 

fundamental control systems found in every today’s vehicle. 

3.2.1 Fuel injection 

Over the years, quite a number of injection systems have been used on spark ignition 

engines. When the transition from carburettors to injection systems was under way, the 

most common injection systems were the single point injection systems which generally 
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consisted of a throttle plate valve along with an injector. Their advantage at their time was 

that they could directly replace the carburettor on a specific engine design without the need 

of any significant intake manifold, or vehicle design alteration. 

The multi-port injection systems that followed and that are still today the most commonly 

found, have one injector (sometimes two) per cylinder placed on the intake manifold closed 

to the cylinder head intake port. The injection events are either sequentially, simultaneously 

(all injector fired simultaneously) or batched (pairs of cylinders). 

When the injected fuel reaches a closed inlet valve, the mixing is done inside the manifold 

volume and the fuel wetting phenomenon is an important phenomena to consider 

modelling. 

The latest injection system used commercially on spark ignition engines is the direct 

injection system, the concept which is to inject the fuel directly inside the cylinder during 

the compression, and thus totally cancelling the effect of fuel wetting inside the manifold. 

The proper simulation and modelling of a generic fuel wetting model can be done only in a 

cycle-by-cycle engine model structure due to the fact that the crankshaft position at the 

moment of injection is important. The same applies for a direct injection system as the 

timing of injection inside the cylinder defines along with the duration the amount of fuel 

that is going to be injected and the air-fuel mixing process. The objective of the fuel 

injection is to accurately control the air fuel ratio by keeping it as close as possible to the 

stoichiometric value (14.7 kg air/ kg fuel) for which the 3-way catalysts operate at its higher 

efficiency. 
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A richer mixture should be used in the case of maximum power output requirements. On 

moderns 4-valve per cylinder naturally aspirated engines, the maximum power output is 

usually achieved at a mixture ratio between 12.8-13.2 kg air/kg fuel. 

3.2.2 Spark timing 

The second important control parameter in a SI engine is the spark timing. It is needed due 

to the fact that the combustion requires an amount of time to complete and in addition, the 

effect of knocking occurring. 

The flame of the combustion starts at the spark location and propagates fast thorough the 

whole cylinder volume with its speed usually referred as “flame speed”. The pressure and 

temperature inside the cylinder rise rapidly during this period. If the un-burnt mixture’s 

temperature surpasses a limit, it will self-ignite. A spontaneous self combustion is occurring 

which creates large pressure oscillations and temperatures which can damage engine 

components. 

The maximum pressure and temperatures of the combustion have then to be kept below 

the knock limit which is possible by altering the moment of spark firing. The spark timing is 

also named as “Spark Advance” (SA) and its units are in degrees of crankshaft before TDC. 

(i.e. 25° SA means 25° before the end of the compression stroke). 

There is a value of SA for every engine operating condition that produces the maximum 

brake torque output which is called the “Maximum Brake Torque” timing (MBT). Any 

advance or retardation from that timing will reduce the brake torque output. 
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The generic modelling of the spark advance effect on engine variables and knocking can as 

well only be achieved using a cycle-by-cycle engine model structure. 

3.2.3 ECU 

The Electronic Control Unit (ECU) has the task to control the engine actuators to achieve 

specific goals. It is able to evaluate the correct actuation quantities by monitoring the 

engine sensors. 

A typical list of the most common sensors (Figure 3.3) and reasons the ECU is monitoring 

them is given below: 

Mass Air Flow (MAF): It is used to measure the intake air flow between the filter and the 

throttle using the hot-wire measurement method. This sensor is an important reading that 

the ECU has available for closed-loop control. 

Manifold Absolute Pressure (MAP): The manifold absolute pressure is used for the 

evaluation of the air flow and sometimes it is used as well for applying correction factors on 

the actuations. 

Lambda sensor: It provides a signal from which it can be identified if the mixture burnt was 

rich or lean and is also called a narrowband O2 sensor. 

Wideband O2 Sensor: It is able measure accurately the exact air-fuel ratio of the mixture 

burnt usually between the range: 10-18 kg air/kg fuel. 

Air temperature: The measurement of the intake manifold air temperature along with the 

pressure can be used to evaluate the air density value by the ECU. Programmable ECUs uses 
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this measurement to apply the appropriate correction factor on spark advance and fuel 

injection. 

Coolant temperature: The coolant temperature is the closest reference to the engine 

components temperature and thus cylinder temperature. It is used as well to evaluate the 

desired actuation amounts. 

 

Figure 3.3: Schematic representation of the sensors and actuators present in modern 
gasoline engines [65] 

 

Crankshaft & camshaft sensor: The crankshaft sensor signal is a frequency wave from which 

the ECU can evaluate the actual engine position, speed and acceleration. This signal is very 

important for the spark timing as it is the reference point. The camshaft sensor is needed to 
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evaluate the next firing cylinder on a sequential injection engine and the individual piston 

strokes if needed, as well as the engine speed. 

Knock Sensor: The knock sensor outputs a high frequency signal when the engine is 

knocking and thus the ECU can retard the spark timing until knocking stops. 

The ECU algorithms can be classified into two main categories, closed-loop and open loop. A 

closed-loop control scheme is a control structure in which the actuations are evaluated 

dynamically by monitoring all sensors and the response of the desired variable. The 

controller tries to minimise the error between the desired value and the actual. Taking as an 

example the air-fuel ratio control, the signal from the exhaust lambda sensor is the 

response that the ECU tries to correct. The open-loop control applies to a controller that 

sets the desire value but do not have a feedback to determine in reality if it has achieved its 

goals. 

An interesting thing to note at this point is that even without an open-loop control, an 

engine can be controlled perfectly. Programmable aftermarket ECUs if calibrated properly, 

can achieve an accurate operation. Their main structure usually consists of 2-D data tables 

for injection duration and spark advance. Once the engine condition is obtained, the ECU 

retrieves the actuation values from the tables and then applies corrections based on the 

sensor signals. The actuation calculations in a map based ECU structure are non dynamic 

input-output functions. 
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3.3 Summary 

The engine goes through an extensive testing to evaluate the effect of all control 

parameters from which maps are developed. These are then used by the ECU alongside 

with the feedback of the lambda sensor to calculate the control parameters such as spark 

advance and injection duration. The mathematical models used in the ECU are MV models 

which limit the control possibilities (i.e. injection moment). The ECU usually has a large 

amount of algorithms for controlling different engine parameters such as idle control and 

boost control. It may have as well specific algorithms to control the engine on different 

regimes. An example is the warm-up regime which main purpose is to quickly warm-up the 

catalyst converter so that it does not operate on low conversion efficiency for a long period 

of time. 
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CHAPTER 4:  Crankshaft mechanism 

The kinematic motion of the piston is without a doubt the starting point of all cycle by cycle 

reciprocating engine models. It is an important part as it forms the basis of a cycle-by-cycle 

dynamic engine model due to the fact that cylinder geometry is related to the piston 

position. In addition, all cyclic variables such as torque, cylinder pressure, manifold 

pressure, etc, are affected by the crank mechanism. The work that follows describes the 

formulation and development of a complete reciprocating crankshaft mechanism dynamic 

mathematical model so that it can form the basis of a complete cycle-by-cycle engine 

model. In addition, the crankshaft mechanism’s piston pin offset which is usually neglected 

on similar cyclic equations has been taken into account and has shown that in some cases 

its absence may produce significant errors. 

4.1 Crankshaft dynamics 

Although a large amount of literature exists on the subject of cycle-by-cycle modelling, it is 

hard to come across the equations of motion for the piston and connection rod which 

would evaluate their instantaneous speed and acceleration while the piston pin offset 

parameter is totally neglected even when evaluating the piston position. The effect of this 

parameter becomes noticeable when the inertial forces of the connecting rod and piston 

are evaluated as it is noticeably affecting the acceleration of the piston and connecting rod. 

The piston pin offset is usually only referred on literature on engine noise reduction as it is 

one of the parameters optimised to reduce piston slap which occurs when switching from 
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the compression to the expansion stroke [80]. The calculation errors than can occur by 

neglecting the piston pin offset in cycle-by-cycle simulations are clearly stated in [18]. 

An effect that is produced by offsetting the reciprocating mechanism is that the strokes 

become uneven. This results in unequal stroke durations in time units when an engine is 

rotating at constant speed. The uneven stroke lengths can be seen in the operation of free 

piston engines [81, 82] which can be thermodynamically optimised by producing a faster 

expansion which increases the efficiency [83]. 

The mean piston speed is usually used to map the intake flow processes as it has shown to 

fit better experimental data than the crankshaft speed [17]. Although better, it is still not 

perfect as different engine may have the same mean piston speed. Their distinctive variable 

is the instantaneous speed which should be used for intake flow mapping. 

Piston position and velocity equations usually do not include the piston pin offset [16, 79, 

84]. An exception is present in [38] which takes into account the piston pin offset to 

evaluate the piston position which in turn is used in a prediction model of cyclic speed 

variations on a single cylinder diesel engine. 

4.2 Parameters of the crankshaft mechanism 

The piston motion can be derived by analysing the geometry of the crank mechanism. The 

analysis that is going to follow is based on the assumption that the piston pin has an offset 

relative to the cylinder centre line of piston motion. It is important to have in mind that a 

crankshaft axis offset has exactly the same effect as both analysis lead to the same result. 
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Thus, at this point a new parameter has to be introduced in order to take into account the 

total offset of the crank mechanism during the mathematical analysis. 

The total crank mechanism offset affecting the piston motion is given by: 

 𝑂𝑡 = 𝑂𝑐 + 𝑂𝑝  (Eq. 4.1)  

𝑂𝑡  is the total crankshaft mechanism, 𝑂𝑐  is the crankshaft offset and 𝑂𝑝  the piston pin offset in 

meters. 

A representation of crankshaft mechanisms having a crankshaft and piston pin offset as well 

as their positive assumed directions is shown in Figure 4.1. The clockwise rotation is chosen 

to be the positive direction for angular motions throughout this work. 

 

Figure 4.1: Crankshaft and piston pin offsets 
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The crank arm angle is zero at TDC and the piston stroke is twice the crank arm radius when the 

crank mechanism does not have an offset. In the other hand, when there is an offset, everything 

is different. The piston stroke and crank arm angle at TDC become a function of the offset. 

The only problem rising at this point is the choice of reference point. It is not practical to use the 

crank arm angle as an input to the equations as TDC occurs at a no zero angle due to the offset 

(Figure 4.2). This can be solved by introducing another parameter named “engine angle” which 

will have a value of zero at TDC. 

 

Figure 4.2: Crankshaft mechanism BDC and TDC positions with offset 
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The position angle of the crank arm rotating the end of the connecting rod is going to be 

denoted as φ and the engine angle as θ. BDC & TDC piston positions on a positive total 

offset can be seen in (Figure 4.3). It is understandable from the picture that the stroke of 

the piston is no longer twice the crank arm and that the TDC and BDC positions are no 

longer at 0° and 180° crank arm angle respectively. 

Inspecting the diagram (Figure 4.3), the crank arm positions for TDC and BDC can be 

evaluated using trigonometry9. TDC and BDC crank arm angles (𝜙𝑇𝐷𝐶  and 𝜙𝐵𝐷𝐶 ) are 

referred to as angles of obliquity [18] and are given by: 

 
𝜙𝑇𝐷𝐶 = − sin−1

𝑂𝑡
𝐿 + 𝐾

 (Eq. 4.2)  

 
𝜙𝐵𝐷𝐶 = 180 − sin−1

𝑂𝑡
𝐿 − 𝐾

 (Eq. 4.3)  

𝐿 is the connecting rod length (m) and 𝐾 is the crank arm radius (m). 

As referred previously, the engine stroke is not anymore twice the crank arm length when 

an offset is present. The following equation (Eq. 4.4) gives the piston stroke of an engine 

with an offset piston motion. 

Piston stroke: 

 
𝑆 = 𝑋𝑝𝑇𝐷𝐶 − 𝑋𝑝𝐵𝐷𝐶 =   𝐿 + 𝐾 2 − 𝑂𝑡

2 −  𝐿 − 𝐾 2 − 𝑂𝑡
2 (Eq. 4.4)  

                                                      
9
 0 reference shown on the diagram Figure 4.3 as Φ=0°. 
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The interesting effect of an offset reciprocating motion is the unequal stroke durations 

which are given below (Eq. 4.5 & Eq. 4.6) using (Eq. 4.2 & Eq. 4.3). 

 

Figure 4.3: BDC and TDC positions diagram 

Stroke durations: 

 𝜙𝑇𝐷𝐶−𝐵𝐷𝐶 = 𝜙𝐵𝐷𝐶 − 𝜙𝑇𝐷𝐶  (Eq. 4.5)  

 𝜙𝐵𝐷𝐶−𝑇𝐷𝐶 = 360 − 𝜙𝐵𝐷𝐶 + 𝜙𝑇𝐷𝐶  (Eq. 4.6)  
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𝜙𝑇𝐷𝐶−𝐵𝐷𝐶  is the stroke duration in crankshaft angle from TDC to BDC (deg), (Intake & 

Expansion Stroke) and 𝜙𝐵𝐷𝐶−𝑇𝐷𝐶  is the stroke duration in crankshaft angle from BDC to TDC 

(deg), (Compression & Exhaust). 

The possibility of designing an engine with unequal stroke durations can improve some 

engine behaviour on different areas. The first thing to have in mind in order to understand 

this concept is that assuming a constant engine speed during the cycle, a longer stroke 

duration angle would result in a longer stroke duration in time units. This provides the 

ability to vary the time duration of the strokes. 

Examining the case that the TDC to BDC stroke duration is longer (Expansion & Intake), the 

effect is that the same work during the expansion is transferred to the crankshaft on a 

longer rotation which would result in lowering the peak to peak cyclic torque amplitudes. In 

addition, the piston speed is lower on this case which increases the volumetric efficiency of 

the engine as more time is available for intake resulting in a larger amount of air in the 

cylinder by the end of the intake stroke. 

4.3 Piston motion 

The piston pin position is a function of the crank arm angle, while its velocity is a function of 

both crank arm position and speed. The piston pin acceleration is an important variable to 

evaluate as it is the parameter along with the mass of the piston that produces the inertial 

forces on the crankshaft. 

Due to the fact that TDC is no longer at crank arm angle 0° but ΦTDC when a total offset on 

the reciprocating motion is present, a need to shift the crank arm angle so that TDC will 
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occur at an angle of 0°. Top dead centre has been chosen to be as the zero reference as it is 

the primary reference point used for different timings on the engine as spark timing, intake 

and exhaust camshaft timings. Thus, the new term that is going to be introduced at this 

point is called the “engine angle” 𝜃 which is used to evaluate the crank arm angle 𝜓, and it 

is given by: 

 𝜓 = 𝜙𝑇𝐷𝐶 + 𝜃 (Eq. 4.7)  

 

The cylinder axial distance of the piston pin relative to the crankshaft or piston pin position 

is given below: 

 𝑥𝑝𝑖𝑛  𝜓 = 𝐾 𝑐𝑜𝑠 𝜓 +  𝐿2 −  𝐾 𝑠𝑖𝑛𝜓 + 𝑂𝑡 2 (Eq. 4.8)  

 The piston pin velocity and acceleration can be derived by differentiating the equation (Eq. 

4.8). 

Piston pin velocity: 

 𝑣𝑝𝑖𝑛  𝜓,𝜔 = −𝜔𝐴 𝜓  (Eq. 4.9)  

 

Piston pin acceleration: 

 𝑎𝑝𝑖𝑛  𝜓,𝜔,𝛼 = −𝑎𝐴 𝜓 − 𝜔2 𝐵 𝜓 + 𝐶 𝜓    (Eq. 4.10)  
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Where: 

 
𝐴 𝜓 = 𝐾 sin𝜓 +

𝐾2 sin𝜓 cos𝜓 + 𝑂𝑡𝐾 cos𝜓

 𝐿2 −  𝐾 𝑠𝑖𝑛 𝜓+𝑂𝑡 2
 

(Eq. 4.11)  

 
𝐵 𝜓 = 𝐾 cos𝜓 +

𝐾2 cos2 𝜓 − 𝐾2 sin2 𝜓 − 𝑂𝑡𝐾 sin𝜓

 𝐿2 −  𝐾 𝑠𝑖𝑛 𝜓+𝑂𝑡 2
 (Eq. 4.12)  

𝐶 𝜓 =
𝐾4 sin2 𝜓 cos2 𝜓 + 2𝐾3𝑂𝑡 sin𝜓 cos2 𝜓 + 𝐾3𝑂𝑡

2 cos2 𝜓

 𝐿2 −  𝐾 𝑠𝑖𝑛 𝜓+𝑂𝑡 2 3/2
 (Eq. 4.13)  

𝜔 is the crankshaft/engine angular speed (rad/sec) and 𝛼 is the crankshaft/engine angular 

acceleration (rad/sec2). 

4.4 Crankshaft mechanism model validation 

The equations above have been validated by building an offset crankshaft mechanism 

model in the dynamic simulation package MSC ADAMS10. It was found that the equations 

produce the same results as the model built in MSC ADAMS. Table 4.1 shows the crankshaft 

parameters used in the ADAMS model (Figure 4.4) and in equations (Eq. 4.1 to Eq. 4.13). 

 

Table 4.1: Crankshaft mechanism parameters used for validation 

Crank arm radius K 0.027 m 
Connecting rod L 0.13 m 
Total offset Ot 0.005 m 
Engine speed ω 9000 RPM 

 
ω 942.4778 rad/sec 

Engine acceleration α 0 RPM/sec 
 

                                                      
10

 MSC ADAMS Homepage: http://www.mscsoftware,com/products/adams.cfm 
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Figure 4.4: MSC ADAMS simulation model for validation 

 

The piston has the same kinematics as the piston pin assuming that it follows a linear 

motion inside the cylinder. Although same, the positive direction is going to be defined as 

opposite to the pin motion. By doing so, the cylinder properties and rates can be defined 

from the piston motion in Figure 4.5. 
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The distance between the piston top and the highest cylinder point (TDC), velocity and 

acceleration are given below. 

𝑥𝑐𝑦𝑙  𝜓 = 𝑋𝑝𝑇𝐷𝐶 − 𝑥𝑝𝑖𝑛  𝜓  (Eq. 4.14)  

𝑥𝑐𝑦𝑙  𝜓 =   𝐿 + 𝐾 2 − 𝑂𝑡
2

−  𝐾 𝑐𝑜𝑠 𝜓 +  𝐿2 −  𝐾 𝑠𝑖𝑛 𝜓 + 𝑂𝑡 2  

(Eq. 4.15)  

 𝑣𝑐𝑦𝑙  𝜓,𝜔 = 𝜔𝐵 𝜓  (Eq. 4.16)  

 𝑎𝑐𝑦𝑙  𝜓,𝜔,𝛼 = 𝑎𝐴 𝜓 + 𝜔2 𝐵 𝜓 + 𝐶 𝜓    (Eq. 4.17)  

 

𝐴 𝜓 , 𝐵 𝜓  and 𝐶 𝜓  are given in equations Eq. 4.11 to Eq. 4.13. 𝜓 is the actual crank arm 

angle given by equation Eq. 4.7 and 𝜔 and 𝛼 are the angular speed (rad/sec) and 

acceleration (rad/sec2) respectively. 

 

4.5 Compression ratio 

The compression ratio is the ratio of the BDC cylinder volume over the TDC volume. This 

engine design specification can be said to define the compressibility of an engine. The 

compression ratio affects engine operation such as knocking, power output and other 

parameters directly or indirectly related. 
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Figure 4.5: Positive directions for piston pin and piston kinematics 
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If the compression ratio 𝑟, cylinder bore 𝐵 and swept volume 𝑉𝑠𝑤𝑒𝑝𝑡  of a cylinder are known 

for a particular engine, then the cylinder volumes at TDC and BDC can be evaluated. The 

swept volume is the cylinder volume between TDC and BDC, thus: 

 
𝑉𝑠𝑤𝑒𝑝𝑡 =

𝜋𝐵2

4
𝑆 (Eq. 4.18)  

 

The compression ratio is: 

 
𝑟 =

𝑉𝐵𝐷𝐶
𝑉𝑇𝐷𝐶

=
𝑉𝑇𝐷𝐶 + 𝑉𝑠𝑤𝑒𝑝𝑡

𝑉𝑇𝐷𝐶
 (Eq. 4.19)  

 

Solving above gives the cylinder volumes at TDC and BDC: 

 
𝑉𝑇𝐷𝐶 =

𝜋𝐵2𝑆

4𝑟 − 4
 (Eq. 4.20)  

 
𝑉𝐵𝐷𝐶 =

𝜋𝐵2𝑆𝑟

4𝑟 − 4
 (Eq. 4.21)  

4.6 Cylinder area 

The cylinder area is a parameter required when evaluating the engine heat transfer to the 

cylinder block and coolant fluid. It is usually difficult to know the cylinder area at TDC as the 

combustion chamber geometry vary from one engine to another except if a CAD model 

exists. Although, it can be approximated by assuming a perfect cylinder with a diameter 
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identical with the cylinder bore. This will produce an effective TDC cylinder height of the 

combustion chamber which is given by: 

 
𝑇𝐷𝐶 =

𝑆

𝑟 − 1
 (Eq. 4.22)  

The total cylinder height as a function of engine/crankshaft angle is then: 

 𝑡 = 𝑇𝐷𝐶 + 𝑥𝑐𝑦𝑙  𝜓  (Eq. 4.23)  

The velocity and acceleration that this cylinder height varies over crankshaft angle, speed and 

acceleration are the same as vcyl (Eq. 4.15) and acyl (Eq. 4.16) respectively. Having in mind that 

the total area of the cylinder will be its parametrical area and two circular areas with a diameter 

equal to the cylinder bore, the following equations can be evaluated. 

 
𝐴𝑐𝑦𝑙  𝜓 = 𝜋𝐵𝑡 + 2

𝜋𝐵2

4
= 𝜋𝐵  𝑡 +

𝐵

2
 

= 𝜋𝐵  𝑇𝐷𝐶 +
𝐵

2
+ 𝑥𝑐𝑦𝑙  𝜓   

(Eq. 4.24)  

Thus the total cylinder area and rates of change are given below. 

 
𝐴𝑐𝑦𝑙  𝜓 =  𝜋𝐵  

𝑆

𝑟 − 1
+
𝐵

2
+ 𝑥𝑐𝑦𝑙  𝜓   (Eq. 4.25)  

 𝑑

𝑑𝑡
𝐴𝑐𝑦𝑙  𝜓,𝜔 =  𝜋𝐵𝑣𝑐𝑦𝑙  𝜓,𝜔  (Eq. 4.26)  

 𝑑2

𝑑𝑡2
𝐴𝑐𝑦𝑙  𝜓,𝜔,𝑎 =  𝜋𝐵𝑎𝑐𝑦𝑙  𝜓,𝜔, 𝑎  (Eq. 4.27)  
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4.7 Cylinder volume 

The cylinder volume and its rate of change as a function of crankshaft angle have to be 

evaluated as they are needed for the calculation of the cylinder pressure. Following a similar 

approach as for the calculation of the cylinder area previously described, it can be shown 

that: 

 
𝑉𝑐𝑦𝑙  𝜓 =  

𝜋𝐵2

4
 

𝑆

𝑟 − 1
+ 𝑥𝑐𝑦𝑙  𝜓   (Eq. 4.28)  

 𝑑

𝑑𝑡
𝑉𝑐𝑦𝑙  𝜓,𝜔 =  

𝜋𝐵2

4
𝑣𝑐𝑦𝑙  𝜓,𝜔  (Eq. 4.29)  

 𝑑2

𝑑𝑡2
𝑉𝑐𝑦𝑙  𝜓,𝜔,𝑎 =  

𝜋𝐵2

4
𝑎𝑐𝑦𝑙  𝜓,𝜔,𝑎  (Eq. 4.30)  

4.8 Cylinder phasing 

Most engines are multi-cylinder to provide more power output relative to their size and 

weight. The additional advantage is that the cyclic torque is smoothed and the peak to peak 

height reduced due to cylinder phasing. In order to be equally phased, each firing cylinder 

must be phased by an equal amount of crankshaft angle from the previous firing cylinder. 

This phase angle 𝜁 (deg) is given by: 

 4-stroke engine: ζ =
720

ncyl
 

(Eq. 4.31)  

 2-stroke engine: ζ =
360

ncyl
 

(Eq. 4.32)  

ncyl is the total umber of cylinders. 
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Assuming now a 4-cylinder 4-stroke engine equally phased with a 1-3-4-2 cylinder firing 

order, the following table (Table 4.2) can be made: 

Table 4.2: Firing order example 

Cylinder # 1 2 3 4 

Firing Order           

FON 1st 4th 2nd 3rd 

Phase Angle 

(deg)   ζcyl 0 540 180 360 

Cylinder Volume Vt1 Vt2 Vt3 Vt4 

 

The phases of each cylinder 𝜁𝑐𝑦𝑙𝑁  relative to cylinder 1 are given by: 

 𝜁𝑐𝑦𝑙𝑁 = 𝜁 𝐹𝑂𝑁 − 1  (Eq. 4.33)  

𝐹𝑂𝑁  is the cylinder’s N firing order (i.e. 1st=1, 2nd=2 ...) 

The actual crank arm angle 𝜓𝑐𝑦𝑙𝑁  𝜃  of each individual cylinder will then be: 

 𝜓𝑐𝑦𝑙𝑁  𝜃 = 𝜙𝑇𝐷𝐶 + 𝜁𝑐𝑦𝑙𝑁 + 𝜃 (Eq. 4.34)  

Solving the engine example shown on Table 4.2 will produce: 

𝜓𝑐𝑦𝑙1 𝜃 = 𝜙𝑇𝐷𝐶 + 0 + 𝜃                        𝜓𝑐𝑦𝑙2 𝜃 = 𝜙𝑇𝐷𝐶 + 540 + 𝜃 

𝜓𝑐𝑦𝑙3 𝜃 = 𝜙𝑇𝐷𝐶 + 180 + 𝜃                   𝜓𝑐𝑦𝑙4 𝜃 = 𝜙𝑇𝐷𝐶 + 360 + 𝜃 
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These actual crank arm angles have to be used to evaluate individual cylinder, piston and 

connecting rod motion on the previously described equations containing ψ. 

For example, the individual cylinder volumes of the engine used above (Table 4.2Error! 

Reference source not found.) are given by: 

𝑉𝑐𝑦𝑙1 𝜓𝑐𝑦𝑙1 =  
𝜋𝐵2

4
 

𝑆

𝑟 − 1
+ 𝑥𝑐𝑦𝑙  𝜓𝑐𝑦𝑙1   

𝑉𝑐𝑦𝑙2 𝜓𝑐𝑦𝑙2 =  
𝜋𝐵2

4
 

𝑆

𝑟 − 1
+ 𝑥𝑐𝑦𝑙  𝜓𝑐𝑦𝑙2   

𝑉𝑐𝑦𝑙3 𝜓𝑐𝑦𝑙3 =  
𝜋𝐵2

4
 

𝑆

𝑟 − 1
+ 𝑥𝑐𝑦𝑙  𝜓𝑐𝑦𝑙3   

𝑉𝑐𝑦𝑙4(𝜓𝑐𝑦𝑙4) =  
𝜋𝐵2

4
 

𝑆

𝑟 − 1
+ 𝑥𝑐𝑦𝑙  𝜓𝑐𝑦𝑙4   

Note that Vcyl1=Vcyl4 on this example as their crank arms are phased by 360° thus 0°. Same 

applies for Vcyl2=Vcyl3 

 

4.9 Crankcase volume 

Another important engine parameter which is neglected is the crankcase volume. Most 

models assume that an atmospheric pressure inside the cylinder will result in no work/force 

on the piston. Although, this would be correct only if the pressure inside the crankcase is as 

well atmospheric. To demonstrate the concept the following picture can be observed 

(Figure 4.6). 
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The force acting on the piston 𝐹𝑝  is due to the pressure difference between both sides of 

the piston and is given by: 

 
𝐹𝑝 =  𝑃𝑐𝑦𝑙 − 𝑃𝑐𝑎𝑠𝑒  

𝜋𝐵2

4
 (Eq. 4.35)  

𝑃𝑐𝑦𝑙  and 𝑃𝑐𝑎𝑠𝑒  are the pressures inside the cylinder and crankcase respectively in Pa. 

 

 

Figure 4.6: Piston force 
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Figure 4.7 shows the crankcase air volume which pressure fluctuates as it is affected by the 

followings:  

1. Amount of lubricant leaving this container through the oil pump 

2. Amount of lubricant returning 

3. Amount of gases entering this volume through the piston (blow-by) 

4. Air flow through the crankcase breather (usually connected to the intake manifold) 

5. Crankcase volume change due to piston motion 

This section will deal with the evaluation of the crankcase volume change due to piston 

motion. This effect is diminishing with the increase of cylinder numbers in an engine 

considering they are equally phased. On the other hand, the crankcase pressure is kept 

close to atmospheric by the crankcase breather connected to the intake manifold and some 

times to open air. The crankcase breather is usually on the top of the cylinder head cover 

which results in a lower breathing effect as the distance is longer for the pressure to 

equalise. 

Assuming the crankcase internal volume VcTDC is known at TDC then, the crankcase volume 

𝑉𝑐  and rate of change as a function of crankshaft angle for the engine described on Table 4.1 

are given by: 

 
𝑉𝑐 𝜃 = 𝑉𝑐𝑇𝐷𝐶 −

𝜋𝐵2

4
𝑥𝑇𝑐𝑦𝑙  𝜓  (Eq. 4.36)  

 𝑑

𝑑𝑡
𝑉𝑐 𝜃 = −

𝜋𝐵2

4
𝑣𝑇𝑐𝑦𝑙  𝜓  (Eq. 4.37)  
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Figure 4.7: Crankcase air volume 
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4.10 Connecting rod motion 

The motion of the connecting rod’s centre of gravity has to be evaluated as the equations 

are needed for the calculation of the inertial forces. This is needed mainly because even at a 

constant engine speed, the connecting rods are following an acceleration/deceleration cycle 

which is repeated for every engine revolution.  

The centre of gravity of most connecting rods is usually on the crank arm side as that side 

has usually the largest diameter so that a bearing can be fitted. In addition, almost all 

connecting rods have an axis of symmetry along their length, thus only a position along this 

axis is chosen to define the position of its centre of gravity which is 𝐿𝑐  as shown in Figure 

4.8. The connecting rod’s centre of mass kinematics are analysed on a Cartesian coordinate 

system thus each variable is evaluated for the X and Y axis. The analysis can be done by 

applying trigonometry which results for the centre of mass kinematics are given below. 

Centre of mass position:  

 
𝑥𝐺 𝜓 = 𝐾 𝑠𝑖𝑛 𝜓 −

𝐿𝑐
𝐿
 𝐾 sin𝜓 + 𝑂𝑡  (Eq. 4.38)  

 
𝑦𝐺 𝜓 = 𝐾 𝑐𝑜𝑠 𝜓 +

𝐿𝑐
𝐿
 𝐿2 −  𝐾 𝑠𝑖𝑛 𝜓 + 𝑂𝑡 2 (Eq. 4.39)  

Centre of mass velocity: 

 
𝑣𝐺
𝑥 𝜓,𝜔 = 𝜔  1 −

𝐿𝑐
𝐿
 𝐾 cos𝜓 (Eq. 4.40)  
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𝑣𝐺
𝑦 𝜓,𝜔 = −𝜔 𝐾 sin𝜓 +

𝐾2𝐿𝑐 sin𝜓 cos𝜓 + 𝑂𝑡𝐿𝑐𝐾 cos𝜓

𝐿 𝐿2 −  𝐾 𝑠𝑖𝑛 𝜓+𝑂𝑡 2
  (Eq. 4.41)  

 

Figure 4.8: Connecting rod centre of mass 

 

Centre of mass acceleration: 

 
𝛼𝐺
𝑥 𝜓,𝜔,𝛼 =  𝑎𝐾 cos𝜓 − 𝜔2𝐾 sin𝜓  1 −

𝐿𝑐
𝐿
  (Eq. 4.42)  

 𝛼𝐺
𝑦 𝜓,𝜔,𝛼 = −𝑎𝐴𝐺 𝜓 − 𝜔2 𝐵𝐺 𝜓 + 𝐶𝐺 𝜓   (Eq. 4.43)  
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Where: 

𝐴𝐺 𝜓 = 𝐾 sin𝜓 +
𝐿𝑐
𝐿

𝐾2 sin𝜓 cos𝜓 + 𝑂𝑡𝐾 cos𝜓

 𝐿2 −  𝐾 𝑠𝑖𝑛𝜓+𝑂𝑡 2
 (Eq. 4.44)  

𝐵𝐺 𝜓 = 𝐾 cos𝜓 +
𝐿𝑐
𝐿

𝐾2 cos2 𝜓 − 𝐾2 sin2 𝜓 − 𝑂𝑡𝐾 sin𝜓

 𝐿2 −  𝐾 𝑠𝑖𝑛𝜓+𝑂𝑡 2
 (Eq. 4.45)  

𝐶𝐺 𝜓 =
𝐿𝑐
𝐿

𝐾4 sin2 𝜓 cos2 𝜓 + 2𝐾3𝑂𝑡 sin𝜓 cos2 𝜓 + 𝑂𝑡
2 cos2 𝜓

 𝐿2 −  𝐾 𝑠𝑖𝑛 𝜓+𝑂𝑡 2 3/2
 (Eq. 4.46)  

 

The connecting rod’s angular motion around its centre of mass G is required for the 

evaluation of the components inertia torque on the crankshaft. It is given by (Figure 4.9): 

Angular Motion about centre of mass: 

 
𝜏 𝜓 = −sin−1

𝐾 sin𝜓 + 𝑂𝑡
𝐿

 (Eq. 4.47)  

 
𝜔𝜏 𝜓,𝜔 = −𝜔

𝐾 cos𝜓

𝐿 1 −
 𝐾 sin𝜓 + 𝑂𝑡 2

𝐿2

 
(Eq. 4.48)  

 𝛼𝜏 𝜓,𝜔,𝛼 = −𝛼𝐴𝜏 𝜓 − 𝜔2𝐵𝜏 𝜓  (Eq. 4.49)  

Where: 

 
𝐴𝜏 𝜓 =

𝐾 cos𝜓

𝐿 1 −
 𝐾 sin𝜓 + 𝑂𝑡 2

𝐿2

 
(Eq. 4.50)  
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𝐵𝜏 𝜓 = −

𝐾 sin𝜓

𝐿 1 −
 𝐾 sin𝜓 + 𝑂𝑡 2

𝐿2

+
𝐾2 cos2 𝜓  𝐾 sin𝜓 + 𝑂𝑡 

𝐿3  1 −
 𝐾 sin𝜓 + 𝑂𝑡 2

𝐿2  
3/2

 
(Eq. 4.51)  

 

Figure 4.9: Connecting rod angular motion 

 

A complete model structure of the crankshaft mechanism dynamics is shown in Figure 4.10. 

The equation interactions can be clearly observed while the main inputs of this system are 

the crankshaft dynamics as usually all other model parameters remain constant for a 

specific engine as they depend only on the component geometry. 
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Figure 4.10: 4-cyl crankshaft kinematics model structure  
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4.11 Results and conclusions 

The typical engine data of Table 4.1 has been used to demonstrate the effects of engine 

acceleration and crankshaft mechanism offsets. The piston acceleration was found to be 

affected on some conditions by the crankshaft acceleration which depends on crankshaft 

mechanism parameters and acceleration amplitude. Although affected, the error is quite 

minimal on engines that do not have immense accelerations. A typical value for acceleration has 

been used from a 2-stroke V6 Mercury marine engine. These engines can accelerate from idle to 

maximum (around 10000 RPM) in a fraction of a second which was evaluated to be in the order 

of 25000 to 30000 rad/sec2; thus this engine’s acceleration can be used in an example to 

illustrate the effect of a large crankshaft acceleration. The piston acceleration is affected only at 

low engine speeds by the crankshaft acceleration due to the fact that the velocity is the main 

source of the piston acceleration. The worst case scenario has been chosen for illustration 

which is a huge acceleration or deceleration during low engine speed (Figure 4.11). 

 

Figure 4.11: Crankshaft acceleration effect on piston acceleration 



CHAPTER 4: Crankshaft mechanism 

69 
 

An offset on the other hand, has shown to affect noticeably the piston kinematics and 

stroke length. A calculation has been done for a zero, a positive and a negative total 

crankshaft mechanism offset which can be seen in Figure 4.12. The total offset of a 

crankshaft mechanism should not be neglected as it can lead to large calculation errors as 

inertial forces, cylinder area and cylinder volume scale from the piston and piston pin 

kinematics. 
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Figure 4.12: Crankshaft mechanism positive and negative offset effects @ 9000 RPM
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CHAPTER 5:  Valvetrain 

It is quite difficult to obtain accurate valve flow area data as they depend on the valvetrain 

mechanism geometry and timings. It is common on cycle-by-cycle simulation to assume 

typical lift curves which lead to inaccurate model simulations. The valvetrain mechanism 

and timing are important factors which affects all engine parameters such as performance, 

emissions, fuel consumption, etc. 

The valve flow area is the smaller cross sectional area along the path of the flow that acts as 

the restriction on the gas flow through the valve ports. This area is only a function of 

crankshaft position if the valve is always in contact with the camshaft. In the other hand, if 

the contact is lost, then the component masses, valve spring properties and engine speed 

become variables. 

Variable valve timing mechanisms (VVT) are very common these days [15, 85], thus any 

valvetrain model should provide the ability to simulate any kind of VVT mechanism. The 

objective is to end up with a valve flow restriction area model that can be used on most VVT 

engines for simulation or cycle-by-cycle engine mapping. 

The following sections show the complete process starting by the correct way to measure 

an actual engine camshaft and the calculations that have to be done in order to end up with 

the valve flow area for a direct acting valve train system. 
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5.1 Camshaft profile 

The camshaft lobe shape is the main parameter which affects the valve opening curve. The 

drawback is that except for the designer of a particular camshaft, probably no one else knows 

the mathematical equation that describes its shape. 

The camshaft lobe height is the increase in radial distance from the camshaft base diameter as a 

function of the angle theta around the camshaft shape. While the camshaft profile is the actual 

radius of the camshaft lobe material around the same angle theta. It is preferred to use the 

camshaft profile to publish or share camshaft data as it includes as well the base diameter and 

thus all lobe shape parameters. The camshaft profile is the representation of the camshaft lobe 

in the Polar coordinate system. Note that an identical camshaft lobe height curve on a different 

camshaft base diameter results in a totally different camshaft. The two terms that are going to 

be used can be seen on Figure 5.1. 

5.1.1 Experimental measurement 

It is usually easy to obtain the camshaft profile curve experimentally from measurements. On 

most OHC engines, the measurement can be made once the cylinder head cover is removed 

providing visibility to the camshafts. Following is a detailed procedure to measure the camshaft 

height, base diameter and thus obtain the profile. The tools required are a dial indicator to 

measure the lobe height, a calliper for the base diameter and a crankshaft protractor for the 

angle. The measurement procedure starts by assuming that the crankshaft protractor is already 

installed. Firstly, the camshaft has to be rotated so that its peak lift is facing away of the 

indicator’s axis. This is done to ensure that the indicator is touching the base diameter. 
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Secondly, the indicator’s measuring axis must be aligned with the centre axis of the camshaft 

rotation (Figure 5.2). 

 

Figure 5.1: Camshaft lobe height and profile 

 

 

Figure 5.2: Camshaft lobe height measurement11 

 

                                                      
11

 Dial indicator image source: http://www.drillspot.com/ 
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At this point the dial indicator should be reset to a zero reading and then the data collection 

can start. The procedure is to record the reading on the indicator then rotate the crankshaft 

on the engine’s rotation direction. Repeat the procedure for two crankshaft revolutions 

which equals one camshaft revolution. Note that the crankshaft should be rotated only in 

one direction during this procedure in order to keep the timing chain/belt tension on the 

same side for all the measurement as a change in tension side may give inaccurate readings. 

The following graph (Figure 5.3) shows an actual lobe height measurement (BMW E30 318is 

intake camshaft) for 10 deg crankshaft step with measurement errors added on purpose to 

demonstrate a solution. It can be seen that data on the closing side are not accurate as they 

are clearly not forming a smooth curve. The base diameter of the measured camshaft is 

38mm. 

 

 

Figure 5.3: Camshaft lobe height measurement 
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The camshaft profile curve can be obtained by adding the radius of the camshaft base to the 

above value (Figure 5.4). 

 

Figure 5.4: Camshaft profile 

 

5.1.2 Camshaft lobe graphical representation 

In case that a polar plot software is not available, the Cartesian graphical representation of 

the actual camshaft lobe (Figure 5.5) can be obtained using the following equations. This is 

actually a transition from the Polar coordinate system to the Cartesian. 

 𝑋𝑐𝑎𝑚  𝜃𝑟 = cos 𝜃 𝑃𝑐𝑎𝑚  𝜃𝑟  (Eq. 5.1)  

 𝑌𝑐𝑎𝑚  𝜃𝑟 = sin𝜃 𝑃𝑐𝑎𝑚  𝜃𝑟  (Eq. 5.2)  

𝜃𝑟  is the camshaft angle and 𝑃𝑐𝑎𝑚  𝜃𝑟  is the camshaft profile radius at 𝜃𝑟  (profile Vs 𝜃𝑟  

curve). 
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Figure 5.5: Camshaft lobe drawing 

 

The error in the data introduced now can clearly be observed as it produces an unsmooth 

lobe surface (Figure 5.5). This can result in a severe problem depending on the type of 

model that this data is going to be used for. For example, if this camshaft data is to be used 

to evaluate the valve lift dynamics, the acceleration magnitude will be increased on the 

points where the error in the measurement was made resulting in large inertial forces. 

5.1.3 Data processing 

There may be need to increase the data points of the camshaft profile curve in order to use 

them for calculations in a step model. An interpolation can be used for this purpose as long 

as it is a shape preserving interpolation. The respective MATLAB function is the ‘interp1’ 

function using the ‘pchip’ method. 
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As noted earlier, errors were introduced in the measurement so that a solution can be 

demonstrated. A solution to this is to smooth the data points using a smoothing 

mathematical function. 

The smoothing can be done using the MATLAB function ‘smooth’ while the method tested 

to produce the best results for this kind of application is the 'sgolay' method using a span of 

3-5 and a degree of 2 (Figure 5.6). If smoothing is inadequate, it is possible to smooth a 

couple of times in series as long as the maximum camshaft lobe profile is checked to be 

intact. Over-smoothing will result in reducing the maximum profile peak. 

 

Figure 5.6: Camshaft profile data smoothing 
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5.1.4 Mathematical model 

There are a lot of variables that define a camshaft profile. Some of the most important are, 

the total duration of the camshaft lobe, the opening duration and closing duration. 

Camshaft durations are referred in crankshaft degrees, mostly to have a common reference 

point with the crank mechanism rotation. Another parameter is the maximum lobe height, 

which defines the maximum valve lift ignoring the valve clearance. 

Having all of the above in mind, and after experimenting with different functions that would 

produce a variety of acceptable camshaft profiles, an easy way to model the profile has 

been found by generating some curve functions from 0 to 1. Then, this curve once 

multiplied by the desired maximum lobe height can produce an acceptable camshaft profile. 

The following picture shows the difference between an acceptable camshaft lobe result 

(smooth) and one that should be rejected because if it was to be installed on an engine, it 

would result in an increase in component stress and accelerations (Figure 5.7). 

 

Figure 5.7: Acceptable (smooth) and incorrect camshaft lobes 
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The functions found by trial and error to have the ability to produce a smooth profile are 

given below: 

 

𝑓𝑠𝑡𝑒𝑝𝑢𝑝
𝑠𝑖𝑛  𝜃𝑟 =

𝑠𝑖𝑛  
180 𝜃𝑟 − 𝜃𝑠 

𝜃𝑑
− 90 + 1

2
 (Eq. 5.3)  

 

𝑓𝑠𝑡𝑒𝑝𝑑𝑜𝑤𝑛
𝑠𝑖𝑛  𝜃𝑟 =

𝑠𝑖𝑛  
180 𝜃𝑟 − 𝜃𝑠 

𝜃𝑑
+ 90 + 1

2
 (Eq. 5.4)  

 
𝐻𝑙𝑜𝑏𝑒  𝜃𝑟 =

𝐻𝑚𝑎𝑥  1 − 𝑓𝑠𝑡𝑒𝑝𝑑𝑜𝑤𝑛
𝑠𝑖𝑛  𝜃𝑟  𝑢

𝑓𝑠𝑡𝑒𝑝 𝑢𝑝
𝑠𝑖𝑛  𝜃𝑟 

𝑢
 (Eq. 5.5)  

 
𝑅𝑙𝑜𝑏𝑒  𝜃𝑟 =

𝐷𝑏
2

+ 𝐻𝑙𝑜𝑏𝑒  𝜃𝑟  (Eq. 5.6)  

𝜃𝑟  is the camshaft angle of calculation, 𝜃𝑠  is the starting angle of lobe profile (opening or 

closing), 𝜃𝑑  is its duration, 𝑢 is the smoothing factor, 𝐻𝑙𝑜𝑏𝑒  𝜃  is the camshaft lobe height at 

𝜃𝑟 , 𝑅𝑙𝑜𝑏𝑒  𝜃  is the camshaft lobe radius at 𝜃𝑟 , 𝐷𝑏  is the lobe’s baseline diameter and 𝐻𝑚𝑎𝑥  

is the maximum camshaft lobe height. Typical values for 𝑢 can range from 1-100 depending 

on desired profile and base diameter. 

These functions have been incorporated into a program interface for fast visualization of 

the camshaft lobe result. Once the desired camshaft lobe is produced, the data can be 

exported.  

The program was written in Visual Basic as it allows the program to run without the need of 

any additional software; complex real-time plotting can be developed onto the interface 

and can output any desired file format (Figure 5.8). 
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Figure 5.8: Developed camshaft builder software 

 

 

5.2 Flat follower 

Assuming at this point that the camshaft profile data is available, the next step is to 

evaluate the static position of the camshaft flat follower (direct acting system). This position 

defines the valve position when the follower is in contact with the camshaft as it can be 

seen in the figure below (Figure 5.9). 
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Figure 5.9: Flat follower position 

 

The developed contact solver working principle is based on matrix rotation. First, the 

camshaft lobe Cartesians coordinates are loaded into a matrix and then this matrix is 

rotated for desired steps of crankshaft angle using the 2-dimensional matrix rotation 

formula below. 

 
𝑀𝑜𝑢𝑡  𝜃𝑐𝑟  = 𝑀𝑖𝑛 ×  

cos𝜃𝑟 sin 𝜃𝑟
− sin𝜃𝑟 cos𝜃𝑟

  (Eq. 5.7)  

The camshaft rotation angle is given by the following equation as it is half of the desired 

crankshaft rotation. 

 
𝜃𝑟 = 𝑠𝑟

𝜃𝑐𝑟
2

 (Eq. 5.8)  

𝑀𝑖𝑛  is the lobe’s Cartesian coordinates (X, Y), 𝑀𝑜𝑢𝑡  is the rotated lobe Cartesian coordinates 

(X, Y), 𝜃𝑐𝑟  is the desired rotation angle in crankshaft degrees, 𝜃𝑟  is the rotation angle in 
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camshaft degrees and 𝑠𝑟  is the sign for the rotation direction (-1 for clockwise, +1 for anti-

clockwise). 

The point of contact can be easily found then as it is the lowest Y Cartesian coordinate of 

the Mout matrix. 

5.2.1 Camshaft torque effective radius 

The camshaft requires torque during the opening of the valves due to the fact that it is 

compressing the valve springs. On the other hand, during the closing period, torque is 

generated on the camshaft as the valve spring forces are pushing the camshaft lobe towards its 

direction of rotation (Figure 5.10). 

The fact that the solver is a Cartesian representation of the mechanism produces directly an 

additional useful valve train result which is the effective radius of camshaft torque 

application. It can be seen in Figure 5.10 that the effective radius Reff, is the Cartesian X 

coordinate of the contact location. 

The camshaft torque is then given by: 

 𝑇𝑐𝑎𝑚  𝜃 = −𝑅𝑒𝑓𝑓  𝜃𝑐𝑟 × 𝐹 (Eq. 5.9)  

𝑅𝑒𝑓𝑓  is the effective radius of torque generation/application (m), 𝐹 is the valve spring 

reaction force (N) and 𝑇𝑐𝑎𝑚  is the reaction torque acting on the camshaft (Nm). 

Figure 5.11 shows the evaluation of the effective torque radius for a typical camshaft lobe. 

The negative sign during the opening duration denotes the effect of the torque on the 
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camshaft, thus the requirement of torque. While on the other hand during the closing 

period, the positive sign represents the torque generation to the system by the valve spring. 

 

Figure 5.10: Camshaft torque effective radius 

 

 

Figure 5.11: Valve position and effective torque radius (Contact Solver output) 
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5.2.2 Contact solver 

A contact solver has been developed in MATLAB GUIDE which evaluates the valve position 

and effective torque radius for a direct acting valve train system with flat followers. 

Screenshots of the actual program can be seen on Figure 5.12 and Figure 5.13. 

The program requires a tab delimited input text file of the camshaft profile with the 

following format.  

Column 1: camshaft angle in constant steps from 0-360 

Column 2: camshaft radius (mm) 

 

Once the camshaft profile is loaded, smoothing can be applied and the result visualised. 

Then, the program rotates the camshaft lobe for a complete revolution during which it 

evaluates the valve position and effective torque radius. 

The valve clearance is an important parameter as an increase in valve clearance reduces the 

effective camshaft duration and peak lift as it can be seen in the graphs on Figure 5.14. 

The file output of this solver is a tab delimited file with the following format: 

Column 1: crankshaft angle 0-720 

Column 2: static valve/follower lift (mm) 

Column 3: effective camshaft lobe radius (mm) 
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Figure 5.12: Camshaft contact solver (loading page) 
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Figure 5.13: Camshaft contact solver (solver page) 

 

Figure 5.14: Effect of valve clearance 
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5.3 Valve timing 

The valve timing affects the gas exchange process of the engine. Assuming at this point that 

the static valve lift is known, the next step is to time the data relative to the crankshaft 

angle and thus relative to the cycle of the engine. It is exactly the same process as timing 

the camshafts on an actual engine. 

If an engine is to be modelled, then the actual IVO, IVC, EVO and EVC positions should be 

measured so that they can be replicated in the model. The process of the timing in the 

model is a simple phase shift of the valve static lift matrix by an amount of desired 

crankshaft angle. 

Although it is simple, is quite a challenge to produce a simple application to facilitate the 

model timing due to the fact that the valve opening and closing positions have to be 

scanned and retrieved from the data. 

The following picture (Figure 5.15) is a screenshot of the valve timing application. It allows 

the input of two static valve lift files and upon loading, it shifts the relative lifts to the 

proper engine stroke. Then, the user is able to time the valve opening and closing position 

by selecting the appropriate crankshaft phasing. 

The input file format is given below: 

Intake file: 

Column 1: crankshaft angle (crank deg) 

Column 2: intake static valve lift (mm) 
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Column 3: intake camshaft lobe effective radius of torque application (mm) 

Exhaust file: 

Column 1: crankshaft angle (crank deg) 

Column 2: exhaust static valve lift (mm) 

Column 3: exhaust camshaft lobe effective radius of torque application (mm) 

 

As this application is the following step to the contact solver developed, the input format is 

the same as the solver’s output. Thus, facilitating the process of data generation as the file 

can be loaded directly without any alteration. 

 

The output format of the valve timing application is given below: 

Column 1: crankshaft angle (crank deg) 

Column 2: timed intake static valve lift (mm) 

Column 3: timed exhaust static valve lift (mm) 

Column 4: timed intake camshaft lobe effective radius of torque application (mm) 

Column 5: timed exhaust camshaft lobe effective radius of torque application (mm) 



CHAPTER 5: Valvetrain 

89 
 

 

 

Figure 5.15: Valve timing application 

5.4 Valve flow area 

The calculations preceding this section were all done to obtain the static lift of the valves or 

flat followers and to time them at a specific crankshaft angle. The next step is to evaluate 

the restriction area along the path of the flow during the gas exchange process. 

Two valve flow area models were found in the literature and provide the base for 

developing an improved version which takes into account additional parameters which are 

important when dealing with experimental discharge coefficient estimation. 
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The three models are presented below to show their differences and individual calculations 

involved. 

5.4.1 Model 1 – Curtain area 

The first model is a simple area evaluation based only on the valve head diameter 𝐷 and port 

diameter (assumed to be equal to the valve head diameter) which evaluates an area created by 

the perimeter of the valve and its valve lift 𝐿 [16] (Figure 5.16). 

 

Figure 5.16: Model 1 - Curtain area 

 

The curtain area (𝐶𝐴𝑓 ) and the port area (𝑃𝐴𝑓 ) are given by: 

 𝐶𝐴𝑓 = 𝜋𝐷𝐿 (Eq. 5.10)  

 
𝑃𝐴𝑓 =

𝜋𝐷2

4
 (Eq. 5.11)  

The restricting flow area is the smaller output of these two equations (Eq. 5.10) and (Eq. 

5.11). In other words, starting from a closed valve, the restricting area is the curtain area. As 
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the valve lift is increasing, at a point the curtain area will be larger than the port area. At 

that moment, the port area becomes the restriction. 

The valve lift (𝐿max 𝑒𝑓𝑓 ) at which this transition occurs is given by: 

 
𝐿max 𝑒𝑓𝑓 =

𝐷

4
 (Eq. 5.12)  

5.4.2 Model 2 – Gap area 

The second model presented in *15+ takes into account in addition to “model 1” the valve seat 

angle 𝜃 (Figure 5.17). 

 

Figure 5.17: Model 2 - Gap area 
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The required cross-section on this model is the gap 𝑔 between the valve and the valve seat. The 

actual curtain area (𝐶𝐴𝑓 ) and port area (𝑃𝐴𝑓) available to the flow are given by: 

 
𝐶𝐴𝑓 = 𝜋

𝐷 + 𝐷𝑖
2

𝑔 = 𝜋
𝐷 + 𝐷𝑖

2
𝐿 cos 𝜃 (Eq. 5.13)  

 
𝑃𝐴𝑓 =

𝜋𝐷𝑖
2

4
 (Eq. 5.14)  

The valve lift (𝐿max 𝑒𝑓𝑓 ) at which the port area becomes the flow restriction is given by: 

 

𝐿max 𝑒𝑓𝑓 =
𝐷

4

 
𝐷𝑖
𝐷 

2

cos 𝜃
1 +

𝐷𝑖
𝐷

2

 
(Eq. 5.15)  

5.4.3 Model 3 – Restriction area 

The mapping of the discharge coefficients for poppet valves has shown that three different 

flow regimes exist during a valve lift event [7, 15-17]. Thus, the flow goes through three 

different valve flow area shapes. An accurate flow area should then be evaluated using 

three different set of equations. The three flow areas in question can be seen on the 3D 

representation on Figure 5.18. A more accurate model can be formulated by introducing the 

valve stem diameter 𝑑 and examine the gap area as the lift is increased (Figure 5.19). 

In this model, the port area (𝑃𝐴𝑓 ) is given by: 

 
𝑃𝐴𝑓 = 𝜋

𝐷𝑖
2 − 𝑑2

4
 (Eq. 5.16)  
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Figure 5.18: The three different restriction areas taking place during a valve lift event 

 

 

Figure 5.19: Model 3 - Restriction area 
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In order to calculate the curtain area (𝐶𝐴𝑓 ) an examination is needed of the gap (𝑔) created 

between low lift and higher lift. 

Low lifts 

As it can be observed in Figure 5.20, the curtain area (𝐶𝐴𝑓 ) is given by: 

 
𝐶𝐴𝑓 = 𝜋

𝐷 + 𝐷𝑖
2

𝑔 = 𝜋
𝐷 + 𝐷𝑖

2
𝐿 cos 𝜃 (Eq. 5.17)  

 

Figure 5.20: Gap area created at low lifts 

 

High lifts 

When the lift is increased, the restriction is not anymore the gap (𝑔) as it can be seen in 

Figure 5.21. A second gap (𝑔2)  has to be introduced at this point which is the cross-section 

of the area between the corners of the higher point on the valve seat to the bottom end 

point of the cylinder-head seat. 



CHAPTER 5: Valvetrain 

95 
 

 

Figure 5.21: Gap area created at high lifts 

 

The curtain area (𝐶𝐴𝑓2) at this cross section (𝑔2) is given by: 

 

𝐶𝐴𝑓2 = 𝜋
𝐷 + 𝐷𝑖

2
  𝐿 − tan𝜃  

𝐷 − 𝐷𝑖
2

  
2

+  
𝐷 − 𝐷𝑖

2
 

2

 (Eq. 5.18)  

 

The valve lift (𝐿𝑠) at which the flow restriction area is switching from 𝐶𝐴𝑓  (Eq. 5.17) to 𝐶𝐴𝑓2  

(Eq. 5.18) is given by: 

 
𝐿𝑠 =

𝐷 − 𝐷𝑖
2 sin 𝜃 cos 𝜃

 (Eq. 5.19)  
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5.4.4 Comparison 

The first model is very simple by taking into account only the valve head diameter. There is 

a difference in the maximum flow area between the three models due to the amount of 

inputs provided (Table 5.1). The maximum area is actually the port area which is a constant 

output and that is the reason for the horizontal limits on the plots as it can be seen in 

(Figure 5.22). The difference between Model 2 and Model 3 does not seem significant, but it 

has a larger effect when the valve opening duration is added as well. There is no point in 

increasing the valve more than the maximum effective valve lift as the flow area does not 

increase. Although, all engines have their camshafts designed so that the lift is higher than 

this value. This is done to maximise the flow area during the cycle as the engine has the 

maximum possible area available for that specific port design for a long duration. This is the 

reason that the correct calculation of this model is important for a correct estimation of the 

total flow area available during the cycle. 

 

Figure 5.22: Valve flow area models comparison 



CHAPTER 5: Valvetrain 

97 
 

Table 5.1: Model inputs comparison 

 

Model Amount of Inputs Symbol of inputs 

Model 1 2 D, L 

Model 2 4 D, Di, L, θ 

Model 3 5 D, d, Di, L, θ 

 

 

The following picture (Figure 5.23) is a typical calculation of the valve flow area for the three 

different models through a valve lift event during one cycle. 

 

Figure 5.23: Valve flow area models comparison (one typical complete cycle) 
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CHAPTER 6:  Throttle kinematics 

The throttle controls the power output control of the engine by restricting the air flow into the 

intake manifold. It is important to accurately evaluate the throttle opening area as a function of 

throttle angle as they are inputs to most engine models or engine mapping procedures. The 

throttle type commonly used is the butterfly valve which consists of a rotating circular plate 

attached to a shaft inside the throttle bore (Figure 6.2). 

The shaft size is usually sufficient to affect the air flow thus it is preferable to take it into 

account when evaluating the flow area. Another interesting point is that the throttle plate has a 

bigger diameter on its vertical axis to prevent locking inside the throttle bore at closed throttle 

[17]. The maximum effective flow area is obtained as soon as the throttle height has the same 

value as the shaft diameter. 

Two throttle area models were found in the literature of which one of them is inaccurate and 

the second does not describe continuously the whole throttle range with one equation. 

Model 1 [17]: 

4𝐴𝑡
𝜋𝐷2

=  1 −
cos𝜓

cos𝜓0
 

+
2

𝜋
 

𝑙

cos𝜓
 cos2 𝜓 − 𝑙2 cos2 𝜓0 

1
2

−
cos𝜓

cos𝜓0

sin−1  
𝑙 cos𝜓0

cos𝜓
 − 𝑙 1 − 𝑙2 

1
2 + sin−1 𝑙  

𝐷  is throttle bore, 𝑙 is the ratio of the shaft diameter 𝑑 over the throttle bore 𝐷, 𝜓0 and 𝜓 

are the closed throttle angle and throttle angle opening respectively. 
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Model 2 [13]: 

𝐴𝑡 =
𝑑𝐷

2
 1 −  

𝑑 cos𝜓0

𝐷 cos 𝜓0 + 𝜓 
 

2

 

1/2

−
𝑑𝐷

2
 1 −  

𝑑

𝐷
 

2

 

1/2

+
𝐷2

2
sin−1   1 −  

𝑑

𝐷
 

2

 

1/2

 

−
𝐷2 cos 𝜓0 + 𝜓 

2 cos𝜓0
sin−1  1 −  

𝑑 cos𝜓0

𝐷 cos 𝜓0 + 𝜓 
 

2

  

The first model (Model 1) is inaccurate from the beginning of the throttle opening while the 

second one is accurate until the point that the maximum effective flow area is reached. The 

effective flow area should be estimated until wide open throttle (WOT) which for this 

simulated throttle was 90 degrees as a 0 degree closed throttle angle was used. It can be 

seen though that both models fall to a zero value after that point (Figure 6.1). 

 

 

Figure 6.1: Throttle effective area models  
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Figure 6.2: Throttle (butterfly type) 
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6.1 Maximum flow area 

This section assumes that only a shaft is present inside the throttle bore, it is also the same 

effective flow area that occurs at wide open throttle. This effective flow area is evaluated as 

two circular segments (Figure 6.3). 

 

Figure 6.3: Maximum flow area 

 

The maximum throttle flow area 𝐴𝑡
𝑚𝑎𝑥  is given by the area of both circular segments which 

is given by: 

 
𝐴𝑡
𝑚𝑎𝑥 =

𝐷𝑡
2

4
2𝜃𝑠𝑒𝑔 −

1

2
𝐷𝑡𝐷𝑠 sin 𝜃𝑠𝑒𝑔  

(Eq. 6.1)  

 
𝜃𝑠𝑒𝑔 = cos−1

𝐷𝑠
𝐷𝑡

 
(Eq. 6.2)  

𝐷𝑠  is the throttle shaft diameter and 𝐷𝑡  is the throttle bore diameter. 
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6.2 Closed plate angle 

One of the parameters needed for the throttle area model is the angle of the throttle plate 

when closed. It is usually easier to measure the plate diameter of the large axis on throttles 

(Dp  in Figure 6.2-a.) than the actual closed angle (𝜃𝑡𝐶) which is given by: 

 𝜃𝑡𝐶 = cos−1
𝐷𝑡
𝐷𝑝

 
(Eq. 6.3)  

6.3 Throttle area 

The throttle flow area is modelled as an elliptic area which has one of its sides varying with the 

throttle angle (Figure 6.2-b). Thus, the plate height 𝑝 𝛼  is a function of throttle angle α and 

the throttle plate diameter 𝐷𝑝: 

 𝑝 𝛼 = 𝐷𝑝 cos 𝜃𝑡𝐶 + 𝛼  
(Eq. 6.4)  

The elliptic throttle plate area 𝐴𝑡
𝑝𝑙𝑎𝑡𝑒  excluding the area covered by the shaft is given by: 

 
𝐴𝑡
𝑝𝑙𝑎𝑡𝑒  𝛼 =

𝑝 𝛼 𝐷𝑡

4
2𝜃𝑠𝑒𝑔

𝑝𝑙𝑎𝑡𝑒 −
1

2
𝐷𝑡𝐷𝑠 sin 𝜃𝑠𝑒𝑔

𝑝𝑙𝑎𝑡𝑒   
(Eq. 6.5)  

 
𝜃𝑠𝑒𝑔
𝑝𝑙𝑎𝑡𝑒 = cos−1

𝐷𝑠
𝑝 𝛼 

 ∈  ℝ 
(Eq. 6.6)  

The real part of 𝜃𝑠𝑒𝑔
𝑝𝑙𝑎𝑡𝑒  has to be evaluated due to the fact that once the throttle plate 

reaches the maximum effective flow area, the output is a complex number of which the real 

part is zero. If a complex invert cosine function is not available, then the function is going to 

return an error. On that case, the following functions should be used. 
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The above equation (Eq. 6.6) results in: 

 
𝛼 ≤ cos−1

𝐷𝑠
𝐷𝑝

− 𝜃𝑡𝐶 ⟶ 𝜃𝑠𝑒𝑔
𝑝𝑙𝑎𝑡𝑒 = cos−1

𝐷𝑠
𝑝 𝛼 

 
(Eq. 6.7)  

 
𝛼 > cos−1

𝐷𝑠
𝐷𝑝

− 𝜃𝑡𝐶 ⟶ 𝜃𝑠𝑒𝑔
𝑝𝑙𝑎𝑡𝑒 = 0 

(Eq. 6.8)  

SIMULINK automatically outputs a zero value when an error is occurred, thus eliminating 

the need of equations (Eq. 6.7) and (Eq. 6.8). Finally, the effective opened throttle area 𝐴𝑡  is: 

 𝐴𝑡 = 𝐴𝑡
𝑚𝑎𝑥 − 𝐴𝑡

𝑝𝑙𝑎𝑡𝑒  𝛼  
(Eq. 6.9)  

The throttle area rate of change 
𝑑𝐴𝑡

𝑑𝑡
 may find use for transient throttle control or mapping. 

For this reason it was evaluated and the result is given below: 

 𝑑𝐴𝑡
𝑑𝑡

 𝛼,𝜔𝛼 = 𝜔𝛼  𝐶𝑡 𝛼  
(Eq. 6.10)  

𝜔𝛼  is the throttle angular speed (rad/sec) and 𝐶𝑡 𝛼    ∈  ℝ. 

 
𝐶𝑡 𝛼 =

𝐷𝑠𝐷𝑡 sin 𝜃𝑡𝐶 + 𝛼 

2 cos 𝜃𝑡𝐶 + 𝛼  1 −
𝐷𝑠

2 cos 𝜃𝑡𝐶 2

𝐷𝑡
2 cos 𝜃𝑡𝐶 + 𝛼 2

+
𝐷𝑡

2 sin 𝜃𝑡𝐶 + 𝛼 cos−1  
𝐷𝑠 cos 𝜃𝑡𝐶 

𝐷𝑡 cos 𝜃𝑡𝐶 + 𝛼 
 

2 cos 𝜃𝑡𝐶 

−
𝐷𝑠

3 cos 𝜃𝑡𝐶 
2 sin 𝜃𝑡𝐶 + 𝛼 

2𝐷𝑡 cos 𝜃𝑡𝐶 + 𝛼 3  1 −
𝐷𝑠

2 cos 𝜃𝑡𝐶 2

𝐷𝑡
2 cos 𝜃𝑡𝐶 + 𝛼 2

 

(Eq. 6.11)  
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A 3D throttle body has been made in the I-DEAS 3D CAD software from which the throttle 

effective flow area at different angles (Figure 6.5) was found to be exactly equal to the 

model output (Figure 6.4). 

 

Figure 6.4: Throttle effective flow area 

 

 

Figure 6.5: Throttle area model validation 
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6.4 Parameters effect 

In order to study the effect of each input parameter, three sets of inputs were chosen 

(Table 6.1). The first set is going to be the “zero reference” for comparison, the second has 

an increased shaft diameter compared to the zero reference throttle, while the third has an 

increase in closed angle. 

Table 6.1: Throttle model inputs 

 

Zero 
reference 

Increased 
shaft 

diameter 

Increased 
closed 
angle Symbols Units 

Throttle bore 0.06 0.06 0.06 𝐷𝑡  m 

Shaft diameter 0.01 0.02 0.01 𝐷𝑠  m 

Closed angle 0 0 15 𝜃𝑡𝐶  deg 
 

An increase in shaft diameter reduces the maximum effective flow area of the throttle body 

with minimal effects on the part throttle region. In addition, the throttle angle at which the 

maximum effective flow area is reached at a smaller plate opening angle (Figure 6.6). 

On the other hand, an increase in closed throttle angle tends to increase the response of 

the throttle area at small openings. This can be seen in (Figure 6.7) as the initial value of the 

rate of change at the closed throttle is not zero anymore, while the peak value is almost 

unchanged. 

The full range effect on the throttle area and rate of change can be seen in (Figure 6.6) and 

(Figure 6.7) respectively. The throttle’s area rate of change was evaluated using (Eq. 6.10 

and Eq. 6.11) using a throttle opening speed of 1rad/sec. 
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Figure 6.6: Input parameters effect on throttle area 

 

 

Figure 6.7: Input parameters effect on throttle area rate of change 
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6.5 Approximation 

The throttle area equations are frequently used in RT or embedded systems in order to 

evaluate the mass air flow entering the inlet manifold. The high fidelity model presented 

above can be quite demanding in terms of calculations for real-time applications. A simpler 

model has been formulated which has an error within 1-3% for common throttle 

parameters but requires noticeably less calculations (Figure 6.8). 

Throttle area: 

 
𝐴𝑡 =

𝜋𝐷𝑡
4

 𝐷𝑡 − 𝐷𝑝 cos 𝜃𝑡𝐶 + 𝛼   
(Eq. 6.12)  

 𝑙𝑖𝑚𝑖𝑡 𝐴𝑡𝑡𝑜 𝐴𝑡
𝑚𝑎𝑥  (Eq. 6.1) (Eq. 6.13)  

The throttle area rate of change is again given by: 

𝑑𝐴𝑡
𝑑𝑡

 𝛼,𝜔𝛼 = 𝜔𝛼  𝐶𝑡 𝛼  

Part throttle: α ≤ cos−1 Dsh

Dp
− θthC  

 
Cth  α =

πDth Dp sin θthC + α 

4
 

(Eq. 6.14)  

Maximum effective area: α > cos−1 Dsh

Dp
− θthC  

 Cth  α = 0 (Eq. 6.15)  
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Figure 6.8: Approximation model results 
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6.6 Implementation 

The equations described above can be used to evaluate the function of throttle area and its 

rate of change either using the accurate or approximation model set of equations. An 

interesting point is that the functions required Ath  α 12 and Cth  α 13 are constant for a 

given throttle, thus they can be used to initialise and use look-up tables for their evaluation 

making the model execution faster (Figure 6.9). 

 

 

Figure 6.9: Throttle model structure (functions or look-up tables) 

                                                      
12

Eq. 6.9 for accurate or Eq. 6.12 and 6.13 for approximation model 
13

 Eq. 6.11 for accurate or Eq. 6.14 and 6.15 for approximation model 
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CHAPTER 7:  Engine inertia 

The 4-stroke engine has an intake and exhaust stroke that actually depends on their 

respective camshaft lobes. There is no need at this point to describe the valve opening 

mechanism, but just to note the fact that the camshafts have to rotate exactly at half the 

speed of the crankshaft. A relative rotation between crankshaft and camshafts should not 

exist, except of the condition that a variable valve system is present that operates by 

camshaft phasing. 

The camshaft driving system principal function is to transfer a timed rotation to the 

camshafts. Other components can acquire a motion off this system as it can be used as a 

link to the crankshaft torque. The main driving systems used are: belt-pulleys, chain-

sprockets or gear driven with the last one being probably the rarest encountered. A typical 

timing system is shown in (Figure 7.1). 

The timing mechanism has an inertia which affects the engine acceleration and is going to 

be treated as rigid. This means that the entire mechanism inertia is going to always affect 

the engine’s acceleration. In contrary to a “flexible” system which its inertia would not 

directly affect the acceleration due to the components stiffness and relative movements. 

Before modelling the actual system, the modelling concept of obtaining the effective inertia 

of a simple gear mechanism is going to be described for clarification, before it is used to 

model the camshaft driving mechanism’s inertia. 
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Figure 7.1: Camshaft driving mechanism 
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7.1 Relative inertia concept 

The idea of this concept can be used on components that have a constant speed ratio and 

no relative movement between them. Assuming a gear system which is composed of two 

gears with no possible backlash as shown in (Figure 7.2): 

 

Figure 7.2: Gear system 

 

The torque T is accelerating both gears of inertia J1 and J2. The equation of the above 

system can be described as: 

 𝑑2𝜃1

𝑑𝑡2
𝐽1 = 𝑇 −

𝑑2𝜃2

𝑑𝑡2
𝐽2 (Eq. 7.1)  

As the assumption is that there is no relative movement between the two gears, the 

following expression can be used: 

 𝑑2𝜃1

𝑑𝑡2
=
𝑅1

𝑅2

𝑑2𝜃2

𝑑𝑡2
 (Eq. 7.2)  
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Thus (Eq. 7.2 into Eq. 7.1) gives: 

 𝑑2𝜃1

𝑑𝑡2
 𝐽1 +

𝑅2

𝑅1
𝐽2 = 𝑇 (Eq. 7.3)  

 𝜃 is the rotation angle (rad), 𝐽 is the component’s inertia (kg m2) and 𝑅 is the gear contact 

radius (m). 

This method translates the inertias of all system components onto one rotational 

acceleration used as reference. This simplifies the solution as only one unknown exists in 

the equation. 

7.2 Mathematical model 

The inertia of the camshaft driving system can be simplified using the relative inertia 

method described on the previous section assuming that the chain tension is high enough 

to neglect the relative movement of the components attached to it. A typical camshaft 

driving system’s inertia can be evaluated as shown below using the diagram of (Figure 7.1). 

Solving the entire mechanism of Figure 7.1 leads to: 

𝑇𝑐𝑟𝑎𝑛𝑘 = 

𝑑2𝜃𝑐𝑟𝑎𝑛𝑘
𝑑𝑡2

 𝐽𝑐𝑟𝑎𝑛𝑘 +
𝑅𝑖𝑑𝑙𝑒
𝑅𝑐𝑟𝑎𝑛𝑘

𝐽𝑖𝑑𝑙𝑒 +
𝑅𝑖𝑛𝑡
𝑅𝑐𝑟𝑎𝑛𝑘

𝐽𝑖𝑛𝑡 +
𝑅𝑒𝑥
𝑅𝑐𝑟𝑎𝑛𝑘

𝐽𝑒𝑥

+ 𝑚𝑐𝑎𝑖𝑛𝑅𝑐𝑟𝑎𝑛𝑘
2   

(Eq. 7.4)  
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As the camshafts always rotate half the speed of the crankshaft: 

 𝑅𝑖𝑛𝑡
𝑅𝑐𝑟𝑎𝑛𝑘

=
𝑅𝑒𝑥
𝑅𝑐𝑟𝑎𝑛𝑘

= 2 (Eq. 7.5)  

 

Thus equation (Eq. 7.4) can be summarised as: 

 𝑇𝑐𝑟𝑎𝑛𝑘 = 

𝑑2𝜃𝑐𝑟𝑎𝑛𝑘
𝑑𝑡2

 𝐽𝑐𝑟𝑎𝑛𝑘 + 2 𝐽𝑖𝑛𝑡 + 𝐽𝑒𝑥 +
𝑅𝑖𝑑𝑙𝑒
𝑅𝑐𝑟𝑎𝑛𝑘

𝐽𝑖𝑑𝑙𝑒 + 𝑚𝑐𝑎𝑖𝑛𝑅𝑐𝑟𝑎𝑛𝑘
2   

(Eq. 7.6)  

Every engine has a different arrangement but the inertia can be evaluated with the same 

method. A fuel pump, water pump or even an intake compressor might be driven by the 

crankshaft, those can be added in the equation as the idle gear component described 

above. 

In addition, the secondary belt driving accessories such as alternator, power steering pump 

or air conditioning can be modelled with the same method if it is assumed that there is no 

belt slip on their pulleys. 

Generalising the equation for the effective engine inertia 𝐽𝑒𝑓𝑓 : 

𝐽𝑒𝑓𝑓 = 𝐽𝑐𝑟𝑎𝑛𝑘 + 2 𝐽𝑖𝑛𝑡 + 𝐽𝑒𝑥 + 𝑚𝑐𝑎𝑖𝑛 /𝑏𝑒𝑙𝑡 𝑅𝑐𝑟𝑎𝑛𝑘
2

+
1

𝑅𝑐𝑟𝑎𝑛𝑘
 𝑅1𝐽1+. . +𝑅𝑁𝐽𝑁  

(Eq. 7.7)  
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7.3 Experimental measurement formulation 

A simple experimental procedure has been derived to measure the inertia of the engine. 

This method requires only a speed measurement during two transient accelerations. The 

experimental measurements as well as the calculations required are demonstrated on a 

typical simulation below. 

The concept is to add a known inertia 𝐼𝑎  to the unknown engine inertia 𝐼𝑒  and accelerate 

them through the same torque. Then, a formula can be derived which will evaluate the 

unknown engine inertia. The two different configurations can be seen in Figure 7.3.  

The equations describing the system (Figure 7.3) are: 

a) 𝛼𝑒𝐼𝑒 = 𝑇𝑒  (Eq. 7.8)  

b) 𝛼𝑎 𝐼𝑒 + 𝐼𝑎 = 𝑇𝑎  (Eq. 7.9)  

 

Figure 7.3: Experimental setup. a) engine inertia b) engine and added inertia 

 

𝛼𝑒  and 𝛼𝑎  are the engine accelerations (rad/sec2) produced during the experimental setup 

a) and b) respectively. 𝑇𝑒  and 𝑇𝑎  are the engine torque output (Nm). 
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The next equation is based on the assumption that the engine torque output is independent 

of the engine acceleration. So, the torque output will be equal during both configurations 

(Figure 7.3) when the engine is at the same speed. 

 𝑇𝑒
𝑁 = 𝑇𝛼

𝑁 = 𝑇𝑁   (Eq. 7.10)  

  𝑇𝑁: Engine torque output (Nm) at N speed 

So, using equations (Eq. 7.8, Eq. 7.9 and Eq. 7.10): 

 𝛼𝑒
𝑁𝐼𝑒 = 𝛼𝛼

𝑁 𝐼𝑒 + 𝐼𝛼  (Eq. 7.11)  

Which solving for the unknown engine inertia 𝐼𝑒 : 

 
𝐼𝑒 =

𝛼𝛼
𝑁𝐼𝛼

𝛼𝑒𝑁 − 𝛼𝛼𝑁
 (Eq. 7.12)  

7.4 Simulated experiment 

The methodology is going to be demonstrated with a simulated experiment so that data can 

be obtained. The wide opened throttle engine’s torque output is assumed to be a function 

of engine speed as shown in (Figure 7.4) in which the acceleration does not have a 

significant effect on a real engine. The engine and added inertias are going to be both 

assumed as they are needed for the simulation of the system. 

The following unknown engine inertia 𝐼𝑒  and known added inertia 𝐼𝛼  are assumed for this 

example. 

𝐼𝑒 = 0.3 𝑘𝑔𝑚2 𝐼𝛼 = 0.5 𝑘𝑔𝑚2 
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The engine inertia is assumed in order to simulate the engine transients. The calculations 

should lead to a result equal to this engine inertia. 

 

Figure 7.4: Assumed wide open throttle (WOT) torque output 

 

Running a simulation for an engine speed from N=2000 to N=7000 rpm for both 

configurations, the speed and acceleration transients can be obtained (Figure 7.5). 

 

Figure 7.5: Speed and acceleration transients 
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The speed transient can be obtained just by data-logging the engine speed during a WOT 

acceleration from idle to the rev limiter. Then, the engine angular acceleration transient can 

be easily evaluated as: 

 
𝛼 =

𝑑𝜔

𝑑𝑡
 (Eq. 7.13)  

The next step is to change the X reference axis (Figure 7.5) from time to engine speed on 

the acceleration curves. These are actually the instantaneous engine angular accelerations 

at specific speeds. Doing so for the two test results produce the following points (Figure 

7.6). 

 

 

Figure 7.6: Instantaneous engine acceleration over the engine speed range 
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Now the unknown engine inertia can be evaluated using equation (Eq. 7.12) at each speed 

using the circular points for αe and square points for αα respectively from (Figure 7.6). The 

results can be seen in (Figure 7.7) which matches the assumed engine inertia used on the 

simulation. 

If these calculations were made using experimental data there would be some deviations 

from the actual correct inertia value due to measurement errors and some deviations of the 

engine torque output because of different manifold dynamics. This is mainly the cause of 

the difference in engine acceleration. The conclusion is though that the smaller the added 

inertia is, the more accurate the results are going to be. In any case, the test should be 

repeated a couple of times and all the evaluated inertias should be averaged to obtain the 

final engine inertia. 

 

Figure 7.7: Engine inertia estimation (simulated) 
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An interesting point as well is that this methodology can be used to estimate an electric 

motor’s or a component’s inertia. The electric motor can take directly the place of the 

engine’s described above. In case of a component, the motor’s inertia should be known and 

the component’s inertia would then be the unknown inertia used in the equations. 
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CHAPTER 8:  Thermodynamic cycle simulation 

A study of the engine thermodynamics has to be done In order to develop acceptable 

kinematic sub-models so that they can actually be usable for cycle-by-cycle engine 

simulations. The variables, parameters and calculation procedure will then be understood, 

so that the models have a correct working structure. The main objective at this point is 

going to be the formulation for evaluating the working mixture properties inside the 

cylinder. The thermodynamic cycle of an engine is usually represented on a P-V diagram. 

The area enclosed within the diagram is the work produced by that particular cylinder. A P-

V diagram of an ideal Otto cycle is show in (Figure 8.1) which is the kind of data that can be 

obtained using an in-cylinder pressure sensor. 

The four processes of the ideal Otto cycle are: 

 Process 1-2 – Compression 

 Process 2-3 – Heat addition 

 Process 3-4 – Expansion 

 Process 4-1 – Heat rejection 

An isentropic compression of the assumed working mixture occurs between 1 and 2 as the 

piston moves from BDC to TDC. Heat is then added instantaneously at constant volume (Qa) 

during the process 2 to 3 while the piston is assumed to be momentarily at rest at TDC. The 

result is a temperature and pressure increase during this process which pushes the piston 

back towards BDC resulting in an isentropic expansion. Once the piston reaches BDC, it is 
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assumed again that it is momentarily at rest while the heat (Qr) is rejected. This cycle is also 

called Constant Volume Cycle due to the fact that when heat is added or rejected from the 

enclosed system (cylinder/combustion chamber); the piston is assumed momentarily at rest 

which means that there is no change in volume inside the cylinder. 

 

 

Figure 8.1: P-V diagram of the ideal Otto cycle 

 

8.1 Compression ratio equivalence 

The calculation of the pressure and temperature changes inside the cylinder during a small 

crankshaft angle increment requires the cylinder volume change during that step as it is 

going to be shown in the following equations. 
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Assuming that at t=0 the cylinder volume is V0 and at t=1 is Vnew, then the cylinder pressure 

𝑃𝑛𝑒𝑤  and temperature 𝑇𝑛𝑒𝑤  are given by [17]: 

 
𝑃𝑛𝑒𝑤 = 𝑃0  

𝑉0

𝑉𝑛𝑒𝑤
 
𝑘

 (Eq. 8.1)  

 
𝑇𝑛𝑒𝑤 = 𝑇0  

𝑉0

𝑉𝑛𝑒𝑤
 
𝑘−1

 
(Eq. 8.2)  

𝑘 is the ratio of working mixture’s specific heats for that step. 

The term compression ratio equivalence is then the only kinematic variable that is needed 

for in-cylinder cyclic pressure and temperature calculation due to piston movement and is 

denoted as: 

 
𝑟𝑒𝑞𝑢 =

𝑉0

𝑉𝑛𝑒𝑤
 (Eq. 8.3)  

Although this term looks simple to calculate, it can be quite a challenge when trying to 

evaluate it in a flow type modelling software such as MATLAB Simulink. This is because both 

volume variables do not exist in memory at the same time step increment. In the contrary, 

line based programming provides the ability to access a variable any time by temporary 

memory storage. 

The compression ratio equivalence has to be evaluated once the next cylinder volume 

calculation has been completed (Figure 8.2). This is possible by calculating the previous 

volume using the following equation. 
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𝑉0 = 𝑉𝑛𝑒𝑤 −

𝑑𝑉

𝑑𝑡
𝑑𝑡 (Eq. 8.4)  

Thus, the compression ratio equivalence 𝑟𝑒𝑞𝑢  is given by dividing equation (Eq. 8.4) with 𝑉𝑛𝑒𝑤 : 

 
𝑟𝑒𝑞𝑢 = 1 −

𝑉 

𝑉𝑛𝑒𝑤
𝑑𝑡 (Eq. 8.5)  

𝑉  is the cylinder volume rate of change during 𝑉0 to 𝑉𝑛𝑒𝑤 , and 𝑑𝑡 is the time step increment 

between 𝑉0 to 𝑉𝑛𝑒𝑤 . 

 

Figure 8.2: Compression ratio equivalence calculation 

 

8.2 Specific heats 

The specific heats of the working gas denote the amount of energy required to raise the 

temperature of its mass thus for example during compression, it is the variable defining the 

curvature on the P-V diagram. It is common to use a constant value when modelling as it 
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simplifies the calculations but as it is going to be shown can lead to totally different results 

depending generally on the temperature ranges inside the cylinder during the cycle. 

The relations between the specific heats are given below (Figure 8.3): 

 𝐶𝑝 = 𝐶𝑣 + 𝑅 (Eq. 8.6)  

 
𝑘 =

𝐶𝑝

𝐶𝑣
=

𝐶𝑝

𝐶𝑝 − 𝑅
 (Eq. 8.7)  

𝐶𝑝  is the specific heat of constant pressure (kJ/kg K), 𝐶𝑣  is the specific heat of constant 

volume (kJ/kg K) and 𝑅 is the gas constant. 

 

Figure 8.3: Specific heats of air 

Particularly for air [86]: 

 
𝐶𝑝 𝑇 =   𝐴 𝑁  𝑇𝑁 

4

𝑁=0

   
𝑘𝐽

 𝑘𝑔 𝐾
 (Eq. 8.8)  
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𝑅𝑎𝑖𝑟 = 0.28704   

𝑘𝐽

𝑘𝑔 𝐾
 (Eq. 8.9)  

Where:  

 𝑇: Air temperature (Kelvin) 

 𝐴 0 = 0.103409𝐸1    𝐴 1 = −0.2848870𝐸 − 3 

 𝐴 2 = 0.7816818𝐸 − 6  𝐴 3 = −0.4970786𝐸 − 9 

 𝐴 4 = 0.1077024𝐸 − 12 

The relation between the Kelvin temperature scale 𝑇𝐾  and Centigrade 𝑇𝐶  is: 

 𝑇𝐾 = 𝑇𝐶 + 273.15 (Eq. 8.10)  

8.3 Variable specific heats modelling 

The ideal Otto cycle was simulated using constant values and the variable specific heat 

function for air (Eq. 8.8) in order to study the effect of variable specific heats on engine 

modelling. 

It is noticeable that the results show a significant work output loss when using the variable 

specific heat function. This can be seen on the P-V diagrams (Figure 8.4). The simulations 

were repeated through a range of compression ratios in order to obtain the thermal 

efficiency effect which has shown as well to have a significant decrease (Figure 8.5). These 

results denote the importance to develop the model structure with the ability to use 

specific heats for simulations. 
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Figure 8.4: Ideal Otto cycle P-V diagram effect of variable specific heats 

 

 

Figure 8.5: Ideal Otto cycle efficiency effect of variable specific heats
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CHAPTER 9:  SIES framework development 

The development of the SIMULINK model structure mainly depends on the desired engine 

model application and on the structure of the model it has to connect to. The objective 

while developing the SIMULINK model was to achieve such a flexibility on its structure that 

it would allow the engine model to be used for any possible desired application such as a 

connection to a power train model, dynamometer model, and to be used as a dynamic 

virtual engine or as a static engine state model similar to manifold dynamic models used for 

control. 

This flexibility can be achieved by modelling the engine crankshaft with the possibility of 

switching its outputs and inputs variables which would allow a greater range of model 

interconnection. This is due to the fact that power train models expect a torque output 

from the engine model, and the engine acceleration and speed is evaluated by the power 

train model. On the other hand, taking the case of a dynamometer model, the inputs to the 

engine model is just the torque of the dynamometer and its inertia; the engine acceleration 

and speed have to be evaluated by the engine model itself. 

Another important issue to have in mind is to develop the structure without the usage of 

any “algebraic loop” which increases significantly the simulation time. The algebraic loop is 

basically the request of a parameter that has not been yet evaluated, or depends on the 

output of the calculation in which it is needed. This makes the solver iterate on that 

calculation until the error is below a threshold value slowing down the simulation speed. 
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9.1 Crankshaft dynamics 

The crankshaft dynamics structure is the base of the cycle by cycle engine model and as it is 

the coupling component on a real engine (gear box, clutch or dynamometer), the modelling 

of the virtual coupling (connection to a gear box model, clutch model or dynamometer 

model) has to be developed within this structure. 

The starting point of this model is the relation between torque T, inertia J and crankshaft 

acceleration α. 

 𝑇

𝐽
=∝ 

(Eq. 9.1)  

The two structures chosen which provide the flexibility to connect the engine model to any 

coupling type of model structure and application are the “virtual engine structure” and 

“engine sub-model structure” which are explained in the following. 

9.1.1 Virtual engine structure 

This structure has been named “virtual engine structure” due to the fact that it allows the 

engine model to run alone dynamically, thus meaning it evaluates its own instantaneous 

crankshaft acceleration, speed and position. This structure can be visualised by thinking of 

an engine which is not connected to any clutch, gearbox or shaft but has only the flywheel 

attached to the crankshaft. 

This configuration implies that the coupling model evaluates its effective inertia and the 

torque applied on the engine, and feeds them to the engine model. The engine model uses 
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these variables to evaluate its brake torque output and then its crankshaft acceleration, 

speed and position (Figure 9.1). Even a complete vehicle system could use an engine model 

with this structure, but there would be a need to evaluate the complete vehicle’s effect on 

the crankshaft as an inertia and effective torque. 

 

Figure 9.1: Virtual engine model structure 

 

Another straightforward application is the connection to a clutch mechanism. The coupling 

effective torque on the crankshaft would be the dynamic friction or the stiction friction, 

respectively depending on the case that the clutch is slipping or not. The effective inertia on 

the other hand, would be the clutch component attached on the flywheel in case of clutch 
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slip, or the complete vehicle, clutch, gear box, wheels etc in the case that the clutch is 

locked and that there is no slip on the wheels. 

9.1.2 Engine sub-model structure 

Sometimes, there is the need to run the engine model at a constant speed or its speed 

controlled by an input. This facilitates its connection to a powertrain model, or its usage in 

control applications. The powertrain model will have to evaluate the engine kinematics and 

thus allow the engine model to evaluate its instantaneous brake torque output. Due to the 

fact that the dynamics calculations are not evaluated by the engine model, this structure 

has been named “engine sub-model structure” (Figure 9.2). 

 

Figure 9.2: Virtual engine model structure 
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9.1.3 Dual model structure 

The final decision was to develop the crankshaft dynamics for both structures described 

previously and develop a simple way to switch between the two structures parametrically 

during parameter input or simulation. The following picture shows the developed Engine 

Connection SIMULINK block diagram (Figure 9.3). 

 

Figure 9.3: Engine Connection SIMULINK block diagram 
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The inputs and outputs connection notations are made with reference to the engine model. 

This block diagram is the place where to connect a coupling model to the engine model and 

where the variables between the two systems are interchanged. The higher level 

representation of this block can be seen in (Figure 9.4) as the “Engine connection” block. 

 

Figure 9.4: Engine model communication 

 

Independent of the engine structure selected during simulation, the variables that are 

needed from the Engine Dynamics block to evaluate all engine parameters for the next time 

step are the crankshaft dynamics (α, ω, θ). 
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9.1.4 Dual structure engine dynamics 

The engine dynamics block diagram is based on a simple dynamic system structure which 

consists of evaluating the acceleration from the torque and inertia. Then, the speed and 

position are calculated through a first and second integration as shown below (Figure 9.5). 

 

Figure 9.5: Engine dynamics base structure 

 

The components in which the acceleration and speed are calculated on the base structure 

are replaced by dual option block diagrams so that the engine model can be connected to 

any coupling model. 

The acceleration block diagram can be seen in (Figure 9.6) and the structure selection input 

is the connection (ENG_CON_SELECTION) which is received from the Engine Connection 

block diagram described previously. 

The connection shown as “ENGINE BRAKE TORQUE OUTPUT” (Figure 9.6) will have to be 

connected to the cyclic brake torque engine output. This connection is mandatory for the 

“virtual engine structure” as it will evaluate along with the inertia, the cyclic acceleration 

and engine speed. 
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Figure 9.6: Engine dynamics (acceleration) 

 

The speed evaluation block diagram is also replaced with a dual option structure. The 

selection input is the same connection as for the acceleration calculation. The engine speed 

is either evaluated through integration of acceleration (virtual engine structure) or the input 

given in the Engine Connection block diagram (ENG_CON_Omeganew_rad) is just passed 

through (Figure 9.7). 
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Figure 9.7: Engine dynamics (speed) 

9.2 Cycle angle 

The Engine Dynamics block diagram is able at this point to evaluate the crankshaft dynamics 

(acceleration, speed and position). A very useful conversion can be done at this point which 

is to convert the engine position angle to the equivalent cycle angle. 

The engine position angle is a value that starts from zero and which keeps rising through 

until the simulation is stopped. It is the total rotation of the engine done through the 

simulation. This value is not a parameter that can be used directly for cycle thermodynamics 

or other calculations. 
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The cycle angle is going to be a value that tracks the actual cycle position of cylinder-1 with zero 

being TDC of cylinder-1 before the expansion stroke. The block diagram that converts the 

engine angle to the cycle angle can be seen in (Figure 9.8). 

 

Figure 9.8: Cycle angle 

 

The cycle angle output can be used for example to read a cyclic look-up table as it is going 

to be shown for the valve lift or used as a reference for every engine timings when an 

engine position reference is needed such as spark advance, injection timing, variable valve 

timing, etc. 

The cycle angle function calculation result (Figure 9.9) is a sawtooth wave of half crankshaft 

speed frequency. A similar effect can be achieved by resetting the position integrator every 

time it reaches a value of 720 but that would mean losing the total engine rotation through 

the simulation which develops some problems when the cylinder phasings are later on 

calculated. Thus, this mathematical approach is preferable. 
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Figure 9.9: Cycle angle function 

 

9.3 Crankshaft mechanism 

As at this point the position angle in the cycle is known, the equations which evaluate the 

reciprocating engine variables can be applied (Figure 9.10). The cycle angle is the main input 

parameter in these equations, while the crankshaft speed and acceleration scale the output 

magnitudes of the rates of change. 

The calculations done inside the “crank mechanism model” block diagram are the set of 

equations presented in “CHAPTER 4: Crankshaft mechanism”. The detailed block diagram is 

not presented as it consists of a large number of sub-blocks but have a simple input-output 

evaluation structure. 
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Figure 9.10: Crankshaft mechanism 

 

On the other hand, the “crankcase kinematics” block diagram (Figure 9.11) is shown to 

illustrate the concept described previously in “8.1 Compression ratio equivalence”. The 

same block is used inside the “crank mechanism kinematics” to obtain the individual 

cylinder compression ratio equivalences. 

 

Figure 9.11: Crankcase kinematics 
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9.4 Variable valvetrain 

In order to have an engine model which can cope with up-to date engines, it is necessary to 

have a valvetrain model which is capable of replicating different variable valve lift and 

timing strategies. 

The variable valvetrain model consists of a “control” block diagram responsible for adjusting 

the camshaft phasings and rocker arm ratios as a function of a control input (i.e. engine 

speed) and a “valvetrain mechanism model” block which evaluates the valve flow area and 

valve kinematics as a function of crankshaft kinematics (Figure 9.12). 

 

Figure 9.12: Valvetrain control and kinematics 

 

9.4.1 Valvetrain control 

The “valvetrain control” block diagram outputs the intake and exhaust camshaft phasing 

angle (variable timing control) as well as the intake and exhaust rocker arm ratios (variable 

lift control). The control data are 1-D look-up tables which by default use the engine speed 

as the control parameter (Figure 9.13). A simple structure like this was used at this point to 

develop the SIES framework as each engine uses different mechanical systems to adjust and 
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which makes it difficult to model a generic variable valvetrain system which can be applied 

to any engine. Thus, the look-up tables provide means to make the model generic. 

 

Figure 9.13: Variable valvetrain control 

9.4.2 Valvetrain kinematics 

The data file produced by the “Valve Timing” application (5.3 Valve timing) is loaded into 1-D 

look-up tables (intake and exhaust), and the relative follower lift can be retrieved for any cycle 

angle. Then, the relative rocker arm ratio is used to evaluate the valve lift for that moment 

(Figure 9.14). Finally, the valve flow area can be evaluated as it is a function of valve lift as 

presented in section “5.4 Valve flow area”. 
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Figure 9.14: Variable valvetrain 

 

9.5 Throttle 

The throttle kinematics model is a separate system, independent of the engine dynamics 

meaning that there is no connection at the moment to the engine block diagrams described 

previously. The throttle plate receives its position in time from the “Throttle Control” block 

diagram and then the “Throttle body model” block evaluates the throttle effective flow area 

(Figure 9.15). 

9.5.1 Throttle control 

A set of throttle input selections have been placed inside the “Throttle Control” block 

diagram including a typical structure which will work for a throttle plate controller. The 

relative controller system has to be placed inside the “Throttle Plate Controller Dynamics” 

block and should evaluate the angular acceleration of the throttle plate (Figure 9.16) [87]. 
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Figure 9.15: Throttle sub-model structure 

 

Figure 9.16: Throttle control 
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9.5.2 Throttle kinematics 

The throttle effective flow area is evaluated for the throttle plate angle input “alpha” using 

the throttle effective flow area equations given in “CHAPTER 6: Throttle kinematics”. This 

output is passed to a “Goto” SIMULINK block which makes it retrievable from anywhere in 

the model. This type of connection facilitates the model structure development as every 

system is visualised as a separate sub-system. 

9.6 SIES framework 

The sub-systems presented on the previous sections have been connected together in a 

SIMULINK model to form the SIES Framework. The framework’s complete structure can be 

seen in Figure 9.17. It is a complete engine kinematics model which provides a robust base 

for cycle-by-cycle engine modelling. Due to the fact that the complexity of a cycle-by-cycle 

engine model arises mainly from its reciprocating motion and model structure, it is quite 

easy for example to develop a combustion pressure model using the already completed 

framework. The SIES Framework’s internal connections between sub-blocks are done using 

“Goto” and “From” SIMULINK model blocks to allow each module to be separate from the 

system. Thus, a module can be easily replaced, upgraded or used in another model. The SIES 

Framework modules (sub-models) are visible upon opening the model (Figure 9.18). There 

are two extra modules which have not been explained till now. Inside the “Shared Function 

Blocks” are placed developed function blocks and sub-systems such as unit conversion 

functions and engine specific calculations. This was done to increase the productivity and 

reduce the time of future further developments. 
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Due to the complexity of the system, it is preferable to have all the results accessible in one 

location which is the “Results” module. 

 

 

Figure 9.17: SIES framework structure 
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Figure 9.18: SIES framework (SIMULINK) 

 

9.6.1 Results 

The results of a constant speed simulation of a four cylinder engine can be seen in the 

following figures. The input parameters used are listed in Appendix A. The first figure 

(Figure 9.19) shows the results of the piston kinematics given by equations (Eq. 4.8 - 4.13). 

Figure 9.20 is the crankcase volume as described in “4.9 Crankcase volume” and given by 

Eq. 4.35. 
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Figure 9.19: Piston kinematics (constant speed) 

 

Figure 9.20: Crankcase volume (constant speed) 
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The following figure (Figure 9.21) displays the results of the first cylinder’s kinematics. These 

are the results required to perform thermodynamic cyclic calculations. The cylinder area for 

example is required by heat transfer models. 

 

Figure 9.21: Cylinder - 1 kinematic results (constant speed) 
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The intake valve effective flow area has been evaluated for all four cylinders from which the 

total intake flow area is evaluated by adding the individual cylinders effective valve flow 

areas. This results in a waveform which describes the intake valve system geometry. 

 

 

 

Figure 9.22: Intake results (constant speed) 
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A linear ramp angle input has been given to the throttle model so that its area function 

could be evaluated during the simulation (Figure 9.23) as it is not affected by the engine 

conditions (i.e. constant speed). 

 

 

 

 

Figure 9.23: Throttle effective area results 
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A second simulation was done to show the dynamic capabilities of the developed engine 

model. This time, a constant engine torque output has been set to 100Nm which 

accelerates the engine at a constant rate. It can bee seen now that the results of the first 

cylinder’s kinematics are waveforms having their frequency increase over the simulation 

time as the engine accelerates and those affected by engine speed (dV/dt and compression 

ratio equivalence in Figure 9.24) have also their peak to peak increased. 

 

Figure 9.24: Cylinder - 1 kinematic results (during acceleration)
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CHAPTER 10:  EngMap framework development 

An Engine Mapping framework (EngMap framework) has been developed alongside with 

the SIES framework to facilitate cycle-by-cycle custom engine mapping procedure 

development. The current EngMap framework version incorporates the models required for 

cycle-by-cycle engine flow mapping. It evaluates the throttle flow area, valve flow areas and 

piston kinematics. 

The National Instruments LabVIEW software has been chosen to be the development 

platform as it provides an easy and fast way to read signals and develop “virtual 

instruments” as they are called. The sensory signals are sampled by a National Instruments 

hardware which selection depends on the signal type. Then, these signals can be made 

available as variable values in the LabVIEW software and used in calculations (Figure 10.1). 

The LabVIEW applications that can be developed are limitless. They can be as simple as a 

voltage reading and plotting in real-time on the LabVIEW interface, custom data-logging or 

even complete engine mapping procedure (real-time depending on the hardware used). 

A large range of hardware is available which are developed for the measurement of 

analogue and digital voltages, thermocouples, current, strain gauges, etc. On the other 

hand, output hardware is also available such as switches, analogue and digital voltage 

generators, which give the ability to control any desired actuator. The control algorithm can 

be developed in the LabVIEW software with its inputs provided by measurement hardware 

while the actuation done by output hardware. 
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Figure 10.1: LabVIEW connection 

 

The engine mapping hardware and sensors vary depending on the engine under 

consideration and test demands thus requiring a different EngMap framework structure. 

For this reason, the EngMap framework has been developed to be modular and different 

configurations are available to choose from. 

In order to evaluate the models required for cycle-by-cycle engine flow mapping, the 

throttle position and crankshaft dynamics have to be acquired from the engine so that the 

models can be evaluated within LabVIEW. 
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10.1 TPS signal 

The Throttle Position Sensor (TPS) signal is usually an analogue voltage between 0 and 5 

Volts which varies linearly with the throttle angle. Thus in order to obtain the engine’s 

throttle angle within the software, this voltage has to be measured, calibrated and 

converted to throttle angle. The TPS sensor is usually given in a percentage value which 

represents the position within the throttle range. Thus a value of 0% for closed and 100% 

for WOT. 

10.1.1 Throttle calibration 

The throttle calibration is required due to the fact that the signal voltages at closed 𝑉𝑇𝑃𝑆
0  and 

WOT throttle 𝑉𝑇𝑃𝑆
𝑊𝑂𝑇  are never 0 and 5V respectively. The first framework module was then to 

allow a quick and easy calibration of the TPS sensor by inputting the recorded TPS voltages for 

closed and WOT so that the TPS % could be evaluated from a TPS voltage 𝑉𝑇𝑃𝑆 . 

 
𝑇𝑃𝑆 =

𝑉𝑇𝑃𝑆 − 𝑉𝑇𝑃𝑆
0

𝑉𝑇𝑃𝑆
𝑊𝑂𝑇 − 𝑉𝑇𝑃𝑆

0 100 (Eq. 10.1)  

The LabVIEW block diagram (Figure 10.2) has been developed base on (Eq. 10.1) but has in 

addition an option to round the percentage output of the throttle position to the nearest 

integer so that the fluctuations are filtered which can be caused by signal noises. 

10.2 Throttle area 

The throttle angle position 𝑎 has to be evaluated using the TPS % value described in the 

previous section. Then, a throttle area model can be used to calculate the throttle effective 

flow area. The only additional parameter required is the closed throttle angle 𝜃𝑡𝐶 . 
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𝑎 =

𝑇𝑃𝑆

100
 
𝜋

2
− 𝜃𝑡𝐶 + 𝜃𝑡𝐶  (Eq. 10.2)  

The throttle area evaluation within LabVIEW has a different structure than the one used in 

the SIES framework. It has been developed to run faster by “initialising” the throttle body 

model in which all throttle model constant terms are evaluated before the application 

execution (Figure 10.3). That is the reason why the block named “Evaluate throttle model 

constants” is placed outside the execution loop which makes it run only once at the 

beginning of the execution. 

 

 

 

Figure 10.2: TPS calibration LabVIEW block diagram 
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Figure 10.3: Throttle area block diagram (LabVIEW) 

 

10.3 Reciprocating kinematics 

The reciprocating kinematics of the piston pin motion have to be evaluated as they are the 

functions from which variables such as piston speed, acceleration and cylinder volume are 

calculated. 

The LabVIEW block diagram is not presented for this section as it consists of simple input 

and output functions which relate the crankshaft position, speed and acceleration to the 
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piston pin kinematics. The interface of the LabVIEW block diagram can be seen in (Figure 

10.4). 

 

Figure 10.4: Piston pin motion (LabVIEW) 

 

10.4 Valve flow area 

The valve flow areas have to be calculated as well in LabVIEW for the engine mapping 

procedure. The valve flow areas can be evaluated through look-up tables in case that the 

engine does not have a VVT system. On the other hand, if a VVT system is present, then the 

complete valvetrain mechanism has to be modelled similarly to what has been done in the 

SIES framework. This case is going to be noted as the “crankshaft signal” model. 
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Another option is to measure the intake and exhaust valve lifts on the engine in real-time 

with the use of sensors. The model structure of this case has been named “valve lift signal” 

model which is also to be presented. 

10.4.1 Crankshaft signal 

The crankshaft signal model is using the crankshaft position cycle angle to evaluate all 

engine valve positions. This requires the evaluation of the intake and exhaust follower lift 

data as a function of crankshaft position (5.2.2 Contact solver). The camshaft phasing can 

then be applied by reading an offset flat follower lift value from the table. Then, the valve 

lift L is computed by multiplying the actual follower lift by the rocker arm ratio which is 1 for 

direct acting valvetrains (Figure 10.5 and Figure 10.6). 

Once the valve lift at this point has been evaluated, the valve flow area can be calculated 

using one of the models presented in “5.4 Valve flow area”. 

 

Figure 10.5: Crankshaft based VVT valve lift model 
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Figure 10.6: Variable valve phasing and lift 
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10.4.2 Valve lift signal 

This structure is preferable if a valve lift sensor is available for direct measurement. This 

reduces the complexity and decrease significantly the valvetrain model calibration time. The 

valve lift sensor signal (i.e. voltage) is sampled by a “National Instruments” hardware and 

passed in the LabVIEW software where it is converted to a length unit (i.e. m). The valve lift 

sensor actually replaces the VVT valvetrain model (Figure 10.5) but still requires the valve 

flow area model (Figure 10.7). There is no need to install a sensor on every single valve as it 

can usually be assumed that all valves follow exactly the same motion during one cycle. Two 

sensors will then be sufficient, one installed on an intake and one on an exhaust valve. The 

remaining valve signals can be simulated by a phase shifting of the measured signal. 

 

Figure 10.7: Valve lift signal based valve flow area
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CHAPTER 11:  Conclusions and future work 

The main contributions of this thesis can be summarised below as: 

 Literature review on engine modelling with emphasis on mean-value Vs cyclic 

models. 

 Notation of the need to have unit-less parameterisation of models in engine 

mapping applications. 

 High fidelity crank mechanism kinematic model taking into account the effect of 

piston pin offset and crankshaft acceleration while additional effects due to this 

mechanism movement are presented (i.e. crankcase volume). 

 Valvetrain kinematic model with the ability to represent a fully variable valve lift and 

timing system. 

 Modelling of the throttle body effective area as the ones found in the literature had 

errors. In addition, the evaluation of the throttle area rate of change has been done. 

 Looking into modelling the complete engine and emphasising the need of to use 

variable specific heats on thermodynamic simulations. 

 A rigid engine inertia model is presented. 

 Development of the SIES framework capable of dynamic cycle-by-cycle simulations. 

 Development of the EngMap framework in LabVIEW so that the mathematical 

models can be used alongside with real NI hardware for engine mapping. 

 Proposition for a novel approach into flow model developments using the equations 

presented in this thesis. 
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The literature review clarified the main problem currently present in the engine modelling 

field which is the large amount of engine testing required to calibrate a mean-value model 

with engine data. It was as well noted that this data cannot be used on any other engine 

which creates the need of this process to be repeated on every single engine. It is believed 

that a cycle-by-cycle modelling and mapping approach will give insight to the engine 

processes and allow the development of engine flow models which will reduce the mapping 

time required or even make the mapping data reusable to an acceptable degree of accuracy 

on another engine. This could be achieved by using “key” engine variables in the mapping 

and simulation algorithms. Thus, the engine mapping data will not be specific to that 

particular engine, but to the particular processes. They could be applied to other engines 

due to the fact that they have other specific geometry data such as valve flow areas and 

cylinder dynamics. The mathematical models and structures required to obtain significant 

engine dependant data was presented in this work. They have been implemented in 

SIMULINK to form the base structure of a dynamic cycle-by-cycle model (SIES framework) 

and in LabVIEW for custom engine mapping application developments (EngMap 

framework). The cylinder volume and rate of volume change are “images” of a particular’s 

engine crankshaft mechanism geometry. Their correct evaluation is mandatory and it was 

shown that the piston pin offset should not be neglected if present on the modelled engine. 

In addition, the crankshaft mechanism’s components accelerations should be evaluated as 

well using the equations presented which take into account the piston pin offset as it may 

lead to inaccurate inertial forces. 
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The accurate evaluation of the effective areas on the flow path were shown which can be 

used on an engine simulation model or mapping application. The intake and exhaust engine 

flows were not modelled due to the unavailability of such models. The current modelling 

concept as described in the literature review, does not take into account the cylinder 

variable dynamics such as the rate of cylinder volume change. The cylinder flow in cycle by 

cycle models is modelled using (Eq. 1.2) which requires the pressure ratio between the 

cylinder pressure Pcyl and port pressure Pport as well as the effective valve flow area Av 

(Figure 11.1 - b). It is understandable that the effects of engine speed and crankshaft 

mechanism geometry are not taken into account by the equation. The effect of the engine 

speed could be neglected only if the piston is not moving during the intake or exhaust 

process which is never the case on a working engine. A generic engine flow model should 

use the cylinder pressure Pcyl, port pressure Pport, effective valve flow area Av and the rate of 

cylinder volume change into the equations dVcyl/dt as shown in (Figure 11.1 - a). The engine 

geometry variables of valve flow areas (Figure 11.2 - b) and cylinder volume rate of change 

(Figure 11.2 - a) could be used as single terms in order to develop a correct and generic 

cylinder flow model, or combined into a single term for intake and exhaust. The idea of this 

concept is to evaluate the effective cylinder volume rate of change that is affecting the 

intake and exhaust ports as they are important parameters defining for the overlap period. 

The evaluation that follows is an example of how the data produced in this thesis can be 

used to develop a variable that defines the complete engine geometry into a single term for 

the intake and exhaust valves (Figure 11.2 - c). 
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Figure 11.1: Engine cylinder flow modelling. a) dynamic. b) static 

 

Intake effective volume rate of change: 

 𝑑𝑉𝑖𝑛𝑡
𝑑𝑡

=
𝑑𝑉𝑐𝑦𝑙

𝑑𝑡

𝐴𝑖𝑛𝑡
𝐴𝑖𝑛𝑡 + 𝐴𝑒𝑥

 (Eq. 11.1)  

Exhaust effective volume rate of change: 

 𝑑𝑉𝑒𝑥
𝑑𝑡

=
𝑑𝑉𝑐𝑦𝑙

𝑑𝑡

𝐴𝑒𝑥
𝐴𝑖𝑛𝑡 + 𝐴𝑒𝑥

 (Eq. 11.2)  
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𝑑𝑉𝑖𝑛𝑡

𝑑𝑡
 is the intake effective cylinder rate of volume change, 

𝑑𝑉𝑒𝑥 

𝑑𝑡
 is the exhaust effective 

cylinder rate of volume change, 
𝑑𝑉𝑐𝑦𝑙

𝑑𝑡
 is the cylinder volume rate of change, 𝐴𝑖𝑛𝑡  is the intake 

valve opened area and 𝐴𝑒𝑥  is the exhaust valve opened area. 

 

Figure 11.2: Cylinder-1 data for flow models 
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This data could be used to develop intake and exhaust cylinder flow models. This would imply a 

test rig consisting of one cylinder engine for which different pistons, valves, connecting rods and 

crankshaft sizes should be available in order to measure the effect of each component 

individually so that a correct model can be generated. Each engine components configuration 

will result in a particular intake and exhaust effective cylinder volume rate of change curve. The 

valve lift could either be measured on the engine though a valve lift sensor or from the 

crankshaft position using the valvetrain model presented. The engine should be motored using 

an electric motor so that high speeds could be achieved without the need of the combustion 

process. This will result in low temperature flow mapping allowing the use of cheaper mass air 

flow sensors. The next step would then be to validate the developed flow models under normal 

operating conditions (firing) of this one cylinder engine. Then, the models could be for example 

used on each individual cylinder of a 4-cylinder in order to derive the effect on the intake and 

exhaust manifolds on the cylinder flows. The four cylinder engine would basically represented 

by four identical phased cyclic cylinder flow models. This type of approach once accomplished, 

will give rise to cyclic engine mapping procedures which will result in a faster experimental 

mapping procedure which will be done just to derive the maps required for the virtual cycle-by-

cycle engine model. Then, the engine model will be able to be used for virtual engine mapping 

which can be either to fit mean-value engine models or any other application. 

The next version of the SIES framework is already in development which will have the 

crankshaft torque evaluated due to the engine rotation. This cyclic torque is the engine’s inertial 

torque which is produced by the crankshaft mechanism, valvetrain system and engine frictions.
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Appendix A: Simulation inputs 

%   SIES Framework v1.0 Initialisation File 
%   University of Bradford 
%   2009 
% 
%   Antonios Pezouvanis 
%   e-mail:    a.pezouvanis@gmail.com 
% 
%===================================== 

  
%General Simulation Parameters 
Simulation.tstep=1e-4;          %Fixed Step Increment               (sec) 

  
%Ambient Conditions 
Ambient_Conditions.Patm=101325; %Atmospheric pressure               (Pa) 
Ambient_Conditions.Tatm=20;     %Atmospheric temperature            (deg C) 

  

  
%Engine Geometry Parameters 
Engine_Geometry.K=0.027;         %Crank arm length                  (m) 
Engine_Geometry.L=0.13;          %Connecting rod length             (m) 
Engine_Geometry.Ot=-0.005;       %Crank mechanism total offset      (m) 
Engine_Geometry.r=10;            %Compressio Ratio 
Engine_Geometry.B=0.072;         %Cylinder bore                     (m) 

  

  
%Multi-cylinder Variables 
Engine_Geometry.zeta1=0;        %Cyl-1 Phase Angle           (deg crank) 
Engine_Geometry.zeta2=540;      %Cyl-2 Phase Angle           (deg crank) 
Engine_Geometry.zeta3=180;      %Cyl-3 Phase Angle           (deg crank) 
Engine_Geometry.zeta4=360;      %Cyl-4 Phase Angle           (deg crank) 

  

  
%Premilinary Calculations 
Engine_Geometry.fiTDC=rad2deg(-

asin(Engine_Geometry.Ot/(Engine_Geometry.L+Engine_Geometry.K)));     

 %Crank arm angle @ Cyl-1 TDC (deg) 

     
%Sub-Model 1 Parameters:   Engine Dynamics 

  
Engine_Dynamics.T0=0;           %Initial torque on crankshaft    (Nm) 
Engine_Dynamics.Jeng=1;         %Engine inertia                  (kg m^2) 
Engine_Dynamics.N0=500;         %Initial engine speed            (RPM) 
Engine_Dynamics.Theta0=0;       %Initial crankshaft position     (deg)       

(0 = Cyl-1 @ TDC) 

  
 %Sub-Model 3 Parameters:   Valvetrain Kinematics 
Valvetrain_Kinematics.valveareaModel=3; 

  
Valvetrain_Kinematics.intNumVCyl=2; 
Valvetrain_Kinematics.intD=30; 
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Valvetrain_Kinematics.intDi=26; 
Valvetrain_Kinematics.intd=5; 
Valvetrain_Kinematics.intthetaSeat=45; 
Valvetrain_Kinematics.intRockerRatio0=1; 

  
Valvetrain_Kinematics.exhNumVCyl=2; 
Valvetrain_Kinematics.exhD=26; 
Valvetrain_Kinematics.exhDi=22; 
Valvetrain_Kinematics.exhd=5; 
Valvetrain_Kinematics.exhthetaSeat=45; 
Valvetrain_Kinematics.exhRockerRatio0=1; 

  
 %Sub-Model 4 Parameters:   Throttle Kinematics 
 Throttle_Kinematics.ThetaC=4;   %Closed throttle plate angle        (deg) 
Throttle_Kinematics.Dth=0.050;  %Throttle bore diameter             (m) 
Throttle_Kinematics.Dsh=0.006;  %Throttle shaft diameter            (m) 
Throttle_Kinematics.alpha0=0;   %Initial throttle angle             (deg)       

(0=Throttle closed) 

  

  
%Sub-Model 5 Parameters:   Crankcase Kinematics 

  
Crankcase_Kinematics.VcTDC=0.004;   %Crankcase Volume Cyl-1:TDC     (m^3) 

   
%Sub-Model 8 Parameters:   Valvetrain Control 
%CAMSHAFT PHASING 
Valvetrain_Control.IntakePhasingON=0;   %Enable Intake Camshaft Phasing?        

(0=off, 1=on) 
Valvetrain_Control.ExhaustPhasingON=0;   %Enable Intake Camshaft Phasing?       

(0=off, 1=on) 

  
%Intake camshaft phasing map, Format=[crankshaft speed (RPM);phase angle    

(crank deg) 
Valvetrain_Control.IntakePhasingMap=[0 3000 3000.001 6000 6000.001 20000;0 

0 0 0 -20 -20]; 

  
%Exhaust camshaft phasing map, Format=[crankshaft speed (RPM);phase angle   

(crank deg) 
Valvetrain_Control.ExhaustPhasingMap=[0 3000 3000.001 6000 6000.001 20000;0 

0 0 0 10 10]; 

  
%CAMSHAFT LIFT 
Valvetrain_Control.IntakeVariableLiftON=0;   %Enable Intake Camshaft 

Phasing?   (0=off, 1=on) 
Valvetrain_Control.ExhaustVariableLiftON=0;   %Enable Intake Camshaft 

Phasing?  (0=off, 1=on) 
    %Intake rocker arm ratio map, Format=[crankshaft speed (RPM);phase 

angle    (crank deg)] 
Valvetrain_Kinematics.intRockerRatioMap=[0 3000 3000.001 6000 6000.001 

20000;0.5 0.5 0.7 0.7 1 1]; 
    %Exhaust camshaft phasing map, Format=[crankshaft speed (RPM);phase 

angle   (crank deg) 
Valvetrain_Kinematics.exhRockerRatioMap=[0 3000 3000.001 6000 6000.001 

20000;0.5 0.5 0.7 0.7 1 1]; 
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