
Communicating Process Architectures 2008 17
P.H. Welch et al. (Eds.)
IOS Press, 2008
© 2008 The authors and IOS Press. All rights reserved.

A CSP Model for Mobile Channels
Peter H. WELCH and Frederick R.M. BARNES

Computing Laboratory, University of Kent, Canterbury, Kent, CT2 7NF, England

Abstract. CSP processes have a static view of their environment – a fixed set of
events through which they synchronise with each other. In contrast, the π-calculus is
based on the dynamic construction of events (channels) and their distribution over
pre-existing channels. In this way, process networks can be constructed dynamically
with processes acquiring new connectivity. For the construction of complex systems,
such as Internet trading and the modeling of living organisms, such capabilities have
an obvious attraction. The occam-π multiprocessing language is built upon classical
occam, whose design and semantics are founded on CSP. To address the dynamics
of complex systems, occam-π extensions enable the movement of channels (and
multiway synchronisation barriers) through channels, with constraints in line with
previous occam discipline for safe and efficient programming. This paper reconciles
these extensions by building a formal (operational) semantics for mobile channels
entirely within CSP. These semantics provide two benefits: formal analysis of
occam-π systems using mobile channels and formal specification of implementation
mechanisms for mobiles used by the occam-π compiler and run-time kernel.

Keywords. channels, processes, mobility, modeling, occam-π, CSP, π-calculus.

Introduction

The dynamic creation of channels and processes, together with their communication
through channels, enables network topology to evolve in response to run-time events.
Systems requiring this capability abound – for example, the modelling of complex
biological phenomena and commercial Internet applications. Formal specification and
analysis has been pioneered through Milner’s π-calculus. Here, we present a model of
channel mobility using Hoare’s CSP and explain our motivation and the benefits obtained.

Mobile channels have been introduced into the occam-π multiprocessing language
[1,2,3], whose classical design and semantics are founded on CSP [4,5,6]. CSP processes
synchronise on fixed sets of events (so cannot dynamically acquire new connections) and
that static nature cannot easily be relaxed. However, CSP allows infinite event sets and
recursion, which gives us a lot of freedom when modeling.

This paper presents a CSP model for channel mobility that yields semantics that are
both operational and denotational. The operational aspect provides a formal specification
for all data structures and algorithms for a supporting run-time kernel (from which the
occam-π kernel is derived). The denotational side preserves the compositional nature of
occam-π components (no surprises when processes are networked in parallel, what-you-see-
is-what-you-get). It also allows formal specification and analysis of occam-π systems and,
so long as the number of mobile channels can be bounded and that bound is not too large,
the application of automated model checkers (such as FDR [7]).

Section 1 reviews the mobile channel mechanisms of occam-π. Section 2 introduces
the technique of modeling channels with processes, essential for the formal semantics of
mobility presented here. Section 3 builds the kernel processes underlying the semantics.
Section 4 maps occam-π code to the relevant synchronisations with the kernel. Finally,
Section 5 draws conclusions and directions for future work.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/13672?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

18 P.H. Welch and F.R.M. Barnes / A CSP Model for Mobile Channels

1. Mobile Channels in occam-π

Mobile channels, along with mobile data and mobile processes, have been introduced into
the occam-π multiprocessing language, a careful blend of classical (CSP-based) occam2.1
with the network dynamics of the π-calculus [8]. The mobility concept supported reflects
the idea of movement: something moves from source to target, with the source losing it
(unless explicitly marked for sharing). Mobile objects may also be cloned for distribution.

occam-π introduces channel bundles: a record structure of individual channels (fields)
carrying different protocols (message structures) and operating in different directions.
occam-π also separates the concept of channel (or channel bundle) ends from the channels
(or bundles) themselves: processes see only one end of the external channels with which
they interact with their environment. For mobile channels, it is the channel-ends that can be
moved (by communication or assignment) – not the channels themselves. With the current
compiler, channel mobility is implemented only for the new channel bundle types.

1.1 Mobile Channel Bundles

Channel types declare a bundle of channels that will always be kept together. They are
similar to the idea proposed for occam3 [9], except that the ends of our bundles are
(currently always declared to be) mobile, directions are specified for the individual
channels, and the bundle has distinct ends.

Figure 1 shows a typical bundle of channels supporting client-server communications.

By convention, a server process takes the negative end of the bundle, receiving and
answering questions from client processes sharing the positive end. The type is declared as
follows:

 CHAN TYPE RESOURCE.LINK
 MOBILE RECORD
 CHAN RESOURCE.ASK ask!:
 CHAN RESOURCE.ANS ans?:
 :

Note that this declaration specifies field channel directions from the point of view of
the positive end of the bundle. So, clients operate these channels in those declared
directions (they ask questions and receive answers), whereas a server operates them the
other way around (it receives questions and delivers answers).

Figure 1: a channel bundle.

aasskk!!

aannss??

aasskk??

aannss!!
-- ++ RREESSOOUURRCCEE..LLIINNKK

sseerrvveerr

Figure 2: a client-server network.

 P.H. Welch and F.R.M. Barnes / A CSP Model for Mobile Channels 19

1.2 Declaring, Allocating and Placing Ends of Mobile Channel Bundles

Variables are declared only to hold the ends of channel bundles – not the bundle as a whole.
These ends are independently mobile. Bundle ends are allocated dynamically and in pairs.
By default, a bundle end is unshared: it may only be connected to one process at a time. A
bundle end may be declared as being shared: it may be connected to any number of parallel
processes (which compete with each other to use). Resources for the bundles are
automatically recovered when all references to them are lost.

Here is code that sets up an initial system (Figure 2) of many clients and one server:

 RESOURCE.LINK- resource.server.end:
 SHARED RESOURCE.LINK+ resource.client.end:
 SEQ
 resource.server.end, resource.client.end := MOBILE RESOURCE.LINK
 PAR
 resource.server (resource.server.end, ...)
 PAR i = 0 FOR n.clients
 client (resource.client.end, ...)
 :

where the server and client processes may have other connections (not shown in Figure 2).
Note the polarity of the channel bundle types in the above declarations, indicating which
end of the bundle is held by each variable.

1.3 Using and Moving Ends of Channel Bundles

1.3.1 Clients Holding Shared Positive Ends

This client process is aware that its link to the resource server is shared:

 PROC client (SHARED RESOURCE.LINK+ resource.link,
 CHAN SHARED RESOURCE.LINK+ forward!, update?,
 ...)
 ...
 :

In the above, resource.link is the (shared client) bundle end and the (classical) channels
forward! and update? are for sending and receiving, respectively, new bundle ends.

To demonstrate use of this channel bundle, let us make the protocols used by its sub-
channels more concrete:

 PROTOCOL RESOURCE.ASK
 CASE
 size; INT
 deposit; RESOURCE
 :

 PROTOCOL RESOURCE.ANS IS RESOURCE:

where RESOURCE is some (expensive to allocate) mobile data structure. A client asks for a
RESOURCE of a certain size (on its ask! sub-channel end) and duly receives one (on ans?):

 CLAIM resource.link
 SEQ
 resource.link[ask] ! size; 42
 resource.link[ans] ? my.resource -- RESOURCE

20 P.H. Welch and F.R.M. Barnes / A CSP Model for Mobile Channels

When the client has finished with the resource, it returns it back to the server:

 CLAIM resource.link
 resource.link[ask] ! deposit; my.resource

Outside a CLAIM, a client may forward its end of the link to its server to another process:

 forward ! resource.link

This dynamically introduces another client to the server. Because the bundle end is shared,
the original client retains its link to the server.

When not in mid-transaction with its server (again, outside a CLAIM block), this client
may choose to update its link:

 update ? resource.link

It loses its original connection and is now the client of a (presumably) different server.

1.3.2 A Server Holding a Negative End

This server pools RESOURCE instances, retrieving suitable ones from its pool where possible
when new ones are requested:

 PROC resource.server (RESOURCE.LINK- resource.link,
 CHAN RESOURCE.LINK- lend!, return?,
 ...)
 ... declare dynamic structures for managing the RESOURCE pool
 SEQ
 ... initialise RESOURCE pool
 INITIAL BOOL running IS TRUE:
 WHILE running
 resource.link[ask] ? CASE
 INT n:
 size; n
 RESOURCE resource:
 SEQ
 IF
 ... a suitably sized RESOURCE is in the pool
 ... move it into the resource variable
 TRUE
 ... dynamically allocate a new resource (of size 'n')
 resource.link[ans] ! resource
 RESOURCE resource:
 deposit; resource
 ... deposit resource into the pool
 :

At any time, this server may relinquish servicing its clients by forwarding its (exclusive)
end of the link to another server:

 lend ! resource.link

Because this link is unshared, the resource.link variable becomes undefined and this
server can no longer service it – any attempt to do so will be trapped by the compiler. This
server may do this if, for some reason, it cannot satisfy a client’s request but the forward
channel connects to a reserve server that can. To continue providing service, the forwarding
had better be a loan – i.e. the other server returns it after satisfying the difficult request:

 P.H. Welch and F.R.M. Barnes / A CSP Model for Mobile Channels 21

 return ? resource.link

Our server may now resume service to all its clients. The above server coding may need
slight adjustment (e.g. if the reserve server has already supplied the resource on its behalf).

2. Modeling Channels with Processes

To provide a formal semantics of channel mobility in occam-π, we cannot model its
channels with CSP channels. There are three challenges: the dynamics of construction, the
dynamics of mobility (which demands varying synchronisation alphabets) and the concept
of channel ends (which enforces correct sequences of direction – also unprotected within
the π-calculus).

Instead, following the techniques developed for the formal modeling of mobile barriers
(multiway synchronisations) in occam-π [10], we model mobile channels as processes.
Each mobile channel process is constructed on demand and given a unique index number.
Conventional channels, through which such a process is driven, model the two different
ends of the mobile channel. Application processes interleave in their use of these ends, with
that interleaving governed by possession of the relevant index. Mobility derives simply
from communicating (and, then, forgetting) that index.

Let P be a process and c be an external (i.e. non-hidden) channel that P uses only for
output. Further, assume P never uses c as the first action in a branch of an external choice (a
constraint satisfied by all occam-π processes). Using the notion of parallel introduction
(section 3.1.2 of [11]), all communications on channel c may be devolved to a buddy
process, ChanC, with no change in semantics – i.e. that P is failures-divergences equivalent
to the system (expressed in CSPM, the machine-readable CSP syntax defined for FDR [7]):

 ((P’; killC -> SKIP) [| {| writeC, ackC, killC |} |] ChanC)
 \ {| writeC, ackC, killC |}

where writeC, ackC, and killC are events chosen outside the alphabet of P, and where:

 ChanC = (writeC?x -> c!x -> ackC -> ChanC [] killC -> SKIP)

and where P’ is obtained from P by delegating all communications (c!a -> Q) to its buddy
process (writeC!a -> ackC -> Q).

Process P’ completes a writeC/ackC sequence if, and only if, the communication c!x
happens – and the writeC/ackC events are hidden (i.e. undetectable by an observer).
Process P does not engage on c as the first event of an external choice; so neither does P’
on writeC. This is a necessary constraint since, otherwise, the hiding of writeC would
introduce non-determinism not previously present. Termination of the buddy process,
ChanC, is handled with the addition of the (hidden) killC event – used only once, when/if
the original process terminates.

Formally, the equivalence follows from the rich algebraic laws of CSP relating event
hiding, choice, sequential and parallel composition, prefix and SKIP (outlined in section 4
of [11]).

Figure 3 applies this equivalence to transform a channel, c, connecting processes P and
Q into a process, ChanC’. Process P’ is defined above. For convenience, processes Q’ and
ChanC’ are defined from Q and ChanC just by renaming their external (free) channel, c, as
readC (where readC is an event chosen outside the alphabets of P and Q) We now have
distinct terms to talk separately about the writing-end (writeC/ackC) and reading-end
(readC) of our original channel c.

22 P.H. Welch and F.R.M. Barnes / A CSP Model for Mobile Channels

Figure 3 applies this equivalence to transform a channel, c, connecting processes P and

Q into a process, ChanC’, connecting processes P’ and Q’. The process P’ is defined above.
For convenience, processes Q’ and ChanC’ are defined from Q and ChanC just by renaming
their external channel, c, as readC (where readC is an event chosen outside the alphabets of
P and Q). This gives us distinct terms with which we can talk separately about the writing-
end (writeC/ackC) and reading-end (readC) of our original channel c.

3. A Kernel for Mobile Channels

We present semantics for the mobile channels of occam-π, addressing channel bundles,
dynamic allocation, the separate identities of channel bundle ends, the use of the channels
within the bundles, sharing and mobility.

3.1 Processes within a Channel Bundle

A channel bundle is a parallel collection of processes: one holding a reference count (and
responsible for termination), two mutexes (one for each possibly shared end) and one
channel process for each field in the bundle:

 Bundle (c, fields) =
 (Refs (c, 2) [| {kill} |]
 (Mutex (c, positive) [| {kill} |]
 (Mutex (c, negative) [| {kill} |]
 Channels (c, fields)
)
)
) \ {kill}

where c is the unique index for the bundle, fields is the number of its channel fields and
positive and negative are constants with values 0 and 1, respectively. This is visualised
in Figure 4, showing the channels independently engaged by the sub-processes.

The reference counting process is initialised to 2, since one variable for each bundle
end knows about it upon construction. This process engages in enrol and resign events
for this bundle and is responsible for terminating its sibling processes should the count ever
reach zero:

 Refs (c, n) =
 enrol.c -> Refs (c, n + 1) []
 resign.c -> Refs (c, n – 1) , if n > 0

 Refs (c, 0) = kill -> SKIP

c PP QQ

ackC

writeC readCChanC’’PP’’ QQ’’

Figure 3: modeling a channel with a process.

 P.H. Welch and F.R.M. Barnes / A CSP Model for Mobile Channels 23

The mutex processes provide mutually exclusive locking for each end (positive or

negative) of the bundle, engaging in claim and release events for this bundle. They can
be terminated at any time by a kill signal (from the reference counting process). They
enforce access to a bundle end by only one application process at a time. Strictly, they are
only necessary for each end that is declared shared; their over-engineering here in this
model simplifies it and is harmless. The coding is elementary and standard:

 Mutex (c, x) =
 claim.c.x -> release.c.x -> Mutex (c, x) []
 kill -> SKIP

where x : {positive, negative}.
The channels process (Figure 5) is a parallel collection of channel processes, one for

each field, synchronising only on the termination signal:

 Channels (c, fields) =
 [| {kill} |] i:{0..(fields – 1)} @ Chan (c, i)

where each channel process follows the pattern presented in Section 2:

 Chan (c, i) =
 write.c.i?p -> read.c.i!p -> ack.c.i -> Chan (c, i) []
 kill -> SKIP

3.2 Dynamic Generation of Channel Bundles

Mobile channel bundle processes are generated upon request by the following server:

 MC (c) =
 setMC?f -> getMC!c -> (Bundle (c, f) ||| MC (c + 1)) []
 noMoreBundles -> SKIP

Figure 4: formal model of an occam-π channel bundle.

 BBuunnddllee ((cc,, ffiieellddss))
eennrrooll..cc

rreessiiggnn..cc

ccllaaiimm..cc..ppoossiittiivvee
rreelleeaassee..cc..ppoossiittiivvee

aacckk..cc..ii

rreeaadd..cc..ii!!pp

wwrriittee..cc..ii??pp

ccllaaiimm..cc..nneeggaattiivvee

rreelleeaassee..cc..nneeggaattiivvee

RReeffss ((cc,, 22))

CChhaannnneellss ((cc,, ffiieellddss))

MMuutteexx ((cc,, nneeggaattiivvee))

MMuutteexx ((cc,, ppoossiittiivvee)) k
i
l
l

24 P.H. Welch and F.R.M. Barnes / A CSP Model for Mobile Channels

Application processes will interleave on the setMC and getMC channels when
constructing mobile channel bundles: the number of fields for the bundle is requested on
setMC and a unique index number for the generated bundle is returned on getMC.

This channel bundle generator will be started with index 1. We reserve index 0 for an
undefined bundle:

 undefined = 0

 UndefinedBundle =
 resign.undefined -> UndefinedBundle []
 noMoreBundles -> SKIP

Note that both the channel bundle generator, MC, and UndefinedBundle terminate on the
noMoreBundles signal. That signal is generated when, and only when, the application is
about to terminate. The resign signal, accepted but ignored by UndefinedBundle, is there
to simplify some technical details in Section 4.

3.3 Mobile Channel Kernel

The mobile channel kernel consists of the generator and undefined bundle processes:

 MOBILE_CHANNEL_KERNEL = MC (1) [| {noMoreBundles} |] UndefinedBundle

In addition to noMoreBundles, it engages (but does not syncrhonise internally) upon the
following set of channels:

 kernel_chans =
 {| enrol, resign, claim, release, write, read, ack,
 setMC, getMC, noMoreBundles |}

aacckk..cc..((ff--11))

rreeaadd..cc..((ff--11))!!pp

wwrriittee..cc..((ff--11))??pp

aacckk..cc..00

rreeaadd..cc..00!!pp

wwrriittee..cc..00??pp

aacckk..cc..11

rreeaadd..cc..11!!pp

wwrriittee..cc..11??pp

....

..

CChhaann ((cc,, 00))

CChhaann ((cc,, 11))

CChhaann ((cc,, ff -- 11))

k
i
l
l

CChhaannnneellss ((cc,, ff))

Figure 5: processes modelling the channels in a bundle.

 P.H. Welch and F.R.M. Barnes / A CSP Model for Mobile Channels 25

If APPLICATION_SYSTEM is an occam-π application and APPLICATION_SYSTEM’ is the
CSP model of its use of mobile channel bundle primitives (Section 4), the full model is:

 ((APPLICATION_SYSTEM’; noMoreBundles -> SKIP)
 [| kernel_chans |]
 MOBILE_CHANNEL_KERNEL) \ kernel_chans

Figure 6 gives a visualisation after three mobile channels have been constructed.

4. The Semantics of occam-π Mobile Channels

This section defines the mapping from all occam-π mobile channel mechanisms to CSP.
The mapping is simplified using some syntactic extensions from Circus [12], a CSP algebra
combined with elements of Z for the formal specification of rich state transformations. The
extensions used here are restricted to the declaration of state variables, their assignment as
new primitive CSP processes and their use in expressions. These extensions have a trivial
mapping down to pure CSP (which is described in section 2.3 of [10]).

The mappings will be presented by induction and example, using the definitions from
Section 1 for concreteness. In the following, if P (or P(x)) is an occam-π process, then P’
(or P’(x)) denotes its mapping into CSP.

4.1 Declaring Mobile Channel Bundle End Variables

All mobile channel bundle end variables – regardless of polarity, shared status, number of
fields and channel protocols – are represented by variables holding a natural number index,
unique for each defined bundle. Initially, they are all set to undefined (see Section 3.2).

MMOOBBIILLEE__CCHHAANNNNEELL__KKEERRNNEELL

nnooMMoorreeBBuunnddlleess

rreessiiggnn..00
UUnnddeeffiinneeddBBuunnddllee

ggeettMMCC..cc

sseettMMCC..ff
MMCC ((11))

**..22

BBuunnddllee ((22,, ff22))

**..33

BBuunnddllee ((33,, ff33))

**..11

BBuunnddllee ((11,, ff11))

AAPPPPLLIICCAATTIIOONN__SSYYSSTTEEMM’’

MMCC ((44))

. .

.

Figure 6: application system and support kernel
(after the construction of three mobile channel bundles).

26 P.H. Welch and F.R.M. Barnes / A CSP Model for Mobile Channels

Each of the following declarations:

 RESOURCE.LINK+ x: SHARED RESOURCE.LINK+ x:
 P (x) P (x)

 RESOURCE.LINK- x: SHARED RESOURCE.LINK- x:
 P (x) P (x)

(maps to)

Note that the mapped process resigns from the mobile bundle just before termination.

We do not have to check whether the bundle variable is defined at this point, because of the
definition and inclusion of the UndefinedBundle process in the kernel (Section 3.2).

4.2 Dynamic Construction of Mobile Bundles

Suppose client and server are opposite polarity RESOURCE.LINK variables, shared or un-
shared. To assign them to a freshly constructed mobile bundle, send the kernel the number
of fields required (#RESOURCE.LINK), receive the index of channels to the bundle process
created and assign this to the variables (not forgetting to resign from any bundles they may
previously have been referencing):

 client, server := MOBILE RESOURCE.LINK

Note that these processes interleave their use of the kernel channels. In the unlikely event
that both variables were previously referencing opposite ends of the same bundle, the
interleaved resignations are still handled correctly. As mentioned in Section 4.1, resigning
from variables holding undefined references is also safe. We use interleaving in the above
specification to give maximum freedom to the occam-π compiler/kernel in implementing
these mechanisms.

4.3 Claiming a Shared Mobile Channel Bundle End

Suppose that client and server are SHARED bundle-ends. This time, we need to know
their polarity. Suppose that client is positive and server is negative (which is the normal
convention for a client-server relationship). An occam-π CLAIM obtains exclusive use of the
bundle-end for the duration of the CLAIM block. So:

 CLAIM client
 P

Var x:N • x := undefined; P’(x); resign.x -> SKIP

setMC!#RESOURCE.LINK -> getMC?tmp ->
 (resign.client -> (client := tmp) |||
 resign.server -> (server := tmp))

claim.client.positive -> P’; release.client.positive -> SKIP

 P.H. Welch and F.R.M. Barnes / A CSP Model for Mobile Channels 27

and:

 CLAIM server
 P

where these claim and release events synchronise with the relevant mutex processes in
the relevant channel bundle processes in the kernel.

Of course, the occam-π language does not allow CLAIMs on undefined channel bundle
variables and this rule is enforced statically by the compiler. So, we do not need to be
concerned with such possibilities for these semantics (and this is why claim and release
events do not have to play any part in the UndefinedBundle process of our CSP kernel).

4.4 Input/Output on a Channel in a Mobile Channel Bundle

Communications over channel fields in a bundle are modeled following the patterns given
in Section 2.

Suppose client is a RESOURCE.LINK+ variable and server is RESOURCE.LINK-; then
communications on client follow the directions defined in the declaration:

 CHAN TYPE RESOURCE.LINK
 MOBILE RECORD
 CHAN RESOURCE.ASK ask?:
 CHAN RESOURCE.ANS ans!:
 :

but communications on server follow the opposite directions.

4.4.1 Positive Communications

We present the mapping for these first, since they are not complicated by the variant
protocol defined for RESOURCE.ASK. For sending:

 client[ask] ! size; n

where, in the mapped CSP, ask is just the field number (0) in the bundle. The values of
size and n are, respectively, a constant specifying the message type being delivered and
the resource size requested. In these semantics (of mobile channel communications),
message contents are not relevant – they are only significant for the use made of them by
application processes before and after communication. Similarly:

 client[ask] ! deposit; r

claim.server.negative -> P’; release server.negative -> SKIP

write.client.ask!size.n -> ack.client.ask -> SKIP

write.client.ask!deposit.r -> ack.client.ask -> SKIP

28 P.H. Welch and F.R.M. Barnes / A CSP Model for Mobile Channels

On the other hand, for receiving:

 client[ans] ? r

4.4.2 Negative Communications

The server side communications on RESOURCE.LINK are complicated slightly by the variant
message structure in RESOURCE.ASK: the CASE input must be dealt with by testing the first
(tag) part of the message. This is not significant for these semantics of mobile channel
input, which are only concerned with synchronisations between application and kernel
processes.

The mappings for sending and receiving do not depend on the polarity of the bundle-
ends. Sending is the same as in Section 4.4.1, except that the field names are switched:

 server[ans] ! r

Receiving is also as in Section 4.4.1, with switched field names. The complications of the
variant protocol, used in this example, are not much of a distraction:

 server[ask] ? CASE
 INT n:
 size; n
 P (n)
 RESOURCE r:
 deposit; r
 Q (r)

4.5 Sending Mobile Channel Bundle Ends

Sending a mobile channel bundle-end depends on whether it is shared. Assume that client
and server are unshared and that we have suitable channels m and n carrying, respectively,
RESOURCE.LINK+ and RESOURCE.LINK-. Then:

 m ! client

write.server.ans!r -> ack.server.ans -> SKIP

read.server.ask?tag.tmp ->
 if tag == size then P’(tmp) else Q’(tmp)

m!client -> (client := undefined)

read.client.ans?tmp -> (r := tmp)

 P.H. Welch and F.R.M. Barnes / A CSP Model for Mobile Channels 29

which introduces the occam-π mobility semantics: send-and-lose. The mapping for sending
server down channel n is identical, apart from name changes. These mappings are, of
course, for classical (non-mobile) channels m and n. If these were themselves fields of a
mobile channel bundle, the mappings from Section 4.4 would also be applied.

Assume, now, that client and server are shared and that we have suitable channels m
and n carrying, respectively, SHARED RESOURCE.LINK+ and SHARED RESOURCE.LINK-. The
communication semantics are now different: the sending process does not lose a mobile, if
it is shared, and the reference count on the mobile must be incremented (since the receiving
process may now engage on it):

 m ! client

Note: it is necessary that the sender of the mobile increments the reference count as

part of the send, rather than the receiver. The receiver could only try to increment that
count after receiving it – by which time the sender could have resigned from the bundle
itself (perhaps through termination, see Section 4.1, or overwriting of its bundle variable,
see below), which might reduce the reference count to zero, terminating the bundle process
in the kernel and leaving the receiver deadlocked!

As before, the mapping for sending a shared server down channel n is identical to the
above, apart from name changes. Again, these mappings are for classical (non-mobile)
channels m and n. If these were themselves fields of a mobile channel bundle, the mappings
from Section 4.4 would also be applied.

4.6 Receiving Mobile Channel Bundle Ends

Receiving a mobile channel bundle-end does not depend on whether it is shared. Assume
that client and server are bundle-end variables, shared or unshared, and that we have
suitable channels m and n for carrying their values. All that must be done is resign from the
bundles currently referenced and assign the new references:

 m ? client

As before, the mapping for receiving a server, shared or unshared, from channel n is
identical to the above, apart from name changes. Again, both these mappings are for
classical (non-mobile) channels m and n. If these were themselves fields of a mobile channel
bundle, the mappings from Section 4.4 would also be applied.

4.7 Assigning Mobile Channel Bundle Ends

Communication and assignment are intimately related in occam-π: an assignment has the
same semantics as a communication of some value between variables in the same process.

Therefore, assignment of unshared mobiles leaves the source variable undefined and
does not change the reference count on the assigned bundle – though the reference count on

m?tmp -> resign.client -> (client := tmp)

enroll.client -> m!client -> SKIP

30 P.H. Welch and F.R.M. Barnes / A CSP Model for Mobile Channels

the bundle originally referenced by the target variable must decrement. Suppose a and b are
unshared bundle-end variables of compatible type. Then:

 a := b

However, if a and b are shared bundle-end variables of compatible type. Then:

 a := b

where, as in Section 4.2, we use interleaving to allow as much implementation freedom as
possible.

4.8 Forking Processes with Mobile Channel Bundle End Parameters

Section 2 did not review the forking mechanism [1, 2, 3] of occam-π. However, passing the
ends of mobile channel bundles to forked processes has been widely used in the complex
system modelling being developed in our TUNA [13] and CoSMoS [14] projects – so, we
do need a proper semantics for it.

Concurrency may be introduced into occam-π processes either by its classical PAR
construct or by forking. A PAR construct does not terminate until all its concurrently
running component processes terminate (and this maps to the CSP parallel operator). Often,
a process needs to construct dynamically a new process, set it running concurrently with
itself and continue – this is forking. Forking does not technically introduce anything that
cannot be done with a PAR construct and recursion (which is precisely how its semantics are
defined in [10]). However, forking does enable the more direct expression of certain idioms
(e.g. a server loop that constructs processes to deal with new clients on demand and
concurrently) and, pragmatically, has a more practical implementation (recursion in process
components of a PAR construct makes an unbounded demand on memory, although a
compiler may be able to optimize against that).

For the scope of this paper, we are only concerned about the semantics of passing the
mobile ends of channel bundles to a forked process. For static arguments (e.g. data values
or shared ends of classical channels), passing is by communication along a channel specific
to the process type being forked.

Let P(c) be a process whose parameter is a mobile channel bundle end and let forkP
be the channel, specific for P, connecting P-forking application processes to the (PAR
recursive) P-generator process (Section 2.4.13 of [10]). The semantics of forking simply
follows from the semantics of sending (Section 4.5 of this paper). If the argument is
unshared, the forking process loses it:

 FORK P (c)

resign.a -> (a := b); (b := undefined)

forkP!c; (c := undefined)

(enrol.b -> SKIP ||| resign.a -> SKIP); (a := b)

 P.H. Welch and F.R.M. Barnes / A CSP Model for Mobile Channels 31

More commonly, the argument will be shared, so that the forking process retains it:

 FORK P (c)

The details of the P-generator process at the receiving end of the forkP channel are the

same as defined for the passing of mobile occam-π barriers in Section 2.4.13 of [10].

5. Conclusions and Future Work

The correct, flexible and efficient management of concurrency has growing importance
with the advent of multicore processing elements. The mobile extensions to occam-π blend
seamlessly into the classical language, maintaining the safety guarantees (e.g. against
parallel race hazards), the simple communicating process programming model (which
yields compositional semantics) and extreme lightness of overhead (memory and run-time).

This paper has presented a formal operational semantics, in terms of CSP, of all mobile
channel mechanisms within occam-π. In turn, this leads to a denotational semantics (traces-
failures-divergences [5, 6]) that enables formal reasoning about these aspects of occam-π
systems. For use with the FDR model checker [7], the unbounded recursion of the mobile
channel generator, MC, in Section 3 needs to be bounded – i.e. only a limited number of
channel indices can be used, with their associated processes pooled for recycling (instead of
terminated) when their reference count hits zero.

Also, these operational semantics specify crucial details of low-level code generation
by occam-π compilers and the data structures and algorithms necessary for run-time
support. The mobile channel indices generated by the real compilers are not the increasing
sequence of natural numbers specified in Section 3. Actual memory addresses, dynamically
allocated for the bundle structures, are used instead. This is safe, since these indices only
need to be unique for each existing bundle, and fast, since the address gives direct access.
Finally, the occam-π kernel is not actually implemented as the parallel collection specified
by MOBILE_CHANNEL_KERNEL in Section 3, but by logic statically scheduled from it for
serial use by the (extremely lightweight and multicore-safe) processes underlying occam-π.

We have not provided semantics for mobile channels in arbitrary CSP systems – only
those conforming to the classical occam constraint of no output guards in external choice.
That constraint was necessary for the modelling of (mobile) channels as processes, which in
turn was necessary for the separate modelling of channel ends.

Without that separation, we could not allow interleaving of all application processes
over the infinite enumeration of potential mobile channels: since if that were allowed, no
application process would be able to synchronise with another to send a message down any
mobile channel! With separate static channels modelling the ends of mobile channels,
application processes synchronise with the kernel processes (modeling the mobile channels
themselves) to communicate with each other and no buffering is introduced (which means
that the fully synchronised semantics of CSP channel events are maintained). Application
processes synchronise with each other over the fixed set of static channels (and other
events) through which with they are connected (as normal) or synchronise with the kernel
over the infinite, but still fixed, set of kernel channels. Either way, the synchronisation sets
associated with all parallel operators remain fixed and we have a CSP for mobile channels.

enrol.c -> forkP!c -> SKIP

32 P.H. Welch and F.R.M. Barnes / A CSP Model for Mobile Channels

Recently, fast algorithms for implementing external choice whose leading events are
multiway synchronisations have been engineered [15, 16] and have been built into the JCSP
library [17] and an experimental compiler for exercising CSP [18]. These can be simply
applied to allow output guards.

Providing a CSP model for mobile channels both of whose ends can be used as guards
in an external choice is an open question. One way may be to drop the separate modelling
of channel ends (along with their supporting kernel processes) and divide application
processes into two sets: those that receive mobile channel communications and those that
send them. The processes in each set interleave with each other over the set of mobile (but
actually normal) channels and the two process sets synchronise with each other over the
fixed, but infinite, set of mobiles. This is elegant but not very flexible! Even if the division
could be defined individually for each mobile channel, it still looks too constraining. In
occam-π, mobile channel bundle ends can be passed to any processes with the right
connections. Some serial processes may hold and use either end of the same channel bundle
– though, hopefully, not at the same time! The semantics presented here for mobile
channels without output guards has no such constraints.

Acknowledgements

This work started under the TUNA project (EPSRC EP/C516966/1) and is being applied as
part of the CoSMoS project (EPSRC grants EP/E053505/1 and EP/E049419/1). We are
indebted to all our colleagues in both these projects for their insights, motivation and
encouragement. We are also very grateful to the anonymous referees of this paper and to
everyone in the Concurrency sub-group at Kent for their many criticisms and corrections to
so many crucial points of detail.

References

[1] P.H. Welch and F.R.M. Barnes. Communicating Mobile Processes: Introducing occam-π. In ‘25 Years

of CSP’, Lecture Notes in Computer Science vol. 3525, A. Abdallah, C. Jones, and J. Sanders, editors,
Springer, pp. 175–210, Apr. 2005.

[2] F.R.M.Barnes and P.H.Welch. Prioritised Dynamic Communicating and Mobile Processes. IEE
Proceedings-Software, 150(2):121-136, April 2003.

[3] F.R.M. Barnes and P.H. Welch. Prioritised dynamic communicating processes: Part 1. In James Pascoe
et al., editors, Communicating Process Architectures 2002, volume 60 of Concurrent Systems
Engineering, pp. 321-352, IOS Press, Amsterdam, The Netherlands, September 2002.

[4] C.A.R. Hoare. Communicating Sequential Processes. In CACM, vol. 21-8, pp. 666-677, August, 1978.
[5] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, ISBN 0-13-153271-5, 1985.
[6] A.W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, ISBN 0-13-674409-5, 1997
[7] Formal Systems (Europe) Ltd. FDR2 Manual, www.fsel.com/documentation/fdr2/

fdr2manual.pdf. May 2008.
[8] R. Milner. Communcating and Mobile Systems: the π-Calculus. Cambridge University Press, ISBN-

13:9780521658690, 1999.
[9] Inmos Ltd. occam3 Draft Reference Manual, 1991.
[10] P.H. Welch and F.R.M. Barnes. Mobile Barriers for occam-π: Semantics, Implementation and

Application. In J.F. Broenink et al., editors, Communicating Process Architectures 2005, volume 63 of
Concurrent Systems Engineering Series, pp. 289-316, IOS Press, The Netherlands, September 2005.

[11] P.H. Welch and J.M.R Martin. Formal Analysis of Concurrent Java Systems. In A.W.P. Bakkers et al.,
editors, Communicating Process Architectures 2000, volume 58 of Concurrent Systems Engineering,
pp. 275-301. WoTUG, IOS Press (Amsterdam), September 2000.

[12] J.C.P. Woodcock and A.L.C. Cavalcanti. The Semantics of Circus. In ZB 2002: Formal Specification
and Development in Z and B, volume 2272 of Lecture Notes in Computer Science, pp 184-203,
Springer-Verlag, 2002.

 P.H. Welch and F.R.M. Barnes / A CSP Model for Mobile Channels 33

[13] S. Stepney, J.C.P. Woodcock, F.A.C. Polack, A.L.C. Cavalcanti, S. Schreider, H.E. Treharne and
P.H.Welch. TUNA: Theory Underpinning Nanotech Assemblers (Feasibility Study). EPSRC grant
EP/C516966/1 (Universities of York, Surrey and Kent). Final report from www.cs.york.ac.uk/
nature/tuna/, November, 2006.

[14] S. Stepney, F.A.C. Polack, J. Timmis, A.M. Tyrrell, M.A. Bates, P.H. Welch and F.R.M. Barnes.
CoSMoS: Complex Systems Modelling and Simulation. EPSRC grant EP/E053505/1 (University of
York) and EP/E049419/1 (University of Kent), October 2007 – September 2011.

[15] A.A. McEwan. Concurrent Program Development, DPhil Thesis, University of Oxford, 2006.
[16] P.H. Welch, F.R.M. Barnes, and F. Polack. Communicating Complex Systems. In Proceedings of the

11th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS-2006), pp
107-117, Stanford University, IEEE Society Press, August 2006.

[17] P.H. Welch, N.C.C. Brown, J. Moores, K. Chalmers and B. Sputh. Integrating and Extending JCSP.In
Alistair A. McEwan et al., editors, Communicating Process Architectures 2007, volume 65 of
Concurrent Systems Engineering Series, pp. 349-370, Amsterdam, The Netherlands, July 2007. IOS
Press.

[18] F.R.M. Barnes. Compiling CSP. In P.H.Welch et al., editors, Communicating Process Architectures
2006, volume 64 of Concurrent Systems Engineering Series, pp. 377-388, Amsterdam, The
Netherlands, September 2006. IOS Press.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

