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Abstract

This paper presents a non-conventional approach for
the automatic music genre classification problem. The
proposed approach uses multiple feature vectors and
a pattern recognition ensemble approach, according to
space and time decomposition schemes. Despite being
music genre classification a multi-class problem, we ac-
complish the task using a set of binary classifiers, whose
results are merged in order to produce the final music
genre label (space decomposition). Music segments are
also decomposed according to time segments obtained
from the beginning, middle and end parts of the original
music signal (time-decomposition). The final classifica-
tion is obtained from the set of individual results, accord-
ing to a combination procedure. Classical machine learn-
ing algorithms such as Naïve-Bayes, Decision Trees, k
Nearest-Neighbors, Support Vector Machines and Multi-
Layer Perceptron Neural Nets are employed. Experiments
were carried out on a novel dataset called Latin Music
Database, which contains 3,160 music pieces categorized
in 10 musical genres. Experimental results show that
the proposed ensemble approach produces better results
than the ones obtained from global and individual seg-
ment classifiers in most cases. Some experiments related

to feature selection were also conducted, using the genetic
algorithm paradigm. They show that the most important
features for the classification task vary according to their
origin in the music signal.

Keywords: Music Genre Classification, Machine
Learning, Pattern Classification, Feature Selection

1. INTRODUCTION
Music is nowadays a significant part of the Internet

content: the net is probably the most important source
of music pieces, with several sites dedicated to spread-
ing, distributing and commercializing music. In this con-
text, automatic procedures capable of dealing with large
amounts of music in digital formats are imperative, and
Music Information Retrieval (MIR) has become an im-
portant research area.

One of the tasks focused by MIR is the Automatic
Music Genre Classification (AMGC) problem. In essence
music genres are categorical labels created by human ex-
perts in order to identify the style of the music. The music
genre is a descriptor that is largely used to organize col-
lections of digital music. It is not only a crucial metadata
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in large music databases and electronic music distribution
(EMD) [1], but also the most frequent item used in search
queries, as pointed by several authors [8], [20], [30], [35],
[36].

Up to now the standard procedure for organizing
music content is the manual use of meta information
tags, such as the ID3 tags associated to music coded in
MPEG-1 Audio Layer 3 (MP3) compression format [15].
This metadata includes song title, album, year, track num-
ber and music genre, as well as other specific details of
the file content. The music genre information, however,
is usually incomplete and inaccurate, since it depends on
human subjectiveness. As there is no industrial standard,
more confusion arises: for example, the same music piece
is indicated as belonging to different music genres accord-
ing to different EMD sites, due to different interpretation
and/or different codification schemes [19].

We emphasize that AMGC also poses an interesting
research problem from a pattern recognition perspective.
Music can be considered as a high-dimensional digital
time-variant signal, and music databases can be very large
[2]; thus, it offers a good opportunity for testing non-
conventional pattern recognition approaches.

As each digital music segment can be associated to a
vector representative, by applying some extracting proce-
dure to calculate appropriate feature values, to put this
problem as a classical classification task in the pattern
recognition framework is straightforward [28]. Typically
a music database (as in a EMD) contains thousands of
pieces from dozens of manually-defined music genres [1],
[23], [32] characterizing a complex multi-class problem.

In this paper we present a non-conventional machine
learning approach to the AMGC problem. We use the en-
semble approach [7], [17] based on both space and time
decomposition schemes. Firstly, the AMGC problem is
naturally multi-class; as pointed in the literature [7], [12],
inter class similarity / extra class distinction are inversely
proportional to the number of classes involved. This sit-
uation can be explained by considering that is difficult to
most classifiers to construct an adequate separation sur-
face among the classes [24]. One solution is to decom-
pose the original multi-class problem space as a series of
binary classification problems, where most of the known
classifiers work better, and to merge the obtained results
in order to produce the final result. Secondly, as music is
a time-varying signal, several segments can be employed
to extract features, in order to produce a set of feature
vectors that characterizes a decomposition of the original
signal according to the time dimension. We employ an en-
semble approach that encompasses both decompositions:
classifiers are applied to space-time partial views of the
music, and the obtained classification results are merged
to produce the final class label.

We also conduct some experiments related to feature

selection, employing a genetic algorithm framework, in
order to show the relation between the relative importance
of each feature and its origin in the music signal.

This paper is organized as follows: section 2 presents
a formal view of the problem and summarize the results of
several research works in automatic music genre classifi-
cation; section 3 presents our proposal, based on space-
time decomposition strategies, describing also the em-
ployed features, classification and results combination al-
gorithms; section 4 presents the employed dataset and the
experimental results obtained with the space-time decom-
position; section 5 describes the employed feature selec-
tion procedure, and the obtained experimental results; fi-
nally, section 6 presents the conclusions of our work.

2. PROBLEM DEFINITION AND RELATED
WORKS

Nowadays the music signal representation is no longer
analogous to the original sound wave. The analogical sig-
nal is sampled, several times per second, and transformed
by an analogous-to-digital converter into a sequence of
numeric values in a convenient scale. This sequence rep-
resent the digital audio signal of the music, and can be
employed to reproduce the music [15].

Hence the digital audio signal can be represented by a
sequence S =< s1, s2 . . . sN > where si stands for the
signal sampled in the instant i and N is the total num-
ber of samples of the music. This sequence contains a
lot of acoustic information, and features related to timbral
texture, rhythm and pitch content can be extracted from
it. Initially the acoustic features are extracted from short
frames of the audio signal; then they are aggregated into
more abstract segment-level features [2]. So a feature vec-
tor X̄ =< x1, x2 . . . xD > can be generated, where each
feature xj is extracted from S (or some part of it) by an
appropriate extraction procedure.

Now we can formally define the AMGC problem as
a pattern classification problem, using segment-level fea-
tures as input. From a finite set of music genres G we
must select one class ĝ which best represents the genre of
the music associated to the signal S.

From a statistical perspective the goal is to find the
most likely ĝ ∈ G, given the feature vector X̄ , that is

ĝ = arg max
g∈G

P (g|X̄)

where P (g|X̄) is the a posteriori probability that the mu-
sic belong to the genre g given the features expressed by
X̄ . Using the Bayes’ rule the equation can be rewritten as

ĝ = arg max
g∈G

P (X̄|g).P (g)
P (X̄)

where P (X̄|g) is the probability in which the feature vec-
tor X̄ occurs in class g, P (g) is the a priori probability of



the music genre g (which can be estimated from frequen-
cies in the database) and P (X̄) is the probability of oc-
currence of the feature vector X̄ . The last probability is in
general unknown, but if the classifier computes the likeli-
hoods of the entire set of genres, then

∑
g∈G P (g|X̄) = 1

and we can obtain the desired probabilities for each g ∈ G
by

P (g|X̄) =
P (X̄|g).P (g)∑

g∈G P (X̄|g).P (g)

The AMGC problem was initially defined in the work
of Tzanetakis and Cook [35]. In this work a compre-
hensive set of features was proposed to represent a mu-
sic piece. These features are obtained from a signal pro-
cessing perspective, and include timbral texture features,
beat-related features and pitch-related features. As clas-
sification procedures they employ Gaussian classifiers,
Gaussian mixture models and the k Nearest-Neighbors
(k-NN) classifier. The experiments occur in a database
called GTZAN, that include 1, 000 samples from ten
music genres, with features extracted from the first 30-
seconds of each music. Obtained results indicate an accu-
racy of about 60% using a ten-fold cross validation pro-
cedure. The employed feature set has become of public
use, as part of the MARSYAS framework (Music Analy-
sis, Retrieval and SYnthesis for Audio Signals, available
at http://marsyas.sourgeforge.net/), a free software plat-
form for developing and evaluating computer audio ap-
plications [35].

Kosina [19] developed MUGRAT (MUsic Genre
Recognition by Analysis of Texture, available at
http://kyrah.net/mugrat), a prototypical system for mu-
sic genre recognition based on a subset of the features
given by the MARSYAS framework. In this case the fea-
tures were extracted from 3-second segments randomly
selected from the entire music signal. Experiments were
carried out in a database composed by 186 music samples
belonging to 3 music genres. Employing a 3-NN clas-
sifier Kosina obtains an average accuracy of 88.35% us-
ing a ten-fold cross-validation procedure. In this work
the author also confirms that manually-made music genre
classification is inconsistent: the very same music pieces
obtained from different EMD sources were differently la-
beled in their ID3 genre tag.

Li, Ogihara and Li [21] present a comparative study
between the features included in the MARSYAS frame-
work and a set of features based on Daubechies Wavelet
Coefficient Histograms (DWCH), using also other classi-
fication methods such as Support Vector Machines (SVM)
and Linear Discriminant Analysis (LDA). For compari-
son purposes they employ two datasets: (a) the original
dataset of Tzanetakis and Cook (GTZAN), with features
extracted from the beginning of the music signal, and (b) a
dataset composed by 755 music pieces of 5 music genres,

with features extracted from the interval that goes from
second 31 to second 61. Conducted experiments show
that the SVM classifier outperforms all other methods:
in case (a) it improves accuracy to 72% using the origi-
nal feature set and to 78% using the DWCH feature set;
in case (b) the results were 71% for the MARSYAS fea-
ture set and 74% to the DWCH feature set. The authors
also evaluate some space decomposition strategies: the
original multi-class problem (5 classes) was decomposed
in a series of binary classification problems, according to
a One-Against-All (OAA) and Round-Robin (RR) strate-
gies (see Section 3.1). The best results were achieved with
SVM and OAA space decomposition using DWCH fea-
ture set. Accuracy was improved by 2 to 7% according to
employed feature set – DWCH and MARSYAS respec-
tively – in the dataset (a), and by 2 to 4% in dataset (b).

Grimaldi, Cunningham and Kokaram [13], [14] em-
ploy a space decomposition strategy to the AMGC prob-
lem, using specialized classifiers for each space vision
and an ensemble approach to obtain the final classifica-
tion decision. The authors decompose the original prob-
lem according to OAA, RR – called pairwise compari-
son [12] – and random selection of subspaces [16] meth-
ods. They also employ different feature selection proce-
dures, such as ranking according to information gain (IG)
and gain ratio (GR), and Principal Component Analysis
(PCA). Experiments were conducted in a database of 200
music pieces of 5 music genres, using the k-NN classifier
and a 5-fold cross validation procedure. The feature set
was obtained from the entire music piece, using discrete
wavelet transform (DPWT). For k-NN classifier the PCA
analysis proves to be the most effective feature selection
technique, achieving an accuracy of 79%. The RR ensem-
ble approach scores 81% for both IG and GR, showing to
be an effective ensemble technique. When applying a for-
ward sequential feature selection based on the GR rank-
ing, the ensemble scores 84%.

The work of Meng, Ahrendt and Larsen [27] deals
with the relative importance of the features. They em-
ploy features based on three time scales: (a) short-term
features, computed over 30 milliseconds windows, and
related to timbral texture; (b) middle-term features, ob-
tained from 740 milliseconds windows and related to
modulation and/or instrumentation; and (c) long-term fea-
tures, computed over 9.62 seconds windows and related to
beat pattern and rhythm. They use two classifiers: a sin-
gle layer neural net and a Gaussian classifier based on the
covariance matrix. They performed experiments on two
datasets, the first one with 100 music pieces from 5 music
genres and the second with 354 music pieces from 6 mu-
sic genres. The evaluation of the experiments shows that
a combination of middle and long-term features produce
better results for classification.

Yaslan and Catalpete [38] employ a large set of clas-



sifiers to study the problem of feature selection in the
AMGC problem. They use the linear and quadratic dis-
criminant classifiers, the Naïve-Bayes classifier, and vari-
ations of the k-NN classifier. They employ the GTZAN
database and the MARSYAS framework [35] for fea-
ture extraction. The features were analyzed according to
groups, for each one of the classifiers. They employ the
Forward Feature Selection (FFS) and Backward Feature
Selection (BFS) methods, in order to find the best feature
set for the problem. These methods are based on guided
search in the feature space, starting from the empty set
and from the entire set of features, respectively. They re-
port positive results in the classification with the use of
the feature selection procedure.

Up to now most researchers attack the AMGC prob-
lem by ensemble techniques using only space decompo-
sition. We emphasize that these techniques employ dif-
ferent views of the feature space and classifiers dedicated
to these subspaces to produce partial classifications, and
a combination procedure to produce the final class label.
Furthermore the features used in these works are selected
from one specific part of the music signal or from the en-
tire music signal.

One exception is the work of Bergstra et al. [2]. They
use the ensemble learner AdaBoost [11] which performs
the classification iteratively by combining the weighted
votes of several weak learners. Their model uses sim-
ple decision stumps, each of which operates on a sin-
gle feature dimension. The procedure shows to be effec-
tive in three music genre databases (Magnatune, USPOP
and GTZAN), winning the music genre identification task
in the MIREX 2005 (Music Information Retrieval EX-
change) [9]. Their best accuracy results vary from 75 to
86% in these databases.

The first work that employs time decomposition us-
ing regular classifiers applied to complete feature vectors
was proposed by Costa, Valle Jr. and Koerich [4]. This
work presents experiments based on ensemble of classi-
fiers approach that uses three time segments of the music
audio signal, and where the final decision is given by the
majority vote rule. They employ a MLP neural net and
the k-NN classifiers. Experiments were conducted on a
database of 414 music pieces of 2 genres. However, final
results regarding the quality of the method for the clas-
sification task were inconclusive. Koerich and Poitevin
[18] employ the same database and an ensemble approach
with a different set of combination rules. Given the set of
individual classifications and their corresponding score –
a number associated to each class also obtained from the
classification procedure – they use the maximum, the sum
and pondered sum, product and pondered product of the
scores to assign the final class. Their experiments show
better results than the individual classifications when us-
ing two segments and the pondered sum and the pondered

product as result combination rules.

3. THE SPACE-TIME DECOMPOSITION
APPROACH

In this paper we evaluate the effect of using the en-
semble approach in the AMGC problem, where individ-
ual classifiers are applied to a special decomposition of
the music signal that encompasses both space and time di-
mensions. We use feature space decomposition following
the OAA and RR approaches, and also features extracted
from different time segments [31], [33], [34]. Therefore
several feature vectors and component classifiers are used
in each music part, and a combination procedure is em-
ployed to produce the final class label for the music.

3.1. SPACE DECOMPOSITION

Music genre classification is naturally a multi-class
problem. However, we employ a combination of the re-
sults given by binary classifiers, whose results are merged
afterwards in order to produce the final music genre label.

This procedure characterizes a space decomposition
of the feature space, since features are used according to
different views of the problem space. The approach is jus-
tified because for two class problems the classifiers tend
to be simple and effective. This point is related to the
type of the separation surface constructed by the classi-
fier, which are limited in several cases [24].

Two main techniques are employed to produce the de-
sired decomposition: (a) in the one-against-all (OAA) ap-
proach, a classifier is constructed for each class, and all
the examples in the remaining classes are considered as
negative examples of that class; and (b) in the round-robin
(RR) approach, a classifier is constructed for each pair of
classes, and the examples belonging to the other classes
are discarded. Figures 1 and 2 schematically illustrate
these approaches. For a M -class problem (M music gen-
res) several classification results arise: according to the
OAA technique M class labels are produced, whereas for
the RR technique M(M − 1)/2 class labels are gener-
ated. These labels are combined according to a decision
procedure in order to produce the final class label.

We emphasize that the decomposition here is made
only by manipulating the instances in the considered
database: relabeling conveniently the negative examples
in the OAA approach, and discarding the examples of the
non-considered classes in the RR approach. Hence, each
one of the generated classification problem follows ex-
actly the formal description presented in the previous sec-
tion.



Figure 1. One-Against-All Space Decomposition Approach

Figure 2. Round-Robin Space Decomposition Approach

3.2. TIME DECOMPOSITION

An audio record of a music piece is a time-varying
signal. The idea behind time decomposition is that we
can obtain a more adequate representation of the music
piece if we consider several time segments of the sig-
nal. This procedure aims to better treat the great variation
that usually occurs along music pieces, and also permits
to compare the discriminative power of the features ex-
tracted from different parts of the music.

Figure 3 illustrates this point: it presents the aver-
age values of 30 features extracted from different mu-
sic sub-intervals, obtained over 150 music pieces of the
genre Salsa. We emphasize the irregularity of the results,
showing that feature values vary depending on the interval
from which they were obtained.

If we employ the formal description of the AMGC
problem given in the previous section, the time decompo-
sition can be formalized as follows. From the original mu-
sic signal S =< s1, s2 . . . sN > we obtain different sub-
signals Spq . Each sub-signal is simply a projection of S
on the interval [p, q] of samples, or Spq =< sp, . . . sq >.
In the generic case that uses K sub-signals, we further

Figure 3. Average values over 150 music pieces of genre Salsa for 30
features extracted from different music sub-intervals

obtain a sequence of feature vectors X̄1, X̄2 . . . X̄K . A
classifier is applied in each one of these feature vectors,
generating the assigned music genres ĝ1, ĝ2 . . . ĝK ; then
they must be combined to produce the final class assign-
ment, as we will see in the following.

In our case we employ feature vectors extracted from
30-seconds segments from the beginning (Sbeg), middle
(Smid) and end (Send) parts of the original music sig-
nal. The corresponding feature vectors are denoted X̄beg ,
X̄mid and X̄end. Figure 4 illustrates the time decomposi-
tion process.

Figure 4. Time Decomposition Approach

3.3. THE SET OF EMPLOYED FEATURES

The MARSYAS framework was employed for feature
extraction, so we use the same feature set proposed by
Tzanetakis and Cook [35]. These features can grouped in
three categories: Beat-Related, Timbral Texture and Pitch
Related. The Beat-Related features (features 1 to 6) in-
clude the relative amplitudes and the beat per minute. The
Timbral Texture features (features 7 to 25) account for the
means and variance of the spectral centroid, rolloff, flux,
the time zero domain crossings, the first 5 Mel Frequency
Cepstral Coefficients (MFCC) and low energy. Pitch-
Related features (features 26 to 30) include de maximum
periods of the pitch peak in the pitch histograms. The
final feature vector is 30-dimensional (Beat: 6; Timbral



Texture: 19; Pitch: 5). For a more detailed description of
the features refer to [34] or [35] .

A normalization procedure is applied, in order to ho-
mogenize the input data for the classifiers: if maxV and
minV are the maximum and minimum values that appear
in all dataset for a given feature, a value V is replaced by
newV using the equation

newV =
(V −minV )

(maxV −minV )

The final feature vector is outlined in Table 1.

Table 1. Feature vector description

Feature # Description
1 Relative amplitude of the first histogram peak
2 Relative amplitude of the second histogram peak
3 Ratio between the amplitudes of the second peak

and the first peak
4 Period of the first peak in bpm
5 Period of the second peak in bpm
6 Overall histogram sum (beat strength)
7 Spectral centroid mean
8 Spectral rolloff mean
9 Spectral flow mean
10 Zero crossing rate mean
11 Standard deviation for spectral centroid
12 Standard deviation for spectral rolloff
13 Standard deviation for spectral flow
14 Standard deviation for zero crossing rate
15 Low energy
16 1 st. MFCC mean
17 2 nd. MFCC mean
18 3 rd. MFCC mean
19 4 th. MFCC mean
20 5 th. MFCC mean
21 Standard deviation for 1 st. MFCC
22 Standard deviation for 2 nd. MFCC
23 Standard deviation for 3 rd. MFCC
24 Standard deviation for 4 th. MFCC
25 Standard deviation for 5 th. MFCC
26 The overall sum of the histogram (pitch strength)
27 Period of the maximum peak of the

unfolded histogram
28 Amplitude of maximum peak of the

folded histogram
29 Period of the maximum peak of the

folded histogram
30 Pitch interval between the two most prominent

peaks of the folded histogram

We note that the feature vectors are always calculated
over intervals; in fact several features like means, vari-
ances, and number of peaks, only have meaning if ex-
tracted from signal intervals. So they are calculated over
S or one of its subintervals Spq , that is, an aggregate seg-
ment obtained from the elementary frames of the music
audio signal.

3.4. CLASSIFICATION AND COMBINATION DECI-
SION PROCEDURES

A large set of standard algorithms for supervised ma-
chine learning is used to accomplish the AMGC task. We
follow an homogeneous approach, that is, the very same
classifier is employed as individual component classifier
in each music part. We use the following algorithms
[28]: (a) a classic decision tree classifier (J48); (b) the
instance-based k-NN classifier; (c) the Naïve-Bayes clas-
sifier (NB), which is based on conditional probabilities
and attribute independence; (d) a Multi Layer Perceptron
neural network (MLP) with the backpropagation momen-
tum algorithm; and (e) a Support Vector Machine classi-
fier (SVM) with pairwise classification. In order to do all
experiments we employ a framework based on the WEKA
Datamining Tool [37], with standard parameters.

As previously mentioned, a set of possibly different
candidate classes is produced by the individual classi-
fiers. These results can be considered according to space
and time decomposition dimensions. The time dimension
presents K classification results, and space dimension for
a M -class problem produces M (OAA) or M(M − 1)/2
(RR) results, as already explained. These partial results
must be composed to produce the final class label.

We employ a decision procedure in order to find the
final class associated by the ensemble of classifiers. Space
decomposition results are combined by the majority vote
rule, in the case of the RR approach, and by a rule based
on the a posteriori probability of the employed classifier,
for the OAA approach. Time decomposition results are
combined using the majority vote rule.

4. SPACE-TIME DECOMPOSITION EX-
PERIMENTS AND RESULTS

One common concern in the AMGC problem research
is how reliable the obtained experiments and results are,
because the way the musical genres are associated to the
music pieces in the employed databases. Craft, Wiggins
and Crawford [5] raise this question and argue that genre
labeling is affected by two major factors: the first one is
related to how the composer intended to draw upon differ-
ent stylistic elements from one or more music genres; the
second one is related to the social and cultural background
of any participant involved in labeling the database. They
conclude that the evaluation of a genre labeling system is
highly dependent upon these two factors, and recommend
that for the evaluation of genre labeling systems which
use individual genres these cultural differences should be
eliminated. However, according to McEnnis and Cun-
ningham [26] cultural differences – or social context –
should be preserved, because they play an important role
in the human subjectiveness associated to the task of as-
signing musical genres to music pieces. In the work of



Table 2. Accuracy (%) using OAA and RR approaches in the individual segments
Sbeg Smid Send

Classifier BL OAA RR BL OAA RR BL OAA RR
J48 39.60 41.56 45.96 44.44 44.56 49.93 38.80 38.42 45.53

3-NN 45.83 45.83 45.83 56.26 56.26 56.26 48.43 48.43 48.43
MLP 53.96 52.53 55.06 56.40 53.08 54.59 48.26 51.96 51.92
NB 44.43 42.76 44.43 47.76 45.83 47.79 39.13 37.26 39.19

SVM – 26.63 57.43 – 36.82 63.50 – 28.89 54.60

McEnnis, McKay and Fujinaga [25] the issue of prop-
erly constructing databases that can be useful for other
research works is addressed.

Considering these concerns of the research com-
munity, and in order to accomplish the desired
AMGC task, a new database was constructed: the
Latin Music Database (feature vectors available in
www.ppgia.pucpr.br/∼silla/lmd/) [31], [32] [33], [34].
This database contains 3,160 MP3 music pieces of 10 dif-
ferent Latin genres, originated from music pieces of 543
artists.

In this database music genre assignment was manually
made by a group of human experts, based on the human
perception of how each music is danced. The genre la-
beling was performed by two professional teachers with
over 10 years of experience in teaching ballroom Latin
and Brazilian dances. The professionals made a first se-
lection of the music they considered to be relevant to a
specific genre regarding the way it is danced; the project
team did a second verification in order to avoid mistakes.
The professionals classified around 300 music pieces per
month, and the development of the complete database
took around one year.

In order to verify the application of our proposal in
the AMGC problem an extensive set of tests were con-
ducted. We consider two main goals: (a) to verify if
feature vectors extracted from different parts of the au-
dio signal have similar discriminant power in the AMGC
task; and (b) to verify if the proposed ensemble approach,
encompassing space and time decompositions, provides
better results than classifiers applied to a single feature
vector extracted from the music audio signal. Our primary
evaluation measure is the classification accuracy, that is,
the average number of correctly classified music pieces.

The experiments were carried out on stratified train-
ing, validation and test datasets. In order to deal with bal-
anced classes, 300 different song tracks from each genre
were randomly selected. In the experiments we use a ten-
fold cross-validation procedure, that is, the presented re-
sults are obtained from 10 randomly independent experi-
ment repetitions.

For time decomposition we use three time seg-
ments of 30 seconds each, extracted from the
beginning, middle and end parts of each music

piece. We note that 30-seconds are equivalent to
1,153 frames in a MP3 file. According to the ex-
plained formalism we have, for a music signal
composed of N samples: Sbeg =< s1, . . . s1,153 >,
Smid =< s( N

3 )+500, . . . s( N
3 )+1,653 > and

Send =< sN−1,153−300, . . . sN−300 >. An empiric
displacement of 300 sample frames was employed in
order to discard the final part of the music, which is
usually constituted by silence or noise.

Table 2 presents the results for each classifier in the
segments Sbeg , Smid and Send for the OAA and RR ap-
proaches. Column BL stands for baseline, and shows the
results for the indicated classifier without space decom-
position. As the SVM classifier was employed as default
for the RR approach, in this case the results for the BL
column were omitted.

The following analysis can be done on the results
shown in Table 2: (a) for the J48 classifier the RR ap-
proach increases accuracy, but for the OAA approach
the increment is not significative; (b) the 3-NN classifier
presents the same results for every segment, but they vary
according to the adopted strategy; (c) for the MLP classi-
fier the decomposition strategies increase accuracy in the
beginning segment for RR, and in the end segment for
OAA and RR; (d) for the NB classifier the approaches did
not increase significantly the classification performance;
and (e) the SVM classifier presents not only the best clas-
sification results, when using RR, but also the worst one
in every segment when employing the OAA approach. A
global view shows that the RR approach surpasses the
OAA approach for most classifiers; the only exception is
the case MLP for Smid.

Table 3 presents the results for the space-time ensem-
ble decomposition strategy in comparison with the space
decomposition strategy applied to the entire music piece.
In this table the TD (Time Decomposition) column indi-
cate values obtained without space decomposition, but us-
ing time decomposition with the majority vote rule. The
column BL (Baseline) stands for the application of the
classifier in the entire music piece with no decomposi-
tions.

Results in Table 3 show that for the entire music piece
the use of the RR strategy increases classification accu-
racy of any classifier regardless the baseline, whereas the



Table 3. Accuracy (%) using space–time decomposition versus entire
music piece

Space–time Ensembles Entire Music
Classifier TD OAA RR BL OAA RR
J48 47.33 49.63 54.06 44.20 43.79 50.63

3-NN 60.46 59.96 61.12 57.96 57.96 59.93
MLP 59.43 61.03 59.79 56.46 58.76 57.86
NB 46.03 43.43 47.19 48.00 45.96 48.16

SVM – 30.79 65.06 – 37.46 63.40

OAA strategy presents superior results only for the MLP
neural net classifier. When comparing the global results
for the entire music piece, the RR strategy results over-
come the OAA strategy in most cases.

In the case of using combined space-time decompo-
sition, both OAA and RR strategies marginally increase
classification accuracy. When comparing the entire music
with space-time decomposition the results are similar of
the ones in the previous experiments: for J48, 3-NN and
MLP in all cases the decomposition results are better; for
NB the results are inconclusive; and for SVM the results
are superior only for the RR strategy. The best overall
result is achieved using SVM with space-time decompo-
sition and the RR approach.

5. FEATURE SELECTION AND RELATED
EXPERIMENTS

The feature selection (FS) task is the selection of a
proper subset of original feature set, in order to simplify
and reduce the preprocessing and classification steps, but
assuring the same or upper final classification accuracy
[3], [6].

The feature selection methods are often classified in
two groups: the filter approach and the wrapper approach
[29]. In the filter approach the feature selection process
is carried out before the use of any recognition algorithm,
as a preprocessing step. In the wrapper approach the pat-
tern recognition algorithm is used as a sub-routine of the
system to evaluate the generated solutions.

In our system we employ several feature vectors, ac-
cording to space and time decompositions. The feature
selection procedure is employed in the different time seg-
ment vectors, allowing us to compare the relative impor-
tance and/or discriminative power of each feature accord-
ing to their time origin. Another goal is to verify how
the results obtained with the ensemble-based method are
affected by the features selected from the component seg-
ments.

The employed feature selection procedure is based
on the genetic algorithm (GA) paradigm and uses the
wrapper approach. Individuals – chromosomes in the
GA paradigm – are F -dimensional binary vectors, where

F is the maximum feature vector size; in our case we
have F = 30, the number of features extracted by the
MARSYAS framework.

The GA general procedure can be summarized as fol-
lows [34]:

1. each individual works as a binary mask for the asso-
ciated feature vector;

2. an initial assignment is randomly generated: a value
1 indicates that the corresponding feature must be
used, and 0 that it must be discarded;

3. a classifier is trained using only the selected features;

4. the generated classification structure is applied to a
validation set to determine the fitness value of this
individual;

5. we proceed elitism to conserve the best individuals;
crossover and mutation operators are applied in or-
der to obtain the next generation; and

6. steps 3 to 5 are repeated until the stopping criteria is
attained.

In our feature selection procedure each generation is
composed of 50 individuals, and the evolution process
ends when it converges – no significant change occurs in
successive generations – or when a fixed max number of
generations is achieved.

Tables 4, 5 and 6 present the results obtained with the
feature selection procedure applied to the beginning, mid-
dle and end music segments, respectively [34]. In these
tables the classifier is indicated in the first column; the
second column presents a baseline (BL) result, which is
obtained applying the corresponding classifier directly to
the complete feature vector obtained from the MARSYAS
framework; columns 3 and 4 show the results for OAA
and RR space decomposition approaches without feature
selection; columns FS, FSOAA and FSRR show the cor-
responding results with the feature selection procedure.

Table 4. Classification accuracy (%) using space decomposition for the
beginning segment of the music (Sbeg)

Classifier BL OAA RR FS FSOAA FSRR
J48 39.60 41.56 45.96 44.70 43.52 48.53

3-NN 45.83 45.83 45.83 51.19 51.73 53.36
MLP 53.96 52.53 55.06 52.73 53.99 54.13
NB 44.43 42.76 44.43 45.43 43.46 45.39

SVM – 23.63 57.43 – 26.16 57.13

Analyzing these results for each classifier we can out-
line the following conclusions: (a) for J48 and 3-NN the
feature selection method with the RR space-time decom-
position approach produces better accuracy than the other



Table 5. Classification accuracy (%) using space decomposition for the
middle segment of the music (Smid)

Classifier BL OAA RR FS FSOAA FSRR
J48 44.44 44.56 49.93 45.76 45.09 50.86

3-NN 56.26 56.26 56.26 60.02 60.95 62.55
MLP 56.40 53.08 54.59 54.73 54.76 49.76
NB 47.76 45.83 47.79 50.09 48.79 50.69

SVM – 38.62 63.50 – 32.86 59.70

Table 6. Classification accuracy (%) using space decomposition for the
end segment of the music (Send)

Classifier BL OAA RR FS FSOAA FSRR
J48 38.80 38.42 45.53 38.73 38.99 45.86

3-NN 48.43 48.43 48.43 51.11 51.10 53.49
MLP 48.26 51.96 51.92 47.86 50.53 49.64
NB 39.13 37.26 39.19 39.66 37.63 39.59

SVM – 28.89 54.60 – 28.22 55.33

options; (b) for the MLP classifier feature selection seems
to be ineffective: best results are obtained with the com-
plete feature set; (c) for the NB classifier the FS produces
the better results without space decomposition in Sbeg and
Send, and with the RR approach in Smid; (d) for the SVM
classifier the best results arrive with the use of the RR ap-
proach, and FS increase accuracy only in the Send seg-
ment. This classifier also presents the best overall result:
using the RR space decomposition in Smid without fea-
ture selection.

In order to consider the ensemble approach with time
decomposition, Table 7 presents the results of the con-
ducted experiments using space and time decompositions,
for OAA and RR approaches, with and without feature se-
lection. We emphasize that this table encompasses three
time segments Sbeg , Smid and Send, merged according to
the already described combination procedure.

Table 7. Classification accuracy (%) using global space–time
decompositions

Classifier BL OAA RR FS FSOAA FSRR
J48 47.33 49.63 54.06 50.10 50.03 55.46

3-NN 60.46 59.96 61.12 63.20 62.77 64.10
MLP 59.43 61.03 59.79 59.30 60.96 56.86
NB 46.03 43.43 47.19 47.10 44.96 49.79

SVM – 30.79 65.06 – 29.47 63.03

Summarizing the results in Table 7, we conclude that
the FSRR method improves classification accuracy for the
classifiers J48, 3-NN and NB. Also, OAA and FSOAA
methods present similar results for the MLP classifier,
and only for the SVM classifier the best result is obtained

without FS.
These results – and also the previous ones obtained in

the individual segments – indicate that space decomposi-
tion and feature selection are more effective for classifiers
that produce simple separation surfaces between classes,
like J48, 3-NN and NB, in contrast with the results ob-
tained for the MLP and SVM classifiers, which can pro-
duce complex separation surfaces. This situation corrob-
orates our initial hypothesis related to the use of space
decomposition strategies.

As already mentioned, we also want to analyze if dif-
ferent features have the same importance according to
their time origin. Table 8 shows a schematic map indicat-
ing the features selected in each time segment by our FS
procedure. In this table we employ a binary BME mask
– for (B)eginning, (M)iddle and (E)nd time segments –
where 1 indicates that the feature was selected in the cor-
responding time segment, and 0 otherwise.

Table 8. Selected features in each time segment (BME mask)
Feature 3-NN J48 MLP NB SVM #

1 000 001 010 101 111 7
2 000 000 010 010 011 4
3 000 001 010 011 000 4
4 000 111 010 111 001 8
5 000 000 110 101 100 5
6 111 101 111 111 110 13
7 011 110 110 000 100 7
8 001 111 110 000 111 9
9 111 111 111 111 111 15

10 110 011 111 111 111 13
11 100 001 111 001 110 8
12 011 010 111 011 111 11
13 111 011 111 111 111 14
14 001 010 101 000 011 6
15 011 111 111 111 111 14
16 111 111 111 111 111 15
17 111 100 111 111 111 13
18 111 111 111 111 111 15
19 111 010 111 111 111 13
20 011 010 110 101 101 9
21 111 111 111 101 111 14
22 111 110 111 111 111 14
23 111 111 111 100 111 13
24 011 000 111 001 011 8
25 111 011 101 111 111 13
26 000 010 100 111 111 8
27 000 111 000 101 101 7
28 111 111 011 111 111 14
29 000 100 000 000 101 3
30 000 011 000 111 000 5

Several conclusions can be draw from Table 8. The
last column in this table indicates how many times the cor-
responding feature was selected in the experiments (max
15 selections). Although different features can have dif-
ferent importance according to the classifier, we argue
that this counting gives a global idea of the discrimina-



tive power of each feature. For example, features 6, 9, 10,
13, 15, 16, 17, 18, 13, 21, 22, 23, 25 and 28 are highly
selected, so they are important for music genre classifica-
tion. For more discussion, see [31], [33] and [34]. We
remember that features 1 to 6 are Beat related, 7 to 25 are
related to Timbral Texture, and 26 to 30 are Pitch related.

6. CONCLUSIONS
In this paper we present a novel approach to the Music

Genre Classification Problem, which is based on ensem-
ble approach and the decomposition of the music signal
according to space and time dimensions. Feature vec-
tors are selected from different time segments of the be-
ginning, middle and end parts of the music; in order to
apply simple but effective classifiers, space decomposi-
tion strategies based on the One-Against-All and Round-
Robin approaches were used. From the set of partial clas-
sification results originated from these views of the prob-
lem space, an unique final classification label is provided.
A large brand of classical categorization algorithms were
employed in the individual segments, and an heuristic
combination procedure was used to produce the final mu-
sic genre label.

In order to evaluate the proposal we have conducted a
extensive set of experiments in a relatively large database
– the Latin Music Database, with more than 3,000 mu-
sic pieces from 10 music genres – specially constructed
for this research project. This database was methodically
constructed and is open to new research projects in the
area.

Several conclusions can be inferred from the obtained
results. Firstly, we conclude that the use of the initial
30-second segment of the beginning of the music piece
– which is the most frequent strategy used up to now to
obtain the music feature vector – is not adequate: our test
results show that the middle part is better than the initial
or the end parts of the music signal for feature extraction
(Table 2). We believe that this phenomena occurs because
this middle part the music signal is more stable and more
compatible with the corresponding music genre than the
others. In fact, results obtained using the middle segment
are similar to the ones using the complete music signal;
in the latter case, however, the processing time is higher,
since there is an obvious relation between the length of the
time interval used for feature extraction and the computa-
tional complexity of the corresponding extraction proce-
dure.

Secondly, we conclude that the use of three time seg-
ments and the ensemble of classifiers approach provide
better results in accuracy for the AMGC task than the ones
obtained from the individual segments (Table 3). This

result is in accordance with the conclusions of Li, Ogi-
hara and Li [21], who state that specific approaches must
be used for labeling different music genres when some
hierarchical classification is considered. So, we believe
that our space-time decomposition scheme provides bet-
ter classification results. Unfortunately a direct compari-
son with the results of Tzanetakis and Cook [35], or the
ones of Li, Ogihara and Li [21] is not possible because
the GTZAN database provides only the feature values for
the initial 30-second segment of the music pieces. Our
temporal approach also differs from the one employed
by Bergstra et al. [2], that initially uses simple deci-
sion stumps applied individually to each feature, and then
feature selection and classification in parallel using Ad-
aBoost.

In third place we can analyze the results concerning
the space decomposition approaches. As already men-
tioned, the use of a set of binary classifiers is adequate in
problems that present complex class separation surfaces.
In general our results show that the RR approach presents
superior results regarding the OAA approach (Tables 2
and 3). We justify this fact using the same explanation: in
RR individual instances are eliminated – in comparison
with the relabeling in the OAA approach – so the con-
struction of the separation surface by the classification al-
gorithm is simplified. Our best classification accuracy re-
sult was obtained with the SVM classifier and space-time
decomposition according to the RR approach.

We also evaluate the effect of using a feature selec-
tion procedure in the AMGC problem. Our FS procedure
is based on the genetic algorithm paradigm. Each indi-
vidual works as a mask that selects the set of features
to be used for classification. The fitness of the individ-
uals is based on the classification performance accord-
ing to the wrapper approach. Classical genetic operations
(crossover, mutation, elitism) are applied until a stopping
criteria is attained.

The results achieved with FS show that this procedure
is effective for J48, k-NN and Naïve-Bayes classifiers; for
MLP and SVM the FS procedure does not increases clas-
sification accuracy (Tables 4, 5, 6 and 7); these results
are compatible with the ones presented in [38]. We note
that using a reduced set of features implies a smaller pro-
cessing time; this is an important issue in practical appli-
cations, where a compromise between accuracy and effi-
ciency must be achieved.

We also note that the features have different impor-
tance in the classification, according to their music seg-
ment origin (Table 8). It can be seen, however, that some
features are present in almost every selection, showing
that they have a strong discriminative power in the classi-
fication task.

In summary, the use of space-time decomposition and
the ensemble of classifiers approach provide better accu-



racy for music genre labeling than the use of individual
segments – initial, middle and end parts – of the music
signal, even when the classifier is trained with the whole
music signal. Also, our approach represents an interest-
ing trade-off between computational effort and classifica-
tion accuracy, an important issue in practical applications.
Indeed, the origin, number and duration of the time seg-
ments, the set of discriminative features, and the use of an
adequate space decomposition strategy still remain open
questions for the AMGC problem.

We intend to improve our proposal in order to increase
classification accuracy, by adding a second layer of binary
classifiers to deal with classes and/or partial state space
views that present higher confusion.
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