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Abstract

Time series data mining is one branch of data mining. Time series analysis

and prediction have always played an important role in human activities and

natural sciences. A Pseudo-Periodical time series has a complex structure,

with fluctuations and frequencies of the times series changing over time. Cur-

rently, Pseudo-Periodicity of time series brings new properties and challenges

to time series analysis and prediction.

This thesis proposes two original computational approaches for time series

analysis and prediction: Moving Average of nth-order Difference (MANoD)

and Series Features Extraction (SFE). Based on data-driven methods, the

two original approaches open new insights in time series analysis and pre-

diction contributing with new feature detection techniques. The proposed

algorithms can reveal hidden patterns based on the characteristics of time

series, and they can be applied for predicting forthcoming events.

This thesis also presents the evaluation results of proposed algorithms on

various pseudo-periodical time series, and compares the predicting results

with classical time series prediction methods. The results of the original

approaches applied to real world and synthetic time series are very good and

show that the contributions open promising research directions.

Keywords: Time Series, Time Series Analysis and Prediction, nth-order

Difference, Similarity, Feature Extraction
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Chapter 1. Introduction

1.1 Data Mining on Time Series

Data mining is a process of analyzing data sets, which is used to discover

regularities, to find unknown relationships and to understand the organiza-

tional essences from data. Data mining methods have been widely used in

business (insurance, banking, retail), science research (astronomy, medicine)

and government security (detection of crimes, prevention of disease) [Hand

et al., 2001].

Data mining on time series is one important branch of data mining. Due

to the specificity of “time”, the significance of “time-stamped” data sets can

be explored and discovered by time intervals. As time series data sets are

ubiquitous in everyday life, time series data mining becomes an important

and active research topic nowadays.

Historical data mining approaches are designed to process “static” data sets,

i.e. the indices of data sets are independent variables and they are unre-

lated to others attributes of the data sets. However, modern approaches

indicate that there are certainly many other cases for which sequential data

measurements associated with the time interval(s) present significant infor-

mation about the “time-stamped” data sets. In other words, the “time”

exists in the time series database as a dependant but relevant variable of

data observations.

One of the best-known examples is the data sequence of Sunspot Num-

ber [Wikipedia., 2004] observations: the values at the end of one time period
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Chapter 1. Introduction

affect the value(s) at the beginning of next period, such as: sunspot’s size,

intensity, location, and so on. Moreover, a popular pre-process procedure

investigates the inter-relationship between data observations and their cor-

responding meta-data (as the labels of time), for example, a form of “date

created”, or “date modified”, or other time related attributes creation; con-

sequently, the “dynamic” data sets’ analysis and process, particularly in time

series, are key tasks of data mining.

Statistical methods of time series analysis apply to multi-variables sequences

of data observations, which could result in a single dimension numeric vari-

able analysis or a multi-dimension data set analysis. For example, most data

sequences from real world include several numerical and nominal attributes,

each of them could be treated as an individual sequence, which are not only

dependent on a single dimension (e.g. time dimension) but also on other at-

tributes sequences; therefore, these attributes may help defining sub-sets or

super-sets of the time series. Specifically, to make the time series data min-

ing progress more logical and effective, adding the time dimension to a most

overriding data values sequence for producing a time series is the primary

task.

Because there are concealed regularities in ir-regular periodical or periodical-

like time series, establishing a model to reveal hidden patterns based on the

characteristics of a time series and applying it for predicting the forthcoming

events is a difficult progress, especially for a pseudo-periodical time series.

As a result, the challenges of data mining on time series are to define the

most efficient representation of time series data set in order to establish a
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Chapter 1. Introduction

regression analysis model and procedure, to address the inflection point (peak

and valley) in time domain, to make classification/clustering of time series

data set, to predict/forecast the forthcoming data values and to account

an interpretation for the reliability of time series analysis and prediction

approaches.

1.2 Motivation

Time series analysis and prediction have always played an important role in

human activities and natural sciences. Since ancient times, people traced

the agricultural crops’ seasonal growth time series to forecast the harvest.

Chinese used time series of relative position of stars to predict astronomical

events as early as 20th century B.C., and recorded the apparent path time

series of the sun to estimate the obliquity of the ecliptic about 1000 B.C..

Economists evaluate the impact of economic models to human society based

on time series of economical and financial factors.

There are many motivations/objectives possible for time series analysis and

prediction, but they are mainly divided into four classes: Description, Ex-

planation, Prediction and Control.

Description: for a given time series data set, the first step of analysis is

normally to illustrate it in a figure, which is the brief description of the mea-

surements for the essential nature of time series. Some of time series’ figures

will show “obvious” characteristics, e.g. data sequence’s trend, seasonality,
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cyclical fluctuations, etc. Other time series’ figures denote a more complex

structure, such as: “non-regular” cyclical periods with “ir-regular” compo-

nents (noise). Providing an appropriate graphical description of the target

time series is a good start for empirical analysis and getting the sense of the

data collection.

Explanation: the time is the primary variable in time series; if there were

two or more variables besides the time domain in the time series, an expla-

nation would be required to indicate which variable is dependant on time.

For example, studying the sea level in time may find that the temperature

variable is the most dependent upon the time, while sea level is indirectly

dependent time via temperature’s influence. Meanwhile, explaining the de-

velopment of predicted time series based on the existing time series (Regres-

sion Analysis) will give a deeper understanding for the mechanism of time

series data generation.

Prediction: for the “analyzed” time series, people like to know the future

values before they happen, and this is the basic task of economic and fi-

nancial analysis. On various occasions, there is a close connection between

“Prediction” and “Control”; for example, if a factory production is changing

away from the target, an appropriate rectification of the production chain

will be adopted.

Control: if a time series analysis focuses on monitoring the progression of

time series and/or handling the direction of the progression, the motivation

of time series analysis is to control this time series’s development itself.
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In a time series data set with complex structure, variations and fluctuations

of the data values and their occurrences’ frequency changes over time, these

variations and fluctuations may imply the nature and fundamental features

of the data sequences typically. Successive events with same significance

may recur in a certain time interval of (periodical) time series, whereas for

time series, the time interval also evolves with difference as time elapses, it

emerges a phenomenon similar to a time series cyclic period. This kind of

data sequence variation phenomenon, “Pseudo-Periodicity of Time Series”,

brings a new challenge to time series analysis and prediction.

As a result, research on pseudo-periodical time series requires consideration of

the characteristics of pseudo-periodicity. The non-determinacy of time inter-

vals between two events is the most important feature of a pseudo-periodical

time series. Moreover, the events themselves’ variations and fluctuations at

least do not intensify the complexity but increase the difficulties for patterns

recognition.

A pseudo-periodical time series could be looked upon as being a composite

of random and periodical time series. Therefore, the classical analysis tech-

niques could be not able to cover completely this complicated architecture,

because the approaches aim to classify the features and patterns based ei-

ther on statistical information on a priori knowledge what extracted from

the initial time series data sets, however, the periodical and random time

series are difficult to be managed together, because one expresses an appear-

ance of what contains a certain cyclic period, the other manifests a state

with random fluctuations either on value’s and time’s domain.
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Consequently, extracting information, learning knowledge and understanding

essences from a pseudo-periodical time series based on data-driven methods

require to create an appropriate model for representing a general time series.

Whereafter, this model is able to adapt an abstract pseudo-periodicity and

to predict the forthcoming data accurately.

Hence, the motivations for this research have emerged:

• It is a really interesting and challenging research task that from a series

of patterns, which represent features of the target time series, to es-

tablish one effective model. Among this modelling progress, the model

should be a “global” summary of the original time series and a pattern

should be a “local” one.

• To develop new algorithms for knowledge representation, extraction

and mining applied to pseudo-periodical time series.

• To propose new feature detection techniques designed as data-driven

methods for pseudo-periodical time series.

• To produce an accurate analysis method and prediction approaches

with wide applications.

• To conduct experiments and study the performances of proposed ap-

proaches and compare the predicting results with classical methods

applied on pseudo-periodical time series from various sources.

7



Chapter 1. Introduction

1.3 Purpose of Research

The purpose of this thesis is to propose original algorithms for time series

data mining, and their approaches in pre-processing, analysis, classification,

prediction and interpretation of relationship between data sets in time do-

main and value domain.

The goal of the research project (Computational Approaches for Time Series

Analysis and Prediction) is to create and develop novel approaches appli-

cable to different types of time series data sets, to integrate technologies of

Data Mining, Machine Learning, Regression Analysis, Knowledge Discovery,

Predictive Analytic, Classification and Clustering, Features Extraction, Pat-

tern Recognition and Modelling in time series. An integrated prototype will

possess the ability to explore information and extract knowledge from time

series, to understand the regularities of changes in data, and to capture the

trend for future values prediction.

The purpose of this research is a challenging task, to investigate, filter and de-

fine relationships between different pseudo-periodical time series descriptor

values for further prediction and validation; to introduce automated pre-

diction tools applicable to the main features; to develop theoretical models

and data-driven methods for pseudo-periodical sequences and apply them for

various time series’ analysis and prediction. In one sentence, the aim is to

propose and develop new automated feature detection and extraction tech-

niques, then apply them to various pseudo-periodical time series for analysis

and prediction.
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This thesis also includes experimental work, which was conducted to study

performances of proposed algorithms and compare with classical methods

on several different types of pseudo-periodical time series, such as: monthly

average of sunspot number time series [NGDC, 2006], global earthquakes’

Richter magnitude scale time series [NGDC, 2006], flu trends (influenza rates)

in United States time series [GoogleTrends, 2009], Nile river flooding (flow

level) time series [Hyndman, 2009], synthetic pseudo-periodical time series

[KDDArchive, 2007a].

Therefore, the goals of research are:

• to extend regression analysis approaches for time series analysis and

prediction;

• to design computational approaches with data-driven methods for

pseudo-periodical time series;

• to develop original time series analysis models and prediction

algorithms;

• to test and implement the proposed approaches on various pseudo-

periodical time series data sets;

• to compare the prediction and research of such classical methods in

terms of flexility and performance;
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1.4 Methodology

All researches in time series analysis and prediction start with one same goal,

which is to understand and describe the target time series.

The possible problems may arise because of the high dimensionality of time

series data sets. These lead to pre-process time dimension series extraction,

then data values sequences dependent on the time domain. This procedure

of multi-dimensionality decreasing helps researchers to presume a tentative

solution of simplifying the complex structure of initial data collection.

After time series data set is initially generated, the problem of searching

features, identifying patterns and establishing models for time series requires

adequate algorithms. It may issues a series of regression analysis progress

step by step forward for constructing and completing a most suitable model

for predicting.

While the regression in progressing, the feedbacks from constructed model

continually return with system improvements. Therefore, the model’s com-

pleting itself is also a process of regression. It could be able to identify and

solve a possible current problem of analyzing.

Then, the next stage is the time series prediction. This procedure provides

a model for short-term predicted values. If keeping monitoring the cur-

rent gathered data measurement, it is able to step in a long-term prediction

progress.
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Implementation and Evaluation of the model will be a cyclic research progress

for examining the model and then the predicted results. By using same

defined environment, such as: the pre-specified data series’s length for re-

gression analysis and data normalization processing, the model revision and

adjusted prediction process will deliver forecast solution. In this context, two

classical methods widely applied in various domains: Linear Regression (LR)

and Auto-Regression Moving Average (ARMA) will be used in this thesis to

compare the performance of the proposed approaches.

Finally, a prototype was created; this system gained flexibility to handle

different time series data sets from both natural and statistical databases

and to predicting the future values before they happen.

A relevant issue about increasing the precision of prediction is the revision

of the “approach towards” progress, which the progresses of regression anal-

ysis may not always deliver improvements back to the time series analysis

model. In fact, it might be inevitable in case of applying the prototype for a

long-term prediction based on existing invariant data sequence, however, it

could give an appropriate and efficient solution that iteratively revising and

improving the analysis and prediction models with operations of inserting

the real forthcoming values, when they become available to measure, into

the range of known data series.

Fig 1.1 illustrates the methodology for time series data mining.
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Figure 1.1: Methodology for Time Series Data Mining (From Original
Database to Integrated System Deployment)

• Data Understanding:
To understand the data set and mining objective(s);

• Time Series Data:
Time Series data set initializing, e.g. necessarily data pre-processing
and normalization;

• Time Series Analysis:
Analyze the imported time series to identify relationships and patterns;

• Modelling:
To construct an efficient model for prediction;

• Time Series Prediction:
To apply the model to predict the forthcoming values;

• Implementation & Evaluation:
Model Implementation and Evaluation via reviews of time series and
improvement of the model;

• Deployment:
To offer new insights back into (or carry on) the prototype;
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1.5 Overview of This Thesis

This thesis is organized in three parts and a series of chapters as follows:

Part I of this thesis contains two chapters, which are to introduce the back-

ground of Time Series Data Mining and to present the definition of Time Se-

ries and Pseudo-Periodical Time Series. Chapter 1 presents the background

of Time Series Data Mining, motivation, purpose of research, methodology

and overview of thesis. Chapter 2 presents the definition of time series,

pseudo-periodical time series and illustrates their examples; then presents

the concepts of time series analysis and time series prediction, and intro-

duces two classical time series prediction approaches: “Linear Regression

(LR)” and “Auto-Regression Moving Average (ARMA)”.

Part II of this thesis presents two successful time series prediction algo-

rithms that I proposed in my research in two separate chapters. Chapter 3

presents the time series prediction algorithm based on Moving Average of nth-

order Difference (MANoD); also gives the definitions of nth-order difference

and moving average of a data series; then discusses the increasing preci-

sion of prediction; and presents case studies on the application of proposed

MANoD algorithm for sunspot number, earthquakes and synthetic pseudo-

periodical time series. Chapter 4 presents a time series prediction algorithm

based on Series Features Extraction (SFE). The introduction section states

the concepts of epistemology, a priori and a posteriori knowledge, also the

methodology of series features extraction approaches. The following section

introduces time series data classification based on a combination rule and op-
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timizing the categorization to improve the performance of classification. The

next section represents the concept of eigenvector for clustering and filtering

the patterns recognized from the transformed time series. Case studies show

the prediction results for flu trends, foreign exchange rates and interest rates

in United States time series.

Part III, the last part of this thesis, presents the evaluation of proposed

algorithms, compares the predicting results with the classical time series

methods, and presents the conclusions of this thesis. Chapter 5 reviews and

discusses the classical time series approaches: “Linear Regression (LR)” and

“Auto-Regression Moving Average (ARMA)”; then uses five different testing

time series data from various natural and statistical domains for evaluating

the proposed time series prediction algorithms. At the end of chapter 5, the

comparison of both, the classical and proposed algorithms, is also discussed.

Chapter 6 concludes the thesis and discusses the summary of research, orig-

inal contributions and future work; at the end of chapter 6, I state the final

remarks on my research work.

1.6 Summary

This chapter introduced data mining on time series and presented motivation,

purpose and methodology of research. Then, an overview of this thesis’

structure has been provided at the end of this chapter.

The next chapter will introduce the definitions of Time Series and Pseudo-
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Periodical Time Series, and list their examples. Then, chapter 2 will present

Time Series Analysis and its classical methods. Time Series Prediction and

its objectives will be also discussed.
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Chapter 2. Time Series Analysis and Prediction

2.1 What a Time Series is?

A Time Series is a sequence of data points, measured typically at successive

time or spaced over time intervals; or having the output arranged according

to time intervals. In this context, a time series is an associative data array

of numbers indexed in chronological order.

Time series exist ubiquitously, stock’s selling/buying prices and economists

trace the market for analysis of stability of price; meteorological observations

of the wind, temperature, precipitation, etc; demographers monitor rates of

annual births and deaths of a defined population; manufacturers survey pro-

duction to improve quality assurance; geologists continuously observe the

shaking and trembling of the earth for predicting the next earthquakes; elec-

troencephalogram tracks brain waves in order to prevent cerebral diseases;

electrocardiogram traces heart waves to record and study cardiac health.

A large number of different notations are in use for time series, however, two

common notations specify a time series A indexed by natural numbers, where

the ai, a2, a3, . . . and at are the measurements of time series:

A = {a1, a2, a3, . . . } or A = {at} t ∈ N (2.1)

or in a Vector Space, a time series A has ordered elements ai what consist of

a time-stamp ti and their values vi, where the i ∈ N:

−→
A =

〈
a1 = 〈t1, v1〉, a2 = 〈t2, v2〉, a3 = 〈t3, v3〉, . . .

〉
(2.2)
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2.1.1 Examples of Time Series

There are mainly two kinds of time series data, Continuous Time Series,

which the observations occur at every instant of time; Discrete Time Series,

which the observations spaced by (often uniformed) time intervals [Easton

and McColl, 2008].

2.1.1.1 Time Series in Economy and Finances

There are many well-known time series in economy, for example, daily stock

and share prices, monthly import and export total amounts, yearly corpo-

ration profits, and so on [Chatfield, 2003]. Fig 2.1 shows the “Beveridge

Wheat Price Index (1819-1869)” time series, which records averaged wheat

prices about 50 locations in western and central Europe. Both economists

and historians are particularly interested in this sequence, which is available

in many places [Chatfield, 2003], and it has been proven that it has a period

cycle existing obviously (about 15.3 years) [Beveridge, 1921].

Figure 2.1: Beveridge Wheat Price Index Time Series (Source: Time Series
Data Library [Hyndman, 2009]) X Coordinate Axis Lists the Time Intervals
and Y Coordinate Axis Illustrates the Wheat Price Index Value.
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2.1.1.2 Time Series in Nature

In the nature, there are many different types of time series (named as their

sources, Meteorology, Oceanography, Geophysics, etc) and these time series

are exhibited in the physical forms. These kinds of time series are recorded

continuously and they can produce a continuous trace rather than observa-

tions at discrete time intervals [Chatfield, 2003]. The observations of Precip-

itation for example can be taken as a continuous variable (or convert it to

a series in discrete for special requirements, e.g. daily, monthly, seasonally,

etc), so analysts are able to survey atmospheric activities.

Fig 2.2 shows the monthly average of precipitation in West Virginia, US.

Based on the historical data set, the Return period of precipitation can be

addressed. Additionally, the intensity of a storm can be predicted for any

return period and storm duration, from the charts based on historic data for

a given location.

Figure 2.2: Monthly Precipitation Time Series in Southwestern Mountain,
West Virginia, U.S. (Source: Time Series Data Library [Hyndman, 2009])
X Coordinate Axis Lists the Index of Time Intervals for Time Series and Y
Coordinate Axis Illustrates the Monthly Precipitation.
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2.1.1.3 Time Series in Demography

Demography is the analysis of population features. Demographic analysis

can be applied to whole societies or to groups defined by criteria such as

education, nationality, religion and ethnicity. In academia, demography is

often regarded as a branch of either anthropology, economics, or sociology

[Hinde, 1998].

The information of demographic time series measurements always play an

important role in studies of the characteristics of human populations. Mean-

while, these information measurements normally involve several variables and

the correlation between two variables is not due to any causal relationship,

but each of them is correlated with another one. For example, Fig 2.3 shows

a time series rates of (annual) Proportion of Church of England Marriages

per 1000 of all marriages (e.g. Marriages/1000), England (1866-1911) [Yule,

1926]; the rates as a variable either relate to Church and also the married

population.

Figure 2.3: Rates of Proportion of Church of England Marriages Time
Series, England, (Source: Time Series Data Library [Hyndman, 2009]) X
Coordinate Axis Lists the Time Intervals of Time Series and Y Coordinates
Axis Illustrates the Values of Rates of Proportion.
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2.1.1.4 Time Series in Production Process Control

During the production process control, the manufacturers survey the eligi-

ble production processing to improve quality assurance [Chatfield, 2003]. A

storage unit receives the measurements from process unit as a message queue

and then it provides a product processing log to compare the quantity of the

pre-specified target quality level.

The monitored measurements could be plotted against the time, and if the

measurements do not reach the target quality level, appropriate corrective

action should be executed to control the production processing [Chatfield,

2003]. Fig 2.4 shows an example for a “quality control” time series data

(125 successive measurements represent 25 days products processing) from

Ishikawa [Ishikawa, 1986] (the red line denotes the pre-specified target quality

level (assurance)).

Figure 2.4: Production Process Control Time Series from Ishikawa (Source:
Time Series Data Library [Hyndman, 2009]) X Coordinate Axis Lists the
Index of Time Intervals for the Time Series and Y Coordinate Axis Illustrates
the values of Production Process Control.
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2.1.1.5 Binary Equivalent Time Series

When the observations can only be taken from two values (usually 0s and 1s),

they form a special kind of time series, for example, in computer science, the

statement of position of a switch (either “on” and “off”) could be recorded

respectively as 1 and 0 [Chatfield, 2003]. These kinds of time series data

named Binary Equivalent Time Series or Binary Processes Time Series and

occur in many situations e.g. in the communication of telegraphy, computer

network, etc.

These binary equivalent time series are assumed underlying the continuous

time series data set with discrete data values. Moreover, this kind of time

series has a pseudo-periodicity property: the patterns are represented either

on the value’s domain or on frequency’s domain. Fig 2.5 shows a (generated)

realization of a binary equivalent (processes) time series observations.

Figure 2.5: An Example for (generated) Realization of a Binary Equivalent
(Processes) Time Series. X Coordinate Axis Lists the Index of Time Intervals
for the Time Series and Y Coordinate Axis Illustrates the values (0 or 1) of
Binary Equivalent Time Series.
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2.1.1.6 Points Process Time Series

When there are recorded random incidents taking place over time, the mea-

surements may form a completely different type of time series data set. For

example, the dates of serious traffic accidents, earthquakes, or the dates of

major railway disasters, etc. A series of events in this type is usually named

Point Process, the time series is named Points Process Time Series [Chat-

field, 2003].

Both the distribution of events in particular time period and time intervals

between events are important for events detecting and analyzing. Box and

Jenkins [Box and Jenkins, 1976] [Box et al., 1994] discussed the analysis

methods of these kinds of points process time series. Fig 2.6 shows a example

for (generated) realization of a point process time series, where each of “×”

represents an event what randomly happens through time .

Figure 2.6: An Example for (generated) Realization of a Point Process
Time Series. X Coordinate Axis Lists the Index of Time Intervals for the
Time Series and Y Coordinate Axis Illustrates the Events Series (with the
red “×”).
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2.2 Pseudo-Periodical Time Series

A pseudo-periodical time series is a time series of which values recur over

un-certain time intervals.

There are three elements (data measurements) at, at+p, at+q in a time series

A, t, t + p and t + q are time-stamps of the three data values, p and q are

two separate and unequal time intervals, then:

at ∼= at+p
∼= at+q (2.3)

where t ∈ N, p ∈ N, q ∈ N, p 	= q, p/q = k > 1, k ∈ Z.

For real applications of time series, there are values showing a pattern of

pseudo-periodical time series, where values show a repetition over a finite

time interval. A consequence for periodical and pseudo-periodical time series

is that for a finite value v and initial values, the series values are bounded.

In this context, any data point (at) in a measurable pseudo-periodical time

series is also a finite value, where the time series A = {a1, a2, . . . , av} is a

finite algebraic set, and v ≥ 1, t ∈ [1, v] and v ∈ N

at ∈ [min(a1, a2, . . . , av),max(a1, a2, . . . , av)] (2.4)

For an evaluation of time series prediction algorithms, which will be proposed

in chapter 3 and 4, five different Testing Time Series (TTS) data sets from

various domain are introduced as following.
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2.2.1 Earthquakes Time Series

This original time series has been generated by the National Geophysical

Data Center (NDGC). NGDC provides stewardship, products and services

for geophysical data describing the solid earth, marine and solar-terrestrial

environment, as well as earth observation from space [NGDC, 2006]. Its

databases currently contain more than 300 digital and analog data cata-

logues, which include Land, Marine, Satellite, Snow, Ice, Solar-Terrestrial

Subjects.

NGDC acquires, processes and analyzes technical data on the earthquake

hazards, and disseminates the data in many useable formats, which mainly

focus on “Richter Magnitude Scale (RMS)” of earthquakes. For example,

Significant Earthquake Database contains information on more than 5000

destructive earthquakes from 2150 B.C. to present; Earthquake Slide Sets

NGDC offers fourteen 35mm slide sets depicting earthquake damage through-

out the world; Earthquake Intensity Database contains and felt reports for

over 22000 U.S. earthquakes from 1638 ro 1985; Worldwide Strong Motion

Data Archive contains more than 15000 digitized and processed accelerograph

records over 60 years; The Seismograph Station Bulletins Database contains

more than 500000 microfiche pages from seismograph station bulletins for

the years 1900 to 1965.

The measure of Richter Magnitude Scale (RMS) assigns a single number to

quantify the amount of seismic energy released, therefore, the time series

data set consists of RMS numbers is a pseudo-periodical time series due to

25



Chapter 2. Time Series Analysis and Prediction

the limit of the RMS number. Table 2.1 presents an example organization

of earthquakes time series data set, which are observation of global earth-

quakes from January 1001 A.D. to August 2006); Fig 2.7 shows the Richter

Magnitude Scale (RMS) measurements of earthquakes.

Table 2.1: An Example of Earthquakes Time Series Database (Time For-
mat: YYYY.MM)

Index Time (A.D.) Location RMS Longitude Latitude

1 1001.01 China 6.2 34.300 109.000

2 1001.01 Italy 7.0 42.000 13.500

· · · · · · · · · · · · · · · · · ·
671 1500.01 China 6.9 24.500 103.000

672 1500.01 Hawaii 6.8 19.000 -155.500

· · · · · · · · · · · · · · · · · ·
1350 2006.08 Argentina 5.6 -33.131 -68.707

1351 2006.08 France 4.3 44.000 6.800

Figure 2.7: An Example of Earthquakes Time Series Data Set (Richter
Magnitude Scale (RMS) by Index); X Coordinate Axis Lists the Index of
Time Intervals for the Time Series and Y Coordinate Axis Illustrates the
Values of RMS.
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2.2.2 Flu Trends Time Series

Each week, millions people around the world catch flu. Historical research

indicate that there is a close relationship between two peaks of flu condition

occurrences, and the flu season in time has a pseudo-period. United States

Center for Disease Control and Prevention [USCDC, 2009] currently hold a

surveillance system to monitor the flu’s situation. Based on the reported

measurements and influenza-like (ILI) estimates of sickness in United States,

the set of Flu Trends in United States is an ordered data sequence set by

time interval; and since there are flu season occurrences, Flu Trends in United

States is a pseudo-periodical time series.

Table 2.2 presents an sample of Flu Trends time series which are weekly

influenza rates records: (influenza/entire papulation) ×100% from 01st June

2003 to 07th June 2009 from United States Center for Disease Control and

Prevention. Fig 2.8 shows a time series measurements of the Flu Trends rates

in United States.

Table 2.2: An Example of Flu Trends Time Series Data Set (Time Format:
DD/MM/YY)

Index 1 2 · · · 200 201 · · · 314 315

Time 01/06/03 08/06/03 · · · 25/03/09 01/04/09 · · · 31/05/09 07/06/09

Flu Rates 0.509% 0.546% . . . 1.485% 1.289% . . . 0.780% 0.739%
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Figure 2.8: An Example of Flu Trends (Influenza Rates) in United States
Time Series Data Set; X Coordinate Axis Lists the Index of Time Intervals
and Y Coordinate Axis Illustrates the Influenza Rates Values.

2.2.3 Nile River Flooding Time Series

From millions years ago to present, the river Nile played a major role in

politics and social life and the Nile still supports much of the population

living along its banks, in otherwise inhospitable regions of the Sahara. The

river is flooding every summer, depositing fertile silt on the plains. When

Nile flooded and inundated annually, the river water made the landing sur-

rounding it extremely fertile and providing food for general population. The

Egyptians knew their life is related with the Nile’s waters, even the whole

of the structure of Egypt’s society. As a result of flooding annually (around

several months every year), the Nile river’s flow shows a pseudo-periodical

time series.

Table 2.3 presents an example of Nile River Flow time series data set from

January 1900 A.D. to December 1930 A.D.; Fig 2.9 shows a time series

measurements of the Nile River Flow.
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Table 2.3: An Example of Nile River Flow Time Series Data Set (Time
Format: YYYY.MM)

Index 1 2 · · · 180 181 · · · 359 360

Time 1900.01 1900.02 · · · 1914.06 1914.07 · · · 1929.11 1929.12

Flow 48.710 40.714 · · · 109.032 89.3548 · · · 153.333 119.355

Figure 2.9: An Example of Nile River Flow Time Series Data Set; X Coordi-
nate Axis Lists the Index of Time Intervals and Y Coordinate Axis Illustrates
the Flow Values of Nile River.

2.2.4 Sunspot Number (Monthly Average) Time Se-

ries

Early research showing that sunspots have a cycle period start in modern

times with George Ellery Hale: he has found that the sunspot period cycle is

22 years, because the magnetic polarity of sunspots reverses after 11 years.

Rudolf Wolf proposed in 1849 in Zürich to count sunspot numbers by what

is nowdays called: “Wolf Number” or “International Sunspot Number” us-

ing numeric values related to sunspots’ number and size, their location and
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instrumentation used. Based on sunspots characterization and observations,

Time Series Sunspot Data Set is an ordered data set of sunspot numbers

based on observation, which can be treated as a tracking record of solar ac-

tivities. Form the point of view of Pseudo-Periodical Time Series, sunspot

number data set is a pseudo-periodical time series, since there is not a fixed

value of period cycle, but a series of period cycle’s values with average of

about 22 years.

Table 2.4 present an example of (monthly average) Sunspot Number time

series data set, which from January 1901 A.D. to December 2000 A.D. Fig

2.10 shows the time series measurements of Sunspot Number.

Table 2.4: An Example of (Monthly Average) Sunspot Number Time Series
Data Set (Time Format: YYYY.MM)

Index 1 2 · · · 600 601 · · · 1199 1200

Time 1901.01 1901.02 · · · 1950.12 1951.01 · · · 2000.11 2000.12

Sunspot Number 0.2 2.4 · · · 54.1 59.9 · · · 106.8 104.4

Figure 2.10: An Example of (Monthly Average) Sunspot Number Time
Series Data Set; X Coordinate Axis Lists the Index of Time Intervals and Y
Coordinate Axis Illustrates the Monthly Average Sunspot Number Values.
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2.2.5 Synthetic Pseudo-Periodical Time Series

The pseudo-periodical synthetic time series data set has been taken from

Knowledge Discovery in Database Archive (KDD Archive), University of Cal-

ifornia, Irvine [KDDArchive, 2007b]. KDD Archive is an online repository

of large data sets which encompasses a wide variety of data types, analy-

sis tasks, and application areas. This time series data set is designed for

testing indexing schemes in time series databases. The data appears highly

periodical, but never repeats exactly itself in a specific (time) interval. This

feature is designed to challenge the indexing tasks. This time series data

set [KDDArchive, 2007a] is generated by independent calls of the mathemat-

ical function, where 0 ≤ t̄ ≤ 1:

ȳ =
7∑

i=3

sin
(
2π

(
22+i + rand(2i)

)
t̄
)

(2.5)

The function rand(x) produces a random integer between 0 and x. Fig 2.11

shows 100000 measurements of the Synthetic pseudo-periodical time series.

Figure 2.11: An Example of Synthetic Pseudo-Periodical Time Series Data
Set, X Coordinate Axis Lists the Values of Variable t̄ (see eq.(2.5) with 100000
values) and Y Coordinate Axis Illustrates the values of ȳ (see eq.(2.5) with
100000 values).
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2.3 Time Series Analysis

The objective of Time Series Analysis is to analyze the collected data in

order to discern whether there are some patterns over time. Meanwhile, to

account for the evolving nature of data surveillance, time series analysis is

an alternative for monitoring cases and identifying events’ occurrence.

Time series analysis also attempt to understand the underlying context of

the whole data sequence, i.e. where did the time series come from, or what

generated or formed data, etc; and then to follow the discovered regularities

to make a prediction/forecast.

Normally, the strategies of time series analysis intend to establish a model

to distinguish the situation from ordinary data (an a priori analysis) firstly,

and then from data analyzed to describe results or its context (an a posteri-

ori analysis). There are also additional possibilities to transfer the analysis

results into another corresponding model, for example, from time domain

into frequency domain.

A time series analysis model is attempting to represent the essential aspects of

time series. Like mathematical models, time series analysis models may have

many forms, i.e. statical/dynamical systems, statistical models, abstract

models, etc.

Furthermore, time series analysis models will generally reflect the fact that

observations close together in time will be more closely related than observa-

tions further apart. In addition, time series analysis models will often make
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use of the natural one-way (non-reversible) ordering of time so that mea-

surements in the time series data sets for a given time will be expressed as

deriving in some way from past values, rather than from future values.

An accurate mathematical model will be close enough or match the actual

existing data. As a result, defining validation approaches (e.g. distance

methods) to measure the model via mathematical and logical methods is a

suitable tool for model assessment.

The classical methodologies for time series analysis include “Linear Regres-

sion Model (LR)”, which constructs a bridge formula between a given time

series data set and predicted value(s) [Cohen et al., 2002]. Linear Regression

is a form of regression analysis, consequently, the function with established

regression coefficients can be treated as the skeleton of the original time se-

ries data set. The line in “linear” model may not be a straight line, but

rather than the way in which the regression coefficients occur in the regres-

sion equation.

The Box-Jenkins methodology, also called Auto-Regression Moving Average

(ARMA), consists of two parts: an Auto-Regressive (AR) model and a Mov-

ing Average (MA). Auto-Regression Moving Average is usually referred to as

a ARMA(p,q) model where p and q represent the order of the models AR(p)

MA(q). [Box and Jenkins, 1976] [Box et al., 1994]

There are other methods designed for time series analysis, such as: a varia-

tion of ARMA, Auto-Regressive Integrated Moving Average (ARIMA) [Mills,

1990] [Percival and Walden, 1993]; commonly applied on modelling financial

33



Chapter 2. Time Series Analysis and Prediction

time series, Auto-Regressive Conditional Heteroscedasticity (ARCH) [Engle,

1982]; and its’ generalized version, Generalized Auto-Regressive Conditional

Heteroskedasticity (GARCH) [Bollerslev, 1986].

2.4 Time Series Prediction

Time Series Prediction is an application of time series analysis models. The

objetive is to use a model to forecast the future events based on collected

measurements or known previous events; and to address the future values

before they could be measured. A popular example is to predict tomorrow’s

price of a stock based on today and previous performance.

From the mathematical point of view, time series prediction represents the

use of a mathematical equation to predict future data points based on known

previous data sequence measurements.

at+1 = f(a1, a2, a3, · · · , at−1, at) (2.6)

where given the first t measured data points of time series A = {at}, t ∈ N,

the target of prediction is to use a developed model to address the forthcom-

ing data point at+1 (Short Term Prediction).

If it is required to indicate a further future value over a long time interval for

some particular research cases, that is used to predict the m steps forward

34



Chapter 2. Time Series Analysis and Prediction

based on existing time series A = {at} (Long Term Prediction):

at+m = f(a1, a2, a3, . . . , at−1, at) (2.7)

where t ∈ N, m ∈ [1, k], k > 1.

Indeed, the long term prediction could consist of a series of successive pro-

gresses of short term prediction, where in the each step it involves the pre-

dicted result from the last step (or actual values just happened).

One of the most important activities of human civilization is to record ob-

servations, then to forecast the forthcoming events and undiscover future.

There are obviously numerous reasons to trace and analyze the time series

data set.

To gain a better understanding of the data generating approaches, the time

series analysis model (as the function f in eq.(2.6) and eq.(2.7)) should be

not a Black Box, although many research results indicated that the Black

Box (“a Heuristic algorithm” [Pearl, 1984] [Goodman and Hedetniemi, 1977]

[Aho et al., 1983]) methods also obtained good results. That is because the

approaches are procedure-emphasized for time series analysis and prediction

like the Neural Network methodology or other statistical methods. A clear

explanation should be produced on what is changing with time. In this thesis,

both proposed algorithms for time series prediction are presented as White

Box ∗ algorithms.

∗White Box, In contrast to a Black Box, the inner components or logic are available
for inspection, it makes the (sub-)system easier to understand. [Beizer, 1995]
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Generally, a time series analysis model is to summarize the initial time se-

ries data sets and present the knowledge of nature. Time series prediction

approaches assume the unknown future values existing and involve them to

expand the time series analysis model. Thus, An optimal framework for

time series analysis and prediction should be independent and no matter

what distribution of the target time series as the system’s input.

2.4.1 Linear Regression Method

Linear regression is a form of regression analysis in which the relationship be-

tween one or more independent variables and dependent variable, is modelled

by a least squares function, called a linear regression equation.

Ŷ = αX + ε

= α0 +
P∑
i=1

αiXi + ε (2.8)

where the values of Ŷ are predicted values from the data sequence X; and

X1, X2, . . . XP are known and measured values of the initial data sequence;

The disturbance term ε is added to eq.(2.8) relationship to capture the in-

fluence of everything else on Ŷ other than X.

A linear regression equation with one independent variable represents a

straight line when the predicted value (i.e. the dependent variable from

the regression equation) is plotted against the independent variable: this is

called a simple linear regression.
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However, note that generally ”linear” does not refer to a straight line, but

rather to the way in which the regression coefficients occur in the regression

equation. The results are subject to statistical analysis [Edwards, 1976]

[Chatterjee and Hadi, 2006].

The most common form of linear regression is Least Squares Fitting (LSF),

this method was first described by Carl Friedrich Gauss around 1794 [Björck,

1996]. Least squares fitting of lines and polynomials are both forms of linear

regression, which the first and main objective of regression analysis is to

best-fit the data by estimating the parameters of the model.

A Linear Regression model is widely used in many domains, such as: tech-

nical analysis, biological, behavioral and social sciences to describe possible

relationships between (independent/dependent) variables.

2.4.2 Auto-Regression Moving Average Method

Auto-Regression Moving Average (ARMA), so called “Box-Jenkins model”,

is typically applied to time series analysis and prediction. An ARMA model

commonly used in the study of long-term tracking in many domains, such

as: long-term time series analysis research of natural disasters prevention,

consumer behavior, seasonal marketing price, finance scale prediction, and

so on.

An ARMA model consists of two parts: an Auto-Regression (AR) part and

a Moving Average (MA) part. This model is usually referred to as the
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ARMA(p, q) model, where p is the order of the AR(p) part and q is the

order of the MA(q) part, as following defined:

Definition 2.1 - Auto-Regression (AR) Model:

Auto-Regression model provides a way to express the prediction of the follow-

ing value in the initial time series by using previous finite number of values

affected by white noise and AR(p) of order p is defined by [Box and Jenkins,

1976] [Box et al., 1994]:

Xt =

p∑
i=1

αiXt−i + εt (2.9)

where αi is the auto-regression coefficient, Xt is the series under investiga-

tion, p is the length of the filter, which is commonly less than the length if

the series, and the εt is a white noise process with a zero mean and variance

σ2.

Definition 2.2 - Moving Average (MA) Model:

The notation MA(q) refers to the Moving Average model of an order q [Box

and Jenkins, 1976] [Box et al., 1994]:

Xt =

q∑
i=1

βiεt−i + εt (2.10)

where the term βi is the moving average coefficient, Xt is the series under

investigation, q is the length of filter, which is commonly less than the length

of the series, and εt represents the error (noise) terms.

Definition 2.3 - Auto-Regression Moving Average Model:
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Auto-Regression Moving Average (ARMA) model contains an infinite AR(p)

model with p auto-regression terms and a finite MA(q) model with q moving

average terms [Box and Jenkins, 1976] [Box et al., 1994]:

Xt =

p∑
i=1

αiXt−i +

q∑
i=1

βiεt−i + εt (2.11)

where the error term εt are generally assumed to be independent identically-

distributed random variables (i.i.d.) sampled from a normal distribution with

zero mean: εt ∼ N(0, σ(2) where σ2 is the variance.

Definition 2.4 - Non-Linear Regression:

In statistics, nonlinear regression is a form of regression analysis in which ob-

servational data are modeled by a function which is a nonlinear combination

of the model parameters and depends on one or more independent variables.

The data are fitted by a method of successive approximations. [Seber and

Wild, 2003] [Bethea, 1995]

2.5 Summary

This chapter has given the definition of Time Series and introduced several

typical examples of time series, such as: economy and finance time series,

Nature time series, Demography time series, Production Process Control time

series, Binary Equivalent time series and Points Process time series.

Also, this chapter has given the definition of Pseudo-Periodical Time Series.
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Then, this chapter has also presented the Time Series Analysis and its clas-

sical models, such as: Linear Regression (LR) and Auto-Regression Moving

Average (ARMA) and their derivatives.

In this chapter, it has been discussed Time Series Prediction and its objec-

tives.

The next chapter will introduce an original time series prediction algorithm

based on moving average of nth-order difference and its performance.
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3.1 Introduction

Time series prediction proposes algorithms for which previous data sequence

(mainly finite observation sequences of data points related to uniform time

intervals) are used to generate models to forecast the future data points of

the series. It is widely applied to different format time series data sets in

various domains (as described in Chapter 2). From a procedural perspective,

using computational approaches may first require mathematical analysis to

describe and breakdown the initial time series problem into simpler sub-

problems for further computational modelling.

A historical main constraint in using mathematical series models for predic-

tion was the fact that the performance of the model is related to the length

of data series, but nowadays is not anymore an issue from neither compu-

tational nor data storage and processing points of view. However, most

machine learning methods face the difficulty of requiring a priori knowledge

about the problem at hand.

On the other hand, results of some traditional methods applied in time series

analysis can not satisfy the demand of specific applications. We intend to

address these drawbacks for the restricted problem of pseudo-periodical series

with limited boundaries by a two-step approach: we propose hereby a new

algorithm to approximate the time series terms using the moving average of

nth-order difference of already known values and intend to address later the

problem of error of approximation by a hybrid model.
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Therefore future work is proposed to identify as accurately as possible a

general approximation by use of a supervised-learning model to forecast a

further approximation error if found necessary.

We propose an algorithm for efficient mining of pseudo-periodical time se-

ries. Applications to sunspot number time series prediction, earthquake time

series prediction and synthetic pseudo-periodical time series are added to

explain the generality of the proposed algorithm, by exploring some interest-

ing properties related to moving average of first-order difference for bounded

time series.

A further generalization to the use of the sum of nth-order difference to

increase forecast performances and a hybrid approach to combine the results

of the moving average of nth-order difference of time series with a supervised-

learning model of the error of value approximation are also proposed.

We study the possibility that pre-processing of time series combined with

a priori knowledge and hybrid models can increase prediction performances

for time series, even for mining noisy data. The results highlight our pro-

posed algorithm’s efficiency in mining bounded pseudo-periodical patterns in

time series with direct applications in sunspot number time series prediction,

earthquake time series prediction and synthetic pseudo-periodical time series

prediction.
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3.2 nth-order Difference

A Difference Operator involves the difference between successive values of a

function of a discrete variable. A discrete variable is the one that is defined

or of interest only for values that differ by a (or some) finite amount.

A difference operator is a mathematical operator, which maps a function f to

another function whose values are the corresponding finite differences. Table

3.1 shows several types of difference operator:

Table 3.1: Definitions of Various Difference Operators (where a ∈ A, A =
{at}, t ∈ N)

Operator Definition

Forward Difference Operator: Δh[f ](a) = f(a+ h)− f(a)

Backward Difference Operator: ∇h[f ](a) = f(a)− f(a− h)

Central Difference Operator: δh[f ](a) = f(a+ 1
2
h)− f(a− 1

2
h)

Definition 3.1 - Forward Difference Operator:

Forward Difference is a finite difference, which defined for a given functional

f with real values as:

Δf(a) = f(a+ 1)− f(a) (3.1)

Δf(a) is also named “First-order Difference” (or Simply Difference) of f(a).
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The same principle, the “Second-order Difference” is defined as:

Δ2f(a) = Δf(a+ 1)−Δf(a)

= (f(a+ 2)− f(a+ 1))− (f(a+ 1)− f(a))

= f(a+ 2)− 2f(a+ 1) + f(a)

The higher order differences are obtained by repeated operations of the forward

difference operator, such as: nth-order Difference is defined as:

Δnf(a) =
n∑

i=0

(−1)n−iCi
nf(a+ i) (3.2)

where Ci
n =

(
i

n

)
=

n!

i!(n− i)!
, 0 ≤ i ≤ n is the Binomial Coefficient.

The forward differences are useful in solving ordinary differential equations

by single-step predictor-corrector methods. For instance, a forward difference

above predicts the value of Pti from the derivative [f ](Pti−1
) and from value of

Pti−1
.If the data values are equally spaced with the step size h, the truncation

error of the forward difference approximation has the order of O(h) [Flajolet

and Sedgewick, 1995].

The backward differences are useful for approximating the derivatives if data

in the future are not available yet. Moreover, the data in the future may

depend on the derivatives approximated from the data in the past. If the

data values are equally spaced with the step size h, the truncation error of

the backward difference approximation has the order of O(h) [Flajolet and
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Sedgewick, 1995].

In order to make a good forward prediction, we propose the time series predic-

tion algorithm based on Moving Average of nth-order Difference (MANoD)

[Lan and Neagu, 2007b] [Lan and Neagu, 2007a] [Lan and Neagu, 2006],

which uses the Forward Difference Operator as follows.

3.3 Moving Average of Data Series

In statistics, a Moving Average, also named a Rolling Average, is used to

analyze a set of data points by creating a series of averages (Arithmetic

Mean) of different subsequences of the full data terms [Chou, 1975]. As a

result, a moving average is a series of numbers (data) instead of a single one

value.

Definition 3.2 - Moving Average (for Time Series):

(Cumulative) Moving Average is a way of smoothing by averaging n terms

of the time series. In mathematics and statistics, moving average is used as

a generic smoothing operation or an example of a convolution. As a result,

(cumulative) moving average is un-weighted (or weighted moving average,

which all weights equal 1) mean of previous m data points (stream) in the

initial time series:

CMAn
m =

P1 + P2 + P3 + · · ·+ Pm

m
(3.3)
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where P1, · · · , Pm is the values of time series, m = 1, 2, 3, · · · , n = 1.

Same principle, the sequence nCMAm means n-Moving Average with m data

points input.

CMAn
m =

1

m
(
n+i−1∑
i=1

Pi +
n+i−1∑
i=2

Pi +
n+i−1∑
i=3

Pi + · · ·+
n+i−1∑
i=m

Pi)

where n ≥ 1. We consider the n-Moving Average of m data values of time

series in order to deduce a simple form for CMAn
m+1. There is a brute-force

method to calculate the cumulative moving average based on all stored data,

or simply update the average every time a new data point (Pm+1) arrives,

where CMA0 = 0:

CMAm+1 = CMAi +
1

i+ 1
(Pm+1 − CMAm)

=
1

m

m∑
j=1

n+j−1∑
i−1

Pi

3.4 The Prediction Algorithm

3.4.1 Implementation of the Prediction Algorithm

Considering the equations on the last two sections for same length n of data

input, we can find out that the same rule applies for n+ 1: therefore, based

on the induction principle (Peano) eq.(3.2) is valid for any natural value of

n. If f(a), with n, a natural number, generates a discrete series am, then the
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previous result (eq.(3.2)) can be written as:

Δnf(m) = Δn−1f(m− 1)−Δn−1f(m)

Dn
m = Dn−1

m+1 −Dn−1
m (3.4)

where Dn
m means Δnf(m).

The proof for eq.(3.2), a nth-order Difference equals the difference of two

lower differences ((n− 1)th-order) is presented in the Appendix A.

The nth-order difference is used in the binomial transform of a function usu-

ally, also the Newton forward difference equation and the Newton series [Fla-

jolet and Sedgewick, 1995]. These are very useful prediction relationships

with the main drawback of difficult numerical evaluation, because there is

a very rapid growing of the binomial coefficients for a large value of n (the

length of recursion). In order to avoid a complex calculus and also to provide

a relationship for time series analysis and prediction, the main idea of the

algorithm MANoD relates to the fact that applying the difference operator

generates another series from the initial original series featuring the property

of pseudo-periodicity.

Since the initial original time series data set is bounded, the new series gen-

erated by the difference operator is also bounded and its average converges

to zero (see the definition of “Pseudo-Periodical Series” eq.(2.3)). The fol-

lowing paragraph provide a proof for the result above, and exemplifies with

the monthly average of Sunspot Number data set case of 600 months values

(see Fig 3.1, Fig 3.2 and Fig 3.3).
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Figure 3.1: The Monthly Average Values of Sunspot Number Time Series
for 600 Months; X Coordinate Axis Lists the Index of Time Intervals (600
Months) and Y Coordinate Axis Illustrates the Values of Monthly Average
Sunspot Number.

Figure 3.2: First-Order Difference (D1
m) of Monthly Average Values of

Sunspot Number Time Series; X Coordinate Axis Lists the Values of m with
600 Samples and Y Coordinate Axis Illustrates the First-Order Difference
Values for D1

m.

Figure 3.3: The Moving Average (E1
m) of First-order Difference (D1

m) of
Monthly Average Values of Sunspot Number Time Series; X Coordinate Axis
Lists the Values of m with 600 Samples and Y Coordinate Axis Illustrates
the Moving Average Values for E1

m.

49



Chapter 3. A Time Series Prediction Algorithm based on Moving Average of nth-order Difference

D1
m represents the First-order Difference of initial original time series data

set A = {am} as represented in Fig 3.2, and the first-order difference time

series shows a pseudo-periodical bounded shape with amplitude modulated

in time dimension. The moving average of first-order difference time series

for initial original data set am can then be constructed as:

D1
m = am+1 − am, m ≥ 1 (3.5)

E1
m =

1

m
(D1

1 +D1
2 + · · ·+D1

m) =
1

m

m∑
i=1

D1
i (3.6)

Then limit of moving average time series E1
m

∗ (for an easy calculation it can

be consider as the following):

lim
m→∞

E1
m = lim

m→∞
1

m

m∑
i=1

D1
m (3.7)

Therefore, based on eq.(3.6) and eq.(3.7):

lim
m→∞

E1
m = lim

m→∞
1

m

m∑
i=1

(ai+1 − a1)

= lim
m→∞

1

m
((am+1 − am) + (am − am−1) + · · ·+ (a2 − a1))

= lim
m→∞

1

m
(am+1 − a1)

= lim
m→∞

am+1

m
− lim

m→∞
a1
m

(3.8)

∗if no other specific instruction, En
m means 1En

m in this thesis, which is 1-moving average
for nth-order difference series with m data points input
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For a large m, since a1 is a limit value, the second term in eq.(3.8), becomes

negligible. Also am+1 is a limited value given the initial original constraints

on the bounded time series what considered of interest and therefore the first

term in eq.(3.8) has a null limit also:

lim
m→∞

E1
m = ( lim

m→∞
am+1

m
− lim

m→∞
a1
m
) → 0 (3.9)

Indeed, it is easily seen that the result (eq.(3.9)) is verified by the practical

example in Fig 3.3.

Based on the result in eq.(3.9) as depicted in Fig 3.3, we can state that:

given a time series A = {ai}, i = 1, 2, 3, · · · ,m, let the first-order difference

be D = {D1
m}, i = 1, 2, 3, · · · ,m (Time Series Analysis), the aim is to

determine the value for further value am+1 (Time Series Prediction) based

on previous data measurements (and some negligible error).

The series of cumulative moving average for first-order difference is easy to

calculate:

E1
m−1 =

1

m− 1
(D1

1 +D1
2 + · · ·+D1

m−1)

=
1

m− 1

m−1∑
i=1

D1
i (3.10)

Since E1
m → 0 for a large value of m, then:

E1
m = E1

m−1 + ε (3.11)
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Where ε > 0 is a negligible error for a large value of m; and replacing in

eq.(3.11) E1
m and E1

m−1 by using the result in eq.(3.10):

1

m

m∑
i=1

D1
i =

1

m− 1

m−1∑
i=1

D1
i + ε (3.12)

And therefore, based on eq.(3.6):

1

m
(
m−1∑
i=1

D1
i +D1

m) =
1

m− 1

m−1∑
i=1

D1
i + ε

Thus, the D1
m can be presented as:

D1
m = m(

1

m− 1

m−1∑
i=1

D1
i + ε)−

m−1∑
i=1

D1
i (3.13)

At the same time, because the first-order difference D1
m = am+1 − am and

put it into eq.(3.13):

am+1 = am +m(
1

m− 1

m−1∑
i=1

D1
i + ε)−

m−1∑
i=1

D1
i (3.14)

For simplicity, the equation above can be simplified to:

am+1 = am +
m

m− 1

m−1∑
i=1

D1
i +mε−

m−1∑
i=1

D1
i

= am +
1

m− 1

m−1∑
i=1

D1
i +mε (3.15)
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And replacing the difference operator D as defined from eq.(3.6)

am+1 = am +
1

m− 1
(am − a1) +mε

=
1

m− 1
(mam − a1) +mε (3.16)

On the whole, the prediction precision for the forthcoming value am+1 de-

pends on the nth-order difference Dn
m (for the example above, it is the sim-

plest instance that is processed by the first-order difference and the 1-moving

average).

In addition, the result in the eq.(3.16) is obtained by considering the mov-

ing average series of first-order difference, and it suggests a practical way

to approximate the prediction of the forthcoming value am+1 based on the

“current” data am and the first measurement value a1. For a longer period

term, although the error value could be negligible (see eq.(3.9) and eq.(3.11)

and Fig 3.3), the accuracy of prediction may still be affected.

At the same time, the cumulative moving average En
m can be expressed in

term of nth-order difference as:

En
m =

1

m
(Dn+1

m−1 −Dn−1
1 ) (3.17)

The above equation is proven by mathematical induction (see Appendix B

for the whole proof).

Consequently, for a higher order difference, the cumulative moving average
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series for a large value L is (where L is a large but finite value):

lim
m→L

En
m = lim

m→L
(
1

m

m∑
k=1

Dn
k ) = lim

m→L
(
1

m
(Dn−1

m+1 −Dn−1
1 )) (3.18)

Since the nth-order difference series Dn
m is bounded, then there is an existing

real limited number C for which |Dn−1
m+1 −Dn−1

1 | ≤ C. As a result,

lim
m→L

En
m = lim

m→L
(
1

m

m∑
k=1

Dn
k ) = lim

m→L
(
1

m
(Dn−1

m+1 −Dn−1
1 )) → C

L
(3.19)

and Fig 3.4 shows a map of the limit of the moving average series En
m, where

{m|1 ≤ m ≤ 100} and {n|1 ≤ n ≤ 100} for a simple demonstration:

Figure 3.4: A Map of Moving Average of nth-order Difference’s Limit (see
eq.(3.19)) for Sunspot Number Time Series Data Set; X Coordinate Axis
Lists the Variable m ∈ [1, 100], Y Coordinate Axis Illustrates the Variable
n ∈ [1, 100] and Z Coordinate Axis Shows the Values of Moving Average.

The time series prediction algorithm of moving average based on nth-order

Difference (MANoD) below implements the results described above for a

general time series input A (Table 3.2)

54



Chapter 3. A Time Series Prediction Algorithm based on Moving Average of nth-order Difference

Table 3.2: Pseudo-code for Algorithm of Moving Average based on nth-order
Difference (MANoD)

INPUT: An Initial General Time Series Data Set;

METHOD: Moving Average based on nth-order Difference (MAboND);

OUTPUT: Predicted Time Series Data;

01. // Input the time series data set;

02. SET A[ ] to READ(An Initial Origainl Time Series Data Set)

03. // L records the size of data sequence;

04. SET L to the length of A[ ]

05. // Calculate the nth-order difference D[ ] of A[ ]

06. SET counter to 0

07. WHILE counter < L-n

08. SET D[counter] from CALCULATE difference of A[ ]

09. ENDWHILE

10. // Compute the moving average E[ ] of D[ ];

11. SET counter to 0

12. FOR each of D[ ]

13. SET sumTemp to 0

14. FOR each term of D[0] to D[counter]

15. SET sumTemp to sum of term of D[0] to D[counter]

16. ENDFOR

17. SET E[counter] to divide sumTemp by counter

18. INCREASE counter

19. ENDFOR

20. // Get the error value by using ANN;

21. GET error from ANN(E[ ])

22. // Give two values Ln and Lm for Finding Function inputs

23. SET Ln and Lm

24. FOR n = 0 to Ln

25. FOR m = 0 to Lm

26. SET F[n][m] to COMPUTE Finding Function result

27. ENDFOR

28. ENDFOR

29. SET Do[n][m] to COMPUTE from A[ ]

30. GET Theta[n][m] to ||F[n][m] - Do[n][m]||

31. GET (m,n) from find(Theta == min(Theta[n][m]))

32. GET the prediction value based on (m,n)

33. OUTPUT(predicted value)
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3.4.2 Finding Suitable Parameters for Increasing Pre-

cision of the Prediction Algorithm

From the demonstration at the last sections, there are two formulae on the

difference operators:

Dn
m =

n∑
i=0

(−1)n−iC i
nam+i = Dn−1

m+1 −Dn−1
m (3.20)

m∑
j=1

Dn
j = Dn−1

m+1 −Dn−1
1 (3.21)

Based on the above results, the moving average becomes:

En
m =

⎧⎪⎨
⎪⎩

En
m−1 + ε if ε 	= 0

En
m−1 if ε ∼= 0

(3.22)

Then, take eq.(3.20) and eq.(3.21) into eq.(3.22):

En
m = En

m−1 + ε




Dn−1
m+1 =

m

m− 1
(Dn−1

m + (m− 1)ε)− 1

m− 1
Dn−1

1 (3.23)

Next, let n = n− 1 into above equation, so that:

Dn
m+1 =

m

m− 1
(Dn

m + (m− 1)ε) +
−1

m− 1
Dn

1 (3.24)
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Thus, the two coefficients in eq.(3.24) can be treated as two special “weights”

related to two difference terms of the same order difference level, and they

depend on the “start” and the “end” period’s series values, Dn
m and Dn

1 .

For increasing the prediction precision of MANoD algorithm, the accuracy,

when there ε 	= 0 in eq.(3.22), is proposed to be approximated by Artificial

Neural Network (ANN) [Minsky and Papert, 1969] (via “Back-Propagation”

Method [Werbos, 1994]) for predicting for the next period, error ε in cu-

mulative moving average of nth-order difference algorithm (see eq.(3.22) and

eq.(3.24)).

The moving averages En
m and En

m−1 are the inputs of a Feed-Forward Artificial

Neural Network (FFANN) with three layers. The trained network is able to

get moving average value En
m+1 for further error approximation (see Fig 3.5

for the details), which is used for the 2-inputs and 1-output ANN Back-

Propagation training algorithm for 1000 epochs.

Figure 3.5: Analysis and Prediction for Error (ε) with Artificial Neural
Network with En

m (1000 samples and n = 10) and En
m+1 (1000 samples and

n = 10). There is a linear correlation relationship between the two vari-
ables, En

m and En
m+1, therefore, the error (ε) for next term prediction can be

approximated by ANN.

The target of increasing precision for the algorithm’s prediction is to find
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suitable values for m (the length value of term input) and n (order level

value of difference).

As m is also involved into the prediction of the forthcoming value to be

approximated, the choice of parameters (m and n)is key-problem for accuracy

and refinement.

Since the second “weight” is a negative value, and its condition number is

so high in distribution, eq.(3.24) is not a “normal” weighted function but ill-

conditioned function in Short Selling Framework [Yuille, 2009]. As a result,

with m → ∞, the function’s variance increase and the variation of function

solution(s) could be bigger.

Therefore, the predicted precision may not be good enough. Thus, for a

given k ∈ [1,m], where m is the length of the initial time series data set and

ε is unknown yet, based on the eq.(3.24), let:

F (k) =
k

k − 1
(Dn

k + (k − 1)ε) +
−1

k − 1
Dn

1 (3.25)

Then calculate Dn
m+1 from the original time series data set (eq.(3.2)); and

next, obtain Θ representing their Manhattan Distance:

Θ(k) = ‖F (k)−Dn
k+1‖ (3.26)

From the result values of array Θ(k) from the above equation, where the

Θ(kmin) → min, F (kmin) is the closest value to the real difference oper-
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ator value Dn
m+1 in the series. The aim is to determine the value m for

which am+1 is approximated based on the previous data points in time se-

ries, a1, a2, a3, · · · , am. Fig 3.6 shows an example of Θn
k (when n = 1 and

k ∈ [1, 600]).

Figure 3.6: The Manhattan Distance Value Series, Θn
m, where n = 1 and

X Coordinate Axis Lists the Values of m ∈ [1, 600] and Y Coordinate Axis
Illustrates the Values for Distance.

According to eq.(3.26), choosing two large values of term index Lm and order

level of difference Ln for locating the suitable m and n in the formulae:

Fm×n =
m

m− 1
Dn

m +
−1

m− 1
Dn

1 (3.27)

Θm×n = ‖Fm×n −Dm+1
n ‖ (3.28)

(wherem ∈ [1, Lm] and n ∈ [1, Ln] in the second formula), in order to identify

the area of minimum values.

Based on eq.(3.26) and Θmmin×nmin
→ min, it can be inferred to propose

two suitable values for index mmin and nmin for increasing the prediction

precision of algorithm MANoD. Fig 3.7 shows a map of matrix Θm×n, where
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m ∈ [1, 500] and n ∈ [1, 20].

Figure 3.7: The Value Map of Matrix: Θ for Sunspot Number Time Series
Data Set (where m ∈ [1, 500] and n ∈ [1, 20])

3.5 Case Studies

This section presents the application of the Moving Average of nth-order Dif-

ference time series prediction algorithm for a monthly average sunspot num-

ber time series, a global earthquakes’ Richter Magnitude Scale (RMS) time

series and a synthetic pseudo-periodical time series (chapter 2 introduced the

description of time series data set in details).
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• Sunspot Number Time Series Prediction

The 1200 monthly average observations of sunspot number time series has

been imported into the proposed algorithm.

The following Fig 3.8 shows the initial sunspot number time series values and

MANoD prediction results. MANoD produced prediction results very well

both on the trends and on values, there are fluctuation in prediction values,

but the errors were very small.

Figure 3.9 illustrates the prediction errors (‖Prediction−Original‖) by MANoD

algorithm.

Figure 3.8: The Initial Monthly Average Sunspot Number Time Series
and Prediction Results by Algorithm MANoD (where m = 12 and n =
12); X Coordinate Axis Lists the Index of Time Intervals (1200 Values) and
Y Coordinate Axis Illustrates the Original (in blue with 1200 values) and
Prediction Values (in purple with 600 values).
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Figure 3.9: Sunspot Number Time Series Prediction Errors (600 data
values) by MANoD; X Coordinate Axis Lists the Index of Time Intervals
(600 values) and Y Coordinate Axis Illustrates the Prediction Error Values
(‖Prediction−Original‖) for 600 Values.

• Earthquake Time Series Prediction

A 1351 measurements global earthquakes’ RMS time series have been im-

ported into the proposed MANoD algorithm. Fig 3.10 illustrates the original

time series and MANoD algorithm’s prediction results. MANoD produced a

very good trends for predicting Earthquake time series. Figure 3.11 shows

the prediction errors (‖Prediction−Original‖) by MANoD algorithm.

Figure 3.10: The Initial Global Earthquakes’ Richter Magnitude Scale
(RMS) Time Series and Prediction Results by Algorithm MANoD; X Coordi-
nate Axis Lists the Index of Time Intervals (1351 Values) and Y Coordinate
Axis Illustrates the Original (in blue with 1351 values) and Prediction Values
(in purple with 676 values).
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Figure 3.11: Global Earthquakes’ Richter Magnitude Scale Time Series
Prediction Errors by MANoD; X Coordinate Axis Lists the Index of Time
Intervals (676 values) and Y Coordinate Axis Illustrates the Prediction Error
Values (‖Prediction−Original‖) for 676 Values.

• Synthetic Pseudo-Periodical Time Series Prediction

A generated synthetic pseudo-periodical time series with 100000 values by

the mathematical function:

y =
7∑

i=3

1

2i
sin

(
2π

(
22+i + rand(2i)

)
t
)
, 0 ≤ t ≤ 1

has been imported into MANoD.

Fig 3.12 depicts the time series source values and its prediction results by

MANoD algorithm. MANoD produced prediction results very well both on

the trends and on values for synthetic pseudo-periodical time series.

Fig 3.13 shows the prediction errors (‖Prediction − Original‖) by MANoD

algorithm.
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Figure 3.12: The Synthetic Pseudo-Periodical Time Series Source Values
and Prediction Results by Algorithm MANoD; X Coordinate Axis Lists the
Index of Time Intervals (100000 Values) and Y Coordinate Axis Illustrates
the Original (in blue with 100000 values) and Prediction Values (in purple
with 50000 values).

Figure 3.13: The Synthetic Pseudo-Periodical Time Series Prediction Er-
rors by MANoD; X Coordinate Axis Lists the Index of Time Intervals
(50000 values) and Y Coordinate Axis Illustrates the Prediction Error Values
(‖Prediction−Original‖) for 50000 Values.

3.6 Summary

This chapter has introduced a time series prediction algorithm based on

Moving Average of nth-order Difference and applied it for predicting three

different types of time series.
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As two core concepts of algorithm MANoD, the definitions of (nth-order) Dif-

ference Operator and (Cumulative) Moving Average have been introduced.

Then, assembling both together we proposed to establish a computational

model and approach for predicting the next value of a pseudo-periodical

time series.

MANoD algorithm presents a simple way to determine the range of values

necessary for a good prediction of the time series terms in cases of bounded

pseudo-periodical time series. The developed algorithm to predict time series

based on a number of previous known values necessarily addresses also the

noise of the actual collected measurements of a time series. The errors ob-

tained by the algorithm in this thesis are represented as difference between

actual and expected value of averages sum (difference of moving average).

The method also provides a logical development in a transparent way, avoid-

ing the use of “Black Box” methods.

The limitation of the algorithm MANoD is the dependency of the (still) error

between the moving average of nth-order difference values at the prediction

step, n + 1 and n The MANoD algorithm generates therefore a good pre-

diction for the trends of the time series (including the pseudo-periodicity),

but the precision of prediction (amplitude) suffers because of dependency on

how many orders (i.e. value of n) difference have been considered, which

increases the complexity calculus though and introduces a tuning parame-

ter of the order of difference. Another direction for further research is the

approximation of error in using machine learning techniques, in order to re-

duce the differences induced by the possibility to obtain a non-zero average

65



Chapter 3. A Time Series Prediction Algorithm based on Moving Average of nth-order Difference

of nth-order difference for a period close to the prediction moment.

The research for MANoD’s development and the relevant work has been

published as described in section Declaration.

Next chapter will present another original time series prediction approach

based on Series Features Extraction, and also used for time series prediction.
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4.1 Introduction

4.1.1 Epistemology

As one important branch of philosophy study, Epistemology is rendered as a

“Theory of Knowledge”; it focuses on certain understanding of Knowledge.

Epistemology is also the investigation into a debate on the knowledge itself

and on acquiring knowledge [Britannica, 2008] [IEP, 2008] [SEP, 2008].

Epistemology deals with such questions as how knowledge come from expe-

rience or from innate reasoning ability; it concerns with the nature, sources

and scope of knowledge, then it attempts to address several basic questions

related to knowledge like: what is knowledge? where the knowledge comes

from? how to differentiate the Truth and Believe?

Epistemology, generally, involves a debate on the question of whether knowl-

edge can be acquired a priori or a posteriori. The analysis of the progress

of time series can be seen a regression progress, therefore, it avoids the “ex-

perience” knowledge (a posteriori) as referred to the effect of the analysis

and prediction results. Moreover, epistemology helps to identify that the

acquired knowledge in time series belongs to a priori.

The first step in time series analysis by epistemology is to determine the

nature of knowledge for a time series, which means to obtain the description

and understanding of the original data sequences. Then, the second step is to

determine the scope of knowledge, which is to differentiate truth knowledge
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(sets of truth information) (a priori) and to acquire the believe knowledge (a

posteriori) for a view to control the development time series.

Consequently, the author considered that estimation approaches of time se-

ries analysis and prediction as epistemology methods require a method based

on a priori knowledge rather than a posteriori knowledge to make use of the

essence stored in the time series.

4.1.2 A Priori and A Posteriori Knowledge

Terms “a priori” and “a posteriori” help to distinguish between two opposite

types of knowledge. Table 4.1 shows the definition of them [Gensler, 2001]

[Dickie, 1996] [Scruton et al., 2001].

Table 4.1: The Definition of a priori and a posteriori Knowledge

is knowledge independent of sensory experience.

A Priori e.g. “All bachelors are un-married.”

Knowledge “One time series data point value is higher than another.”

“The inner construction of a time series data set.”

is knowledge dependent of sensory experience.

A Posteriori e.g. “Some bachelors are happy.”

Knowledge “This time series data point value is too high.”

“The exhibition of a time series data set.”
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Hence, a priori knowledge is non-empirical received beforehand; it is consid-

ered a top priority of Logic and Mathematics domain and focuses on abstract

and formal objects. A posteriori knowledge is empirical and received after-

wards.

In a time series database, a priori knowledge is referred to the attributes

of data, i.e. value (mathematical knowledge) and value comparison (mathe-

matic and logical knowledge) and so on. A posteriori knowledge is referred

to the judgment of data characteristics, i.e. the fluctuation of the assemble

in the first half sequence of values.

4.1.3 Features, Patterns and Model

Features are the individually measurable heuristic properties of the phenom-

ena being observed. The concept of feature in fact specifies a structure in

data sequence, which may include a simple measurement or complex struc-

tures/objects. In terms of applications, the use of features extraction are well

developed in regression analysis, statistical pattern recognition, computer vi-

sion, and so on.

In essence, the features are series of information before the initial data mea-

surements are observed, which are a priori information and knowledge. They

may be categorized into natural classes based on their distinctive features;

each of them describes a quality or characteristic of the natural class, for

example, (mathematical) thresholds of time intervals and time series data
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sets, etc.

The type of features that are related by all their membership to a common

theme is a number of terms for the joint characteristic, and a successive set

of features in time series may include the changing and/or trends of time

series data over time intervals. That phenomenon of cyclic appearing can be

considered as a simple of pattern.

The term “pattern” is usually used as an aid to design a “model”. In other

words, this concept of having collection(s) of patterns in a specific order or

recurrence form is useful to construct a summary of the initial data series.

In time series analysis, a pattern for a variable identifies a subset of all

(possible) measurements, and a successive set of patterns consist of a new

data sequence; this new one can be treated as a description data set for the

initial data sequence. On the other side, data classification procedure also

gives patterns into groups. Those patterns (groups) have common one or

more characteristics, such as: data attributes, variables, and so on.

A model can be formally defined as a set of data elements and relationships

among data sets. However, according to the quantity of a priori knowledge

(or information) included, a modelling process is classified into “White Box”

and “Black Box” models [Beizer, 1995]. It is considered preferable to use a

“White Box” model to make the model’s description comprehensible, because

of the a priori knowledge (information) root in the data sets. On the other

hand, “Black Box” models call a posteriori knowledge (information), which

is dependent of experience, to estimate the relationship among the data or
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between parameters of model itself. For a huge or outstretching time series

database, a “Black Box” model will increase the computational difficulty and

complexity, while the most important problem is that results are normally

in-comprehensible.

4.1.4 The Methodology of Series Features Extraction

Approaches

In a small data set, the features would be easily identifiable, for example, size,

structure and everything else of original data sequence after understanding

and describing data series. However, for a huge data set with a series data

attributes, there may simply be un-known factors that affect the data. This

requires to identify features existing as hidden pieces of entire database. As

a result, the extraction of a series features provides additional information

for searching patterns and constructing the predictive model.

Relative to the concept of model, pattern is a “local” summary for one or

more pieces of data sequence. Based on a priori knowledge, pattern recog-

nition aims to classify data, either to classify measurements into groups or

extract patterns from classified groups. A feature extraction system com-

putes the numeric or symbolic information from the observations; features

that contain a common significance consists of a pattern (this pattern relies

on the extracted features but may show different expressions over different

time intervals in difference time series).
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In the sense of un-supervised (machine) learning, a pattern recognition scheme

is not always given a priori labeled features and/or patterns, however, it is

able to establish classes with a priori features if the features extraction sys-

tem exports a priori knowledge only based on the mathematical and logical

methods. This pattern recognition mechanism also deals with a priori knowl-

edge independent of the human sensory experience; the model can, for the

entire contents of the initial time series data sets, explicitly determine the

nature and meaning of data.

In fact, a model is also a pattern. It is designed to show the main significance

of data as a “global” summary of the entire data sequence. As opposing to

an un-structured data sets, a modelling process describes the representation

and access of data. As a common problem, modelling also faces the challenge

of choosing the source of knowledge between a priori and a posteriori knowl-

edge. Classical methods mainly limited to in using mathematical model(s)

for analysis and prediction refer to the length of data series, meanwhile, the

performance of the methods relate to the complexity of data structure (or

data dimensionality). In addition, the modern learning methods try to take

into account the difficulties of requiring a priori knowledge.

Therefore, to establish such a model which only deals with a priori knowledge

extracted from the initial time series, will be a big step forward in time series

analysis and prediction. The prerequisites, such an approach, requires purely

to process a priori knowledge.
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4.2 Time Series Data Classification based on

a Combination Rule of Successive Neigh-

bouring Data Points

4.2.1 Data Classification for a Generic Data Sequence

Set

Data Sequence Classification is the procedure in which sub-sets, several

data points as a group, or even each individual data point, are placed into

“Classes” (also named “Groups”) based on quantitative information or foun-

dation knowledge on one or more characteristics inherent in the initial data

sequence set (referred to as attributes, variables, characters, etc).

There are two steps in classification [Kotsiantis, 2007] [Kotsiantis et al., 2006].

The first is to establish/choose a classifier, which will be trained to describe

existing data (or training sets); then, the next step is to use the generated

model to classify previously unseen data/samples.

A classifier is a model that describes structural features and behavior of

a given data collection. A good classifier should produce a category, with

minimum quantity classes, of elements that have common features from the

initial data sets; and this category should presents all significant samples in

the original data sequence.

Given an un-marked original data sequence, where the measurements of data
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represent the known information over time (a priori knowledge), the aim

is the construction of successive data points. In other words, the use of

neighbouring measurements is to compose a primary pattern.

Since time series prediction is the use of a model to predict future event(s)

based on the past known event(s), a combination point of three successive

neighbouring data points contains the most straightforward knowledge (also

a priori), which are: data from previous, data at present and at the next

moment.

We propose to use the combination point of three successive neighbouring

data point as the primary element of our new approach, as described below.

4.2.2 Combination of Time Series Data Points

If using one single data item to represent the three neighbouring data, this

procedure can be treated as the first step for modelling of data series; then,

this type of combined data is able to reveal a “trend” of the original data

series.

In a more basic sense, this kind of combination rule can be applied to any

types of time series and it could be mostly commonly used within time series

to smooth out shorter term fluctuations and highlight longer term’s trend

and/or cycle period. This combination of short term and long term aims

depends on the application and parameters (of classifier) which will be set

up accordingly.
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For example, for business and economic time series data set with season-

ality, the combination series of three month measurements should include

more meaningful significance or values than one month data series. Another

example is the stock market time series data set, which always exhibits an

up/down trend in short term period and contains cycle period(s) in long term,

thus, the combination of neighbouring simplifies the data series construction

and smoothes out their fluctuations.

Given an original and un-marked time series with known values:

A = {a1, a2, · · · , at−1, at, at+1, · · · } where t ∈ N

there are three successive neighbouring data points at moments L,C,N

aL ∈ A : the Lastest data;

aC ∈ A : the Current data; (4.1)

aN ∈ A : the Next data;

where L+ 1 = C = N − 1.

In view of all possibilities based on the differences between data values, there

are totally 13 correct group cases for all reliable classes, and each group

(combining data points) represents a different 2-Dimensional shape as defined

by the sequence of 3 values in the original time series (where the horizonal

axis means the time dimension t, and the vertical axis represents the data

values at, see Table 4.2 for more details).
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Therefore, we propose a projection of all time series values in a 3-Dimensional

space of consecutive differences in order to study the possible clusters of

these data according to their shown direction over a time interval. The other

missing 14 distinct cases (out of all 27 possible combinations of the three

coordinates in the consecutive differences space) define all impossible cases

from the point of view of time series values. For example the case (-, 0, -)

gives aC = aN , aC < aL and aL < aN which gives simultaneously aC = aN

and aC < aN which is an impossible case. All other cases follow a similar

treatment.

Ideally, there is a 3-dimensional space (Fig 4.1) to express the difference

between three successive data point in eq.(4.2); and let X-dimension denotes

the value of aC−aL; Y -dimension presents the value of aC−aN ; Z-dimension

shows the value of aL−aN . Therefore, any point in that space with coordinate

P (x, y, z) is defined by the differences of the combination data set generated

from original time series. For example, P (0, 1, 2) means that: aC − aL = 0,

aC − aN = 1, aL − aN = 2.

The Table 4.2 shows the categorization of combination rule (note: in the

column “condition”, “+” means the first value bigger than the second one;

“−” means the first value smaller then the second one; and “0” means the

first value equals the second one. The last column “Shape” denotes the

geometric sketch).
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Figure 4.1: Difference of 3 Successive Neighbouring Data in a 3-Dimensional
Space
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Table 4.2: Categorization of Definition for Combination (3 Successive Data)
Rule of Grouping 13

Grouping 13
Condition

Skeleton Shape
aC − aL aC − aN aL − aN

Group 1 + + −

Group 2 + 0 −

Group 3 + − −

Group 4 + + 0

Group 5 + + +

Group 6 0 − −

Group 7 0 0 0

Group 8 0 + +

Group 9 − − −

Group A − − 0

Group B − + +

Group C − 0 +

Group D − − +
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In the Fig 4.1, based on the combination rule showed in Table 4.2, each

group locates in a specific space, such as: a cube interspace (3-Dimension)

or a plane (2-Dimension). The definition of each group’s position is provided

in Table 4.3

Table 4.3: The 3D Sub-domain Correspondence of Grouping 13 Cases

Sub-domain Correspondence Exclude

Group 1 rear top-right cube red plane

Group 2 blue plane the origin

Group 3 rear bottom-right cube green plane

Group 4 red plane the origin

Group 5 front top-right cube red, blue & purple plane

Group 6 green plane the origin

Group 7 the origin (in black) −

Group 8 purple plane the origin

Group 9 rear bottom-left cube aqua, green & orange plane

Group A aqua plane the origin

Group B front top-left cube purple plane

Group C orange plane the origin

Group D front bottom-left cube aqua plane
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4.2.3 Optimizing the Categorization

We proposed in the previous section a scheme of 13 classes (groups), in which

the data sequence points of the initial time series can be classified into, based

on the classification of combinations for three successive neighbouring data

points.

We call this new data series the Combination Data Series (CDS). Each point

in the newly generated combination data series can be treated as the outcome

value from a Discrete Random Variable, and there is no relationship between

any two consecutive combination data points.

As a result, the probability distribution of that combination data series is

a discrete distribution (see definitions below); any new forthcoming data to

join the combination data series also obeys that rule.

Definition 4.1 - Discrete Probability Distribution:

Discrete probability distributions have the values to be observed restricted

within a pre-defined list of possible values. This list has either a finite number

of members, or at most is countable.

The distribution of a given random variable X = {x1, x2, · · · , xn} is discrete

(Discrete Probability Distribution) if the probability function P (xi) defined

over i = 1, 2, · · ·n, has a distribution function:

F(X) =
n∑

i=1

P (xi) = 1 (4.2)
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Definition 4.2 - Discrete Random Variable:

A Discrete Random Variable is a random variable which can only take a

finite number of distinct values and is characterized by a Discrete Probability

Distribution: given t ∈ Z, the countable values:

X = {x1, x2, · · · , xt}

is a Discrete Random Variable.

The combination rule for “Grouping 13” is defined in Table 4.2, the set of

output values is a Discrete Random Variable set, with a finite number of

elements (13). Then its probability function is:

F(G) =
D∑
i=1

P (Gi) = 1 (4.3)

where 0 ≤ P (Gi) ≤ 1 and i ∈ {1 ∼ 9, A,B, CD}.

We tested the suitability for further implementation of Grouping 13 distri-

bution on five different time series data sets (see Table 4.4 for details).

Table 4.4: Five Samples of Time Series for Testing

Index Time Series Sample Measurements Figure

1. Earthquake RMS (global) 1351 Fig 4.2

2. Foreign Exchange Rates (GBP to USD) 2295 Fig 4.3

3. Nile River Low Flows 570 Fig 4.4

4. Sunspot Number (Monthly Average) 1200 Fig 4.5

5. Synthetic Pseudo-periodical Data Series 100001 Fig 4.6

82



Chapter 4. A Time Series Prediction Algorithm based on Series Features Extraction

Figure 4.2: Earthquake RMS Testing Time Series, X Coordinate Axis Lists
the Index of Time Intervals and Y Coordinate Axis Illustrates Earthquakes
RMS Values.

Figure 4.3: Foreign Exchange Rates Testing Time Series; X Coordinate
Axis Lists the Index of Time Intervals and Y Coordinate Axis Illustrates
Foreign Exchange Rates Values.

Figure 4.4: Nile River Low Flows Testing Time Series; X Coordinate Axis
Lists the Index of Time Intervals and Y Coordinate Axis Illustrates Nile
River Low Flows Values.
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Figure 4.5: Sunspot Number Testing Time Series; X Coordinate Axis Lists
the Index of Time Intervals and Y Coordinate Axis Illustrates Sunspot Num-
ber Values.

Figure 4.6: Synthetic Pseudo-Periodical Testing Time Series; X Coordinate
Axis Lists the Index of Time Intervals and Y Coordinate Axis Illustrates
Synthetic Pseudo-Periodical Time Series Data Set Values.

Table 4.5 shows some statistical details about the 13 codes (groups) occur-

rences into the transformed combination data series, where “Q.#” shows

quantities of each corresponding group from the combination series; “P.#”

expresses the proportions of each group (“Q.#”) into the total combination

data set samples. For example, in the first row (Q.1), the value “172” presents

that there are “172” samples belonging to “Group 1” whereas P.1 = 0.13 =

172/1349.
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Table 4.5: Statistical Results of Combination Rule for Grouping 13

Group Index
Total

1 2 3 4 5 6 7 8 9 A B C D

Q.1 172 65 178 18 156 49 31 69 176 19 196 53 167 1349

P.1 0.13 0.48 0.13 0.13 0.12 0.36 0.23 0.51 0.13 0.14 0.15 0.39 0.12 1

Q.2 301 9 570 1 278 11 0 8 301 5 528 10 271 2293

P.2 0.13 4e-3 0.25 4e-4 0.12 4e-3 0.00 4e-3 0.13 2e-3 0.23 4e-3 1e-3 1

Q.3 70 19 103 6 71 18 3 15 68 9 102 14 70 568

P.3 0.12 0.03 0.18 0.01 0.13 0.03 5e-2 0.03 0.12 0.02 0.18 0.02 0.12 1

Q.4 174 7 233 4 166 6 0 4 182 1 257 3 161 1198

P.4 0.15 6e-3 0.02 3e-3 0.14 5e-3 0.0 3e-3 0.15 8e-4 0.21 3e-3 0.13 1

Q.5 63 0 50064 0 70 0 0 0 63 0 49669 0 70 99999

P.5 6e-4 0.0 0.50 0.0 7e-4 0.0 0.0 0.0 6e-4 0.0 0.50 0.0 7e-4 1

As can be seen in Table 4.5 on Grouping 13 codes occurrences, it is possible

that there are no values in some classes for specific time series, such as:

Group 7 in row Q.2, Group 2, 4, 6, 7, 8, A, C in row Q.5.

Of course, the groups with few or zero elements are different for various time

series: for example, Groups 2, 4, 6, 7, 8, A, C contain 0 elements for synthetic

pseudo-periodical time series (see Q.5 and P.5) but the same codes contain

different (positive) quantities of elements for other time series (see Q.1 and
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P.1)

Therefore, it is very necessary at this stage to propose as a second step the

classifier code optimization - starting from the initial 13 Grouping codes, we

need a new classification combination data sequence, which obeys a fixed

distribution, and provides more effective information and makes use of (a

priori) knowledge from the original time series.

For an ideal discrete probability distribution, the values of each output el-

ements’ probability should be greater than 0. Meanwhile, the number of

output classification codes should be kept to a minimum whereas the num-

ber of occurrences in each class should be positive; that is to say: (μ is the

value of probability)

Ω = {ω : X(ω) = μi} i = 1, 2, 3, · · · (4.4)

F(X) =
min∑
i=1

P (X = μi)IΩ(Ωi) = 1

where IΩ is the Indicator Function of Ω.

That means a better classification set can be designed to produce a minimum

number of classes with a positive (preferably maximum) number of elements

from the original data sequence, ideally. In other words, if any group’s pro-

portion tends to zero, that means there are no output values belonging to

this pre-defined class (group) from the input discrete random variable. Thus,

for this case, it has been obtained a meaningless class (group), which should

be not contained in the classification codes.
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Therefore, the initially proposed Grouping 13 combination rule set can be

used to project numerical data sets into the transformed data series based

on translation of groups of three sequential values according to Table 4.2.

However, it should be optimized in terms of number of codes/classes as dis-

cussed above if the distribution of codes in the generated data series requires

re-consideration.

We propose a new grouping combination rule, named “Grouping 07”, con-

structed as follows:

The new class “Group 4” contains groups 2, 4, 6, 7, 8, A, C from Grouping

13 (because these were groups having their codes based on just one or two

distinctive consecutive values i.e. a horizontal line is part of or a good ap-

proximation of the graphical representation of the group values).

Other new classes are labeled “Group 1 , 2 , 3” and “Group 5 , 6 , 7” as related

to the remaining groups from Grouping 13.

In geometric representation, Group 1 , 2 , 3 and Group 5 , 6 , 7 represent the

fluctuations of consecutive values of initial time series, whereas Group 4

depicts a flat behavior. As a result, the optimized combination “Grouping

07” is proposed, and its classes are presented below in Table 4.6:
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Table 4.6: Definition of Classes for Combinations based on 3 Successive
Values in Grouping 07

Grouping 07
Conditions

Shape
aC − aL aC − aN aL − aN

Group 1 + + +

Group 2 + + −

Group 3 + − −

Group 4

+ 0 −

+ + 0

0 − −

0 0 0

0 + +

− − 0

− 0 +

Group 5 − + +

Group 6 − − +

Group 7 − − −
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Based on the combinations presented in Table 4.6, the Grouping 07 can also

be depicted in 3-dimensional space (like we represented Grouping 13 previ-

ously): Fig 4.7 shows the classes for Grouping 07 using the 3D coordinates

described at the start of section 4.2.2.

Figure 4.7: Difference of 3 Successive neighbouring Data in a 3-Dimensional
Space

In this 3-dimensional space (Fig 4.7) the coordinates allow us to represent

the different relative positions between groups from “Grouping 07” combi-

nations, where the X-dimension represents the difference of “aC − aL”; the
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Y-Dimension represents the difference of “aC − aN”; and the Z-Dimension

shows the difference of “aL − aN”. A point “P (x, y, z)” expresses the class

with a particular sequence of time series values belongs to the Grouping 07 ’s

(see details in Table 4.7):

Table 4.7: The 3D Sub-domain Correspondence for Grouping 07 classes

Sub-domain Correspondence Exclude

Group 1 front top-right blue cube the origin, X, Y, Z axis

Group 2 rear top-right red cube the origin, X, Y, Z axis

Group 3 rear bottom-right green cube the origin, X, Y, Z axis

Group 4 the origin (in black), X, Y, Z axis −

Group 5 front top-left purple cube the origin, X, Y, Z axis

Group 6 front bottom-left aqua cube the origin, X, Y, Z axis

Group 7 rear bottom-left orange cube the origin, X, Y, Z axis

Consequently, the differences between the initial Grouping 13 definition and

the new Grouping 07 are given by the coding of those groups of two or three

data points with same value. Grouping 13 takes into account all possible cases

about three successive neighbouring data points, and therefore the intention

of this classifier’s definition is to cover all possible 3-point sequences. It

defines a class for each case of time series consequent values comparisons,

and associates with every class (group) an unique geometrical shape.
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However, Grouping 13 also produces some empty/void classes (groups) for a

generic time series considered. The number of classes (groups) with no ele-

ments could affect the probability distribution, and then they could increase

the processing complexity of data sequence analysis and the prediction algo-

rithm later.

The Grouping 07 method is, from the same perspective, defined to review

the movement and trend of initial data sequence. It does not take anymore

into consideration the value comparison of time series points but focuses onto

local data movement, for example, up/down trend of the time series.

In other words, The Grouping 07 indicates if there is a continuous although

local fluctuation (or not) of the initial time series, such as: Group 1 , 2 , 6 , 7

relate to signal fluctuation, Group 4 relates to steady signals or changing

to steady values, and Group 3 , 5 tell that initial time series’ trend is up or

down, respectively. Meanwhile, succession of new data groups may define

local peak situations, e.g. Group 3 followed by 5 . Similarly, a sequence of

Group 5 followed by Group 3 may describe a local valley case.

Consequently, Group 2, 4, 6, 7, 8, A, C of the Grouping 13 approach can be

amalgamated together into a single Group 4 in the new combination ap-

proach Grouping 07 . Table 4.8 presents the corresponding relationships be-

tween Grouping 13 and Grouping 07 .

Also, in geometrical interpretation, Grouping 07 merges groups from the pre-

vious Grouping 13 approach with same geometric shape interpretation into

one class. For example, given three consecutive points from the initial time
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Table 4.8: Correspondence between groups of Grouping 13 and Grouping
07 approaches

Categorization of Grouping 07 Categorization of Grouping 13

Group 1 Group 5

Group 2 Group 1

Group 3 Group 3

Group 4 Group 2, 4, 6, 7, 8, A, C

Group 5 Group B

Group 6 Group D

Group 7 Group 9

series: AL, AC , AN and t representing the interval over the time dimension

of the time series, let’s suppose AC is located in the origin of a Cartesian

Coordinate System. Thus, there are two vectors, −→α and
−→
β , related to the

movement and trend of the original time series:

−→α =
−−−→
ALAC = 〈Δt, VLC〉 (4.5)

−→
β =

−−−−→
ACAN = 〈Δt, VCN〉 (4.6)

where the Δt is defined as a scalar value of difference the time intervals and

V denotes the vertical projection of each vector.

Then, the 2-dimensional inner product of our two vectors is:

−→α · −→β = Δt2 + VLCVCN
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So far, if there are any two or three equal values of data points from original

time series, then either or both values of VLC or VCN are 0, so that the scalar

of inner product becomes a fixed value: Δt2.

The two types of combination rules, the performance of “Grouping 13” and

“Grouping 07”, are compared below by using the concepts of Discrete Ran-

dom Variable (Weighted) Mean and Discrete Random Variable (Weighted)

Standard Deviation [Kallenberg, 2002] [Papoulis and Pillai, 2002].

Definition 4.3 - Discrete Random Variable (Weighted) Mean (DRV

Mean):

For a given discrete random variable X = {x1, x2, · · · , xn} and its corre-

sponding probabilities P = {P (x1), P (x2), · · · , P (xn)}, the Discrete Random

Variable Mean μ is calculated as:

μ =

n∑
i=1

xiP (xi)

n∑
i=1

P (xi)

where the series of probabilities P are taken as weights.

Based on the eq.(4.2), the DRV Mean becomes:

μ =
n∑

i=1

xiP (xi)

Definition 4.4 - Discrete Random Variable (Weighted) Standard

Deviation (DRV S.D.):
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For a given discrete random variable X = {x1, x2, · · · , xn} and its corre-

sponding probabilities P = {P (x1), P (x2), · · · , P (xn)}, the Discrete Random

Variable Standard Deviation is calculated as:

σ =

√√√√√√√√√

n∑
i=1

(xi − μ)2P (xi)

n∑
i−1

P (xi)

where μ is the Discrete Random Variable Mean; and the series of probabilities

P are taken as weights. Based on the eq.(4.2), the DRV S.D. becomes:

σ =

√√√√ n∑
i=1

(xi − μ)2P (xi)

The performances of our “Grouping 07” and “Grouping 13” are assessed on

five different time series: Earthquake time series, Foreign Exchange Rates

(GBP to USD) time series, Nile River Low Flows time series, Sunspot Num-

ber (Monthly Average) time series and Synthetic Pseudo-periodical time se-

ries (see Table 4.4 for details). Due to some processing requirements, the out-

come values of Groups index 1 ∼ 9, A,B,C,D are named 1 ∼ 9, 10, 11, 12, 13

corresponding in the results depicted below.

Table 4.9 shows the results of experiments to compare both the “Grouping

13” and “Grouping 07”, where the notations follow the description provided

in Table 4.5:
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Table 4.9: Experiments Results Comparison Between Combination Rules
Grouping 13 and Grouping 07

G.13

Q.1 172 65 178 18 156 49 31 69 176 19 196 53 167

P.1 0.13 0.05 0.13 0.01 0.12 0.04 0.02 0.05 0.13 0.01 0.15 0.04 0.12

DRV Mean: 7.0334 DRV S.D.: 4.12

G.07

Q.1 156 172 178 304 196 167 176

P.1 0.12 0.13 0.13 0.23 0.15 0.12 0.13

DRV Mean: 4.0504 DRV S.D.: 1.87

G.13

Q.2 301 9 570 1 278 11 0 8 301 5 528 10 271

P.2 0.13 0.0 0.25 0.0 0.12 0.0 0.0 0.0 0.13 0.0 0.23 0.0 0.12

DRV Mean: 6.8744 DRV S.D.: 4.23

G.07

Q.2 278 301 570 44 528 271 301

P.2 0.12 0.13 0.25 0.02 0.23 0.12 0.13

DRV Mean: 3.9856 DRV S.D.: 1.94

G.13

Q.3 70 19 103 6 71 18 3 15 68 9 102 14 70

P.3 0.12 0.03 0.18 0.01 0.13 0.03 0.01 0.03 0.12 0.02 0.18 0.02 0.12

DRV Mean: 6.9489 DRV S.D.: 4.17

G.07

Q.3 71 70 103 84 102 70 68

P.3 0.13 0.12 0.18 0.15 0.18 0.12 0.12

DRV Mean: 3.9824 DRV S.D.: 1.88

G.13

Q.4 174 7 233 4 166 6 0 4 182 1 257 3 161

P.4 0.15 0.01 0.19 0.0 0.14 0.01 0.0 0.0 0.15 0.0 0.21 0.0 0.13

DRV Mean: 7.0159 DRV S.D.: 4.25

G.07

Q.4 166 174 233 25 257 161 182

P.4 0.14 0.15 0.19 0.02 0.21 0.13 0.15

DRV Mean: 4.0384 DRV S.D.: 2.04

G.13

Q.5 63 0 50064 0 70 0 0 0 63 0 49669 0 70

P.5 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0

DRV Mean: 6.9845 DRV S.D.: 4.00

G.07

Q.5 70 63 50064 0 49669 70 63

P.5 0.0 0.0 0.5 0.0 0.5 0.0 0.0

DRV Mean: 3.9960 DRV S.D.: 1.00
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In an ideal situation of(Uniform) Discrete Probability Distribution, all values

of discrete variables are equal:

PG13 = {P : P (Xt) =
1/13} t = 1, 2, · · · , 13

PG07 = {P : P (Xt) =
1/7} t = 1, 2, · · · , 7

Since the outcome values of Grouping 13 and Grouping 07 are named re-

spectively: XG13 = {1, 2, · · · , 13} and XG07 = {1, 2, · · · , 7}, the DRV Mean

of the two combination rules are:

μG13 =
13∑
i=1

XG13(i)PG13(XG13(i)) = 7

μG07 =
7∑

i=1

XG07 (i)PG07 (XG07 (i)) = 4

All five time series used in our case studies also show corresponding results

close to the results described above in Table 4.9.

As seen in the Table 4.9, the DRV Mean DRV S.D. values for both Grouping

13 and Grouping 07 rules are approximately equal to the ideal value; this also

proves that both proposed combination rules (Grouping 13 and Grouping 07 )

correspond with natural distribution of generic time series values.

The normal (un-weighted) Standard Deviation values for Grouping 13 and

Grouping 07 are:
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σG13 =

√√√√ 1

13

13∑
i=1

(XG13(i)− μG13)2 = 3.74165738677 (4.7)

σG07 =

√√√√1

7

7∑
i=1

(XG07 (i)− μG07 )2 = 2.0 (4.8)

Consequently, based on comparisons between the combination rules and also

between DRV Standard Deviation and normal Standard Deviation values,

classifier Grouping 07 is able to generate a more stable distribution combi-

nation time series. In contrast to it, the dispersion of Grouping 13 is even

bigger than the ideal value of Uniform Discrete Distribution (compare val-

ues between Table 4.9 and eq.4.8). At the same time, the absence of values

corresponding to some groups in the approach Grouping 13 may affect the

probability distribution and this justifies even more our optimization ap-

proach Grouping 07 .

In conclusion, the combination rule Grouping 07 produces a better distribu-

tion of samples between groups than Grouping 13.

97



Chapter 4. A Time Series Prediction Algorithm based on Series Features Extraction

4.3 The Approach of Series Features Extrac-

tion Algorithm for Time Series Analysis

and Prediction

4.3.1 Eigenvector

Eigenvectors and Eigenvalues are important interrelated concepts in linear

algebra. The determination of the eigenvector and eigenvalue of a system is

extremely important in engineering, (quantum) mechanics and many other

domains. It arises in common applications as stability analysis, such as the

oscillations of vibrating systems [Korn and Korn, 2000] [Strang, 2003].

Many kinds of mathematical objects can be treated as vectors, such as: func-

tions, ordered pairs, etc. If a transformation on a (non-zero) vector only

changes its magnitudes but not its direction, then this vector is called an

eigenvector of that transformation. In these cases, the concept of vector’s

direction loses the ordinary significance as an abstract meanings, the trans-

formation only effects scalars of vector, for example, stretching, compression,

rotation or any combination of these.

A vector is stretched un-equally in different directions along the coordinate

axes, then there two eigenvalues as the scaling factors in different directions

(General Eigenvector). After repeatedly applying this action of stretch-

ing/shrinking, almost any vector in vector space could be oriented close

enough. However, in this case, if there is still a large distance between them,
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then those vectors are not belong to one cluster, in other words, those vector

contain different significance.

As discussed, in the newly transformed time series generated by our combi-

nation rule, every data point is based on a priori information (values and

their sequence) from initial time series. Therefore, the series of successive

transformed data points helps identifying repetitive schemes showing quali-

tative movements over time intervals or the trend of time series. Meanwhile,

any single or several data points in the combination series can be treated as a

vector (eigenvector of the combination transformation), because it contains

two factors, time intervals and trend of the original time series (eq.(4.5),

eq.(4.6)).

Since the combination rule does not take into account the corresponding

magnitudes of any three successive data points because it only evaluates the

difference of successive values, all eigenvectors extracted from combination

time series can be treated as a stretched primitive eigenvector.

Definition 4.5 - Eigenvector:

Linear transformations of a vector space, such as rotation, reflection, stretch-

ing, compression, shear or any combination of these, may be visualized by the

effect they produce on vectors. That means the vector has its property (direc-

tion) staying same by the transformation, but scaled by a factor.

Given a linear transformation A, a non-zero vector ξ is defined to be an
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eigenvector of the transformation if it satisfies the eigenvalue equation:

Aξ = λξ or Aξ = λIξ

for some scalar λ. In this situation, the scalar λ is called an eigenvalue of A

corresponding to the eigenvector ξ. [Korn and Korn, 2000] [Strang, 2003]

For instance, given A transformation, 2× 2 vector ξ and scalar λ:

Aξ =

⎡
⎢⎣ λ 0

0 λ

⎤
⎥⎦
⎡
⎢⎣ x

y

⎤
⎥⎦ =

⎡
⎢⎣ λ× x

λ× y

⎤
⎥⎦ = λ

⎡
⎢⎣ x

y

⎤
⎥⎦ = λξ

Definition 4.6 - General Eigenvector:

Given a linear transformation A and B, a non-zero vector υ is defined to be

an (general) eigenvector of linear transformation if it satisfies the eigenvalue

equation:

Aυ = λBυ

for some scalar λ. In this situation, the scalar λ:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 · · · 0

0 λ2 · · · 0

...
...

. . .
...

0 0 · · · λn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4.9)
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is called an (general) eigenvalue of A and B corresponding to the eigenvector

υ [Korn and Korn, 2000] [Strang, 2003]. In relation to concept of normal

eigenvector, this is to explain there are two vectors with a set of un-equal

scaling.

On the other hand, if any existing eigenvector X of the combination time

series, and IX is the primitive impartible eigenvector of X, λ is an eigenvalue:

X = λIX

In view of that component on horizonal dimension is the irreversible time

dimension, any eigenvector can be regarded as a stretched component on

vertical dimension (the perpendicular directions along the coordinate axes).

Therefore, two series of successive data points in the combination time series:

A = {A1(tp+1, Vp+1), A2(tp+2, Vp+2), · · · , An(tp+n, Vp+n)} ∈ Rn

B = {B1(tp+1, Vp+1), B2(tp+2, Vp+2), · · · , Bn(tq+n, Vq+n)} ∈ Rn

where Ai ∈ R2, Bi ∈ R2, i ∈ [1, n], both consist of two eigenvector respec-

tively, α and β denoted as: (ignoring component scalar magnitudes because

there is an unique time interval)

α =< Vp, Vp+1, · · · , Vp+n >∈ Rn

β =< Vq, Vq+1, · · · , Vq+n >∈ Rn
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4.3.2 Transformation of Time Series

We address the time series data classification task by grouping the trends

as described above in order to determine class intervals for input data in

order to provide analysis and forecast tools. Grouping 07 is used to label

three successive data from the original time series based on their values and it

produces a new time series with newly processed value set. Consequently, this

kind of time series transformation helps to project the existing data set into a

new format, which helps analyzing and detecting patterns in time series and

locating local peak/valley data points, and also consequently determining

(pseudo-)periods where applicable.

We demonstrate the applicability and performances of our proposed approach

on case studies related to the following publicly available data set: Flu

Trends in United States (data source: [GoogleTrends, 2009], further read-

ing on [USCDC, 2009]).

Fig 4.8 shows a sample of pseudo-periodical time series with 299 measure-

ments representing the percentage
(
(influenza/entire population)×100%

)
of

Flu Trends in United States over five years (2003 ∼ 2009) from U.S. Center

for Disease Control and Prevention. Table 4.10 illustrates the organization

of original and transformed Flu Trends In United States time series in detail

(segments for demonstration) by the combination rule “Grouping 07”.
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Figure 4.8: A Sample Time Series of Flu Trends in United States; X Coordi-
nate Axis List the Index of Time Intervals and Y Coordinate Axis Illustrates
the Flu Trends Time Series Data Set Values.

Table 4.10: Original and Transformed for Flu Trends Time Series

Index 1 2 3 4 5 6 7 8

Original 0.509 0.546 0.501 0.457 0.357 0.408 0.397 0.372
Combination 1 5 5 6 2 5 5

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
Index 25 26 27 28 29 30 31 32

Original 1.799 2.187 4.039 8.3 8.056 6.352 4.116 2.602
Combination 3 3 3 2 5 5 5 5

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
Index 86 87 88 89 90 91 92 93

Original 2.111 2.490 2.971 3.574 3.572 3.176 2.654 2.439
Combination 3 3 3 2 5 5 5 5

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
Index 298 299 310 311 312 313 314 315

Original 1.360 1.525 1.194 1.035 0.991 0.873 0.780 0.739
Combination 7 1 5 5 5 5 5
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4.3.3 Feature Extraction and Pattern Recognition from

Historical Values

As discussed previously, one single data point from the generated combina-

tion data sequence represents a basic feature of the initial time series, of which

the features have been categorized by the natural classifier (data measure-

ments’ comparison). Therefore, the generated combination data sequence is

an a priori knowledge sequence.

Due to the fact that the combination sequence contains information on data

changing, a succession of data points provides knowledge of the initial data

series. For example, in Table 4.10 and combination rule showed in Table 4.6,

points “3 3 3 2 5 5 5 5” (with the index from 25 to 32) indicate there is a

“peak” in the initial time series. This acquired knowledge is computed only

by measurements’ comparison, and not obtained by experience, so a piece of

combination sequence is also an a priori knowledge sequence.

Because a series of cyclic periods are emerging over time intervals in a pseudo-

periodical time series, and the time series prediction progress is a regression

progress, the historical data give an opportunity to finding a pattern(s) with

contain a common significance. For example, the points with the index from

86 to 93 also give a same string of characters “3 3 3 2 5 5 5 5”; this is

to say in the history there are other “peaks” identified, at the same time,

one cycle period of this pseudo-periodical time series has been identified

(i.e. Pt = 89 − 28 = 61). Extending the same principle, two characters

strings (patterns) for expressing the “peak” and “valley” shapes based on the
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Grouping 07 combination rule are showed below by the Regular Expression:

Peak: [ 3 ]{+} [ 1 | 2 | 4 ]{1} [ 5 ]{+}

Valley: [ 5 ]{+} [ 4 | 6 | 7 ]{1} [ 3 ]{+}

The peak/valley’s reference helps to understand the nature of time series,

however, for a pseudo-periodical time series it will return a set of unequal

values for cyclic pseudo-periods. It is difficult to predict the next value based

on that. In particular, by controlling the development of time series in many

industry and science domains, the cyclic period could be shifted earlier or

postponed later.

Consequently, the proposed approach is to search for a pre-specified pattern,

which normally is the latest string in combination data sequence (due to the

motive of prediction), from the entire combination data series for all matched

records. That will bring all possible patterns back into comparison, plus the

pre-specified pattern is acquired as an a priori knowledge and the searching

progress is also dependent on experience. Thus, from the point of view of

machine learning, this type of un-supervised learning approach is a kind of

“white box” method, able to produce a priori knowledge.

For example, let’s take the first half of Flu Trends in United States time

series as the available time series source, and the second half as the target

for comparison with the prediction. We obtain the following combinations

as in Table 4.11.
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Table 4.11: The First Half of Initial and Combination Data Series of Flu
Trends in U.S.

Index 1 2 3 4 · · · 155 156 157 158

Initial 0.509 0.546 0.501 0.457 · · · 0.857 0.828 0.724 0.665

Combination 1 5 5 · · · 5 5 5

To select the latest three (a sample for representation and testing) characters

string from the combination data series, which is “5 5 5”, then search the

entire combination data sequence, it will return a sets of records as in Fig

4.9.

Figure 4.9: Patterns Matched (Each matched string starts with “×”); X
Coordinate Axis Lists the Index of Time Intervals and Y Coordinate Axis
the Flu Trends Time Series Data Set Values.

This patterns recognition process classifies the pre-specifical patterns from

the un-labeled raw data sets. Additionally, this description scheme (classi-

fication) relied on neither the availability of the given pattern or the initial

time series data sets.
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4.3.4 Filtering the Returned Matches

The combination rule Grouping 07 focused on the comparison between the

successive neighbouring data points, and ignored the concrete quantities in

time series. In the views of general eigenvector’s concepts, two sets of suc-

cessive data points can be considered (as unequally scaled on each other);

for example, two combination data in the group “4” can represent two dif-

ferent shapes during the data changing. Therefore, a filtering mechanism

is required to be installed for eliminating all uncertain patterns from the

matches returned. In order to precisely measure and filter the unequal pat-

terns, a normalizing pre-process, “Z Score (so-called: Standard Score)”, is

proposed as the unification step.

Definition 4.7 - Z Score:

A Z Score associated with a variable X is defined as below, where μ is the

mean and the σ is the standard deviation of X [Larsen and Marx, 2005].

Z =
X − μ

σ
(4.10)

Each recognized pattern contains same structure of data changing. We as-

sume that there is a primitive eigenvector (pattern) Ip to present the primary

structure, and let M0 expresses the latest pattern (pre-specific string) and

M1,M2, · · · ,Mk, (k ≥ 0) express the returned patterns∗:

M0ξ = λ0Ip (4.11)

∗All return patterns, M1,M2, · · · ,Mk, are normalized by Z Score.
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and relationships’ equations by the concept of general eigenvector are:

M1ξ = λ1M0 = λ1λ0Ip

M2ξ = λ2M0 = λ2λ0Ip

...
...

...

Mkξ = λkM0 = λkλ0Ip

Therefore, the comparison among the scaling eigenvalues, λ1, λ2, · · · , λk are

able to reflect the status of matched patterns from historical time series.

Figure 4.10: Unequal Scaling (Eigenvalues: λ1, λ2, · · · , λk) Sets Compari-
son for Matched Patterns from Historical Time Series (each “◦” on each color
line represents one of a series values of eigenvalues (λ)); X coordinate axis
presents the index of eigenvalue, and Y coordinate axis indicate their values).
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As Fig 4.10 illustrates, most of the eigenvalues show a similar figure with

approximate scaler, but there is one (several in others cases) clearly different

from anyone else. In other words, each corresponding parallel values in one

eigenvalue is approximately equivalent to the others.

λi(x)

λp(x)
∼= λj(x)

λq(x)

where i, j, p, q = 1, 2, · · · , k, x is the data index of λ.

Meanwhile, the comparison of (algebraic) Determinants for the eigenvalues

are able to identify and classify those (please see Definition 4.8 and Figure

4.11).

Definition 4.8 - Determinants:

The fundamental geometric meaning of a determinant is a scale factor for

measure when the matrix is regarded as a linear transformation. The deter-

minant of a matrix of arbitrary size can be defined by the Leibniz formula:

det(A) =
∑
σ∈Sn

sgn(σ)
n∏

i=1

Ai,σ(i)

where the set of all permutations is denoted Sn, σ is any permutation in the

Sn, and A is represented as the target data set (matrix).

Hence, after searching the pre-specific pattern from the historical data in

combination data sequence, then comparing the eigenvalues, the patterns

are in accordance with the pre-specific one but have a different structure and

the composition can be filtered from the returned matches.
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Figure 4.11: The Comparison of Eigenvalues’ Determinants; X Coordinate
Axis Lists the Index of Eigenvalues Series and Y Coordinate Axis Illustrates
the Determinant Values for each Eigenvalues Series.

In details, at the first, the algorithm SFE takes the initial time series data

set, where indexed by time intervals t and t ∈ N. Secondly, SFE con-

verts/tranforms the initial time series into combination data sequence by

Grouping 07 combination rule. Then, SFE records the latest three charac-

ters from the transformed data sequence as a target pattern. Next, search-

ing same patterns from historical data set, which have same structure with

the target pattern (if no any pattern matched after searching, SFE consider

the future value stay same with latest value because history did not own

same data values what have same trend (moving behaviour) or the historical

data set do not have enough data samples, otherwise, the historical data

set probably contains error(s) data). And then, SFE compares and filters

the matched patterns with the target pattern by the general eigenvalues and

the determinant values. After filtering (classifying) out the patterns contain

different significance, SFE compute the regression coefficients by using the

original data sequences values (backtrack the index of time intervals by fil-

tered patterns location in the initial time series) and the next one data point.

Finally, SFE exports the prediction value based on the target pattern and

the regression coefficients.
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Table 4.12: Pseudo-codes for Time Series Prediction Algorithm based on
Series Features Extraction

INPUT: An Initial General Time Series Data Set;

METHOD: Series Features Extraction;

OUTPUT: Predicted Time Series Data;

01. // Import the initial time series data set;

02. SET A[ ] to READ(initial time series);

03. // Convert time series into combination data sequence;

04. GET G[ ] from Grouping07(A[ ]);

05. // Get latest several characters from combination ...

06. // sequence as a sample pattern;

07. GET P from G[end-L to end];

08. // Searching same patterns with structure ...

09. // from histrocal data set;

10. SET counter to 0;

11. WHILE counter < LENGTH(G[ ])

12. IF G[counter to counter+L] match P

13. ADD G[counter to counter+L] to MG[ ];

14. ADD A[counter to counter+L+2] to MA[ ];

15. ENDIF

16. ENDWHILE

17. // Calculate the general eigenvalues of MA[ ];

18. GET Xi[ ] from Eigenvalue(MA[ ]);

19. FOR each of Xi[ ]

20. FOR each of Xi[ ]

21. GET R[ ] from Xi[start to end-1]/Xi[start+1 to end];

22. ENDFOR

23. ENDFOR

24. // Set a threshold based on normal distribution;

25. GET NorDis to a normal discribution from Determinant(R[ ]);

26. SET Threshold from NorDis;

27. // Filter the eigenvalues;

28. FOR each of R[ ]

29. IF R[runner] NOT IN NorDis

30. DELETE R[runner];

31. ENDIF

32. ENDFOR

33. // Compute the prediction by regression analysis;

34. GET P RasAna(R[ ])

35. // Export the prediction;

36. OUTPUT(P);
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4.3.5 Computing the Prediction

So far, the learning and filtering processes from the features extraction (Group-

ing 07 combination rule), pattern recognition (a successive data points in the

combination sequence) to filtering the matches returned, handle the a priori

information and knowledge of the initial time series data set. Therefore, it

distinguishes a set of filtered cyclic periods from a priori knowledge with-

out using a posteriori knowledge. According to these information on peri-

ods, prediction can be computed by regression analysis. Table 4.12 lists the

pseudo-code for the time series prediction algorithm based on Series Features

Extraction.

4.4 Case Studies

This section presents the application of Series Features Extraction (SFE)

time series prediction algorithm for flu trends time series, foreign exchange

rates (GBP to USD) time series and U.S. interests rates time series (see

chapter 2 for the data’ description).

• Flu Trends Time Series Prediction

An influenza rates (weekly reported 315 measurements) of flu trends in

United States time series has been imported into the SFE prediction algo-

rithm. Fig 4.12 depicts the initial time series measurements and prediction

of values based on our method. SFE produced very good prediction results
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on the trends of time series, however, there are still errors on the peak. Fig

4.13 illustrates the prediction errors by algorithm SFE.

Figure 4.12: The Initial Flu Trends Time Series Values and Prediction
Results by SFE Algorithm; X Coordinate Axis Lists the Index of Time In-
tervals (315 Values) and Y Coordinate Axis Illustrates the Original (in blue
with 315 values) and Prediction Values (in red with 157 values).

Figure 4.13: The Flu Trends Time Series Prediction Errors by SFE Algo-
rithm; X Coordinate Axis Lists the Index of Time Intervals (315 values) and
Y Coordinate Axis Illustrates the Prediction Error (‖Prediction - Original‖)
Values with 157 Values.

• Foreign Exchange Rates (GBP to USD) Time Series Prediction

A time series of foreign exchange rates with 2295 days’ observations has been

tested by SFE algorithm. The Fig 4.14 illustrates the original observations

and SFE’s prediction results. SFE produce excellent results both on the
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trends and on the values, meanwhile, SFE produced good peaks and valleys

prediction values. Fig 4.13 shows the prediction errors by algorithm SFE.

Figure 4.14: The Initial Foreign Exchange Rates (GBP to USD) Time Se-
ries Values and Prediction Results by SFE Algorithm; X Coordinate Axis
Lists the Index of Time Intervals (2295 Values) and Y Coordinate Axis Illus-
trates the Original (in blue with 2295 values) and Prediction Values (in red
with 1148 values).

Figure 4.15: The Foreign Exchange Rates (GBP to USD) Time Series
Prediction Errors by SFE Algorithm; X Coordinate Axis Lists the Index of
Time Intervals (2295 values) and Y Coordinate Axis Illustrates the Prediction
Error (‖Prediction - Original‖) Values with 1148 Values.

• United States Interests Rates

A time series with 582 measurements for United States interesting rates has

been input to the algorithm. Fig 4.16 shows the testing time series values
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and its prediction results. SFE produced prediction results very well both

on the trends and on values, there are fluctuation in prediction values, but

the errors were very small. Fig 4.13 shows the prediction errors by algorithm

SFE.

Figure 4.16: The Initial U.S. Interests Rates Time Series Values and Pre-
diction Results by SFE Algorithm; X Coordinate Axis Lists the Index of
Time Intervals (582 Values) and Y Coordinate Axis Illustrates the Original
(in blue with 582 values) and Prediction Values (in red with 291 values).

Figure 4.17: The U.S. Interests Rates Time Series Prediction Errors
by SFE Algorithm; X Coordinate Axis Lists the Index of Time Inter-
vals (582 values) and Y Coordinate Axis Illustrates the Prediction Error
(‖Prediction - Original‖) Values with 291 Values.
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4.5 Summary

This chapter has introduced a time series prediction algorithm based on

Series Features Extraction and its predicting performance by testing three

types of time series.

At the beginning of this chapter, the introduction section has presented the

background of an “un-supervised” learning’s requirements and methodolo-

gies for the development of our algorithm: Epistemology, A Priori and A

Posteriori Knowledge, Features, Patterns and Models.

The concepts of combination rules Grouping 13 and Grouping 07 have been

presented for a transformation of the initial time series. Due to the result

of comparison between the two combination rules, Grouping 07 showed a

better performance than Grouping 13.

Following the introduction of General Eigenvector, a filtering mechanism

have been proposed for removing inappropriate patterns from the matches.

Therefore, the prediction results can be computed based on that. The case

studies section presents the prediction results by our proposed algorithm.
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Chapter 5. Evaluation

5.1 Implementation of Classical Methods and

Proposed Prediction Algorithms

This chapter evaluates the performance and compares the prediction results

of proposed algorithms, Moving Average of nth-order Difference (MANoD)

and Series Features Extraction (SFE), with classical methods, Linear Re-

gression (LR) and Auto-Regression Moving Average (ARMA).

As described in previous chapters, MANoD and SFE algorithms have their

own prediction parameters and coefficients; for a unified approach of im-

plementation and evaluation, a single length of data points as regression

coefficients is used for all prediction algorithms, e.g. the length of regression

should be same for predicting the next value:

at+1 = F
(
at, at−1, at−2, · · · , at−l+1︸ ︷︷ ︸
l : length of data for regression

)

where the data sequence at, at−1, at−2, · · · , at−l+1 is also called Regressor ; F

is the time series prediction methods, in this thesis, it represents the classical

methods: LR and ARMA (introduced in chapter 2); our proposed algorithms:

MANoD and SFE.

In 1982, E. J. Hannan and J Rissanen presented a equation for estimation

of auto-regression moving average order [Hannan and Rissanen, 1982]. They

considered the problem for estimating of degrees of the ARMA lag operators,

and give a equation about how to define the orders (p, q), of an ARMA
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sequence y(T ) by minimizing a criterion:

log σ2 + (p+ q) log T/T (5.1)

where σ2 is the maximum likelihood estimate of the variance of the innova-

tions. The equation shows how the sequence of regression may, for p = q, be

economically recursive, and calculates by embedding then in a sequence of

bivariate auto-regressions [Hannan and Rissanen, 1982] [Hannan and Kava-

lieris, 1984].

However, in some special types of statistical analysis, the definition of regres-

sors may depends on the specific context. We apply the estimation equation

on the synthetic time series data set, introduced in chapter 2, for estimat-

ing a regressor, because it is generated by a mathematical function and has

a high pseudo-periodicity. As a result, the regressor, the data length for

regression, was found as “10”.

Consequently, to define a fair same measure for evaluating the performance of

algorithms, the found regressor, 10, is also used into the classical method LR

and proposed algorithms MANoD and SFE. The key equation for prediction

defined as below:

LR(10) : X̂ = α0 +
10∑
i=1

αiXi + ε (5.2)

ARMA(10, 10) : Xt =
10∑
i=1

αiXt−i +
10∑
i=1

βiεt−i + εt (5.3)
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MANoD(10) : D10
m =

10∑
i=0

(−1)n−iC i
nX10+i (5.4)

Because the algorithm SFE analyzes the combination data sequences, and

each data points in combination sequences represents three successive data

point of the initial time series. As a results, SFE(8) is able to cover 10 data

points, with the same length as the other three models (LR(10), ARMA(10,

10) and MANoD(10)).

5.2 Evaluation of Prediction Results

5.2.1 Testing Time Series Case Studies for Evaluation

To demonstrate the efficiency of the proposed algorithms, we use five Testing

Time Series (TTS), as introduced in chapter 2, characterized by different data

length, attributes, structure and source (see Table 5.1).

All five time series are pseudo-periodical time series, where there is a con-

tinuous variable τ and min(τ) = min(t) and max(τ) = max(t) (t is the time

interval of testing time series); a continuous function F(τ) existing and the

testing time series data set X ⊆ F(τ). Also, at least one or a series of time
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interval ξ existing, then let:

F(τ0) = F(τ0 + ξ), τ0 ∈ τ, τ0 + ξ ∈ τ, ξ > 0 (5.5)

Table 5.1: Testing Time Series Details

Index Name Contents Source

TTS 1 Earthquakes Richter Magnitude Scale NGDC

TTS 2 Flu Trends Influenza Rates Google Trends

TTS 3 Nile Flooding Monthly Average Flow Time Series Library

TTS 4 Sunspot Number Monthly Average NDGC

TTS 5 Synthetic Generate by Function KDD Archive

5.2.2 Prediction Results Comparison

5.2.2.1 Measures for Results Evaluation

Two error measures are used for testing the performance of the classical and

proposed algorithms: Mean Absolute Error (MAE) and Correlation Coeffi-

cient percentage (CCp).

Definition 5.1 - Mean Absolute Error (MAE):

In statistics, the Mean Absolute Error (MAE) is a quantity used to measure

how close forecasts’ and/or predictions’ values are to eventual outcomes. The
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MAE is defined by:

EMAE =
1

N

N∑
i=1

‖X̂i −Xi‖ (5.6)

where Xi is an original and true value; X̂i is a prediction value.

Definition 5.2 - Correlation Coefficient percentage (CCp):

The percentage of Correlation Coefficient can be interpreted as a correlation

index between the respective variables; it is able to indicate the degree of

correlation between the original and prediction time series.

ECCp =
cov(X, Y )

σXσY

× 100%

=
E
(
(X − μX)(Y − μY )

)
σXσY

× 100% (5.7)

where X, Y are the initial and prediction values, cov() expresses the covari-

ance, μ depicts standard deviations and E() is the expected value.

5.2.2.2 Linear Regression: Prediction Results

In Fig 5.1, 5.2, 5.3, 5.4 and 5.5, we show the initial and prediction re-

sult’s values of Earthquakes (Richter Magnitude Scale), Flu Trends in United

States (influenza rates), Nile River Flow (monthly average), Sunspot Number

(monthly average) and Synthetic Pseudo-Periodical time series.

From Fig 5.1 below showed, LR produced a good “shape” of prediction com-
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pared with the original time series, however, a number of prediction results

are smaller than actual time series values.

Figure 5.1: Prediction Results for Earthquakes (Richter Magnitude Scale)
Time Series by LR Method; X Coordinate Axis Lists the Index of Time
Intervals (1351 Values) and Y Coordinate Axis Illustrates the Original (in
blue with 1351 values) and Prediction Values (in green with 676 values).

Like the prediction results on earthquakes time series (Fig 5.2), LR also

produced good trends on influenza rates time series, however, there are quite

lot of values bigger than actual values.

Figure 5.2: Prediction Results for Flu Trends in United States (Influenza
Rates) Time Series by LR Method; X Coordinate Axis Lists the Index of
Time Intervals (315 Values) and Y Coordinate Axis Illustrates the Original
(in blue with 315 values) and Prediction Values (in green with 158 values).

LR method produces very good results on Nile river flow time series (Fig

5.3), both on the trends and on values, however, it gives negative values and

they are impossible for a river flow observation.
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Figure 5.3: Prediction Results for Nile River Flow Time Series by LR
Method; X Coordinate Axis Lists the Index of Time Intervals (360 Values)
and Y Coordinate Axis Illustrates the Original (in blue with 360 values) and
Prediction Values (in green with 180 values).

Exactly similar to the prediction results for earthquake time series, LR meth-

ods also provided a number of small values than actual values (Fig 5.4), this

caused the prediction errors.

Figure 5.4: Prediction Results for Sunspot Number Time Series by LR
Method; X Coordinate Axis Lists the Index of Time Intervals (1200 Values)
and Y Coordinate Axis Illustrates the Original (in blue with 1200 values)
and Prediction Values (in green with 600 values).

Because the synthetic pseudo-periodical time series is generated by a math-

ematical function, the data sequence appears highly periodical, but never

exactly repeats itself. LR produced very good prediction results.
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Figure 5.5: Prediction Results for Synthetic Pseudo-Periodical Time Series
by LR Method; X Coordinate Axis Lists the Index of Time Intervals (100000
Values) and Y Coordinate Axis Illustrates the Original (in blue with 100000
values) and Prediction Values (in green with 50000 values).

5.2.2.3 Auto-Regression Moving Average: Prediction Results

Fig 5.6, Fig 5.7, Fig 5.8, Fig 5.9 and Fig 5.10 show the initial and predic-

tion result’s values of Earthquakes (Richter Magnitude Scale), Flu Trends in

United States (influenza rates), Nile River Flow (monthly average), Sunspot

Number (monthly average) and Synthetic Pseudo-Periodical time series.

ARMA method produced good results for a short term (see the prediction

results at the first), but it did not predict good enough after. (Fig 5.7)

Figure 5.6: Prediction Results for Earthquakes (Richter Magnitude Scale)
Time Series by ARMA Method; X Coordinate Axis Lists the Index of Time
Intervals (1351 Values) and Y Coordinate Axis Illustrates the Original (in
blue with 1351 values) and Prediction Values (in cyan with 676 values).
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Although, ARMA methods predicted good results both on the data trends

and on the values for the flu trends time series, ARMA predictions have a

delay on time dimension (see Fig 5.7).

Figure 5.7: Prediction Results for Flu Trends in United States (Influenza
Rates) Time Series by ARMA Method; X Coordinate Axis Lists the Index of
Time Intervals (315 Values) and Y Coordinate Axis Illustrates the Original
(in blue with 315 values) and Prediction Values (in cyan with 158 values).

ARMA methods produced good prediction results for the Nile river time

series, however, there are large errors on several (pseudo-)periods (Fig 5.8),

and with prediction of amplitude of some peak values.

Figure 5.8: Prediction Results for Nile River Flow Time Series by ARMA
Method; X Coordinate Axis Lists the Index of Time Intervals (360 Values)
and Y Coordinate Axis Illustrates the Original (in blue with 360 values) and
Prediction Values (in cyan with 180 values).
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There is also a delay on prediction results for sunspot number time series

by ARMA methods, and ARMA produced several large errors on (pseudo-

)periods (Fig 5.9)

Figure 5.9: Prediction Results for Sunspot Number Time Series by ARMA
Method; X Coordinate Axis Lists the Index of Time Intervals (1200 Values)
and Y Coordinate Axis Illustrates the Original (in blue with 1200 values)
and Prediction Values (in cyan with 600 values).

Similar to the prediction results by LR, ARMA method produced a good

results on the synthetic pseudo-periodical time series, although, there is a

delay on time dimension. (Figure 5.10)

Figure 5.10: Prediction Results for Synthetic Pseudo-Periodical Time Se-
ries by ARMA Method; X Coordinate Axis Lists the Index of Time Intervals
(100000 Values) and Y Coordinate Axis Illustrates the Original (in blue with
100000 values) and Prediction Values (in cyan with 50000 values).
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5.2.2.4 Moving Average of nth-order Difference: Prediction Re-

sults

Fig 5.11, Fig 5.12, Fig 5.13, Fig 5.14 and Fig 5.15 show the initial and predic-

tion result’s values of Earthquakes (Richter Magnitude Scale), Flu Trends in

United States (influenza rates), Nile River Flow (monthly average), Sunspot

Number (monthly average) and Synthetic Pseudo-Periodical time series.

For the earthquakes time series, MANoD method produced a very good pre-

diction results (Fig 5.11), prediction errors exist but smaller than for classical

algorithms.

Figure 5.11: Prediction Results for Earthquakes (Richter Magnitude Scale)
Time Series by MANoD Method; X Coordinate Axis Lists the Index of Time
Intervals (1351 Values) and Y Coordinate Axis Illustrates the Original (in
blue with 1351 values) and Prediction Values (in purple with 676 values).

MANoD gave good trends for flu trends time series prediction (Fig 5.12), it,

unlike the ARMA, reduced the delay on time dimension.
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Figure 5.12: Prediction Results for Flu Trends in United States (Influenza
Rates) Time Series by MANoD Method; X Coordinate Axis Lists the Index
of Time Intervals (315 Values) and Y Coordinate Axis Illustrates the Original
(in blue with 315 values) and Prediction Values (in purple with 158 values).

Although MANoD produced good results on every (pseudo-)periods’s peak,

but not on the valley, MANoD gave good prediction results on the Nile river

flow time series (Fig 5.13).

Figure 5.13: Prediction Results for Nile River Flow Time Series by MANoD
Method; X Coordinate Axis Lists the Index of Time Intervals (360 Values)
and Y Coordinate Axis Illustrates the Original (in blue with 360 values) and
Prediction Values (in purple with 180 values).

MANoD produced a number of large errors, however, MANoD produced a

very good trends for sunspot number time series (Fig 5.14).
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Figure 5.14: Prediction Results for Sunspot Number Time Series by
MANoD Method; X Coordinate Axis Lists the Index of Time Intervals (1200
Values) and Y Coordinate Axis Illustrates the Original (in blue with 1200
values) and Prediction Values (in purple with 600 values).

MANoD produced prediction results very well both on the trends and on

values for synthetic pseudo-periodical time series (Fig 5.15), errors were very

small.

Figure 5.15: Prediction Results for Synthetic Pseudo-Periodical Time Se-
ries by MANoD Method; X Coordinate Axis Lists the Index of Time Intervals
(100000 Values) and Y Coordinate Axis Illustrates the Original (in blue with
100000 values) and Prediction Values (in purple with 50000 values).
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5.2.2.5 Series Features Extraction: Prediction Results

Fig 5.16, Fig 5.17, Fig 5.18, Fig 5.19 and Fig 5.20 show the initial measure-

ments and predicted results of Earthquakes (Richter Magnitude Scale), Flu

Trends in U.S. (influenza rates), Nile River Flow (monthly average), Sunspot

Number (monthly average) and Synthetic Pseudo-Periodical time series.

SFE methods produced good prediction results on the short term for earth-

quakes time series (the first part of results in Fig 5.16), there are errors for

long term prediction, but SFE still produced a perfect trends.

Figure 5.16: Prediction Results for Earthquakes (Richter Magnitude Scale)
Time Series by SFE Method; X Coordinate Axis Lists the Index of Time
Intervals (1351 Values) and Y Coordinate Axis Illustrates the Original (in
blue with 1351 values) and Prediction Values (in red with 676 values).

SFE produced an excellent prediction results for the flu trends time series

(Fig 5.17), compared to other three methods, SFE gave the best prediction

results.
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Figure 5.17: Prediction Results for Flu Trends in United States (Influenza
Rates) Time Series by SFE Method; X Coordinate Axis Lists the Index of
Time Intervals (315 Values) and Y Coordinate Axis Illustrates the Original
(in blue with 315 values) and Prediction Values (in red with 158 values).

In contrast with others three methods’ prediction results, SFE provided good

trends for Nile river flow time series, SFE reduced the errors of prediction on

the valley (Fig 5.18).

Figure 5.18: Prediction Results for Nile River Flow Time Series by SFE
Method; X Coordinate Axis Lists the Index of Time Intervals (360 Values)
and Y Coordinate Axis Illustrates the Original (in blue with 360 values) and
Prediction Values (in red with 180 values).

For the sunspot number time series, SFE produced an excellent prediction

results both on the trends and values, even better than proposed algorithm

MANoD (Fig 5.19).
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Figure 5.19: Prediction Results for Sunspot Number Time Series by SFE
Method; X Coordinate Axis Lists the Index of Time Intervals (1200 Values)
and Y Coordinate Axis Illustrates the Original (in blue with 1200 values)
and Prediction Values (in red with 600 values).

Like the other three methods, SFE also produced a wonderful prediction

results for synthetic time series (Fig 5.20).

Figure 5.20: Prediction Results for Synthetic Pseudo-Periodical Time Se-
ries by SFE Method; X Coordinate Axis Lists the Index of Time Intervals
(100000 Values) and Y Coordinate Axis Illustrates the Original (in blue with
100000 values) and Prediction Values (in red with 50000 values).

5.2.2.6 Results Comparison

We conclude with the prediction results of both the classical methods and

our original algorithm for five testing pseudo-periodical time series, and some

significant samples from prediction results are depicted below:
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Table 5.2: Prediction Results Comparison

Prediction Results of Earthquakes Time Series

Original Values Predicted Values

Index Values LR ARMA MANoD SFE

677 7.00000 6.17000 7.57580 6.41590 6.84360

678 6.80000 6.49130 6.75620 6.59960 6.61390

· · · · · · · · · · · · · · · · · ·
1014 6.20000 4.70400 6.14770 5.51670 6.03830

1015 5.90000 4.94970 4.88490 6.06410 5.74600

· · · · · · · · · · · · · · · · · ·
1350 7.00000 7.32170 5.54980 5.87620 7.09960

1351 6.00000 6.47540 5.71710 6.53510 6.73860

EMAE — 0.58112 0.82465 0.88783 0.50493

ECCp — 79.718% 59.025% 82.292% 87.084%

Prediction Results of Flu Trends Time Series

Original Values Predicted Values

Index Values LR ARMA MANoD SFE

158 0.61100 0.43150 1.39350 0.72190 0.63670

159 0.56900 0.37320 1.18290 0.65340 0.52800

· · · · · · · · · · · · · · · · · ·
238 1.46800 1.62090 1.15970 1.55570 1.46820

239 1.56600 1.97570 1.05280 1.73290 1.65600

· · · · · · · · · · · · · · · · · ·
314 0.78000 0.65770 2.02740 0.91340 0.70200

315 0.73900 0.72000 1.42310 0.85320 0.69700

EMAE — 0.35962 0.86375 0.26042 0.1469

ECCp — 87.631% 84.976% 91.849% 96.78%
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Table 5.3: Prediction Results Comparison (cont’d)

Prediction Results of Nile River Flow Time Series

Original Values Predicted Values

Index Values LR ARMA MANoD SFE

181 89.3548 73.6985 28.5130 36.4666 94.0426

182 79.6429 67.9064 63.6096 72.4597 86.9684

· · · · · · · · · · · · · · · · · ·
269 100.000 98.7068 114.099 128.360 132.839

270 121.667 311.937 184.469 195.111 219.467

· · · · · · · · · · · · · · · · · ·
359 153.333 113.432 113.331 90.8656 112.622

360 119.355 114.394 136.895 117.357 123.970

EMAE — 99.1768 100.449 100.365 99.3569

ECCp — 48.055% 44.234% 51.422% 87.46%

Prediction Results of Sunspot Number Time Series

Original Values Predicted Values

Index Values LR ARMA MANoD SFE

601 59.9000 35.9193 73.6607 69.3256 61.0900

602 59.9000 36.4420 72.6889 75.1463 55.9000

· · · · · · · · · · · · · · · · · ·
900 7.80000 20.2226 16.6749 22.5713 8.61520

901 8.10000 20.5592 10.0164 1.65010 10.0458

· · · · · · · · · · · · · · · · · ·
1199 106.800 74.662 106.830 97.7593 125.665

1200 104.400 94.788 113.276 119.184 94.9363

EMAE — 25.2253 23.4995 17.5425 14.8258

ECCp — 67.03% 74.90% 82.18% 97.83%
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Table 5.4: Prediction Results Comparison (cont’d)

Prediction Results of Synthetic Pseudo-Periodical Time Series

Original Values Predicted Values

Index Values LR ARMA MANoD SFE

50001 -8.93e-5 -1.78e-4 -8.96e-5 -8.96e-5 -8.94e-4

50002 -1.78e-4 -2.67e-4 -1.77e-4 -3.43e-4 -1.77e-4

· · · · · · · · · · · · · · · · · ·
75000 -0.1096 -0.1095 -0.1096 -0.1094 -0.1096

75001 -0.1094 -0.1093 -0.1094 -0.1097 -0.1093

· · · · · · · · · · · · · · · · · ·
100000 -9.79e-4 -4.91e-4 -1.50e-4 -3.39e-4 -8.14e-4

100001 -4.89e-4 -1.15e-4 -1.27e-4 -3.44e-4 -4.39e-4

EMAE — 0.13964 0.11480 0.10487 0.06687

ECCp — 94.98% 96.61% 96.87% 99.16%

As showed from Fig 5.1 to Fig 5.15 and in Table 5.2, Table 5.3 and Table 5.4,

the proposed methods provides a better performance and accuracy for pre-

diction than classical methods Linear Regression (LR) and Auto-Regression

Moving Average (ARMA), where used a same length of regression (10 back-

ward data points); Meanwhile, they also have lower Mean Absolute Error

(MAE) values and higher Correlation Coefficient percentage (CCp) values

for total.

As seen in Table 5.4, Series Features Extraction (SFE) algorithm works better

than other three algorithms, it produced extremely correct prediction results

on synthetic pseudo-periodical time series.

For the most noisy data sequences, earthquakes time series (some researcher
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consider it as a random time series due to the frangible (pseudo-)periodicity),

ARMA gained the worst prediction results, because ARMA’s prediction re-

sults have a delay (lag) on time domain and as the Fig 5.6 shown, most

of prediction values less than actual values. In contrast, the proposed al-

gorithms, MANoD and SFE produced better results and estimated a good

trends of time series.

Also, that MANoD and SFE predicted for flu trends in U.S. time series

accurate results both on the trends and on the data values. Due to that flu

trends time series is a relatively smooth time series curve, SFE could find

more matched patterns (up/down, peak/valley) from historical data values,

thereby, it gave even better predicting results.

Nile River Flow time series has a high pseudo-periodical time series, so that

regression prediction methods could provide accurate time series’ trends.

However, the overlap calculation of regression could accumulate the predic-

tion errors, as Fig 5.3 to Fig 5.18 show, and all four algorithms can compute

the trends and direction of time series but not for the peak/valley values,

classical algorithms produced a number of impossible (negative) values. But

for the overall prediction, SFE still has the best prediction results.

Sunspot Number time series is commonly considered as the most interrelated

time series, SFE is designed for recognizing the patterns from historical data

sequences, as a result, SFE is the best in the four algorithms for prediction of

sunspot number time series. Besides that, MANoD also produced very good

prediction results.
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The synthetic pseudo-periodical time series is generated by a mathematical

function, and it is designed for testing indexing schemes in time series data

sets [KDDArchive, 2007a]. The data appears highly periodical but never

exactly repeats itself. As a results, all four algorithms produced excellent

results, such 94% plus on order of accuracy. Whereas, SFE had the best

accuracy on prediction.

5.3 Summary

This chapter has introduced the concepts of classical time series prediction

methods, “ Linear Regression (LR)” and “Auto-Regression Moving Average

(ARMA)”.

For the evaluation of prediction algorithms, this chapter presented prediction

results on five different testing data sets: Earthquakes, Flu Trends, Nile River

Flow, Sunspot Number and Synthetic pseudo-periodical time series. Mean

Absolute Error (MAE) and Correlation Coefficient percentage (CCp) have

been used to measure the performances.

In the last section of this chapter, the predicted results have been illustrated

for the four different methods; and computed by the measures of MAE and

CCp.

Moving Average of nth-order Difference (MANoD) and Series Features Ex-

traction (SFE) algorithms do have good abilities to predict the forthcoming
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values for pseudo-periodical time series.

MANoD proposes a simple approach to determine the range of values neces-

sary for prediction. With increasing the order of difference, MANoD would

increase the prediction accuracy. However, it could also increase the compu-

tational complexity.

SFE proposes an approach to collect and recognize as many patterns with

same structure as possible. The algorithm keeps manipulating the a pri-

ori information (features) and knowledge (patterns) to predicting precisely.

However, SFE could be not suitable for an insufficient data series with in-

correct data values, because SFE approaching system thinks all imported

time series data are properly correct.

Because the disadvantage of SFE approach is what if there is no pre-specified

pattern matched in the historical data sequence at all. Currently, if no

matches returned, we think the latest data value may stay the same; how-

ever, it could be caused by the shortage of data samples, or that existing

time series data set is insufficient. In others words, SFE approaching system

thinks all imported time series data are properly correct, it is not able to

distinguish the wrong/error data. Consequently, we like to extend SFE al-

gorithm to fit both on complete and on in-complete time series, i.e. develop

a detecting method as the action of data cleaning.
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Chapter 6. Conclusions

6.1 Summary of Research

The main topic of this thesis is the development of novel time series analysis

and prediction approaches. The principle of current data mining approaches

on time series is to analyze a finite period of existing data observations, then

search back into historical data over a time interval. In the contrast, the pro-

posed algorithms provide novel approaches: they do not depend absolutely

on the length of existing time series data and also produce an accurate pre-

diction by studying trends and features of the pseudo-periodical time series.

The Moving Average of nth-order Difference algorithm presents a simple ap-

proach to determine the range of values necessary for a good prediction of the

time series terms in cases of bounded pseudo-periodical time series. The de-

veloped algorithm to predict time series based on a number of previous known

values necessarily addresses also the noise of the actual collected measure-

ments of a time series. The errors obtained by the algorithm in this thesis

are represented as differences between actual and expected value of average

sum (differences of moving averages). The method also provides a logical

development in a transparent way, avoiding the use of “Black Box” methods.

Therefore, the Moving Average of nth-order Difference algorithm would gen-

erates an accurate prediction results for time series with unequal cyclic peri-

ods. With the order of difference increasing, the prediction methods will ac-

quire more precise results. Although the error detecting and avoiding would

increase the system complexity, by using the feedback to revise the model

itself as a new series, the moving average will also decrease the computational
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complexity after all.

The Series Features Extraction algorithm proposes an approach to collect and

recognize as many patterns with same structure as possible. It is the most

advanced part of the algorithm that keeps manipulating the a priori infor-

mation (features) and knowledge (patterns). Meanwhile, the SFE algorithm

temporarily ignores the measures of data values, which are the most impor-

tant observations from the view points of the classical methods. This is a key

way of our original approach to decompose the entire time series database;

if the data from the value/domain would no longer interfere with the data

from the time-domain, the prediction will be localized by a lower complex

calculation process. Because classical methods/approaches take both value

and trends (pattern) into account.

Furthermore, beyond the time series analysis domain, the Series Features

Extraction algorithm can be applied on a general data sets, no matter how the

data sequence fluctuation is, because SFE algorithm focuses on the nature of

data changing, and projects all data change into finite classes; therefore, the

prediction progress is simplified. Case studies using real world and synthetic

time series have been used to demonstrate the efficiency and performance of

the proposed algorithm. Our results are very good, comparable and better

than those obtained with classical methods.
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6.2 Original Contributions

I can state the following original contributions of this thesis:

• Extension of regression analysis approaches for time series analysis and

prediction;

• New computational approaches based on data-driven methods for

generic pseudo-periodical time series: Moving Average of nth-order Dif-

ference (MANoD) [Lan and Neagu, 2007b] described in chapter 3 and

Series Features Extraction (SFE) proposed in chapter 4;

• Two original time series analysis models and prediction algorithms:

the Moving Average of nth-order Difference (MANoD) algorithm [Lan

and Neagu, 2007a] and Series Features Extraction (SFE) algorithm

proposed in chapter 4;

• Originalunsupervised learning methods for handling the a priori knowl-

edge for analysis and prediction as described in chapter 4;

• New automated feature detection, extraction, classification and clus-

tering techniques proposed in chapter 4;

• Test and implementation of the proposed approaches on various

pseudo-periodical time series data sets, published in [Lan and Neagu,

2007b] [Lan and Neagu, 2007a] [Lan and Neagu, 2006];

• Study of the classical methods and comparison of the prediction results

in terms of flexility and performance as described in chapters 2 and 4.
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6.3 Future Work

Once we developed and studied the performance of the Moving Average

of nth-order Difference and Series Features Extraction algorithms, we have

found there are some future directions for research work as described below.

The algorithm MANoD has the disadvantage of dependency of the (still)

error between the moving average of nth-order difference values at the pre-

diction step, n+1 and n. The MANoD algorithm generates therefore a good

prediction for the trends of the time series (including the pseudo-periodicity),

but the precision of prediction (amplitude) suffers because of dependency on

how many orders (i.e. value of n) difference have been considered, which

increases the complexity calculus though and introduces a tuning parameter

of the order of difference. A small order of difference reduces the computa-

tional complexity but also the prediction precision, whereas a large order of

difference increases the computing effort. This can be described as an op-

timization problem and further work may focus on choosing the right value

for n.

Another direction for further research is the approximation of error in us-

ing machine learning techniques, in order to reduce the differences induced

by the possibility to obtain a non-zero average of nth-order difference for a

period close to the prediction moment. Provisional encouraging results to

approximate the error using a neural network model have been already ob-

tained and presented in chapter 3: the connectionist model is trained with

the error values for the first 600 cases of Sunspot Number time series. We
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propose to study the development of a hybrid model based on the algorithm

proposed above by using the moving average of nth-order difference time se-

ries prediction and also another synchronous prediction of current error given

by the trained neural network in an optimized context of a tuned order of

the difference.

SFE time series prediction algorithm has the advantage of a patterns recogni-

tion method, it can compare, filter and cluster the matched patterns to pre-

dict better. However, there is an estimation of regression coefficients at the

last step in SFE approach, and the regression prediction itself brings errors.

Regression prediction estimates the conditional expectation of a dependent

variable given the independent variables, but this could accumulate predic-

tion errors. As a result, a direction for further research on SFE approach

is the approximation of regression coefficients by using advanced machine

learning method, in order to produce an accurate prediction.

Another disadvantage of SFE approach is what if there is no pre-specified pat-

tern matched in the historical data sequence at all. Currently, if no matches

returned, we think the latest data value may stay the same; however, it could

be caused by the shortage of data samples, or that existing time series data

set is insufficient. In others words, SFE approaching system thinks all im-

ported time series data are properly correct, it is not able to distinguish the

wrong/error data. Consequently, we like to extend SFE algorithm to fit both

on complete and on in-complete time series, i.e. develop a detecting method

as the action of data cleaning.
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6.4 Final Remarks

It is our hope that this thesis and the relevant research work have contributed

to the field of Time Series Analysis and Prediction. By introducing two

original approaches focused on predicting the future values and applied on

pseudo-periodical time series, we have also demonstrated their applicability

and performance. These two approaches are not only to extend classical

technologies (Regression) but also provide new ways to obtain the a priori

knowledge from the original time series data sets.

Finally, I conclude hoping that this research work will give others a good

inspiration for a better tomorrow!
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The mathematics proof (based on Peano’s Induction Axiom) for “a nth-order

difference equals the difference of two lower ((n − 1)th-order) differences”

(used in eq.(3.4)):

To Be Proved: Dn
m = Dn−1

m+1 −Dn−1
m

Proof:

Dn−1
m+1 =

n−1∑
i=0

(−1)(n−1)−i · (n− 1)! · a((m+1)+i)

i!((n− 1)− i)!

=
(−1)(n−1)−0 · (n− 1)! · a((m+1)+0)

0!((n− 1)− 0)!

+
(−1)(n−1)−1 · (n− 1)! · a((m+1)+1)

1!((n− 1)− 1)!

+ · · · · · ·

+
(−1)(n−1)−(n−2) · (n− 1)! · a((m+1)+(n−2))

(n− 2)!((n− 1)− (n− 2))!

+
(−1)(n−1)−(n−1) · (n− 1)! · a((m+1)+(n−1))

(n− 1)!((n− 1)− (n− 1))!

Dn−1
m =

n−1∑
i=0

(−1)(n−1)−i · (n− 1)! · a(m+i)

i!((n− 1)− i)!

=
(−1)(n−1)−0 · (n− 1)! · a(m+0)

0!((n− 1)− 0)!

+
(−1)(n−1)−1 · (n− 1)! · a(m+1)

1!((n− 1)− 1)!

+ · · · · · ·
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+
(−1)(n−1)−(n−2) · (n− 1)! · a(m+(n−2))

(n− 2)!((n− 1)− (n− 2))!

+
(−1)(n−1)−(n−1) · (n− 1)! · a(m+(n−1))

(n− 1)!((n− 1)− (n− 1))!

Dn−1
m+1 −Dn−1

m =
n−1∑
i=0

(−1)(n−1)−i · (n− 1)! · a((m+1)+i)

i!((n− 1)− i)!

−
n−1∑
i=0

(−1)(n−1)−i · (n− 1)! · a(m+i)

i!((n− 1)− i)!

=
(−1)(n−1)−(n−1) · (n− 1)! · a(m+1)+(n−1)

(n− 1)!((n− 1)− (n− 1))!

+
((−1)(n−1)−(n−2) · (n− 1)! · a(m+1)+(n−2)

(n− 2)!((n− 1)− (n− 2))!

−(−1)(n−1)−(n−1) · (n− 1)! · am+(n−1)

(n− 1)!((n− 1)− (n− 1))!

)

+ · · · · · ·

+
((−1)(n−1)−0 · (n− 1)! · a(m+1)+0

0!((n− 1)− 0)!

−(−1)(n−1)−1 · (n− 1)! · am+1

1!((n− 1)− 1)!

)

−(−1)(n−1)−0 · (n− 1)! · am+0

0!((n− 1)− 0)!

=
n

n
· (−1)n−n · (n− 1)! · am+n

0!(n− 1)!
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+
(n− 1

n
· (−1)(n−(n−1)) · n! · am+n−1

(n− 1)!(n− (n− 1))!

−(−1)−1 · 1
n
· (−1)(n−(n−1)) · n! · am+n−1

(n− 1)!(n− (n− 1))!

)

+ · · · · · ·

+
( 1
n
· (−1)(n−1) · n! · am+1

1!(n− 1)!

−(−1)−1 · n− 1

n
· (−1)(n−1) · n! · am+1

1!(n− 1)!

)

+
n

n
· (−1)(n−0) · (n− 1)! · am+0

0!((n− 1)− 0)!

=
(−1)n−n · n! · am+n

n!(n− n)!

+
(−1)n−(n−1) · n! · am+(n−1)

(n− 1)!(n− (n− 1))!

+ · · · · · ·

+
(−1)n−1 · n! · am+1

1!(n− 1)!

+
(−1)n−0 · n! · am+0

0!(n− 0)!

=
n∑

i=0

(−1)n−i · n! · am+i

i!(n− i)!

= Dn
m

Q.E.D.
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This is the complete proof (based on Peano’s Induction Axiom) of the fol-

lowing equation (used in eq.(3.17)):

To Be Proved: En
m =

1

m

(
Dn−1

m+1 −Dn−1
1

)

Proof:

when n = 1 and n = 2:

E1
m =

1

m

m∑
k=1

D1
k

=
1

m

(
(am+1 − am) + (am − am−1) + (am−1 − am−2)

+ · · ·+ (a4 − a3) + (a3 − a2) + (a2 − a1)
)

=
1

m
(am+1 − a1)

=
1

m
(D0

m+1 −D0
1)

E2
m =

1

m

m∑
k=1

D2
k

=
1

m

(
(am+2 − 2am+1 + am) + (am+1 − 2am + am−1)

+ · · ·+ (a4 − 2a3 + a2) + (a3 − 2a2 + a1)
)

=
1

m

(
(am+2 − am+1)− (a2 − a1)

)

=
1

m
(D1

m+1 −D1
1)
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The statement to be proved above was verified about for n = 1 and n = 2.

we assumed the statement is true for n:

En
m =

1

m

m∑
k=1

Dn
k =

1

m
(Dn−1

m+1 −Dn−1
1 )

And demonstrate the relationship is true n+ 1:

En+1
m =

1

m

m∑
k=1

Dn+1
k

=
1

m
(Dn+1

m +Dn+1
m−1 +Dn+1

m−2

+ · · ·+Dn+1
3 +Dn+1

2 +Dn+1
1 )

=
1

m
((Dn

m+1 −Dn
m) + (Dn

m −Dn
m−1) + (Dn

m−1 −Dn
m−2)

+ · · ·+ (Dn
4 −Dn

3 ) + (Dn
3 −Dn

2 ) + (Dn
2 −Dn

1 ))

=
1

m
(Dn

m+1 −Dn
1 )

Q.E.D.
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