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Abstract 
 
 

 

     Bone morphogenetic protein (BMP) signalling plays key roles in skin 

development and also possesses a potent anti-tumour activity in postnatal skin. 

To study mechanisms of the tumour-suppressive role of BMPs in the skin, a 

transgenic (TG) mouse model was utilized, in which a transgenic expression of 

the BMP antagonist Noggin was targeted to the epidermis and hair follicles 

(HFs) via Keratin 14 promoter. K14-Noggin mice developed spontaneous HF-

derived tumours, which resembled human trichofolliculoma. Initiation of the 

tumours was associated with a marked increase in cell proliferation and an 

expansion of the hair follicle stem/early progenitor cells. In addition, the TG 

mice showed hyperplastic changes in the sebaceous glands and the 

interfollicular epidermis. The epidermal hyperplasia was associated with an 

increase in the susceptibility to chemically-induced carcinogenesis and earlier 

malignant transformation of chemically-induced papillomas. 

     Global gene expression profiling revealed that development of the 

trichofolliculomas was associated with an increase in the expression of the 

components of several pro-oncogenic signalling pathways (Wnt, Shh, PDGF, 

Ras, etc.). Specifically, expression of the Wnt ligands and (-catenin/Lef1 

markedly increased at the initiation stage of tumour formation. In contrast, 

expression of components of the Shh pathway was markedly increased in the 

fully developed tumours, compared to the tumour placodes. Pharmacological 

treatment of the TG mice with the Wnt and Shh antagonists resulted in the 

stage-dependent inhibition of the tumour initiation and progression, 

respectively. 

     Further studies revealed that BMP signalling antagonizes the activity of 

the Wnt and Shh pathways via distinct mechanisms, which include direct 

regulation of the expression of the tumour suppressor Wnt inhibitory factor 1 

(Wif1) and indirect effects on the Shh expression. 

Thus, tumour suppressor activity of the BMPs in skin epithelium depends on the 

local concentrations of Noggin and is mediated, at least in part, via stage-

dependent antagonizing of the Wnt and Shh signalling pathways. 
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1.1. Functional morphology of the skin 

The skin is one of the largest organs of the human body and provides a 

number of critical functions necessary for survival. Skin protects the body from 

water loss, temperature change, radiation, trauma, and infections, and it allows 

the body to perceive the environment through tactile sense. It also serves as 

important decoration for social and reproductive behavior (Chuong., 2002; 

Stenn and Paus, 2001). To fulfill such diversity of functions the skin shows 

structural complexity of its organization. The skin in humans and other 

mammals is composed of a variety of cellular structures of ectodermal and 

mesodermal origins that form a complex functional system and interplay 

between each other by means of numerous inductive and inhibitory signals 

[reviewed in (Fuchs, 1993; Millar, 2002; Odland, 1983; van Genderen, 1994). 

The epidermis and several appendages (hair follicles, sebaceous glands, sweat 

glands) represent the ectodermal compartment of the skin, while dermis and 

hypodermis (subcutaneous fat tissue) have mesodermal origin (Holbrook and 

Wolff, 1993).  

 

1.1.1. Epidermis 

The skin epithelium consists of cells that are both structurally and 

functionally different and form a multilayered stratified squamous epithelium 

(interfollicular epidermis, IFE), and patterned cutaneous appendages, such as 

the hair follicles (HFs) and sebaceous glands (Bowden, 1987). Central to this 

variegated cell population are keratinocytes. The keratinocytes are the epithelial 

cells producing keratins, which are the proteins that form the intermediate 

filament system in epithelial cells (Moll, 1982).  



 16 

 

Figure 1 

 

 

Fig. 1.1. The epidermis 

Depending on the differentiation stage of the keratinocytes, the epidermis 

is subdivided into different layers or strata: basal, spinous, granular and horny 

layers (Lippens, 2009) 
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The protective function of the skin in general is a result of the cellular 

arrangements of the keratinocytes within the epidermis and the building up of 

an extensive keratin cytoskeletal network (Fuchs, 1993). 

In the IFE, keratinocytes are generated by mitosis in the innermost basal 

(stratum basale) or germinative layer. The basal layer is a monolayer of 

cuboidal cells attached to the basement membrane (lamina basalis) by 

hemidesmosomes. The basal keratinocytes are the only cells that are mitotically 

active and represent a reservoir of putative epidermal stem cells (SCs) and 

transiently amplifying (TA) progenitors, which give rise to terminally 

differentiated suprabasal layers (Alonso and Fuchs, 2003). This programme 

operates continually throughout the life of an organism; dead cells sloughed off 

from the skin surface are replenished by basal cells moving outward in a highly 

synchronized fashion. The self-renewing capacity of epidermal stem cells is 

enormous. Human epidermis turns over every 2 weeks, and each transiently 

amplifying basal cell divides only three to six times before it differentiates 

(Alonso and Fuchs, 2003). The basal cells are characterized by specific 

expression of keratin 5 (K5) and keratin 14 (K14) (Bowden, 1987; Sridhar Rao, 

1996). As the basal cells divide and enter the first suprabasal layer, a 

downregulation of K5 and K14 expression occurs (Sridhar Rao, 1996) .  

The next level of the epidermis is several cell layers thick the stratum 

spinosum (spinous layer). These cells contain a web-like system of 

interfilaments, mainly tension-regulating bundles of pre-keratin filaments, which 

span their cytosol to attach to a specialized type of cell junction (desmosomes) 

to resist physical trauma. These keratinocytes start to express keratin 1 (K1) 
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and keratin 10 (K10) (Bowden, 1987; Sridhar Rao, 1996). The K1 and K10 are 

only expressed in differentiating epidermal cells. In human skin, this synthesis 

continues up to 4-8 spinous cell layers and represents one of the earliest 

changes indicating the commitment of the cell to terminal differentiation (Sridhar 

Rao, 1996). Epidermal differentiation also involves induction of proteins such as 

involucrin, transglutaminase, fillagrin and loricrin, that form a cornified cell 

envelope as an important part of the epidermal barrier (Eckert and Rorke, 1989; 

Fuchs, 1980).  

 The granular layer (stratum granulosum) of the epidermis consists of 

three to five cell layers. These cells are characterized by flattened shape, 

disintegration of nuclei and organelles, and by accumulation of two types of 

granules: keratohyaline and lamellated granules. The keratohyaline granules 

represent a mixture of several smaller protein units containing keratohyaline, 

filaggrin and small proline-rich proteins (Matoltsy and Matoltsy, 1970). The 

lamellated granules (membrane-coating granules) are specialized secretory 

granules, which contain lipids (glucosylceramide, cholesterol and phospholipids) 

and their respective extracellular processing enzymes (Menon, 1992; Odland 

and Holbrook, 1981). The plasma membranes of these cells thicken as cytosol 

proteins bind to the inner membrane surface and lipids released by the 

lamellated granules coat their external surface (Lee, 2006). These processes 

are essential for the proper formation of the epidermal permeability barrier. 

 The outermost stratum corneum (horny layer) is a broad zone consisting 

of 20-30 cell layers that accounts for up to three-quarters of the human 

epidermal thickness. The stratum corneum forms a continuous sheet of protein-

enriched cells (corneocytes) connected by corneodesmosomes and embedded 
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into the intercellular matrix enriched in non-polar lipids and organized as 

lamellar lipid layers (Madison, 2003). The final steps in keratinocyte 

differentiation are associated with profound changes in their structure, resulting 

in their transformation into the flat and anucleated corneocytes, which are 

loaded with keratin filaments and surrounded by a cell envelope composed of 

cross-linked proteins (cornified envelope proteins) as well as a covalently bound 

lipid envelope (Madison, 2003; Proksch, 2008). Gradually, these cells flake off 

and are replaced by underlying cells. The structure of the horny layer provides 

an effective physical barrier to most microorganisms, chemicals, and fluids. It 

also protects against uncontrolled loss of fluid from the body and is capable of 

withstanding mechanical forces (Madison, 2003; Proksch, 2008). 

Other cells of different origin also populate the epidermis: melanocytes, 

Langerhans cells, Merkel cells. Melanocytes are specialized neural crest-

derived cells in the epidermis that produce melanin, the pigment responsible for 

coloration and UV protection of the skin, hair, and the iris (Tobin and Kauser, 

2005). Melanocytes account for only 1% of epidermal cells and occur at an 

approximate ratio of 1:10 among keratinocytes in the basal skin layer (Brenner 

and Hearing, 2008). Via their elongated dendrites, melanocytes transport their 

ovoid membrane-bound organelles (melanosomes), in which melanin is 

synthesized and stored, to neighbouring keratinocytes, where melanosomes 

form a critical barrier as supranuclear “caps” to shield DNA from ultraviolet 

radiation (Brenner and Hearing, 2008). Proliferating keratinocytes in the 

suprabasal epidermal layers gradually ascend towards the skin surface along 

with their ingested melanin to contribute to photoprotection. 

Merkel cells are another type of neural crest-derived cells that are 
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responsible for transmission of touch sensation through the cutaneous nerves, 

among the other functions. Merkel cells are present only in the basal layer of 

the epidermis. They are innervated by unmyelinated nerve fibers and are the 

most abundant in areas of greatest tactile sensitivity, such as the fingertips 

(Moll, 2005). 

Langerhans cells (LC) are epidermal antigen-presenting bone marrow-

derived dendritic cells that are typically localized in the basal and suprabasal 

layers of the epidermis. These cells represent a critical outpost of the immune 

system at the interface to the external environment (Koch, 2006). The unique 

marker for LCs, langerin, is the major constituent of Birbeck granules, which are 

special phagosomes present in LCs. On capture of pathogens, LCs release 

inflammatory cytokines and chemokines, attracting other immune cells to the 

infection site (Koch, 2006). Mature LCs migrate from the epidermis to the 

regional lymph nodes for presentation of antigenic peptides to T cells and 

activation of an antigen-specific immune response (Koch, 2006).  

 

1.1.2. Dermis 

The dermis, the second major skin compartment, is a dense, irregular 

connective tissue that lies beneath the epidermis. The dermis is divided into two 

layers based on differences in the texture and arrangement of collagen fibrils. 

The superficial layer is the papillary dermis that is approximately 300-400 m 

deep (Sorrell and Caplan, 2004). This depth is variable and depends upon such 

factors as age and anatomical location. Typically, the superficial portion of the 

papillary dermis is arranged into ridge-like structures, the dermal papillae, which 

contain microvascular and neural components that sustain the epidermis 
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(Cormack, 1987; Sorrell and Caplan, 2004). Dermal papillae greatly extend the 

surface area for epithelial-mesenchymal interactions and delivery of soluble 

molecules to the epidermis. A vascular plexus, the rete subpapillare, 

demarcates the lower limit of the papillary dermis.  

The reticular layer of the dermis extends from this superficial vascular 

plexus to a deeper vascular plexus, the rete cutaneum, which serves as the 

boundary between the dermis and hypodermis (Cormack, 1987; Sorrell and 

Caplan, 2004). The deeper reticular layer, accounting for about 80% of the 

thickness of the dermis, is dense irregular connective tissue. Its extracellular 

matrix contains thick bundles of interacting collagen and elastin fibers that run 

in various planes; however, most run parallel to the skin surface (Kurt, 1991). 

The collagen fibers of the dermis give skin strength and resiliency that prevent 

most jabs and scrapes from penetrating the dermis. In addition, collagen binds 

water, helping to keep skin hydrated. Elastin fibers provide the stretch-recoil 

properties of skin (Kurt, 1991). Hair follicles and their associated dermal cells 

extend into and often through the reticular dermis to terminate in the 

hypodermis, a tissue rich in adipocytes. 

 

1.1.3. Hair follicle as an epidermal derivative of the skin 

The hair follicle (HF) is one of the most complex mini-organs in mammals. 

This is an exquisitely productive protein fiber factory, which doubles as a 

sensory organ and serves as an instrument of psychosocial communication, 

excretion, and protection. Importantly, the HF undergoes constant cyclic 

transformation over the total life-time of a mammal [reviewed in (Alonso and 

Fuchs, 2006; Panteleyev et al., 2001; Stenn and Paus, 2001)].  The cyclic 
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nature of the HFs is supported by a signalling interplay between epithelial and 

mesenchymal compartments of the HF. However, the differentiation programme 

of the follicular keratinocytes is much more complex than in the epidermis and 

results in formation of the hair shaft (Hardy, 1992; Millar, 2002; Paus and 

Cotsarelis, 1999; Paus and Foitzik, 2004) 

The mature HF is composed of a multicylindric stem that contains the hair 

shaft in its center and originates as an oval hair bulb proximally (Fig. 1.2) 

(Whiting, 2004). Embraced by the hair bulb lies the dermal papilla (DP) 

(sometimes referred to as the “follicular papilla” to avoid confusion with the most 

superficial region of the dermis). The dermal papilla cells are in close 

communication and exchange with another follicular fibroblast population, the 

cells of the dermal sheath, also called connective tissue sheath (CTS) (Fig. 1.2) 

(Tobin et al., 2003). Both the DP and dermal sheath fibroblasts are different 

from others dermal cells, and they function as the “command center” to induce 

hair follicles and determine thickness, length of the hair, and likely the hair cycle 

itself (Jahoda and Reynolds, 1996; Jahoda et al., 1984; Paus and Foitzik, 2004; 

Reynolds et al., 1991).  

The epithelial part is divided into an upper permanent region, distal to the 

arrector pili muscle (APM) and an inferior region (including the hair bulb), which 

dramatically remodels itself over the cycle. Within the hair bulb there is a 

population of cells with the highest proliferation rate in the human body: the 

keratinocytes of the hair matrix. These cells differentiate into trichocytes, or cells 

of the hair shaft and the inner root sheath (IRS), surrounding the hair shaft.  



 23 

 

 

 

Fig. 1.2. The Hair follicle 

(A) Anagen VI hair follicle. Histologic longitudinal section on the left hand side. 

Schematic drawing of an anagen VI follicle with anatomical details on the right 

hand side. (B) Anagen VI hair bulb in detail (enlargement of schematic drawing 

in A). APM, arrector pili muscle; CTS, connective tissue sheath; DP, dermal 

papilla; IRS, inner root sheath; ORS, outer root sheath; SG, sebaceous gland 

(modified after Whiting, 2004). 
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As hair shaft cells terminally differentiate, they extrude their organelles and 

become tightly packed with bundles of 10-nm filaments assembled from 

cysteine-rich hair keratins, which become physically cross-linked to give the hair 

shaft high tensile strength and flexibility (Alonso and Fuchs, 2006). The IRS 

also keratinizes in a way that it can rigidly support and guide the hair shaft 

during its differentiation process. The IRS cells degenerate as they reach the 

upper follicle, thereby releasing the hair shaft that emerges through the skin 

surface (Alonso and Fuchs, 2006). The outermost layer of hair follicle, the outer 

root sheath (ORS), is a non-keratinizing proliferative cell layer of the exterior 

HF, which is continuous with the epidermis (Tanaka et al., 1998). 

The ORS, hair matrix, IRS and hair haft derive from the epithelial cells in 

the bulge area, functioning as a pluripotent epithelial stem cell population for the 

skin (Fig. 1.2) (Cotsarelis et al., 1990; Morris et al., 2004). The bulge resides at 

the base of the permanent epithelial portion of the HF within the ORS; this is the 

deepest, most protected place in the contiguous epithelial compartment of the 

skin. Morphologically it is well defined as a region between sebaceous glands 

and the APM attachment site (Cotsarelis et al., 1990; Lavker et al., 2003).  

 

1.1.4. Hair cycle 

All mature HFs undergo a growth cycle consisting of the phases of growth 

(anagen), regression (catagen), rest (telogen), and shedding (exogen) 

[reviewed in (Botchkarev and Kishimoto, 2003; Cotsarelis and Millar, 2001; 

Fuchs et al., 2001; Hardy, 1992; Panteleyev et al., 2001; Paus and Cotsarelis, 

1999; Paus and Foitzik, 2004; Stenn and Paus, 2001)] (Fig. 1.3).  
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 Fig. 1.3. Molecular players in hair cycle control 

The figure shows key factors that drive the HF through the hair cycle stages or 

keep it in a given stage. BMP, bone morphogenetic protein; WNT, wingless; 

STAT3, signal transducer and activator of transcription 3; FGF7, fibroblast 

growth factor 7; HGF, hepatocyte growth factor; Shh, sonic hedgehog; IGF1, 

insulin like growth factor; CTSL, cathepsin L; cutl, transcriptional repressor; 

GDNF, glial cell line-derived neurotrophic factor; BDNF, brain-derived nerve 

growth factor; VEGF, vascular endothelial growth factor; ATRA, all-trans retinoid 

acid; RXR, retinoid x receptor; RAR, retinoid acid receptor; NGF, nerve growth 

factor; Lef1, lymphoid enhancer-binding protein; SHG, secondary hair germ; 

TGF, transforming growth factor ; p75NTR, low affinity neurotrophin receptor; 

PRL, prolactin; PRLR, prolactin receptor; IFN, interferon ; ER, estrogen 

receptor; IL1, interleukin 1; VR1, vanilloid receptor 1; TNF, tumour necrosis 

factor ; TSP1, thrombospondin 1 (modified after (Paus and Peker, 2003). 
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The HF is a regenerating system; the inferior part of HFs dramatically 

reforms over the cycle but the upper, permanent, part remains relatively 

unchanged (Alonso and Fuchs, 2006; Paus and Cotsarelis, 1999). It is well 

accepted that the ability of HFs for self-regeneration is a result of presence of 

HF stem cells in the bulge. In the classical experiments of Cotsarelis et al. 

(1990), stem cells were identified based primarily on their slow cycling nature, 

i.e. ability to retain the labeled DNA precursors for a long time. The bulge 

activation hypothesis that developed from this observation states that at the 

onset of anagen, slow-cycling multipotent stem cells in the bulge activate, giving 

rise to transiently amplifying (TA) cells. 

Recently, the secondary hair germ (SHG) in telogen hair follicles, which 

appears as a small cell cluster between the bulge and DP, was identified as 

another pool of slow-cycling cells but more readily responds to stimulating 

signals (Blanpain et al., 2004; Greco et al., 2009). The TA cells derived from the 

bulge and SHG migrate to the base of the HF and become the matrix cells. The 

latter give rise to several lineages of terminally differentiated cells comprising 

different compartments of the HF (Blanpain et al., 2004; Cotsarelis et al., 1990; 

Ghazizadeh and Lome, 2001; Taylor et al., 2000; Tumbar et al., 2003). 

In the mouse pelage, anagen lasts ∼2 weeks, and the first three cycles are 

fairly synchronous, while anagen for human scalp hair can last for several years 

(Stenn and Paus, 2001). During anagen, matrix cells proliferate rapidly every 

approximately 18h (Lavker et al., 2003). As they move upward, they exit the cell 

cycle and differentiate according to a strict spatial programmeme, reconstituting 

the concentric rings of the differentiated cell types of the IRS and hair shaft 
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(Alonso and Fuchs, 2006). The duration of anagen determines the length of the 

hair and is dependent upon continued proliferation and differentiation of matrix 

cells at the follicle base. 

Following the anagen phase, HFs enter an apoptotic destructive phase 

known as catagen. During catagen, the lower (proximal) cycling portion of HFs 

is reduced to a thin epithelial strand surrounded by a basement membrane. As 

it retracts, the DP moves upward until it rests beneath the bulge (Fuchs et al., 

2001). In mice, the onset of the first catagen ranges from postnatal day 14 

(P14) at the upper back near the head to P18 in the lower back near the tail and 

lasts three-four days (Alonso and Fuchs, 2006). 

Following the catagen, HFs enter into a resting phase, telogen. In mice, 

the first telogen is short, lasting only one or two days, from approximately P19 

to P21 in the mid back before the new hair growth emerges. Although the 

lengths of anagen and catagen phases are similar from one cycle to the next, 

telogen phase becomes progressively longer compared to the previous one. 

The second telogen lasts nearly four weeks, and the third telogen is even 

longer. These increasingly prolonged telogen phase result in progressive 

asynchrony in HF cycling with age (Alonso and Fuchs, 2006; Greco et al., 

2009). 

 

1.1.5. Molecular control of the hair cycling 

 
The majority of investigations on the molecular control of postnatal skin 

remodeling were performed using mouse models and many basic principles of 

the epidermal and HF biology were first established in the murine system 

(Hardy, 1992; Millar, 2002). An ever increasing number of novel mouse 
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mutants, where the genetically engineered knockout or overexpression of a 

defined gene product is associated with an epidermal and hair phenotype, has 

allowed instructive insights into the molecular controls of the HF cycling (Chen 

and Roop, 2008; Nakamura et al., 2001). In fact, current understanding of the 

molecular controls of HF induction and morphogenesis is almost entirely based 

on the analysis of mutant mice. This is because the technology to create 

knockout and transgenic mice provides outstanding tools for studying the 

coordinate control of epithelial cell growth and differentiation during 

development (Chen and Roop, 2008).  

It is now widely accepted that HF transformation during cycling is caused 

by alterations in the local signalling milieu. There are key regulators that build 

up local gradients with competing stimulating and inhibitory signals in the HF 

micro-environment (Fig. 1.3). Rhythmic changes of signal transducers in the 

key compartments of the follicle (bulge, secondary hair germ, dermal papilla) 

are thought to drive cyclic hair follicle transformation (Botchkarev and Paus, 

2003). 

Key factors inducing anagen include soluble proteins of the WNT family 

that activate the corresponding Wnt pathway via stabilization of -catenin. 

Increased level of stabilized -catenin in resting stem cells leads to the 

induction of a new hair (Lo Celso et al., 2004; Lowry et al., 2005; Van Mater et 

al., 2003). As -catenin becomes stabilized and localized to the nucleus in the 

activated hair germ (Lowry et al., 2005; Merrill et al., 2001), a number of 

transcriptional changes occur, which include those that regulate cell 

proliferation, extracellular matrix remodelling and HF fate specification (Lowry et 

al., 2005). 
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Despite the importance of the Wnt signalling in the activation of hair follicle 

stem cells and their fate specification, ectopic levels of stabilized -catenin do 

not cause bulge stem cells to lose their slow-cycling characteristics (Lowry et 

al., 2005). The relative resistance of the bulge stem cells to elevated β-catenin 

signalling is also shown by the rarity of de novo follicle formation originating 

from bulge stem cells (Lo Celso et al., 2004), as well as the ability of the bulge 

to maintain its constant cell number (Lowry et al., 2005). These findings imply 

that additional factors are required to promote stem cell activation. 

 

Increasing evidence has pointed onto the view that equilibrium between 

secreted Bone morphogenetic proteins (BMPs) and their soluble inhibitors, for 

example, noggin and gremlin, has an important role in controlling the SC activity 

during adult homeostasis.  Gain- and loss-of-function studies in mice suggest 

that BMP signalling stimulates SC quiescence (Andl et al., 2004; Blanpain et al., 

2004; Kobielak et al., 2003; Kobielak et al., 2007) and involved in the regulation 

of anagen initiation (Botchkarev, 2001). These data will be discussed in more 

detail below. 

 Other molecules can also be involved in the process of anagen initiation, 

such as the transcription factor STAT3. Deletion of STAT3 is associated with a 

prolongation of telogen (Sano et al., 2000). 

Once bulge stem cells have been activated, downstream signals are 

required to maintain the growth and differentiation phase of the hair cycle. Sonic 

hedgehog (SHH) has long been known to be a key signalling pathway that 

operates downstream of Wnts and is essential for maintaining the keratinocyte 

proliferative phase (Oro and Higgins, 2003; Silva‑Vargas et al., 2005; St-

Jacques et al., 1998). Hepatocyte growth factor (HGF) and Fibroblast growth 
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factor 7 (FGF7) support this process and stimulate the subsequent steps of 

anagen development (Danilenko et al., 1995; Lindner et al., 2000).  

Fibroblast growth factor 5 (FGF5) is the most powerful regulator known so 

far to control anagen-catagen transition. Constitutive deletion of FGF5 in mice 

results in „„angora-like‟‟ phenotype characterized by the extension of anagen for 

several days and dramatic increase in hair length (Hebert et al., 1994). In 

addition to FGF5, neurotrophins and TGF-1 induce a premature catagen 

onset. Transgenic over-expression of members of the neurotrophin family, 

BDNF and NT–3 show premature catagen development (Botchkarev et al., 

1999b). TGF-1 induces premature catagen in isolated human hair follicle and 

in mouse skin in vivo, and TGF-1 knockout mice display delay in the onset of 

catagen development (Foitzik et al., 2000).  

Catagen onset is also associated with down-regulation of molecules that 

promote proliferation and differentiation in hair matrix keratinocytes. In anagen 

hair follicles, dermal papilla fibroblasts secrete a variety of growth factors [HGF, 

IGF–1, keratinocyte growth factor (KGF), VEGF] that support proliferation and 

differentiation in hair matrix keratinocytes (Danilenko et al., 1995; Guo et al., 

1996; Kozlowska et al., 1998; Lindner et al., 2000; Paus, 1996). 

In addition to the growth factors mentioned above, onset of catagen is 

stimulated by several other molecules, such as insulin-like growth factor binding 

proteins–3/4/5 (IGF-BP3/4/5) (Batch et al., 1996), interleukin-1/ (Xiong and 

Harmon, 1997), vitamin D receptor (Reichrath et al., 1994), or prolactin 

(Pearson et al., 1999).  
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1.2 Molecular mechanisms of skin carcinogenesis 

 
Skin cancer is the most common cancer in the world and the incidence 

continues to increase (Glick and Yuspa, 2005). During the last decade, 

considerable progress has been achieved in identification of molecular 

mechanisms underlying the development of the major cutaneous cancers, such 

as malignant melanoma and nonmelanoma (epidermal) cancer (Owens and 

Watt, 2003). 

Epithelial tumours of the skin are usually classified into epidermal tumours, 

and neoplasms deriving from skin adnexae, such as hair follicle, sebaceous 

gland, apocrine and eccrine glands (Elder et al., 1997; Headington, 1990).  In 

fact, all skin cell types can undergo neoplastic transformation, giving rise to a 

vast and complex potential for benign and malignant development. Epidermal 

tumours [basal cell carcinoma (BCC) and squamous cell carcinoma (SCC)] 

account for over 90% of all skin cancers (Owens and Watt, 2003). BCC is more 

common with a ratio of 4:1 to SCC (Koh et al., 2003). Although BCC and SCC 

can be lethal, they are not associated with significant mortality; nevertheless the 

associated morbidity and therapeutic costs are an increasing burden to the 

health care system. 

Among the documented risk factors associated with nonmelanoma skin 

cancer development, skin colour and the response of the skin to sunlight 

(constitutional factors) are most important. This fact is obvious in Caucasians 

who have a combination of light skin and blue eyes, and red or blond hair; many 

of them get sunburn instead of a tan when they are exposed to direct sunlight 

(Gallagher et al., 1995). In contrast to Caucasians, nonmelanoma skin cancer is 

uncommon in black populations, Asians and Hispanic (Koh et al., 2003). The 
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major environmental cause of BCC and SCC is exposure to sunlight, in 

particular the UVB component of the sunlight (Situm et al., 2008; Welsh et al., 

2008). 

Several molecular regulatory systems were documented, perturbations in 

which were associated with skin tumourigenesis.  

 

1.2.1. p53 

The p53 tumour suppressor gene is involved in cell cycle arrest and 

activation of programmemed cell death. Activation of p53 tumour suppressor 

protein occurs in response to a variety of cellular stresses including DNA 

damage, oncogenic stimulation, hypoxia, oxidative stress or telomere 

shortening and directs cells toward cell cycle arrest or apoptosis depending on 

the amount of DNA damage. This allows p53 to exerts its function as a 

"guardian of the genome" and tumour suppressor by blocking proliferative 

expansion of damaged cells (Lane, 1992). Mutations in the p53 gene have been 

detected in 50% of all human cancers and in almost all skin carcinomas 

(Basset-Sequin et al., 1994). 

Analysis of mutations in p53 gene has established an unequivocal 

connection between UV exposure, DNA damage, and skin carcinogenesis. UVB 

and UVC radiation induces unique types of DNA damage, producing 

cyclobutane-type pyrimidine dimers (CPD) and pyrimidine (6-4) pyrimidone or 

(6-4) photoproducts. UV radiation induces predominantly CT and CCTT 

transitions at dipyrimidine sequences, which have become the "signature" of 

UV-induced mutagenesis (Brash, 1988). The mutations in p53 gene appear to 

be an early genetic change in the development of UV-induced skin cancers. 
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Thousands of p53-mutant cell clones are found in normal-appearing sun-

exposed skin (Jonason et al., 1996). High frequency of p53 mutations has been 

reported in pre-malignant actinic keratosis lesions (66%), which are considered 

to be pre-SCCs, SCC (58%) and BCC (71%) (Bolshakov et al., 2003; Moles et 

al., 1993; Stern et al., 2002). 

A murine model of UV-induced carcinogenesis allowed a unique 

opportunity for investigating the fate of p53-mutant keratinocytes during various 

stages of skin cancer development. In skin of hairless mice, p53 mutations 

induced by chronic UV exposure could be detected by allele-specific PCR as 

early as one week after initiation of the experiment, with 100% of the animals 

incurring p53 mutations after eight weeks of UV treatment (Ouhtit et al., 2000). 

As a tumour promoter, UV induces cell proliferation by stimulating the 

production of various growth factors and cytokines, as well as activation of their 

receptors (Bender et al., 1997; Kuhn et al., 1999; Peus et al., 2000; Rosette and 

Karin, 1996). Repeated exposure of skin to UV radiation therefore results in 

clonal expansion of initiated p53-mutant cells (Zhang, 2001). Every successive 

UVB exposure allows p53-mutant keratinocytes to colonize adjacent epidermal 

stem-cell compartments without incurring additional mutations (Zhang, 2001). 

Two mechanisms are believed to contribute to selective expansion of p53-

mutant cells: resistance to UV-induced apoptosis, and higher proliferative 

potential over normal keratinocytes in response to stimulation with UV. Indeed, 

single UV exposure was shown to stimulate the proliferation of p53-mutant cells 

while inducing apoptosis in normal keratinocytes in culture and in artificial skin 

models (Mudgil et al., 2003; Ziegler et al., 1994). However, chronic UV 

irradiation of skin quickly induces apoptosis-resistance and stimulates 
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hyperproliferation throughout the epidermis as an adaptive response (Ouhtit et 

al., 2000).  The mechanism of selective proliferative advantage of p53-mutant 

cells is yet unclear, but it may be a critical factor promoting a clonal expansion 

of initiated cells. 

One mechanism that may contribute to expansion of initiated keratinocytes 

is the deregulation of the UV-induced Fas/Fas-Ligand mediated apoptosis in the 

skin. It was shown that accumulation of p53 mutations in the epidermis of FasL 

deficient mice occurred at much higher frequency compared with wild-type mice 

after chronic UV irradiation (Hill et al., 1999). Hill et al. (1999) concluded that 

FasL-mediated apoptosis is important for skin homeostasis, and that the 

dysreguration of Fas-FasL interactions may be central to the development of 

skin cancer. Ouhtit et al. (2000) further found that in skin of chronically-

irradiated SKH-hrl mice, the progressive decrease of FasL expression was 

accompanied by accumulation of p53 mutations and the decrease in a number 

of apoptotic cells. These findings suggest that chronic UV exposure would 

induce a loss of FasL expression and a gain in p53 mutations, leading to 

dysregulation of apoptosis, expansion of mutated keratinocytes, and initiation of 

skin cancer.  

 

1.2.2. Hedgehog signalling pathway 

There is increasing evidence that genes critically involved in the regulation 

of epidermal stem cell proliferation and differentiation are also important in skin 

carcinogenesis (Owens and Watt, 2003). This relationship is not surprising 

because the cellular processes disrupted in cancer, e.g., proliferation, 

differentiation, apoptosis, motility and senescence, are also crucial for the 



 35 

normal growth and development of tissues and organs.  

 

 

Fig. 1.4.  Hedgehog signalling pathway 

 Hedgehog (SHH, IHH or DHH) binds to Patched family receptors (PTCH1 and 

PTCH2) to release Smoothened (SMO) signal transducer from Patched-

dependent suppression. SMO activates STK36 serine/threonine kinase to 

stabilize GLI family members (GLI1, GLI2 and GLI3) for nuclear translocation. 

Hedgehog signalling activates GLI-dependent transcription of target genes, 

such as GLI1, PTCH1, CCND2, and FOXM1. Positive regulators of Hedgehog 

signalling are shown in gray. Adopted from (Katoh and Katoh, 2006,, 2008). 
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The hedgehog pathway is a fundamental signal transduction pathway in 

embryogenesis that is responsible for the correct development of various 

organs, including skin and hair (Bitgood and McMahon, 1995; Chiang et al., 

1999; Dlugosz, 1999). Its ability to regulate cell differentiation and renewal in a 

dose-dependent manner implies that deregulation of the hedgehog pathway 

can result in uncontrolled cell proliferation and tumourigenesis. 

Sonic hedgehog (Shh), Indian hedgehog (Ihh) and Desert hedgehog (Dhh) 

are the three mammalian homologues of the Drosophila Hh protein. The 

available evidence suggests that all Hh ligands trigger the same signalling 

pathway, with specificity arising from the cellular context (Ingham and 

McMahon, 2001).  

The activity of the Hh pathway involves several steps (Fig. 1.4). Two 

transmembrane proteins mediate the Hh signal: Patched (PTCH1 and PTCH2 

in vertebrates) and Smoothened (SMO). In the absence of Hedgehog signalling, 

PTCH1 and PTCH2 inhibit the SMO signal transducer [reviewed in (Ingham and 

McMahon, 2001; Ogden et al., 2004)]. SMO inactivation leads to formation of 

the cytoplasmic GLI degradation complex, in which GLI family members (GLI1, 

GLI2 and GLI3) are phosphorylated by casein kinase I (CK), glycogen synthase 

kinase-3 (GSK3) and protein kinase A (PKA) (Price, 2006). Phosphorylated 

GLI is recognized by FBXW1/ and mediated for ubiquitination; ubiquitinated 

GLI is partially degraded to release its intact N-terminal half functioning as a 

transcriptional repressor (Bhatia, 2006; Ruiz et al., 2007). Hedgehog-binding to 

Patched family receptors releases the SMO signal transducer from Patched-

dependent suppression. SMO then activates STK36 serine/threonine kinase 

[also known as Fused (Fu)] to inhibit the assembly of GLI degradation complex 
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for the stabilization of full-length GLI (Osterlund et al., 2004). Hedgehog 

signalling activation leads to GLI-dependent transcriptional activation of target 

genes, such as GLI1, PTCH1, CCND2, FOXL1 and JAG2 (Kasper et al., 2006) 

There is a number of positive or negative modulators; some of them being 

target genes of Hh signalling are involved in negative feedback, such as Hipl, 

Gasl and Ptchl itself, thus the activity of this pathway is tightly controlled in time 

and space [reviewed in (Katoh and Katoh, 2008; Mullor et al., 2002)].  

In the skin, aberrant sonic hedgehog expression results in the formation of 

basal cell carcinoma, which arises from the outer root sheath of the HF (Owens 

and Watt, 2003). Proliferation and differentiation of the ORS cells as well as the 

hair growth cycle are physiologically regulated by Shh (Dlugosz, 1999). Thus, 

aberrant activation of Shh signalling may disturb the physiologic homeostasis in 

this compartment and initiate tumour growth (Pasca and Hebrok, 2003).  

Initially, germline mutation in PTCH1 gene was found in nevoid basal cell 

carcinoma syndrome (NBCCS, Gorlin syndrome). A major manifestation of this 

rare syndrome is multiple BCC of the skin (Hahn et al., 1996). Subsequently, 

somatic PTCH1 mutation and/or deletion were identified in the majority of cases 

of sporadic BCC (more than 50%), thus implicating PTCH1 inactivation as the 

most common genetic alteration in these tumours, resulting in continuous 

activation of the Hh pathway (Reifenberger et al., 2005). Interestingly, UV as a 

major factor responsible for development of nonmelanoma cancer causes 

PTCH1 mutations in sporadic BCC in less than 50%, while in BCCs of 

xeroderma pigmentosum patients UV is responsible for the majority (80%) of 

PTCH1 mutations (Daya-Grosjean and Sarasin, 2000). 

Sporadic basal cell carcinomas may carry mutations in other Shh pathway 
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genes, but these appear to be far less common. For example, somatic 

mutations in the SMO gene have been identified in about 10% of sporadic basal 

cell carcinomas. The majority of the cases carry a particular missense mutation 

(c. 1604G>T: W535L) resulting in constitutive Smo activation that can transform 

cells in vitro and is able to induce basal cell carcinoma-like tumours in 

transgenic mice. Somatic mutations in yet other Shh pathway genes, such as 

SHH itself and SUFUH, are rarely seen in individual cases of basal cell 

carcinoma (Dlugosz et al., 2002; Reifenberger et al., 2005). 

Further support for the role of aberrant Shh signalling in basal cell 

carcinoma pathogenesis is provided by the finding of increased expression of 

Shh target genes, such as PTCH, HIP, GLI1 and GLI2, in virtually all cases. In 

vitro experiments indicate that GLI1 and GlI2 are part of a positive feed-back 

loop in keratinocytes, in which GLI1 induces the expression of the 

transcriptional activator isoforms GLI2 and GLI2 which in turn up regulate 

GLI1 expression by binding directly to the GLI1 gene promoter. In basal cell 

carcinomas, the activity of GLI1 is further enhanced by the expression of 

transcripts containing alternative 5'-untranslated sequences that enhance 

translational efficiency of GLI1 proteins. Activation of the GLI1 and GLI2 

transcription factors in basal cell carcinomas results in enhanced transcription of 

several growth promoting and anti-apoptotic genes (Pasca and Hebrok, 2003). 

These include certain cell cycle regulatory genes, such as the forkhead/winged-

helix domain transcription factor genes FOXM1 and FOXE1, as well as the 

cyclin genes CCND1 and CCND2 (Eichberger et al., 2004; Liang, 2000; Teh, 

2002). GLI1 also induces transcription of the growth factor receptor gene 

PDGFRA, which in turn may activate signalling via the ras/ERK-pathway in 
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basal cell carcinomas (Xie et al., 2001). An additional SHH target gene 

upregulated in basal cell carcinomas and directly regulated by GLI2 is BCL2, 

whose gene product inhibits apoptosis (Regl et al., 2004).  

The relevance of aberrant hedgehog signalling for the development of 

BCCs has been experimentally substantiated in a number of transgenic and 

knockout mouse models (Dlugosz et al., 2002; Grachtchouk et al., 2003; 

Hutchin et al., 2005; Pasca and Hebrok, 2003). Overexpression of Shh using a 

keratin 14 (KI4) promoter resulted in upregulation of Shh target genes and 

development of basal cell carcinoma-like proliferations in the skin of newborn 

mice (Oro et al., 1997). Furthermore, overexpression of mutant Smo isolated 

from human BCC can induce “basal cell-like” proliferations in newborn mouse 

skin when driven by a keratin 5 (K5) promoter (Xie et al., 1998). Mouse models 

with defective Ptch have also been developed. Interestingly, the Ptch+/- mice 

develop BCC-like tumours of the skin only after ionizing radiation or repetitive 

UVB exposure (Calzada-Wack et al., 2002).   

Other transgenic mouse models have focused on the Gli proteins as 

effectors of hedgehog signalling. Interestingly, overexpression of Gli1 or Gli2 

under a K5 promoter yielded different results. K5-Gli1 transgenic mice 

developed a variety of hair follicle-derived tumours, including a small fraction of 

basal cell carcinoma-like tumours (Nilsson, 200). In contrast, K5-Gli2 mice 

selectively developed skin tumours with basal cell carcinoma-like morphology 

(Grachtchouk et al., 2000).  

Taken together, the findings clearly underline the importance of aberrant 

Hh signalling in basal cell carcinomas.  In contrast to BCC, SCC development is 

not Shh signalling dependent, which is in the line with its distinct origin from 
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transient amplifying cells in the interfollicular epidermis. 

 

1.2.3. Wnt/-catenin signalling 

Wnt signalling is one of powerful signalling pathways that play crucial roles 

in controlling the genetic programmes of embryonic development and adult 

homeostasis in mammals. Deregulation in this signalling pathway causes 

developmental defects, or diseases, among them cancer. 

The canonical Wnt/-catenin signal transduction pathway is schematically 

illustrated in Fig. 1.5 and reviewed elsewhere (Clevers, 2006; MacDonald et al., 

2009; Nelson and Nusse, 2004; Willert and Jones, 2006). In the absence of Wnt 

ligands, intracellular levels of -catenin are regulated by a multiprotein complex 

encompassing kinases, such as GSK3 (glycogen synthase kinase-3) and CK1 

(casein kinase 1), the scaffolding proteins APC (adenomatous polyposis coli), 

Axin. This “destruction complex” binds and phosphorylates -catenin at serine 

and threonine residues in the N-terminus. Phosphorylation of -catenin creates a 

binding site for the E3 ubiquitin ligase -Trcp, leading to -catenin ubiquitination 

and degradation. When Wnt signalling is inactive, TCF/LEF family of transcription 

factors are bound to Wnt-target gene promoters in a complex with transcriptional 

co-repressors, such as Tle/Groucho, to keep target genes silent. Presence of 

Wnt ligands triggers formation of a complex between co-receptors LPR5/6 (low-

density lipoprotein receptor-related proteins) and Frizzled (Fz) at cell membrane.  
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Fig. 1.5. Scheme of the Wnt/-catenin signalling pathway 

(A) In the absence of Wnt, cytoplasmic -catenin forms a complex with Axin, 

APC, GSK3, and CK1, and is phosphorylated by CK1 (blue) and subsequently 

by GSK3 (yellow). Phosphorylated -catenin is recognized by the E3 ubiquitin 

ligase -Trcp, which targets -catenin for proteosomal degradation. Wnt target 

genes are repressed by TCF-TLE/Groucho and histone deacetylases (HDAC). 

(B) In the presence of Wnt ligand, a receptor complex forms between Frizzled 

and LRP5/6. Dishevelled (Dvl) recruitment by Frizzled leads to LRP5/6 

phosphorylation and Axin recruitment. This disrupts Axin-mediated 

phosphorylation/degradation of -catenin, allowing -catenin to accumulate in 

the nucleus where it serves as a coactivator for TCF/Lef to activate Wnt-

responsive genes. Modified after (MacDonald et al., 2009). 
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Upon Wnt stimulation, LRP6 is phosphorylated by Dishevelled (Dvl) and recruits 

Axin-GSK3 to the plasma membrane, coincident with the inhibition of the -

catenin disruption complex and the consequent stabilization of -catenin.  

Cytosolic -catenin accumulation eventually results in its nuclear 

translocation. In the nucleus, -catenin binds to members of the TCF/LEF 

transcription factors, replacing the transcriptional inhibitor Groucho and recruiting 

co-activators, such as the histone acetyltransferase CBP/p300, to stimulate 

transcription of a broad range of Wnt target genes, such as c-MYC, CCND1, c-

JUN, AXIN2, FGF9, Eda etc. (current list of known target genes are available on 

Wnt genes homepage  http://www.stanford.edu/~rnusse/wntwindow.html). 

Several extra-cellular inhibitors tightly regulate spatial-temporal activity of 

the pathway. Secreted factors like secreted Frizzled-related proteins (sFRPs), 

Wif-1 and Cer bind to Wnts and block the interaction with Frizzled receptors, 

while Dickkopf antagonizes Wnt signalling by blocking LRP receptors [reviewed 

in (Kawano and Kypta, 2003; MacDonald et al., 2009)]. 

Aberrant activation of Wnt/-catenin signalling pathway has been shown to 

be an important factor in the development of many malignancies including 

colorectal, breast, ovarian, prostate, and many other cancers [reviewed in 

(Fodde and Brabletz, 2007; Morin, 1999). In these types of cancer, an abnormal 

Wnt pathway activation and stabilization of the cytoplasmic -catenin are due to 

an impairment of the -catenin N-terminal phosphorylation, which could be a 

result of: (1) oncogenic mutations in its phospho-acceptor sites; (2) failure to 

recruit GSK3 because of APC mutations; (3) inhibition of the GSK3 activity 

PI3K/Akt signalling [reviewed in (Morin, 1999; Polakis, 1999)]. 

However, little is known about the role of Wnt/-catenin signalling in non-

http://www.stanford.edu/~rnusse/wntwindow.html
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melanoma skin cancers. Studies utilizing transgenic approaches showed that 

canonical Wnt signalling plays a crucial role in development of the skin and skin 

appendages primarily by promoting the hair placode and hair shaft fate of the 

epithilium at the expense of epidermal differentiation (Andl et al., 2002; van 

Genderen et al., 1994; Zhang et al., 2008) and stimulating hair follicle 

regeneration in postnatal life (Lo Celso et al., 2004; Lowry et al., 2005; Van 

Mater et al., 2003). Importantly, these studies also showed that an aberrant 

activation of the Wnt signalling might be involved in the development of some 

skin tumours. It was reported that transgenic mice expressing an activated -

catenin developed two types of hair follicle-derived tumours, pilomatricoma and 

trichoepithelioma, which were also found in humans (Gat et al., 1998; Lo Celso 

et al., 2004). These results were confirmed by genetic studies, which revealed 

activating mutations of the -catenin gene in human pilomatricoma in at least 

75% of the tumours (Chan et al., 1999; Durand and Moles, 1999; Kajino et al., 

2001; Xia et al., 2006). However, -catenin mutations have not been detected in 

other skin tumours (Kajino et al., 2001). To date, mutations in other components 

of the Wnt/-catenin pathway, such as adenomatous polyposis coli (APC) and 

AXIN2, have been not reported (Doglioni et al., 2003); they are unlikely involved 

in skin tumourigenesis. 

Despite no activating mutations in the -catenin gene in most of the skin 

tumours, abnormal expression and nuclear localization of -catenin was 

observed in a subset of human non-melanoma skin cancers.  It was reported 

that about 50-60% of basal cell carcinomas showed strong nuclear -catenin 

expression predominantly at the peripheral part of the tumours (Doglioni et al., 

2003; El-Bahrawy et al., 2003; Yamazaki et al., 2001). The nuclear localization 
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was most notable in the infiltrative and morphoec variants, suggesting that this 

may be associated with more aggressive types of invasion (El-Bahrawy et al., 

2003). Thus, nuclear localization of -catenin is a characteristic feature of BCC, 

however, a causal link between Hh pathway deregulation, nuclear -catenin 

accumulation and increased proliferation in BCC development remains to be 

confirmed. 

Moderate increase of -catenin nuclear staining was also detected in a 

significant proportion of Bowen disease, spiroadenomas, and squamous cell 

carcinomas (Doglioni et al., 2003; Malanchi et al., 2008).  

The important role of Wnt/-catenin in epidermal carcinogenesis was 

demonstrated in an experimental study using the two-stage chemical 

carcinogenesis protocol. Mouse skin tumours induced by DMBA/TPA treatment 

showed an increase of -catenin protein expression accompanied with the 

dramatic increase in nuclear -catenin levels throughout papillomas and SCC, 

suggesting that -catenin was stabilized during skin carcinogenesis (Bhatia and 

Spiegelman, 2005). In addition, expression of well characterized target genes of 

the Wnt/-catenin signalling pathway, c-myc and c-jun, was up-regulated in all 

chemically induced tumours (Bhatia and Spiegelman, 2005). Furthermore, 

papillomas and SCCs were characterized by high expression levels of skin-

specific Wnt proteins (Wnt3, Wnt4 and Wnt10b), suggesting that stabilization of 

-catenin may be a result of such increased expression of Wnt ligands (Bhatia 

and Spiegelman, 2005). Interestingly, a transcriptional co-partner of -catenin, 

Tcf4, was highly expressed in all papillomas and carcinomas, while immunoblot 

analysis of Lef1, Tcf1 and Tcf3 proteins revealed very low levels of their 

expression during mouse skin carcinogenesis (Bhatia and Spiegelman, 2005). 
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Furthermore, stable transfection of SCC cells (Ca8/29) with a dominant 

negative Tcf4 mutant exhibited about 30% decrease in cell growth in vitro, thus 

emphasized the significance of Wnt/-catenin/Tcf-dependent transcription in the 

proliferative potential of SCC cells (Bhatia and Spiegelman, 2005).  

Taken together, these data suggest that unlike to carcinogenesis in other 

organs activation of canonical Wnt/-catenin signalling pathway in skin tumours 

occurs in the absence of mutations in genes coding components of the 

pathway. This is well in line with a current concept of the role of cancer stem 

cells (CSCs) in the epidermal tumour development, which postulates that a 

small proportion of tumour cells have capacity to self-renew and form new 

tumours [reviewed in (Ambler and Määttä, 2009; Owens and Watt, 2003)]. 

These CSCs do not reflect a simple expansion of stem cells; rather, tumour 

cells bypass the homeostatic controls that operate in normal stem cells, 

eliminating those that maintain stem cell quiescence (Jensen et al., 2008). 

Wnt/-catenin signalling is essential for activation of normal epidermal stem 

cells (Lo Celso et al., 2004; Lowry et al., 2005; Van Mater et al., 2003), and, if 

abnormally activated, likely involved in the acquisition of the cancer stem cell 

capacities by normal epidermal stem cells. Findings from Malanchi et al. (2008) 

study support the idea that cutaneous cancer stem cell maintenance is 

dependent on -catenin signalling. Using two-stage skin chemical 

carcinogenesis as a model, Malanchi et al. (2008) identified a population of 

CD34+ cells in early epidermal tumours characterized by phenotypic and 

functional similarities to normal bulge skin stem cells. Isolated CD34+ cells were 

the only cells with tumour initiation properties when orthotopically transplanted 

in a skin reconstitution assay (Malanchi et al., 2008). Moreover, nuclear -
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catenin was enriched in CD34+ versus CD34- tumour cells, suggesting a 

potential functional relevance to this pathway. Conditional ablation of the -

catenin gene resulted in complete regression of established, chemically induced 

tumours. Following deletion of -catenin, CD34 expression was lost, and tumour 

cells lose their ability to initiate secondary tumour formation (Malanchi et al., 

2008). Finally, authors also provide an evidence that -catenin signalling may 

be functionally relevant in human SCCs. Knockdown of the -catenin 

expression by short hairpin RNA reduces tumour growth of human SCC13 cell 

lines in xenografts, suggesting that -catenin signalling is required for the 

tumourigenesis (Malanchi et al., 2008). 

 

1.2.4. Transforming Growth Factor  (TGF-) signalling 

 

TGF-s (TGF-1, TGF-2, TGF-3) regulate many fundamental processes 

during embryonic development and in adult tissues, such as cell growth, 

differentiation, remodeling of the extracellular matrix, cell migration and 

adhesion, angiogenesis and the immune response (Massague, 1998). 

TGF- was early recognized as a potent inhibitor of epithelial cell growth.  

Subsequent studies showed that some carcinoma cell lines escape from TGF- 

growth inhibition, and reported a direct role for TGF- as an autocrine stimulator 

of tumour cell invasion and metastasis (Newman, 1993; Wright et al., 1993). In 

the past decade, a large body of experimental evidence has accumulated 

suggesting a dual role for TGF- in cancer (Derynck et al., 2001; Siegel and 

Massague, 2003). Thus, it is now widely accepted that TGF- can act as a 

tumour suppressor at early stages of tumourigenesis, and, also, as a potent 
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driver of malignant progression, invasion and metastasis at later stages. Of the 

three classical members of the TGF- family, TGF-1 is most frequently up-

regulated in tumours (Derynck et al., 2001) and is the focus of most studies on 

the role of TGF- in carcinogenesis. 

In vitro studies have documented that TGF-1 is a potent growth inhibitor 

for primary and immortalized keratinocytes, whereas some carcinoma cell lines 

are less sensitive to the inhibitory effect of the growth factor (Glick et al., 1993). 

A complete loss of the anti-proliferative response appears to occur late during 

malignant progression, associated with the spindle stage (Haddow et al., 1991). 

The mechanism for TGF-1-induced growth arrest in keratinocytes involves 

down-regulation of c-myc (Pietenpol et al., 1990) and induction of the Cdk 

inhibitors p21 and p15 (Li et al., 1995; Reynisdottir et al., 1995). Carcinoma 

cells do not only exhibit an attenuated response to growth inhibition, but they 

are also stimulated to malignancy by the growth factor. Chronic exposure of 

transformed keratinocytes to TGF-1 induced a reversible epithelial-

mesenchymal transition (EMT) (Caulfn et al., 1995). Further reports 

demonstrated that the phenotypic changes induced by TGF-1 in transformed 

keratinocytes were associated with increased invasive and metastatic abilities 

(Frontelo et al., 1998), and with up-regulation of extracellular matrix degrading 

proteases, such as uPA and MMP-9 (Santibanez et al., 1999; Santibanez et al., 

2002).  

Deeper understanding of the role for TGF- in epithelial skin cancer has 

been made using mouse chemical carcinogenesis model system. Multistage 

mouse skin chemical carcinogenesis has provided a paradigm to study the 

genetic and epigenetic events that contribute to the development of squamous 
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cell carcinomas (SCCs) (Yuspa, 1994). The most common chemical 

carcinogenesis protocol is two-stage induction, which involves the topical 

application of a single dose of a carcinogen initiator; i.e., the polycyclic aromatic 

hydrocarbon 7,12-dimethylbenz-(a)anthracene (DMBA), followed by once or 

twice weekly treatment with the tumour promoter TPA. This protocol results in 

the development of multiple benign papillomas, most of which are promoter-

dependent and regress rapidly after the end of TPA treatment (Glick et al., 

2007). However, a small proportion of papillomas (about 5-10%) do not regress 

in the absence of the promoter and spontaneously progress to malignant SCCs 

(Glick et al., 2007). SCCs can vary in their histological grade, from well 

differentiated, with clear basal and suprabasal layers, to poorly differentiated, 

with little structural organization. The latest stage of tumour progression is the 

development of spindle cell carcinomas (SpCCs), a highly malignant type of 

tumour formed by cells that have lost the epithelial phenotype and acquired 

mesenchymal characteristics (Klein-Szanto et al., 1989). Spindle carcinoma 

cells have down-regulated the expression of keratinocyte specific proteins, such 

as cytoskeletal keratins and the cell-cell adhesion molecules E- and P-cadherin, 

and are characterized by the expression of fibroblastic cell markers, such as 

vimentin (Navarro et al., 1991). Initiation involves a specific oncogenic mutation 

in the H-Ras gene (To et al., 2005), and additional changes in the H-Ras 

mutated allele leading to overexpression of H-Ras oncogenic protein are 

associated with malignant progression (Rodriguez-Puebla et al., 1999a; To et 

al., 2005). Other alterations associated with tumour progression lead to 

deregulation of the cell cycle machinery and promote cell growth and, possibly, 

genetic instability. Among these genetic alterations, the most relevant are Ras-
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dependent overexpression of cyclin D1 (Rodriguez-Puebla et al., 1999b), 

inactivation of the p53 gene (Yuspa et al., 1994), and deletion or altered 

regulation of the INK4 locus encoding the cyclin-dependent kinase (cdk) 

inhibitors p15, p16 and p19, the latter associated with the late spindle stage 

(Linardopoulos et al., 1995). 

The combination of the two-stage chemical carcinogenesis protocol and 

transgenic/knock-out approaches has provided the experimental framework to 

demonstrate a double and paradoxical role of TGF- signalling in skin 

carcinogenesis in vivo. Disruption of TGF- signalling by expression of a 

dominant-negative type-II TGF- receptor in the epidermis of transgenic mice 

(L- or K5-TGFRII mice) resulted in increased sensitivity to DMBA/TPA 

carcinogenesis with respect to control mice. These mice showed a higher 

frequency of malignant conversion from papillomas to SCCs (Amendt et al., 

1998; Go et al., 1999). Furthermore, TPA promotion alone induced papilloma 

formation in L-TGF/3RII mice, and most of TPA-induced papillomas did not 

exhibit H-Ras mutations, suggesting that loss of TGF- signalling can serve as 

an initiating event in skin carcinogenesis. Nevertheless, the most striking result 

on the role of TGF- in skin carcinogenesis was obtained by Cui and co-

workers (1996) utilizing two-stage chemical carcinogenesis in transgenic mice 

with TGF1 expression targeted to the epidermis. Overexpression of TGF-1, in 

epidermal keratinocytes inhibited benign tumour formation, but enhanced 

conversion of papillomas to SCCs, as well as the squamous to spindle cell 

transition (Cui et al., 1996). Taken together, these studies support a direct role 

for TGF-, as a tumour suppressor at early stages of carcinogenesis, yet it also 

behaves as a promoter of malignancy at later stages. 
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In addition to its direct role on tumour cells by inhibiting cell growth or 

promoting an EMT associated with development of highly aggressive spindle 

tumours, TGF- profoundly affects the tumour microenvironment. TGF- acts 

on several cell types that are in the proximity to the tumour, including fibroblast, 

endothelial and immune cells. Thus, TGF- has potent extracellular matrix 

remodeling, immunosuppressor and angiogenic effects, creating an 

environment that facilitates tumour growth, invasion and metastasis (Siegel and 

Massague, 2003). It is likely that the complex and paradoxical effects of TGF- 

on tumour development implicates an intricate network of autocrine and 

paracrine responses on keratinocytes and stromal cells involving TGF- as well 

as other cytokines. Thus, overexpression of the TGF-1 transgene in the 

epidermis enhances angiogenesis (Wang et al., 1999), apparently not by a 

paracrine mechanism involving diffusion of the growth factor into the dermis, but 

rather by stimulating vascular endothelial growth factor (VEGF) expression in 

the keratinocytes (Wang et al.). 

 

1.2.5. Platelet-derived Growth Factor (PDGF) pathway 

 
In the last few years, compelling evidence supports the essential role of 

PDGF signalling for cancer cell proliferation and tumour angiogenesis in several 

types of human cancers, including nonmelanoma skin cancers. 

PDGFs belong to PDGF/VEGF family of growth factors. PDGFs (PDGF-A, 

PDGF-B, PDGF-C, PDGF-D) expression is observed in a variety of cell types, 

including fibroblasts, keratinocytes, neurons, endothelial and epithelial cells, 

and functions as a potent mitogen. In addition, PDGF regulates cell morphology 

and cell movement, such as chemotaxis (Hoch and Soriano, 2003).  
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PDGF subunits are synthesized as precursor molecules, which undergo 

proteolytic processing. A variety of PDGF dimers can be formed from these 

subunits, which then activate the PDGF receptor tyrosine kinases. PDGF 

receptors (PDGFR, PDGFR) function in the cell through activating 

downstream effectors, such as PLC-, Grb2/SOS, PI3K, GAP and Stat (Hoch 

and Soriano, 2003).  

Development of skin and hair requires the PDGF-A/PDGFR signalling 

axis. PDGF-A is expressed in the hair follicle epithelium, whereas PDGFR is 

found in the dermal papillae. PDGFR null embryos show severe dermal 

defects, with an absence of dermal mesenchymal cells and formation of 

epidermal blisters (Soriano, 1997). In contrast, the phenotype of PDGF-A null 

mutant embryos is quite mild (Karlsson et al., 1999), suggesting a substitutive 

role of other PDGFs in skin development. Hair follicles of PDGF-A-/- mice are 

misshaped and smaller (Karlsson et al., 1999). 

PDGF pathways are altered in several physiological human conditions 

including carcinogenesis. The role of PDGFs in carcinogenesis is initially 

demonstrated by the fact that v-sis oncogene encodes a PDGF-B-like protein. 

Both v-sis and its cellular counterpart c-sis transform cultured cells through an 

autocrine mechanism. Studies in last two decades clearly indicate that PDGFs 

and their receptors are involved in human cancers through autocrine stimulation 

of tumour cell growth (Ostman and Heldin, 2001; Yu et al., 2003). In addition to 

the autocrinal regulation of tumour growth, PDGF signalling exerts paracrinal 

stimulation on stroma cells. Such an example is shown in tumour angiogenesis, 

which has been observed in breast cancer, colorecral cancer, melanoma and 

small cell lung cancer (Yu et al., 2003). The level of PDGFs is correlated with 
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the density of blood vessel in the tumours. 

Several experiments demonstrated that PDGF pathway served as 

functional downstream of SHH signalling. PDGF-A and PDGFR expression 

was elevated in BCCs derived from Ptch1+/- mice where the hedgehog pathway 

is constitutively activated (Xie et al., 2001). In most human BCCs, PDGF-A and 

PDGFR expression was also up-regulated, and accompanied by an increased 

levels of phosphorylated Erk, an effector of PDGF signalling, indicating an 

activation of the Ras/Erk pathway in the tumour cells (Xie et al., 2001). Xie et al. 

(2001) also demonstrated that PGFR expression was regulated by Gli1 in 

vitro. Moreover, perturbation of PDGFR in mouse BCC cell line ASZ001, 

whether directly by neutralizing antibodies or indirectly by Ptch1, leads to 

decreased cell proliferation (Xie et al., 2001). Therefore, up-regulation of 

PDGFR appears to be an important mechanism by which hedgehog signalling 

induces BCCs. Consistent with these findings, an inhibition of Hh signalling by 

Smo antagonist cyclopamine decrease the levels of PDGFR and phosph-Erk 

resulting in apoptosis in BCC cells (Athar et al., 2004). 

The role of PDGF for tumour development of SCC is not well studied. 

However, there is a good correlation of angiogenic cytokine secretion with the 

microvessel density in the primary tumours of SCC (Ninck et al., 2003). In head 

and neck SCCs, VEGF and PDGF-AB are secreted in high amounts (Gleich et 

al., 1996; Ninck et al., 2003). Keratinocytes are a major source of cutaneous 

PDGF, whereas human dermal fibroblasts do not produce any detectable PDGF 

(Zhang et al., 1995). It appears, PDGF regulates stromal cells through a 

paracrine mechanism in skin SCCs. Subcutaneous injection of PDGF-B 

transfected HaCaT cells leads to marked mesenchymal cell proliferation and 
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angiogenesis during early SCC development, yet this effect vanished at later 

stages concomitantly with increased epithelial cell proliferation and enhanced 

tumour growth (Mueller, 2002). These results demonstrate that an activated 

stromal environment can promote tumourigenic conversion of the keratinocytes 

by inducing sustained epithelial hyperproliferation. Thus, PDGF-B appears to 

promote tumour growth by inducing angiogenesis and stromal formation, and 

PDGF-activated stromal cells maintain elevated keratinocyte proliferation via a 

paracrine mechanism.  

 

1.2.6. STAT3 

Signal transducer and activator of transcription 3 (Stat3) is one of a family 

of cytoplasmic proteins that participate in normal cellular responses to cytokines 

and growth factors, including IL-6, IFN, EGF, PDGF, as transcription factors 

(Darnell, 1997). Upon activation by a wide variety of cell surface receptors and 

nonreceptor tyrosine kinases, STAT3 is phosphorylated and translocates into 

the nucleus (Darnell, 1997). After translocation, STAT3 modulates the 

expression of target genes that are involved in various physiological functions 

including apoptosis (Survivin, Bcl-xL, and HSP27), cell-cycle regulation (Cyclin 

D1, c-fos, and c-myc), and angiogenesis (vascular endothelial growth factor 

(VEGF)) (Kisseleva et al., 2002; Levy and Darnell, 2002).  

Constitutive activation of STAT3 is found in human epithelial tumours and 

cancer cell lines (Bromberg, 2001; Buettner et al., 2002; Jing and Tweardy, 

2005). Furthermore, inhibition of STAT3 can suppress growth of cancer cells, 

implying its critical role in the maintenance of proliferation and survival of 

various cell types (Gritsko et al., 2006; Liu, 2007). 

Recent studies with skin-specific gain and loss of Stat3 function in 
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transgenic mice have shown that Stat3 plays critical roles in skin 

carcinogenesis. Keratinocyte-specific Stat3-deficient mice were viable and the 

epidermis and hair follicles developed normally. However, these mice showed 

abnormal hair cycle with impaired progression of the second and subsequent 

hair cycles. Wound healing was also impaired in Stat3-deficient mice due to a 

defect in keratinocyte migration (Sano et al., 1999). These observations 

suggested that Stat3 is not required for skin morphogenesis, but that it is 

essential for skin remodeling including hair cycle and wound healing. 

In mouse chemical skin carcinogenesis model, Stat3 is activated following 

the treatment with different classes of tumour promoters, including TPA, 

okadaic acid, and chrysarobin (Chan et al. et al.). Stat3 was also found to be 

constitutively activated in both papillomas and SCC generated by the two-stage 

skin carcinogenesis regimen with DMBA as initiator and TPA as promoter 

(Chan et al., 2004a). Furthermore, recent studies using Stat3-deficient mice 

have provided evidence that Stat3 is required for both the initiation and 

promotion stages of epithelial carcinogenesis (Chan et al., 2004b). Stat3-

deficient mice were found to be completely resistant to skin tumour 

development with a standard DMBA/TPA skin carcinogenesis bioassay. In 

addition, Stat3-deficient mice showed a marked increase in keratinocyte 

apoptosis in the bulge region of HFs after treatment with the tumour initiator 

DMBA. Furthermore, treatment with the tumour promoter TPA resulted in a 

significantly reduced epidermal hyperproliferative response associated with 

downregulation of cell cycle regulatory proteins (cyclin D1, cyclin E) and c-myc 

expression in the epidermis of Stat3-deficient mice (Chan et al., 2004b). These 

results suggest that Stat3 plays a critical role in mediating G1-to-S cell-cycle 
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progression and proliferation in murine keratinocytes following treatment with 

TPA (Chan et al., 2004b). 

The important role of Stat3 in epithelial carcinogenesis was demonstrated 

in a transgenic mouse model in which the expression of a constitutively active 

form of Stat3 (Stat3C) was driven in the basal layer of epidermis by the keratin 

5 promoter (referred to as K5.Stat3C transgenic mice) (Chan et al., 2008). In 

two-stage (DMBA/TPA) chemical carcinogenesis experiments, K5.Stat3C mice 

developed skin tumours with shortened latency compared to nontransgenic 

littermates (Chan et al., 2008). Remarkably, 100% of the skin tumours from 

K5.Stat3C transgenic mice bypassed the premalignant stage and initially 

developed as carcinoma in situ. These tumours were highly vascularized and 

poorly differentiated; invasion into surrounding dermal/mesenchymal tissue was 

observed at a very early stage (Chan et al., 2008). Further studies showed that 

overexpression of Stat3C led to enhanced cell migration and enhanced invasion 

in vitro (Chan et al., 2008).  

Stat3 also plays a crucial role in UVB-induced skin carcinogenesis (Enk et 

al., 2006). Constitutive activation of Stat3 was observed in both human and 

mouse UVB-induced SCCs (Sano et al., 2005). Studies on Stat3 during UVB 

exposure-mediated responses showed that both protein levels of Stat3 and 

active phosphorylated Stat3 were increased in skin of hairless mice upon UVB 

irradiation (Sano et al., 2005).  In addition, Stat3-deficient mice are resistant to 

UVB-induced skin carcinogenesis and show a high incidence of apoptosis upon 

UVB-irradiation (Sano et al., 2005). Thus, Stat3 promotes UVB-induced 

proliferation of follicular keratinocytes and epidermal thickening.  

In summary, aberrant growth factor signalling pathways, which are 
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frequently found in human epithelial cancers, may play an important role in the 

constitutive activation of Stat3 (Chan et al., 2004a). Activation of Stat3 appears 

to be critical in maintaining the malignant phenotype of these cancers.  

 

 

1.3 BMPs as members of TGF- superfamily of 

multifunctional cytokines. Bone morphogenetic protein (BMP) 

signalling pathway 

 

1.3.1. Bone morphogenetic proteins 

Bone morphogenetic protein (BMP) signalling is a one of the key pathways 

involved in regulation of cell proliferation, differentiation, and apoptosis. 

Therefore, this pathway plays essential roles during embryonic development 

and postnatal tissue remodeling and regeneration in various organs, including 

the skin (Botchkarev and Paus, 2003; Li et al., 2003; Massague, 1998; Mishina, 

2003). BMPs are members of a large group of secreted polypeptide growth 

factors, the transforming growth factor-β (TGF-β) superfamily, which includes 

TGFβs, activins/inhibins, Nodal, myostatin and anti-Mullerian hormone (AMH) 

(Miyazawa et al., 2002; Miyazono et al., 2005). There are more than 20 BMP-

related proteins known that can be subgrouped according to the homology in 

their sequence and functions (Table 2) (Miyazono et al., 2005). The first group 

includes BMP-2 and BMP-4 (BMP-2/4 group). BMP-5, BMP-6 and BMP-7 (also 

termed osteogenic protein-1, OP-1), BMP-8 (OP-2) form another subgroup (OP-

1 group). Growth-differentiation factor-5 (GDF-5), GDF-6 and GDF-7 (BMP-12) 

form a third group (GDF-5 group). Members of the BMP family have distinct 
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spatiotemporal expression profiles. Moreover, the biological activities of BMPs 

are not identical but overlapped among members, since they bind to their 

receptors with different affinities (Miyazono et al., 2005). All BMPs are secreted 

as precursor proteins with a hydrophobic stretch of about 50-100 amino acids.  

The mature BMP derives from the carboxyterminal region and obtained by 

proteolytical cleavage (Constam and Robertson, 1999). Every BMP monomer 

contains seven cysteins, in which six of the cysteins form a cystin knot and the 

seventh is used for dimerization with a second monomer (Scheufler et al., 

1999). BMPs function as homo or hetrodimers through binding to the 

transmembrane BMP receptor complex (Miyazono et al., 2005). Interestingly, 

the heterodimers of BMP4/7, BMP2/6, BMP2/7 and BMP7/GDF7 are more 

effective than when they form homodimers (Butler and Dodd, 2003; Israel et al., 

1996). 

 

 

1.3.2. BMP receptors and signal transduction pathways 

BMP signals are mediated by receptors which are dedicated to TGF-ß 

signalling, and include type I and type II serine/threonine kinase receptors (Fig. 

1.6) (Massague, 2003; Miyazono et al., 2001). Seven type I receptors and five 

type II have been identified in humans. Six of the type I receptors and three of 

the type II receptors are responsible for BMP signalling (Table 1).  
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Table 1. Transmembrane serine/threonine kinase receptors (Ye et al., 
2007) 

 

 

There are seven Type I and five Type II transmembrane serine/threonine kinase 

receptors identified in humans. Six Type I receptors and three Type II receptors that 

have been found involved in the signal transduction of BMPs, which are bold italic in 

the table. ACVRL1, activin A receptor type II-like 1; ACVR1, activin A receptor, type I; 

BMPR1A, bone morphogenetic protein receptor, type IA; ACVR1B, activin A receptor, 

type IB; TGFΒR1, transforming growth factor, beta receptor I; BMPR1B, bone 

morphogenetic protein receptor, type IB; ACVR1C, activin A receptor, type IC; 

TGFΒR2, transforming growth factor, beta receptor II; TGFΒR3, transforming growth 

factor, beta receptor III; BMPR2, bone morphogenetic protein receptor, type II; 

ACVR2B, activin A receptor, type IIB; ACVR2A, activin A receptor, type IIA. 

 

Different members of BMP family show different affinity to several type I 

and type II receptors (Table 2). However, BMPR1A, BMPR1B and BMPR2 are 

specific for the BMPs. Both types of the BMP serine/threonine kinase receptors 

consist of an N-terminal extracellular ligand binding domain, a transmembrane 

region and a C-terminal serine/threonine kinase domain.  

Ligand binding to the BMP receptor complex results in phosphorylation of 

the intracellular domain of the type I receptor by the type II receptor kinases and 

leads to the transmission of an intracellular signal through BMP–Smad and/or 

BMP–MAPK pathways (Fig. 1.6) (Derynck and Zhang, 2003; Nohe et al., 2004; 

von Bubnoff and Cho, 2001). 
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Table 2. Receptors and R-Smads involved in BMP signalling (Ye et 

al., 2007) 
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Fig. 1.6. Molecular composition of the BMP signalling pathway  

BMP interactions with BMP receptor complex are modulated by diffusible BMP 

antagonists that prevent BMP binding to BMP receptors. BMP binding to 

preformed BMPR complex activtes BMP_sma signal transduction. BMP binding 

to BMP-IA/B folofed by recruitment of the BMP-II leads to activation of the BMP-

MAPK pathway that links BMPRs with TAK1 kinase, which via NLK antagonizes 

Wnt/-catenin, as well as may activate apoptosis via p38/jnk pathway. Modified 

from (von Bubnoff and Cho, 2001).  
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Distinct activation of these two pathways depends on the mode of ligand 

binding to the BMP receptors: binding to preformed receptor complexes induces 

signal transduction via the BMP–Smad pathway, while binding to the BMPR-I 

with subsequent recruitment of BMPR-II activates the BMP–MAPK pathway 

(Nohe et al., 2002; Nohe et al., 2004). 

 

The BMP–Smad pathway is activated following BMP interaction with the 

preformed BMPR complex and includes BMPRII-dependent phosphorylation of 

the type I receptors, which in turn phosphorylate intracellular Smad1, Smad5, or 

Smad8 proteins (or receptor-activated Smads, R-Smads) at their C-terminal 

domain (Table 2) (Tamaki et al., 1998; ten Dijke, 2002,, 1994). These R-Smads 

then form heteromeric complexes with Smad4 (or common-partner Smad, Co-

Smad) and translocate into the nucleus to regulate the transcription of BMP-

responsive genes (Fig. 1.6). Smad2 and Smad3, which also belong to the R-

Smad subfamily, are activated by ActRI and TGF-βRI kinases and do not 

mediate the BMP signalling pathway (ten Dijke and Hill, 2004). 

Both R-Smads and Smad 4 possess domains with similar amino acid 

sequences at the N- and C-terminals, called MH1 and MH2, respectively 

(Massaque and Chen, 2000; Miyazono et al., 2001; Shi and Massague, 2003). 

Also, there is a linker region between the MH1 and MH2 domains that is 

responsible for binding of R-Smads to Smad4 (Kretzschmar et al., 1997; 

Massague, 2003). After translocating into the nucleus, the complex of Smad4 

and one of the R-Smads (Smad1 or Smad5) bind DNA through its MH1 

domains, which contain specific DNA-binding sequences (GCCG for Smad1 

and TGTGC for Smad5) (Kusanagi et al., 2000; Li et al., 2001). The MH2 



 62 

domain of the R-Smads is responsible for binding to cytoplasmic co-regulators, 

as well as to a number of co-activators and co-repressors in the nucleus 

(Massague, 2003). 

The BMP–MAPK pathway is activated when BMPs bind to one of the 

type I BMPRs followed by the BMPRII recruitment into the BMPR complex 

(Nohe et al., 2002; Nohe et al., 2004). The activated BMPR complex may 

interact with intracellular adaptor proteins XIAP and/or BRAM1, which link BMP 

receptors with TAB1 (TAK1 binding protein) that, in turn, activates TAK1 (Fig. 

1.6) (TGF-β-activated kinase 1) (Morita et al., 2001; Yamaguchi et al., 1999). 

TAK1 is a member of the MAPK kinase family, whose activity is also stimulated 

by TGF-β1 (Fig. 1). TAK1 activates the p38 and JNK pathways, which are 

involved in BMP-induced apoptosis (Kimura et al., 2000; Zhang et al., 2000). 

 

1.3.3. Regulation of BMP signalling. 

Activity and specificity of the BMP signalling are regulated on several 

levels: (i) at the cell surface, by modulating binding of the BMPs to the BMPR 

receptors; (ii) in the cytoplasm, by inhibitory Smads and Smad binding proteins, 

and (iii) in the nucleus, by controlling the transcription of BMP target genes 

(Massague, 2003; Miyazono et al., 2001; ten Dijke and Hill, 2004). 

 

1.3.3.1. Regulation of BMP signalling by extracellular events.  

BMP antagonists. The activity of BMPs at the cell surface is modulated 

by a number of secreted BMP antagonists. More than 10 BMP antagonists 

(noggin, chordin, follistatin, cerberus/DAN family of proteins, ectodin, etc.) have 

been identified to date (Table 3), which belong to structurally distinct protein 
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families (Balemans and Van Hul, 2002; Laurikkala et al., 2003). However, all 

these proteins selectively bind to distinct members of the BMP family with 

higher affinity than the BMPR complex, thus restricting BMP activity to the 

tissue compartments that are free of BMP antagonists. For instance, noggin 

binds BMP-2 and BMP-4 with a 10–15 times higher affinity than BMP receptors, 

and also neutralizes the activity of BMP-7 and GDF-5 with lower affinity. On the 

other hand, noggin expression can be induced by BMP2,4 and 6. Therefore, the 

BMP are able to modulate their effect via a negative feed back loop by 

upregulation of the expression of their antagonists (Gazzerro et al., 1998).  

In addition to the secreted BMP antagonists, there are other possible 

mechanisms by which BMP signalling is regulated extracellularly. One of these 

extracellular mechanisms is the expression of co-receptors or dominant 

negative non-signalling pseudoreceptors in a cell. The pseudoreceptor, BMP 

and activin membrane bound inhibitor (BAMBI), is a membrane protein, which 

has an extracellular domain similar to that of the type I BMP receptor. However, 

the pseudoreceptor lacks the intracellular serine/threonine domain 

(Onichtchouk et al., 1999). 

BMP signalling stimulators. Recent evidence suggest that, like other 

members of the TGF- family, there are co-receptors for the BMP ligand, which 

enhance the signalling of BMPs (Table 3). DRAGON is the first co-receptor 

reported for BMP, which is a glycosylphosphatidylinositol-anchored member of 

the repulsive guidance molecule family. DRAGON binds directly to BMP2 and 

BMP4, but not BMP7 or other TGF- ligands.  
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Table 3. Regulatory factors of BMP signalling  (Ye et al., 2007) 

 

 

The interaction between DRAGON and BMPs enhances the signalling and 

ultimately leads to a stronger biological response from the cell. Interestingly, this 

enhanced effect due to the DRAGON/BMP interaction can be reduced by the 

BMP2/4 antagonist, Noggin (Samad et al., 2005). A homologue of the Dragon, 

repulsive guidance molecule (RGMa), has been identified as another co-

receptor for BMPs (Babitt et al., 2005). 
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1.3.3.2. Regulation of the intracellular signalling 

Binding of BMP ligands to the BMP receptors may results in activation of 

inhibitory Smads (Smad 6 and 7), Smad binding proteins (Ski and Tob) and 

Smad ubiquitin regulatory factors (Smurf 1 and 2), which can also regulate the 

intracellular signal transduction of BMPs.  

Inhibitory Smads. Smad 6 and 7 inhibit signal transduction of BMPs, by 

interference with the activation of Smad 1 and 5, which are phosphorylated by 

the BMP Type I receptor (Table 3 and Fig. 1.4). In addition, Smad6 may inhibit 

BMP signalling by competing with Smad4 for binding to Smad1 (Hata et al., 

1996). However, Smad1/Smad5 and Smad3 can induce the expression of 

Smad6 and Smad7, respectively, suggesting a negative feedback loop in the 

BMP–Smad signalling pathway (Ishida et al., 2000; Nagarajan et al., 1999).  

Smad binding proteins. Smad binding proteins suppress BMP signalling 

by associating with the MH2 binding domain of Smads. Sloan-Kettering 

retrovirus (Ski) binds Smad 1, 2, 3, 5 and 4 and inhibits BMP signalling (Luo, 

2003; Wang et al., 2000). The transducer of ErbB-2 (Tob) is probably 

associated with the MH2domain of Smad 1, 5, 6, 7 and 8 (Yoshida et al., 2000; 

Yoshida et al., 2003). 

 Molecules that facilitate degradation of the Smads, Smurf 1 and 2, 

modulate TGF-/BMP signalling by selectively targeting the receptors and 

Smad proteins for degradation and ubiquitination (Table 3 and Fig. 1.4) (Zhu et 

al., 1999). Smurf 1 can directly interact with Smad 1/5, and facilitate their 

degradation (Zhu et al., 1999). It can also indirectly interact with the BMP Type I 

receptor through I- Smad 6 and 7, and induce ubiquitination and degradation of 

the receptors (Murakami et al., 2003).  
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NEDD4-2 (neural precursor cell expressed, developmentally down-

regulated 4-2) was recently found to be a direct binding partner of Smad7 

(Kuratomi et al., 2005). NEDD4-2 is structurally similar to Smurfs 1 and 2 (Smad 

ubiquitin regulatory factors). It can interact with Type I receptor via Smad 7, and 

induce its degradation. It can also bind to Smad 2 and 3 in the ligand-

dependent manner, and degrade Smad 2, but not Smad 3. Overexpression of 

NEDD4-2 inhibits the transcriptional activity induced by TGF-β and BMPs. 

Wicks and Haros et al. recently reported a novel ubiquitin: C-terminal hydrolase 

(UCH37). UCH37 is a deubiquitinating enzyme that can potentially reverse 

Smurf-mediated ubiquitination. It forms a stable complex with Smad 7, which 

deubiquitinates and stabilizes the type I TGF-β receptor (Wicks et al., 2005). 

However, its role in BMP signalling remains unclear. 

The associated molecule with the SH3 domain of STAM (AMSH) is a 

direct binding partner for Smad6 and has been found to inhibit the interaction 

between Smad6 and the activated BMP type I receptor, thereby allowing more 

efficient BMP receptor-induced phosphorylation of R-Smads. In addition, AMSH 

was found to interfere with the interaction between Smad6 and the activated R-

Smad. Thus, AMSH promotes BMP signalling by negatively regulating the 

function of I-Smads (Itoh et al., 2001). 

In summary, the spatial and temporal specificity of BMP effects on distinct 

groups of cells is dependent on the bioavailability of distinct BMP ligands for 

BMP receptors, on the differential recruitment of intracellular Smad1/5 proteins 

or components of the MAPK pathway to signal transduction mechanism, as well 

as on the presence of distinct co-activators or co-repressors of BMP-dependent 

transcription in the nucleus. However, cellular responses to BMPs also show 
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striking dependence on a variety of other factors, such as the stage of cell 

differentiation, the activity of other growth stimulatory or inhibitory factors, stage 

of embryogenesis, etc. 

 

 
 

1.3.4. BMP signalling in skin development and remodelling 

1.3.4.1. BMPs and epidermal development 

BMP ligands are differentially expressed in the skin during epidermal 

development. High levels of BMP-6 transcripts and protein are present in the 

suprabasal layers of the epidermis of mouse embryos starting from E15.5, while 

BMP-7 mRNA is seen in the basal epidermal layer during the last stages of 

embryonic development (Lyons et al., 1989; Takahashi and Ikeda, 1996; Wall et 

al., 1993). The expression of BMP-2 and BMP-4 transcripts in the developing 

murine skin is more restricted to HF epithelium and mesenchyme, respectively 

(Bitgood and McMahon, 1995; Lyons et al., 1989,, 1990). BMPR-IA is 

expressed in the basal layer of murine epidermis at E16.5, while BMPR-IB 

expression is restricted to suprabasal keratinocytes (Botchkarev et al., 1999a). 

Smad1, Smad5, Smad6, and Smad7 are also abundantly expressed in the 

developing murine epidermis (Dick et al., 1998; Flanders et al., 2001; He et al., 

2001). 

Data obtained from mice overexpressing BMP-6 via the K10 promoter 

show that the effects of BMP-6 on epidermal development strongly depend on 

the levels of transgene expression. High expression inhibits epidermal 

proliferation, while moderate BMP-6 expression stimulates proliferation and 

leads to the aberrant appearance of proliferating cells and K6, K14, and K16 

expression in the suprabasal epidermis (Blessing et al., 1996). Excessive BMP 
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activity in Noggin-deficient mice also results in increased epidermal 

proliferation, downregulation of K10, and appearance of ectopic proliferating 

cells that express K14 in the suprabasal layers (Botchkarev et al., 2002; 

Botchkarev et al., 1999a). 

A unique role for BMP during mouse postnatal development is the 

regulation of eyelid opening. During eye development the skin forms eyelids 

that first grow and fuse, and then reopen at a specific developmental stage. The 

process of eyelid separation requires a high degree of coordination between 

cell proliferation, apoptosis, and differentiation in the eyelid epithelium. In wild-

type mice, eyelids are open at postnatal day 13.5 (P13.5). Eyelid separation is 

strongly inhibited in transgenic mice that overexpress the BMP antagonist 

Noggin under the control of the K5 promoter (Sharov et al., 2003a). Noggin 

overexpression leads to a reduction of apoptosis and the retardation of cell 

differentiation in the eyelid epithelium, which are associated with decreased 

expression of the apoptotic receptors and differentiation markers. This suggests 

that in eyelid skin epithelium, BMPs are important for regulating a genetic 

differentiation programme that incorporates traditional apoptotic pathways. 

In vitro data demonstrated that BMP-2 and BMP-6 transcripts are also 

expressed in primary mouse keratinocytes (Drosdoff et al., 1994; Park and 

Morasso, 2002), and that similar to the embryonic skin, BMP signalling is 

involved in the control of keratinocyte proliferation and differentiation in 

postnatal skin. In primary mouse keratinocytes, BMPs inhibit cell proliferation 

and promote differentiation (D'Souza et al., 2001; Drosdoff et al., 1994; 

McDonnell et al., 2001; Park and Morasso, 2002). In differentiating epidermal 

keratinocytes, BMPs stimulate expression of K1, involucrin, and Dlx-3 
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transcription factor, suggesting that these molecules may be targets for BMP 

signalling differentiation (D'Souza et al., 2001; Drosdoff et al., 1994; McDonnell 

et al., 2001; Park and Morasso, 2002). Thus, BMPs stimulate the differentiation 

of epidermal keratinocytes, while their effects on epidermal proliferation during 

skin development are strikingly dose-dependent. 

 

1.3.4.2. BMP pathway in regulation of hair follicle development 

BMP signalling plays a pivotal role in the control of epidermal appendage 

development. Genetically engineered mice with loss or gain of BMP signalling 

show severe alterations in the development of skin appendages. Noggin knock-

out mice lack approximately 90% of their HFs (Botchkarev et al., 2002; 

Botchkarev et al., 1999a), while transgenic mice overexpressing noggin via K14 

promoter are characterized by increased HF density, formation of compound 

vibrissa HFs, smaller eyelids, ectopic cilia, hyperpigmentation of claws, 

interdigital webbing, trans differentiation of sweat glands into HFs, and 

increased size of external genitalia (Plikus et al., 2004). 

During the induction of all HF types, both BMP-2 and BMPR-IA are 

expressed in the hair placode, while BMP-4 and noggin expression is seen in 

cells of mesenchymal condensation (Botchkarev et al., 1999a; Lyons et al., 

1989). The importance of noggin as a BMP neutralizing protein for proper HF 

induction is evident from the data showing lack of induction of all secondary 

(non-tylotrich) HFs in noggin knock-out mice (Botchkarev et al., 2002; 

Botchkarev et al., 1999a). Conversely, noggin overexpression in basal 

epidermal keratinocytes results in increased HF density (Plikus et al., 2004). 

These data are consistent with other models, in which increased BMP signalling 
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inhibits the initiation phase of tooth and feather development (Jung et al., 1998; 

Neubuser et al., 1997; Noramly and Morgan, 1998). 

Interestingly, noggin knock-out mice show a phenotype somewhat 

reciprocal to that seen in Tabby and Downless mice (with mutated genes for 

Ectodysplasin (Eda) and its receptor Edar, respectively). These mice are 

characterized by lack of guard and zig-zag HFs (Mikkola and Thesleff, 2003). 

Similarly, the induction of guard, awl, and auchene HFs is altered in transgenic 

mice overexpressing Shh under the control of K1 promoter (Ellis et al., 2003).  

Although several findings suggest that Edar signalling may positively regulate 

BMP-4 expression (Mikkola and Thesleff, 2003), while noggin stimulates Shh in 

adult HFs (Botchkarev, 2001), the significance of these data and the molecular 

mechanisms underlying the cross-talk between BMP, Edar, and Shh signalling 

pathways during the initiation of distinct HF types remain to be carefully 

dissected. 

It was also found that expression of the Lef-1 transcription factor, a critical 

downstream component of the Wnt/β–catenin signalling pathway, and the 

neural cell adhesion molecule (N-CAM) are strongly decreased in hair placodes 

of noggin knock-out mice (Botchkarev et al., 1999a). A stimulatory effect of 

noggin on Lef-1 expression was also shown in primary epidermal keratinocytes 

(Jamora et al., 2003). Lef-1 plays critical roles in HF development (Fuchs, 2007; 

Millar, 2002). Lef-1 knock-out mice are characterized by a greatly reduced 

number of secondary HFs (Jamora et al., 2003; van Genderen et al., 1994). In 

addition, conditional disruption of β-catenin in the epidermis or K14-driven 

overexpression of the Wnt antagonist Dickkopf-1 lead to induction failure in 

primary and secondary HFs (Andl et al., 2002; Huelsken et al., 2001). Since 
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Lef-1 stimulates N-CAM promoter activity (Boras and Hamel, 2002) and 

negatively regulates E-cadherin expression (Jamora et al., 2003), the inhibitory 

action of BMP on hair placode formation may also be mediated by changes in 

the profile of adhesion molecules expressed in placode keratinocytes. 

Adhesion molecules play important roles in the control of HF development 

(Kljuic et al., 2003; Muller-Rover et al., 1998). However, they may not be the 

only targets regulated by BMPs during HF initiation. BMP signalling may also be 

involved in extracellular matrix remodeling during the invasion of the developing 

hair placode into the dermis. It was previously shown that BMP-2 inhibits the 

expression of matrix metalloproteinase-13 (MMP-13, collagenase-3), thus 

suppressing extracellular matrix degradation (Varghese and Canalis, 1997). 

Although the expression of different MMPs and their inhibitors (TIMPs) in the 

skin of genetically engineered mice with a gain or loss of BMP signalling 

remains to be elucidated, it was demonstrated that one of the 

metalloproteinases, namely MMP-7 or matrilysin, was expressed in hair placode 

keratinocytes and showed co-localization with Smad1 (Botchkarev and Sharov, 

2004). Interestingly, MMP-7 is also defined as a direct target of Wnt/β–catenin 

signalling (Crawford et al., 2001), which raises the possibility that BMP and Wnt 

signalling pathways may also be involved in the regulation of the extracellular 

matrix remodeling during HF initiation. 

 

1.3.4.3. BMPs in cell lineage commitment and differentiation in the 

developing HF. 

In the developing HF, the inductive interactions between keratinocytes of 

the hair placode and fibroblasts of the dermal papilla lead to the differentiation 
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of progenitor cells into distinct cell populations, including sebocytes, outer root 

sheath keratinocytes, the cuticle, the Huxley, and Henle layers of the inner root 

sheath, as well as the medulla, the cortex, and the cuticle of the hair shaft 

(Fuchs et al., 2001; Hardy, 1992; Philpott and Paus, 1998). Accumulating 

evidence suggests that BMP signalling plays essential roles in controlling cell 

lineage commitment and cell differentiation during HF development. 

BMP-2, BMP-4, noggin, and BMPR-IA are broadly expressed in the 

epithelial and mesenchymal cells of the developing hair bulb, while expression 

of BMPR-IB is restricted to the dermal papilla, follicular connective tissue-

sheath cells, and melanocytes (Botchkarev, 2001; Kulessa et al., 2000). Data 

obtained from a number of genetic models indicate that BMP signalling is 

essential for the proper differentiation of the inner root sheath and hair shaft.  

Transgenic mice overexpressing noggin in hair matrix keratinocytes via Msx-2 

promoter are characterized by impaired hair growth and show lack of external 

hairs due to severe alterations in the proliferation/differentiation transition of 

matrix keratinocytes and hair fiber synthesis (Kulessa et al., 2000). Other 

transgenic models, in which K5 or NSE promoters drive noggin expression, 

show lack of zig-zag hairs, which are replaced by awl and auchene hairs (Guha 

et al., 2004; Sharov et al., 2003b). Furthemore, in noggin-null skin grafts 

transplanted onto SCID mice, long-term excess of BMPs leads to the 

developmental arrest of primary HFs prior to the onset of hair shaft formation 

(Botchkarev et al., 2002). In addition, conditional deletion of BMPR-IA in 

epithelial cells of the HF leads to profound alterations in the inner root sheath 

and hair shaft formation (Andl et al., 2004; Kobielak et al., 2003; Yuhki et al., 

2004).  
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The essential requirement of BMPR-IA for the differentiation of hair shaft 

progenitors into hair shaft keratinocytes is evident from the fact that K14-

Cre:BMPR-IAfl/fl mice are characterized by an absence of all three layers of 

hair shaft keratinocytes, while Msx2-Noggin and NSE-Noggin transgenic mice 

show relatively milder alterations in hair shaft structure (Andl et al., 2004; Guha 

et al., 2004; Kobielak et al., 2003; Kulessa et al., 2000). The partial decrease of 

BMP signalling in Msx2-Noggin mice is associated with upregulation and 

ectopic expression of Lef-1 in the hair shaft, while complete deletion of BMPR-

IA results in a decrease in Lef-1 expression (Andl et al., 2004; Guha et al., 

2004; Kobielak et al., 2003; Kulessa et al., 2000). In addition, Msx2-Noggin and 

K14-Cre:BMPR-IAfl/fl mice show decreased expression of the Foxn1 

transcription factor. Given that Lef-1 and Foxn1 transcription factors bind 

selected hair keratin gene promoters (Prowse, 1999; Zhou et al., 1995), these 

data suggest that BMP signalling can be involved in the control of hair shaft-

specific differentiation. 

In addition, the BMP signalling is involved in sebocyte-specific 

differentiation.  NSE-Noggin mice showed the ectopic presence of sebocytes in 

the mid-portion of the outer root sheath (Guha et al., 2004). This finding is 

consistent with an observation of BMPR-IA expression in the sebaceous gland 

of postnatal HFs (Botchkarev, 2001). Sebocyte development is severely 

affected in transgenic mice expressing the dominant-negative form of Lef-1 

under the control of K14 promoter (Merrill et al., 2001; Niemann et al., 2003a). 

Interestingly, overexpression of dominant-negative Lef1 up-regulates Indian 

Hedgehog and stimulates the proliferation of undifferentiated sebocytes, 

suggesting a cross-talk between Wnt and Hedgehog pathways in the control of 
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sebaceous gland development (Niemann et al., 2003b). Genetic studies 

suggest that Hedgehog signalling is intimately involved in the control of 

sebocyte differentiation: inhibition of the Hedgehog pathway selectively 

suppressed sebocyte development, while Hedgehog pathway activation led to a 

striking increase in the size and number of sebaceous glands (Allen et al., 

2003). Remarkably, ectopic Hedgehog signalling also triggered the formation of 

sebocytes in footpad epidermis, a region normally devoid of HFs (Allen et al., 

2003). However, it remains to be determined whether the ectopic sebocyte 

differentiation observed in NSE-Noggin mice (Guha et al., 2004) is associated 

with increase of Hedgehog signalling in the HF, or other signalling pathways are 

involved in this  phenomenon. 

Thus, cell lineage commitment and the differentiation of keratinocyte 

progenitors into the hair shaft, inner root sheath, and sebaceous gland lineages 

are tightly controlled by the local balance of BMPs and their antagonists. An 

excess or limitation of BMP signalling may affect lineage-specific differentiation 

in HFs. However, additional efforts are required to define the specific BMP 

targets for each cell population in the HFs, as well as the molecules that 

underlie a cross-talk between the BMP and other signalling pathways (Wnt, 

Shh, Edar) involved in the control of lineage-specific differentiation during HF 

development. 

 

1.3.4.4. BMP signalling and hair cycle regulation 

HF morphogenesis and the hair cycle have many similar aspects. They 

both are characterized by activation of cell differentiation programmes that lead 

to the construction of the fiber-producing hair bulb. They are also controlled by 
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similar signalling networks within and between the follicular epithelium and 

mesenchyme that use molecules belonging to the Wnt, TGF-/BMP, Hedgehog, 

FGF, Notch, EGF, TNF, and neurotrophin families (Fuchs, 2001; Stenn and 

Paus, 2001; Millar, 2002; Botchkarev and Kishimoto, 2003; Botchkarev and 

Paus, 2003). Several recent investigations showed an essential role for BMP 

signalling in the control of HF cycling. 

 

BMP signalling, hair follicle stem cells, and hair cycle initiation. 

Accumulating evidences suggest that BMP signalling plays an important role in 

controlling stem cell behavior. BMP-4 supports the self-renewal of embryonic 

stem cells via inducing Id proteins through the BMP–Smad pathway and via 

inhibiting the MAPK pathway (Qi et al., 2004; Ying et al., 2003). Furthermore, 

BMPR-IA signalling controls the number of hematopoietic stem cells by 

regulating the size of the stem cell niche (Zhang et al., 2003). Microarray 

analyses of isolated HF stem cells reveal markedly reduced expression of BMP-

4 and strongly increased levels of the BMP antagonist gremlin and the BMP 

targets Id2 and Id4 proteins (Morris et al., 2004; Tumbar et al., 2003). 

Furthermore, the existence of two distinct stem cell populations was shown in 

the bulge, one of which is characterized by an elevated expression of BMP-6 

(Blanpain et al., 2004). Moreover, BMP-6 is capable to inhibit the growth of HF 

stem cells in vitro without inducing their differentiation (Blanpain et al., 2004). 

Furthermore, conditional ablation of BMPR-IA expression in the epidermis leads 

to activation of stem cells proliferation, causing an expansion of the niche and 

loss of slow-cycling cells (Gosselet et al., 2007; Kobielak et al., 2007; Zhang et 

al., 2006). Therefore, BMP signalling plays an important role in maintaining of 
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HF stem cells quiescence by inhibiting their differentiation into transient 

amplifying daughter cells. Recent studies suggest that bulge SC quiescence 

that is induced by BMP signalling is governed in part by its ability to regulate the 

transcriptional repressor nuclear factor of activated T cells C1 (nFATC1) 

(Horsley et al., 2008). 

Consistent with ability of BMPs to regulate SC activity, gain- and loss-of-

function studies showed that BMP signalling was involved in the control of hair 

cycle initiation in telogen HFs. In telogen skin, BMP4 is expressed in the dermal 

papilla and secondary germ, whereas BMPR-IA is selectively expressed in the 

secondary germ keratinocytes (Botchkarev, 2001). Growth phase activation in 

the telogen HF is associated with up-regulation of noggin in the follicular 

epithelium and mesenchyme, and is also accompanied by down-regulation of 

BMPR-IA in the proliferating cells of the secondary hair germ (Botchkarev, 

2001), suggesting down-regulation of the BMP pathway as a important event for 

anagen initiation. Indeed, noggin administration induces anagen in telogen 

mouse skin in vivo, while BMP4 treatment blocks anagen development 

(Botchkarev, 2001). Similar data were obtained from K14-Noggin mice and 

NSE-Noggin mice that showed accelerated entry of the telogen HFs into 

anagen (Guha et al., 2004; Plikus et al., 2004). Interestingly, Plikus et al. (2008) 

recently showed a periodic expression of BMP2 and BMP4 in the dermis of 

telogen skin, thus dividing the conventional telogen into two new functional 

phases: the refractory phase and the competent for hair regeneration phase, 

characterized by high and low BMP signalling, respectively (Plikus et al., 2008). 

Interestingly, cyclic BMP2 and BMP4 expression in the dermis seems to dictate 

the competence of bulge stem cells for activation and HF regeneration (Plikus 
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et al., 2008). Importantly, this BMP cycle is out of phase with the WNT/beta-

catenin cycle (Plikus et al., 2008); the later is associated with bulge stem cell 

activation and anagen initiation (Fuchs et al., 2004; Huelsken et al., 2001). 

Thus, there is competitive equilibrium between BMP and WNT signalling that 

controls HF stem cells activity during hair cycle.  

 

BMP signalling in the control of catagen development. Catagen is a 

tightly regulated programme of HF transition from active growth to the resting 

stage. During catagen, vast majority of keratinocytes in the cyclic portion of the 

HF eliminates by undergoing apoptosis. However, a small population of 

keratinocytes and melanocytes manages to survive and forms the secondary 

hair germ in the telogen HF (Alonso and Fuchs, 2006; Botchkarev and Paus, 

2003; Stenn and Paus, 2001). 

Several mouse genetic models developed recently suggested a role for 

BMP signalling in the control of catagen development. Deletion of BMPR-IA in 

follicular keratinocytes was accompanied by a markedly delayed entry of the 

HFs into first catagen (Andl et al., 2004), suggesting an involvement of BMPR-

IA in the control of the anagen–catagen transition. In contrast, over-expression 

of Noggin in NSE-Noggin mice lead to acceleration of catagen entry in 

secondary HFs, while the catagen onset in primary HFs was delayed (Guha et 

al., 2004). Also, catagen development in the secondary HFs of NSE-Noggin 

mice was abnormal and resulted in hair loss due to alterations in club hair 

formation (Guha et al., 2004). However, K14-Noggin mice showed lack of 

abnormalities in catagen development (Plikus et al., 2004). These data are not 

necessarily contradictory, but instead suggest that the distinct magnitude of 
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signalling through BMPR-IA may be critical for the proper dynamics of catagen 

development. Clearly, careful systematic studies are required to fully 

understand the mechanisms underlying the involvement of BMP signalling in 

the control of apoptosis and survival in distinct populations of HF cells during 

catagen. 

 

 

1.3.5. BMP signalling and skin carcinogenesis 

Evidences obtained during last decade show that perturbation of BMP 

pathways can result in tumourigenesis. These have brought together two fields, 

developmental biology and cancer research, that had advanced independently 

until recently. The most striking indication that BMP signalling pathways 

contribute to carcinogenesis comes from genetic studies of familial cancer 

syndromes. Mutation of Smad4 and BMPR-IA (Alk3) is genetically responsible 

for familial juvenile polyposis (De Bosscher et al., 2004). Germ line mutations in 

BMPRIA (Alk3) have also been identified in a subset of families with Cowden 

syndrome, an inherited breast cancer syndrome (Zhou et al., 2001). Moreover, 

majority of sporadic human epithelial cancers (>85%) including pancreatic, 

colon, breast, prostate, and lung, have aberrations in components of the 

TGF/BMP signalling pathway (Table 4). The role of BMP signalling in 

carcinogenesis is quite complex, i.e., both stimulating and inhibiting effects on 

tumour growth have been described (Hsu et al., 2005; Sun, 2004). 
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Table 4. Aberrations of BMP signalling pathways in human cancer, the 

functional relevance and clinical correlations (Hsu et al., 2005) 

 

 

Despite the tremendous progress achieved in delineating the functional 

significance of BMP pathways in carcinogenesis during the last decade, little is 

known about molecular mechanisms implicating BMP signalling in skin 

carcinogenesis.  

For skin cancer, solar ultraviolet (UV) irradiation is a major etiological 
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factor. Quan et al. (2005) showed an increased expression of Smad7 mRNA in 

human sun-protected skin areas irradiated with an experimental ultraviolet B 

(UVB) light. However, no changes in the protein levels of Smad2, Smad3, and 

Smad4 were detected (Quan et al., 2005). In addition, sun-exposed forearm 

and sun-protected upper inner-arm skin samples from human volunteers were 

compared. Increased expression of Smad7 mRNA and protein was observed in 

the sun-exposed epidermis compared to the sun-protected epidermis (Quan et 

al., 2005).  

During two-stage skin chemical carcinogenesis, Smad1, Smad2, Smad3, 

Smad4, and Smad5 proteins were significantly downregulated in chemically 

induced SCCs and their expression was completely lost in spindle cell 

carcinomas (SPCCs) (He et al., 2001). In contrast to R-Smad loss in SCCs, 

Smad7 mRNA was upregulated in chemically induced papillomas and SCCs 

(He et al., 2001). Thus, these data suggest that R-Smads exert tumour 

suppressive effects, whilst inhibitory Smad7 promotes skin tumour formation. 

Upregulation of Smad7 not only directly blocks BMP/Smad signalling, but could 

also be responsible for reduced R-Smad proteins by recruiting Smurf2 

(Massague and Gomis, 2006). 

To further dissect BMP/Smad deregulation during skin carcinogenesis, 

several components of the pathway were genetically modified in the epidermis. 

Transgenic overexpression of BMP4 under the control of the regulatory 

elements of the cytokeratin IV* gene prevented papilloma and SCC 

development in the skin carcinogenesis protocol using carcinogen N-methyl-N'-

nitrosoguanidine (MNNG) and TPA (Blessing et al., 1995). In addition, BMP4 

transgene blocks TPA-induced proliferation and inflammation in the skin 
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(Blessing et al., 1995). Similarly, a delayed development and strong 

suppression of the benign and malignant skin tumour formation was observed 

in mice with K10 promoter controlled BMP6 transgene expression (Wach et al., 

2001). In this model, expression of BMP-6 stimulated apoptosis and 

downregulated the transcription of AP-1 family members thereby establishing 

tumour resistance (Wach et al., 2001). AP-1 is composed of members of the 

Jun- (c-Jun, Jun B, Jun D) and Fos-families (c-Fos, Fos B, Fra 1, Fra 2) and 

acts as homo- or heterodimer (Angel and Karin, 1991). In vivo experiments 

showed the requirement of c-Jun for the development of papillomas (Young et 

al., 1999), whereas c-Fos is not essential for papilloma formation but is required 

for malignant transformation (Saez et al., 1995). 

Somatic inactivation of Smad4 has been documented in multiple tumour 

types including pancreatic, colon, breast, and prostate cancer (Bierie and 

Moses, 2006). Epidermal-specific Smad4 deletion blocks the growth inhibitory 

effect of TGF/BMP, resulting in hyperproliferation associated with 

downregulation of p21 and p27, and upregulation of c-Myc and cyclin D1 (Qiao 

et al., 2006; Yang et al., 2005). Further, all Smad4-/- mice developed 

spontaneous skin tumours including primarily SCCs, as well as sebaceous 

adenomas, basal cell carcinomas, and trichoepitheliomas (Qiao et al., 2006; 

Yang et al., 2005). Smad4-/- SCCs demonstrated inactivated Pten and 

activated Akt, representing activation of the key cell survival pathway (Qiao et 

al., 2006; Yang et al., 2005). Mice with epidermal-specific deletion of both 

Smad4 and Pten showed accelerated tumour formation, suggesting the cross-

talk between the TGF/BMP and Pten signalling in the control of epidermal 

proliferation and survival (Yang et al., 2005). 
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The HF phenotype in Smad4-/- mice was similar to the one in epidermal-

specific BMPR-IA (ALK-3) knockout mice (Andl et al., 2004; Kobielak et al., 

2003; Ming Kwan et al., 2004; Yuhki et al., 2004), which illustrates a possible 

dependence of Smad-4 on BMP signalling but not on the Activin or TGF 

signalling. Interestingly, in addition to the defects of hair shaft and IRS 

formation, epidermal-specific BMPR-IA (ALK-3) knockout mice, are also 

characterized by hyperplastic HFs and spontaneous development of hair 

follicle-derived tumours, pilomatricomas, in postnatal life (Ming Kwan et al., 

2004). However, development of malignant skin tumours was not observed in 

these mice. 

Smad7 is expressed at very low levels in normal epithelia, but its 

expression is elevated in certain cancers (Bierie and Moses, 2006). To further 

investigate the role of Smad7 in the skin, keratinocyte-specific Smad7 

transgenic mice were generated. Smad7 transgenic mice (K5 promoter) 

displayed severe epithelial hyperplasia, potentially because of negative 

regulation of the TGF/BMP induced growth inhibition and apoptosis. Further 

characterization of Smad7 transgenic epithelia revealed downregulation of 

TGF, BMP, and activin receptors, and decreased levels of activated Smad1 

and Smad2 proteins, which is consistent with the known role of Smad7 in 

inhibiting TGF/BMP signalling (He et al., 2002). A report from Liu et al. (2003) 

demonstrated that Smad7 cooperates with oncogenic ras to cause malignant 

conversion in a mouse model for SCC. Overexpression of Smad7 in H-ras-

transduced keratinocytes resulted in a marked increase in cell proliferation, 

reduced H-ras-induced senescence, and upregulation of epidermal growth 

factor superfamily members. To further investigate the role of Smad7 in a 
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xenograft model, primary keratinocytes were coinfected with Smad7 and H-ras, 

mixed with dermal fibroblasts, and grafted onto nude mice. H-ras/Smad7, but 

not H-ras grafts progressed to SCCs (Liu et al., 2003a). Characterization of H-

ras/Smad7 SCCs revealed increased proliferation and invasive growth, 

upregulation of Keratin 8 expression, and lack of nuclear Smad2, Smad3, or 

Smad5 (Liu et al., 2003a). Recently, it was shown that Smad7 binds a major 

mediator of Wnt signalling, -catenin, and induces -catenin degradation by 

recruiting the Smurf2 ubiquitin ligase to the Smad7/-catenin complex (Han et 

al., 2006). Since reduced Wnt signalling results in spontaneous skin cancer in 

mice (Niemann et al., 2003a), it would be interesting to examine whether 

Smad7-mediated -catenin degradation contributes to the oncogenic role of 

Smad7 in skin cancer. On the other hand, enhanced Wnt signalling contributes 

to many types of cancer and also results in spontaneous skin cancer formation 

in mice (Gat et al., 1998). Therefore, Smad7 may play a dual role in 

carcinogenesis and future studies directly examining the role of Smad7 in 

cancer are required.  

 

1.4 Aims of the project 

Majority of human malignancies arises from epithelial tissues including the 

skin epithelium or epidermis. The skin undergoes constant remodeling and 

renewal; it is a tightly regulated system that has been shown to involve a 

hierarchy of cells with differing proliferative and self-renewal capacities (Miller et 

al., 2005). The fine-tuning of the cell renewal process is based on coordinated 

action of several regulatory molecules that tightly control the key steps of cell 



 84 

proliferation and differentiation. However, a combination of inherited and 

constitutional factors, with exposure to ubiquitously presented environmental 

factors may trigger molecular mechanisms resulting in dysregulation of the cell 

renewal processes and leading to carcinogenesis within the skin cell population 

(Miller et al., 2005). 

Despite the fact that considerable progress has been made in 

identification of molecular mechanisms underlying the development of the major 

cutaneous cancers, mechanisms suppressing tumour growth in keratinocytes 

remain to be further clarified. It was shown that mechanisms controlling skin 

development and carcinogenesis appear to be very similar, and key signalling 

pathways (Wnt, Hedgehog, TGF/BMP, etc.) that regulate skin development 

are also implicated in the pathobiology of cutaneous neoplasias (Athar, 2006; 

Bornstein et al., 2007; Malanchi et al., 2008; Owens and Watt, 2003).  

Several indications suggest that BMP signalling operates as an 

evolutionary conserved potent tumour suppressor in the skin and other organs, 

while secreted BMP antagonists function as promoters of tumour growth 

(Blessing et al., 1995; He et al., 2001; Qiao et al., 2006; Sneddon et al., 2006). 

However, mechanisms and downstream targets that mediate tumour 

suppressor function of the BMP signalling pathway in skin remain to be 

explored. To address this issue we will:  

i)            Investigate effects of the BMP antagonist Noggin on the BMP anti-

tumour activity in a transgenic mouse model with overexpression of Noggin in 

keratinocytes under control of the keratin 14 promoter.  Dynamic changes in the 

development of skin tumours, analysis of cell proliferation and epithelial stem 

cells activity will be compared between K14-Noggin and wild-type mice. 
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ii) Determine genome-wide changes in the keratinocyte gene 

expression programmeme upon Noggin-induced BMP inhibition. Genome-wide 

microarray and qRT-PCR analysis, as well as in situ hybridization and immuno-

fluorescent approaches will be employed to compare changes in gene 

expression in the skin of K14-Noggin and wild-type mice. 

iii) Define BMP target genes mediating the BMP tumour suppressive 

functions in the skin. Chromatin immunoprecipitation (ChIP) and transient 

transfection promoter assay will be used to identify BMP targets in 

keratinocytes; experimental studies on modulating gene expression in tumour 

cells isolated from the skin of K14-Noggin mice will be performed. 
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2.1. Animals, tissue collection, chemical carcinogenesis, 

pharmacological experiments and morphometric analyses 

All animal works were performed under the approval of PPL 40/2989 

license at the University of Bradford and the Boston University IACUC protocol. 

Mice had free access to food (standard rodent diet) and tap water. The animal 

room was maintained under continuous 12-hr light and dark cycles with 

temperature and humidity at 211oC and 40-60%, respectively.  

Transgenic (TG) K14-Noggin mice used in this study were provided by Dr. 

P Overbeek (Baylor College of Medicine, USA). These TG mice were generated 

on FVB background using transgenic construct, which contains human K14 

promoter, mouse Noggin cDNA and human growth hormone poly-A sequence, 

as described previously (Tucker et al., 2004). For control, FVB mice were 

purchased from Charles River. Skin samples were collected from neonatal 

(P0.5-P40) and adult mice (12-24 week-old, n=5-7 per time points for each 

mouse strain), frozen in liquid nitrogen and embedded into Tissue-Tek (Sakura, 

USA). Skin samples stored at -800C until use.  

For chemical carcinogenesis, skin tumours were nduced using a 

carcinogen 7,12-dimethylbenz[а]antracen (DMBA) (Sigma-Aldrih) and a tumour 

promoter 12-tetradecanoil-phorbol-13-acetate (TPA) (Sigma-Aldrih). Back skin 

of 8 week-old female TG and WT mice (n=5 for each mouse strain) was shaved 

and treated with a single dose of DMBA (250 g/ml) followed by twice per week 

application of the TPA (40 g/ml) during 15 weeks. Tumour progression was 

observed up to 25 weeks. 

For pharmacological experiment, the Wnt antagonist Aptosyn (4 mg/kg; 

OSI Pharmaceuticals, USA) and Shh inhibitor Cyclopamine (100 μg/kg; kindly 
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provided by Dr. W. Niu, Infinity Pharmaceuticals, Inc., USA) or vehicle control 

were administrated to neonatal TG mice (n=24) by daily subcutaneous (s/c) 

injections in the dorsal area from day P10 to P28. Skin was collected (P19, P21 

and P28) and processed for histological and morphometric analyses, which 

were performed using a bright-field microscope (Nikon, USA), SPOT digital 

camera and image analysis software (Diagnostic Instruments, USA). Based on 

the morphology, HF-derived tumours were divided into several groups: stage 1 

– small tumours (30-60 μm in diameter) arising from the HF outer root sheath, 

stage 2 – medium-sized tumours (60-120 μm in diameter), stage 3 – single 

large tumours (over 120 μm in diameter), stage 4 – multiple large tumours with 

epithelioid cyst containing keratinized substance in the center. Percentage of 

the HFs with tumours at distinct stage of the development was assessed in the 

Aptosyn (P19) and Cyclopamine-treated (P21 and P28) groups versus control; 

data were pooled, mean ± SEM was calculated, and statistical analysis was 

performed using unpaired Student's t-test. 

 

2.2. Laser Capture Microdissection and microarray 

analyses  

The hair matrix of anagen HFs of WT mice and tumour epithelium of K14-

Noggin mice were dissected by Laser Capture Microdissection (LCM) system 

(Arcturus, USA), as described before (Sharov et al., 2006). Briefly, 8 μm thick 

frozen sections were extensively dehydrated to preserve RNA integrity and 

stained with the Histological Reagent (Arcturus, USA) according to the 

manufacture protocol. After locating the cells of interest under the control of 

microscope, a CapSure Cap was placed over the target area. Pulsing the laser 
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beam (30-60 m in diameter) through the cap caused the thermoplastic film to 

form a thin protrusion that bridged the gap between the cap and tissue and 

adhered to the target cell. By lifting of the cap, the target cells attached to the 

cap were removed. Laser capture was performed from 50-70 HFs of WT and 

TG mice, respectively. Total RNAs were isolated using PicoPure® RNA 

Isolation Kit (Arcturus, USA), following by two rounds of linear RNA 

amplification using RiboAmp® RNA Amplification Kit (Arcturus, USA). 

Universal Mouse Reference RNA (Stratagene, USA) was used after one 

round of linear amplification in all analyses as a control. All microarray analyses 

were performed by Mogene Co. (USA) using 41K Whole Mouse Genome 60-

mer oligo-microarray (manufactured by Agilent Technologies). 

Real-time PCR of un-amplified reference RNA and reference RNA 

obtained after two rounds of amplification was employed for validation of 

possible alterations in gene expression caused by amplification procedure (see 

below). All microarray data on gene expression were normalized to the 

corresponding data obtained from the reference RNA. Two independent data 

sets were obtained from WT and TG mice, and p-values were calculated by the 

Agilent feature Extraction software (version 7.5) using distribution of the 

background intensity values to signal intensity and employing Student‟s t-test. 

Fold changes were determined as a ratio of normalized expression values. 

Functional annotation of the overrepresented and underrepresented genes was 

performed by the NIA Array Analysis software 

(http://lgsun.grc.nia.nih.gov/ANOVA/, 2007) according to the recommendations 

published previously (Sharov et al., 2005a). 
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2.3. Isolation and treatment of tumour cells with rhBMP4 

Tumours from the TG mice were dissected and minced with scissors in 

growth medium (William‟s medium, 10% FBS), followed by treatment with 

Collagenase/Dispase (Roche, 1mg/ml) for 1 h at 370 C. Disintegrated tumour 

cells were passed through a 70 m nylon filter (Becton Dickinson) and spun 

down for 3 min at 100x g, followed by resuspension in the fresh growth medium 

and seeding onto collagen-coated P60 plates. The tumour cells cultured at 

33°C with 8% CO2 until they were about 80-90% confluent. 

The tumour cells were treated either with i) 200 ng/ml BMP4, ii) 500 ng/ml 

BMP4, iii) 200 ng/ml BMP4 and 500 ng/ml Noggin (R&D Systems) or diluent 

control. Cells were harvested after 24 hours of treatment and processed for total 

RNA and protein isolation. Total RNA was isolated with TRIZOL reagent 

(Invitrogen) according to the manufacture protocol. 1g of the total RNA used 

for cDNA synthesis using SuperScript III First-Strand Synthesis System 

(Invitrogen). 0,5 l of the synthesized cDNA used for Wif1 and Shh expression 

analysis by qRT-PCR (see section 2.7). Proteins extraction is described in 

section 2.6  

 

2.4. Chromatin Immunoprecipitation (ChIP) 

Skin from newborn FVB mice was incubated in 0.25% Trypsin (Invitrogen) 

overnight at +40C. After separation from the dermis, epidermis minced and 

stirred for 30 min at +40C to release keratinocytes. The cells were platted onto 

collagen-coated P100 plates (1 skin per P100) in growth medium [EMEM 

(Lonzo) supplemented with chelated 4%FBS, 0.05 mM CaCl2, 0.4 g/ml 
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hydrocortisone (Sigma), 5g/ml insulin (Sigma), 10-10 M cholera toxin (ICN), 10 

ng/ml epidermal growth factor (Invitrogen), 2x10-9 M T3 (3,3‟,5-triiodo-L-

thyronine; Sigma), 1x Antibiotic/Antimicotic (Sigma)] and incubated at 330C with 

8% CO2.  

Confluent cells were cross-linked with 2mM Di(N-succinimidyl) glutarate 

(Sigma) for 45 min at RT, then with 1% PFA for 15 min at RT. After lysing in 

Buffer I [50 nM HEPES (pH7,5), 0.14 M NaCl, 2.5% Glycerol, 1mM EDTA 

(pH8.0), 0.5% IGEPAL CA-630, 0.25% Triton X-100, 1x Protease and 

phosphatase inhibitor cocktail (Roche)], cross-linked chromatin sonicated for 20 

min using Branson Sonifier 450CE equipped with cup horn. After preclearing 

treatment, cell extracts were incubated with 5 g phospho-Smad1/5/8 

antibodies (Chemicon) overnight at 4°C followed by precipitation with ProteinA 

sepharose (Invitrogen) for 1 hours. Sepharose beads with precipitated antibody-

chromatin complex were washed with Wash buffer I [50 mM Tris-HCl (pH8), 

0.15 M NaCl, 2 mM EDTA, 0.1% SDS, 1% Triton X-100)], then with Wash 

Buffer II (same as Wash Buffer I with 0.5 M NaCl) and Wash Buffer III [25 mM 

Tris-HCl (pH8), 0.5 M LiCl, 1 mM EDTA, 0.1% SDS, 1% IGEPAL CA-630]. 

Following to the extensive washing, DNA is eluted with TE buffer/1% SDS and, 

after adding 0.2 M NaCl to the eluted solution, decrosslinked overnight at 65oC. 

After Proteinase K treatment (100 g/ml) for 1 hour at 50oC, DNA was extracted 

with phenol-chlorophorm method, followed by ethanol precipitation. Purified 

DNA analyzed for presence putative Smad1/5/8 binding sites by PCR using 

primers (see Tab. 1) amplifying different genomic regions within Wif1 promoter. 

Comparison of promoter sequences among different species was performed 

using the whole genome mVISTA tool (http://genome.lbl.gov/vista/index.shtml), 

http://genome.lbl.gov/vista/index.shtml
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which evaluates conservation of genomes between pairs of species (specified 

as mouse and humans). 

 

2.5. Cell transfection  

Following plasmid were used for transient transfection of HaCaT 

keratinocytes: i) pWif1-Luc and pShh-Luc reporter plasmids containing human 

Wif1 and Shh promoter regions  (nucleotides -1512 to +6 bp of human Wif1 

gene and nucleotides -3347 to -1512 of human Shh promoter sequence, 

respectively); ii) plasmids containing constitutively active BMP receptors 

(BMPR-IA or Alk3QD and BMPR-IB or Alk6QD) (kindly provided by Prof. K. 

Funa); iii) Smad1 and Smad5 expressing plasmids under pCMV promoter 

(kindly provided by Prof. K. Funa); iv) BMP-responsive plasmid 3GC2-Lux 

(contains three repeats of GC-rich sequence derived from the proximal region of 

Smad6 promoter) as a positive control; v) pGVB2L-Luc plasmid as a negative 

control; vi) pRL-null as an internal control plasmid to compensate variable 

transfection efficiencies. 

HaCaT keratinocytes were grown in Dulbecco‟s modified Eagle‟s medium 

supplemented with 10% fetal bovine serum until 60-70% confluent. Transfecton 

was performed on twellve-well plates for 24 hours using Lipofectamine 2000 

reagent (Invitrogen) according to the manufacture protocol. Luciferase activity 

was assessed using Dual-Luciferase Reporter Assay System (Promega). All 

assays were performed in triplicates. Data were pooled; mean  SEM was 

calculated. Statistical analysis was performed using unpaired Student‟s t-test. 
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2.6. Western Blotting 

Western blot analysis of total tissue proteins obtained from the extracts of 

full thickness skin of TG and WT mice was performed, as described before 

(Sharov et al., 2005b; Sharov et al., 2003a).  

Proteins were extracted from snap frozen skin samples or cultured cells 

with lysis buffer (0.05 M Tris-HCl (pH7.5), 0.15 M NaCl, 1% Sodium 

deoxycholate, 1% Triton X100, 0.1% SDS) supplemented with Complete Mini 

(EDTA free) Protease Inhibitor Cocktail (Roche). 20 g of protein was used for 

SDS-PAGE at a constant voltage of 125 V for 1.5hr, followed by transblotting 

into nitrocellulose membrane with transblott buffer (0.02 M Tris-HCl (pH10.4), 

0.15 M glicine, 20% Methanol) at 300 mA for 40 min. After washing in 

1xTBS/0.05% Tween 20, the membrane blocked in 5% non-fat milk for 1hr at 

RT, followed by incubation with primary antibodies overnight at +4oC. After 

washing in 1xTBS/0.05% Tween-20, secondary antibody (peroxidase-

conjugated, 1:2000, Jackson ImmunoResearch) was applied for 1hr. The 

membrane developed using Western Lightning Chemiluminoscence Reagent 

(PerkinElmer). Immunoblotting against -catenin served as a loading control.  

 

2.7. Quantitative Real-time PCR  (qRT-PCR) analyses 

LCM isolated RNA samples after two rounds of amplification (see section 

2.2) were further processed for cDNA synthesis. Equal amount of amplified 

RNA (2 g) from control and TG samples was reverse transcribed with random 

primers using Superscript III First Strand Synthesis System kit (Invitrogen) 

according to the manufacture protocol. qRT-PCR was performed using MyiQ 
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Single-Color Real-Time PCR Detection System (Bio-Rad Corp.) PCR primers 

were designed with Beacon Designer software (Premier Biosoft International; 

Table 5). Reaction mixture contained 1x iQ SYBR Green Supermix (Bio-Rad 

Corp.), 1 uM primers and 10 ng cDNA. Amplification was done in following 

conditions: initial denaturation (95oC for 5 mins), followed by 40 cycles of 

denaturation (95oC for 15 sec), annealing (for 30 sec at temperature 

experimentally determined for each primer pairs) and elongation (72oC for 15 

sec). Following the amplification, melting curve was created by gradual heating 

the PCR products (from 60oC to 90oC). For each gene of interest, qRT-PCR 

was performed in triplicates. Expression of a housekeeping gene (Gapdh) was 

used for normalization. Differences in expression between samples and controls 

were calculated using Gene Expression Macro programme (Bio-Rad Corp.) 

based on the Ct equitation method, data were pooled, mean ± SEM was 

calculated, and statistical analysis was performed using unpaired Student's t 

test.  

 

Table 5. List of PCR primers 
 

Accession 
Number 

Sequence Definition Sense/Anti-sense Primers 

qRT-PCR primers 

NM_009744 
B-cell 
leukemia/lymphoma 6 
(BCL6) 

CATACCTGTAATGTGTCCTCAC 
ACAAGCATGACGCAGAATG 

NM_00761 Caspase 7 (Casp7) 
TGTAAGAGGACTTCGGTTC 
GACTCAGTTCTGGCTTGG 

NM_009829 Cyclin D2 (Ccnd2) 
TACCTTAGACAGTCCAACCTTG 
GCTGTTGACCACCACCTG 

NM_007634 Cyclin F (Ccnf) 
AGGAGAGCGAAGGCGAGAAG 
GTTCAGGTAGACCACAGTGACATC 

BC052714 Cyclin M3 (Ccnm3) CTGCTGGAGAATACTAACC 
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GTCTATGGAACAGTCTATGG 

NM_010100 
Ectodysplasin-A 
receptor (Edar) 

CCCACCGAGTTGCCGTTT, 
CCAATCTCATCCCTCTTCA 

NM_010464 
Homeo box C13 
(Hoxc13) 

CTCAGTTCTTGCCTCTTC 
ACCTTGCCTATGGAGTTC 

NM_010496 
Inhibitor of DNA binding 
2 (Id2) 

GACTCGCATCCCACTATC 
ATGCTGATGTCCGTGTTC 

NM_010591 Jun oncogene (Jun) 
CTGATTTGTAGGAATAGATACCC 
CACAGCACATGCCACTTC 

NM_010659 Keratin 1-1 (Krt1-1) 
GTCTCCAATCCCTGTGTC 
TGTCCTTGCTCTGTTGAC 

NM_008470 Keratin 1-16 (Krt1-16) 
AATATCCACTCCTCCTCAC 
GTTGAACCTTGCTCCTTG 

NM_010666 Keratin 1-c29 (Krt1-c29) 
TCGTGGAAGAGTTAGACC 
TTAGAGGCGGAGTTCAAG 

NM_010663 Keratin 1-17 (Krt1-17) 
ACCTGACTCAGTACAAGCC 
CCTTAACGGGTGGTCTGG 

BC006780 Keratin 2-5 (Krt2-5) 
AATGTAAGCCACCAAAGCAGAACC 
GGAGGAAGTCAGAACCAGGACAG 

AY028606 Keratin 2-20 (Krt2-20) 
GAACCACTGTGACAACCTACG 
CTGCCTCAATGTCCTGCTG  

NM_010703 
Lymphoid enhancer 
binding factor 1 (Lef1) 

GCCAGCCACCGCCGATTC 
GGCGGCGTTGGACAGATC 

NM_008808 
Platelet-derived growth 
factor alpha (Pdgfa) 

AGACAGATGTGAGGTGAG 
ACGGAGGAGAACAAAGAC 

NM_176996 
Smoothened homolog 
(Smo) 

AAAGTGTTTATTGTGTCATTTGTC 
GGAACTGAGATGTGAATGTAGG 

NM_009170 Sonic hedgehog (Shh) 
CATTCCTCTCCTGCTATGCTCCTG 
ATGACAAAGTGGCGGTTACAAAGC 

NM_011718 
Wingless related MMTV 
integration site 10b 
(Wnt10b) 

AGCGTCTTCTCTACCTACAG 
ACACAATGCCTGCTATTATCC 

NM_009524 
Wingless-related MMTV 
integration site 5A 
(Wnt5a) 

CCACGAATACCAGGAAGCAAGC 
CCCACAAAGAACACCAAAGAGAGG 

NM_011915 
Wnt inhibitory factor 1 
(Wif1) 

CCACCTGAATCCAATTACATC 
TGAACAGCATTTGAACATCC 

ChIP primers 

Gene Genomic region  Sense/Anti-sense Primers 

Wif1 -326 to +37 
AGACAGGCACACAGAGATG 
AAAGGCGAGCACTGAGAG  

 -2830 to -2463 
GTGTGTGAGTGTGTATAAGTG 
CGAGGACCAGAGTTCATATC  
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2.8. Immunohistochemistry 

Cryosections (9 m) were fixed in acetone (10 mins at -20oC) or 4% PFA 

(10 mins at RT). For each primary AB (see Table 6), the fixation method was 

determined experimentally. Sections were initially preincubated in 5% 

BSA/0.1% Triton X100 to block non-specific binding, following by overnight 

incubation with primary AB at +4oC. Sections were then incubated with 

corresponding FITC-, TRITC- or biotin-labeled secondary AB (Jackson 

ImmunoResearch) for 1hr at +37oC.  In case of using the biotin-labeled 

secondary AB, the reaction product was visualized with a tyramide amplification 

kit (Perkin Elmer/ NEN). Cell nuclei were visualized with 4‟6‟-Diamidino-2-

phenylindol (DAPI).  

Image preparation and analyses were performed by using bright-field and 

fluorescent microscope (Nikon), in combination with SPOT digital camera and 

image analysis software (Diagnostic Instruments). 

 

2.9. TUNEL assay 

To visualize apoptotic cells, freshly cut cryosections (9 m) were fixed in 

4% PFA (10 mins at RT), followed by postfixation in acetone/acetic acid (in a 

ratio 2:1) (10 mins at -20oC). The reaction was performed using ApopTag® 

Fluorescein In Situ Apoptosis Detection Kit (Chemicon, S7110) according the 

manufacture protocol. Briefly, sections incubated in a reaction mixture (70% 

Reaction buffer, 30% TdT enzyme) for 1hr at +37oC, followed by an application 

of FITC-labeled anti-DIG antiserum. 

Cell nuclei counterstained with DAPI. Image preparation and analyses 
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were performed by using fluorescent microscope (Nikon), in combination with 

SPOT digital camera and image analysis software (Diagnostic Instruments) 

 
Table 6. List of primary antibodies 

 

 

 

2.10. Label retaining cell detection   

 
Pulse-chase experiment for simultaneous detection of proliferating and 

Label Retaining Cells (LRCs) based on the differential antigen properties of 

BrdU analogues CldU and IdU (Sigma-Aldrih). Three-day old mice were injected 

with IdU (50 g/g, i/p) during 4 days. After two weeks of chasing, pulse injection 

of CldU (50 g/g, i/p) was performed; skin samples were collected in 2 hours. 

Cryosections (9 m) were fixed in 4% PFA for 10 mins; DNA hydrolyzed by 

incubation in 1N HCl for 15 min at RT. Further, the sections were treated with 

Anigen Host Dilution Manufacturer 

BrdU Mouse 1:50 BD Pharmingen,  

-Catenin Mouse 1:100 Sigma 

CldU Rabbit 1:50  BD Pharmingen 

Ki-67 Rat 1:1000 Dako Denmark  

Lef1 Rabbit 1:100 R&D Systems Inc 

Lhx2 Goat 
1:250 Santa-Cruz 

Biotechnology 

Loricrin Rabbit 1:150 R&D Systems Inc. 

pSmad1/5/8 Rabbit 
1:100 Chemicon International 

Inc. 

Shh 
 

Rabbit 1:100 R&D Systems Inc. 

Sox9 Rabbit 
1:200 Santa-Cruz 

Biotechnology  

Wif1 Goat 
1:1000 

(Tyramide amplification) 
R&D Systems Inc. 

Wnt 10b Goat 1:100 R&D Systems Inc. 
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0.1M Sodium Tetraborate (pH 8.5) for 5 mins at RT, followed by washing in 

PBT and blocking in 10% Goat Normal Serum. Sections were then stained with 

rat anti-BrdU antibody 1:100 (Novus, clone BU1/75 (ICR1); reacts with CldU) for 

16-18 hours at RT, followed by TRITC-conjugated Goat anti-Rat serum. 

Subsequently, sections were incubated with FITC-conjugated mouse anti-BrdU 

1:50 (Caltag, clone 3D4; reacts with IdU). Finally, the sections were washed in 

high salt Tris buffer (pH 8.0) (0.5 M NaCl, 28 mM Tris-HCl, 21.8 mM Tris Base, 

0.5% Tween 20) and counterstained with DAPI.  

 

2.11. RNA in situ hybridization 

 
For mRNA detection on tissue sections, cryosections (9 μm) were fixed in 

4% PFA for 10 mins at room temperature. After acetylation in triethanolamine 

buffer (4.5 mM Triethanolamine, 6N NCl, 3mM Acetic Anhydride) for 10 mins 

and pre-mobilisation (1% Triton X100/1x DEPC-treated PBS) for 30 mins, 

sections incubated in hybridization buffer (50% Formamide DI, 2x SCC, 1% 

Dextran sulphate, 10 mg/ml t-RNA, 100 ng DIG-labeled riboprobes) for 16-18 

hours at 50oC. Slides subsequently washed in 2x SCC (10 mins, 4 times, 57oC), 

0.1x SCC (60 mins, 57oC), 0.2x SCC (10 min, RT). Immunodetection of 

hybridized probes performed with sheep anti-DIG antibody (Roche, 1:5000) 

diluted in Buffer B1 (0.1 M Maleic acid, 0.15 M NaCl, pH7.5) for 3hrs at RT. To 

visualize the immunoreaction products, sections were incubated in Buffer B2 

(0,1 M Tris-HCl, 0.1 M NaCl, 5 mM MgCl2, pH9.5) with 5 l/ml NBT (Roche) and 

3.75 l/ml BCIP (Roche) for 16-18 hrs at RT.  

DIG-labeled RNA probes for detection Noggin and Krt15 transcripts were 

produced by in vitro transcription according to the instructions of the DIG RNA 
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Labelling kit (Roche). To detect transgenic Noggin expression, K14-Noggin 

plasmid served as a template to make probes that target human growth 

hormone poly-A sequence of the transgenic construct. Template for Krt15 

probes was synthesized by PCR with primers introducing the T7 promoter into 

antisense strand as described (Liu et al., 2003b):  

Forward primer, mK15F  

(GCAGTAGCAGCAGCAGCAATTTC)  

Reverse primer, mK15R-T7 

(GTAATACGACTCACTATAGGGCCACTCAGAAGGAAGCCGAGAAAGC) 

 This pair of primers generates the DNA template for the antisense 

riboprobe spanning 263BP of the 3' end of the mouse K15 cDNA (Liu et al., 

2003b). 

DIG-labeled RNA probes for detection Shh, Ptch1, Ptch2, Gli1, Gli2, 

CcnD1 and CcnD2 were provided by Prof. A. Dlugosz (Department of 

Dermatology and Comprehensive Cancer Center, University of Michigan, USA).  

 
 

2.12. Alkaline Phosphatase staining 

 
For morphological analysis of skin sections histochemical detection of 

alkaline phosphatase (AP) activity was performed. In skin, AP is strongly 

expressed by fibroblasts of dermal papilla; this makes the AP staining as an 

useful method in staging HF development and cycling (Handjiski et al., 1994).  

To perform the staining, cryosections (9 μm) were fixed in 4% PFA (10 

mins at RT), and then incubated in developing solution (100 mM NaCl, 100 mM 

Tris, pH 9.5, 50 mM MgCl2, 0.005% Naphtol ASBI phosphate, 0,5% DMF) for 15 

mins. Sections counterstained with haematoxylin.  
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2.13. Oil Red-O staining 

 
Histochemical method of lipids detection by Oil Red-O dye is based on the 

physical properties of the dye being more soluble in lipids. Cryosections (9 μm) 

fixed in 10% buffered formalin for 10 mins, and then stained in Oil Red-O 

solution (0.5% Oil Red-O/ isopropanol diluted in water, ratio 2:5) for 15 mins. 

Sections counterstained with haematoxylin.  

 

2.14. Quantitative histomorphometry  

 
To measure epidermal thickness, AP-stained skin sections were analyzed 

by “SPOT Advantages” (Diagnostic Instruments) image analysis software. 

Measure of the epidermal thickness in TG dorsal skin (8 wks old female, n=3) 

was performed every 100 m within 1 cm and compared to that of sex- and 

age-matched WT controls (n=3). All sections were analyzed at x200 

magnification. Means and standard error of means (SEMs) were calculated 

from pooled data and statistical analysis performed using unpaired Student‟s t-

test; differences were judged as significant if p<0.05. 

 

Skin sections stained with Ki67 antiserum were analyzed to evaluate 

proliferating cells. Under x400 magnification, the number of epidermal Ki67-

positive cells was counted in 30 microscopic fields derived from sex- and age-

matched TG and WT skin sections (n=3), respectively; percent of proliferating 

cells was calculated from the total number of analyzed cells. Means and 

standard error of means (SEMs) were calculated from pooled data and 
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statistical analysis performed using unpaired Student‟s t-test; differences were 

judged as significant if p<0.05.   
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3.1. Phenotypic characterization of K14-Noggin mice 

 

3.1.1. K14-Noggin mice: genotype and its effect on BMP 

signalling  

 
To elucidate a role for BMP signalling in skin development and 

carcinogenesis, K14-Noggin transgenic (TG) mice over-expressing BMP 

antagonist Noggin in keratinocytes were used in this study. TG mice were 

generated on FVB/NJ background, which is more susceptible to experimentally 

induced carcinogenesis compared to other mouse strains (Hennings et al., 

1993). The transgenic construct drives high-copy expression of the mouse 

Noggin cDNA in the Keratin 14 (K14) promoter-active cells (Fig 3.1A). K14 

promoter becomes fully active by day 14.5 of mouse embryonic (E14.5) 

development in the basal layer of the epidermis and subsequently in the outer 

root sheath (ORS) and sebaceous glands of the developing hair follicles, 

maintaining the high active level throughout life (Byrne et al., 1994; Wang, 

1997). Western blot analysis of the protein extracts from dorsal TG skin 

confirmed the increased levels of the 64-kDa Noggin protein compared to wild 

type (WT) skin (Fig 3.1B). By in situ hybridisation with probes specific to the 

human growth hormone polyadenylation sequence, cells expressing TG 

construct were detected in the basal layer of epidermis, HF outer root sheath 

and sebaceous gland (Fig 3.1D, arrows); whereas lack of the expression was 

seen in the skin of WT mice (Fig. 3.1C). 
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Fig 3.1. K14-Noggin construct and pSmad1/5/8 expression in WT and 

TG  

(А) TG construct consists of human K14 promoter, mouse Noggin cDNA 

and poly-А sequence of human growth hormone; (B) Noggin protein expression 

in WT and TG skin by Western blotting; (C, D) Expression of the transgenic 

noggin mRNA in WT (C) and TG (D) skin  (arrows indicate sites of noggin 

expression; dashed line separate epidermis and HF from the dermis); (E-H) 

pSmad 1/5/8 in the epidermis and HF in WT  (E,G) and TG (F,H) skin (arrows 

indicate pSmad1/5/8-positive cells). Scale bars, 50 m. 
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 To determine whether Noggin over-expression in the TG mice leads to 

the alterations in BMP signalling, immunofluorescent detection of phospho-

Smad1/5/8 (pSmad1/5/8) proteins, which are the markers of the active BMP-

Smad signalling, was carried out. 

In WT skin, pSmad1/5/8 were expressed in the basal and suprabasal cells 

of the interfollicular epidermis (IFE) and in the differentiating cells of the inner 

root sheath (IRS) and hair shaft (Fig 3.1E and 3.1G, arrows). In contrast, 

expression of the pSmad1/5/8 was markedly decreased in the TG skin 

compared to WT (Fig 3.1F and 3.1H). Therefore, transgenic expression of 

Noggin indeed leads to inhibition of the canonical BMP pathway in epidermal 

and HF keratinocytes. 

 

3.1.2. Macroscopic phenotype of the K14-Noggin mice. 

 
Despite strong activity of the K14 promoter in embryonic skin by E14.5, an 

overt phenotype did not emerge until the third week of postnatal life when TG 

mice began to display first signs of hair loss on back skin (Fig 3.2A). Over 60 % 

of the TG mice became almost completely bald by 8-10 weeks. In addition, 

overexpression of Noggin resulted in the development of hyperplastic disorders 

of nails (Fig 3.2B). However, the most profound feature of K14-Noggin mice 

was the spontaneous development of multiple skin tumours by 3-6 months after 

birth (Fig 3.2C, arrows).  The tumours distributed randomly over the skin 

surface with predominant localisation on the tail, back, and ventral skin. Usually, 

the first signs of the tumour growth appeared on the tail as an increase of its 

thickness. The tail gradually became thicker and looked swollen (Fig 3.2D, 

arrows).  
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Fig 3.2 Macroscopic phenotype of К14-Noggin mice 

(А) Hair loss on 1 month-old back skin; (B) Hyperplastic nails of TG mice; (C) 

Multiple skin tumours of different locations (arrows indicate tumours); (D) 

Tumour growth in the tail. 
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On other parts of the skin, the tumours grew as hemispheres of different 

sizes with an ability to growth up to 2 cm in diameter (Fig 3.2C). Despite the 

development of multiple tumours, TG did not show any obvious signs of 

distress.  

However, the large tumours had a high risk for haemorrhage and necrosis 

that were potentially dangerous for animal wellbeing and health. Due to that, the 

tumours in 1 cm and bigger were surgically excised or the animals were 

sacrificed. Despite the extravasations into the tumours, no visible signs of 

invasion into surrounding tissues and metastases into other organs were 

observed (data not shown). 

 

3.1.3. Microscopic study of the tumour development in K14-

Noggin mice 

 
Histological analysis of 4 days old (P4) skin sections did not reveal any 

differences between TG and WT littermates, suggesting that epidermal 

development and HF morphogenesis were not affected by Noggin over-

expression (Fig. 3.3A and 3.3B). However, TG mice showed markedly larger 

HFs compared to WT in two weeks after birth (P14) (Fig. 3.3C and 3.3D). 

Moreover, the TG mice developed epithelial buds growing from the upper and 

middle portions of the HF outer root sheath (Fig. 3D insert, arrow).  

Histological analysis of TG skin during first catagen development (P16-

P18) revealed that the HFs failed to regress and remained in the anagen-like 

growth phase (Fig. 3.3F), whereas in WT skin all HFs, as expected, entered 

into catagen (Fig. 3E).  
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Fig 3.3. Development of the HF-derived tumours in K14-Noggin mice  

Skin sections at different days of postnatal life stained for AP (А-M, O-P), 

H&E (N), and Oil Red-O (Q-R). In WT skin, hair follicles cycle normally: anagen 

(A, G, I), catagen (C), telogen (K) (continued on next page) 
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Fig 3.3. Development of the HF-derived tumours in K14-Noggin mice 

(continued) 

In TG skin, hair follicles grow continuously without catagen and telogen phases 

(B, D, F, H, L), resulting in trichofolliculoma-like tumour formation (M, N); (O-P) 

Hyperplastic sebaceous glands (P, arrows) in TG versus WT skin (O, arrow); 

(Q-R) Enlarged and lipid-enriched sebaceous glands in TG skin (arrows indicate 

lobules, arrowheads point ducts).  Scale bar, 50 m 
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Hair follicles in the TG mice continued to grow resulting in marked 

enlargement of the lower portion of the hair follicles, and an increase in 

thickness of the ORS (Fig. 3H, arrow). These microscopic changes strongly 

correlated with the progression of hair loss. 

Moreover, during the first postnatal hair cycle (P23-P40), hair follicles in 

the TG mice showed outgrowth of additional epithelial buds (“tumour placodes”) 

from the ORS leading subsequently to formation of large tumour-like structures 

(Fig. 3.3J and 3.3L). 

Interestingly, an increased alkaline phosphatase (AP) activity was 

detected in the HF connective tissue and dermal cells adjacent to the newly 

formed epithelial buds (Fig. 3.3J arrows), while in WT skin AP was seen 

exclusively in dermal papilla fibroblasts (Fig. 3.3I arrow), suggesting a marked 

remodeling of the mesenchymal hair follicle compartment upon the epithelium-

derived noggin over-expression. 

Nearly 100% of 6 month-old mice showed macroscopically visible skin 

tumours distributed randomly on the dorsal and ventral skin surfaces. 

Histological analysis of the tumours revealed multiple, densely packed, and 

disoriented hair follicle-like structures emerging from a single focal source with a 

tendency to form an epithelioid cyst containing keratinized substance in the 

center (Fig. 3.3M and 3.3N). 

Tumours contained hyperplastic matrix cells and rudimentary hair shafts, 

were surrounded by mesenchymal cells with strong alkaline phosphatase 

activity and morphologically resembled human trichfolliculomas.  

In addition, adult K14-Noggin mice showed a significant enlargement of 

the sebaceous glands with an increase in number of lobules and elongated 
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ducts compared to WT mice (Fig. 3.3O and 3.3P, arrows). Oil-red staining 

revealed increased production and accumulation of lipid components in the 

hyperplastic lobules and multiple widened and ramified ducts (Fig. 3.3Q and 

3.3R, arrows and arrowheads).    

 

 

3.1.4. Expression of the markers of cell proliferation and 

apoptosis in the skin of K14-Noggin mice 

 
During anagen phase, pulse DNA labeling with BrdU (50ug/g) revealed the 

presence of actively proliferating cells in the hair matrix only in the WT skin (Fig. 

3.4A, arrows), while in TG skin, there was a marked increase in the number 

BrdU-labeled S phase cells in the hair follicle ORS (Fig. 3.4B, arrows).  

These findings were confirmed by immunofluorescent detection of Ki67-

antigen (Fig. 3.4C and 3.4D), another well characterized marker of cell 

proliferation (Scholzen and Gerdes, 2000). 

However, in addition to the presence of proliferating cells in the hair matrix 

and the hair follicle ORS, Ki67-positive cells were detected at the peripheral 

portion of HF-like outgrowths (Fig. 3.4F) in the TG skin. 

During catagen phase, WT hair follicles underwent an apoptosis-driven 

regression and showed numerous apoptotic cells in the lower portion of the hair 

follicles as was determined by TUNEL assay (Fig. 3.4G).  
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Fig 3.4. Increased proliferation and inhibition of apoptosis in hair follicles 

of K14-Noggin mice 

(А, B)  Increased number of BrdU-positive proliferating cells in the hair follicle 

ORS (arrows) of TG mice (B), compared to WT HFs (А, arrows indicate matrix 

cells); (C, D) Ki67 expression in the hair follicle ORS of WT (C) and TG (D) skin; 

(E,F) Ki67 expression in the matrix cells of WT HFs(E) and HF-derived tumours 

(F); (G, H) TUNEL staining in WT (G) and TG (H) skin (arrows indicate 

apoptotic cells). Scale bars, 25 m 
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In contrast, the first anagen-catagen transition was arrested in the K14-Noggin 

HFs, which showed lack of TUNEL-positive cells (Fig. 3.4H, asterisk). 

Moreover, no apoptosis was detected in the HF-derived tumours (data not 

shown). 

Therefore, the transgenic overexpression of Noggin resulted in a 

significant activation of cell proliferation and inhibition of apoptosis in the HF 

epithelium. 

 

3.1.5. Markers of skin stem cells and early progenitors are 

increased in the skin of K14-Noggin mice 

 
Several lines of evidence suggest that BMP signalling is involved in 

maintenance and/or activity of stem cells in different tissues, including the skin 

(He et al., 2004; Kobielak et al., 2007; Varga, 2005; Zhang et al., 2006; Zhang 

and Li, 2005). To investigate a role for the transgenic overexpression of BMP 

antagonist Noggin in the control of stem cells activity, expression of selected 

markers of skin stem cells and their early progenies was analyzed. In particular, 

detection of the keratin 15, Lhx2, and Sox9 was carried out in the TG skin in 

comparison to WT mice. In addition, pulse-chase experiment with the IdU and 

CldU for detection proliferating and label retaining cells (LRC) was performed. 

Expression of the Krt15 transcript was analyzed by RNA in situ 

hybridization technique. In WT skin, Krt15 expression was detected in a group 

of cells in the HF bulge, known as a HF stem cells niche (Fig. 3.5A). 

Interestingly, in the TG skin Krt15-positive cells were also detected in cells of 

the HF outer root sheath below the bulge (Fig. 3.5B and 3.5C, arrowheads).  
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Fig. 3.5. Expression of stem cell markers in К14-Noggin skin 

(A, B, C) in WT skin, K15 mRNA expression restricted to the bulge (BU) cells 

(A, insert, arrow), while in the TG skin (B, C) its expression is broader in the 

ORS (arrowheads) and tumour placodes (arrows); however K15 does not 

express in advanced tumours (C, asterisk); (D, E) Ectopic expression of Lhx2 

and Sox9 in the ORS (arrowhead) and tumour placodes (arrows) in the TG (E) 

skin compared to WT (D); (F, G) Loss of LRC (green) and increased number of 

proliferating cells (red) in the TG HFs (G) compared to WT mice (F). Scale bars, 

50 m 
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Moreover, cells of the tumour placodes showed high expression of the Krt15 

(Fig. 3.5B, arrows), whereas in the more developed tumours its expression was 

strongly downregulated (Fig. 3.5C, asterisks).  

Immunodetection of the DNA binding proteins Lhx2 and Sox9 also 

revealed nuclear expression of these transcription factors in the ORS cells 

beyond the bulge in the TG HFs, compared to WT mice (Fig. 3.5D). 

Newly developing tumour placodes were positive for Lhx2 and Sox9 

staining (Fig. 3.5E), while their expression in more advanced stages of the 

tumour development was markedly decreased (Fig. 3.5 D). However, these two 

antibodies predominantly detect different population of cells yet partially overlap 

in some cells. Sox9-positive cells were mainly detected in ORS and at the base 

of tumour placodes, while Lhx2-positive cells were located at the leading edge 

of growing tumour placodes (Fig. 3.5D).  

However, in the chase experiment with IdU for detection LRC, TG mice 

showed almost no traces of the label in HFs even after 2 weeks of the chase 

(Fig. 3.5F, green staining), while 2 hours pulse labeling with CldU revealed 

active label-incorporation by the bulge cells at that time point (Fig. 3.5F, red 

staining, arrows), thus suggesting active proliferation of cells in the bulge area 

of the TG hair follicles. In contrast, some bulge cells in WT skin retained the IdU 

label after two weeks of the chase (Fig. 3.5E, arrows), and only few CldU-

positive cells were detected in the secondary hair germ at P19 (Fig. 3.5E, 

arrowhead). Therefore, the Noggin-induced BMP inhibition leads to the loss of 

stem cells quiescence in the HF; instead, the cells located in the bulge area 

actively proliferate followed by their expansion beyond the stem cell niche. 
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Expression of the stem cell markers in tumour placodes suggests that the 

activated stem cells and/or their immediate progeny may contribute to the HF-

derived tumour development.  

3.1.6. Increase of epidermal thickness and cell proliferation in 

the interfollicular epidermis of K14-Noggin mice 

 
To better characterize the epidermal phenotype of the K14-Noggin mice, a 

detailed morphological analysis of the interfollicular epidermis (IFE) was carried 

out. In contrast to WT mice, adult TG mice showed a significant increase in the 

thickness of the IFE (Fig. 3.6A and 3.6B). A morphometric analysis revealed a 

two-fold increase in epidermal thickness in the TG skin compared to WT mice 

(324 m versus 152 m, p<0.01) (Fig. 3.6C).  Moreover, changes in 

epidermal thickness are accompanied by increase in a number of layers of 

viable suprabasal keratinocytes. In WT skin, the IFE was composed of two-

three nuclei containing cell layers (Fig. 3.6A); while in the TG epidermis, the 

number of such layers was increased up to six (Fig. 3.6B). Structurally, these 

layers in the TG skin were not distinguishable from the WT counterparts: basal 

keratinocytes had a cuboid shape versus more flatted shape of the suprabasal 

cells. Thus, the changes reflect hyperplastic processes in the IFE. However, 

some areas of mild and/or moderate dysplastic alterations were observed in the 

epidermal cells, mostly in the immediate proximity to the follicular epithelium 

(Fig. 3.6B, arrow). The dysplastic cells were characterized by changes their 

shape: they were seen as elongated, vertically oriented, and densely packed in 

both basal and suprabasal layers of the interfollicular epithelium (Fig. 3.6B, 

arrow). 
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Fig. 3.6. Hyperplastic changes in the K14-Noggin epidermis 

(А, B) H&AP staining shows increased thickness of the epidermis in TG skin (B) 

compared to WT (A) (arrow indicates an area of dysplasia); (C) Epidermal 

thickness in TG and WT skin; (D) Number of Ki67-positive cells in the basal 

layer of WT and TG epidermis;  (E, F) Ki67 expression in the epidermis. Note 

increased Ki67-positive cells in TG skin (F), compared to WT mice (E) (arrows 

indicate Ki67-positive suprabasal cells); (G, H) Loricrin expression in WT (G) 

and TG (H) epidermis. Scale bars, 50 m 
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To find out, whether the epidermal hyperplasia in the K14-Noggin skin was 

a result of active cell proliferation and/or altered differentiation, expression of 

the markers of proliferation and differentiation was analyzed.  

Immunofluorescent detection of the Ki67-antigen (Ki67), which 

accumulates in actively proliferating cells, revealed a marked increase in the 

number of Ki67-positive cells in K14-Noggin epidermis versus WT mice (Fig. 

3.6D and 3.6F). Quantitative analysis showed at least a two-fold increase in a 

number of Ki67-positive cells in the basal layer of TG skin compared to WT 

mice (Fig. 3.6D).   

Moreover, Ki67 expression was also seen in some suprabasal 

keratinocytes in the TG epidermis (Fig. 3.6F, arrows), while proliferating cells 

were not detected in the suprabasal layers of the WT counterparts (Fig. 3.6E). 

In TG epidermis, expression of loricrin, a marker of terminally differentiated 

keratinocytes, was detected in the outermost layers of the epidermis (Fig. 

3.6G). Similar pattern of the loricrin expression was observed in WT skin (Fig. 

3.6H).  

Therefore, the process of keratinocytes differentiation was not affected by 

overexpression of Noggin in the adult TG skin.  Instead, Noggin-induced BMP 

suppression resulted in the stimulation of cell proliferation in the IFE. 

 

3.1.7. K14-Noggin mice are more susceptible to chemically- 

induced  carcinogenesis 

 
K14-Noggin mice showed a marked increase in cell proliferation in the 

interfollicular epidermis. However, no tumours arising from the interfollicular 

epidermis were detected within one and more years of observation.  
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Fig. 3.7. Chemically induced tumour development in K14-Noggin skin 

(A, B) Papilloma-like tumour development in WT (A) and TG (B) skin;  (C) The 

tumours emerged much earlier and a greater amount in the TG skin compared 

to WT mice; (D) Squamous cell carcinoma (arrows) in K14-Noggin mice after 

application of the DMBA/TPA protocol [note numerous foci of invasion into the 

dermis (arrowheads)]. 
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To test whether Noggin overexpression in the epidermis affects 

development of the chemically-induced skin tumour, the skin of WT and TG 

mice was treated with chemical carcinogen DMBA. 

Single dose of DMBA application followed by weekly TPA treatment during 

20 weeks resulted in a papilloma-like tumour development in both WT and TG 

skin (Fig. 3.7A and 3.7B). However, in TG skin the first tumours emerged as 

early as 6 weeks after DMBA treatment (Fig. 3.7C). In contrast, WT mice 

developed papilloma-like tumours much later by 11 weeks of the treatment (Fig. 

3.7C).  

Moreover, weekly monitoring of mice revealed a significant difference in 

the frequency of the tumours between the TG and WT mice: over 5-fold 

increase in a total number of skin tumours in TG compared to WT mice by the 

end of the experiment (Fig. 3.7C).  

Histological examination of skin tumours in WT mice did not show any 

signs of malignancy. In contrast, atypical cells were detected in the tumours of 

TG mice with squamous cell carcinoma-like metastases in the dermis (Fig. 

3.7D). 

Thus, inhibition of the BMP signalling in the skin greatly enhances the 

susceptibility to chemical carcinogenesis and promotes malignant 

transformation of benign tumours into SCCs. 
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3.2. Global gene expression profiling of the 

trichofolliculoma-like tumours in K14-Noggin mice 

 

3.2.1. Microarray analysis of gene expression in the HF-derived 

tumours. 

 
To find out the possible molecular mechanisms leading to tumour 

development upon inhibition of the BMP signalling in the skin, whole genome 

microarray analysis was employed.  

Epithelial cells of the hair matrix of anagen hair follicles and cells of 

follicular tumours were isolated by laser capture microdissection (LCM) (Fig. 

3.8) followed by RNA extraction. The RNA samples were further processed for 

microarray profiling (Agilent platform) and qRT-PCR.  

Analysis of the microarray data showed two-fold or higher changes in 

expression of 390 genes encoding the adhesion/extracellular matrix molecules, 

cell cycle/apoptosis and cytoskeleton/cell motility markers, molecules involved 

in cell differentiation, metabolism, signalling and transcription (Fig. 3.9, 

Appendix A, B).  

Expression of several genes (Msx1, Msx2, Id1, Id2, Id4) that are known as 

direct targets of the BMP signalling was down-regulated in the follicular tumours 

(Appendix B), suggesting that the microarray profiling adequately represents 

transcriptional changes upon Noggin-induced BMP inhibition.  
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Fig. 3.8. Laser-capture microdissection (LCM) of normal hair matrix and 

HF-derived tumours  

(А, B) HF matrix cells before (А) and after (B) LCM; (C,D) HF-derived tumours 

before (C) and after (D) LCM. Scale bars, 50 um 
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The analysis of the microarray data revealed a misbalanced expression of 

a large group of Homeobox (Hox) genes, which are transcription factors playing 

a crucial role during development and malignant transformation in many organs 

including epithelial tissues (Nunes, 2003). 

There was an over four-fold increase in expression of Hoxa9 and Hoxd11, 

while expression of Hoxa7, Hoxb7, Hoxc13, and Hoxd4 was markedly 

decreased in the HF-derived tumours (Appendix B). This suggests that some 

Hox genes may serve as targets for BMP signalling. The possible mechanism of 

the BMP-dependant regulation of specific Hox genes expression is of particular 

interest to understand the complex function of the BMP signalling and how they 

relate to growth, development, and pathogenesis.  

In contrast to WT mice, HF-derived tumours also showed a marked 

increase in expression of genes encoding selected components of signalling 

pathways implicated in cutaneous tumourigenesis: Wnt (Wnt5a, Wnt6, Wnt9b, 

Wnt10b, Fzd2, Fzd7), Hedgehog (Shh, Dhh, Smo), Pdgf (PdgfA, PdgfB), Ras, 

etc.  

Substantial changes were observed in the expression of the genes 

involved in the regulation of cell proliferation. Expression of genes that are 

involved in inhibition of cell proliferation (Igfbp4, Bmp8a, Id2, Id4) was 

decreased in the tumour cells (Appendix B). Furthermore, expression levels of 

cyclin D2, cyclin M3 and cyclin F were three-fold higher in the tumours 

compared to the hair matrix of WT mice. Expression of several antiapoptotic 

markers (Bcl6, Faim2, Bag3) was also increased, while an apoptotic gene 

encoding effecter caspase-7 was down-regulated in the tumours compared to 

WT HFs (Appendix B).  
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Fig.3.9. Functional annotation of the over- and under-represented genes in 

the tumours of K14-Noggin mice 

Analysis of the microarray data showed two-fold or higher changes in 

expression of 390 genes encoding the adhesion/extracellular matrix molecules, 

cell cycle/apoptosis and cytoskeleton/cell motility markers, molecules involved 

in cell differentiation, metabolism, signalling and transcription  
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In addition, expression of the selected HF-specific keratins, keratin-associated 

proteins and trichohyalin decreased, suggesting alterations in the cell 

differentiation in the skin with Noggin overexpression (Appendix B). 

Interestingly, expression of Lhx2 and Sox9 encoding transcription factors, 

markers of the HF stem cells/progenitors, was three-fold up-regulated in the 

tumours (Appendix A), confirming the result of immunostaining for these 

proteins (Fig. 3.5D and 3.5E).  

Furthermore, Noggin overexpression resulted in a up-regulation of genes 

encoding several pro-oncogenes (ErbB2, c-Jun, and Ski), while expression of 

Hic2 and Wfdc1, which were considered as putative tumour suppressors and 

downregulated in several tumours, was decreased (Appendix A). In addition, a 

marked increase in expression of Trp73, a member of p53 family of tumour 

suppressors, was revealed by microarray analysis (Appendix A).  

There are two major p73 isoforms, which possess opposite effects 

(Deyoung and Ellisen, 2007). However, the microarray data did not allow finding 

the difference between the isoforms, which expression was altered upon BMP 

inhibition. 

Taken together, the results of microarray analysis suggest that Noggin-

induced BMP inhibition leads to an alteration of transcription of numerous 

groups of genes. However, potential roles for a large number of genes that 

show differences in expression between hair matrix of WT mice and tumours in 

K14-Noggin mice remain to be further defined in terms of their contribution to 

the development of HF neoplasia in noggin transgenics. Some of the changes 

in gene expression can lead to predisposition and/or promote tumour 
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development, at least in part, through enhancing cell proliferation and/or 

impeding differentiation. 

 

3.2.2.  Validation of the microarray data by qRT-PCR. 

 
To validate the data of microarray analysis, the RNA samples isolated by 

LCM were further processed for real-time PCR. Several group of genes which 

expression was altered in the HF-derived tumours were selected for the 

analysis.  

Real-time PCR analysis confirmed the increased expression of genes 

encoding selected regulators of cell cycle machinaryv: Bcl6 (4-fold), Ccnd2 (3-

fold), Ccnm3 (3-fold), Ccnf (2-fold) (Fig. 3.10). In contrast, expression of the 

apoptotic gene Casp7 was two-fold decreased in the TG tumours versus hair 

matrix of WT mice (Fig. 3.10).   

qRT-PCR also revealed misbalanced expression of several keratins in the 

tumour cells. Interestingly, a number of keratins that are normally expressed in 

differentiated hair matrix keratinocytes (Krt1-c29, Krt2-20, Krt1-1) were strongly 

downregulated, while expression of Krt1-16, Krt2-5, and Krt1-17, markers of 

undifferentiated keratinocytes of the epidermis and HFs, was markedly 

increased (Fig. 3.10). Furthermore, the results obtained by real-time PCR were 

consistent with microarray analysis in terms of changes in expression of the 

selected components of distinct signal transduction pathway. 

In the tumour cells, expression of several Wnt ligands (Wnt5a, Wnt10b) 

was increased, while Lef1 and Wnt antagonist Wif1 were downregulated (Fig. 

3.10).  
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Fig. 3.10. qRT-PCR analysis of the selected genes in normal and 

neoplastic keratinocytes 

qRT-PCR shows that development of the HF-derived is associated with 

activation of several pro-oncogenic pathways (Wnt, Hh, Pdgf), increase in 

expression of selected cell cycle activators and anti-apoptotic markers, while 

the programmeme of keratinocyte differentiation is changed toward a less 

differentiated state.  
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Some components of the Hh (Shh, Smo) and Eda signalling pathways 

(Edar) were also notably over-expressed in the tumour cells, as determined by 

real-time PCR (Fig. 3.10). Similar to microarray data, expression of Pdgfa, 

Pdgfb, and Jun was increased, while Id2 and Hoxc13 were decreased in the 

tumour cells compared to normal matrix keratinocytes (Fig. 3.10). 

Thus, the results of real-time PCR analysis well correlate with the data 

obtained by microarray-based quantification. These data confirm that 

development of the HF-derived tumours upon Noggin-induced BMP inhibition is 

associated with activation of several pro-oncogenic pathways (Wnt, Hh, Pdgf), 

increase in expression of selected cell cycle-associated genes and anti-

apoptotic markers, while the programmeme of keratinocyte differentiation 

showed alterations towards a less differentiated state. These results suggest 

that local concentration or activity of Noggin can significantly compromise 

tumour-suppressing activity of the BMP signalling in keratinocytes. 

 

3. 3. Wnt and Shh signalling pathways in Noggin-induced 
tumourigenesis. 

 
Microarray-based gene expression profiling revealed accelerated expression 

levels of several components of the Wnt and Shh signalling pathways (Fig. 3.10, 

Appendix A) in the K14-Noggin tumours. Both Wnt and Shh pathways are 

essential for HF development and postnatal remodeling (Fuchs, 2007), and, if 

abnormally activated, result in the development of a number of epithelial tumours, 

including SCC and BCC (Gat et al., 1998; Grachtchouk et al., 2000; Hutchin et al., 

2005; Niemann et al., 2003a; Oro et al., 1997; Yang et al., 2008).  
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These data suggest that Wnt and Shh signalling pathways may contribute to 

the tumour development in K14-Noggin mice. This raised an important question 

about mechanisms underlying a crosstalk between the BMP, Wnt, and Shh 

pathways during tumour development in the skin epithelium.  

 

3.3.1. Expression of key components of the Wnt signalling in 

Noggin-induced tumours. 

 
 To explore the role for the Wnt and Shh signalling pathways in a control of 

tumour development in the TG mice, the expression of key Wnt and Shh signalling 

components and selected targets was compared between WT HFs and TG 

tumours at distinct stages of their formation. 

As it was described above (see Chapter 3.1.3), the tumour development 

begins with formation of epithelial placodes emerging from the hair follicle ORS. 

Immunostaining against Wnt10b, Lef1 and -catenin revealed strong expression of 

these proteins in the tumour placodes, while their expression was markedly 

reduced in the fully developed tumours (Fig.3.11A-C), indicating that the active 

Wnt signalling was associated with the initiation of the tumours. Interestingly, the 

tumour placode cells, as it was shown above, were also enriched for the Keratin 15 

mRNA and Lhx2 and Sox9 proteins, markers of the epithelial bulge stem cells (Fig. 

3.5 and 3.11C). In WT bulge stem cells, the Wnt signalling is active at the early 

stage of anagen, when the stem cells actively proliferate to give rise to newly 

developing HFs (Van Mater et al., 2003). Thus, the mechanism of tumour initiation 

is likely similar to HF regeneration and involves the active Wnt signalling in 

controlling this process.  
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Fig. 3.11. Expression of selected components of Wnt signalling at distinct 

stages of the tumour development in K14-Noggin skin 

(A) Wnt10b expresses in the tumour placode cells but not in advanced tumours 

(arrows indicate Wnt10b-positive cells); (B) Strong nuclear staining for Lef1 in 

tumour placodes compared to advanced tumours (arrows indicate lef1-

positivecells); (C) Nuclear β-catenin and Lhx2 staining (arrows) in tumour placodes. 

Scale bars, 25 um  
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Fig. 3.12. Expression of Wif1 at distinct stages of the tumour development 

in K14-Noggin skin 

(A, B) Wif1 mRNA (A) and protein (B) expression is down-regulated in the 

tumour  placodes compared to anagen bulge region in WT skin (arrows indicate 

Wif1-positive cells); (C) In advanced tumours, Wif1 is expressed in the tumour 

stroma only, compared to the dermal papilla (big arrow) and a small cluster of 

matrix keratinocytes (small arrow) in WT anagen hair bulb. Scale bars, 25 um 

(A, B) and 50 um (C) 
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On another hand, the expression of the Wnt antagonist Wif1 was not 

observed in the cells of tumour placodes and fully developed tumours (Fig 3.12A 

and 3.12B). In contrast, Wif1 was actively expressed in the WT bulge and dermal 

papilla cells during the late anagen and telogen (Fig 3.12A-C), suggesting its 

involvement into the control of normal hair follicle stem cells and/or early 

progenitors activity. Down-regulation of the Wif1 in the TG skin suggests that Wif1 

may serve as a BMP target mediating the crosstalk between the BMP and Wnt 

pathways in the skin. 

 

3.3.2. Expression of key components of the Shh pathway in 

K14-Noggin tumours. 

In contrast to the components of Wnt signalling pathway, transcripts for 

Shh were not detected in the tumour placodes, while Ptch1, Ptch2, Gli1 and 

Gli2 mRNAs showed expression levels similar to the fully developed tumours 

(Fig. 3.13A and 3.13B). However, expression of the Shh markedly increased in 

the fully developed tumours compared to the tumour placodes (Fig. 3.13B) and 

to the hair matrix of normal anagen hair follicles (not shown). Consistently with 

these data, transcripts for Cyclin D1 and Cyclin D2, serving as the Wnt and Shh 

targets (Katoh, 2007), were seen in the tumour placodes and their expressions 

increased in fully developed tumours (Fig. 3.13C and 3.13D) 
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Fig. 3.13. Expression of selected genes of Shh pathway at distinct stages 

of the K14-Noggin tumourigenesis 

(A, B) Shh, Patch1/2 and Gli1/2 transcript expression in tumour placodes (A) 

and advanced tumours (B); (C) Cyclin D1 mRNA expression in the tumour 

placodes (left) and advanced tumours (right). (D) Cyclin D2 mRNA expression 

in the tumour placodes (left) and advanced tumours (right). Arrows indicate 

sites of the expression. Scale bars, 50 um 
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3.3.3. Treatment of K14-Noggin mice with the Wnt and Shh 

antagonists 

 
To better define the requirement for Wnt and Shh signalling for the 

development of hair follicle-derived tumours, in vivo pharmacological studies 

were performed using the corresponding Wnt and Shh inhibitors Aptosyn and 

Cyclopamine [reviewed in (Athar, 2006; Li et al., 2002)]. 

To define whether inhibition of the Wnt and Shh signalling could affect the 

initiation and progression of the tumours, TG mice were treated either with 

Aptosyn or Cyclopamine daily s/c from postnatal day 10 (P10) and skin was 

harvested on P19, P21 and P28 (9, 11 and 18 days after beginning of the 

treatment, respectively).  

In contrast to the vehicle-treated TG mice, mice treated with the Wnt 

antagonist Aptosyn showed significant (p<0.05) decrease in the number of HFs 

with new outgrowths arising from the outer root sheath (Fig. 3.14A-C). This 

accompanied by the decrease of nuclear beta-catenin staining in the HF 

keratinocytes, thus suggesting inhibition of the tumour initiation (Fig. 3.14D). 

However, treatment of TG mice with Shh inhibitor Cyclopamine did not 

show any effects on tumour initiation and the formation of new outgrowths from 

the outer root sheath (data not shown). 

Instead, Cyclopamine treatment resulted in significant (p<0.001) 

retardation of tumour progression in the TG mice compared to controls (Fig. 

3.15A-C).  
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Fig. 3.14. Effect of the Wnt inhibitor Aptosyn on tumour development in 

K14-Noggin mice 

(A, B) AP staining of skin section after control (A) and Aptosyn (B) treatment 

(arrows indicate tumour outgrowths); (C) Percentage of the HFs with tumours in 

the control and Aptosyn-treated groups (p<0.05); (D) β-catenin 

immunofluorescence in the HFs of the control and Aptosyn-treated skin (note 

decreased nuclear staining for β-catenin in Aptosyn treated HFs). Scale bars, 

100 um (A, B) and 25 um (D) 
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Fig. 3.15. Effect of Shh inhibitor Cyclopamine on the tumour development 

in K14-Noggin mice 

(A, B) AP staining of sections at P21 and P28 after control (A) and Cyclopamin 

(B) treatments (arrows indicate tumour outgrowths); (C) Significant decrease in 

a number of HFs bearing large and medium-sized tumours in TG mice treated 

with Cyclopamine versus control; (D) Decreased Gli1 expression in the HF 

keratinocytes after Cyclopamine treatment (arrows). Scale bar, 50 um 
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Inhibition of tumour growth after Cyclopamine treatment was accompanied by 

decrease in expression of the Gli1 in the HF epithelium, as well as by down-

regulation of the alkaline phosphatase activity in adjacent mesenchyme indicating 

that Cyclopamine may also affect epithelial-mesenchymal interactions in developing 

tumours (Fig. 3.15C). These data suggested that Wnt and Shh signalling are 

differentially involved in the control of tumour initiation and progression, respectively, 

and may serve as targets for the BMP regulation in the HF keratinocytes. 

 

 

3.3.4. Effects of BMP4 on Wif1 and Shh expression in vitro  

To further understand the mechanisms underlying the cross-talk between 

the BMP, Wnt and Shh signalling pathways in development of the HF-derived 

tumours, tumour cells were isolated from the TG mice and cultured in presence 

of different concentrations (200 ng/ml and 500 ng/ml) of recombinant BMP-4 

protein. By real-time PCR, a marked increase of the Wif1 and decrease of the 

Shh transcripts were detected in the tumour cells after 24-hour treatment with 

500 ng/ml BMP-4 (Fig. 3.16A).  

Similarly, Western blotting revealed a dose-dependent increase in the 

expression of the Wif1 protein, while Shh protein was markedly decreased in the 

BMP4 treated cells (Fig. 3.16B). Thus, BMP signalling pathway is indeed involved in 

the control of Wif1 and Shh expression in the tumour cells cultured in vitro. 
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Fig. 3.16.  Wif1 and Shh expression in tumour cells after BMP4 treatment 

in vitro 

(A) Wif1 and Shh mRNA expression in the tumour cells isolated from K14-

Noggin mice after BMP4 treatment (p<0.05);  (B) Western blot of the Wif1 and 

Shh proteins after BMP4 treatment. 
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3.3.5. Regulation of Wifi and Shh promoter activity by BMP pathway  

To assess whether BMP signalling is capable of influencing the activities of 

the Wif1 and Shh promoters, HaCaT keratinocytes were transfected with the 

corresponding reporter plasmids containing human Wif1 or Shh promoters 

(Kitazawa et al., 1998; Reguart et al., 2004) or with pGVB2L-Luc and p3GC2-

Luc as negative and positive control vectors respectively. The cells were also 

co-transfected with vectors containing one of the constitutively active BMP 

receptors (Alk3QD/Alk6QD) and/or pCMVSmad1/Smad5 vectors (Ishida et al., 

2000). Cell transfection with the Alk3QD and pCMVSmad1 vectors resulted in 

about 2.5-fold increase of Wif1-Luc activity versus control (Fig. 3.17). However, 

lack of any effects was seen on the Shh-Luc activity (Fig. 3.17).  

These data suggest that BMP signalling pathway positively regulates 

activity of the Wif1 promoter and may indeed suppresses tumour initiation in 

vivo via stimulating the Wif1 expression and antagonizing the Wnt signalling 

pathway. These data also suggest that BMP signalling does not regulate Shh 

expression directly.  
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Fig. 3.17.  Luciferase reporter assay with Wif1 and Shh promoter regions 

Co-transfections with vectors containing constitutively active BMPR-IA 

(Alk3QD), BMPR-IB (Alk6QD), pCMVmSmad1 and/or pCMVSmad5 increase 

luciferase activity of the Wif1-Luc but Shh-Luc reporter plasmids containing 

human Wif1 and Shh promoter regions respectively; p<0.05 
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3.3.6. Chromatin immunoprecipitation (ChIP) of Wif1 promoter 

region 

In order to show that BMP-dependent Smad transcription factors bind to 

native chromatin within the Wif1 promoter region to regulate its transcription, 

ChIP assay was performed.  

Cross-linked chromatin was isolated from primary mouse keratinocytes 

after 3 hours of treatment with recombinant mouse BMP4/7 and, after 

sonication, immunoprecipitated with phospho-Smad1/5/8 antibodies. ChIPed 

DNA was analyzed by PCR with primers to different region within 2.5Kb of 

5‟UTR of Wif1.  

PCR analysis showed an enrichment of a  -326/+37 bp fragment of the 

Wif1 5‟UTR with the pSmad1/5/8 antibodies, compared to non-immune IgG 

(Fig. 3.18A). Thus, these data demonstrate that BMP-dependent Smad 

transcription factors can be recruited to the Wif1 promoter region in vivo.   

Comparison of promoter sequences among different species using the 

whole genome mVISTA tool showed highly conserved regions between mouse 

and human within the -326/+37 fragment of the Wif1 promoter (Fig. 3.18B). 

Interestingly, several BMP-responsive elements (BREs) regulated by 

BMP-dependent Smad transcription factors were found within the analyzed 

promoter region of Wif1. The -326/+37 bp fragment of the Wif1 promoter 

contains 7 conserved BREs that consist of GCCG and CGCC motifs (Fig. 

3.18B).  This further supports the idea that this region in the Wif1 promoter is 

likely regulated by the BMP/Smad pathway.  
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Fig. 3.18. Smad transcription factors bind to Wif1 promoter region 

(A) ChIP assay with pSmad1/5/8 antibodies shows an enrichment of -326/+37 

bp region of the Wif1 promoter; the scheme shows position of that binding 

region within the 5‟UTR of Wif1 (TSS, transcription start site, is shown as an 

arrow); (B) Alignment of mouse (top) and human (bottom) Wif1 promoter 

sequences; PCR amplified region is shown as grey boxes. Smad1 binding 

sequences are shown in red. Asterisks indicate conserved nucleotides within 

the Smad1 binding sites between the mouse and human sequences. 

 



 143 

 

 

 

 

 

 

 

 

IV. DISCUSSION 
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4.1 Overexpression of Noggin in the outer root sheath 

keratinocytes leads to tumour development  

 
BMP signalling is involved in controlling a large number of biological 

functions including cell proliferation, differentiation, cell fate decision, and 

apoptosis in many different types of cells and tissues during embryonic 

development and postnatal life (Botchkarev, 2003).  

In the skin, BMP signalling inhibits cell proliferation and promotes 

differentiation (D'Souza et al., 2001; Drosdoff et al., 1994; McDonnell et al., 

2001; Park and Morasso, 2002). Whilst BMP ligands over-expressed in the 

epidermis, transgenic mice become resistant to chemically-induced tumours 

(Blessing et al., 1995; Wach et al., 2001). Furthermore, the chemically-induced 

tumour development is associated with down-regulation of BMP-dependent 

Smad1 and Smad5 proteins (He et al., 2001). Taken together, these data 

support a tumour-suppressive role for BMP signalling in the skin. However, 

molecular mechanisms of the tumour-protective function of BMPs are mainly 

remained unclear. 

In this project, a transgenic mouse model was employed to further 

elucidate tumour-suppressive role of the BMP signalling in skin carcinogenesis. 

BMPs activity was specifically compromised in the epidermis by Keratin 14-

driven over-expression of the BMP antagonist Noggin. Elevated expression of 

the Noggin at both mRNA and protein levels was associated with significant 

reduction of phospho-Smad1/5/8 expression in the TG skin suggesting that at 

least canonical BMP-Smad pathway was markedly downregulated in the K14-

Noggin mice.  
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Almost all K14-Noggin mice spontaneously develop macroscopically 

visible skin tumours by 3-6 months of age. However, the first signs of tumour 

growth were histologically detected as early as within 3 weeks of postnatal life. 

At the same time the first signs of hair lost on back skin were detected. The 

morphological analysis revealed marked increase of hair follicle size, which 

followed by progressive growth of the HFs without entry to the regression 

(catagen) and resting (telogen) phases. The hyperplastic changes eventually 

lead to formation of tumours, which show morphologically striking similarity to 

human HF-derived trichofolliculoma. These data suggest an involvment of BMP 

signalling in the development of this type of neoplasia in human skin. However, 

it remains to be determined whether trichofolliculoma development in humans is 

associated with mutations in genes encoding the components of BMP signalling 

pathway, or, similar to K14-Noggin mice, its development is regulated by 

biochemical changes at the levels and/or activity of the BMP antagonists.  

Early stages of the tumours development were accompanied by ectopic 

cell proliferation in the outer root sheath, at the sites of Noggin over-expression, 

as it was evident by appearance of numerous Ki67- and BrDU-positive cells. In 

contrast, no TUNEL-positive cells were detected in the ORS compared to WT 

littermates during catagen, suggesting the apoptotic process was strongly 

down-regulated upon Noggin over-expression.  

The tumour-suppressive function of the BMP pathway in the skin is more 

likely to involve an ability to maintain a quiescent state of the bulge stem cells in 

HFs. In the pulse-chase experiment with injection of IdU and CldU for 

simultaneous detection of the label retaining cells (LRC) and proliferating cells, 

IdU label was not detected in the bulge region two weeks after chasing, while 



 146 

an increased amount of proliferating CldU-positive cells was observed in 

comparison to WT littermates. These data suggest a loss of quiescent cells in 

the bulge of TG HFs; instead of that they actively proliferate. The fact that these 

proliferating bulge cells remain their stem cells identity is supported by the 

expression of such stem/multipotent progenitor cell markers as Lhx2 and Sox9. 

Moreover, Lhx2- and Sox9-positive cells were present not only in the bulge area 

but they also appear beyond the stem cell niche. Interestingly, Lhx2- and Sox9-

positive cells are present in the new tumour buds growing from the HF outer 

root sheath pointing out onto the involvement of the HF stem cells and/or their 

progeny to the tumour initiation. Thus, the keratinocyte-specific inhibition of the 

BMP signalling in the K14-Noggin mice leads to loss of quiescent state and 

activation of the bulge stem/progenitor cells, followed by their expansion and 

tumour formation. These results support previous observations of the BMP 

involvement in the regulation of HF stem cell activity (Horsley et al., 2008; 

Kobielak et al., 2007) 

Taken together, these data are consistent with previous observations 

demonstrating that BMP signalling operates as a potent tumour suppressor in 

the epidermis and HF (Andl et al., 2004; Blessing et al., 1996; Ming Kwan et al., 

2004; Zhang et al., 2006). Here we show that anti-tumour effects of BMPs in 

skin strongly depend on the local concentrations of BMP inhibitor Noggin, which 

may significantly compromise tumour suppressor function of the BMPs. 

Similar effects of Noggin are also described in the intestinal epithelium, in 

which Noggin overexpression results in a formation of ectopic crypts and 

development of a phenotype resembling juvenile polyposis (Haramis et al., 

2004). Interestingly that another BMP antagonist, Gremlin, is widely expressed 
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in many different forms of cancers including basal cell carcinoma, and is also 

capable of promoting proliferation of tumour cells inhibited by BMPs (Sneddon 

et al., 2006). Collectively, these data suggest that BMP antagonists may 

significantly affect intrinsic anti-tumour potential in the skin and their expression 

and activity appears to be critical for the normal versus neoplastic fate decision 

in keratinocytes. 

Interestingly, another transgenic mouse model over-expressing Noggin 

under control of the K14 promoter was recently developed (Plikus et al., 2004). 

These mice were generated using chicken noggin cDNA, while TG mice used 

here over-express the mouse noggin cDNA. Both TG mice showed some 

similarities in skin phenotype, such as lack of zig-zag hairs and hyperplasia of 

nails (Plikus et al., 2004).  However, in contrast to the TG mice generated here, 

those mice did not show formation of any tumours. Perhaps, levels of transgene 

expression and differences in activity of the mouse and chicken Noggin may 

differentially affect the capacity of the BMP ligands to bind BMP receptors and 

influence keratinocyte proliferation/differentiation and cell fate decision.  

 

 

4.2 Noggin overexpression induces epidermal hyperplasia 

and increases susceptibility to chemical carcinogenesis in the 

interfollicular epidermis 

 
In K14-Noggin mice, K14 promoter drives Noggin transgene expression in 

the basal layer of the interfollicular epidermis (IFE). Such atopic Noggin 

expression resulted in profound hyperplastic changes in the IFE. A two-fold 
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increase in epidermal thickness was accompanied by a significant increase in a 

number of proliferating Ki67-positive cells in the basal layer and aberrant 

appearance of these cells in suprabasal layers of the IFE.  This is consistent 

with in vitro findings, which showed that BMP signalling in vitro inhibits cell 

proliferation and promotes cell differentiation (D'Souza et al., 2001; Drosdoff et 

al., 1994; McDonnell et al., 2001; Park and Morasso, 2002). However, in our in 

vivo model, inhibition of the BMP pathway by Noggin does not compromise the 

process of terminal differentiation. Immunodetection of the Loricrin, a 

component of the cornified envelope, did not reveal any differences in its 

expression in keratinocytes of the stratum corneum between TG and WT 

epidermis.  

Despite the marked increase in the keratinocyte proliferation rate and 

epidermal hyperplasia, no obvious signs of neoplastic process were detected 

within the IFE in K14-Noggin mice during 1.5 years of observation, although 

some areas of mild and moderate dysplastic alterations were seen in the 

epidermis near HFs.  

Increased proliferative potential is one of the common features of tumour 

cells (Hanahan and Weinberg, 2000), and could predispose to tumour 

development in IFE in K14-Noggin mice. To test this hypothesis, DMBA/TPA 

chemical carcinogenesis protocol was employed. A single dose of DMBA as a 

carcinogen followed by multiple applications of the tumour promoter TPA for 20 

weeks led to the development of papilloma-like tumours and SCC (Glick et al., 

2007; Yuspa et al., 1994).  In this protocol, transgenic Noggin over-expression 

resulted in a significantly faster appearance and a greater number of the 

papilloma-like tumours compared to WT skin. Moreover, the TG mice showed 
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more rapid malignant transformation of the benign tumours into SCC with 

appearance of local metastases in the dermis. In contrast, no signs of SCC 

development were detected in WT skin during 25 weeks of the experiment.  

Taken together, an inhibition of the BMP pathway by Noggin markedly 

enhances proliferative potential of the IFE keratinocytes without altering their 

differentiation programmeme. Although, this is not enough to induce a 

spontaneous neoplastic process, but greatly increases susceptibility of the 

epidermis to chemically-induced tumourigenesis. However, a question still 

remains unanswered what mechanism prevents tumour formation in IFE versus 

follicular epithelium upon Noggin over-expression? Most likely, follicular and 

epidermal keratinocytes show differential response to extracellular BMP ligands, 

which is primarily dependent on expression of the BMP receptors on the cell 

surface.  At the same time, these two groups of keratinocytes may expose to 

different network of signalling molecules regulating homeostasis in distinct skin 

compartments. Finally, there could be other mechanisms contributing to the 

tumour protection in the HFs and IFE, such as differences in mesenchymal 

components underlying the IFE and HF keratinocytes (basal membrane of the 

epidermis and HF connective tissue sheath). 

 

 

4.3 Inhibition of BMP signalling leads to activation of pro-

oncogenic Wnt and Shh pathways in K14-Noggin skin 

An intrinsic response of every cell exposed to an external signalling 

molecule is a changing of the transcriptional programmeme in the nucleus, 
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which includes transcriptional activation and/or repression of distinct sets of 

genes. These genes representing direct targets for a particular signalling 

pathway may in turn regulate transcription of other genes (indirect targets) or 

can interfere with components of other signalling pathways creating a network 

of regulatory molecules. The cellular response in this case will reflect 

summarizing effects of the complex interactions between the components of 

different signalling pathways rather than only a direct effect of the primary 

molecule triggered the signal transduction. Apparently, the way of acting of the 

BMP signalling fully supports the mechanism mentioned above. In several 

model systems, different interactions between selected components of the BMP 

pathway and other signalling and regulatory molecules have been recently 

described, i.e. interactions between the BMP and Wnt signalling (Di Pasquale 

and Brivanlou, 2009; Ishitani et al., 1999; Kamiya et al., 2008; Lintern et al., 

2009; Piccolo et al., 1999), BMP and Shh (Laurikkala et al., 2003; Zeller and 

Zuniga, 2007; Zuniga et al., 2000), BMP and Edar (Pummila et al., 2007), BMP 

and p53 (Chandar et al., 2005; Nakamura et al., 2003), or Ras  pathways (Liu et 

al., 2003a). 

By employing global microarray approach, genome-wide gene expression 

profiles were compared between the HF-derived tumours and normal hair 

matrix keratinocytes. The microarray and real-time PCR analyses showed two-

fold or higher changes in expression of 390 genes in the HF-derived tumour 

cells versus hair matrix keratinocytes. These genes encode the 

adhesion/extracellular matrix molecules, cell cycle/apoptosis and 

cytoskeleton/cell motility markers, molecules involved in the control of cell 

differentiation, metabolism, signalling and transcription.  It is unlikely that all 
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these genes are direct targets of the BMP signalling. However, the changes in 

transcription activity of the genes are likely to contribute to tumour development 

in K14-Noggin mice. 

Importantly, the HF-derived tumours showed marked increase in 

expression of the  genes encoding the selected components of signalling 

pathways implicated in cutaneous tumourigenesis (Wnt, Hedgehog, Pdgf-A/B, 

Ras, etc.), while expression of genes involved in inhibition of the cell 

proliferation (Igfbp4, Bmp8a, Id2, Id4) was decreased. These data suggested 

the involvement of the pro-oncogenic signalling pathways listed above in the 

development of HF derived tumours in K14-Noggin mice. 

 

 

4.3.1. Noggin-induced activation of the Wnt signalling is crucial 

for initiation of hair follicle-derived tumours 

 
Expression of several Wnt ligands (Wnt5a, Wnt6, Wnt9, Wnt10b) and their 

receptors (Fz2, Fz7) was markedly up-regulated in the K14-Noggin tumour cells 

compared to normal HF keratinocytes. By the date, there is no evidence 

showing direct regulation of the Wnt ligands expression by the BMP signalling 

pathway. However, activation of Wnt signalling may have a great impact on 

development of the tumours in K14-Noggin mice. It was recently shown that 

overexpression of the active form of -catenin, a key component of the Wnt 

pathway, results in conversion of the HFs into benign tumours (pilomatricoma 

and trichofoliculoma) in mouse skin (Gat et al., 1998; Lo Celso et al., 2004).  

It is possible to suggest a close functional relationship between the 

inhibition of BMP signalling and activation of Wnt/-catenin pathway in the 

development of the trichofoliculomas in K14-Noggin mice. Indeed, nuclear 
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staining for -catenin was detected in the outer root sheath and tumour 

placodes in the TG skin. Expression of the transcriptional co-factor of -catenin, 

Lef-1, was also detected in the tumour placodes. Finally, inhibition of the Wnt 

pathway by pharmacological manipulation significantly decreases a number of 

tumour placodes arising from the outer root sheath accompanied by the 

decrease of nuclear -catenin staining in the HF keratinocytes, thus suggesting 

an inhibition of the tumour initiation. 

Interestingly, there is an important antagonistic interplay between Wnt and 

BMP pathways during HF induction in embryonic skin and anagen initiation in 

adult skin. Several reports show that activation of the Wnt signalling is a crucial 

step in HF induction and anagen initiation (Andl et al., 2002; DasGupta et al., 

2002; Huelsken et al., 2001; Merrill et al., 2001; Plikus et al., 2008; van 

Genderen et al., 1994; Van Mater et al., 2003). In contrast, inhibition of the BMP 

pathway activity was shown as an essential factor for hair follicle induction and 

new hair growth stimulation (Botchkarev et al., 2002; Botchkarev et al., 1999a; 

Botchkarev, 2001; Guha et al., 2004; Plikus et al., 2008). However, little is 

known about the mechanism governing the dynamic opposite interplay between 

these two pathways. It was previously reported that up-regulation of the BMP 

antagonist Noggin expression occurs in the bulge and secondary hair germ 

during the early anagen phase when HF stem cells are activated and migrate 

downward to generate new HFs (Botchkarev, 2001; Zhang et al., 2006). Noggin 

operates through antagonistic interactions with BMPs, which result in up-

regulation of the transcription factor Lef-1, a crucial component of the Wnt/-

catenin pathway (Botchkarev et al., 1999a). Moreover, BMP inhibition via 

BMPR1A deficiency enhances -catenin stabilization in the bulge cells through 
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a pathway involving PTEN inhibition and PI3K/AKT activation (Kobielak et al., 

2007; Zhang et al., 2006). 

However, our data revealed another mechanism for the antagonistic 

cross-talk between the BMP and Wnt pathways in the HFs. Data presented 

here suggest that an extracellular Wnt antagonist Wif1, which operates as a 

potent tumour suppressor in other organs (lungs, prostate, breast, etc) (Rubin et 

al., 2006), may serve as a target for BMP signalling. Wif1 is expressed in the 

bulge cells of telogen and late anagen HFs in WT skin, while its expression is 

markedly down-regulated in the developing tumour placodes in K14-Noggin 

skin. We show here that Wif1 indeed represents as a direct target of the BMP 

signalling: i) Wif1 expression in tumour cells is positively regulated by BMP4; ii) 

BMP signalling pathway regulates the Wif1 promoter activity in HaCaT 

keratinocytes; iii) Smad1/5 bind the Wif1 promoter in ChIP assay. These data 

suggest that tumour suppressive activity of the BMP signalling in the 

keratinocytes is mediated, at least in part, via positive regulation of the Wif1 

expression 

 

 

4.3.2. Upregulation of Shh pathway promotes tumour 

progression upon Noggin-induced BMP suppression 

 
Microarray and RT-qPCR data show increased mRNA expression of 

several components of the Hedgehog signalling pathway in K14-Noggin 

tumours, such as Shh, Dhh, Smo (Fig. 3.13). Increased expression of the Shh 

is also detected on a protein level. Moreover, several selected target genes of 

Shh pathway (Ptch1/2, Gli1/2, Ccnd1/2) are highly expressed in the tumours, 

thus suggesting an activation of the Shh signalling pathway during Noggin-
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induced tumourigenesis.  

Similarly to Wnt activity, Shh signalling stimulates proliferation and self-

renewal of the stem cell/multipotent progenitor cells in both embryonic and adult 

tissues of different origins, e.g. hemopoietic, neuronal, epidermal and 

gastrointestinal (Ramalho-Santos et al., 2000)  (Bhardwaj et al., 2001)  (Palma 

et al., 2005)  (Zhou et al., 2006). 

In skin, activation of both Shh and Dhh in basal keratinocytes of the 

epidermis and in HFs results in hyperplasia of the epidermal progenitor cells 

and development of lesions reminiscent of human basal cell carcinoma 

(Adolphe et al., 2004; Grachtchouk et al., 2000). In contrast, loss of the Shh in 

skin causes defects in cell proliferation in hair placodes and arrests of HF 

growth at the early stage of the development (Chiang et al., 1999; St-Jacques 

et al., 1998). In epidermal keratinocytes, the pro-proliferative effect of the Shh 

signalling are mediated through inhibition of p21(CIP1/WAF1) (Fan and Khavari, 

1999). In addition, Shh stimulates expression of cyclinD1 and cyclinD2 

maintaining proliferation of non-differentiated progenitor cells, while more 

differentiated cells are not responsive to the Shh proliferative signalling (Kenney 

and Rowitch, 2000).  

Thus, active Shh signalling may be involved in the tumourigenesis in the 

K14-Noggin skin promoting the proliferation of the HF stem cells or their non-

differentiated progenies. Interestingly, inhibition of the Shh signalling by Smo 

inhibitor Cyclopamin does not effect on the tumour initiation, but rather blocks 

the growth and progression of the tumour after tumour placode induction (Fig. 

3.15).  

Up-regulation of the Shh signalling in K14-Noggin mice suggests that BMP 
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signalling can antagonize Shh activity in HFs. Indeed, BMP4 treatment of K14-

Noggin tumour cells decreases Shh mRNA expression in vitro (Fig. 3.16), a 

result that is consistent with data previously obtained (Botchkarev, 2001; 

Sneddon et al., 2006).  

It is unclear, however, which mechanisms may be involved in mediating 

the effects of BMPs on the Shh expression in keratinocytes. A reporter assay 

with Shh promoter region suggests that Shh expression is not under direct 

regulation by BMPs (Fig. 3.17).  

Eda/Edar signalling may serve as one of the candidates in mediating the 

cross-talk between BMP and Shh pathways in trichogenic tumours: Edar 

expression is increased in the HF-derived tumours of K14-Noggin mice (Fig. 

3.10); Edar has been shown to be a direct target for down-regulation by BMP 

signals (Mou et al., 2006), and, in turn, is capable of positively regulating Shh 

expression (Pummila et al., 2007). 

Interestingly, recent observations demonstrate the Shh pathway as a 

downstream effecter of Wnt signalling during development of basal cell 

carcinoma (Yang et al., 2008). Thus, stimulation of the Shh signalling may be a 

consequence of Noggin-induced activation of the Wnt pathway in K14-Noggin 

skin. It also remains to be determined whether other regulatory molecules, 

whose expression is changed in the tumours, are also capable of modulating a 

cross-talk between the BMP and Shh signalling pathways during the neoplastic 

process in HFs.  
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4.3.3. Model illustrating the involvement of the BMP signalling in 

the suppression of tumour formation in the skin 

Taken together, these data support a concept that signalling pathways 

involved in the control of skin morphogenesis are highly relevant to the 

development of skin carcinogenesis (Bornstein et al., 2007; Owens and Watt, 

2003; Yang et al., 2008). Accumulated evidences have changed the paradigm 

of cancer development, which can no longer be viewed purely in terms of a 

network of oncogenes and tumour suppressor genes (Hahn and Weinberg, 

2002). The complex interplay of different signalling pathways that regulate the 

balance between proliferation and differentiation in normal tissues is frequently 

subverted in cancer (Taipale and Beachy, 2001).  

The data presented here provide compelling evidence that the BMP 

antagonist Noggin can play an important role in skin tumourigenesis and may 

significantly compromise tumour suppressor function of BMPs in postnatal skin, 

at least in part via stimulating the Wnt and Shh signalling pathways (Fig. 4.1). 

Thus, levels and/or activity of BMP antagonists may determine the 

predisposition of skin epithelium to carcinogenesis, while pharmacological 

modulation of BMP activity may provide a new set of tools for skin cancer 

prevention and management.  

 

 

 

 

 



 157 

 
 

Fig. 4.1. Anti-tumour activity of the BMP signalling in 

keratinocytes  

The scheme illustrates mechanisms of the effects of the BMP signalling on 

distinct stages (initiation and progression) of tumour formation 
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CONCLUSION 

 

Based on the data presented above, the following conclusions are drawn: 

1. Inhibition of the BMP activity in the murine epidermis and hair 

follicle by K14-driven Noggin overexpression results in spontaneous 

development of trichofolliculoma-like tumours, as well as in hyperplasia of the 

epidermis and sebaceous glands. Noggin induced BMP inhibition is associated 

with increased cell proliferation and decrease of apoptosis in the skin, as well as 

with activation and expansion of the epithelial stem cells and/or their early 

progeny. In the epidermis, decrease of the BMP activity significantly increases 

the susceptibility to chemical carcinogenesis.  

2. Noggin overexpression leads to marked alterations in gene 

expression programmemes in keratinocytes and accompanied by the increase 

in the expression of genes encoding selected components of several pro-

oncogenic signalling pathways (e.g., Wnt, Shh, Pdgf, etc.). Pharmacological 

treatment of the K14-Noggin mice with synthetic inhibitors of the Wnt and Shh 

signalling pathways suggests that these pathways are likely to contribute to the 

initiation and progression of the trichofolliculoma-like tumours.  

3. Anti-tumourigenic effects of the BMP signalling in keratinocytes is 

mediated, at least in part, via cross-talk with the Wnt and Shh pathways: 

a) Development of the hair follicle-derived tumours in K14-Noggin is 

associated with marked downregulation of the Wnt antagonist and tumour 

suppressor Wif1, while BMP4 directly stimulates expression of the Wif1 in 

cultured tumour cells. Smad1/5 bind the Wif1 promoter in the ChIP assay and 
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positively regulates the Wif1 promoter activity in the transient transfection 

assay. Thus, Wif1 can mediate the inhibitory effects of the BMPs on Wnt 

signalling pathway, as well as be part of the BMP-mediated anti-tumourigenic 

programmeme in the skin epithelium. 

b) BMP signalling pathway negatively regulates Shh expression in 

keratinocytes. However, this effect is likely to be indirect and may mediated by 

other factors including Edar signalling.  

4.      Taken together, tumour suppressor function of the BMPs in the skin 

epithelium can be significantly compromised by a local concentration and/or 

activity of the BMP antagonist Noggin. Tumour suppressor activity of the BMPs 

in keratinocytes is mediated, at least in part, via regulation of the expression of 

factors antagonizing Wnt and Shh oncogenic pathways. 
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FUTURE WORK  

Following studies could be helpful to further elucidate the molecular basis 

of tumour suppressor function of the BMP signalling and the complex interaction 

with other signalling pathways implicated in skin carcinogenesis:  

 Generation of a transgenic mouse line overexpressing Wif1 under 

the control of skin specific promoters, such as K14: testing the susceptibility of 

these mice to chemical carcinogenesis and crossbreeding with K14-Noggin 

mice to rescue their tumour phenotype 

 Isolation of cancer stem cells from chemically induced skin 

tumours by FACS sorting using cell surface markers (i.e. CD34) and treatment 

of them with BMP ligands to test their tumour initiation abilities in skin 

reconstitution assay 

 Genome wide gene expression profiling of the cancer stem cells 

before and after BMP treatment and comparison with normal skin stem cells 

could bring some new insight into the tumour suppressor function of BMPs  
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Appendix A 

 
Genes Overexpressed in the Tumour Cells of Hair Follicles of K14-Noggin 

Mice versus Matrix cells of Hair Follicles of Wild-Type Mice (258 genes) 
 

Adhesion (19) Gene 
Symbol 

Accession 
Number 

Fold 
Change 

Neural cell adhesion molecule 1  Ncam1  NM_010875 ↑8.7 

Poliovirus receptor-related 3  Pvrl3  NM_021495 ↑7.7 

Coxsackievirus and adenovirus receptor  Cxadr NM_009988 ↑4.8 

Lectin, galactose binding, soluble 7 Lgals7 NM_008496 ↑4.7 

Laminin, gamma 2 Lamc2 NM_008485 f↑4.7 

Protocadherin beta 17 Pcdhb17 NM_053142 ↑3.7 

Protocadherin beta 10 Pcdhb10 NM_053135 ↑2.8 

odd Oz/ten-m homolog 2 Odz2 NM_011856 ↑2.8 

Integrin alpha X Itgax NM_021334 ↑2.7 

Protocadherin beta 21 Pcdhb21 NM_053146 ↑2.6 

Procollagen, type XVIII, alpha 1 Col18a1 NM_009929 ↑2.3 

Laminin alpha 5 chain Lama5 U37501 ↑2.3 

Claudin 1 Cldn1 NM_016674 ↑2.2 

Protocadherin beta 22 Pcdhb22 NM_053147 ↑2.2 

Cell adhesion molecule 1 Cadm1 AF434663 ↑2.2 

Integrin beta 4 Itgb4 BC059192 ↑2.1 

Transmembrane protein 16B Tmem16b NM_153589 ↑2.0 

Protocadherin beta 13 Pcdhb13 NM_053138 ↑2.0 

Contactin associated protein 4 Cntnap4 NM_130457 ↑2.0 

    

Extracellular matrix (17)    

Semaphorin 4c precursor Sema4c XM_898566 ↑11.5 

EMI domain containing 2  Emid2  NM_024474 ↑7.5 

Muskelin 1  Mkln1 NM_013791 ↑6.6 

Procollagen, type XVII, alpha  Col17a1 BC003208 ↑5.9 

Phosphacan short isoform (RPTP-beta gene)  Ptprz1 AJ428208 ↑5.4 

Procollagen, type VII, alpha 1 Col7a1 NM_007738 ↑5.3 

Leucine rich repeat protein 1, neuronal Lrrn1 NM_008516 ↑5.2 

EMI domain containing 1 Emid1 NM_080595 ↑4.5 

Hyaluronan synthase 3 Has3 NM_008217 ↑3.6 

Microfibrillar-associated protein 2 Mfap2 NM_008546 ↑2.8 
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Heparan sulfate (glucosamine) 3-O-sulfotransferase 
3B 

Hs3st3b NM_018805 ↑2.8 

Collagen type VI, alpha 3 Col6a3 NM_009935 ↑2.7 

Chondroitin sulfate proteoglycan 4 Cspg4 NM_139001 ↑2.3 

alpha-1 type IV collagen Col4a-1 J04694 ↑2.3 

Procollagen, type XVIII, alpha 1  Col18a1 NM_009929 ↑2.2 

Fibronectin leucine rich transmembrane protein 3  Flrt3 NM_178382 ↑2.2 

Cytotoxic and regulatory T cell molecule Crtam NM_019465 ↑2.1 

    

Cell cycle (11)    

Deleted in bladder cancer 1 Dbccr1 NM_019967 ↑7.2 

Leucine rich repeat containing 4  Lrrc4 NM_138682 ↑6.9 

KH domain containing, RNA binding, signal 
transduction associated 3 

Khdrbs3 NM_010158 ↑6.2 

Sex comb on midleg-like 2 cyclin-dependent kinase Scml2 NM_133194 ↑3.9 

RAD50 homolog (S. cerevisiae) Rad50 NM_009012 ↑3.6 

Cyclin D2 Ccnd2 NM_009829 ↑3.4* 

Cyclin M3 Cnnm3 BC052714 ↑3.4* 

Chromodomain helicase DNA binding protein 3 Chd3 BC020471 ↑2.6 

Musashi homolog 1(Drosophila) Msi1h NM_008629 ↑2.6 

Cyclin F  Ccnf NM_007634 ↑2.3* 

B-cell translocation gene 1, anti-proliferative Btg1 BC018309 ↑2.3 

    

Apoptosis (7)    

B-cell CLL/lymphoma 11A (zinc finger protein) Bcl11a NM_016707 ↑4.7 

B-cell leukemia/lymphoma 6 Bcl6 NM_009744 ↑3.9* 

Bcl-2 binding component 3 Bbc3 NM_133234 ↑3.4 

DNA-damage-inducible transcript 4 Ddit4 NM_029083 ↑3.2 

Transformation related protein 53 inducible nuclear 
protein 1 

Trp53inp1 NM_021897 ↑2.3 

Fas apoptotic inhibitory molecule 2   Faim2 NM_028224 ↑2.2 

Bcl2-associated athanogene 3 Bag3 NM_013863 ↑2.0 

    

Cytoskeleton/Keratinocyte Differentiation (10)    

Keratin associated protein 6-1 Krtap6-1 NM_010672 ↑6.4 

Ankyrin repeat domain 2      Ankrd2 NM_021351 ↑5.5 

Erythrocyte protein band 4.9  Epb4.9 NM_013514 ↑3.9 

Keratin complex 1, acidic, gene 16  Krt1-16 NM_008470 ↑3.3* 

Tektin 1   Tekt1  NM_011569 ↑3.1 

Microtubule-associated protein tau  Mapt   NM_010838 ↑2.8 

Keratin complex 2, basic, gene 5   Krt2-5 BC006780 ↑2.6* 

Leiomodin 1 (smooth muscle)  Lmod1 NM_053106 ↑2.2 

Keratin complex 1, acidic, gene 17  Krt1-17 NM_010663 ↑2.1* 

Ena-vasodilator stimulated phosphoprotein   Evl  NM_007965 ↑2.0 
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Metabolism (46)    

Protein-tyrosine sulfotransferase 2  Tpst2 NM_009419 ↑8.2 

Glycine N-methyltransferase   Gnmt NM_010321 ↑6.3 

AMP deaminase isoform M  Ampd1 XM_131103 ↑6.0 

Poly(ADP-ribose) polymerase 3  Adprt3 AY046317 ↑4.9 

Transmembrane channel-like gene family 7  Tmc7 NM_172476 ↑4.8 

Dehydrogenase/reductase (SDR family) member 6  Dhrs6 NM_027208 ↑4.4 

 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 
2 

Pfkfb2 BC018418 ↑3.9 

O-acyltransferase (membrane bound) domain 
containing 2 

Oact2 NM_026037 ↑3.1 

Guanosine monophosphate reductase Gmpr NM_025508 ↑3.0 

Carbonic anhydrase 6   Car6 NM_009802 ↑3.0 

ADP-ribosylation factor 3   Arf3 NM_007478 ↑3.0 

Golgi associated, ARF binding protein 3   Gga3 NM_173048 ↑2.9 

Spermine oxidase Smox BC004831 ↑2.8 

Sialyltransferase 9   Siat9 NM_011375 ↑2.8 

Glutamate-ammonia ligase (glutamine synthase)   Glul NM_008131 ↑2.3 

Ectonucleoside triphosphate diphosphohydrolase 2v Entpd2 NM_009849 ↑2.2 

SEC24 related gene family, member D (S. cerevisiae)  Sec24d BC026624 ↑2.2 

Syntaxin binding protein 4   Stxbp4 NM_011505 ↑2.2 

Xylosyltransferase II (XT-II gene)  Xylt2 AJ291751 ↑2.0 

Arylalkylamine N-acetyltransferase  Aanat AF004109 ↑2.0 

    

Ion transport (14)t    

Calcium channel, voltage-dependent, T type, alpha 
1G  

Cacna1g NM_009783 ↑16.4 

Ferritin light chain 2   Ftl2 NM_008049 ↑7.5 

ATPase, Na+/K+ transporting, beta 2 Atp1b2 NM_053146 ↑5.8 

ATPase, H+ transporting, V1 subunit C, isoform 2  Atp6v1c2 NM_133699 ↑5.0 

Potassium large conductance calcium-activated 
channel, subfamily M, alpha member 1 

Kcnma1 NM_010610 ↑4.2 

FXYD domain-containing ion transport regulator 4   Fxyd4 NM_033648 ↑3.6 

Solute carrier organic anion transporter family, 
member 3a1 

Slco3a1 NM_023908 ↑3.3 

Solute carrier family 22, member 4 Slc22a4 NM_019687 ↑3.2 

ATPase, Na+/K+ transporting, beta 1 polypeptide Atp1b1 NM_009721 ↑2.8 

Progressive ankylosis  Ank NM_020332 ↑2.7 

Chloride channel 2  Clcn2 NM_009900 ↑2.4 

ATPase, Cu++ transporting, beta polypeptide     Atp7b NM_007511 ↑2.2 

Calcium channel, voltage-dependent, alpha 2/delta 2   Cacna2d2 NM_020263 ↑2.0 

ATPase, Na+/K+ transporting, beta 3 polypeptide  Atp1b3 NM_007502 ↑2.0 
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Lipid metabolism (12)    

Arachidonate epidermis-type 12(S)-lipoxygenase Alox12e NM_145684 ↑17.5 

 Apolipoprotein M Apom NM_018816 ↑6.5 

Peroxisomal biogenesis factor 11c  Pex11c  NM_026951 ↑6.5 

Phospholipase A2, group IIE   Pla2g2e NM_012044 ↑5.2 

Arachidonate 5-lipoxygenase activating protein  Alox5ap BC026209 ↑4.7 

Phosphatidylinositol-4-phosphate 5-kinase, type 1 
alpha   

Pip5k1a NM_008846 ↑3.1 

ATP-binding cassette, sub-family G (WHITE), member 
1 

Abcg1 NM_009593 ↑2.9 

Iinositol 1,4,5-trisphosphate 3-kinase C  Itpkc BC013227 ↑2.7 

Arachidonate lipoxygenase 3  Aloxe3 NM_011786 ↑2.4 

Phospholipase C, gamma 2 Plcg2 BC019654 ↑2.3 

Apolipoprotein E  Apoe NM_009696 ↑2.1 

Sulfotransferase family 4A, member 1   Sult4a1 NM_013873 ↑2.0 

    

Proteolysis/Cytolysis (17)    

Alpha 1 microglobulin/bikunin  Ambp  NM_007443 ↑6.7 

Protease, serine, 12 neurotrypsin (motopsin)  Prss12 NM_008939 ↑5.3 

Protease, serine, 18   Prss18 NM_011177 ↑4.7 

Cathepsin H Ctsh NM_007801 ↑4.6 

Tetranectin (plasminogen binding protein)  Tna NM_011606 ↑3.8 

Extracellular proteinase inhibitor  Expi NM_007969 ↑3.7 

Kallikrein 7 (chymotryptic, stratum corneum)   Klk7 NM_011872 ↑3.1 

Protease, serine, 11 (Igf binding)  Prss1 NM_019564 ↑2.9 

Cathepsin S   Ctss NM_021281 ↑2.8 

Cathepsin Q  Ctsq NM_029636 ↑2.6 

Cathepsin L   Cts NM_009984 ↑2.5 

P lysozyme structural Lzp-s NM_013590 ↑2.5 

Protective protein for beta-galactosidase   Ppgb NM_008906 ↑2.4 

Tissue inhibitor of metalloproteinase 2 Timp2 NM_011594 ↑2.1 

Furin (paired basic amino acid cleaving enzyme) (), 
mRNA [6] 

Furin NM_01104 ↑2.1 

Mast cell protease 4   Mcpt4 NM_010779 ↑2.1 

Matrix metalloproteinase 7 Mmp7 NM_010810 ↑2.0 

    

Signalling (75)    

Signalling pathways controlling organ development/tumourigenesis (30)   

Transforming growth factor, beta 2   TGFβ2 NM_009367 ↑10.9 

Tumour necrosis factor receptor superfamily, member 
10b  

Tnfrsf10b NM_020275 ↑10.2 

Transformation related protein 73   Trp73 NM_011642 ↑6.1 

EGF-like-domain, multiple 4  Egfl4 BC036727 ↑7.6 

PDZ and LIM domain 4   Pdlim4 NM_019417 ↑7.3 
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Rab6b,  member RAS oncogene family Rab6B NM_173781 ↑7.1 

Prokineticin 1  Pk1 AF487281 ↑7.0 

Platelet derived growth factor, alpha  Pdgfa NM_008808 ↑5.5* 

Retinoic acid receptor gamma 3   Rarg3 NP057424 ↑5.3 

Transmembrane protein with EGF-like and follistatin-
like domains 2   

Tmeff2 NM_019790 ↑5.1 

Ras homolg gene family, member G   Rhog NM_019566 ↑5.0 

Cholecystokinin   Cck NM_031161 ↑4.5 

Sonic hedgehog protein precursor (shh)  homolog Shh NM_009170  ↑4.1* 

RAB34, member of RAS oncogene family Rab34 NM_033475 ↑4.1 

I-kappa-b-interacting ras-like protein 2 Nkiras2 NM_028024 ↑3.7 

Transcription factor hes-5 (hairy and enhancer of split 
5)   

Hes5 NM_010419 ↑3.6 

Calcitonin.   Calca X97991 ↑3.5 

Desert hedgehog   Dhh NM_007857 ↑2.7 

Ectodysplasin-A receptor  Edar NM_010100 ↑2.6* 

Tumour necrosis factor receptor superfamily, member 
9   

Tnfrsf9 NM_011612 ↑2.6 

Protein kinase C, theta Prkcq NM_008859 ↑2.6 

RAS-like, estrogen-regulated, growth-inhibitor Rerg BC026463 ↑2.5 

Tumour necrosis factor receptor superfamily, member 
18  

Tnfrsf18 NM_009400 ↑2.5 

Bone morphogenetic protein 7   Bmp7 NM_007557 ↑2.3 

Neurturin  Nrtn NM_008738 ↑2.2 

Tumour necrosis factor (ligand) superfamily, member 
15   

Tnfsf15 NM_177371 ↑2.1 

Insulin-like 6  Insl6 NM_013754 ↑2.1 

Insulin-like growth factor binding protein 7   Igfbp7 NM_008048 ↑2.1 

Platelet derived growth factor, B polypeptide  Pdgfb NM_011057  ↑2.0* 

Smoothened homolog (Drosophila)   Smo NM_176996  ↑2.0* 

    

Wnt signalling (10)    

Kringle containing transmembrane protein   Kremen NM_032396 ↑5.1 

Wingless-related MMTV integration site 5a   Wnt5a NM_009525  ↑2.8* 

Wingless-type MMTV integration site 9B  Wnt9b NM_011719 ↑2.6 

Casein kinase 1, epsilon   Csnk1e NM_013767 ↑2.4 

Low density lipoprotein receptor-related protein 4   Lrp4 NM_172668 ↑2.4 

Wingless related MMTV integration site 10b  Wnt10b NM_011718  ↑2.3* 

Wingless-related MMTV integration site 6   Wnt6 NM_009526 ↑2.2 

Frizzled homolog 7 (Drosophila)  Fzd7 NM_008057 ↑2.1 

Frizzled homolog 2 (Drosophila)   Fzd2 NM_020510 ↑2.1 

Wingless-related MMTV integration site 11   Wnt11 NM_009519 ↑2.0 

    

Other signalling pathway-related markers (35)    
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Serine-threonine kinase receptor-associated protein Strap TC1066374 ↑6.2 

Transmembrane domain protein regulated in 
adipocytes  

Tpra40 NM_011906 ↑4.8 

Guanine nucleotide binding protein, alpha z subunit  Gnaz NM_010311 ↑4.7 

PTK2 protein tyrosine kinase 2 beta  Ptk2b NM_172498 ↑4.6 

Erythropoietin receptor   Epor NM_010149 ↑3.9 

Mps One Binder kinase activator-like 2C Mobkl2c AK084014 ↑3.8 

Mitochondrial tumour suppressor 1  Mtus1 BC030860 ↑3.7 

Oz/ten-m homolog 2 (Drosophila)   Odz2 NM_011856 ↑3.6 

Piwi like homolog 2 (Drosophila)   Piwil2 NM_021308 ↑3.2 

FMS-like tyrosine kinase 1  Flt1 NM_010228 ↑3.2 

Galanin receptor 3  Galr3 NM_015738 ↑3.0 

Reticulon 4 receptor   Rtn4r NM_022982 ↑2.9 

Deiodinase, iodothyronine, type I  Dio1 NM_007860 ↑2.9 

Protein phosphatase 1A, magnesium dependent, 
alpha isoform   

 Ppm1a NM_008910 ↑2.8 

Taste receptor, type 2, member 105   Tas2r105 NM_020501 ↑2.6 

GRP1(General receptor for phosphoinositides 1 ass. 

scaffold protein) 

Grasp NM_019518 ↑2.6 

Mitogen activated protein kinase kinase kinase 2  Map3k2 NM_011946 ↑2.6 

v-erb-b2 erythroblastic leukemia viral oncogene 
homolog 2 

ErbB2 NM_00100381
7 

↑2.6 

Growth arrest specific 6  Gas6 NM_019521 ↑2.5 

Toll-like receptor 9  Tlr9 NM_03117 ↑2.4 

G protein-coupled receptor 49   Gpr49 NM_010195 ↑2.4 

Growth factor receptor bound protein 7   Grb7 NM_010346 ↑2.3 

Transmembrane channel-like gene family 4 Tmc4 BC040466 ↑2.3 

Heat shock protein, 25 kDA   Hspb1 NM_013560 ↑2.2 

Pellino 2  Peli2 NM_033602 ↑2.2 

Neogenin  Neo1 NM_008684 ↑2.2 

Icos ligand   Icosl NM_015790 ↑2.1 

Protein tyrosine phosphatase PTPT9  Ptprs D28530 ↑2.1 

MIS type II receptor  Misri AF503863 ↑2.1 

G protein-coupled receptor RE2  Gpr161 AY255596 ↑2.1 

Melanocortin 4 receptor  Mc4r NM_016977 ↑2.1 

Stromal interaction molecule 1 Stim1 NM_009287 ↑2.0 

Paternally expressed 12   Peg12 NM_013788 ↑2.0 

Feline sarcoma oncogene  Fes BC038130 ↑2.0 

Macrophage stimulating 1 receptor (c-met-related 
tyrosine kinase)  

Mst1r NM_009074 ↑2.0 

    

Transcription (56)    

LIM domain only 1  Lmo NM_057173 ↑16.7 

Homeo box A9   Hoxa9 NM_010456 ↑5.6 
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Interleukin enhancer binding factor 2   Ilf2 NM_026374 ↑5.6 

BTB and CNC homology 2  Bach2 BС051242 ↑5.0 

Activating transcription factor 6 Atf6 NM_00108130
4 

↑4.9 

Paired like homeodomain factor 1   Prop1 NM_008936 ↑4.9 

B-cell CLL/lymphoma 11A (zinc finger protein)   Bcl11a NM_016707 ↑4.7 

E74-like factor 4   Elf4 NM_019680 ↑4.3 

Iroquois related homeobox 4 (Drosophila)  Irx4 NM_018885 ↑4.0 

Homeo box D11   Hoxd11 NM_008273 ↑4.0 

similar to zinc finger and BTB domain containing 45 ZBTB45 NM_00102469
9 

↑4,0 

Tripartite motif-containing 45  Trim45 NM_194343 ↑4,0 

LIM homeobox protein 2   Lhx2 NM_010710 ↑3.9 

SRY-box containing gene 13   Sox13 NM_011439 ↑3.8 

Early growth response 2  Egr2 X06746 ↑3.7 

Mesoderm posterior 1   Mesp1 NM_008588 ↑3.6 

SRY-box containing gene 7 Sox7 NM_011446 ↑3.6 

Iroquois related homeobox 2 (Drosophila)  Irx2 NM_010574 ↑3.5 

Signal transducer and activator of transcription 3, 
transcript variant 3  

Stat3 ИС019168 ↑3.4 

Iroquois-class homeobox protein Irx6   Irx6 AF165986 ↑3.4 

Transcription factor AP-2, epsilon   Tcfap2e NM_198960 ↑3.3 

SRY-box containing gene 9  Sox9 BС004064 ↑3.3 

SRY-box containing gene 5 Sox5 NM_011444 ↑3.2 

T-cell leukemia, homeobox 2   Tlx2 NM_009392 ↑3.2 

Zinc finger protein 30   Zfp30 NM_013705 ↑3.2 

Basic transcription element binding protein 1   Bteb1 NM_010638 ↑3.1 

H6 homeo box 1   Hmx1 NM_010445 ↑3.0 

Notch-regulated ankyrin repeat protein   Nrarp NM_025980 ↑2.9 

Sine oculis-related homeobox 1 homolog (Drosophila) Six1 NM_009189 ↑2.9 

General transcription factor IIE, polypeptide 1 (alpha 
subunit, 56kDa)   

Gtf2e1 NM_028812 ↑2.9 

Paired box gene 6 Pax6 AF457142 ↑2.8 

Snail homolog 2 (Drosophila)  Snai2 NM_011415 ↑2.8 

Zinc finger protein 287 Zfp287 NM_133208 ↑2.7 

ISL1 transcription factor, LIM/homeodomain (islet 1)   Isl1 NM_021459 ↑2.7 

RE1-silencing transcription factor (REST) co-
repressor 1   

Rcor1 NM_054048 ↑2.7 

SRY-box containing gene 7   Sox7 NM_011446 ↑2.7 

Transforming growth factor beta 1 induced transcript 4     TGFβ1i4 NM_009366 ↑2.6 

TATA box binding protein   Tbp NM_013684 ↑2.6 

Jun oncogene   Jun NM_010591  ↑2.6* 

Ladybird homeobox homolog 1 (Drosophila) Lbx1 NM_010691 ↑2.5 

Transcription factor CP2-like 3   Tcfcp2l3 NM_026496 ↑2.5 
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Sloan-Kettering viral oncogene homolog   Ski NM_011385 ↑2.4 

Insulin related protein 2 (islet 2)   Isl2 NM_027397 ↑2.4 

Transcription factor 3   Tcf3 NM_009332 ↑2.4 

Forkhead box K1, transcript variant 2,   Foxk1 NM_010812 ↑2.3 

Transcription factor CP2-like 3 Grhl2 BC004783 ↑2.3 

Zinc finger protein 423   Zfp423 NM_033327 ↑2.3 

LPS-induced TN factor   Litaf NM_019980 ↑2.2 

Scleraxis Scx S78079 ↑2.2 

Zinc finger protein 354A  Zfp354a NM_009329 ↑2.0 

Circadian locomoter output cycles kaput Clock NM_007715 ↑2.0 

Nuclear receptor co-repressor 2   Ncor2 NM_011424 ↑2.0 

SRY-box containing gene 18   Sox18 NM_009236 ↑2.0 

Zinc finger protein 339, transcript variant A  Zfp339 NM_026924 ↑2.0 

Homeo box A4 Hoxa4 NM_008265 ↑2.0 

Lipin 1, transcript variant 2 Lpin 1 BС042462 ↑2.0 

 
Differences in expression validated by real-time PCR are shown by 

asterisks. 
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Appendix B 

 

 
Genes Underexpressed in the Tumour cells of Hair Follicles of K14-

Noggin Mice Versus Matrix cells of Hair Follicles of Wild-Type Mice (132 
genes) 

 

Adhesion (12) Gene Symbol Accession 
Number 

Fold 
Change 

Claudin 8 Cldn8 NM_018778 ↓4.3 

Transmembrane 4 superfamily member 13 Tm4sf13 NM_025359 ↓4.1 

Protocadherin 8 Pcdh8 NM_021543 ↓4.0 

Cadherin EGF LAG seven-pass G-type receptor 1 Celsr1 NM_009886 ↓3.6 

Synaptogyrin 1  Syngr1 NM_009303 ↓3.1 

Gap junction membrane channel protein beta 5   Gjb5 NM_010291 ↓2.9 

Protocadherin 10 Pcdh10 NM_011043 ↓2.9 

Embigin Emb NM_010330 ↓2.7 

Plasma membrane associated protein, S3-12 S3-12 NM_020568 ↓2.4 

Ttight junction protein 2 Tjp2 NM_011597 ↓2.1 

Nexilin Nexn NM_199465 ↓2.0 

Transmembrane 4 superfamily member 6 Tm4sf6 NM_019656 ↓2.0 

    

Extracellular matrix (4)    

Proteoglycan, secretory granule Prg NM_011157 ↓6.4 

Heparan sulfate (glucosamine) 3-O-sulfotransferase 1 Hs3st1 NM_010474 ↓6.2 

Glycoprotein m6b Gpm6b NM_023122 ↓6.2 

Fibronectin type III domain containing 5 Fndc5 NM_027402 ↓5.2 

    

Cell cycle/Apoptosis (4)    

SAM and SH3 domain containing 1  Sash1 NM_175155 ↓4.0 

Ring finger protein 34  Rnf34 NM_030564 ↓2.7 

Caspase 7  Casp7 NM_007611 ↓2.3* 

Tumour differentially expressed 1  Tde1 NM_012032 ↓2.1 

    

Cytoskeleton/Keratinocyte Differentiation (21)    

Keratin associated protein 16-9   Krtap16-9 NM_130876 ↓44.3 

Keratin associated protein 8-1 Krtap8-1 D86423 ↓20.4 

Keratin complex 1, acidic, gene 1  Krt1-1 NM_010659 ↓18.2* 



 199 

Crystallin, beta A4   Cryba4 NM_021351 ↓18.2 

Fatty acid binding protein 4, adipocyte  Fabp4 BC002148 ↓18.2 

Keratin associated protein 14   Krtap14 NM_013707 ↓17.8 

Keratin hair type II Krt2-20 AY028606 ↓9.9* 

Keratin complex 1, acidic, gene 2  Krt1-2 NM_010665 ↓8.3 

Keratin complex 1, acidic, gene 3 Krt1-3 XM_981536 ↓7.7 

Loricrin   Lor NM_008508 ↓7.7 

Keratin associated protein 16-7  Krtap16-7 NM_130875 ↓5.0 

Keratin associated protein 16-10 Krtap16-10 NM_183296 ↓4.6 

Keratin associated protein 3-2   Krtap3-2 NM_025720 ↓4.1 

Prominin 2   Prom2 NM_178047 ↓3.0 

Keratin complex-1, acidic, gene C29   Krt1-c29 NM_010666 ↓2.5* 

Keratin complex 2, basic, gene 1   Krt2-1 NM_008473 ↓2.4 

Keratin associated protein 3-1 Krtap3-1 XM_894811 ↓2.3 

Transglutaminase 1 Tgm1 NM_019984 ↓2.3 

Der1-like domain family, member 1  Derl1 NM_024207 ↓2.3 

Keratin-associated protein 16.6   Krtap16.6 AF345296 ↓2.2 

RIKEN cDNA A030014E15 gene A030014E15Ri
k 

XM_896395 ↓2.2 

    

Metabolism (26)    

Lipid metabolism (5)    

Sterol O-acyltransferase 1   Soat1 NM_009230 ↓4.4 

Aldehyde dehydrogenase family 1, subfamily A3   Aldh1a3 NM_053080 ↓4.1 

N-acylsphingosine amidohydrolase (alkaline 
ceramidase) 3  

Asah3 NM_175731 ↓3.9 

Sphingomyelin phosphodiesterase 1, acid lysosomal   Smpd1 NM_011421 ↓3.4 

Lysophospholipase 2  Lypla2 NM_011942 ↓2.9 

    

Other metabolic pathways (21)    

Selenium binding protein 1  Selenbp1 NM_009150 ↓31.1 

Solute carrier family 6, member 13 Slc6a13 BC023117 ↓28.2 

Selenium binding protein 2 Selenbp2 NM_019414 ↓21.0 

Fructose bisphosphatase 1  Fbp1 NM_019395 ↓14.8 

Solute carrier family 7, member 8 Slc7a8 NM_016972 ↓6.8 

S100 calcium binding protein A3  S100a3 NM_011310 ↓6.3 

Microsomal glutathione S-transferase 1   Mgst1 NM_019946 ↓5.8 

Hormonally upregulated Neu-associated kinase  Hunk NM_015755 ↓4.9 

S100 calcium binding protein A4  S100a4 AK021069 ↓4.8 

Cytidine 5'-triphosphate synthase  Ctps NM_016748 ↓4.4 

Monoglyceride lipase  Mgll NM_011844 ↓4.2 

SA rat hypertension-associated homolog  Sah NM_016870 ↓3.3 

Prolyl endopeptidase  Prep NM_011156 ↓3.3 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=full_report&list_uids=69473
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=full_report&list_uids=14412
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L-threonine dehydrogenase  Tdh NM_021480 ↓3.1 

Fibroblast activation protein Fap NM_007986 ↓2.7 

B-box and SPRY domain containing   Bspry NM_138653 ↓2.4 

Enolase 3, beta muscle  Eno3 NM_007933 ↓2.3 

Ornithine decarboxylase, structural  Odc NM_013614 ↓2.1 

Glycine C-acetyltransferase  Gcat NM_013847 ↓2.0 

Lleucine aminopeptidase 3   Lap3 NM_024434 ↓2.0 

Silver   Si NM_021882 ↓2.0 

    

Proteolysis/Cytolysis (6)    

Stefin A1   Stfa1 NM_001001332 ↓38.7 

Serine (or cysteine) proteinase inhibitor, clade B, 
member 13   

Serpinb13 NM_172852 ↓12.9 

Stefin 2-like   Stfa2l1 NM_173869 ↓10.3 

Stefin A3 Stfa3 NM_025288 ↓7.2 

Pitrilysin metalloprotease 1  Pitrm1 BC006917 ↓3.1 

Cathepsin E  Ctse NM_007799 ↓2.1 

    

Signalling (29)    

Phosphatidylinositol 3-kinase catalytic subunit, beta 
isoform  

Pik3cb NM_029094 ↓26.9 

Major urinary protein 1  Mup1 NM_031188 ↓20.8 

Glial cell line derived neurotrophic factor receptor 
alpha 3  

Gfra3 NM_010280 ↓12.8 

Rhophilin, Rho GTPase binding protein 2   Rhpn2 NM_027897 ↓11.4 

Major urinary protein 3  Mup3 NM_010845 ↓9.6 

Tumour necrosis factor receptor superfamily, member 
13c   

Tnfrsf13c NM_028075 ↓7.0 

Bone morphogenetic protein 8a  Bmp8a NM_007558 ↓6.7 

BMP and activin membrane-bound inhibitor, homolog Bambi NM_026505 ↓6.4 

Transient receptor potential cation channel, subfamily 
M, member 1    

Trpm1 AF047714 ↓6.0 

Guanine nucleotide binding protein 13, gamma Gng13 NM_022422 ↓5.1 

 Secretin  Sct NM_011328 ↓4.6 

Mitogen-activated protein kinase kinase kinase 6   Map3k6 NM_016693 ↓3.8 

TANK-binding kinase 1  Tbk1 NM_019786 ↓3.6 

Cadherin EGF LAG seven-pass G-type receptor 1   Celsr1 NM_009886 ↓3.1 

Four and a half LIM domains 2   Fhl2 NM_010212 ↓2.9 

Synaptotagmin-like 2  Sytl2 NM_031394 ↓2.7 

Plexin domain containing 2   Plxdc2 NM_026162 ↓2.6 

Wnt inhibitory factor 1   Wif1 NM_001915 ↓2.5* 

Insulin-like growth factor binding protein 4   Igfbp4 NM_010517 ↓2.4 

Interferon gamma receptor Ifngr NM_010511 ↓2.4 

RAB32, member RAS oncogene family Rab32 NM_026405 ↓2.3 
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Estrogen-related receptor beta like 1  Esrrbl1 NM_028680 ↓2.3 

Presenilin 2   Psen2 NM_011183 ↓2.1 

Endothelin 3  Edn3 NM_007903 ↓2.1 

Myelocytomatosis oncogene   Myc NM_010849 ↓2.1 

Docking protein 4   Dok4 NM_053246 ↓2.1 

Tumour necrosis factor receptor superfamily, member 
25  

Tnfrsf25 NM_033042 ↓2.1 

Protein C receptor, endothelial  Procr NM_011171 ↓2.0 

Frizzled homolog 10 (Drosophila)  Fzd10 NM_175284 ↓2.0 

    

Transcription (30)    

Dachshund 1 (Drosophila) Dach1 NM_001038610 ↓28.9 

Homeo box A7   Hoxa7 NM_010455 ↓7.3 

E74-like factor 5   Elf5 NM_010125 ↓7.0 

Four and a half LIM domains 1   Fhl1 NM_010211 ↓6.7 

Hhomeo box B8 Hoxb8 X13721 ↓4.5 

Trans-acting transcription factor 6  Sp6 NM_03118 ↓4.2 

Inhibitor of DNA binding 2   Id2 NM_010496 ↓3.4* 

AT motif binding factor 1   Atbf1 NM_007496 ↓3.2 

Zinc finger protein 185   Zfp185 NM_009549 ↓3.1 

Four and a half LIM domains 2   Fhl2 NM_010212 ↓3.1 

Homeo box B7   Hoxb7 NM_010460 ↓3,0 

Hypermethylated in cancer 2   Hic2 NM_178922 ↓3,0 

Transcription factor AP-2 beta   Tcfap2b NM_009334 ↓2.9 

Zinc finger protein 185   Zfp185 NM_009549 ↓2.9 

Homeo box C13  Hoxc13 AF193796 ↓2.9* 

Naked cuticle 2 homolog (Drosophila)  Nkd2 NM_028186 ↓2.9 

Homeo box, msh-like 2   Msx2 NM_013601 ↓2.8 

Zic family member 1 (odd-paired homolog, 
Drosophila)   

Zic1 NM_009573 ↓2.8 

WAP four-disulfide core domain 1   Wfdc1 NM_023395 ↓2.8 

Inhibitor of DNA binding 1 Id1 NM_010495 ↓2.4 

Homeo box, msh-like 1, mRNA  Msx1 NM_010835 ↓2.4 

Serologically defined colon cancer antigen 33  Sdccag33 BС017636 ↓2.4 

Homeo box A5   Hoxa5 NM_010453 ↓2.3 

Pleckstrin homology-like domain, family A, member 2  Phlda2 NM_009434 ↓2.2 

Hairy and enhancer of split 6 (Drosophila)   Hes6 NM_019479 ↓2.2 

Homeo box D4   Hoxd4 NM_010469 ↓2.2 

Inhibitor of DNA binding 4   Id4 NM_031166 ↓2.1 

Splicing factor, arginine/serine-rich 2 (SC-35)    Sfrs2 NM_011358 ↓2.1 

Lymphoid enhancer binding factor Lef1 NM_010703 ↓2.1* 

Iroquois related homeobox 3 (Drosophila)   Irx3 NM_008393 ↓2.1 
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Differences in expression validated by real-time PCR are shown by 
asterisks. 
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