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Abstract

Euler diagrams are widely used for information visual-
ization and form the basis of a variety of formal languages
that are used to express constraints in computing. Tools
to automatically generate and layout these diagrams from
an abstract description have to overcome the fact that this
problem is computationally difficult. We develop a theory
of isomorphism of diagram descriptions and identify invari-
ants of these descriptions under isomorphism. We can apply
this theory to improve the efficiency of the generation of all
abstract descriptions (up to isomorphism). We can also con-
sider the production and use of libraries of diagrams with
nice visual properties: by providing a normal form for the
abstract descriptions we can improve efficiency of searches
for isomorphic diagrams within such libraries and, more-
over, utilize invariants for further efficiency savings. We
produce an implementation of the theory and give an in-
dication of the efficiency improvements.

1 Introduction

In this paper we develop the theory of isomorphism for
Euler diagrams. Isomorphism of Euler diagrams is relevant
in many applications where they are used. Examples of their
application areas include any areas where representing re-
lationships between collections of objects is helpful, such
as [4, 9, 11, 13, 16, 22, 23, 24].

In computing, many modelling notations use closed
curves as part of their syntax and can, therefore, be viewed
as extending Euler diagrams. As an example, constraint dia-
grams [12] were designed for formal software specification
as a potential replacement for the Object Constraint Lan-
guage; see [10, 14] for examples of software modelling us-
ing constraint diagrams. A constraint diagram can be seen
in figure 1.

The study of Euler diagram isomorphism is related to the
study of other topics, such as graph isomorphism, where the
study of optimizations for isomorphism checking are well
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Figure 1. A constraint diagram.

advanced [15, 18, 19]. The abstract descriptions of Euler
diagrams are equivalent to the abstract descriptions of hy-
pergraphs [17], although the visualization method is differ-
ent. This equivalence means that the techniques presented
in this paper are applicable to hypergraphs.

After providing motivation (section 2) and background
material (section 3) we develop the theory of diagram iso-
morphism, in section 4, and identify invariants of Euler di-
agrams in section 5. The problem of Euler diagram isomor-
phism checking is equivalent to hypergraph isomorphism
checking. Applications of this theory include improving ef-
ficiency when generating abstract diagrams to populate a
library, or searching for a diagram within such a library. We
produce an implementation which performs isomorphism
checking, making use of the invariants as optimisations.
The amount of efficiency gain by using our methods is given
by running the task of generating all abstract diagrams and
comparing the effects of applying different invariants, de-
tailed in section 6.

2 Motivation

In general, the generation problem is to find an Euler di-
agram that represents some specified collection of sets and
possess certain properties, sometimes called wellformed-
ness conditions. The input to an Euler diagram generation
algorithm is an abstract description of the diagram to be
generated. Various methods for generating Euler diagrams
have been developed, each concentrating on a particular
class of Euler diagrams, for example [2, 3, 6, 13, 25]. The

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/13664?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


existing generation algorithms use some method for embed-
ding curves in the plane. Diagram generation using these
algorithms is a time consuming process and, moreover, can
result in layouts which are not aesthetically pleasing and,
therefore, potentially hard to read.

A previously unadopted generation approach is to have
a library of nicely drawn diagrams from which an appropri-
ate diagram is selected. In this context, it is helpful to have
a notion of isomorphism amongst abstract descriptions in
order to facilitate the extraction of an appropriate Euler di-
agram from the library. When using a library of example
Euler diagrams, each token in the library would be marked
with is abstract description. For example, suppose we wish
to generate a diagram that expresses A∩B = ∅ and C ⊆ B,
like d1 in figure 2. The diagram d1 is ‘isomorphic’ to d2,
which expresses C ∩ A = ∅ and B ⊆ A. If the library
contained d3 then we could select d3 and insert labels in the
appropriate way to yield either d1 or d2. To extract d3 from
the library would require us to establish that its abstract de-
scription is isomorphic to that for d1.

d1
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C A
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Figure 2. Using a library for generation.

We will need to be able to extract appropriate diagrams
from the library in an efficient manner. Merely checking
for isomorphism is time consuming and, if the library is
large, will be infeasible in some cases. Thus, we require
methods to partition the library of examples to reduce the
number of checks that must be performed. When search-
ing through a library, we can use invariants to subdivide the
search space, reducing the number of brute-force checks to
determine whether any given abstract description is isomor-
phic to another.

We can first partition the set of library diagrams by the
number of labels they contain. Thus, we can break down the
set of library examples into sets each of which contains all
diagrams with a given number of labels. It is likely that this
will be sufficient to provide an efficient search through the
space when there are few labels. However, as the number
of labels increases, the number of diagrams in the associ-
ated set can be very large. Thus, we could further subdi-
vide these sets using more sophisticated isomorphism in-
variants. Obviously the order in which the subdivisions are

performed can have an impact on the efficiency of the search
through the library. In this paper, we identify a collection
of invariants and in the future we will establish how best to
use them for set-subdivision.

A further motivation for the work in this paper relates to
listing all abstract descriptions, up to isomorphism, for var-
ious purposes. These include classifying types of diagrams
that might be drawn nicely and being able to count various
types of diagrams such as those which are ‘atomic’ (defined
later). Once such a collection has been built up, we can use
it to generate a library of drawn diagrams using previously
developed generation techniques. Just as when searching
through the library, will need to be able to efficiently check
for isomorphism when producing a collection of all abstract
descriptions.

3 Euler Diagrams: Syntax and Semantics

We briefly overview the syntax and semantics of Euler
diagrams; the formalizations are adapted from [20, 21]. The
diagram d1 in figure 2 contains three contours; these are
the closed curves labelled A, B and C. Contours represent
sets and their spatial relationship is used to make statements
about containment and disjointness of sets. So, in d1 the
contours assert that the sets A and B are disjoint because the
contours do not overlap in any way; similarly A ∩ C = ∅.
The placement of C inside B expresses C ⊆ B. A zone is
a maximal sets of points in the plane that can be described
as being inside certain contours and outside the rest of the
contours. The diagram d1 contains four zones, one of which
can be described as inside B but outside both A and C.
A drawn Euler diagram is a finite collection of labelled
closed curves, in which each label occurs at most once.

To formalize diagram descriptions, the input to a gener-
ator, all that is necessary is knowledge about the labels and
the zones that are to be present. A zone description is taken
to be a set of labels, in, following the style of [6]; the set
in contains the labels of the curves that contain a particular
zone. For example, the zone inside B but outside A and C
in d1 is described by {B}; given the labels A, B and C, we
can deduce that the zone described by {B} is outside A and
C.

We can also talk about zone descriptions that are subsets
of the label set in a diagram, d, but for which no zone occurs
in d. For example {A,B} describes a zone which is not
present in d1 (no zone is inside both A and B). Such zones
are said to be missing from the diagram; d1, therefore, has
four missing zones. Further, we assume the existence of
some fixed label set, L, from which we choose the labels
used in our Euler diagrams.

An abstract Euler diagram is an ordered pair, (L,Z)
where L ⊆ L and Z ⊆ PL. It is these abstract Euler
diagrams that are the input to generation algorithms and,



thus, from which a drawn Euler diagram is generated. We
frequently blur the distinction between abstract diagrams
and their drawn counterparts and simply refer to Euler di-
agrams; the context will make it clear whether we mean
‘drawn’ or ‘abstract’. Similarly, a set of labels will be called
a zone.

At the semantic level, an interpretation is a universal set,
U , together with an assignment of a subset of U to each
contour (strictly, to contour labels) which is extended to in-
terpret zones. Formally, an interpretation is a pair, (U,Ψ)
where U is any set and Ψ: L → PU is a function. In a
diagram d = (L,Z), a zone in ⊆ L represents the set⋂
l∈in

Ψ(l)∩ ⋂
l∈L−in

(U −Ψ(l)). An interpretation is a model

for d if all of the zones which are missing from d represent
the empty set.

4 Isomorphic Diagrams

Given a fixed label set, L ⊆ L, the table below identifies
how many abstract diagrams there are with that label set;
the set of diagrams with label set L is denoted D(L).

|L| 0 1 2 3 4 5
|D(L)| 2 4 16 256 65536 4294967296

Note that given a label set L and a subset, M of L, such
that |M | = |L| − 1, we have |D(L)|=|D(M)|2. Of course,
many of these abstract Euler diagrams are isomorphic. For
example, d1 and d2 in figure 2 have abstract descriptions
L = {A, B,C} and zone sets {{A}, {B}, {B, C}} and
{{C}, {A}, {A,B}} respectively which are the same up to
renaming the labels. Recall that a permutation of a set S is
a bijection from S to itself.

Definition 4.1 Let d1 = (L1, Z1) and d2 = (L2, Z2) be
Euler diagrams. Then d1 and d2 are isomorphic if there
exists a permutation, σ : L → L, such that the image of σ
when the domain is restricted to L1 equals L2 and which in-
duces a bijection, Σ: Z1 → Z2 defined by Σ(z1) = {σ(l) :
l ∈ z1}; such a permutation σ is called an isomorphism
from d1 to d2.

There is potentially a large number of non-isomorphic
diagrams that have the same number of labels; the table be-
low gives the numbers for up to five labels, where NID(L)
denotes the set of non-isomorphic diagrams.

|L| 0 1 2 3 4 5
|NID(L)| 2 4 12 80 3984 37333248

The table below shows how many diagrams there are
with |L| labels and |Z| zones up to isomorphism and in-
dicates how many brute-force isomorphism tests we might
need to perform if we first compare number of labels and
number of zones.

|L| |Z|
0 1 2 3 4 5 6 7 8

0 1 1
1 1 2 1
2 1 3 4 3 1
3 1 4 9 16 20 16 9 4 1
4 1 5 17 52 136 284 477 655 730
5 1 6 28 134 625 2674 10195 34230 100577

The numbers in the above two tables are obtained
from [8], after noting the analogy with switching theory.
Even with only five labels, |L| = 5, the number of non-
isomorphic diagrams with, say, 8 zones, is rather large at
100577. When |Z| increases to 16, there are 5182326 non-
isomorphic diagrams with five labels. Thus it is impor-
tant to have further methods of partitioning the set of non-
isomorphic diagrams.

4.1 Linking Isomorphism and Semantics

The notion of isomorphism is well-defined with respect
to semantics: although isomorphic diagrams are not, in
general, semantically equivalent but they are expressively
equivalent, defined below.

Definition 4.2 Let (U,Ψ1) and (U, Ψ2) be two interpre-
tations. We say (U,Ψ1) and (U, Ψ2) are permutation-
equivalent if there exists a permutation of L, say σ : L →
L, such that for all l ∈ L, Ψ1(l) = Ψ2(σ(l)).

To illustrate, the interpretation with U = {1, 2, 3},
Ψ(A) = {1}, Ψ(B) = {2, 3} and Ψ(C) = {3} is a
model for d1 but not d2 in figure 2. However, the inter-
pretation U = {1, 2, 3}, Ψ(C) = {1}, Ψ(A) = {2, 3} and
Ψ(B) = {3} is a model for d2 but not d1. These two models
are permutation equivalent and d1 and d2 are isomorphic.

Definition 4.3 Let d1 = (L1, Z1) and d2 = (L2, Z2) be
Euler diagrams. Then d1 and d2 are expressively equiva-
lent if there exists a fixed permutation σ : L → L such that
the models for d2 are precisely those which are permutation
equivalent to the models for d1 under σ.

Theorem 4.1 Two diagrams are isomorphic if and only if
they are expressively equivalent.

5 Isomorphism Invariants

In the worst case, determining whether two abstract Eu-
ler diagrams are isomorphic takes exponential time in pro-
portion to the number of labels in the diagram. Of course,
there are some obvious checks that one can perform to re-
duce the computations involved by using invariants. The
invariants we define below each capture a certain type of
structure present in Euler diagrams that is preserved under



isomorphism. The two most obvious invariants are the num-
ber of labels present and the number of zones present. How-
ever, these invariants do not capture the complexity of the
relationships between the closed curves (i.e. how the zone
set relates to the label set). Thus, we define a range of in-
variants that go some what towards capturing features of the
zone set and its relationship with the label set. For example,
a diagram that contains exactly two zones inside one con-
tour will not be isomorphic to any diagram that has no con-
tour which contains exactly two zones. Our refined invari-
ants take this kind of difference between non-isomorphic
diagrams into account.

5.1 Zone Invariants

Trivially, we can use the number of zones as an isomor-
phism invariant.

Lemma 5.1 (Invariants) Let d1 = (L1, Z1) and d2 =
(L2, Z2) be isomorphic Euler diagrams. Then |Z1| = |Z2|.

Rather than simply counting the zones, we can count the
number of zones of each size, where the size of a zone is
the number of labels it contains. To illustrate, isomorphic
diagrams in figure 2 each have 1 zone inside 0 contours, 2
zones inside 2 contours, 1 zone inside 2 contours, and no
zones inside all three contours.

Definition 5.1 Let d = (L,Z) be an Euler diagram. Then
the zone-partition sequence associated with d, denoted
ZPS(d), is defined to be a sequence of natural numbers,
ZPS(d) = (s0, s1, ..., s|L|), where si is the number of
zones in d with cardinality i (informally, si is the number
of zones in d that are ‘inside’ i contours).

Theorem 5.1 (Invariant) Given two isomorphic diagrams
d1 and d2, ZPS(d1) = ZPS(d2).

Zone-partition sequences provide a method of subdivid-
ing the space of abstract diagrams into smaller classes, be-
yond the subdivision provided by simply counting the la-
bels and the zones. Indeed, when we use zone-partition se-
quences to subdivide our library of examples, we no longer
need to consider the number of labels and number of zones,
since these are derivable from ZPS(d); the number of la-
bels in d is the length of ZPS(d) and the number of zones
is the sum of the entries in ZPS(d).

Hardly surprisingly, there are diagrams which are not
isomorphic but that have the same zone-partition sequence.
To illustrate, the non-isomorphic diagrams in figure 3 both
have zone-partition sequence (1, 2, 2, 0, 0).

5.2 Label Invariants

As with the number of zones, we can use the number of
labels as an isomorphism invariant.

BA

C
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D

BA
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D

Figure 3. Zone partition sequences.

Lemma 5.2 (Invariants) Let d1 = (L1, Z1) and d2 =
(L2, Z2) be isomorphic Euler diagrams. Then |L1| = |L2|.

We can further refine our subdivision of the set of atomic
diagrams by considering how many zones are contained by
each label. First we have the following lemma, whose proof
proceeds by a simple induction on |L|.

Lemma 5.3 For any Euler diagram d = (L, Z) and label
l ∈ L, there are at most 2|L|−1 zones, z, in d that contain
the label l, that is l ∈ z.

Definition 5.2 Let d = (L,Z) be an Euler diagram. Then
the label-partition sequence associated with d, denoted
LPS(d), is defined to be a sequence of natural numbers,
LPS(d) = (t0, t1, ..., t2|L|−1), where ti is the number of
labels in d which contain i zones (informally, ti is the num-
ber of contours in d that contain i zones).

The diagrams in figure 3, which have equal zone-
partition sequence, have different label-partition sequences:
LPS(d1) = (0, 2, 2, 0, 0, 0, 0, 0, 0) and LPS(d2) =
(0, 3, 0, 1, 0, 0, 0, 0, 0).

Theorem 5.2 (Invariant) Given two isomorphic diagrams
d1 and d2, LPS(d1) = LPS(d2).

5.3 Using Labels and Zones

A further subdivision of the set of abstract diagrams
can be achieved by considering in more detail the relation-
ship between the labels used and the zones in which they
occur. First, recall that a lexicographical ordering of se-
quences can be achieved by ordering (l1, l2, ..., ln) before
(m1,m2, ..., mp) whenever there is a j such that li = mi

for all i < j and lj < mj .

Definition 5.3 Let d = (L,Z) be an Euler diagram. For
each label, l ∈ L, we define a label-zone sequence, denoted
LZS(l, d) to be (l1, l2, ..., l2(|L|−1)) where li is the number
of zones in d that contain i labels and which include l, that
is li = |{z ∈ Z : l ∈ z ∧ |z| = i}|. Further, we define
the label-zone sequence for d, denoted LZS(d), to be the
lexicographically ordered sequence of label-zone sequences
for the labels in d.



For example, in figure 3, the contour A in d1 con-
tains three zones; of these, one is inside just A and
two are inside A and another contour. This gives
LZS(A, d1) = (1, 1, 0, 0). Similarly, B has label-zone se-
quence LZS(B, d1) = (1, 1, 0, 0). For C and D we have

LZS(C, d1) = LZS(D, d1) = (0, 1, 0, 0).

Thus,

LZS(d1) = ((0, 1, 0, 0), (0, 1, 0, 0), (1, 1, 0, 0), (1, 1, 0, 0)).

The label-zone sequence for d2 is

LZS(d2) = ((0, 1, 0, 0), (0, 1, 0, 0), (1, 0, 0, 0), (1, 2, 0, 0)).

This more refined invariant captures more accurately the re-
lationship between labels and the zones they contain.

Lemma 5.4 Given diagrams d1 and d2 such that
LZS(d1) = LZS(d2), we have the following

1. LPS(d1) = LPS(d2) and

2. ZPS(d1) = ZPS(d2).

Theorem 5.3 (Invariant) Given isomorphic diagrams d1

and d2, LZS(d1) = LZS(d2).

5.4 Refinements to Blocks

Refinements to the above invariants can be made based
on the observation that one only requires so-called atomic
diagrams from which one can generate all diagrams in a
relatively simple way. An atomic diagram is one in which
the curves form a connected component of the plane; non-
atomic diagrams are called nested [7].

This notion of nesting at the drawn diagram level has
an analogy at the abstract level, defined by considering the
dual graph (in [5, 6] this graph is called the superdual).
Given an abstract diagram, d = (L,Z), the dual graph
of d, denoted dual(d), has Z as its vertex set and there is
any edge between vertex v1 and vertex v2 if the symmetric
difference of v1 and v2 contains exactly one label. Figure 4
shows a diagram with its dual graph.

Under certain well-formedness conditions, the absence
cut-vertices in the dual graph corresponds to atomic dia-
grams [7]. We can use the dual graph to further partition
the space of non-isomorphic diagrams. Recall, a block of a
graph is a maximal connected subgraph that contains no cut
vertex.

Definition 5.4 A block of an abstract Euler diagram, d1 =
(L,Z1) is an abstract Euler diagram, d2 = (L,Z2) such
that the dual of d2 is a block of the dual graph of d1.
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Figure 4. Finding diagram blocks.

An illustration can be seen in figure 4. The blocks of d
can be found by computing the blocks of dual(d) for which
there are known algorithms, see [1] for example.

Definition 5.5 Let d be an Euler diagram. The blockwise
zone-partition sequence for d, denoted BZPS(d), is the
lexicographically ordered sequence of zone-partition se-
quences for the blocks of d.

To illustrate, the nested diagram d1 in figure 4 has block-
wise zone-partition sequence

BZPS(d1) = ((0, 1, 2, 1, 0), (1, 1, 0, 0, 0), (1, 1, 0, 0, 0)).

Theorem 5.4 Given two isomorphic diagrams, d1 and d2,
BZPS(d1) = BZPS(d2).

The definitions of the other sequences given above, such
as the label-partition sequence, extend to blockwise se-
quences in a manner similar to that exemplified by the zone-
partition sequence. Moreover, these further blockwise se-
quences are also invariant under isomorphism. We conjec-
ture that these refined blockwise invariants will be particu-
larly helpful when abstract descriptions have large numbers
of labels.

5.5 Refinements to Complements

We note that the more zones there are in a diagram, the
more checks we need to perform when seeking to establish
whether two diagrams are isomorphic. When more than half
of the zones are present, we can reduce these number of
checks by comparing diagram complements.

Definition 5.6 The complement of an Euler diagram, d1 =
(L,Z1), is an Euler diagram, d = (L,Z2), where Z2 =
PL− Z1.

In figure 5, d1 has complement (L = {A,B, C}, Z =
{{B}, {B, C}}). Clearly, given a diagram, d, the comple-
ment of its complement is d.

Theorem 5.5 Given isomorphic diagrams d1 and d2, their
complements are isomorphic.
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Figure 5. Diagram complements.

To illustrate the computational savings argument, sup-
pose we wish to determine whether the diagrams d1 and
d2 in figure 5 are isomorphic and that we have already es-
tablished that the various sequences associated with them,
which are invariant under isomorphism, are equal. Then
we would need to construct bijections, σ : {A,B, C} →
{D, E, F}, and determine whether they are isomorphisms
by checking that each zone in d1 maps to a zone in d2 (that
is, check whether σ extends bijectively to the zones). Al-
ternatively, we can check whether σ extends bijectively to
the complements, reducing the number of checks (the com-
plements of both diagrams contain just two zones whereas
each original diagram contains 6 zones).

6 Implementation

In this section, an implementation of abstract Euler dia-
gram isomorphism testing in a software system is described.
The system implements the optimizations discussed previ-
ously for isomorphism testing. However, it also includes
additional improvements for listing all the unique abstract
diagrams for a particular number of sets.

When listing all abstract diagrams up to isomorphism,
the implementation only iterates through abstract diagrams
that do not have the empty zone, ∅, present. To get the full
list of abstract diagrams, the ones in the generated list sim-
ply have to have the empty zone added to them. This re-
duces the number of abstract diagrams built by a half. For
example, with two labels, we will generate the abstract di-
agram ({A,B}, {A}) from which ({A,B}, {∅, {A}}) can
subsequently be generated.

We now outline our method for producing all abstract di-
agrams with some fixed number of labels. Firstly, the Venn
diagram with the required number of labels, |L|, is found,
and each of its zones is assigned an integer, from one to the
number of zones. For example, when we require two la-
bels, and take L = {A,B}, the zones in the Venn diagram
are (excluding ∅) {A}, {B}, {A,B}; each zone is then as-
signed a number, {A} 7→ 1, {B} 7→ 2 and {A,B} 7→ 3.
Using this, we can give a binary word that describes the
zone set; for example, a diagram that contains the zones
{A} and {A,B} would be described by 101 since, for ex-
ample, {A,B}was assigned to 3 and its presence is indicate
by a 1 in the third place of 101.

We then iterate from zero to the number of diagrams to
be listed (minus one), |D(L)| − 1 (we subtract one since
we have already generated the Venn diagram), and produce
an abstract diagram by treating them number as a binary.
In our two-contour example, the number of diagrams to be
listed is six, since we do not include the zone ∅; there are 12
non-isomorphic diagrams with two zones. It is easy to see
that there are six binary words containing three bits over the
alphabet {0, 1}.

As stated above, the presence of a zone is given
by a 1 in the binary description. To further il-
lustrate, the list of all zones for 3 contours is
({A}, {B}, {C}, {A, B}, {A,C}, {B, C}, {A, B,C}),
seven zones (and 128 diagrams to be generated, as the
empty zone is not present), with {A} numbered one and
{A,B, C} numbered seven. Combination number 69, with
binary representation 0100111, is the abstract diagram with
zone-list ({B}, {A,C}, {B, C}, {A, B,C}).

The method above is used to produce all abstract dia-
grams with some fixed number of labels: each binary word
is converted into a subset of the Venn zone set, giving all
subsets of the Venn zone set. During the process of listing
all such diagrams, any diagram which does not have A in its
first zone are not generated. This is because such diagrams
are isomorphic to another diagram with A in its first zone,
and so the following processes do not need to be applied.

Each abstract diagram is converted into a normal form.
This normal form maps the sets to labels so that they are in a
particular order, with A the highest value label, B the next,
and so on. The labels are, firstly, compared by checking
each zone size (by zone size, we simply mean the cardinal-
ity of the zone). A label occurring in a smaller size zone
than another label gets a higher value. Where there is no
difference in the zone size that they appear in, then a label
occurring in a zone with a higher ordered label where the
other label does not gets a higher value. Otherwise, if an or-
der between labels cannot be derived then they are ordered
arbitrarily. The labels in zones are lexically ordered, then
the zones in abstract diagrams are first ordered by size, then
lexical ordering of same size zones is performed.

For example, given the diagram with zone set {{B},
{D}, {A,C}, {B, C}, {B,C, D}}, B and D are higher
than A and C because they are in zones of size 1, B is
ordered higher than D because it appears in zones of size
2. Moreover, C is higher than A because it appears next to
B. Giving a mapping σ(B) = A, σ(D) = B, σ(C) = C
and σ(A) = D, the diagram has the normalized zone set
{{A}, {B}, {A, C}, {C, D}, {A,B, C}}.

This means that many isomorphic diagrams will have the
same label ordering. So, when listing all unique diagrams,
if the normal form already occurs in the set of known dia-
grams, there is no need to do the further isomorphism tests.
Of, course, this normalization repeats some of the steps in



the isomorphism optimization given below, and the isomor-
phism tests for two diagrams that reduce to the same nor-
mal form would tend to be quick in any case, as the brute
force part of the algorithm would not have many alternative
mappings to test. However, it is useful to have a consistent
way of displaying abstract descriptions. The set of known
unique abstract diagrams is stored in a hash set. This speeds
up the test to determine whether a normalized abstract dia-
gram is already in the set.

If equality by normalization cannot be derived then the
current normalized abstract diagram is compared against the
set of known unique abstract diagrams by using an isomor-
phism test. This test performs the optimizations described
previously in sections 5.1 to 5.3: the invariants are com-
pared first and, if equal, a brute force algorithm has to be
executed to perform isomorphism tests. First, a partition of
the label set is discovered. Each set in the partition contains
the labels that can map to the same choices of labels in the
other abstract diagram. Hence, members of a partition are
those labels with indistinguishable values from the normal-
ization process. Given that the sets can be placed in order,
further optimizations can be carried out, such as ensuring
each pair of sets in order from both diagrams are of equal
size.

This table gives the number times that pairs of diagrams
have been identified as non-isomorphic by simply check-
ing the invariant when generating a list of all unique ab-
stract diagrams with a given number labels. For example,
for diagrams with 4 contours, the zone-partition sequence
alone identifies 3446662 diagram pairs as non-isomorphic.
Both the normalization and the absence of the zone ∅ (that
contained by no contours) optimization have been used
in computing table entries. As a result, the number of
times a brute-force tests for isomorphism has been applied
is greatly reduced for the more effective invariants. For
example, using the label-zone sequence to identify non-
isomorphic diagrams, the number of brute-force isomor-
phism tests for four labels was reduced to just 1886; this
is a very small fraction of the number of isomorphism tests
that were saved by using the invariant, as detailed in the
table (3468679).

Invariant |L|
1 2 3 4

|L| 1 9 231 138645
|Z| 1 13 687 3018907

LPS 1 14 784 3413693
ZPS 1 15 814 3446662
LZS 1 15 822 3468679

7 Conclusion

We have defined a notion of isomorphism between ab-
stract Euler diagrams and presented a collection of invari-
ants that can be used to reduce the time taken to identify
whether two abstract diagrams are isomorphic. The result-
ing efficiency savings are likely to be useful when using
a library of examples to display Euler diagrams, for in-
stance. Our implementation includes some optimizations
and we have provided data comparisons to demonstrate
the effects of utilizing different invariants. Further opti-
mizations are possible and, since the problem of determin-
ing isomorphism between Euler diagrams is identical to
the hypergraph isomorphism problem, optimizations can be
drawn from graph isomorphism and should be very feasi-
ble. For example, we could convert to a constraint satisfac-
tion task [15, 19] or adapt the graph isomorphism methods
of Nauty [18].

Another useful application of our work is in the use of
the invariants such as the zone-partition sequence to help
build an initial library of examples, enabling the generation
of a wide spread of diagrams; the idea being that drawn
diagrams with nice visual properties are stored for each ab-
stract diagram in the library. The intention would be that
such that a library based generation system would have
methods for combining diagrams, and the abstract diagram
generation and comparison techniques could help guide the
design of the rules for diagram combination.

A B

C D

A B

C DMerge atomic

components

Figure 6. Combining diagrams.

It may be that diagrams in a library can be combined
in sophisticated ways, such as taking two atomic compo-
nents and merging them together to create a new diagram;
figure 6 shows the merger of two atomic diagrams into a
single atomic diagram (as opposed to a nested diagram).
The theory required to facilitate this type of constructing is
currently being developed and would reduce the number of
diagrams required to be stored in the library.

Further detailed experiments to determine the best way
in which to use the invariants to divide the search space are
also required. The manner in which the invariants are used
will impact the search through a library in order to extract
a diagram which corresponds to an input abstract diagram
description, for example.
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