
THE VISUALIZATION OF EVOLVING SEARCHES

a thesis submitted to

The University of Kent

in the subject of computer science

for the degree

of doctor of philosophy

By

Edward Suvanaphen

December 2006

Abstract

It is a common misconception that all web searches can be answered with a single query. It

is true that when users have a clear idea of what they are searching for, they can specify an

accurate and efficient query to the search engine and find pertinent results in the first 10 search

results returned. However, studies of search engine usage by Jansen et al. ([56],[57], [59]) show

that, on average, one out of every three users cannot satisfy their information need with a single

search, and are forced to perform multiple searches.

This might be because they begin with limited information, or only a vague information need,

and subsequently must browse their data, moving through a variety of different sources. Bates [6]

theorized that as users search and reformulate their queries, they are affected by each new piece

of information that they view, giving them new ideas and directions to follow. Their information

needs are evolving. Furthermore, she noted that each new query contributed information towards

the users final knowledge set, and as a result aided in fulfilling the information need. She

postulated that a query is not satisfied by a single final retrieved set, but instead by different

pieces of information gathered throughout the search. She called this the berry-picking model

(an analogy to picking berries in the forest).

However, performing evolving searches can be time-consuming and difficult, and Bates out-

lined a set of interface issues that needed to be addressed in order to allow users to perform

efficient evolving searches. As of yet no research has focused on the development of tools to

directly aid users in performing evolving searches. This thesis will investigate the visualization

aspects of evolving searches, looking at each of Bates’s interface issues and considering different

tool designs, techniques and technologies that would prove beneficial to a user performing an

evolving search. The outcome of this thesis, is the design, implementation and evaluation of a

tool for aiding users in performing evolving searches.

ii

Acknowledgements

When I was ten, I told my father that I wanted to be a doctor. My father looked me in the eye,

and asked me “Why do you want to be a doctor?”. I simply replied that I wanted to be just like

him. If you asked me the same question now, I would reply “It’s complicated”. I dedicate this

work to my father, my first inspiration, the original Dr. Suvanaphen.

I would like to thank my supervisor, Jonathan Roberts for his advice and guidance, through-

out the last four years. Jonathan has taught me many things and provided me with many

opportunities in my research, and I am honoured to have worked with him.

Of my colleagues, I would like to thank Matthew Jadud and Rodolfo Gomez for their invalu-

able assistance in reading and providing comments on my thesis. I would also like to extend

my thanks to all my office mates, Christian Jacobsen, Damian Dimmich, Keith Franklin, and

Richard Walker, who have all supported me in my work at various points in my stay here.

I would also like to make a special mention to those people in Canterbury who have affected

my life here. I would like to thank the people of Woodland way, Brad Wyble, Carrie Jadud,

Romain Laborde, and Poul Henriksen for supporting me and putting up with my eccentricities.

My special thanks goes out to Gustavo Herodier, long-time friend, fellow artist and partner in

crime, who has had to put up with me the longest.

Finally i’d like to thank my family, for their love and support through out my life, and for

providing me every possible opportunity. To my mother, thank you for each and every letter

you sent, they kept me going when I was down, and gave me strength, when there was none left.

To my father, thank you for constantly pushing me to be better, you were my inspiration, and

the reason I wanted to become a doctor.

iii

Contents

Abstract ii

Acknowledgements iii

List of Tables 6

List of Figures 9

1 Introduction 10

1.1 Motivation . 11

1.2 The evolving search model . 13

1.3 Contributions . 17

1.3.1 Publications . 18

1.3.2 Chapters . 19

2 Model and Theories of Searching 20

2.1 Information-retrieval . 24

2.2 Information-seeking . 26

2.2.1 Unstructured search models . 27

2.2.2 Hybrid search models . 30

2.2.3 Structured search models . 33

2.2.4 Discussion . 39

2.3 Studies of Search behaviour . 41

2.3.1 Changes in search behaviour . 44

2.4 Overview . 47

3 Visualization, Techniques and Technologies 48

3.1 Web searching . 49

3.1.1 Search engine . 50

3.1.2 Web browser . 54

1

3.2 Evolving Search issues . 55

3.2.1 Opportunistic searching . 55

3.2.2 Information Recall . 65

3.2.3 Information visualization . 71

3.3 Online interface issues . 77

3.3.1 Information-seeking . 77

3.3.2 Information Management . 84

3.3.3 Overview . 90

4 Design 91

4.1 The visual-bracketing tool . 92

4.1.1 Design . 93

4.1.2 Implementation I : visual-bracketing tool 95

4.1.3 Implementation II: coordinated bracketing tool 96

4.1.4 Evaluation . 97

4.2 The comparison tool . 98

4.2.1 Design . 98

4.2.2 Implementation . 100

4.2.3 Evaluation . 102

4.3 The visual-history toolbar . 107

4.3.1 Design . 107

4.3.2 Implementation . 112

4.4 Information management tools . 113

4.4.1 Design . 114

4.5 Overview . 115

5 EvoBerry 117

5.1 Prototype version . 119

5.1.1 View I : search bar . 120

5.1.2 View II : desktop . 121

5.1.3 View III : tool bar . 124

5.1.4 Java web browser . 125

5.1.5 Overview . 126

5.2 Technical discussion . 129

5.2.1 Technologies used . 129

5.2.2 Technical challenges . 131

5.3 Final version . 134

2

5.3.1 Part I : results frame . 137

5.3.2 Part II : toolbox . 142

5.3.3 Part III: Tabbed Browser . 144

5.3.4 Overview . 147

6 Experiment and results 149

6.1 Visualization experiments . 149

6.2 Information-seeking experiment . 154

6.2.1 Experimental design challenges . 156

6.3 Experimental design . 157

6.3.1 Experimental procedure . 160

6.3.2 Experimental data . 162

6.4 Overview . 164

7 Results and analysis 165

7.1 Experimental results . 165

7.1.1 Questionnaire data . 168

7.1.2 Video data . 171

7.1.3 Overview . 173

7.2 Comparison data . 176

7.2.1 Analysis : comparison data . 178

7.3 Tool usage data . 183

7.3.1 Analysis : tool usage data . 184

7.4 Search progress data . 185

7.4.1 Analysis : search progress data . 187

7.5 Experimental factors . 188

7.6 Overview . 192

8 Conclusion 194

8.1 Achievements . 194

8.2 Challenges of the research . 196

8.3 Future work . 199

8.3.1 Extending the current design . 199

8.3.2 Investigating new issues . 200

8.3.3 Following new research . 201

8.4 Overview . 201

A Experimental hand-outs 203

3

B Logged and observed data 213

C Miscellanous 217

C.1 Questionnaire data . 217

C.2 EvoBerry tool java code . 217

4

List of Tables

1.1 Web log data . 12

1.2 Multi-tasking in web searches . 12

2.3 Table of unstructured search models . 28

2.4 Choo’s behavioural model of information-seeking on the web. 31

2.5 Belkin’s Information Seeking Strategies (ISS) . 32

2.6 Example of two ISS . 33

2.7 Data from Search behaviour studies . 42

2.8 A Comparison of the changes in Search behaviour 42

4.9 Criteria for selecting relevant web sites . 104

4.10 SES experiment : scoring . 104

4.11 SES experiment : pages investigated by the control group 104

6.12 Nielsen’s usability heuristics . 150

6.13 The differences between heuristic and empirical evaluations 150

6.14 Experimental specifics . 158

6.15 Evolving search scenarios . 159

6.16 Logging program variables. 161

6.17 Questionnaire questions . 161

7.18 Comparison data abbreviations . 166

7.19 Summary of the comparison results . 166

7.20 Summary of EvoBerry function usage . 167

7.21 Internet Explorer function usage . 167

7.22 Search progress data abbreviations. 167

7.23 Search progress data (means) . 167

7.24 Tool usage data abbreviations . 168

7.25 Questionnaire results (frequency of use) . 168

7.26 Questionnaire results (ease of use) . 169

7.27 Data descriptives: time . 176

7.28 Data descriptives: accuracy . 176

5

7.29 Data descriptives: searches . 177

7.30 Data descriptives: threads . 177

7.31 Data descriptives: web pages . 178

7.32 Pearson’s correlation: between conditions . 180

7.33 Pearson’s correlation: within conditions . 180

7.34 T-test results of the comparison data . 181

7.35 Correlation of comparison and tool usage data 184

7.36 Data descriptives: EvPT - IePT . 185

7.37 Data descriptives: EvPA - IePA . 186

7.38 Data descriptives: EvSc - IeSc . 186

7.39 Search progress data : within conditions t-test 189

7.40 Search progress data : between conditions t-test 189

7.41 Regression analysis : EvPT3 and IePT3 . 189

B.42 Legend of variables in the experimental data. 214

6

List of Figures

1.1 The evolving search model . 14

1.2 The berry-picking model . 15

2.3 A model of classic information-retrieval . 24

2.4 Models of searching . 27

2.5 Daft and Weick’s scanning modes . 29

2.6 Revisitation patterns: a student’s search session 34

2.7 A basic model of information-seeking . 35

2.8 A more advanced model of information-seeking 35

2.9 Hearst’s model of information access processes 35

2.10 Ingwersen’s model of the IR Process . 38

2.11 Saracevic’s stratified model of the IR Process . 38

2.12 Wilson’s ‘nested’ model of search behaviour. 39

3.13 A Map of the Internet. 49

3.14 The Google search engine . 50

3.15 Firefox web browser . 53

3.16 Suh et al’s popout prism tool. 56

3.17 Distortion geometry . 57

3.18 Focus-and-context design . 59

3.19 The Zoom Browser . 59

3.20 The Grokker web browser . 60

3.21 Hy+ Web Browser . 61

3.22 Hy+ Web Browser (‘Blobs’ view) . 61

3.23 Web Forager and Web Book . 62

3.24 Wasted space v.s. distorted space . 63

3.25 Flip zooming layout . 63

3.26 Hierarchical image browser . 64

3.27 Graphical history navigation . 68

3.28 Kaasten et al’s Integrated History Tools . 68

7

3.29 Mann’s Insyder Tool . 72

3.30 Multi-form Glyphs . 73

3.31 Cugini’s three-dimensional scatter-plot . 73

3.32 Tilebar search interface. 75

3.33 Spiral metaphor visualizations . 75

3.34 Topographical maps visualizations . 76

3.35 Topographical map metaphor . 76

3.36 Scent Trails . 79

3.37 MetaCrystal category view. 80

3.38 The MetaCrystal clustered bulls-eye . 80

3.39 The Rank spiral . 83

3.40 Nowell et al’s Envision search tool . 83

3.41 The Clusty search engine . 85

3.42 Keyword/Concept Matrix . 85

3.43 The Scatter-gather tool . 87

3.44 The Aspect windows interface . 87

3.45 The BumpTop desktop metaphor . 88

4.46 Visual-bracketing design . 93

4.47 Visual-bracketing scrolling mechanism . 94

4.48 Visual-bracketing tool . 95

4.49 Coordinated bracketing tool . 96

4.50 Model of Code Comparison . 99

4.51 The SES (search engine similarity) tool. 100

4.52 SES : Circle Glyphs . 101

4.53 SES : Summary view. 101

4.54 The t-test Equation . 104

4.55 SES experimental results . 106

4.56 Tree representation of a search history . 109

4.57 A search history mapping hue . 109

4.58 A search history mapping size . 109

4.59 A search history mapping time . 110

4.60 The visual-history tool . 111

4.61 The visual-history tool dealing with overflow . 111

4.62 The visual-history toolbar when minimized . 111

4.63 The visual-history toolbar when maximized. 112

5.64 Evolving search tool data structure . 118

8

5.65 EvoBerry prototype . 119

5.66 Prototype results frame . 122

5.67 Prototype toolbar . 124

5.68 Prototype web browser toolbar . 126

5.69 Java light-weight/heavy-weight problems . 133

5.70 EvoBerry final version . 136

5.71 EvoBerry parts 1-3 . 136

5.72 Detailed look at the results frame . 138

5.73 Layout of the results frame . 138

5.74 The visual-bracketing technique . 140

5.75 Right-click pop-up . 141

5.76 The toolbox and its three different tools. 143

5.77 The Splitpane . 145

5.78 The tabbed web browser view . 145

5.79 The visual-history toolba . 146

6.80 Answer sheet program . 162

7.81 Types of correlation . 175

A.82 Pre-experiment questionnaire page 1 . 204

A.83 Pre-experiment questionnaire page 2 . 205

A.84 EvoBerry guide page 1 . 206

A.85 EvoBerry guide page 2 . 207

A.86 EvoBerry guide page 3. 208

A.87 EvoBerry guide page 4 . 209

A.88 EvoBerry guide page 5 . 210

A.89 Post-experiment questionnaire page 1 . 211

A.90 Post-experiment questionnaire page 2 . 212

B.91 Combined comparison data . 215

B.92 EvoBerry search progress data . 215

B.93 Internet Explorer search progress data . 216

B.94 Combined tool usage data . 216

9

Chapter 1

Introduction

“You can’t always get what you want, but if you try

sometimes, you might find you get what you need.”

- Mick Jagger (The Rolling Stones).

Searching for information can be difficult, and try as you may you don’t always find what

you want. However, sometimes while searching you happen upon something that is different to

what you were looking for, but at the same time interesting and relevant. Hence, you might “get

what you need”. From this perspective, it is easy to see that searching is a journey of discovery,

and people learn things as they search which in turn may affect their needs, directions and goals.

These themes of discovery and changing needs are common to web searching. Take for

example a standard online search : users will enter keywords into the search engine, in an

attempt to find relevant information, viewing search results and browsing web pages as their

session progresses. After viewing some results, users may change their minds and alter their

topic of search. With every search, users adapt and change their behaviour based on the pages

read and information viewed: they are performing an evolving search.

The evolving search and berry-picking model are both theories developed by Marcia J.

Bates [6] which model the search behaviours of people seeking information in a library. Many

authors have alluded to the validity of this theory, and have connected it to the search behaviour

of people in online environments. Evidence from observations studies by Ellis [30], and Borgman

[13], as well as work by O’Day et al. [86], support the existence of behaviour. As of yet

no research has been focused on the development of tools to directly aid users in performing

evolving searches.

This thesis investigates the visualization and user-interface aspects of evolving searches; it

considers different information-seeking strategies, visualization techniques and interface methods

10

that could be used to support and help users in their effective evolving searches. The objective is

to detail the design, implementation and evaluation of tools to aid users in performing effective

evolving searches.

Examples and expressions

In this thesis, certain examples are used repeatedly to keep a level of consistency for the reader,

as well as prevent any confusion that may arise. When an example is given of an evolving

search in this thesis, it will either relate to planning a safari holiday in Africa, or ‘the big five’

safari animals (Africa’s most dangerous wild animals). However, this is not to say that evolving

searches are only performed when planning a holiday. Evolving searches are diverse, and can

cover a large number of different subjects and situations, such as shopping online for a birthday

present, or searching for a rare research paper online.

In this thesis certain non-standard expressions are used for specific reasons. When the search

terms input into a search engine are stated in this text, a pair of square brackets are placed on

either side of the search terms used. For example, the phrase [safari animals] would be used

to represent a search where the words ‘safari’ and ‘animals’ were input into the search engine.

This expression is used so that the reader is clear as to what constitutes a quotation (“safari

animals”) and what constitutes a set of search terms ([safari animals]). Some search engines

use quotation marks to indicate that a set of search terms should be treated as a phrase. Using

the square brackets expression, these can be represented without ambiguity e.g. when writing

in this thesis about a search for the exact phrase “the big five” using the Google search engine

[36], the phrase [“the big five”] will be used.

1.1 Motivation

Thousands of pounds are spent every year in an effort to develop more efficient and accurate

search engines, and yet finding information on the World Wide Web (WWW) is still very

difficult. The WWW is a vast resource, and searching through it is a massive task. If not

for the advent of search engines, the Web would still be the domain of computer enthusiasts

and academics, leaving many of the Web’s resources untapped. Web searching can take one of

two forms, directed searching, where users begin the search with a clear set of objectives, and

browsing, where users begin with only a vague idea of what to search for. When users begin

browsing, they lack enough information to specify an accurate or efficient query. The three most

common situations that initiate browsing are a lack of initial information, searching in a new

area, or a lack of direction.

Sometimes users try to recall a piece of information but can only remember fragments of

11

AltaVista.com AllTheWeb.com Excite.com
1998 2002 2001 2002 1997 1999

Searches performed
1 77.6% 47.6% 53.0% 59.0% 48.4% 67.0%
2 13.5% 20.4% 18.0% 16.0% 20.8% 19.%
3+ 6.9% 32.0% 29.0% 25.0% 30.8% 14.0%

Results pages
1 85.2% 72.8% 83.0% 76.0% 28.6% 58.0%
2 7.5% 13.0% 10.0% 13.0% 19.5% 19.0%

3+ 7.3% 14.1% 7.0% 11.0% 51.9% 23.0%

Table 1.1: Web log data : multiple searches. Results from multiple studies performed by Jansen
et al. [57] [59] , showing that a significant portion (between 30 and 50%) of users perform multiple
searches.

number of queries per session
2 3+

Total sessions 254 483
Multi-tasking sessions 206 441

% of Multi-tasking sessions 81.1% 91.3%

Table 1.2: Multi-tasking in web searches. Spink et al [104] performed an analysis using the
aforementioned AltaVista 2002 data, investigating multi-tasking in web searches.

the details. This lack of initial information limits their search vocabulary, and restricts the

effectiveness of the queries they generate. For example, a situation where users view an advert

for safari holidays, and then several weeks later decide to go on a safari holiday, but are unable

to recall many of the details of the website or the holidays shown. Sometimes users investigate a

new area, where they have little or no knowledge, limiting their search vocabulary. An example

would be if users searched for information about a country they wished to visit, but had never

visited before. Sometimes users have not decided what they are searching for. For example,

when picking a destination to go on holiday, users might have a general idea of what type of

holiday they want (e.g. by the beach, at a ski resort), but they might not know exactly which

country or town will suit their requirements best. They then need to browse websites to gather

enough information to make an informed decision.

To construct an adequate query in such situations, users must start by generating very broad

and general searches based on the limited information available, and absorb information as they

progress. The information from these multiple searches is then incorporated into future searches,

bringing them closer and closer to a more optimal set of search terms.

Multiple searches are often the result of poor query formulation. Jansen et al. [57] observed

multiple search behaviour in a series of studies of search engine logs. Table 1.1 shows a selection

of results from Jansen’s studies. The results show that while the majority of searchers will

only engage in a single web search on, between 30% and 50% of users will perform multiple

searches. A follow on study by Spink et al. [104] investigated the occurrences of multi-tasking

12

within web searches, (see Table 1.2) The results seem to indicate that the search topic would

be changed at least once in a large portion of multiple search sessions (81% in 2-query search

sessions, and 91% in 3 or more query sessions). This evidence suggests that multiple searches

promote information diversity, subtly changing a searcher’s topic as the search progresses. No

evidence has been given to suggest exactly why people change topics during a search, however

possibilities include hidden associations between topics, search term ambiguity and impulsive

search behaviours.

If different searches performed by users have hidden associations, it may appear as if users

are changing their topics during a search, when in fact they are still researching information on

the same topic. For example, hotels and safari animals would be considered as different topics

unless used in reference to a tourist’s visit to South Africa, where the tourist would be interested

in investigating both topics.

An initial search performed by users can sometimes prove too ambiguous, and careful inspec-

tion of the first set of search results may result in a more concentrated (yet topically different)

search. For example, when searching for the ‘big five’ safari animals, the top five safari animals

in Africa, users may perform the search [the big five]. However, ‘the big five’ is a very ambiguous

phrase, and also refers to the five main psychological models, the top five record labels, and a

chinese text character set.

As users refine their searches, it may seem as if a topic change is taking place. Searching

in one topic sometimes triggers something completely unrelated, for example, while searching a

news website for information on safari animals, users may happen upon an article for healthy

eating that may interest them, and thus change topic.

Multiple searches, browsing and information diversity are traits that appear in certain types

of web searches, and often cause users difficulties, due to the large amount of information

generated while searching, and the large amount of time needed to process the information.

These traits form part of the evolving search model, and these ‘difficult searches’ are very often

evolving searches. By contrast, evolving searches are not the only type of search users perform,

and most of the time users will perform ‘easy searches’ where the user inputs a set of search

terms, and immediately receives the information that he desires in the first set of results returned.

1.2 The evolving search model

Over a decade ago Marcia J. Bates suggested that while browsing information, users develop

new ideas and directions, evolving their information need as they forage for information. She

named this the evolving search [6]. A detailed model of the theory can be seen in Figure 1.1.

Bates also theorized that the final answer to an information need was not formed of a single set

13

Figure 1.1: The evolving search model. The model was invented by Bates [6], and gained
popularity as a more accurate view of web searching behaviour than previous models based on
traditional information retrieval. The evolving search takes into account all user information pro-
cessing actions during the search (signified here by the added ‘information management’ section),
and unlike its predecessors allows the option for users to modify their starting information need.

of results, but was made up of several different pieces of information, obtained from different

sources at different stages in the search. She named this the berry-picking model. The berry-

picking model is analogous to the picking of berries in a forest. The berries are often scattered

around and the picker is forced to go from bush to bush picking one set of berries at a time.

In the same way, the information needed to answer an information need is sometimes scattered

among many different web sites, forcing searchers to move from web page to web page gathering

information.

Bates’s theories were supported by several authors (Line [68], Hogeweg-de-Haart [48], Stoan

[107] and Stone [108]) and in a variety of different environments, particularly in the social

sciences and humanities. Ellis’s [30] work on social scientists supports and amplifies the results

of earlier studies, and Kuhlthau’s work [64] with high school students suggests that there is a

great deal of exploratory searching that goes on, both before and after a topic for a paper is

selected. Both Mann [71] and Hearst [43] cited Bates’s model as a more realistic view of the

web search process, and both used it as a basis for their own search behaviour models. Most

recently O’Day et al. [86] confirmed the existence of the berry-picking model in an experiment

which observed the search behaviour of professional intermediaries. During the experiment it

was noted that clients would, over time, conduct a series of diverse but interconnected searches

on a single, problem based theme, rather than one extended search session per task. O’Day

noted that it was often the accumulation of the search result information, not the final set of

search results, that had the most value for the library clients. This became apparent when

clients began writing summaries of the materials they had found, after the search was finished.

Figure 1.2 details an example of an evolving search, based around a person planning a safari

14

Figure 1.2: The berry-picking model : an example In this scenario a person is planning
a safari holiday, and searches for cheap holiday packages in africa, which include safari tours (in-
formation need #1). The person gathers information from various sources (websites, searches,
bookmarks), storing and comparing the information as the search progresses. At some point dur-
ing the search, the person reads about the ‘big five’ safari animals, and becomes determined to
see them. This changes the users information need from searching for cheap hotels to finding out
which African countries have the ‘big five’ (information need #2). The person recalls some sources,
performs new searches and saves the data.

holiday (see Figure 1.2). The person’s initial information need is to look for cheap holiday pack-

ages which include safari tours. First a web search for websites offering safari holiday packages

are made and compared, to find the cheapest package. The person also loads a bookmark of a

web page from a previous web search, which advertised cheap holiday packages. As the person

views web pages and gathers useful information, he learns about the ‘big five’ safari animals,

the five most dangerous wild animals in Africa. The person becomes interested in the ‘big five’

and performs a second search, this time concentrating on finding countries in which the ‘big

five’ can be seen. The person’s information need has now changed from finding cheap holiday

packages to finding countries with the ‘big five’. The person will view additional web pages,

and also perform a map search using an online map service to find the geographical location of

countries that he reads about. The person finds that the ‘big five’ can be seen in South Africa,

and he consults the web pages from his previous search (recalling them) to find out if any of

the cheap holiday packages he discovered in the first search go to South Africa. The search ends

15

when the person has found a suitably cheap safari holiday package going to South Africa.

This example demonstrates that the information needs of users change as search queries

change, and that users refer to multiple sources, and sometimes need to refer back to previously

viewed information (such as webpages, bookmarks, or previous searches). While many of Bates’s

observations were based on the searching habits of people consulting manual sources (libraries)

and users interactions with databases, she was a great advocate of the then blossoming hypertext

environment describing it as ‘tailor-made’ for solving many of the problems of the evolving

search.

Bates’s interface issues

In Bates’s research [6] she detailed interface issues that needed to be addressed in order to im-

prove the efficiency of users performing evolving searches. These issues were related to designing

interfaces in a manner that would allow users to search more naturally as well as aid them in

finding information. There are several different strategies that are called upon when searching

in the library (e.g. footnote chasing, journal run, area scanning) and Bates noted that interfaces

should enable easy switching between each of the different search tactics. She also stated that

an effective online environment must allow users to browse quickly and randomly over the infor-

mation, much like the physical act of scanning over the titles of books on a shelf, or skimming

through the pages of a book.

Bates suggested modeling the search interface after a real-life analogy in order to facilitate

understanding of the interface and guide the actions of users. She suggested that it may be

the physical layout and organization of certain familiar search structures (such as libraries) that

people are most familiar with, rather than the complex intellectual relationships developed with

catalogue entries, books, periodical indexes, journals etc. Thus, creating a virtual physical layout

on the screen may make it easier for users to interact with information. Observations by Bates

showed that searchers in the library would consult multiple sources of information (e.g. library

databases, citation indexes, journals) as well different types of text (e.g. narrative, statistical,

bibliographic references). The limitation of this strategy was that users had to physically relocate

themselves each time they wished to consult a new data source. Even switching between different

databases (during Bates’s period) was difficult. Ideally users should have quick and easy access

to different sources and types of data.

Bates also noted that, under the berry-picking model, evolving searches generate a large

amount of information, from diverse topics. As a result it is important that users are able to

view the data as a whole, as well as selectively inspect individual aspects of the data. It is also

important that users be able to manage the diverse strands of multiple searches generated, and

keep track of the information generated. Given the large amount of information generated, it is

16

also necessary to be able to highlight or flag interesting pieces of data in temporary storage, for

specific viewing later. Similarly users may wish to recall information that they had previously

visited, signifying the importance of an automatic storage system, that allows quick and easy

recall of data.

The evolving search model was originally based on observations of searchers in the library, as

well as their interactions with databases. As a result, some of Bates’s evolving search issues do

not apply to searchers on the WWW due to differences in technology and information structure.

These differences have also led to the introduction of new interface issues, which will also be

looked at in this research.

1.3 Contributions

Evidence based on the observation of online search behaviour (in section 1.1) alludes to the

existence of evolving search behaviour in searchers of the WWW. As of yet no research has

been focused on the development of tools to directly aid users in performing evolving searches.

The objective of this thesis is to detail the design, implementation and evaluation of tools to

aid users in performing effective evolving searches. The research will aim at addressing five

evolving search interfaces issues, three taken directly from Bates’s interface issues [6], and two

new interfaces issues, not present in Bates’s observations, which are related directly to searching

in an online environment. The three issues taken from Bates’s work [6] relate to the areas of

information visualization, opportunistic searching and information recall.

The issue of information visualization relates to the large amounts of data generated from

searches. Evolving searches in an online environment generate multiple searches and multiple

Web pages, which make viewing the data as a whole difficult. Visualization techniques exist

that allow users to view and seek specific information in such circumstances. The issue of

opportunistic searching relates to the common search tactic of browsing randomly through

data. Existing search engine interfaces limit user’s abilities to search opportunistically, because

of existing display conventions (textual format, displaying 10 results at a time, needing to use

the ‘next’ button to view more results). Existing search interfaces would benefit from the

application of visualization techniques that allowed opportunistic browsing. Bates identified

that information recall was also an issue, since it is very easy to lose track of specific pieces of

data amongst the large quantities of data generated. The same can be said for web searching,

where users often have a hard time recalling previously visited web pages and search results.

Various visual recall and history tools can be introduced to interfaces to aid users in recalling

data.

17

Some interface issues are not mentioned in Bates’s work [6] due to differences between search-

ing in manual print environments (libraries) and online environments (WWW). These are issues

related to seeking interesting and relevant information, and managing user’s information and

search tools. Search interfaces should provide different ways of seeking interesting and rel-

evant information, as well as ways to display the information from different perspectives.

Visualization techniques can be used to display different aspects of the data and meta data

of search results as well display any correlations or subsets that may arise, which users would

normally have to achieve cognitively. During an evolving search, the management of data be-

comes important because of the numerous threads generated as user’s information needs change.

It is important to keep track of these in case users should find themselves back tracking, and

wanting to follow previously visited threads. Tools to manage this data can be beneficial in

recalling previous information as a basis for exploring new areas and finding more interesting

information.

This research will make the following contributions: (1) provide an insight into the problems

of evolving searches, and detail the different visualization techniques that can be used to solve

these problems, (2) implement a working evolving search tool, based on the research, and (3)

design and implement an experiment to analyze the viability of the design theories, as well as

the effectiveness of the visualization techniques in aiding users to perform evolving searches.

1.3.1 Publications

Throughout the course of the research a set of papers were peer-reviewed and published for

different conferences. The goal of the research was to design and implement a tool to help users

perform evolving searches. Each of these papers followed the development of an evolving search

tool, starting from its basic components, up to the final design.

The paper “Visual bracketing for web search result visualization”, looked at a display and

interaction component of the evolving search tool, introducing a novel focus-and-context method-

ology for displaying and browsing web search results called ‘visual bracketing’. The paper was

presented at the IV03 (information visualization) conference in 2003, and was published in the

conference proceedings.

The paper “Textual difference visualization of multiple search results utilizing detail in con-

text”, describes the SES (Search engine similarity) tool, which introduces a method of finding

and displaying similar results across multiple searches. The paper was presented at TPCG

(Theory and practice of computer graphics) in 2004 and was published in the conference pro-

ceedings. This was followed by the paper, “Explicit verses Implicit: An analysis of a multiple

search result visualization”, which described an experiment to test the effectiveness of the SES

tool. The paper was presented at the IV04 (information visualization) conference in 2004 and

18

was published in the conference proceedings.

A final paper was written entitled “Visualizing evolving searches”, describes the design,

implementation and evaluation of the final design of the EvoBerry evolving search tool. This

paper was submitted to the VAST06 (Visual Analytics) conference, and is awaiting review.

1.3.2 Chapters

In this chapter the theory behind the research has been discussed, as well as the aims for this

thesis. Below is a summary of the structure of the thesis, as well as the contents of the chapters:

• Chapter 2 discusses the theories and models that surround web searching, and how they

relate to the evolving search.

• Chapter 3 covers the technology and visualizations which can aid users in performing

evolving searches. The chapter will look at the current state of web searching technology,

and then go onto discuss the different interface issues presented by Bates, as well as the

techniques used to solve them.

• Chapter 4 describes the design of the evolving search tool and presents the various stages

of implementation that took place on the way to developing the final tool.

• Chapter 5 presents the final design of the EvoBerry search interface. A short summary

of the technical challenges faced when developing the tool is also included.

• Chapter 6 details the design and implementation of an evolving search experiment. This

design is used in turn to test the effectiveness of the EvoBerry interface.

• Chapter 7 analyzes the data returned from the experiments. Trends in the data are

identified and explained.

• Chapter 8 concludes the thesis and discusses future work and research.

19

Chapter 2

Model and Theories of Searching

“Search is actually a last resort. If you knew the answers you wouldn’t need to search.”

- John S. Rhodes (webword.com)

Web searches are initiated when users find a deficit in their knowledge which cannot be sat-

isfied easily by consulting information sources in the nearby environment (e.g. asking friends,

consulting nearby documents). This ‘failure’ to acquire information becomes an information

need, which consists of the specific elements users need to acquire in order to fill the gaps in

their knowledge. One of the crucial differences between information-seeking and information-

retrieval is the specification of the information need. In information-retrieval it is assumed that

users have a clear idea of what their information need is, and can specify exactly what they

want, and where to find it. In information-seeking, users have a less clear idea of their infor-

mation need and often must ‘browse’ in order to gather sufficient information to build a clearer

information need.

Belkin [10] called this the Anomalous State of Knowledge (ASK). The theory behind the

ASK hypothesis is that an information need arises from a recognized anomaly in the state of

knowledge of users, concerning a topic or situation that they are unable to specify precisely as

a query that can be understood by the search engine. This inability to specify a precise query

manifests itself in the form of multiple searches, browsing strategies, and reformulation based

on information acquired during the search, all of which are themes discussed in this chapter.

In this work, web searching refers to the act of using online search engines to search the

World Wide Web (WWW) for information. Users begin by typing in a set of words (the query)

into the search engines interface, and are returned a list of search results (typically each page

contains 10 results), each search result containing a short description and a link to a website that

the search engine thinks matches the search criteria. The technical aspects of search engines

20

and web searching, will be discussed in more detail in Chapter 3.

There are two basic forms of web searching behaviour that form the basis for most web

searching strategies, directed searching, and browsing. In directed searching, users have a clearly

defined objective (e.g. find out the cost of a flight to South Africa) and have an established

vocabulary that can be used to return a set of pertinent search results (e.g. using the terms,

[cost], [flight], [south africa]) from the search engine. Directed searches only require a single

search before users find the information they need. In browsing, users will start by performing

very broad searches, and will spend a lot of time reading web pages, gathering information that

may aid them in narrowing their search. This is either because they are unable to specify their

query clearly, begin the search with little or no knowledge of the domain they are searching, or

are undecided as to what their information need is. These are both considered extremes on a

spectrum of web searching behaviour, and very often a user’s search will consist of a combination

of the two behaviours utilized at different points in the search session.

Sometimes users have a clear idea of what they want, but don’t know where to find it

and cannot translate the concepts in their head into words that will form an effective search.

This will be referred to as browsing because of limited information. For example, when reading

web pages online users might happen to see a website advert promoting cheap flights to South

Africa, but only give the advert a cursory glance, taking in the colours, objects and pictures

of the advert. But when users try to recall the advert later, they will be hard pressed to find

the advertised website on the World Wide Web, with the few details remembered. They will

attempt a few broad searches based on what few details they can recall, and gather information

from the results returned in the hope of finding a link to the sought website, or more keywords

that will help generate a search which is a closer match.

Users might be searching for general information in an area in which they are unfamiliar,

and thus be less concerned about what information they obtain or where they obtain it from.

This will be referred to as browsing because of unfamiliar territory. In such situations users have

little or no knowledge of the area, and are merely searching for a piece of information to act as

a stepping stone to further information. For example, when researching a subject or area with

which they are unfamiliar, users will perform several broad searches, and then begin visiting

numerous pages on the subject.

Sometimes users might start the search without a clear information need; they have only a

vague idea of what they are looking for, and don’t know where to start looking. This will be

referred to as browsing because of unclear objectives. Most of the time users will either ‘know it

when they see it’ or will get a better idea of what they are looking for as their search progresses.

For example, when planning a holiday, users might begin with a vague information need (“a

cheap holiday”), and thus will want to generate as much information as possible. By generating

21

and browsing the information, users begin to form a concept of what their information need is,

and start forming a clear set of objectives.

Browsing strategies often have no clear end-criteria (e.g. an objective, a reason to stop),

and hence tend to take far longer than directed searches, generating multiple searches and web

pages. These two strategies bear much relation to the two guided search activation components,

bottom-up activation and top-down activation. According to the theory of guided search by

Wolfe et al. [124] (based on Treisman’s [115] feature integration theory), when users search for

something, their brain generates a feature map, where ‘activation’ on the map generates an area

of interest that users will wish to visit. As stated, activation on this map can occur by either

bottom-up activation, when an item is strikingly different to its background or context, or by

top-down activation, which occurs when the user’s search is based on a single feature that is used

to designate potential targets from distractors. When users are browsing, it is assumed that

they are using bottom-up activation, scanning randomly through web pages until something

differentiates itself from the irrelevant information, ‘popping-out’ into the field of view. When

performing a directed search, it is assumed that users will search via top-down activation, since

they know exactly what information to search for, and will differentiate the data based on that

feature. While directed searches and browsing, are the most common forms of searching, they

are by no means the only ones; Wilson [122] discussed four different forms of searching as part

of his model of information-seeking behaviour:

• Active search: This is the same as the directed search, where users are actively seeking

out information, and is the most common form of search.

• Passive search: This occurs when a search (or other behaviour) results in the acquisition

of information that happens to be relevant, which will in turn trigger a new thread of

search.

• Ongoing search: Also known as a monitoring strategy, this occurs when a search is per-

formed repeatedly on the same subject, to keep users up-to-date on changing information

related to the subject area.

• Passive attention: Although not strictly a form of searching, it was included as part of

Wilson’s search and acquisition strategies. This happens when users acquire the informa-

tion without actively seeking it out, such as when listening to the radio or watching the

television.

Web searching is sometimes described as ‘looking for a needle in a haystack’. This analogy was

adapted by Koll [63] as part of his description of web searching strategies, where each strategy

was considered a ‘needle in the haystack’ problem. Below are the first four strategies:

22

• A known needle in a known haystack. Similar to the directed search. Users are

familiar with the search territory, and know exactly what to look for and where to find it.

• A known needle in an unknown haystack. Similar to browsing because of limited

information. Users have a clear idea of what they want, but not of where to find it.

• Any needle in a haystack. Similar to browsing because of unfamiliar territory. Users

are less concerned about the characteristics of the particular search result they are looking

for.

• An unknown needle in an unknown haystack. Similar to browsing because of unclear

objectives. Where users only have a vague idea of what to look for, and don’t know where

to start looking.

The strategies in Koll’s list bear similarities to previously discussed strategies, covering the

directed search as well as all three instances of browsing strategies. Koll [63] lists several other

‘needle in the haystack’ strategies, which are more specific in purpose:

• The sharpest needle in a haystack. Users have identified a specific variable (e.g.

number of images, number of links) that is of great interest to them, and are only concerned

with retrieving the result with the largest quantity of that variable.

• Most of the sharpest needles in a haystack. Like above, users are looking for

information revolving around a certain variable, but in this case they search for multiple

sources.

• All the needles in a haystack. Users are still searching for results based around a piece

of information, but wish for ALL sources. Such an expansive search can take a long time,

if users are very motivated to find all the information.

• Affirmation of no needles in a haystack. Users want confirmation that a piece of

information does not exist in the result set. Due to the dynamic and ever changing nature

of the web, this is difficult to perform and not always guaranteed to be correct.

• Things like needles in a haystack. Users search for objects which are similar to their

original target.

• Let me know whenever a new needle shows up. This form of searching bears

similarities to monitoring strategies. Users of the WWW will often return to regularly

updated websites to view new information (e.g. weblogs), or utilize automated technology

to keep up-to-date e.g. RSS and podcast technology. Users will also perform searches

23

multiple times over a long period of time, in order to keep up-to-date on information

surrounding a particular subject.

• Where are the haystacks? Users may not know where to start looking for information.

For example, a student without prior knowledge would not know which website to go to

find research papers and thus must first perform a search to acquire this information before

performing their principle search.

• Needles, haystacks - whatever. Oddly enough this is a recognized search behaviour.

There are times when users will follow a link or scrap of information that is interesting,

but not related to the current information need at all.

These examples show that while search models often share a basic set of strategies (di-

rected searches and browsing strategies), they are also diverse in their interpretation of search

behaviour, and varied in the level of granularity at which they study search behaviour. This

chapter will look at the different search strategies more closely, as well as detail many of the

search models developed to explain users search behaviour.

The information-retrieval model, the original concept behind seeking information in online

sources, will be discussed in the next section. The concept of information-seeking will be intro-

duced, as well as the various models used to describe this form of search behaviour. The chapter

finishes with a discussion on the differences between these models and the evolving search, as

well as a look at studies which have been performed to capture the user’s search behaviour.

Figure 2.3: A model of classic information-retrieval. This model is based around users
interactions with databases (as seen in Bates [6]). The underlying theory is that users (on the left)
will translate their information need into a query in the systems language, that will return them an
exact match for the query provided.

2.1 Information-retrieval

In the literature, the term information-retrieval has sometimes been used synonymously with

information-seeking. Since most modern information-seeking methods are derived from information-

retrieval methods they both share the same premise (the search for information in an electronic

environment) and for the most part they share the same interface (users must translate their

information need into a string of text that is input into the system), from which a list of

24

search results are returned. But this is where the similarities end, as Jansen et al [57] stated

“Internet searching is very different than information-retrieval searching, as traditionally prac-

ticed and researched. Internet IR is a different IR”. Information-retrieval is typically associated

with database interactions, sometimes referred to as ‘Classic information-retrieval’ or simply

IR. Figure 2.3 describes the classic model of information-retrieval where, users translate their

information need into a query, understandable by the system, which is then submitted to the

search engine. The system then attempts to match the query to a document representation in

the database index, and returns a list of possible matches.

This concept was designed with the assumption that users would be trained to use the

interface to communicate with the database effectively, as well as know exactly which piece of

information they wished to retrieve. Thus it was assumed that a single query would suffice

for each information need. While this model was established with well founded principles,

over time it began to display inaccuracies and inadequacies, due to changing technologies, and

better understanding of user’s search behaviour. One of the questions asked at the time (in

[87], and [10]), was “why is it necessary for users to represent their information need in a

form understandable to the system?”. This was a reference to the fact that databases often

required knowledge of specific query languages for interaction. It was established that it would

be more efficient to represent the query the way it was stored in the user’s head, or as plainly

as users would describe such an information need to a fellow human being. The two processes

of information-seeking and information-retrieval differ in other significant ways such as the

structure of the query, the technology used and interaction behaviours used.

Information-retrieval operates on a single query approach, where a single correct query will

match a representation in the database and return a single set of results that will fulfill the

information need. Information-seeking is rarely so simple, and it is not uncommon for users to

query the search engine multiple times. Information-retrieval queries typically range between 7

and 15 words per query. Web searching however typically averages between 1 and 4 words per

query [57].

Changing technologies also ensure significant differences in the two models. Information-

retrieval is associated with database interactions, and thus performs matches using an index

system, where the query is only checked against the document’s abstract or keywords. By com-

parison, most web search engines scan the entire document. Information-retrieval in databases

rely on searches of pure boolean logic, whereas web search engines use statistical ranking by

default, with options for applying additional boolean operations. One of the most significant

differences is the absence of hyper-linking in information-retrieval systems. Hyperlinks (also

known as links, web links or anchors) are one of the key elements used in web searches, allow-

ing users to continue searches beyond the returned results by following links to similar pages.

25

This increases the range of available data, and increases the chances of finding relevant infor-

mation. However, in information-retrieval, once a document has been returned and retrieved,

that particular thread of searching ends.

In the past it was not easy to move between different collections using information-retrieval

systems, because of the time, knowledge and effort needed to switch between databases. If a

website is considered a collection of information, then the World Wide Web is effectively a multi-

tude of different collections of information, all easily accessible from one single interface, making

switching between collections a trivial task. This gives way to more varied and spontaneous

searching, as well as providing a larger pool of interesting information.

A commonly held theory of information-retrieval is that more precise and narrower searches

will generate smaller results sets and thus more accurate results. Eastman [28], in an experiment

involving students searching the web, showed this to be a less reliable method than first thought.

Her theory stated that, given the number of results often returned by a search engine (between

300 and 30,000 in her example), reducing the result set size was not as important as improving

the quality of the top listed items, as users were unlikely to look at all 300 results let alone

30,000. Databases often require specific knowledge of a query language (e.g. SQL) to access

and interact with the system, whereas search engines employ natural language representations

for their queries, enabling people to use them with little or no prior knowledge of the system.

This has been less of a problem in recent years, since database interfaces have become more user

friendly, with a move towards form-filling and graphical interfaces.

The single greatest difference between information-retrieval and information-seeking strate-

gies is the inclusion of hyperlinks. The addition of the hyperlink structure allows users to travel

beyond the returned list of search results, and ‘browse’ other linked web pages, a feat not possible

in information-retrieval. The ability to browse information, following it opportunistically and

exploring diverse and sometimes unrelated paths, is of benefit to users when their information

need is not fully realized. Browsing strategies form an important part of the information-seeking

process, and will be discussed further in the next section, with relation to the different theories

and models related to information-seeking.

2.2 Information-seeking

In this thesis, the term ‘information-seeking’ is used to describe the process by which users

search for information on the World Wide Web. Most often the term information-seeking is

used with reference to web search engines, although it is understood that interactions with

the search engine are not the sole interactions in an information-seeking episode, and that

the information-seeking process starts before and continues after interactions with the search

26

Figure 2.4: Models of searching: This table shows the different search models discussed in
this section. The models are ordered by level of abstractions, on the left are the Unstructured
models which operate at the highest level of abstraction, on the right are the Structured models
that operate at the lowest level of abstraction, and in the middle are the Hybrid models which share
some features of both models.

engine. The strategies used and actions performed in an information-seeking episode are wide

and varied, hence the need for several different models to explain each of the different theories

of search behaviour. The works on search behaviour can be divided into three sub categories,

the higher level unstructured search models, lower level structured search models, and the hybrid

search models that share some traits from both extremes (see Figure 2.4).

2.2.1 Unstructured search models

Information models represent the highest level of abstraction. They consist of a set of uncon-

nected strategies, where it is assumed that a single strategy fully describes the actions of users

during a search session. Such models can be described by very simple static strategies, such as

the aforementioned directed search and browsing strategies. These two strategies occur in nearly

every theory described in the research, although sometimes the browsing strategy is broken up

into more distinctly defined sub-strategies (as demonstrated in the introduction). A comparison

of three basic unstructured models by O’Day [86], Shneiderman [100] and Weick [25] can be

27

Models Directed
search

Browsing Monitoring others

O’Day’s information-
seeking tasks

following a
plan

exploring a
topic

monitoring
a topic

-

Shneiderman’s Task
actions

specific fact
finding

open ended
browsing

- extended fact-finding,
exploration of availabil-
ity

Weick’s Scanning
methods

formal
search

undirected
viewing

- informal search, condi-
tioned viewing

Table 2.3: Table of unstructured search models. This table compares the components of the
search models of O’Day [86], Shneiderman [100], and Weick [25]. The three most common strategies
are represented here (directed searching, browsing and monitoring). The table shows which of these
strategies exist in the discussed search models, and what they are called in that model. Here it can
be seen that most search strategies share the similar behaviours of directed searching, browsing and
monitoring.

seen in Table 2.3, showing how each model maps to the previously mentioned search strategies

of directed searching, browsing and monitoring.

O’Day et al [86] described three different search modes, following a plan, exploring a topic

and monitoring, based on their experiment which studied the information-seeking behaviours

of professional intermediaries. The first two correspond to the directed search and browsing

strategies respectively. The monitoring strategy is when users will repeatedly visit the same web

page over a period of time, to check for up to date information, similar to the aforementioned

‘ongoing search’ by Wilson [122]. Shneiderman [100] elaborates on the basic strategies in his set

of task actions. His ‘specific fact-finding’ and ‘open-ended browsing’ strategies correspond to the

afore-mentioned directed search and browsing strategies (also seen in Table 2.3). Shneiderman’s

‘extended fact-finding’ operates on the theory that users have a well defined query, but have not

established a clear set of end-criteria. The ‘exploration of availability’ strategy (like open-ended

browsing) is an unstructured approach, but involves investigating an area or context that the

users are not familiar with.

Looking at Daft and Weick’s [25] model, four scanning modes can be seen, undirected viewing,

conditioned viewing, informal search and formal search (see Figure 2.5). Undirected viewing is

much akin to browsing, the information need is not well specified, and the overall purpose is to

scan broadly over the information. Different information sources are used and large amounts of

data are screened. Daft and Weick’s [25] next scanning mode is conditional viewing, where users

begin to focus their search, selectively directing their attention to specific sections of information

so that they may evaluate, acquire and learn the information. Although still a broad strategy, it

focuses the search on all information related to a particular theme or topic. The third scanning

mode, informal search, becomes even more focused than the previous strategy, actively selecting

pieces of information that will aid in satisfying the information needs of users. The final scanning

mode, formal search, closely resembles directed searching, where users make a deliberate or

28

Figure 2.5: Daft and Weick’s scanning modes ([25]). These scanning modes can be ordered
both in terms of the breadth of the search (the number of different information sources used), and
by which strategy it most closely resembles. The number of information sources used is represented
by the width of the bar, and its vertical position in the list denotes how closely it resembles the two
strategies, directed searching and browsing.

planned attempt to obtain specific information on a clearly specified issue. The search is formal

because it is structured according to some pre-established procedure or methodology. However,

not all unstructured models operate at such a high level. Ellis and Haugan [31] added a more

clearly defined structure to their search model, based on the observed behaviours of social

scientists, research scientists and engineers. In this model, the strategies are defined as different

parts of the search which can be put together to form an information-seeking session (seen

below).

• Surveying: Also known as ‘starting’, this activity signifies the beginning of a search. Ellis

and Haugan specified that surveying was used for (1) approaching a new topic, within an

unknown field, (2) finding out what has been done in that field earlier, (3) identifying the

current status of that topic, and (4) finding background information for new elements of

a project. The start is characterized by an information need.

• Chaining: This involves following chains of referential connection between sources, in

order to identify new sources. Chaining can be performed backwards, using an article as

a starting point and then following references from there, or forwards, utilizing a citation

index to find works that reference to that article. This can easily be related to hyper-

linking in web pages, which operates in much the same fashion, backward chaining being

normal hyper-linking.

• Monitoring: This involves maintaining awareness of developments and technologies in a

field through regularly following particular sources. At a very basic level, it can involve

29

simply revisiting websites of interest regularly, but also covers site update tools such as

RSS, push technology and pod-casts.

• Browsing: Much like the previous definition of browsing, this strategy is casual and

undirected. This can be at a high level (browsing search results) or at the low level

(browsing the contents of several web pages).

• Distinguishing: Users, based on their own preset parameters, attempt to rank each

piece of information recieved, so as to create a hierarchy of importance. When viewing

search results, the search engine implements an automatic ranking of results, effectively

distinguishing results for them, but users still inspect the results returned and distinguish

their own levels of importance to each result based on the given metadata. Bookmarks

can be used to help distinguish results of particular interest.

• Filtering: This activity involves users subconsciously selecting a set of criteria with which

to filter the search results, and weed out uninteresting results. Most users perform this

operation automatically when web searching.

• Extracting: Once a few interesting results have been distinguished from the set, the

information is then extracted. In web searching this can take the form of reading a set of

selected web pages or documents from search results in the list.

• Ending: The operations that need to be performed at the end of the search e.g. storing

the data found, in a format that can easily be retrieved (saving documents).

With the exception of Starting and Ending, an information-seeking session can be comprised

of any number of these strategies in any order. Although Ellis and Haugan’s [31] model moves

closer to defining the lower level actions, they have not yet imposed a rigid structure, allowing

a more flexible model. Such models will be referred to as Hybrid search models because they

combine the flexibility of Unstructured search models with a small set of defined actions.

2.2.2 Hybrid search models

Choo et al. [20] developed a Hybrid model, based on the previously mentioned model of Daft

et al. [25] (the four scanning modes) and the strategies detailed by Ellis et al. [31] (in the

previous section). By combining these two models, Choo was able to build a table of four search

strategies, each of which is associated with a set of search actions that take place when using

that strategy. This can be seen in Table 2.4.

30

Starting Chaining Browsing Differentiating Monitoring Extract

Undirected
viewing

Identifying
start pages

Following
links

- - - -

Conditioned
viewing

- - Browsing
pages

Bookmarking,
Printing

Revisiting
bookmarks

-

Informal
search

- - - Bookmarking,
Printing

Revisiting
bookmarks

Search
engines

Formal search - - - - Revisiting
bookmarks

Search
engines

Table 2.4: Choo’s behavioural model of information-seeking on the web. By combining
the models of Daft [25] and Ellis [31], Choo [20] was able to define a set of search strategies which had
associated search actions e.g. Using an undirected viewing strategy, a searcher will often perform
starting and chaining actions, such as identifying start pages and following links.

Starting at the top-left corner, users begins their search in a mode of undirected viewing,

starting without a specific information need in mind, and browsing the subjects broadly. The

associated action starting refers to users beginning their search, either by inputting a query

into a search engine, or traveling directly to a URL specified from an external source. While

in undirected viewing mode, users may follow hyperlinks from the first set of pages that they

view, thus beginning to acquire information through chaining. Moving down the table, in

conditioned viewing users begin to narrow their search down to a few key topics, and then begin

browsing the data. At this point users might also begin differentiating pages of interest (through

bookmarking, copying links and printing pages), so that they can be revisited and re-examined

in the future.

Moving down the table once more, into informal search, users have now chosen a specific

topic to focus on and concentrate on attaining as much information about that topic as possible.

Notice the shift from browsing to extracting, now users have stopped viewing random web pages,

and have started to perform focused searches on a specific key topic, using the information gained

during the search process to define more precise search queries. Also notice that users have fin-

ished differentiating between relevant and non-relevant information, and have now concentrated

on revisiting bookmarks of the pages related to the selected topic. The formal search is the final

stage of the model, where users have attained enough knowledge to perform an accurate and

efficient search which will return the web pages they need to fulfill their information need.

Belkin [8] proposed the theory that a search session is not comprised of a single search

strategy, but instead is comprised of several different strategies, applied at different stages of

the search process. Belkin suggests that the change in strategies during the search process is

a result of the changes in user’s knowledge and goals over the course of a single information-

seeking episode. This model was built around the concept of a multi-dimensional space from

which a multitude of different Information Seeking Strategies (ISS) can be described. Table

2.5 contains a list of the ISS and their associated variables; there are four facets, and two

31

method goal mode resource

ISS scan search learn select recognize specify info metadata

01 x x x x
02 x x x x
03 x x x x
04 x x x x
05 x x x x
06 x x x x
07 x x x x
08 x x x x
09 x x x x
10 x x x x
11 x x x x
12 x x x x
13 x x x x
14 x x x x
15 x x x x
16 x x x x

Table 2.5: Belkin’s Information Seeking Strategies (ISS) [10]. Belkin theorized that during
a search session, users would execute several different search strategies, as the search progressed and
their information need changed. Above is a table of the different ISS strategies, each row represents
a different ISS, and each column represents its characteristics. Note, the ISS names have been
abbreviated in order to fit them in the space above.

dimensions associated with each facet. The four main facets, the method of interaction, the

goal of the interaction, the mode of retrieval, and the type of resource, have all been identified

through observation and classification of information-seeking behaviours in a variety of settings

(see [8]). These are further subdivided into eight dimensions, and each ISS is defined by a unique

combination of these dimensions.

Looking at the dimensions of ISS in more detail, searching and scanning refer to the method

by which users begin their search. In searching, it is implied that users already know which spe-

cific area to look in (note this differs from previous usage of the term ‘searching’ in the thesis,

which is more general in context). Scanning implies that users have to search over a large area,

not knowing where to start their search. In terms of web-searching, scanning would imply that

users have to search a list of search results or directory listing before deciding which website to

begin looking at, whereas searching would refer to users searching the different web pages in a

specific website, or searching for a piece of text or keyword within a web page. The goal for

interaction is influenced greatly by the starting knowledge of users; if they have a clear idea of

their objectives, then the task is simply a job of selecting the correct information and reviewing

it, or storing it. If the objective is vague, then they must explore and discover information

through a process of learning that may help define their objective. The mode of the search,

refers to the type of search conducted, with specification referring to a search with a known pur-

pose (similar to the directed search), and recognition referring to a undirected search (similar

32

to browsing). The type of resource, can either be information which is directly related to the

search (text, audio, images), or can be meta-information which can be useful when attempting

to filter your results (e.g. file size, number of links).

method goal mode resource

ISS scan search learn select recognize specify info metadata

2 x x x x
15 x x x x

Table 2.6: Examples of two ISS from [10]: ISS 2 bears similarity to the start of a search,
where users are browsing without a clear objective, generally scanning the presented data. In
contrast, ISS 15 bears more similarity to the end of a search, where users have identified what
specific information they need to fulfill their information need, and are currently searching the web
page. These strategies are explained in more detail below.

The structure of an ISS is best illustrated with an example, seen in Table 2.6. ISS2 represents

a situation in which users are dealing with an unspecified and unformulated problem which

they must learn more about. They may perform a web search, scan the meta data returned,

and attempt to recognize salient words in the search results returned. This may represent the

beginning of a search. By contrast ISS15 could represent the end of a search, where users

have selected the webpage to view, know specifically the piece of textual information they are

looking for, and are currently searching the webpage for the information. In this section, several

hybrid models have been shown. Hybrid models demonstrate how unstructured search models

have become more strictly defined, with specific search actions being associated with specific

strategies. However, as the strategies became linked to specific search actions, the strategies

begin forming more rigidly defined structured search models.

2.2.3 Structured search models

A search session can be defined by the actions that are performed during the search; these search

actions can be ordered in such a fashion that they play out a pattern of common behaviours

performed by users. For example the actions, ‘submit query’, ‘read search results’ and ‘open web

pages’ can be placed in order, to form the start of a search. Linking these patterns together into

a structure can be used to form a search pattern, and the linking of several search patterns into

a diagram forms a structured search model. Unlike the previously mentioned strategies, these

define the low-level actions of the user, giving a more detailed view of the search process. Both

the search actions and the search patterns are building blocks of the structured search models.

Tauscher et al. [114] performed a study of student’s revisitation patterns when searching the

World Wide Web. As a result, Tauscher et al. drew up a list of several search patterns which

occur during the student’s searches which were explicitly based on the combinations of different

33

Figure 2.6: Revisitation patterns: a student’s search session (from [114]: This data is
from Tauscher et al’s [114] study on revisitation patterns. This shows the data retrieved from a
student, as the search progressed. Progress can be tracked along the x-axis by following the number
of URLs visited. The y-axis tracks the URL vocabulary, the number of different web pages that were
visited (e.g. when a page is revisited, then this does not increase). The icons display the different
tools that the student used at that particular point in the search. By analyzing a combination of
the tools used, URLs visited, and changes in the URL vocabulary, Tauscher was able to identify
several different search strategies in play during the search.

search actions taken by users during the search.

Looking at Figure 2.6 an example of the type of data that Tauscher et al. collected for the

study can be seen. Subject progress was measured in number of URLs visited, and changes in

URL vocabulary (number of new pages visited), which were used for the x and y axes of the

graph respectively. The bottom-most diagonal line represents subject progress, whereas all the

other lines of symbols represent the different search functions used at each stage of the search

(e.g. Open URL, Back button, Reload). Tauscher et al. identify and point out several different

patterns in play based on a combination of the functions used, URLs visited, and changes in

the URL vocabulary, at each point in the search. These formed the basis of Tauscher’s seven

Search patterns (below).

• First time visits: This happens when users first comes across a cluster of new pages.

This appears in the subjects data as a steeply sloped area (see figure 2.6) because the users

begin viewing a large number of new pages (increasing the URL vocabulary).

34

Figure 2.7: A basic model of information-seeking by Marchionini et al. [73]. This shows
the basic actions users perform during an information-seeking episode. The searcher starts in the
middle, where the problem is defined (information need), then articulates the problem (translates
the information need into query terms), examines the results, extracts relevant information and
then if the information need is not satisfied uses the newfound information to select a new source of
information and once again begins articulating his problem. Note that reformulation and changes
to the information need are implied, by the arrows pointing from the various search actions back
to the central information need.

Figure 2.8: Marchionini’s second model of information-seeking (as seen in [71]). Unlike
in Marchionini’s first model [73], this has a more definitive start and finish. The details of interac-
tions in this model are shown at a higher level of detail, to the extent that even the probability of
transitions taking place is calculated and displayed as different types of arrows on the model.

Figure 2.9: Hearst’s model of information access processes (from [43]). This shows
another basic model of information-seeking. Unlike in Marchionini’s model [73], reformulation has
been stated explicitly as a search action.

35

• Revisits to pages: When users revisit web pages. Often distinguished by plateau areas

(showing no change to the url vocabulary) and several back to back occurrences of ‘back

button’ usage.

• Authoring of pages: This involves a tactic unrelated to web searching, which is the

authoring of web pages, where certain web pages are refreshed multiple times in order to

review changes made to that page.

• Regular use of web-based applications: This happens when applets, web forms or

other web applications are used. This is displayed on the subject’s data as a moderately

sloped area with a combination of ‘open URL’, ‘back button’ and ‘forms activity’.

• Guided tour: Where users visit a web page which include a set of structured links (such

as a tutorial, consisting of several web pages, where a ‘next’ button is used to move onto

the next page). This is characteristically displayed on the subjects data as consecutive

URL open actions.

• Breadth-first search: Also known as Hub and spoke searching, interaction takes place

around a central web page (hub) from which users navigate to links to many other web

pages. This can be seen in the subject data as alternating occurrences of open URL and

back actions. These actions are consistently used to return to an index page to access

other URLs on the page. Note, this behaviour is also apparent when presented with a list

of search results, to which users consistently return.

• Depth-first search: Where users follow links deeply before returning to a central web

page. This is represented in the data by a series of open URL actions followed by several

consecutive back actions.

It is interesting to note that some of the search patterns (such as breadth-first search, and

depth-first search) can be seen as more accurately defined components of previously discussed

unstructured search models. Take for example, a scenario where users perform a search, then

browse the results, viewing web pages and then jumping back to the search result list (breadth-

first search). Occasionally they will find an interesting web page and may attempt to learn more

about the topic presented by the web page by continually following links from page to page

(depth-first search). However search patterns are still merely search actions with some added

linear structuring. True structural search models have a clearly defined start and finish to the

search, as well as descriptions that connect the various search actions into a cohesive structure,

that don’t necessarily operate linearly.

Marchionini’ s [73] model is an example of a basic structured search model for information-

seeking (see figure 2.7). Several of the standard search actions are defined and linked into a

36

structure, starting in the centre with the information need, and moving around the centre of the

structured diagram. Notice that in Marchionini’s model, the paths followed in the search are not

always linear, and arrows connect to the centre from several parts of the search, allowing users to

recurse and retrace over paths they have previously visited. The implied recursion is evident in

the arrows pointing from various search actions, back towards the centre, mirroring the changing

of the information need as the search progresses, and they gather more information. This will

often lead to users reformulating their query and generating new searches. A second, more

detailed version of Marchionini’s model was later developed (see Figure 2.8), which defined the

start and finish of the search explicitly as well as providing more information on the transitions

between the actions. Note that, unlike Marchionini [73], Hearst [43] adds reformulation as an

explicit search action within her model of information access processes (see figure 2.9).

Not all structured search models operate at the same level of granularity, because different

authors tend to concentrate on emphasizing different aspects of the search process. A com-

mon example, can be described as the macro-model or model of the gross information-seeking

behaviour [122]. Like other structured search models, these display the relationships between

the different search processes explicitly, however they tend to operate on a higher level, and

often include the information resources and systems being accessed, as well as the affecting

psychological and environmental factors. Ingwersen [53] built an expansive model that added

the effect of environmental factors upon a user’s search process (see Figure 2.10). Ingwersen

was concerned with identifying processes of cognition which may occur in all the information

processing elements involved. This model shares some basic interaction processes with most

other interaction models, but expands to include the user’s cognitive space, and users external

environment. The right-hand side of the figure shows the individual user, as well as all the

factors affecting him, such as the user’s existing knowledge structures, goals and desires. The

social environment affects user’s inbuilt systems of categories and concepts, and will also affect

their information preferences, searching conventions and cognitive structures. Notice also, that

both the system and the information objects handled by users are explicitly detailed in the

model. A similar cognitive model to Ingwersen’s is Saracevic’s [97] Stratified Interaction model

(see Figure 2.11). This too specifies the physical resources used, and the effects of the external

environment upon the search behaviour of users. Wilson [121] posited the theory that because

Macro-models and Structured search models operated at different levels of abstraction, they

could in effect be ‘nested’ together, to form a more descriptive view of the information-seeking

process. The example used was ‘nesting’, Ellis’s [30] search behaviour models (see section 2.2.1)

within his own model (see Figure 2.12).

This section has illustrated the fact that there are several different models of information-

seeking, most of which share common elements, but each of which places emphasis on different

37

Figure 2.10: Ingwersen’s model of the IR Process (from [122]). This model of information-
seeking added the influence of external factors, as seen in the diagram as cognitive space and social
and organizational environment.

Figure 2.11: Saracevic’s stratified model of the IR Process. The model is comprised of
objects interacting at different levels (strata). At the top-end, users (represented by their own
knowledge, goals etc.) are affected by a situation (task, problems) as well as the environment. The
interface with which users interact, relies on computational resources to calculate the best fit to
the query, as well as the informational resources, (text, images, and meta information) needed for
representation.

38

Figure 2.12: Wilson’s ‘nested’ model of search behaviour (from [122]) Wilson combined
his higher level Macro model [121] with Ellis’s Search behaviours [31] to form a more detailed model
of the search behaviour of users. Ellis’s search behaviours are ‘nested’ within the person’s needs,
and are affected by various factors in the user’s environment.

information-seeking tasks. The next thing to consider is where the evolving search theory and

the berry-picking model fit in the information-seeking process and how they relate to other

information-seeking models.

2.2.4 Discussion

The evolving search theory and berry-picking model are aspects of information-seeking be-

haviours that take place when users begin a search with little or no context information, or with

only a vague idea of what they are searching for. In a way evolving search could be considered

a browsing strategy, but explained in more detail. The influences of evolving search can be seen

in nearly all the models presented. This can be demonstrated by looking at the key features of

the evolving search and berry-picking model.

In an evolving search, users begin with an information need which is not clearly defined.

It may be that users begin the search with very little information or are uncertain as to what

they are searching for. Either way, users will find it hard to translate their information needs

into an efficient set of search terms. This feature is a common feature of all browsing strategies,

and encompasses all three types of browsing demonstrated at the start of the chapter (browsing

because of limited information, unfamiliar territory and unclear objectives). Since the browsing

strategy is a common feature of nearly every model, it is not surprising that the evolving search

39

incorporates it as part of its theory.

In an evolving search, users will generate multiple searches based on what little information

they have. This is because of an inability to generate an efficient initial search, which forces

users to follow clues and harvest information that may lead them closer to fulfilling their goals.

This feature is more clearly expressed in the structured search models. Both Marchionini [74]

and Hearst [43] show users reformulating their queries (and hence generating multiple searches)

as part of their models. Spink’s [103] elements of the interactive search process describe the

search process as a cycle of interactive feedback loops, where multiple searches are formed, and

information gathered from previous searches is cycled into the generation of future searches.

In an evolving search, information needs change over the course of the search. As stated

in the evolving search model, as the users are exposed to different information sources, their

needs will change, either becoming more focused, or branching off into other areas. This feature

is clearly described in structured search models, where the reformulation stage is shown to

sometimes feedback into the users information need. Note that some models, such as Hearst’s

[43] model, assume that the information need is unchanged throughout the search session.

User’s strategies change over the course of an evolving search. Because users begin with an

ill defined information need, they will initiate a very broad search, which changes as the search

progresses. As information needs change, so will the types and sources of information that are

needed, requiring users to adopt different strategies. This feature is best expressed by the hybrid

search models. The models of both Ellis et al. [31], and Belkin [9] suggest that a search model

is comprised of several different strategies that can take place in any order. To this end, each

model is presented as a set of strategies that can be combined in different orders to describe a

search session.

In an evolving search, an information need is satisfied by multiple sources. As stated in the

berry-picking model, users performing evolving searches will gather information from multiple

sources, all of which will contribute to answering the information need. As a result the informa-

tion need is not solved by any single set of retrieved results. This feature is the only one that

is not expressed explicitly by any other model. It can be argued that this feature is implied in

models which show users performing multiple searches, but it is never stated.

The evolving search shares many features with other models described, but are also different

in other features. Many of the higher level models do not explicitly state the possibility of

users generating multiple searches. Many more models (e.g. Hearst [43], Belkin [9], Choo [20],

Shneiderman [100]) make no mention of the fact that the information need can change during

a search session. Most of the hybrid and unstructured search models allow the flexibility of

changing strategies through out the search, although this happens less often in structured search

models. No mention is made in any of the models about how the information need is satisfied;

40

it is naturally assumed that users will eventually form a query that will provide the answer

to their question, whereas in reality information needs are satisfied by information drawn from

different sources. Later chapters will discuss the effects generated by these different features of

the evolving search model (e.g. multiple searches generate a large amount of data), and discuss

how each of these effects cant be addressed.

2.3 Studies of Search behaviour

Looking at theoretical models of information-seeking helps build a knowledge base of the search

process, however, to truly understand users, experiments must be performed to capture their

search behaviour. Much research has been dedicated to examining the users of web search

engines (Cacheda and Vina [17], Holscher and Strube [50], Jansen and Pooch [54], Jansen and

Spink [56], and Montgomery and Faloutsos [78]). This section presents a summary of the major

trends present in the data, and a more detailed view of these results can be found in Table 2.7.

The query data showed that an average a search session consists of either two or three queries.

Silverstein et al. [102] reported an average of 2.02 queries per session, Jansen and Spink [55]

reported an average of 2.8 queries per session, Wolfram et al. [125] reported 2.5 queries per

session. The average query length is around two keywords. The range for the query lengths

was surprisingly small, on average lying between 2.3 and 2.4 keywords per query for the studies

of Silverstein [102], Jansen [55] and Wolfram [125]. One interesting pattern demonstrated that

even the most frequently occurring query terms represent a small percentage of overall term

usage. In Silverstein et al. [102] the most frequently used term (the word ‘free’) accounted for

only approximately 0.6% of all term usage. This shows that users are now accessing a broader

range of topics. A look at the term co-occurence in the result set showed that several two term

phrases from different topics (e.g. art, news events, countries and entertainment) were among

the most popular pairs reinforcing the theory of topic diversity.

Looking at search behaviour, the majority of studies indicate that users very rarely go beyond

the first page of search results returned. If their information need remains unsatisfied, they either

reformulate their query or perform another search. Silverstein et al. [102] reported that 85.2%

of searchers did not view more than the first page of results, Jansen et al. [58] reported 72.8%,

and Jansen and Spink [55] reported 83% and 76% for their AllTheWeb.com studies done in 2001

and 2002 respectively. However a pair of older studies of users of the Excite search engine, by

Wolfram et al. [125], indicate a different trend. Their 1997 Excite study shows that only 28.6%

of users viewed just the first page of results, with a more substantial 51.9% viewing three or

more pages of results. The 1999 Excite study seems to be moving more in the direction of the

main trend, with 42.7% viewing only one page of results. However it is nowhere near the 70 and

41

AltaVista
1998

AltaVista
2002

AllTheWeb
2001

AllTheWeb
2002

Excite
1997

Excite
1999

Mean terms per query 2.35 2.92 2.4 2.3 2.4 2.4
Terms per query: 1 term 25.8% 20.4% 25.0% 33.0% 26.3% 29.8%

2 terms 26.0% 30.8% 36.0% 33.0% 31.5% 33.8%
3+ terms 27.6% 48.5% 39.0% 34.0% 43.1% 36.4%

Mean queries per user 2.02 2.91 3.0 2.8 2.5 1.9
Users modifying queries 20.4% 52.4% 47.0% 41.0% 52.0% 39.6%
Session length: 1 query 77.6% 47.6% 53.0% 59.0% 48.4% 60.4%

2 queries 13.5% 20.4% 18.0% 16.0% 20.8% 19.8%
3+ queries 6.9% 32.0% 29.0% 25.0% 30.8% 19.8%

Pages viewed: 1 page 85.2% 72.8% 83.0% 76.0% 28.6% 42.7%
2 pages 7.5% 13.0% 10.0% 13.0% 19.5% 21.2%

3+ pages 7.3% 14.1% 7.0% 11.0% 51.9% 36.1%

Use of modifiers 20.4% 20.0% 1.0% 1.0% 5.0% 8.0%

Table 2.7: Data from Search behaviour studies. This table details Search behaviour data for users
of three search engines (AltaVista, AllTheWeb and Excite), in six separate studies. Both the 1998 and
2002 AltaVista data were collated by Jansen et al. [58], although the 1998 data was based on the work of
Silverstein et al. [102]. Both of the AllTheWeb data sets were reported by Jansen and Spink [55], and the
Excite data was collected by Wolfram et al. [125]. All of this data was collected from automated logs of
user’s search sessions.

AltaVista AllTheWeb Excite
Mean terms per query +0.57 -0.1 0
Terms per query: 1 term -5.4% +8.0% +3.5%

2 terms +4.8% -3.0% +2.3%
3+ terms +20.9% -5.0% -6.7%

Mean queries per user +0.89 -0.2 -0.6
Users modifying queries +32.4% -6.0% -12.4%
Session length: 1 query -30.0% +6.0% +12.0%

2 queries +6.9% -2.0% -1.0%
3+ queries +25.1% -4.0% -11.0%

Results pages viewed: 1 page -12.4% -7.0% +14.1%
2 pages +5.5% +3.0% +1.7%

3+ pages +6.8% +4.0% -15.8%

Use of Boolean queries and modifiers -0.4% 0.0% +3.0%

Table 2.8: A Comparison of the changes in Search behaviour. Each of the three search
engines mentioned in Table 2.7 are compared, so as to extract any changes or trends in users search
behaviour. The results are displayed in the three columns to the right, where values representing
the changes are given (either positive or negative).

42

80 percent figures quoted previously (see Table 2.7 for a look at Wolfram’s data). A possible

explanation may be that both of Wolfram’s studies were conducted on users of the search engine

Excite, whereas Silverstein and Jansen et al. ([58]) utilized the AltaVista search engine, and

Jansen and Spink utilized the AllTheWeb search engine, and the difference in trends merely

reflects the difference in user’s search behaviours with different search engines. This will be

discussed in more detail later on.

The results by Jansen et al. [58] showed some interesting trends. It was reported that the

mean session duration was around an hour with a standard deviation of around 3 and a half

hours. However Jansen believed that these results were skewed, due to several abnormally longer

sessions. 81% of searches were less than 15 minutes, and a near 72% were less than 5 minutes

long. Combined with a greater session length, this seems to indicate that users are performing

more searches, but in a smaller amount of time (implying more scanning and less viewing of

results).

It was was also noted that the majority of searchers did not utilize boolean operators or

modifiers. The highest number of users who used boolean operators in their searches was 20%,

in both the Silverstein [102] and Jansen et al. studies [58]. Both the 2001 and 2002 AllTheWeb

studies [55] quoted a mere 1% of users, and Wolfram [125] reported less than 10%. Note that,

although sexual topics are the most popular search topics, they only share a small percentage

of the total number of searches with many other topics. It was also noticed in a temporal

comparison of two search studies (the Jansen et al. [58] study), that search topics are greatly

influenced by current trends.

Jansen and Pooch [54] reviewed web searching literature and compared web searchers with

searchers of traditional web-searching literature. They reported that web searchers exhibit

different search characteristics than searchers of other information systems. However drawing

any definitive conclusions from the data can be difficult, because the studies are not unified in

their approaches. Additional complications arise because most of the data is accumulated from

automatic logs of user’s searches, which can often lead to ambiguities about the accuracy of the

data. The problems with comparing data from these search result studies are presented.

Different studies have different definitions for what constitutes a query and what constitutes

a request. In general it is understood that a request consists of an interaction made with the

search engine to elicit information; it can be a standard search query, a null query (no terms)

or a request for additional results (pressing the ‘next 10 results’ button). A query is composed

of the terms entered into the search engine, as well as the action of submitting the query to the

search engine, and is a specific type of request. The problem is that some of the studies interpret

requests for additional results, and null queries as actual queries. This can be problematic when

attempting to calculate the number of queries that users perform or the number of results users

43

view in a search session.

Related to the problem of queries and requests, is the problem of identical queries. For

certain studies, requesting the next page of results is recorded as performing the same identical

query a second time. This makes it hard to determine when users are viewing the next set of

results, recalling the page of results after visiting another page (via the back button), or simply

making a mistake and re-performing the search with identical search terms.

Search logs also differ as to what constitutes a search term, which in turn affects the recorded

number of queries per turn. Normally one would expect a search term to refer to a unbroken

string of characters, however Silverstein et al. [102] treat words within quotation marks (used

when denoting an unbroken string in a query) as a single term. For example the query [“africa

safari botswana”] would be considered to be a single term query in Silverstein et al’s study [102],

but would be a three term query in Jansen et al’s [57] study. On the other hand, Silverstein et

al. [102] would treat queries like [host:www.safari.com] as a four term query (host, www, safari

and com) whereas Jansen et al. [57] would consider it a single term query.

It is difficult to determine how many search results users view because of the way the search

log data is collected. Similarly following users actions after they have left the search engine

is impossible when only using search logs. Most of the studies instead reported the number

of pages of search results visited. However even comparing these can be difficult, for example,

Silverstein et al. [102] record the number of results screens viewed per query, whereas Jansen et

al. [57] record the number of results screens viewed per user.

These problems causes inaccuracies which are detrimental to observing evolving search be-

haviour. Web page browsing behaviour is an important part of the evolving search and not

being able to monitor this data is problematic. Similarly not being able to differentiate between

identical queries and requests for more search results hampers any analysis on users recalling

and re-performing of searches.

2.3.1 Changes in search behaviour

There is some argument over the change in search behaviour over the years, with varied and

conflicting pieces of data reported. A comparison of the changes over time (based on the data in

Table 2.7) can be seen in Table 2.8. Each pair of studies for each search engine is compared, and

is represented by a column on the right of Table 2.8. The values in the columns represent the

changes in search behaviour (either positive or negative) over time. A four year analysis of the

Excite search engine, by Spink et al [104], showed that web searching sessions and query lengths

have remained relatively stable over time, although a shift was noticed from entertainment to

commercial searching. Jansen et al. [58] performed a study comparing Altavista.com search

results (the 1998 data, was based on Silverstein et al’s [102] study) temporally, with results from

44

4 years before. Jansen and Spink [55] performed a similar comparison based on studies of users

of the AllTheWeb.com search engine, in both 2001 and 2002. Wolfram et al. [125] reported two

sets of results from previous studies on users of the Excite search engine, in 1997 and 1999. Key

trends were observed related to users queries, sessions, results pages, and syntax.

Results detailing query lengths varied, data from the AltaVista study seemed to indicate a

drop in one term queries, and an increase in three or more term queries, which may indicate

a move towards more finely tuned searches, and more specific query formulation. However,

data from the AllTheWeb studies show the opposite, a small increase in one term queries and

decreases in two and three term queries. The Excite study showed yet another variation, with

small increases in one and two term queries, and decreases in 3 or more term queries. AltaVista

reported an increase in users modifying their queries, quoting a 32.4% increase in modified

queries, between 1998 and 2002. The results showed a move towards greater interactivity be-

tween users and the search engine, characterized by an increase in query modifications. However

the AllTheWeb and Excite studies show drops of 6.0% and 12.4% in query modifications respec-

tively. This may signify an increase in search engine accuracy, and being able to return relevant

results more often.

Looking at session length, the AltaVista data seemed to suggest a drop in users performing

single queries, and a move towards producing three or more queries (increasing by 25.1% between

1998 and 2002). However both the AllTheWeb and Excite studies show a contrary trend, with

a decrease in users generating two and three or more queries and an increase in users generating

single queries. Unsurprisingly the number of results pages viewed also varies. This time, the

AltaVista and AllTheWeb studies share common ground, with decreases in users only viewing

one page of results, and increases in viewing two or three pages of results. This may indicate

a move towards more persistent search, or less efficient search algorithms that fail to return

relevant results in the first 10 results. The Excite results seem to show a contrary move, with

a sharp increase in users who only view a single page of results and a steep drop in the users

viewing more than one page of results. Note that there was little or no change to the amount of

Boolean operators and modifiers used. The Altavista and AllTheWeb data showed differences

of less than 1% and the Excite data only showed a 3% shift.

By investigating the changes in user’s search behaviour over time several interesting trends

were revealed. The biggest surprise was the numerous conflicting results presented by studies

which shared similar authors (Bernard J. Jansen and Amanda Spink contributed to most of

the studies discussed). A possible explanation is that the different trends in changes in search

behaviour can only be attributed to the differences in search engines and how they affect the

user’s search behaviour.

Another affecting factor may involve the amount of time spent conducting the studies, as

45

well as the amount of time in between studies. The majority of studies spanned 24 hours or

less, thus the data acquired represented only a small slice of search behaviour compared to say

a month, or a year’s worth of data. Search behaviour of users may vary depending on the

day of the week, for example users may be inclined to search for more work-related web pages

during a weekday, or more entertainment related web pages close to holidays. The time-span

of the comparisons are also different; the AltaVista study compares studies with a four year

difference, whereas both the AllTheWeb and Excite studies only have a two year difference in

the studies compared. Closer inspection of the data shows that while the different data sets

show conflicting changes in search behaviour, they do little to contradict previous theories on

user’s search behaviour.

The previously stated theory about the number of search results pages viewed was that users

only view a single page of results before either finishing their search or reformulating their query.

While some of the search studies show increasing trends in users viewing more than one page of

results (see Table 2.8), it can be seen that these increases are superficial (none greater than 7%)

and if looking at Table 2.7 it can be seen that with the exception of the 1998 Excite data, all

the other studies show a majority in users only viewing one page of results, four studies quoting

over 70% of their users displaying such behaviour.

Also previously stated, a theory significant to the evolving search is that users aren’t always

satisfied with the first query they perform. Many users perform directed searches and will get

their results with their first query, but it is assumed that at least as many users will be unable

to define an efficient query and will need to perform a second or third search. Some of the

search trends show a decrease in the number of users performing more than one search, but

these differences are marginal at best, the majority of decreases being less than 5% (the largest

decrease being a mere 11%). This is reflected in the mean queries per user, where both the

AllTheWeb and Excite studies show changes of less than 1%. With the exception of the 1998

AltaVista results, all of studies report at least 40% or more users performing more than one

search, which fits with the current theory of multiple searches and browsing strategies.

In summary, the results presented here fit with current views of web searching. The evidence

shows that users often perform more than one search, which supports the multiple search aspect

of the evolving search. One criticism of observing user’s search behaviour through search engine

logs is that you cannot observe their actions outside of the search engine (e.g. writing down,

comparing and recalling information). These are all essential parts of the evolving search theory,

and need to be captured in order to further support research in the area.

46

2.4 Overview

In this chapter the models and theories of information-seeking have been presented and dis-

cussed. The two primary strategies of directed searching and browsing have been explained,

and the distinction between information-retrieval and information-seeking has also been made.

Information-seeking models can be subdivided according to the types, unstructured search mod-

els, hybrid search models and structured search models. Each of these was explained with ex-

amples. The qualities of the evolving search as an information-seeking model were discussed and

compared to existing models, and observations were made as to the similarities and differences.

It was noted that the evolving search shares common ground with the majority of presented

information-seeking models. Very often users start with an unclear information need, and mul-

tiple searches are often generated. However, the evolving search contains aspects of search

behaviour that are only present in some of the models presented. This includes the possibility

of information needs changing during the search, and the changing of user’s search strategies

during the search. One aspect of the evolving search, that was not present in other models

was the fact that information need is satisfied by information gathered through out the search.

The next chapter will discuss the technological aspects of web searching, as well as describe the

visualization techniques available to tackle the problems presented by evolving searches.

47

Chapter 3

Visualization, Techniques and

Technologies

Designing an effective evolving search tool is a challenge, and one must carefully consider the

combination of different display techniques, interaction techniques and technologies that will be

utilized. When choosing the right visualization display technique, developers need to work out

what information is most pertinent to users, and how to most effectively lay out and display

that information. Choosing a set of suitable interaction techniques that allow users to interface

with and manipulate the data is also important. In addition to the standard set of search result

interaction techniques (buttons, menus), other more novel techniques such as the distortion of

data (using focus-and-context technologies), pop-ups and highlighting, can all be used to help

users in their search interactions, whether they be browsing, comparing or recalling data. The

technology used will also affect the visualization, not only in what techniques can be utilized,

but also in what data is available for visualizing. For example, in addition to the standard

search result information (title, summary, url), different search technologies also make available

different meta-data (external/internal links, page size) and statistical data (e.g. image count,

key word count, visitor count) related to the web pages and web sites returned from searches.

This chapter provides the related work and concepts that underpin the visualization designs

discussed later in this thesis. The chapter presents different visualizations, techniques and tech-

nologies designed by current researchers, that can aid users in performing evolving searches.

The chapter is divided into three main parts. The first section looks at the two principal com-

ponents of web searching : the search engine and the web browser, and explains the underlying

processes behind web searching as well as discussing the tools currently being used to search for

information on the WWW. The second section discusses the various evolving search interface

issues outlined by Bates [6] (see chapter 1 - section 1.3) and explores the different visualization

48

techniques that could be used to tackle these problems. These are the issues of information

visualization, information recall and opportunistic searching. The third section looks at two

online interface issues, which were not included in Bates’s list of interface issues. These were

not apparent at the time of Bates’s research because they are specific to the online environment.

These are the problems of information-seeking, and information management.

Figure 3.13: A Map of the Internet [76] (from http://www.ethicalmedia.com/). The
internet is a vast collection of online resources, residing over thousands of servers, connected by
millions of hyperlinks. Finding information on the internet without the aid of a search engine can
be difficult.

3.1 Web searching

There is no easily navigable map of the Internet (see Figure 3.13); getting from website A to

website B might be as simple as typing in a website address, but discovering the website address

first can sometimes be difficult. There are different ways for users to find websites of interest,

for example, some users consult sources external to the WWW (via posters, radio, or word of

mouth). This is generally considered the least effective method, because users have to remember

website addresses, as well as recall the addresses the next time they are at a computer. Other

users might discover information from sources within the WWW, for example, when browsing

known web pages, users will often come across links and web advertising which will lead them

to new websites. However, this too is limited to what web pages users already know and the

pages linked from them. The easiest method of finding information on the WWW is to use a

search engine, because users only need to remember one (search engine) website address to gain

access to a thousand others. Each search engine is different in the web pages it indexes, the

conventions it uses, and the tools it provides, however, most search engines provide the same

49

basic functionality. This section will present the two fundamental components needed for web

searching, the search engine and the web browser.

3.1.1 Search engine

All web search engines consist of the same basic elements, a text box to enter your query and

a submit button (see Figure 3.14). Finding information with a search engine is a deceptively

simple process: users only need to type in the words that best describe the information they are

seeking and press submit. All that is required is to type words which best describe the search

and press submit. At that point the experience will diverge based on the search engine being

used.

Figure 3.14: The Google search engine [36]. This is a view of a standard web search engine
interface. On the left is the search engine’s front page, which has a text box for entering your query
and a button to submit your search. On the right is the list of search results returned from the
search.

The majority of web search engines will return a textual list (normally displaying 10 results

per page) of ranked document surrogates (ranked according to the search engine’s own algo-

rithm), which are referred to as search results. Each search result consists of a page title, a

snippet of text from the web page, and a URL address. Clicking on the title will often take

users to the web page directly and various types of meta-data (page size, file type) are displayed

as well as links to more advanced functions (‘find similar to’, ‘open cached page’). Many search

engines such as Altavista.com, Yahoo.com and Google.com utilize this form of interface, and in

this work this type of search interface will be referred to as the ‘traditional’ search interface,

because it is the most commonly used form of online search tool.

Most search engines provide additional content and interfaces in order to distinguish them-

selves from their rivals. Google.com offers web searching in a variety of different areas, including

images, news, weblogs and maps. Clusty.com automatically categorizes search results into clus-

ters for easy viewing. Groxis.com throws away the traditional interface, and instead groups

50

together similar web pages and displays them as hierarchies of circles. Some search engines

known as meta-search engines, (e.g. dogpile.com) take information from multiple (other) search

engines, and display the best combination of results.

Search engine technology

The core of a search engine is its web crawler (sometimes called a web spider), which is a program

that automatically browses the World Wide Web in a methodical and automated manner. Web

crawlers have a variety of functions, but they are commonly used for visiting web pages and

copying them for indexing by search engines. Crawlers can also be used to provide maintenance

for websites, checking code, and gathering specific types of information from web pages (e.g.

harvesting email addresses for spam).

A web crawler begins by following every link it finds, analyzing the contents of the web

pages found to determine what should be indexed (e.g. words extracted from titles, headings,

meta tags). The data is then stored into an index database. When a query is performed, the

search terms input are checked against this database, and a list of best matching web pages are

returned. Different search engines have different ways of storing and recalling information.

The very first tool used for searching on the WWW was called ‘Archie’ (short for Archive),

created by Alan Emtage. The program downloaded the directory listings of all the files located on

public anonymous FTP (File transfer protocol) sites, and from this created a database populated

with searchable filenames. This form of indexing was seen in later programs such as Gopher [75]

and in turn programs were written to search these indices.

The first true web search engine was “Wandex”, which introduced the use of web crawlers

to create a searchable index (note that this was not the first focused web crawler [37]). Web

crawlers very quickly became a standard for web pages. In 1994 the Web Crawler search engine

was introduced, using technology that would allow users to search for any word in any web

page. This system of searching was implemented in the search engines that followed (e.g. Lycos,

Excite, Altavista, InfoSeek). At around the same time, sorted and ordered directories of web

pages called Web directories were being introduced (primary of which was Yahoo! [127]). The

two disadvantages of the system were that, (1) most pages had to be manually indexed to be

placed into relevant categories, and (2) this method employs a searchable subject index so its

search engine searches only the titles and descriptions of sites and doesn’t search individual

web pages. This meant that if the indexes are not updated regularly, then changes in website

content will not be reflected in the index. This style of search was eventually integrated with

web searching technologies.

Perhaps the most popular search engine to date is the Google search engine [36]. Google

shares the majority of features of traditional search engines, and as such will be discussed as

51

an example of a standard web search interface. In 1998, Sergey Brin and Lawrence Page wrote

about the ‘Page Rank’ algorithm in their paper ‘The anatomy of a Large-scale Hypertextual web

search engine’ ([16]), and in that same year they used the Page Rank algorithm to develop the

Google search engine. The Page Rank algorithm utilized link popularity in order to rank web

pages, theorizing that good and interesting web pages, are linked to more often than others.

Thus a web page’s page-rank was (among other things) based upon which web pages linked to

it, and the number of links on those web pages. It should be noted that each search engine uses

different algorithms and methodologies to obtain search results, and the Page Rank algorithm

is simply one example.

‘Nielsen//NetRatings’, a leading company in the area of market research, investigated the

search behavior of more than a million people worldwide, through the use of real-time monitoring

on computers. Their statistics [79] showed that out of the 5.1 billion searches performed in the

month of November (2005), 46.3% of web surfers used Google.com, twice the size of their closest

competitor Yahoo.com. The service has been so popular that the phrase ‘to Google’ is now

used to describe web searching in general. Google continues to set the benchmark for search

engines. In addition to the web search, Google also provides keyword searches of images and

news sources. Less traditional search services have been introduced such as a map service, a

weblog searching service, and shopping search service.

Search engine interaction

Google has been praised for a very clean interface, devoid of adverts and clutter, as well as a

variety of interesting and unique services. For the more advanced users there are a multitude of

other options available for web searching. This section will discuss various web search tools that

are available to users to help manipulate their results, and show them results of interest (a topic

that will be returned to, and contrasted in later chapters). There are two primary methods of

refining a users search engine results, boolean syntax (the more commonly used, which varies

little between different search engines), and function syntax (less commonly used, can vary

widely between different search engines). Boolean syntax is used to include or exclude results

from a search, based on a set of user specified criteria. By default Google uses the Boolean

AND, but both Booleans (AND, OR) can be added directly into searches to modify them. The

operators ‘+’ and ‘-’ can be used to automatically include and exclude words directly from a

search.

Function syntax is used to restrict the search to a particular area. For example, Google

provides commands to restrict the search to only the words in the title of the web page, the body

of the web page, or the hyperlinks. The search can also be made website-specific, within a certain

date-range, or for a specific file type. The search engine can also be indirectly manipulated in

52

more subtle ways, for example some search engines are affected by the use of capitalization,

while other search engines (notably Google), are affected by the order that search terms are

entered. Some search engines will remove stop words (common words such as ‘the’, ‘and’, ‘or’)

from the search terms that a user inputs in order to improve the effectiveness of the search.

Search engines are not without their own unique set of flaws. There are ways to manipulate

a search engine to display a particular website first (‘Spoof your results’) by including within the

websites web pages, certain links and keywords. This can lead to more relevant search results

being pushed below these fake results, lowering the chances that relevant results will appear in

the first 10 results. Other flaws are inherently technical. This is related to the fact that the

WWW is constantly expanding, and is growing much faster than current search engines could

hope to index. Coupled with the fact that search engine web crawlers have to frequently revisit

web pages to update them, it is very hard to keep search engines up-to-date. The textual format

of the search query is also a problem. Because queries are limited to words only, there is always

the chance of false positives being generated, for example, the phrase ‘the big five’ (among

other things) refers to the five most dangerous safari animals, the five dominant psychological

personality constructs and a chinese character encoding.

Figure 3.15: Firefox web browser. This shows a standard web browser. Along the top are
the standard interaction buttons (refresh, stop, back, forwards , home) and the address bar. Along
the right is a sidebar (which can be hidden away) which shows the web pages that users have
bookmarked (the sidebar can also contain other functions such as the search history). At the
centre/right is the browser’s main view where the web page is rendered.

53

3.1.2 Web browser

Most web browsers consist of the same basic components, although most are customizable in

terms of layout and components. Figure 3.15 shows a view of a standard web browser. Along

the top is the web browsers toolbar from which users can interact with the web page using a

standard set of interactions (refresh, stop, backwards, forwards and home). The address bar

is also located at the top of the browser window, and sometimes doubles as a browser history

(double-clicking on the bar will open the history). The web page is displayed in the main view

below the toolbar, although some web browsers allow the use of tabs, allowing several web pages

to be opened within a single browser window (e.g. Firefox [32] and Opera [98] web browsers).

The web browser contains different methods of recalling previously viewed information, and

it is important to note that web browser history tools each have different continuity spans. Some

exist on a (1) session by session basis (such as back-buttons and hyperlink highlighting), (2) are

retained for a span of days (history lists), and (3) are permanent until deleted (bookmarking).

Some web browsers allow users to save entire sessions of web pages, others such as the Opera [98]

web browser automatically loads up the last pages you visited, each time you start the browser.

People use bookmarks in different ways. Some people use them as temporary flags, added

opportunistically only to be discarded later, other people use them as landmarks which are stored

and ordered carefully, so they can be recalled in the long-term. Consequently, the amount of

bookmark usage can vary from person to person.

The back-button in the toolbar can also be used to recall information, a single click moving

users to the most recently viewed page. Users can go back to previous pages through a pull-

down menu which contains links to the last few web pages visited (usually between 5 and 10).

Back-buttons are interesting in that they provide an automatic history system in which data on

the user’s progress are stored, and hence are an essential navigation tool. As a result they are

used more often than other automatic history systems, but are limited in their functionality.

Back-buttons act in a linear fashion (storing pages after they have visited them, in a linear list)

and as a result are not well suited to browsing in a hyperlink rich environment, where users will

often dart back and forth between pages. If a searcher should follow several links from a start

page, return to the start page and then visit a different link, all record of the web pages that had

been visited previously will be erased from the back-button’s history. This problem is referred

to in this work as the branching problem. Hyperlink coloring is an indirect approach to showing

the browsing history of users. Textual hyperlinks are colored in a bright color and underlined

to show that they are hyperlinks, but in addition to this, they change color when users have

clicked upon them and visited their associated link.

The basic design of web browsers has not changed for nearly a decade. Many of the tools, have

54

been added to and modified slightly, but essentially all the functions remain the same. On the

other hand, over the last decade, web searchers needs, search behaviours and the information

available have all changed. Current web search tools do not provide suitable support for users

during an evolving search. The following sections will present the interface issues addressed in

this work, as well as discuss the different techniques that can be used to aid users in performing

evolving searches.

3.2 Evolving Search issues

In chapter 1, the objectives of the research were discussed in terms of the different Evolving

Search issues that would be addressed in this work. Of the evolving search interface issues

mentioned in Bates’s work [6], this work addresses the Evolving Search issues related to op-

portunistic searching (aiding users in browsing information), information recall (aiding users

in retrieving previously viewed information) and information visualization (visualizing large

amounts of data). The format of each subsection is as follows: each section introduces a par-

ticular interface issue and then presents, (1) the techniques available to tackle the issue, (2)

examples of applications that use these techniques and (3) a discussion on the advantages,

disadvantages and effectiveness of the techniques.

3.2.1 Opportunistic searching

Bates [6] suggested that an effective online interface allows users to browse quickly and randomly

over search result information, much like the physical act of scanning over the titles of books on

a shelf, or rifling through the pages of a book. However, the differences between the information

structures of a library shelf and a list of search results means that random browsing cannot

take place to the same degree. As stated in the previous section (section 3.1.1), search result

information is normally presented in lists, each containing 10 results per page (although this

default setup can be modified with various advanced commands). This means users cannot

‘jump’ between various parts of the list easily, and even scrolling a list of 100 results can be

difficult. Designing an interface to accommodate this behaviour will benefit users in discovering

new and interesting information, more so in Evolving Search tasks, where they need to gather

as much information as possible, in order to further develop their information need and create

a efficient query.

There are two methods to aid users in searching opportunistically using an online interface:

(1) provide users with more information, so that they may ‘jump’ between the different parts of

the data (like its physical equivalent, browsing a bookshelf), or (2) provide users with a method

of sifting through large quantities of information quickly (like its physical equivalent, rifling

55

through the pages of a book). Looking at the first method, the most efficient way to provide

users with more information is to abstract and simplify the data. Most search result and web

page data comes in the form of text, which in turn occupies a large amount of space on the web

page. Abstracting text often allows users to view more information on the screen, while still

providing meaningful information. The following subsections will look at different abstraction

techniques.

Technique : data reduction

Data reduction is an abstraction technique used to summarize textual information into its most

salient keywords, reducing the screen space used, while still providing useful information, and

filtering out unnecessary data. An example would be to reduce a document to its main section

headings, allowing users to retain a sense of the document’s structure, without the burden of

having to read through the entire document. This also allows users to scan quickly over many

such documents at the same time. Similarly this could be applied to a web page, summarizing

the page as a list of it section headings, or as a specific set of meta-data (e.g. just showing the

images on that page). All search engines abstract web page data into search results, reducing

the web page to its title, a snippet of text from the page, and its URL. Some web browsers, such

as Opera [98] allows users to reduce the page to just its hyperlinks through the use of modified

style sheets, allowing the hyperlinks to be found more easily. Web browsers for mobile devices

also perform data reduction (because of the small screen space) so that only the most pertinent

information is displayed.

Figure 3.16: Suh et al’s [109] popout prism tool. The popout prism tool was integrated as a
sidebar (left) to a web browser tool. The tool displays the page at a lower magnification, allowing
users to slide the tools ‘window’, to view different parts of the web page. Notice also the ‘pop outs’
(coloured boxes with text), which are words specified by users.

56

Technique : distortion and shrinking

Distortion and shrinking can also be used to abstract data, reducing the size of the information

(text or images) in order to fit more information onto the screen. However, this can only be used

up to a certain point before the information becomes illegible. This is more often used in images

because, even with a lack of detail, users can often still match images, based on colour and shape.

In Google’s image search [36], thumbnails are utilized to display the images results returned. In

the Thumbshots search engine [101], thumbnail pictures (of web pages) are provided for each

search result returned. De-magnification can also be used to convey an overview of the data.

An example of this is Suh et al’s [109] popout prism, where a thumbnail view (of a web page)

is placed side-by-side with its full magnification counter part (see Figure 3.16). This ‘overview’

of the web page allows users to navigate the page opportunistically, as its magnification makes

the thumbnail large enough to be used as a map. While images are only slightly legible in the

overview, the text is completely incomprehensible, and thus a special tool is used which can

‘pop-up’ text (see Figure 3.16) within the overview.

Figure 3.17: Distortion geometry. (from Baudisch [7]) Different techniques which can
be used to distort text to allow the viewing of both the data’s focus and its context, each with
its own advantages and disadvantages. The (a) Manhatten lens changes scale abruptly as the
resolution boundary is crossed which can make some elements unreadable. (b) Zoomscapes can
be used on single line objects or groups of objects but fails when used on very large objects. (c)
The Central perspective shrinks content continuously with increasing distance from the focus. (d)
Parallel projection only compresses off-focus content vertically and by the same factor

Technique : focus-and-context

Focus-and-context techniques, also known as detail-in-context and fish-eye views (after the fish-

eye lens that distorts images) are an extension of distortion techniques. The technique, which was

originally introduced by Furnas et al. [35] as part of his fish-eye views, increases the magnification

around the data object that is currently being focused on, and shrinks the surrounding data, so

that users are still aware of the context of the data. The amount of data in the focus can vary

from a single object to a ‘slice’ of continuous data (a part of a web pages rendering). Similarly,

the level of detail of the context can vary immensely (see Figure 3.17), sometimes the data is

reduced to its smallest (unreadable) form, at other times there is a gradual change in size in the

57

context. The data presented can be of many different forms, such as plain text, images, web

pages and data tables.

Applications using focus-and-context techniques utilize one of two major representation

types, continuous visual structures (‘unbroken’ data such as maps, images, web pages) and

discrete visual structures (data comprised of multiple ordinal parts, such as trees, graphs and

search results lists). Applying focus-and-context techniques to a continuous visual structure

is often described with a ‘rubber-sheet’ metaphor, where parts of the continuous image are

stretched and distorted. Several examples exist, such as Leung and Apperley’s [67] bi-focal dis-

play (Figure 3.18 - left of the figure) and Mackinlay et al’s [69] perspective wall (Figure 3.18 -

right of the figure). Applying focus-and-context to a discrete visual structure involves modifying

the size and spatial location of various objects in the graph while keeping the relations between

the nodes and links comprehensible. This gives an immediately recognizable and intuitive struc-

ture, examples include, Rao’s Table lens [91] which visualizes tabular data, and Holmquist’s [49]

Zoom browser which utilizes his Flip-zooming technique (see Figure 3.19) to preserve the linear

order, and emphasizes space-preservation over place-preservation.

Baudisch et al’s Fishnet tool (a fisheye web browser) [7] built upon the work of Suh et al’s

[109] popout prism tool (previously mentioned). Instead of using Suh’s side-by-side thumbnail

overview, Baudisch et al. applied a focus-and-context technique to the main web page view,

distorting the top and bottom of the web page to create an overview within the web page. As

the scroll bar is moved, the focus is shifted, and the top and bottom parts of the page change

to generate a new overview.

Technique : graphical display

Data can also be abstracted into a graphical display, which involves translating the data (e.g.

textual data) into a graphical format, replacing the data-points with a pictorial representation

that conveys the most important aspects of the data (e.g. representing pages or documents as

icons). This technique is also used as a part of interfaces that detail the relationships between

different pieces of data. For example, web pages represented as icons can be plotted onto a

scatter-plot or connected into a node-link diagram representing a web page history. Graphical

displays are not limited to two-dimensional views and can also be found mapped to three-

dimensional views as well.

Applications using graphical display techniques often abstract data in order to increase the

amount results displayed. The graphical form also allows relationships to be drawn between

the different data points. The Grokker search engine [39] abstracts its search results into a

hierarchy of nested circles (see Figure 3.20), allowing a larger number of search results to be

displayed to users. Hasan et al’s Hy+ browser [41] abstracts a browser’s web page history into

58

Figure 3.18: Focus-and-context design (from [49]). The bi-focal display (left) and the
perspective wall (right). The Bi-focal display (based on work by [67]) compresses the horizontal
portion of the material on the left and right (can also be done top to bottom - as in FishEye
view [34]). The Perspective wall [69] uses graphical distortion with a three-dimensional metaphor
showing the material as if it was receding into the background of the image on both sides of the
focus.

Figure 3.19: The Zoom Browser (by Holmquist et al [49]). This tool utilizes the flip-
zooming technique, to view pages of a document. Holmquist attempts to preserve the linear-
ordering, while at the same time keeping the proportions of the pages, and using up the free space
efficiently.

59

a two-dimensional node-link diagram (see Figure 3.21 and 3.22), with web pages represented by

icons on the diagram. In Hy+, the relationship between the web pages in the browser history

is made explicit, by linking together the web page (icons) with lines, mapping the path of users

progress.

Figure 3.20: The Grokker web browser (from the grokker website [39]). When a search
is made (e.g. web visualization), the results are split into several categories (e.g. information,
data) and sub categories (e.g. software). These are represented by a set of hierarchical circles.
Investigating the categories (by clicking on the circles) zooms users into the circle, revealing more
circles (sub categories) or displaying actual web page icons. The size of the circle is the visual cue,
denoting the amount of information (web pages) contained within that category.

Three-dimensional display techniques allow more data to be displayed, through the use of

an extra dimension as well as allowing the use of novel interactions techniques (e.g. three-

dimensional worlds). NIRVE’s [24] three-dimensional scatter-plot takes advantage of the third

dimension, by allowing a third variable to be compared in the display. Certain three-dimensional

interfaces allow the introduction of completely new interaction techniques, such as Card’s [19]

WebBook, which generates a three-dimensional book which users can ‘flip’ through (see Figure

3.23). The WebBook preloads a collection of web pages into a three-dimensional ‘book’. There

are several ways to ‘flip’ through the book depending upon the user’s actions. Clicking on a

hyperlink leading to an internal page will flip the view to that section, clicking on a page itself

(not a link) will flip to the next page, and clicking to the far left and far right will advance or

decrement the page (the relative distance of the click indicates how far to jump). Users can also

scan using the backwards and forwards buttons.

60

Figure 3.21: Hy+ Web Browser. Hasan et al. [41] designed a two-dimensional, graph based
visualization that displays users progress through a website. As users view web pages, nodes
representing web pages and their connecting edges are added to the graph, as well nodes representing
hyperlink destinations from each of the web pages. The Blue edges represent potential travel paths,
the edges in red show paths users have visited. Clicking on any node will take users directly to that
web page.

Figure 3.22: Hy+ Web Browser (’Blobs’ view). A different view of the above Hy+ browser,
also by Hasan et al [41]. Users can create a ‘box’ (called a ‘Blob’) to group together sections of
web pages that are located close to each other. This allows users to prune large parts of the tree
allowing a less crowded overview of search progress.

61

Figure 3.23: Web Forager and Web Book. The WebForager workspace (developed by Card
et al. [19]) creates a three-dimensional desktop from which users can search for information. The
data is represented by three-dimensional books, that can be opened and read. These books are
in turn stored on a three-dimensional representation of a bookshelf. The WebBook, is a tool for
storing web pages, and like a real-life book, its pages can be turned. The pages of the Webbook
can be seen ‘flipping’ in the inset on the right.

Discussion

The techniques that have been presented demonstrate how current researchers have provided

solutions to opportunistic searching, through the use of data abstraction. Although many of

these techniques have been successful, they only represent part of the solution, to the many

challenges of evolving searches. The advantages and disadvantages of the techniques will now

be discussed. While data abstraction allows users to view more data on the screen, contextual

information which may have been useful to users is lost. This is also apparent in both data

reduction and distortion, for example, by reducing the amount of data users might miss out on

valuable keywords, and by distorting a piece of text or an image it becomes difficult to read or

view it. This loss of context also takes place in tools which use magnification, for example the

NaviQue [35] search result visualization which uses a zoomable interface. When users zoom-in

to inspect results, they completely lose the surrounding results which form the context of the

search. The focus-and-context technique reduces this problem by allowing users to focus on a

result while still being aware of the data’s context.

Looking at Baudisch et al’s Fishnet tool [7], this particular method of focus-and-context

(which distorts the web page rendering), gives no added benefit to users since the information in

the context becomes too small to read, and any images in the context will be distorted. However

62

Figure 3.24: Wasted space v.s. distorted space (from Holmquist et al. [49]) Different
styles of focus-and-context visualizations, create different kinds of problems. Left, the proportions
are preserved, but there is wasted space, right, the space is used effectively, but the objects are
distorted.

Figure 3.25: Flip zooming layout. This technique was developed by Holmquist et al. [49].
Flip-zooming starts with several objects laid out, equally spaced on a two-dimensional surface
(using thumbnails), when a result is selected it increases in size, while its surrounding elements are
miniaturized and reorganized around it. Notice that their linear-ordering is also preserved (to a
certain degree).

63

the tool also has a ‘find function’ that highlights search terms specified by users, made visible in

the context of the view through highlighting and enlargement of text. This allows them to locate

the terms they are interested in, outside of the focus. Compared to the previously mentioned

popout prism tool, Fishnet has different strengths and weaknesses. Unlike the popout prism

tool, Fishnet makes full use of the available space, however, the Fishnet tool has the problem

of an inconsistent aspect ratio in its context views, as well as a greater compression ratio (and

hence less detail) than in the popout prism tool. Additionally, this modification of the visual

structure of the data can make it distorted and unreadable. An experiment conducted by

Baudisch et al. [7] showed that the popout prism tool and Fishnet view performed well in

different circumstances, and they came to the conclusion that it would be ideal to provide users

with both options when searching web pages.

Applying focus-and-context techniques to an interface has its own set of disadvantages, as

can be seen in Figure 3.24. In attempting to preserve the proportions of the data objects, a

large amount of wasted space is generated (see Figure 3.24 - left). If the tool is designed to

make the best use of space possible, then the data will lose its proportions and become distorted

(see Figure 3.24 - right). Holmquist et al. [49] attempted to solve these problems with minimal

wasted space, and minimum distortion. They realized that by attempting to preserve the 1-

dimensional linear-ordering of the data, they were preserving the 2-dimensional ordering as well,

and as a result decided to break the rigid frame imposed by the ordering while still preserving

the linear order.

Figure 3.26: Hierarchical image browser (Holmquist et al. [49]). Left, is an outline of
a modified flip zooming layout technique which divides the data into specific collections. Right is
an example view of an image collection utilizing the layout technique. This is a place-preserving
design, the focused object is always central to the view (never moving), with objects forming clusters
around the focus.

One method attempted by other interface designers was to place results (search results in this

case) in a spiral, as seen in Spoerri’s Rank spiral [105], and Cugini et al’s [24] three-dimensional

64

spiral. Although both interfaces preserve the ordering of the search results, the closeness of

the results infer a relationship (that they are similar) that does not exist. No attempt has

been made to apply focus-and-context techniques to such a spiral method. Holmquist [49]

suggested a technique called flip-zooming (see Figure 3.25), which preserves the linear order.

However, the design emphasized space-preservation over place-preservation (location), which

can be troublesome to users, whose view will change drastically every time a result is clicked on.

Holmquist describes three implementations which use flip-zooming, the Zoom Browser (for

text documents, see Figure 3.19), the Image Browser (for image collections), and the Hierarchical

Image Browser (see Figure 3.26). Ideally there should be no distortion of the data and no wasted

space, however this is only really achievable with certain visualizations such as the Table lens

[91], which deals with tabular data. Table lens uses a standard table format, but applies focus-

and-context on selected columns and rows. Unlike the bi-focal display and perspective wall,

none of the data is distorted, and no empty space is generated, because all data is only viewed

in one of two states, numerical or graphical.

Using a graphical display reduces the data’s size (through abstraction) while allowing users

to avoid the problems of distorting the data. However, abstracting the data this way often

removes specific details, as well as the context of the information which can be troublesome for

users. Abstracting the data can also make it difficult to interpret, for example if the graphical

display uses a representation that users are not familiar with. Attempts have been made to

create interfaces based on more familiar metaphors, for example, the aforementioned WebBook

[19] mimics a physical real-life book. The problem with WebBook is that it seems to discard the

website’s entire structure, organizing the website into ‘chapters’ and ‘sections’. Many websites

cannot be ordered into such a neat structure, and certainly not into a linear-ordering. It is

interesting to note that the use of analogies (such as the WebBook) was supported by Bates [6]

as a means of helping users better understand interfaces and allowing them to perform search

actions which more closely resemble their real-life counterparts. The next section will look at

information recall, the second evolving search issue addressed in this work.

3.2.2 Information Recall

Bates [6] suggested that the ability to quickly recall previously visited data sources, would be

useful during a search, since it can be easy to lose track of specific information among the large

quantities of data generated. In an evolving search of online sources this is especially true, given

the amount of multiple searches generated, and web pages viewed.

Studies of web searching patterns by Tauscher et al. [114] detailed two important facts about

information recall, that most web pages viewed by users are revisits, and that web browser

history tools are rarely used. Tauscher et al’s studies showed that 58% of the web pages that

65

users visit during a browser session are revisits to previously-viewed pages. This may be because

users return to pages that are frequently updated (e.g. News web pages) or have a specific

function (e.g. search engine and dictionary web pages). They also noted that while many pages

are revisited, users continually incorporate new pages into their repertoire at a regular rate.

Tauscher et al’s research also showed that on average, the majority of web pages that users

visit will only be viewed once (60% of web page visits) or twice (19 % of web page visits).

During a search session, the back-button usage comprised of 30% of all navigation actions, the

bookmark counted for 3% of the actions, where as the history tool provided 1% of all actions.

The results of Tauscher et al’s [114] studies indicate that users often recall web pages, but very

rarely use either the bookmark or history function to retrieve these pages. This implies that

users either recall web pages from memory, or simply re-perform searches on a regular basis to

retrieve information. There are two principle methods of storing data on a web browser to be

recalled later, these are automatic history systems (such as the tools browser history), where all

the web pages that users view are recorded, without needing their input, and manual history

systems (such as bookmarks), where users explicitly stores selected web pages.

The browser history is an automatic history system commonly found in web browsers. The

tool records all web pages viewed by users over the course of their search sessions, represented as

a temporally ordered list. Other automatic history systems exist, and are integrated into other

components of the web browser, for example users can access their recent web page history

through drop-down boxes in both the address bar and the back-button. Automatic history

systems don’t need specific input from users since they record every page that is visited, thus

if users forget to mark specific web pages, they can always use the search history to go find

it. However finding the information within the search history will take longer than if it was

bookmarked, because the web page list needs to be searched.

The bookmark tool (sometimes called the ‘favourites’) is a manual history system often found

in web browsers, and allows users to store specific web pages in an organized fashion. Bookmark

tools have become more advanced over the last few years and now keywords and notes can be

associated with specific bookmarks, allowing them to be searched. Some web browsers have

bookmark toolbars (such as Mozilla’s Firefox [32] and Apple’s [89] Safari web browser), which

allow quick access to frequently used bookmarks. Problems exist with current manual history

tools. With bookmark tools, if users forget to bookmark a page after visiting it, then once they

pass the page, they cannot easily recall it. Users must also take the time and effort to organize

their bookmarks and keep them in order, and up to date.

Current history tools are unsuitable for evolving searches, they are cumbersome to use, hard

to search, and hard to organize, all of which add to the difficulty of recalling relevant information

in a timely manner. The rest of this section outlines the problems with existing search history

66

tools with regards to the evolving search, the different techniques that can be used to represent a

search history, examples of applications using search history tools, and conclude with a discussion

on the issues related to designing history tools, as well as a set of criteria for efficient history

tools.

Due to the failings of the designs of current web browser history tools, alternate methods

of recalling web pages have been implemented by researchers. In the case of automatic history

systems, emphasis has been placed on finding ways to aid users in searching for specific web

pages among the large list of automatically recorded URL’s. In the case of manual history

systems, emphasis has been placed on creating tools that allow users to quickly and easily mark

and retrieve specific data objects. Each of these will be discussed in turn.

Technique : automatic history tools

The simplest method of searching a large list of URLs would involve some method of filtering

that will screen out unwanted data based on a set of criteria. The most common method is to

use a search box, in which users input some keywords. These keywords are then checked against

each bookmark’s meta-data tags (e.g. URL, Title) and the list is modified to contain only those

results that match the criteria. This is not always ideal, given the fact that users remember

web pages in different ways (e.g. colour, images, keywords in the page), and thus they may not

remember the web page by the information used to store it. Showing the trail of web pages

users visited during a search can help them remember the position of the information they are

looking for. However following a trail using the hyperlink highlighting is slow, since users have

to move slowly, step by step through the visited web pages. Ideally, a graphical overview should

be used, allowing users to jump from one web page on the trail to another instantaneously.

Certain graphical overviews (such as two-dimensional tree structures) automatically bypass the

branching problem (discussed earlier in the chapter).

There are tools which utilize two-dimensional graphical overviews to display automatic his-

tory data. The WebNet [22] history view uses a graph-like layout (see Figure 3.27 - left), with

web pages represented as interconnected circles. Mosaic G [4], uses an hierarchical layout (see

Figure 3.27), representing web pages as blocks on two-dimensional space. PadPrints [47], based

on the Pad++ zoomable interface, lays out the history data as a hierarchical tree. Like Mosaic

G, PadPrints also displays web pages as blocks as well as providing titles and thumbnail images

of the web pages, but differs in that it provides a fully zoomable interface with scalable objects

(branches that are no longer of interest can be shrunk until they are a less significant size).

Trail highlighting can also be used as part of a two-dimensional graphical interface to illustrate

the path taken by users. For example Hasan et al’s [41] Hy+ browser, (see Figure 3.21) uses

a two-dimensional graph to map users progress when browsing web pages, as well as showing

67

Figure 3.27: Graphical history navigation. Left - WebNet [22], Right - Mosaic G [4]. WebNet
displays the browser history in a separate window containing interconnected circles representing web
pages, surrounded by small black dots representing links out of that web page. WebNet contains a
filter that can alter the size of the nodes based on a set of different criteria including frequency of
visits, recency of visitation, and distance from the current displayed page. Mosaic G represents web
pages visited as squares, detailing the title, url and thumbnail image of the web page. The layout
is that of a two-dimensional hierarchical tree (left to right). Users can reduce the view by zooming
out of the map, and can also condense branches of trees that are no longer of interest.

Figure 3.28: Kaasten et al’s Integrated History Tools. Appears as sidebar on Internet
Explorer. Each web page is represented by an thumbnail icon of the web page, with number of
views represented by a green bar on the side of the icon. Pages which are explicitly bookmarked
are ‘dog-eared’ (have a small triangle in the corner, like folding a page corner). The icon ordering
is based on a combination of recency, number of visitations, and whether it has been explicitly
bookmarked. Filtering tools are available to filter the history based on recency, title or domain.

68

paths to adjoining unvisited web pages. In Hy+ the paths that users have visited are highlighted

in red, while those which are unvisited are coloured in blue.

Technique : manual history tools

Techniques for retrieving manual history data involve either placing pointers to the data in plain

sight where users can quickly access them e.g. on a bookmark toolbar, or by highlighting the

data so that it can be found among large amounts of data easily. The suitability of the technique

varies depending on the interface. For example in some graphical interfaces, it is more suitable

to highlight a data point than store it in a structure to be retrieved, because the interface already

allows users to jump to any point in the data with a single click. The Insyder tool by Mann [72]

contains a two-dimensional scatterplot view in which the plotted symbols can be highlighted in

a specific colour to make them stand out. This permits users to quickly and easily recall the

requested page and compare the data with the tool’s different views. Card’s 3Book [18] uses a

three-dimensional book for its interface. The bookmark takes the form of a coloured strip (much

like a physical bookmark) which users can see clearly, and can be selected to open an associated

page.

Technique : manual and automatic

Some tools exist that combine both automatic and manual history techniques. Kaasten et al. [61]

implemented an integrated tool for searching web histories and bookmarking (see Figure 3.28),

which worked as a sidebar in the Microsoft Internet Explorer. The sidebar is dominated by a list

of icons each of which displays a miniature thumbnail pictures of the website it represents. At

the side of each icon is a small green bar, with a height determined by the number of visitations

that have been made to the page. Icons are added to the tools list as users search, and web

pages that are visited frequently automatically get moved to the top of the list. Icons which

users think are relevant can be bookmarked, which will keep them at the top of the list. Users

can filter the history list based on recency, domain or title keyword using a combination of slider

bar and search box controls.

The tool’s thumbnail icon shows a unique representation of the web page, which is not

legible, nor useful for identifying specific meta-data about the page. Kaasten et al. [61] solves

this problem by allowing a hovering pop-up of the page at a larger resolution, as well as its title

and URL, when the cursor is hovered over the thumbnail. Users can also customize the icon’s

label, so as to give it a more meaningful title. One of the major differences between this tool and

other search history tools is that the history stores data on a recency based system, as opposed

to the traditional stack based system, thus avoiding the branching problem (see [61]).

The use of recency based systems is echoed in other research. Berkun [11] described a

69

bookmarking system that would store information on how frequently websites were visited, and

display the most frequent web pages in a toolbar or other easily accessible object in the browser.

He called this ‘Intelligent Bookmarking’. Berkun also specified that such bookmarks should be

automatically checked for broken links and duplicates in order to keep them from becoming

unmanageable. The Opera web browser implemented a form of intelligent bookmarking, where

bookmark drop-down lists were trimmed, showing only new and frequently accessed bookmarks,

and hiding bookmarks which were used infrequantly.

Discussion

Through a series of experiments Tauscher et al. [114] observed and developed a set of criteria

for the design of history systems. However many of these criteria are out-dated, since they have

become commonplace in browsers. For example, Tauscher et al. noted that records of all URL’s

should be kept, since some history lists in the past were only kept on a session by session basis.

Nowadays users can specify exactly how long histories should be kept, and how much space they

should take up. Tauscher et al. also noted that grouping URLs into web tasks would be useful

for pages that people revisit regularly. Modern web browsers can often save entire sessions of

web pages (including their histories). The previously mentioned Webbook (Card et al. [19])

also grouped together web pages, into three-dimensional representations of books, which users

could view. Below is a summary of the design theories that are still valid:

1. Recalling URLs should be easy. Recalling web pages via a history mechanism should

be easier than simply calling up a search engine and performing a search. There are

still many pages that users revisit that they are not aware of (see Tauscher et al’s [114]

experiment), and an automatic system to suggest pages to revisit based on revisitation

and recency would be advantageous.

2. History lists are short. Tauscher et al. stated that a lengthy history list is unlikely to be

worthwhile, considering the high cost of screen real estate and the cognitive overhead from

scanning so many results. They estimated that a size of 6-10 results would be adequate

based on the fact that the experiment [114] showed that 43% of all revisits were from the

last 10 results, with this percentage only growing marginally when the result’s range was

doubled and tripled.

3. History should include both recency and revisitation. Tauscher et al. found that

while recency was a major factor which affected revisitation, many results were revisited

that were not used in the recent past. They suggested combining recency with amount of

revisitation.

70

4. Representation should be meaningful. It was discovered that titles and URLs are not

always good indicators for the contents of a web page. The use of thumbnail images was

suggested to represent pages, since users who have already visited the page will recognize

the layout, colors and structure of the web page. However recognition is determined by

thumbnail size, and larger (more recognizable) thumbnails take up valuable screen space.

5. Customization. Users should be given the opportunity to make significant results even

more distinct, using their own names, icons and groupings, all of which will aid quicker

recall.

As mentioned previously, efficient recall systems are needed when performing evolving searches.

This section has looked at the inadequacies of current information recall systems, and discussed

the different techniques and tools that could be used in their stead. The next section will look at

the third evolving search issue of Bates [6] that this work addresses, information visualization.

3.2.3 Information visualization

Bates feared that evolving searches would generate large amounts of information, and it would be

difficult to view all the data at the same time, on the same screen. The solution she envisaged

was to increase the resolution and size of the VDU. Since that time, technology has indeed

improved greatly, but still problems remain. This section proposes a software based solution

using visualization techniques that transforms large amounts of data into useful and meaningful

displays, beginning with a look at the different techniques that are available to display the data,

and then moving onto a few examples of different applications utilizing these techniques. The

section concludes with a discussion of the different advantages and disadvantages of each of the

techniques as well as their suitability for visualizing evolving searches.

Note that there is some overlap in terms of techniques described between this section, and

the aforementioned section on Opportunistic searching. While both sections involve tools for

visualizing large amounts of data, those in the Opportunistic searching chapter concentrate on

the different interaction techniques involved with manipulating the data, while this section deals

primarily with the techniques involved in displaying the data. As mentioned in section 3.2.1, one

method of providing users with more information in a restricted screen space is to abstract the

data. Previous sections have discussed the different abstraction techniques available, graphical

displays were identified as an effective method of abstracting large amounts of data. In the

research community it is well understood that information displayed in a graphical form can be

more quickly assimilated than its textual counterpart (see Shneiderman [100]), and trends and

relationships between different parts of the data can be more easily discovered.

Graphical displays of search result data come in a variety of different forms. Some use

71

simple and easily understood representations such as bar charts or scatter plots, others use

more complicated representations, such as the tilebar [45], spiral [105], and topographical map

[14] visualization techniques.

Figure 3.29: Mann’s [70] Insyder Tool. Two of the views of the Insyder tool, the Bar chart
view (left) and scatter plot view (right). In the bar chart, the results are ordered by overall relevance,
shown in the first column. The remaining 4 columns represent the different terms used in the query,
and their corresponding relevances.

Technique : bar chart

Mann [72] employs a bar chart view as part of his Insyder tools (see Figure 3.29). Multiple bar

charts (displayed as side-by-side columns) are used in the display, each bar chart representing

a list of search results, and each bar representing a search result. The length of each bar in the

list is dependent on the variable associated with the column e.g. the far left column (relevance)

maps the bar’s length to its search result’s relevance ranking, while the search result bars on

the far right (internet) have lengths based on the number of occurrences of the word ‘internet’

in each search result.

Technique : scatter-plot

When search results are plotted onto a scatter-plot, meta-data is mapped to the x and y axes,

and extra meta-data is often encoded into the data points on the scatter plot, using various

perceptual variables such as color and shape. The Multiform Glyphs tool by Boukhelifa et al.

[93](see Figure 3.30) uses a scatter-plot as part of its coordinated multiple views visualization.

The tool has four coordinated windows, but the view of interest is the domain glyph view which

maps search results onto the scatter-plot using the internal and external link count for the x

and y axes respectively. Note that the shape of each glyph varies depending on the extension of

the web page it represents (e.g. circle for .com, square for .edu). Cugini’s [24] three-dimensional

scatter-plot (see Figure 3.31) extends the original two-dimensional scatter-plot, mapping user-

specified keywords to each of the three axes of the scatter-plot, allowing users to discern relations

72

Figure 3.30: Multi-form Glyphs. (by Boukhelifa et al. [93]) Each glyph in this view is
represented by a shape based on its domain suffix (e.g. circular for .com, square for .edu, octagon
for .net), the ranking of the web page is mapped to the color of the icon, and the width of the icon
outline represents the pages size. The X and Y locations of the icons are based on the number of
internal and external links of each result.

Figure 3.31: Cugini’s three-dimensional scatter-plot [24] places search results in a three-
dimensional space, the axes representing the result’s relevance to specific terms. Each search result
is represented by a small bar chart icon, which is a summary of the information on the three terms
used to calculate the result’s coordinates.

73

between the search results based on their keywords. The data-points are represented by icons,

whose perceptual variables are altered to visualize more meta-data; in this case a miniature

two-dimensional bar chart replaces the standard data-points.

Technique : Tilebar

The Tilebar is an interesting technique developed by Hearst et al. [45] (see Figure 3.32), which

bears resemblance to the bar chart technique. The tilebar is a method of visualizing the concen-

tration of particular words within a web page. In its most basic form, a tilebar is a rectangular

block divided into several other smaller rectangular blocks. The larger rectangular block repre-

sent the entire web page, and the smaller rectangular blocks (within the larger blocks) represent

different parts of the web page. Each block is assigned a shading which is based on the con-

centration of a particular word in that section (darker blocks mean a higher concentration of

occurrences of that word in that section).

Technique : spiral

The Spiral technique was introduced as a solution to the problem of fitting data with a linear

order, into a fixed space (see Figure 3.33). By winding the line of data around into a spiral, the

linear-ordering is preserved, and all available space is used. Like the aforementioned scatter-

plot examples, the data-point in the display supplies additional meta-data to users, through

the use of different perceptual variables (e.g. using colour/size/distance to convey additional

information). Spoerri’s MetaCrystal [106] contains a rank spiral view (see Figure 3.33), where

each data-point has extra meta-data encoded into two of its perceptual variables, shape, and

colour. The different shapes represent the number of searches that the data-point exists in (e.g.

pentagon = five searches, square = four searches) and the different colours within the data-point

show which searches the data-point exists in (e.g. red = google.com, blue = teoma.com). Cugini

[24] created a three-dimensional spiral as part of the NIRVE interface, which visualized search

results, where the data-points were replaced with bar chart icons representing the number of

user-specified words present in the search result.

Technique : topographical map

The Topographical map was originally used to map geographical information, but was extended

towards visualizing other types of data. Topographical map techniques are a popular choice,

because users are familiar with consulting maps for navigation. Most map interfaces utilize the

peaks and troughs present in geographical maps to point users to interesting information and

away from non-relevant information respectively. A number of two-dimensional topographical

74

Figure 3.32: Tilebar search interface (by Mann [72]). A tilebar is a rectangular block
divided into several other smaller rectangular blocks. The larger rectangular block represent the
entire web page, and the smaller rectangular block represent different parts of the web page. Each
block is assigned a shading which is based on the concentration of a particular word in that section
(the darker means a higher concentration of occurrences of that word in that section).

Figure 3.33: Spiral metaphor visualizations. Spoerri’s [105] rank spiral (left) & Cugini’s [24]
three-dimensional spiral view. Often used on linear data to fill the area space. One problem with
this format, is that users may unintentionally misinterpret the relations in the data. Since the icons
in the different coils of the spiral are so close together, users might mistakenly assume a similarity
between results in different coils, where none exists.

75

map visualizations exist. Cartia’s newsmaps [80] (see Figure 3.34 - left diagram) is a self or-

ganizing map that clusters similar search results together onto a topographical map. ‘Peaks’

form, where large amounts of similar documents gather together. WebSom [51], by Honkela et

al., utilizes a self-organizing map algorithm to cluster data on a two-dimensional map, (figure

3.34 - right diagram), and utilizes the color orange at different intensities, where darker patches

of color are used to represent particularly large clusters of information. Themescape, developed

by Miller et al. [77], uses document abstracts to generate three-dimensional topographical maps

(see Figure 3.35 - left). Similar documents are clustered together, and these clusters are trans-

lated into three-dimensional peaks. It is a simple step to associate the height of the generated

‘mountains’ with clusters of useful information. Boyack et al. [14], in their VxInsight tool (see

Figure 3.35 - right), used much the same geographical representation to view similarities in

bibliographical data.

Figure 3.34: Topographical maps visualizations. On the left is the Cartia Newsmaps tool
[80], which visualizes search results onto the map, grouping the results according to similarity to
form ‘mountains’. Right is Honkela et al’s WebSom [51] which also maps similar search results
together, but instead generates concentrated patches of colour where similar results gather.

Figure 3.35: Topographical map metaphor. On the left is Themescape (by Miller et al. [77])
and on the right is VxInsight (by Boyack et al. [14]). Color and height are used in combination to
show clusters of different subjects.

76

Discussion

The single problem that affects all of the mentioned techniques is the loss of textual information.

Many of the techniques attempt to map various meta-data into the data objects using perceptual

variables. However, not all meta-data is useful (e.g. users might not be interested in the number

of internal/external links in a web page) and the relevance of meta-data can vary from search to

search. Another problem with graphical interfaces is the intuitiveness of display, for example a

scatter-plot is a common occurrence in statistics, but less so in web searching, which can cause

some confusion over its purpose and use. Most graphical displays (with the exception of the

spiral technique) break up the linear-ordering of the search result list, in order to allow users

more freedom in traversing their search results. This can be confusing for users who are used

to the linear-ordering of the search results, and can sometimes make searching for information

more difficult.

An integral part of any graphical display, is the mapping of data into graphical objects.

Often the forms of the mapped objects directly symbolize the original information e.g. icons

drawn as books infer to users that the information contained by the icon is textual in nature,

and contains part or the whole of a book. Furthermore there are different perceptual variables

that can be used in conjunction with graphical objects to convey quantitative and qualitative

information to users, such as size, color, distance, intensity and shape. Each perceptual variable

has different advantages and disadvantages e.g. distance can be used to indicate similarity

between two objects, but can also implicate relations between objects which are located in close

proximity by chance. Developers utilize these different perceptual variables to bring meaning to

abstracted data e.g. associating object size with page count.

3.3 Online interface issues

When Bates [6] first wrote about the evolving search over ten years ago, the WWW was still

in its infancy, and as a result most of the issues she discussed referred to database and library

interactions. However, the WWW introduced new problems for searchers. This section looks

at two general online interface issues which affect the evolving search, these are the issues of

Information-seeking and Information management.

3.3.1 Information-seeking

Previous sections have looked at different display techniques for dealing with large amounts of

data (information visualization), and different interaction techniques for moving through the

data easily (opportunistic searching). However, the needs of users vary greatly, and having

the capability to view the data and move through it easily does not guarantee that users will

77

be able to find interesting information relevant to their search. This is best summarized by

Shneiderman’s [100] famous quote “Overview first, zoom and filter, then details on demand”,

where the ‘overview’ refers to the ability to visualize the information holistically, ‘zoom and filter’

refers to the ability to search opportunistically, and the ‘details on demand’ refers to the users

ability to seek specific information within the interface. This section will investigate interaction

techniques that allow the manipulation of information in order to seek interesting and pertinent

results. There are four main techniques of manipulating the data to find interesting information

in online interfaces: filtering the data according to a set of parameters, augmenting parts of the

data to draw attention to them, comparing two or more different data sets, and customizing the

display and its associated variables.

Technique : filtering

The most common method to find specific particular piece of information from a large data set

is to eliminate all the data-points which are irrelevant. Filtering allows users to specify which

results are not applicable to their search and remove them from the view, making it easier to

spot interesting and relevant results. Filtering techniques are available in most tools that deal

with large sets of data, providing users with the ability to quickly sift through the search results

according to a set of specified criteria. In its most simple form, filtering techniques exist as

textual commands in a search engine, used to restrict the set of search results. For example,

typing in the search [africa safari -botswana] in Google, returns a set of results from the search

[africa safari], but removes all results relating to [botswana]. The problem with text based filter

techniques, is that they require users to learn different commands and combinations in order

to make the best possible use of the tool. Furthermore, they are non-interactive. Dynamic

manipulation on the other hand, can be achieved through dynamic query tools.

Dynamic query tools can be manipulated through either a text box (for nominal data), or a

slider bar (for ordinal data). Slider bars are utilized in the Film finder and Home finder interfaces

[2], both of which display data as dots on an x-y plot, and allow users to modify the dots visible

through the use of slider bars. The Film finder tool displays data on different movies, plotting

each movie as a symbol on the map. The symbols are positioned by the popularity of the movie

(Y-axis), and its year of production (X-axis). The data can be filtered according to different

variables, including title, actor and movie length. The Home finder plots the location of houses

onto a map of an area. The data being displayed can be constrained by changing the range of

the slider bars according to a specified variable (e.g. house cost, number of bedrooms, distance

from a specified point). In search result visualization, the Grokker [39] allows users to filter their

search results based on terms that they input, graying out any categories that do not contain

the terms they have specified and allowing users to focus on the remaining colored categories.

78

Figure 3.36: Scent Trails (by Olston et al. [88]) modify the size of hyper link text based
on the perceived relevance of the link. The relevance takes into account the distance to a relevant
page (e.g. the more clicks / further away the relevant page is, the weaker the scent / less relevant
the page), this relevance is amplified by several relevant search result pages intersecting.

Technique : augment

Augmenting the data is another of form of filtering, but instead of removing distracting objects

from the view, it draws attention to specific parts of the data by manipulating various perceptual

variables (e.g. increasing the size of an object to draw the user’s attention to it). Olston and

Chi’s [88] ‘Scent Trails’, modifies the size of hyperlink text based on the relevance of that link

(the larger the text, the more relevant - see Figure 3.36). More specifically, when users search a

website using the Scent Trails program, the program locates relevant web pages and calculates

the ‘distance’ (in terms of hyperlink clicks) between the relevant web page and the current web

page, and this information is then encoded into hyperlinks in the current web page. For example

Figure 3.36, shows two links (on the left), the text size of Link 2 (bottom) is larger than that of

Link 1 (top), because the program has determined that it would take fewer hyperlink clicks to

reach relevant information using Link 2, than with Link 1.

Technique : comparison

The comparison technique allows users to draw relationships between the data as well as view

the data set intersections, and can be applied to both text and graphical objects. The simplest

form of textual comparison is done side-by-side (placing the two pieces of text next too each

other), although it is also possible to overlay documents (like laying transparencies on top

of each other) or even merge documents together (similar to Microsoft Word’s [90] document

merging function) so that differences between the documents are placed on the same document.

For textual comparison, users need to be aided in matching similar and different parts of the

document e.g. the WinDiff [123] comparison tool utilizes colored highlighting to show the

differences between two pieces of programming code.

79

Figure 3.37: MetaCrystal category view (by Spoerri [105]). This shows the category view of
the MetaCrystal tool. The tool visualizes the search results from four different search engines. The
intersections of the sets (where a search result exists in more than one search engine) are displayed
as icons of varying shapes and colours. The colours are used to show which search engines exist in
the intersection (e.g. red = google.com, blue = teoma.com) and the shapes denote the number of
search engines represented at each intersection (e.g. diamond shape = four searches, triangle shape
= three searches). A number is written in the middle of each shape, which represents the number
of search results in this intersection. In this view, the spatial location of each icon also corresponds
to the sets that it belongs to e.g. the icon directly in the centre belongs contains results belonging
to all four search sets.

Figure 3.38: The MetaCrystal clustered bulls-eye (by Spoerri [105]) utilizes the same style
of icons as the category view, but now there is an icon for each search result. Results with similar
rankings are clustered together, and the icons proximity to the centre of the bulls-eye depends on
the number of search engines that returned it.

80

The Meta-search engine compares search result data utilizing information from several dif-

ferent search engines in order to generate a single list of search results (examples include Meta-

Crawler.com, DogPile.com, and Ixquick.com). Typically a Meta-search engine will take the

results from multiple search engines, combine the results (noting and filtering out duplicates)

and use an algorithm to sort the results into a single rank ordered list. In appearance, the

meta-search engine is identical to a normal search engine (presenting results in exactly the same

way) but benefits from using several different search engines to draw from a larger pool of data.

The ranking of the results is affected by the number of search engines that it appears in, and it

is not uncommon for the interfaces to show (for each search result) which search engines they

came from. Some Meta-search engines allow users to restrict the results shown to those results

unique to particular searches.

Graphical interfaces also visualize a comparison of search result data from multiple sources.

Havre et al. [42] utilizes a Bull’s eye layout as part of the Sparkler tool (see Figure 3.38), which

displays the results from five different search engines. The results from each of the engines is

displayed as a straight line of dots emanating from a single central point (like a bulls-eye), with

dots closest to the center being of the highest relevance. A brushing technique was also added

to locate web pages that exist in more than one of the searches. Moving the cursor over a result

which exists in more than one search engine highlights that result’s position in each of the other

search engines. Spoerri [105] implemented the MetaCrystal visualization, an adaption of the

classic Venn diagram. MetaCrystal visualizes search result data, gathered from four different

search engines, on a two-dimensional vector space. Intersections of the search result sets (web

pages that exist in more than one set) are calculated and represented as icons in the graphical

space. The visualization contains several different views, and the shape, positioning and color

of the icons can vary depending on the view. The Category view (Figure 3.37) displays each

intersection of four search engines, the Cluster Bulls-Eye view (Figure 3.38) positions icons

according to their search engine, positioning the most relevant results closest to the centre, and

the Ranks spiral (Figure 3.39) that places all the documents in a spiral, (central results being

most relevant), allowing users to rapidly scan a large number of items and their titles and easily

identify the top items.

Technique : customization

Customization is a combination of the discussed techniques (filter, augment, comparison), where

users are given full control over what display techniques to use, what variables to show, and

what data to manipulate. By allowing users to build displays tailored to their specific needs,

for example, in a scatter-plot, users would be able to assign specific variables to the axes of

their choice. The previously mentioned Envision tool by Nowell et al. [85] allows a great deal

81

of customization of its view and the variables its uses (see Figure 3.40). The tool utilizes a

two-dimensional scatter-plot, where the data-points use perceptual variables (such as icon size,

colour and shape) to visualize different pieces of meta-data (such as relevance ranking, and file

type). However, unlike Boukhelifa et al’s Multi-form glyphs tool [93] (see Figure 3.30), the

Envision tool allows users to fully customize the mappings between the perceptual variables and

meta-data. The axes can also be customized to show the ranges of different pieces of data.

Discussion

Filtering data in graphical interfaces through the use of dynamic query tools is an easy and

efficient way for users to seek data. Both of the interaction tools (text box and slide bar) used

in dynamic query tools are easy to understand and simple to use. Manipulating the slider bar

gives users real-time feedback, allowing them to observe the results of various actions quickly,

and thus encouraging them to test and investigate the data in different ways.

Augmenting data allows users to locate interesting results more quickly. However tool de-

signers must be careful when integrating the technique into their tool, because the augmentation

of certain perceptual variables can cause adverse side-effects which hinder user’s progress. Take

for example the aforementioned Scent Trails techniques [88], changing the size of the text of

hyperlinks (to indicate relevance) causes the rest of the text on the page to become dispropor-

tionate and difficult to read. Additionally some hyperlinks are images and not text, so the size

variable may not work. Other suggested variables to use for the visual cue are changing the text

color, outlining the text and animating the text. For images, the outline border of the image

could be used to indicate the links relevance. The ability to filter and augment the data of an

evolving search is useful given the large amounts of information generated.

Comparison of the intersection of information from search engines,allows users to find inter-

esting and pertinent documents, e.g. documents that appear consistently in the top 10 results

of all search engines (Havre et al. [42]). Evidence shows (Lawrence and Giles [65]) that different

search engines obtain their search results from different pools of information, and as a result

comparison of data from multiple search engines widens the pool of information (Spoerr [105])

available to users.

Interfaces which provide the means to customize the views employed, and the data shown,

allow users to develop different displays for different situations and problems. However, the

increased flexibility also means increased complexity. Unlike dynamic query tools (where only

the data is being modified), these tools are complicated to customize and require a certain

amount of training before they can be manipulated with ease.

82

Figure 3.39: The Rank spiral places all the documents in a spiral. The most central documents
have the highest total ranking score (averaged between the five search engines), and decrease in
ranking the further out from the center you go. The view also employs a technique that pops-up
details on demand.

Figure 3.40: Nowell et al’s [85] Envision search tool. This is a good example of the use
of different perceptual variables to visualize different parts of the data. In the scatter-plot, search
results are represented by customizable icons. The various attributes of the search result icons (such
as relevance ranking, and file type) can be linked to various different perceptual variables (such as
icon size, colour and shape).

83

3.3.2 Information Management

Evolving searches generate a large amount of information. Previous sections have investigated

different ways to visualize this large amount of data, but the problem of how to manage the data

has not yet been discussed. Information management is important because it helps users keep

track of important threads of data, and allows users to instantly recognize and recall previously

viewed data. This section will discuss the different techniques used for managing data as well

as look at the different applications used for managing the data. The section concludes with a

discussion on the problems with implementing Information management tools.

The two main areas where management takes place are the data and the workspace. This

section will look first at the management of data, and then move on to discuss techniques for

managing the workspace. When large amounts of data are generated, it is common for users to

organize and group the data into ‘piles’ of related work (creating a structure), so that they can

more easily recall the data. This form of data management is reflected in web search tools, which

provide different methods of giving structure to the data. Currently web browsers provide few

tools to manage information effectively, the primary tools being the bookmark tool and toolbar.

Each is flawed in different ways (as discussed earlier in section - 3.1.2): the bookmark tool

requiring a large amount of attention to keep organized, and the toolbar being limited in space.

Users can organize data into multiple browser windows, but this is only effective in the short

term and can create a large amount of visual clutter. Because web browser windows cannot be

organized into specific categories, everything must be done on a window by window basis, and

there is no easy way to minimize/maximize sets of web pages.

Recently tabbed browsing has been introduced to web browsers, allowing the grouping of

related tabs within the same browser window, effectively allowing users to assign different win-

dows (of tabbed pages) to different categories. Tabbed browsing is common to both Mozilla’s

Firefox web browser [32] and Opera’s web browser [98]. Research into data management tools

has concentrated on two areas, the tools that allow the categorization of data (manually or

automatically) or introduce new interaction techniques that allow users to organize data more

naturally, such as the use of three-dimensional metaphors.

Technique : categorization tools

Some tools allow users to place web pages within categories so as to distinguish them, and group

together similar web pages. Methods vary from simply assigning specific colours to different cat-

egories to organizing them spatially into separate folders, or positions on a map. Categorization

can take place either manually, with a category specified by the user, or automatically, where a

category is assigned through some form of pre-assigned metric (e.g. categorization according to

84

Figure 3.41: The clusty search engine [21]. Unlike other search engines which use a ranked
ordered list, Clusty organizes its search results into keyword categories (shown on the left).

Figure 3.42: Keyword/Concept Matrix. Part of the NIRVE tool (developed by Cugini [24]).
This can be used to generate ‘concepts’, which are collections of keywords. These can be used in
conjunction with the NIRVE visualizations to generate clusters of data based on these concepts.
When a concept is added to the matrix, users assign keywords to it by ticking on the corresponding
tick boxes.

85

keywords). Some search engines automatically categorize user’s search results according to key-

words. For example the Clusty search engine (formally Vivisimo) [21], organizes its search result

into categories (see Figure 3.41). The Grokker tool [39] uses a graphical interface comprised of

hierarchies of circles, also categorizing its search results according to keyword. At the top level,

the largest circles in Grokker form the main categories, while subsequent circles within these

circles are sub-categories. These categorizations are done automatically by the search engine.

Some categorization tools allow users to affect the way that web pages are categorized,

as well as generate specific categories to be used. Cugini [24] used a categorization system

called keyword concepts in his NIRVE search tool. This method allows multiple keywords to be

associated with a single ‘concept’ (which is in turn represented by a single word), for example,

the concept ‘wealth’, would include the keywords ‘salary’, ‘wages’ and ‘income’ (as well as the

keyword ‘wealth’). These keyword-concepts could then be used in conjunction with NIRVE’s

three-dimensional search result visualizations (such as the aforementioned three-dimensional

scatter-plot) to generate clusters of search results. Users can generate their own concepts,

simply by adding a new concept to the keyword/concept matrix (see Figure 3.42) and ticking

the boxes of keywords to be associated with the concept.

The Scatter-gather tool by Hearst et al. [44] (see Figure 3.43) was developed as an alter-

native to ranked search lists. When scatter-gather retrieved a set of search results it would

automatically categorize the results into a set of clusters based on keyword categories. However,

scatter-gather introduces an extra step in the search process, where feedback from users (select-

ing interesting clusters) affects the next set of results returned. When this feedback is sent into

the system, the unwanted clusters are discarded and new, more specific, clusters are generated

and returned to the user. In essence, users begin with a set of very general categories (some of

which may contain many different subjects) which eventually, through the process of feedback

and re-clustering, narrow down into the specific clusters that users are interested in.

The Aspect windows tool (developed by Swan et al. [112]) is another data management

tool that combines automatic and manual processes. Aspect windows are integrated into the

AspInquery information retrieval system (see Figure 3.44). When users find a document to

retain and categorize, the document can be dragged from the ranked list into the aspect window’s

document list, where a new ‘aspect’ (category) will be generated automatically. When aspects

are initially created, they are analyzed and the five phrases which best describe the document

(taken from the text via statistical analysis) are assigned to the aspect. Users can then manually

modify and assign keywords or labels to the aspects, as necessary.

86

Figure 3.43: The scatter gather tool (by Hearst et al. [44]). This search tool organizes
search results into clusters based on keywords. The tool also has a interesting method of feedback,
which allows users to select which clusters are relevant to the search, and which are not. This
feedback is returned to the system, which removes the irrelevant clusters, and defines new clusters
based on the data that the users specify as interesting. Theoretically this should filter out irrelevant
search results and fine tune the search result set.

Figure 3.44: The aspect windows interface (by Swan et al. [113]). This tool is a support
tool for the AspInquery information retrieval tool. It allows users to drag results from the main
view, into the aspect window view, where the result is assigned to an ‘aspect’ (category). The name,
labels and colour of the aspect can all be assigned by the user.

87

Technique : three-dimensional metaphors

People organize data in different ways, whether it be organizing books on a shelf or in a pile on

the floor. Techniques which manage data through the use of three-dimensional metaphors can

mimic real life organization and categorization systems. For example, the BumpTop desktop (by

Agarawala et al. [1]) metaphor is a three-dimensional representation of a physical desktop (see

Figure 3.45) which mimics real-life physics, allowing objects on the desktop to be ‘picked up’

and ‘thrown’ across the desktop, as well as placed into ‘stacks’ and ‘piles’, much the same way

as would be done in real life. This form of management has the advantage of being completely

natural to the user, and can be adopted with great ease.

The WebForager workspace (developed by Card et al. [18]) also recreates a physical desktop,

but unlike BumpTop does not attempt to mimic the interaction physics of real-life. Instead it

concentrates on incorporating several data structures that users are innately familiar with and

can understand easily. For example, information is stored as ‘books’, and several books can

be placed and ordered on a ‘book shelf’ (represented as a three-dimensional book and book-

shelf respectively). The advantage is that users can draw inferences from the metaphors, e.g.

users know that there will be textual information within the books (by drawing comparisons to

real-life books), and know that books can be placed in order on the bookshelf.

Figure 3.45: The BumpTop desktop metaphor (by Agarawala et al. [1]). This shows
the three-dimensional desktop tool, BumpTop. The square tiles on the desktop represent files of
different types. The physics of the desktop allow the files to be ‘picked up’ and ‘thrown’ around
(or into corners) as if in real life. Files can also be ‘dropped’ on top of each other form ‘piles’ (like
in real-life). This form of data management is easy to learn and use because of its inferences to
real-life interactions.

88

Workspace management

Management of the workspace is important for keeping the user’s interactions efficient, and

includes making sure that frequently used tools/data are close to hand, and in view at all

times. The majority of web browsing tools use a fixed structure, limiting the customizability

of the layout of the interface. By contrast, operating systems (such as Microsoft Windows

[90] and Apple OS-X [89]) utilize a ‘window’ and ‘desktop’ system, which allow a high level of

customizability and workspace managment. Windows can be moved freely around the desktop,

as well as resized and hidden, allowing maximum flexibility in terms of which views are available

and in which positions. Some Linux based operating systems allow users control over several

desktops which can be switched between.

Some tools mimic this desktop interface (e.g. Corel’s Paintshop Pro [126]), effectively gen-

erating a mini-desktop within the tool window. Inside the mini-desktop, the different tools and

functions are represented by floating windows which can be resized and moved around as if on

a normal desktop. Recently there has been a move towards ‘open workspace’ tools (e.g. Adobe

Photoshop - OS-X edition [52]) in which the tools of the program are not tied together and are

each treated as separate windows on the desktop. The management of a tools workspace allows

users to create a more effective work environment. An example of this, is the Snap-together

coordinated visualization (by North and Shneiderman [83]). The tool links together several win-

dows, each containing a different visualization tool. Each of the tools is coordinated, and draws

from the same data. The tool windows can be moved around and re-arranged so that they suit

the user’s needs more closely.

Discussion

Tabbed browsing is an effective method of keeping web pages organized together, however ar-

ranging tabs into specific windows to generate specific categories requires manual organization

and effort. Moving tabs (along with their entire web page histories) between web browsers is

not trivial, and identifying tabs can also be tricky if there are too many of them. Categorization

tools allow users to organize their search results, but tool designers must consider the amount

of automation used in the tool. For example, increased automation is useful when generating

a large amount of web pages from different subjects, however this also increases the chances of

the system placing web pages into erroneous categories. Decrease in automation means more

accurate categories, but more work for the user. The ability to manage the workspace is useful

but can sometimes be troublesome for new users who are unfamiliar with the tool.

89

3.3.3 Overview

This chapter has looked at the five interface issues related to the evolving search addressed in

this work, and presented different technologies and techniques that solve these issues. These

were related to (1) opportunistic searching, (2) information recall, (3) information visualization,

(4) information seeking and (5) information management.

Section 3.2.1 identified the inadequacies of current search interfaces for browsing opportunis-

tically. The textual list format employed by current search interfaces uses a linear ‘10 results at

a time’ representation, which forces users to press the ‘next page’ button each time to progress.

Focus-and-context, and graphical display techniques were both suggested as solutions to this

problem, but each have their own disadvantages. Focus-and-context can distort the data to the

point that it becomes unreadable (as illustrated with the FishNet browser [7]), and graphical

display techniques remove much of the textual context.

The different automatic and manual history systems were discussed in section 3.2.2, and a

set of criteria for the design of history systems (based on Kaasten et al’s [61] list) was presented.

It was noted that a system which combined both the automated and manual aspects of history

systems would be ideal.

Section 3.2.3 discussed the use of graphical display techniques for visualizing large amounts

of data, and different two-dimensional and three-dimensional techniques were presented (such

as the scatter-plot, spiral and topographical map techniques). It was noted that for graphical

displays, it is important to use the correct combination of interface and perceptual variables,

that are understandable to users.

Techniques for manipulating the information displayed to seek interesting search results were

discussed in section 3.3.1, including techniques to limit the display to relevant results (filter),

increase the visibility of interesting results (augment), view similar information between data

sets (comparison) and customize the views of users. Filtering and augmenting techniques were

identified as simple to use, and provided immediate feedback to changes made. Comparing the

data between different search engines was seen as a viable way to find new information, and the

idea of viewing the intersections of multiple searches was touched upon.

Techniques for managing the large amounts of data generated by evolving searches was dis-

cussed in section 3.3.2. The use of categorization tools was looked at, specifically the differences

between automatic and manual categorization systems. It was determined that a management

system that provided elements of both automatic and manual categorization systems was ideal,

and that currently, no systems implement these together effectively.

90

Chapter 4

Design

Chapter one listed the six different evolving search interface issues that were reported by Bates

[6] in her research. She believed that these issues needed to be addressed in order to build a

more effective interface for performing evolving searches. Three of the six interface issues she

identified,are addressed in this work, these are the issues of (1) opportunistic searching, (2)

information visualization and (3) information recall. Bates also discussed other interface issues

related to (4) search strategies, (5) analogies, and (6) information switching, which are not

addressed in this work due to constraints in technology, time, mappings and interface conflicts.

Each of these is discussed in turn.

Many of the strategies (such as area scanning, author search and journal run) were all directly

associated with actions and structures present in a physical library that are not present in the

online environment. For example, users cannot ‘area scan’ to find websites that are physically

located nearby to each other. Other strategies mentioned have already been implemented, for

example, backwards chaining (referring to following references in a book, onto other sources)

is already reflected in the hyperlink structure of the World Wide Web, where users can follow

information sources backwards through the simple click of a link. In short, the issue of provid-

ing for different search strategies was not addressed, due to mapping constraints; some of the

strategies could not easily be mapped to existing search strategies because of differences between

the information structures of the library and the WWW and some of the strategies had already

been mapped.

Bates suggested that modeling the search interface after a real-life analogy would facilitate

user’s understanding of the interface and how to interact with it. However, adhering to a specific

analogy reduces the flexibility of a design, meaning that certain combinations of analogy designs

and visualization techniques are not compatible. For example, a three-dimensional book analogy

allows users to browse textual information quickly (by ‘flipping’ through the pages), however it

91

removes all structural content. For example, web pages that are normally arranged in a tree

hierarchy, are presented instead in a linear order such as the pages in a book. This means that

users do not benefit from an overview of the hyperlink structure, nor can they opportunistically

traverse the hyperlink structure in a non-linear fashion. The design for an evolving search

interface was not based around a real-life analogy because of potential interface conflicts. By

not using an analogy, the design was less restricted in terms of techniques which could be applied.

Bates stated that, when searching, users access information from different sources, and hence

would benefit from being able to switch between different sources quickly. This issue was common

back in the days when switching information sources in a library meant physically relocating

oneself, and switching between different databases could not be carried out with the single click

of a button. Nowadays this is less of an issue, since the WWW seamlessly merges together

several different information sources, and the issue could instead be construed as the problem

of accessing and switching between different search engines. However, implementing a tool that

could access several different search engines is difficult, since at the time of design, very few

search engine companies provided access to their Web APIs. The inability to provide access to

multiple information sources for information switching was due to technological constraints.

In addition to the constraints mentioned above, one other primary constraint was time.

While there are many different technologies available for designing web search tools, many

require extensive knowledge in various different programming languages. Given the limited time

to complete this work, it was decided to concentrate primarily on providing services available

in the Java programming environment. This chapter will discuss the different tool designs that

helped shape the development of the evolving search interface. The final implementation of

the evolving search interface,was based on a set of prototype tools which were developed with

the specific purpose of solving evolving search interface issues. Specifically, this chapter will

look at the design and implementation of the visual-bracketing tool, the comparison tool, the

visual-history tool and information management tools.

4.1 The visual-bracketing tool

The traditional search result representation utilizes a textual format, which is not ideal given

the massive amount of screen space that textual representations utilize. As a result, most

search engines break up their search result lists into pages of ten results. Such a discretized

representation makes it difficult to search the data opportunistically as users are forced to view

the results a page at a time. Graphical interfaces provide methods of displaying many more

results in the same screen space, and provide the required opportunistic search strategy; however,

users will be faced with new symbols and icons whose functions are not necessarily implicit. Even

92

if a more easily recognizable format was presented (such as a simple two-dimensional scatter-

plot) it would still take users time to develop an understanding of how to use the system (e.g.

what do each of the axes represent? what do the icons represent?) in addition to becoming

accustomed to searching with it.

Another technique that could be used to display the large amounts of data is the focus-

and-context technique. Previous examples of focus-and-context ([49], [67], [69]) have dealt with

text by distorting it or representing it at a lower level of detail, often making the text barely

readable. Instead, a design was chosen which would represent the text at a different semantic

level, while still giving meaning to users. For example, reducing a search results information,

from a title, snippet and URL, to simply the title or url. This was the concept behind the visual-

bracketing design, which allows users to browse search results opportunistically by removing the

traditional ‘page-at-a-time’ representation, and visualize large amounts of search result informa-

tion effectively through use of a focus-and-context technique. This section describes the design

of the visual-bracketing technique, as well as two implementations that utilized the design, the

visual-bracketing tool, and the coordinated bracketing tool.

Figure 4.46: The visual-bracketing design. Schematics showing bracketed visual depictions
of the Search Result Elements (SRE). Left, shows the traditional scroll list, each result in full detail.
Center, shows the bracketed version with two levels of detail: full detail SRE that is bracketed by
a simplified view of URLs. Right, shows a three-level bracketed view, with the third level being
depicted by greeking (see work by Robertson [96].)

4.1.1 Design

Like all other focus-and-context designs, visual-bracketing allows users to focus on interesting

parts of the data while still viewing the surrounding context. The idea of visual-bracketing

is inspired from bracketing in photography, where professional photographers “take a series of

images of the same scene at a variety of different exposures that bracket the metered (or manual)

exposure” (see [15]). The visual-bracketing effect is achieved by displaying different semantic

information in the fore and after visualizations. The inner part contains the detail view while

93

Figure 4.47: Visual-bracketing : scrolling mechanisms Schematic showing the different
scrolling mechanisms. (1) The original bracketed view. (2) Constant width method where the
surrounding brackets X,Y are kept constant and the areas above and below A,B respectively are
enlarged/reduced. (2) and (3) show the inner-bracket scrolling method, where the panes may scroll
inside the bracket, up to the bracket end (3) or push past the bracket (4).

the bracketed visualizations contain the context information at a lower level of detail. In the

case of web search result visualization the inner part contains full information about the search

result, while the bracketed views contain less detailed information such as only the URL (see

Figure 4.46 - center). Indeed, further bracketed views may enfold the former, showing less detail

still. Thus the information is depicted in different views using various levels of detail (see Figure

4.46 - right).

The different level-of-details (LOD) may be generated in a variety of ways, for example,

abstracting the information in some way or simply excluding information. In the design, the

second level depicts less information while greeked lines represent the third LOD. Greeking, as

used by Robertson [96] as part of the document lens visualization and SeeSoft [29] in software

visualization, exchanges the characters of the text with straight lines. This technique is useful

to provide summary and overview information about a text document.

A sliding window methodology is also applied to the design, such that users may directly

slide the focus view up and down to change the information that is displayed in the center (and

corresponding bracketed) views. This acts in a similar way to a fish-eye view [34], where the

center window displays the full resolution and a lower level-of-detail is shown either side. But

with this method there is a non-continuous change in the level of detail rather than a gradual

change (along with a coincident semantic change). Moreover, this visual-bracketing concept

is similar to the aforementioned perspective wall design [69] (see chapter 3), albeit horizontal

rather than vertical. The perspective wall technique displays the data in three dimensions on a

two-dimensional wall. Users focus on the information in the center wall, with the side parts of

the walls displaying the context; information on the wall may be scrolled to change the focus.

In the visual-bracketing design, bracketing may occur at multiple levels (brackets of brackets),

a semantic level change is employed and users may alter the bracket’s size.

94

Figure 4.48: Visual-bracketing tool. Screen shot of the bracketing visualization. The focus
view shows the full detail of the Search Result Element, solely the urls are depicted in the adjacent
bracket, finally greeked text (of the urls) are shown in the outer most level.

Different interaction methodology were considered, that would allow users to manipulate the

amount of information within the bracket. Two designs for interacting with the focus window

were considered. In the first design, the width of each window bracket is kept constant, apart

from the outer most panes, as depicted in Figure 4.47 (left); thus, users move each of the brackets

together as one unit, they are locked together (as demonstrated in Figure 4.47 : centre-left) and

the information changes appropriately. In the second design, (Figure 4.47 : centre-right) users

may grab each inner bracket (the focus view) and move that up and down within the restriction

of the width of the encapsulating bracket. If users attempt to push past the boundary (Figure

4.47 : far right) of the next bracket then that bracket width changes and moves as well, etc.

4.1.2 Implementation I : visual-bracketing tool

The visual-bracketing tool (see Figure 4.48) was implemented using the aforementioned brack-

eting model. The tool was implemented in Java 1.4 with Swing components, and utilized the

Google Web API to retrieve its search results. Tool interaction begins with users typing and

submitting a query to the tool, which in turn retrieves a set of results (via the Google web API).

95

These results are then visualized according to the bracketing concept; one result is shown in

full detail (focus view), the next 5 results are displayed either side as URLs with the remaining

results displayed as greeked lines. Users can scroll up and down to alter the information in the

focus, or click on any result (greeked or URL) to change to a new focus view; the rest of the

visualization rearranges itself accordingly. Users can view the associated web page by clicking

on the link in the focus view, which opens the page in a new browser window. Users can also

bookmark results. These bookmarks are highlighted and allow them to return to view these

results at a later stage. When two or more results are bookmarked, another scrollbar appears

on the right-hand side (named the snap-bar). The snap-bar allows users to move (snap) be-

tween highlighted results, enabling them to quickly return to marked elements. The lines in

the greeked view represented the size of the respective web pages, but could have been used to

represent other types of metadata.

Figure 4.49: Coordinated bracketing tool. The multiple view variation of the visual-
bracketing tool. Separate semantic information is shown in each views: greeked lines, URLs, and
full SRE information, respectively. Different shades show the bracket information, and help to
coordinate between the different views.

4.1.3 Implementation II: coordinated bracketing tool

The Coordinated bracketing tool, a more advanced model of the visual-bracketing tool, was also

developed. The tool separates the semantic information into multiple views; a screen shot of this

96

implementation is shown in Figure 4.49. Each view displays (in their own view pane) different

semantic levels of the same search result element (SRE): full SRE information, URLs, greeked

lines, respectively. The pane containing the greeked list displays the entire list, the URL list

displays ten results at a time, and the fully detailed pane displays five results at a time. An

element of coordination among the views was added, such that when the selected SRE changes

in any of the views, the other views automatically update, keeping the views consistent. Again

users may bookmark elements, and bookmarking a result in one view will highlight it in all the

other views.

The use of coloured bands within the visualization allows users to match the currently viewed

data elements in one viewing pane with those in the other view panes. The highlighting colour

is different so that users can easily distinguish which results have been bookmarked. As with

the visual-bracketing tool, the length of the greeked lines visualizes the size of the document.

This provides an additional layer of information and gives users an additional visual cue to use

when searching the list of results.

4.1.4 Evaluation

A preliminary user trial was performed with both implementations. Six users were given a brief

demonstration of the program and then encouraged to interact with the visualization. After-

wards users were asked to complete a questionnaire; the findings have been encouraging. Users

found the controls of both models easy to understand and manipulate, and favored the coordi-

nated bracketing tool stating that it made the search results easier to view and provided extra

functionality compared to a normal search engine (e.g. Google). The bookmark function was

praised most as a useful tool to identify and remember SREs of interest. Users also agreed that

the greeked visualization provided a useful overview of the data (through the size representa-

tions in the greeked lines) and that it aided them in their search by providing additional visual

landmarks.

The designs of the visual-bracketing tool and the coordinated bracketing tool formed the basis

of the future design of the EvoBerry tool. The visual-bracketing technique provided a simple

method of visualizing large amounts of search results in an understandable format, addressing

the issue of information visualization. The technique also displayed the data in such a way that

users could jump between different results in the list quickly, addressing the issue of opportunistic

searching.

97

4.2 The comparison tool

One of the key features of the berry-picking model is the generation of multiple searches, and

the fact that users absorb information as they move from search to search. However, users

can become overwhelmed by the mass of information presented, making it difficult to seek

interesting information. One suggested method of finding information was the use of Comparison

views, comparing the intersections of web searches generated throughout the search session. A

comparison view can pre-attentively visualize the associations between the multiple datasets by

explicitly demonstrating and annotating these features. Through such comparisons users can

gain a better understanding of the searched information and they can more effectively browse,

because their attention is drawn towards significant features in the results. As these observations

are explicitly represented, the cognitive overhead of switching from one result-set to another is

reduced.

4.2.1 Design

The data to form the comparison can come from various sources. Users may wish to compare

the results from a range of search engines, to observe the popularity of different sites or to

find particular results that one search engine may not display. Alternatively, users may wish

to compare the results from multiple searches using different keywords, to find links between

different subjects or to help users consolidate towards some ideal search terms. This may involve

the use of intersection (A ∩ B), union (A ∪ B) and difference (A-B) operations and meta or

statistical information may be compared.

There are different ways to compare data, one of the earliest text-based comparison tools

could be the English Hexapla New Testament [9]. This was printed in 1841 and displays the

original Greek at the top of a page with six different English translations underneath in parallel

columns (three on the left page and three on the right). This demonstrates the simplest form

of comparison, side-by-side comparison which can be further extended to utilize annotations (or

various cues) between the parallel views. For example, similar information can be concurrently

highlighted (in the same color) or connected together with circles and arrows (see Figure 4.50).

Other methods of comparison exist, for example, overlaying multiple visualizations will gen-

erate a single layered view in much the same way as overlaying a series of overhead transparency

foils would generate a single view. This enables a visual comparison of the multiple views

and does not alter the format of either visualization. Various parts of the information could

be shaded out, to bring the similarities between data sets to the foreground. A merged view

shows multiple datasets in one view, where each of the differences are shown in context with

surrounding information. For example, Microsoft Word provides a merge document facility that

98

Figure 4.50: Model of Code Comparison. Two files (A & B) are compared, differences are
highlighted in color and an overview of the two documents is shown on the left. Colour highlighting
is used to link similar results (Similarity principle) and synchronized scrolling is used to align the
two files while they are being viewed (Symmetry principle).

aggregates different versions of the same document together. The sentence and word differences

are illustrated by colour highlighting and word strike-throughs. Users are given the responsibility

to accept or reject individual changes.

The abstract comparison of data differs greatly from the aforementioned methods. This type

of comparison moves away from traditional textual representation and moves towards a more

graphically centered approach, where data is structured into a visual encoding. Havre et al [42]

utilize abstract views in the SPARKLER visualization; in their tool a dot represents a search

result, a group of dots represent a list of search results and multiple groups of dots represent

several searches.

In order to compare information from different sources, users must be able to visualize the

various associations between the different elements. This can be achieved through the use of

the Gestalt principles [119], a set of theories of perceptual organization. The principles impact

upon comparison visualizations in different ways, for example, coordinated multiple views [94]

link the current item in focus across several different views, so that changes in one view will

affect all other views similarly (the gestalt principle of chronology). This is apparent in both the

Vdiff tool [5], and North and Shneiderman’s Snap-together tool [83]. Coloured highlighting links

together similar objects in different sets of data, so that the items are understood as belonging

together (the gestalt principle of similarity). This is utilized in the SPARKLER visualization

by Havre et al. [42].

99

Figure 4.51: The SES (search engine similarity) tool. This contains four views, the summary
view (top left), the overview (bottom left), and bracketed view (right). Users input queries in the
bar along the bottom.

4.2.2 Implementation

The aim was to design a tool that allowed users to identify results that were both similar and

interesting, through a process of comparison. Two criteria were stipulated, (1) the design should

link similar results between different views, so that the information appears coordinated, and

(2) the design should provide a summary view of the data which displays an intersection of

results from different search terms. The comparison tool was designed and implemented as part

of the SES search engine similarity tool (see Figure 4.51) a tool for visualizing the intersections

of multiple searches. This section details how users operate the tool, then discusses the three

sub-components of the GUI: the summary view, overview and bracketed view, and detail the

use of coordination between the views.

Users begin their interaction by inputting two or three sets of search terms related to the

same topic. These terms are then submitted to Google using the Google Web API [3]. Two

(or three sets) of search result elements (SREs) are returned respectively. Each SRE represent

an individual url, and contains information concerning four variables: title, URL, paragraph of

text and page size. The information is then visualized in three coordinated views: summary,

overview and bracketed view.

The summary view (top left of Figure 4.51) displays only the websites that appear in two

or more search-result lists. This view consists of a tabbed pane, with the main tab showing a

100

Figure 4.52: SES : Circle Glyphs. Each of the circles are shaded in a value equivalent to their
ranking (a darker shade of blue represents a higher ranking).

Figure 4.53: SES : Summary view (left). Each tab contains a detailed view of each specific
search, including page title, fragment of the text, URL and page size. Coordinated views (right).
When users select a result in one view, all the other views are updated and the result is highlighted
in the other views.

summary view, that contains a list of URLs each with three circle-glyphs A/B/C. The circles

are shaded in a value equivalent to their ranking (a darker shade of blue represents a higher

ranking, see Figure 4.52), unless the particular result is not present in that search result, in

which case it is coloured grey. The results from each search (A, B or C) are aligned in columns.

Each of the other three tabbed lists filters the data in the main summary view according to

search, and shows detailed information for each specific search, including page title, snippet of

the text, URL and page size.

The overview panel (bottom left of Figure 4.51) provides a view of the whole data set.

Comparing lists of search results in context allows users to identify interesting results in both

the immediate surroundings and within the macro view of the list. This is achieved using

greeking. In this view, the length of the lines represent the page size and the parallel columns

each represents a search result list. The information within each column can be ordered in

several ways, such as, by page size or rank order. In the implementation, each of the columns

are ordered by rank. When one column is selected (e.g. column A) this becomes highlighted

and the intersections with the other lists (columns B and C) are shown in a shade equivalent

to the rank of the result in the selected overview (column A). The bracketed view, depicted

101

on the right of Figure 4.51, is based on the visual-bracketing principles mentioned previously

and contains a detailed view of the currently selected list in the overview panel. As in previous

designs, users can open a webpage by clicking on the title of the result.

Coordination is an important part of comparison visualization. For example when viewing

a result in one search result list, users need to be aware of the location of similar occurrences

of that result in other lists. When users select the focus of the summary view (bottom left) the

bracketing view updates to depict the selected information, see Figure 4.53 (right). Second, a

form of dynamic brushing is used to highlight every URL that has the same hostname (high-

lighted in yellow). As users move the cursor and brush over an SRE, every other occurrence

of that SRE is highlighted, wherever it is located. Finally, every occurrence of the hostname

that is focused in the bracketed view is highlighted (in red) in every other view. The dynamic

brushing, referred to in this work as the Similarity highlighting, helps users to find similar (and

thus interesting) results quickly.

The Program was implemented using Java 1.4. Data was obtained through the Java bindings

to the Google Web API [3]. The program uses a model-view-controller design pattern where

the results are stored in a central data-model and the windows represent views on this data.

Manipulating either the mouse or the scrollbars will trigger a set of listener objects which will

manipulate the visualization accordingly. The listeners also control the colour-shading, which

highlights results as the mouse cursor moves over them.

4.2.3 Evaluation

In order to test the effectiveness of the SES tool, it was compared to a standard ranked ordered

list visualization (Google). The original hypothesis was that users would benefit from a tool

that explicitly displayed the similarities between multiple sets of results, and as a result would

be more efficient at choosing relevant results. One of the foremost concerns with this hypothesis

was that there was no way of testing the direct impact of the display techniques, since a search

is tempered by the information users acquire from browsing search results pages. To effectively

test this hypothesis all other elements in the environment had to be controlled, which meant

that certain steps in the information seeking process had to be carefully choreographed so as

to eliminate any influences from these phases. Consequently, users were given pre-determined

search terms, were restricted from viewing webpages, and restricted from using advanced search

options, forcing users to judge the relevance of search results by the display techniques alone.

Experimental design

The information retrieval task given to users was presented in the form of a question. Appropri-

ate questions had to be chosen carefully, as was shown by Dempsey et al. [27], who illustrated

102

how difficult it was to find a neutral question when designing a study. They discovered that

certain key variables (such as proper names) were excellent discriminators and greatly affected

the results.

The task chosen for the evaluation, was to “List the names and depths of the Worlds Deepest

Seas”. The terms given were (1) [Worlds Deepest Oceans], (2) [Seas Deepest Depths and Oceans],

and (3) [What are the Worlds Deepest Seas]. The test subjects comprised of a mixed gender

group of 20 people from various backgrounds. At least half of the group were non-computer

professionals but all had a working knowledge of search engines. One half of the group (the

control group) used Google, the other half (the test group) were given the SES tool. Each subject

was monitored in three ways, through their interactions with the keyboard and mouse, through

the data submitted via the user interface, and by human observation. Monitoring software

was used to capture screen shots of interactions on the screen, using the mouse and keyboard.

Each of these capture sessions was stored as both a set of thumbnails and an animation. All

interactions with the WWW were passed through an Apache server which had been setup with

the proxy module enabled, ensuring that all requests were filtered through a script that both

controlled and automatically monitored the information returned.

Before starting each test, users were given a demonstration of how they were to conduct

their tasks. They were also given an opportunity to familiarize themselves with the controls of

their interface (the Google search engine for the control group, and the SES tool for the test

group). A webpage interface was used to guide users step-by-step through the process. Users

in both the control and test groups were given a search scenario and three sets of search terms

(as stated previously). In the control study each of the sets of search terms were represented as

a hyperlink which opened up a modified Google web page (via the proxy), where links to all of

Googles facilities (e.g. image search, news search) outside of its web search were disabled. Users

were then told to browse the results and select what they thought were the five most relevant

results to the search. To mark a result as relevant, users clicked on the title of the result, which

would open up a relevance rating page (as stated previously, users were deliberately restricted

from browsing web pages). On the relevance rating page, users could rate how relevant they

thought the result was, based on the meta-information alone and compared to the scenario

given. The results were rated from one to three, one being least relevant (see table 4.9). Users

were required to locate five relevant results for each of the three sets of search terms. In the

test study, the three sets of search terms were entered into SES and the comparison between

the result sets was displayed. As with the control group, the test group users had to select five

results which they deemed relevant to the scenario, and rate each of these. Finally users filled

in a short questionnaire at the end of the test.

103

Figure 4.54: The t-test Equation

Rating Criteria
1 The Web page doesn’t contain the data you are seeking, but the

information can be found on another page in the website, or via a
link on the website.

2 The Web page contains some of the data required but not all
3 The Web page contains all the relevant data

Table 4.9: Criteria for selecting relevant web sites. When selecting a result as relevant,
users must assign a value as well, for its percieved relevance with regards to the query.

Not rated User’s ratings
0 1 2 3

1 0pts 3pts 2pts 1pt
Expert 2 0pts 2pts 3pts 2pts
Ratings 3 0pts 1pt 2pts 3pts

Table 4.10: If users selected a relevant result, they were assigned points based on what the
perceived relevance of the result was, compared to the relevance rating assigned by a group of
experts. If users selected an irrelevant result, zero points were recieved.

Pages of web results
Page 1 Page 2 Page 3+

Search 1 46% 44% 10%
Search 2 28% 30% 42%
Search 3 60% 16% 2%

Table 4.11: This table shows the number of pages investigated by the control group (using IE)
over the three searches (shown as a percentage of the total number of pages investigated).

104

Results

The results were analyzed using two weighting strategies. First, users ratings were compared

with those determined by a small group of information-seeking experts (R1) and weightings

were assigned proportionally to the difference between the two results (table 4.10). Second,

users were allocated a point for each relevant result they selected, irrespective of any rating

given (R2). A statistical analysis of the results was performed, using Welch’s t-test [26]; this

method assesses whether the means of two data sets are statistically different from each other.

This is important because a comparison based on averages alone does not take into account the

spread or variability of the scores. For example the difference between two means may be the

same for two experiments, but one may have a high distribution across the data set, and the

other a lower distribution. The higher distribution will hence have a larger overlap than the

lower distribution, and therefore will be a more similar set of results (and hence less significant)

than the lower distribution data.

Once a result has been obtained from the t-test formula (see figure 4.54), the number coupled

with an alpha/risk level, and degree of freedom is compared against a table of results. The Alpha

level is normally set to 0.05 (meaning there is less than a 5% possibility that the difference

between the means is due to chance) and the degree of freedom is the sum of the persons in

both groups minus 2. If the result is greater than the arbitrary value in the table then the value

is generally accepted as significant. The t-test formula was used to analyse the results using

both weightings (R1) and (R2).

The results of both datasets (R1) and (R2) (seen in Figure 4.55) show that the test group

(those using SES) out performed the control group (those using Google) when choosing and

rating relevant results. However when the t-test was applied to the data set R1 (relevant results

with weightings), a value of 1.726 was returned. This was lower than the designated value in

the table of 1.734 which showed that the variance between the two sets was not enough to make

the results significantly different. But, when the t-test was applied to the data set R2 (relevance

results solely), a value of 2.307 was returned showing that the variance between the results was

significantly different. This meant that users in the test study (using the SES tool) performed

significantly better at finding and selecting relevant results than users in the control study (IE

tool users), but were not significantly better at determining the actual relevance of that result.

It can be speculated that the reason for the discrepancy in the results of R1 is due to the

process of rating pages. In the post-study questionnaire over 50% of users expressed their unease

about having to rate a page purely based on the meta-information returned by Google. They

could use the meta-information to locate what they thought was a relevant page, but could not

determine the exact relevancy of the page. It is speculated that, by asking users to rate pages,

a change was forced in their search behaviour and thus the results became skewed.

105

Another measure is to evaluate how users interacted with Google. It was discovered that

on average nearly all users of the Google interface viewed results beyond the first ten results,

this is shown in table 4.11. Previous experience had suggested that users of the traditional

search result tools would rarely view beyond the first ten or twenty results, which is contrary to

the results shown. It was theorized that by controlling the environment of users (not allowing

reformulation, or viewing of web pages) users search process was unintentionally changed. Users

could not reformulate their query after the first ten results, and were forced to view results

further down the list.

However an important and interesting discovery was that 72% of users of the SES interface

utilized the Summary view to search for relevant results from which 83% were correct. The

Summary view in the SES interface was created with the aim of providing users with a quick

and easy view from which similar results could be located. The results reinforce this theory,

and suggest that search difference visualization is useful and enables users to more quickly drill

down to interesting results.

Figure 4.55: SES experimental results. Each bar represents a test subject (totalling 20
people), subjects from the test group (SES) are coloured in dark blue, while those from the control
group (Google) are coloured in light blue. The two graphs show the results using different weightings
(R1) and (R2) (left and right respectively).

This section introduced the SES interface, which in turn provided two methods of aiding

users in information-seeking. These were the comparison tool, and similarity highlighting. The

comparison tool displayed the website intersections of multiple searches, the theory being that

any websites which existed in more than one search on a particular topic contained information

on different aspects of users searches, and thus was relevant. The similarity highlighting worked

in conjunction with the comparison tool, highlighting similar results (results which came from

the same website, but not necessarily the same web page) between different searches. This form

of highlighting augmented the appearance of interesting search results, allowing users to more

easily identify and seek the information. The evaluation of the SES tool showed us the value

of the comparison view, but also alerted us to the potential pitfalls of evaluating visualizations,

106

information that could be applid to future experiments. The next section will look at the

visual-history bar, a tool designed to aid users in information recall.

4.3 The visual-history toolbar

This section discusses the implementation of a tool that aids users in recalling search history

information effectively, the main concerns identified as being (1) the recalling of web pages (both

in the long and short term), (2) the recognizing of web pages in the history, (3) navigating the

web history, and (4) avoiding ‘losing’ web page trails (the aforementioned branching problem).

It should be noted that the design for an evolving search history tool stores data on a session

by session basis. The usefulness of tools for long term recall is not discounted (see Kaasten et

al. [61]), rather, the tools usefulness for short term recall is concentrated on. An additional

constraint was that the history should be compact and unobtrusive, so that searching the history

would not interfere with the main web search.

4.3.1 Design

As the basis for the tool, the use of a two-dimensional layout was decided to be appropriate,

much like the Hy+ browser [40], and PadPrints [47] tools. The advantage of the design was

that it promoted free and and opportunistic movement among search results, allowing users to

jump to (and hence recall) web pages more quickly. Referring back to the problem of losing

web page trails, in using a two-dimensional space users will never overwrite their web page

trails (unlike the web browsers back button). However, using a two-dimensional graphical space

creates two problems (1) how will users identify objects in the two-dimensional space as the web

page they wish to recall? (recognition) and (2) how can a (conceivably) large and expanding

two-dimensional space be made compact and unobtrusive?

Design issue I : recognition

People remember information in different ways, and remember different types of information.

For example, users can remember the layout and colours of objects in a web page, thus a pictorial

representation (such as a thumbnail picture) of the website is often highly recognizable to users.

Users might remember information related to the web page contents, such as meta-data (e.g.

domain type, image count) or key words / unique words in the web page text. Users can identify

different web pages based on different aspects of time, including time spent reading web pages

and web sites. Users can remember (in vague terms) how often was spent viewing different

pages and can identify which web pages were passed without much of a glance (low time spent

viewing) and those that were read and browsed thoroughly (high time spent viewing).

107

Each of these methods differ in their suitability for use with information recall. Some in-

formation is easier to remember than others, for example, domain type is easy to recall, but

the number of internal links in a web page is not. Users sometimes cannot recall the precise

details related to the information they viewed, e.g. users will remember which pages contained

lots of images, but not how many images were contained in each page. The different methods

of recall have different levels of suitability with regards to use with two-dimensional graphical

interfaces. For example, the use of a thumbnail picture to identify and recall a web page is easy

and effective, however it is also unsuitable on the basis that the thumbnails picture needs to be

large enough to be recognizable, a problem if the interface is constrained on size.

Finding what information people use for recall is only half the problem; methods of displaying

the information in a way that helps users find what they want must also be considered. With

a two-dimensional layout as a basis, the next step was to determine which perceptual variables

would be best suited to aiding users in finding and recalling information. To this end, different

designs were suggested in the research (seen in Figures 4.56, 4.57, 4.58 ,4.59), each utilizing a

different perceptual variable, to guide users to pertinent information. Each of these variables is

presented in turn.

Figure 4.56 (right diagram) shows an example of how shape can be utilized to display web

page meta-data. The use of shapes to display different pieces of meta-data can be seen in other

visualization works ([93], [105]). In this case, the domains of the web pages are mapped to

different shapes. While this allows users to more easily identify sets of web pages belonging

to the same domain, it also increases the complexity of the view, as users have to learn the

associations between the shapes and domain types.

Colour can be used in two ways to help users recognize web pages, either by highlighting

(and thus grouping together) related web pages (such as web pages from the same website), or to

show a progression in ordinal data (such as recency). In Figure 4.57 (left diagram), highlighting

is used to identify which web pages belong to the website Amazon.com. Highlighting can aid

users in finding websites in which many web pages were viewed, or simply locate web pages

from the same web site that were viewed at different parts of search (as the page icons would

become highlighted, and easier to identify). In Figure 4.57 (right diagram), the hue of the colour

changes across icons, according to the recency of visitation of each web page (darkest being the

most recent).

Altering the size of the icons in a two-dimensional display is often done to draw users attention

to specific points of interest. When utilizing recall information, this can be applied to identifying

the time spent per web page, as well as the recency of the web pages. In Figure 4.58 (left

diagram), the time spent viewing each web page is mapped to the graphical display, and the

size of each icon reflects the amount of time spent viewing it. This helps users to automatically

108

Figure 4.56: Tree representation of a search history (left) and a search history utilizing
shapes (right). On the left is a standard tree representation of a search history that is utilized to
illustrate the various perceptual variables that can be utilized with a search history. Each web page
viewed is represented by a small document icon; note that in this case the domain-type meta data
is represented as text on the icons. On the right it shows a view of the same search history, but
utilizing different shapes to represent the domain-type metadata (much like the multi-form glyphs
in [93]). While this adds an extra layer of information for the user, it also adds an extra layer of
complexity, where users have to learn the mappings for the individual shapes.

Figure 4.57: Search history mapping hue to domain type (left) and a search history
mapping hue to recency (right). On the left is a search history using hue to show the domain
type. By highlighting icons from the same website, a boundary is generated which groups the icons
together, making it easier for users to recognize (and navigate back to) websites which they have
viewed many web pages from. On the right is a search history utilizing hues to show how recently
each web page was viewed, with the darkest icons representing the most recently viewed web pages.

Figure 4.58: Search history mapping size to time (left) and a search history mapping
size to recency (right). On the left is a search history which maps the time spent reading a
web page, to the size of the web page’s icon. This allows users to quickly pick out individual pages
which they spent a long time reading. On the right is a search history which shows how recently
each web page was viewed, with the largest web pages being the most recent. Note the distortion
generated from the size change, which is a less than ideal trait for a compact visualization.

109

Figure 4.59: Search history mapping time to foreground/background. The figure shows
a search history, where the time spent viewing a document has been mapped to the hue of the web
page icon. The more time spent viewing the web page, the lighter the hue, this has the effect of
bringing web pages which were viewed a lot, into the fore ground, while pushing web pages that
were not viewed much into the background.

pick-out pages that they spent a long time browsing. In Figure 4.58 (right diagram), size is

mapped to recency, where the largest pages are the most recently viewed. This helps users view

their search progress, easily being able to identify which pages were viewed recently and which

pages were viewed a long time ago. Notice however, that the gradual change in size causes a

distortion of the display, a factor which is detrimental to a visualization aimed at minimizing

the size of the display.

Creating a foreground and background effect brings important results forward, and moves

less important information out of direct sight. In Figure 4.59 (right diagram), time spent viewing

the web page is mapped to the icon’s hue, where the lighter the hue, the more time spent viewing

the web page. This has the effect of clearly identifying icons that represent web pages that users

have spent a long time viewing, and moving icons of web pages that were only visited briefly to

the background.

The advantage of the non-linear nature of the hyper-link structure means users can jump

between web pages backwards, forwards, and even skip whole sets of pages moving from one page

to another. The advantage of using the above perceptual variables is that the linear ordering of

web page visits can be preserved, albeit in a different encoding variable (e.g. mapping recency

to size or colour). Indeed, many of the perceptual variables mentioned can also be utilized in

conjunction with a set of dynamic query tools (such as in the Grokker tool [39]), which would

allow users to seek information through their search history more efficiently.

Design issue II : compaction

The visual-history tool-bar was designed with the vision of using a rectangular bar (much like

a windows task bar) that could pop-up and be clicked on to opportunistically roam around the

history. The traditional hierarchy tree was used for visualizing a web searcher’s history on a

two-dimensional space. The standard hierarchy layout was kept (as illustrated in Figure 4.60 -

left diagram), and mapped to the block diagram (Figure 4.60 - right diagram).

110

Figure 4.60: Visual-history design. Left, the traditional tree hierarchy of web search history
(using a standard tree layout), Right, the same tree, but using the visual-history model. Note that
all links that come from the same point of origin are linked by a vertical yellow line.

Figure 4.61: Visual-history : dealing with overflow. Left, An overflow of web pages, Right,
the visual-history technique of dealing with overflow. Note that when using the visual-history
technique, the light grey column extends itself, so that all nodes (representing links from a single
website) are kept in the same cluster.

Figure 4.62: The visual-history toolbar when minimized. As you can there are three
rectangular levels, the top is a temporal slider, the middle is the overview, and the bottom is the
history itself. The top two levels (separated by grey bars with 3 yellow triangles) are tabs and can
be double clicked to open up (and close) showing extra details and functions.

111

The only problem with utilizing a two-dimensional tree layout was the overflow of the data.

If too many web pages were viewed from one page (as seen in Figure 4.61 - left diagram) then

the number of bars in the column would extend past the bottom of the view. In order to deal

with the overflow problem, as well as keep a compact view that would fit easily within a tool-bar,

a new technique was designed which involved shifting the data along the horizontal axis of the

tool (see Figure 4.61- right diagram). When overflow takes place, the data which falls beneath

the tools container is placed into the next column along, and the remaining data is relocated by

one column to the right. Also note that the colour of the column changes to signify that this

column contains overflow information from the previous column; this is done by using the same

colour for the new column, which promotes the blocks as belonging to the same set.

4.3.2 Implementation

The visual-history tool-bar combines some of the features mentioned above, most notably the

two-dimensional tree hierarchy with the overflow layout, dynamic query sliders for temporal

searching, input boxes for keyword searching, and an overview for when the data extends beyond

the visual boundaries of the browser; this can be seen in both figure 4.62 (minimized), and figure

4.63 (maximized). The tool bar can be split into three main parts, (as shown in 4.63) at the top

are (1) the dynamic query tools, (2) the middle is the overview, and (3) the bottom is the main

view of the visual-history itself. The top two views begin ‘minimized’, but clicking upon the

grey bar (with 3 yellow triangles) below each of the top two views ‘maximizes’ them, revealing

more tool functions. Each of these views is presented and discussed.

Figure 4.63: The Visual-History toolbar when maximized. (both tabs opened). At the
top in addition to the temporal slider is a term searcher, where users can input terms to narrow
their search. The middle opens up into a larger more detailed version of the overview. Note that
users can start interactions with the overview by dragging the orange bar, which shows the current
columns shown in the main view.

When the dynamic query tools are minimized, only the temporal slider is shown; when

maximized both the temporal slider and terms searcher tool are shown. Both tools can be used

to restrict the results shown in both the overview and main view, on a temporal and keyword

112

basis. The temporal-slider allows users to manipulate a pair of sliders which restrict the results

shown on the basis of when they were viewed. Moving the left slider (grey) towards the centre

begins restricting results which appeared early in the search, and moving the right slider (orange)

towards the centre begins restricting results which appeared late in the search. When users

manipulate the query tools, the irrelevant results are ‘greyed-out’, their shade becoming a closer

match in hue to the background, so as to bring the results relevant to the dynamic-query closer

to the foreground. The term searcher allows a similar restriction to occur, but this is instead

based on keywords submitted by users in the keyword box.

When minimized, the overview is represented by a rectangle divided into small blocks, each

block representing a column in the histories main view. The rectangle is normally orange, unless

users generate more columns than are visible on the available screen space, in which case the

non-visible columns are colored in grey. Clicking on the orange rectangle allows users to move

the current view over non-visible columns. When maximized, the view becomes a miniature

replica of the main view with corresponding blocks and columns.

The main view itself uses the block layout described previously. Users can click on any block

to switch to that web page immediately and hovering the cursor over the block brings up a

small pop-up detailing the web pages title. Blocks have 4 types of coloring, the deep red is the

current result being focused, light pink are results that have been bookmarked, white results

are ordinary web pages, and grey blocks have been greyed-out through the use of the dynamic

query tools.

The tool was chosen to be utilized in the EvoBerry tool, because it provided a compact

method of visualizing web histories. In this section, the designs for a visual-history toolbar

were discussed. The tool was designed with three specific criteria in mind: (1) the tool should

allow users to browse their search history opportunistically, (2) the tool should not dominate

the display, being unobtrusive and able to fit on a toolbar, and (3) the tool should not have

linear history system (so as to avoid the branching history problem). The tool design addressed

the issue of information recall, allowing users to quickly and efficiently retrieve their history

information.

4.4 Information management tools

Evolving searches generate a large amount of information, that in turn must be managed ef-

fectively to allow users to keep track of important threads of data, as well as allowing them to

instantly recognize and recall previously viewed data. The work space must also be managed

effectively to allow users to create an effective work environment, where important tools and

information are always close to hand. Information management tools can vary greatly in scale

113

and appearance. They can be as simple as a set of coloured highlighting or as complex as a

desktop environment. More often than not, an information management tool is not the focus of

the interface, and only fulfills a support role. As a result, an interface consists of several different

management techniques working side-by-side to support users search process. This section looks

at the different information managements techniques that will be incorporated into the evolving

search interface. The objective is to provide (1) a workspace that can be organized by users,

(2) techniques for automatically organizing users search data, and (3) tools that allow users to

manually organize their search data.

4.4.1 Design

There are two areas where information management is most important: (1) in the workspace

and (2) in the data. The management of data can be broken up into tools that manage data

automatically, and tools that manage data manually. These are each discussed in turn.

Workspace management

In order for effective workspace management to take place, a tool must have a flexible design.

The previous mentioned interface designs (visual-bracketing tool, coordinated-bracketing tool,

SES tool) have all utilized a fixed layout, and as a result are not flexible in the positioning

of their functions and data. Ideally, a desktop workspace would allow a more flexible layout,

where users could arrange the layout of their tools and data within the interface. Switching

to a desktop workspace allows different interaction and display techniques to be utilized. For

example, the fixed workspace of the SES tool only allows 3 searches to be compared at a time,

whereas utilizing a desktop workspace would allow any number of searches to be generated, and

compared at the same time.

Data management

In the design chapter, the benefits of providing both automatic and manual data management

systems were mentioned. In an evolving search, data management is important, because it allows

users to keep track of the different search threads currently being engaged in. Simple procedures

could be put in place to automatically tag and identify information from different threads, for

example, a coordinated colour system where objects belonging to specific threads are assigned

specific colours. This would allow users to quickly locate and identify related information.

Ideally, users would be allowed to change the colour mappings of the different threads e.g. using

similar colours to group together similar searches and assigning different colours to disparate

searches.

114

In addition to the managing of large sets of data, users should also be given the ability

to organize individual pieces of information (individual notes, web pages, and search results),

much like a bookmarking system, but more broad in nature and use. This spawned the idea

of a ‘drop-box’, which users could (literally) drag information from any of their sources (be it

search result lists, highlighted text or whole web pages) and ‘drop’ into the box. Once inside

the drop-box, the information can either be left in a ‘receiving area’, an unorganized area where

all new information is placed, or be managed (under the direction of the user) and placed into a

specific category or folder. Ideally, the drop-box would search and filter results in the drop-box

according to data types, meta-information and keyword tags.

Another aspect of automatic data management is placing information where users can find

it easily and retrieve it as necessary. This means that, not only must related data be visible,

but it must also be located in close proximity to each other. Combined with the aforemen-

tioned desktop workspace, this gave rise to the idea of an integrated data window, where all the

information related to a particular search would be contained. This meant that each window

would not only display search result information related to a particular query, but would also

contain information about each search result and web page opened from that search result list.

This would allow users to keep track of, and recall information more quickly, and it works well

with the previously discussed colour coordination. This integrated data window was named,

the ‘results frame’, because its primary use was to contain the search results returned from

the query. The word ‘frame’ (in ‘results frame’) was derived from the Java containers used on

desktop interfaces, which are called ‘Internal frames’.

This section investigated the use of different techniques to aid users in managing their in-

formation. Specifically, four techniques were identified that needed to be incorporated into

the design: (1) a desktop workspace, (2) colour coordination of search threads, (3) a drop-box

for manually storing information, and (4) an integrated data window (results frame). The tech-

niques described addressed the issue of information management, allowing users to manage their

workspace and data for a more efficient identification and recall of information.

4.5 Overview

This chapter looked at the different designs and techniques that would be integrated into the

evolving search interface. In particular it focused on techniques and tools that addressed the

issues of (1) information visualization, (2) opportunistic searching, (3) information recall, (4)

information-seeking, and (5) information management.

115

The visual-bracketing tool utilized the visual-bracketing technique that applied a focus-and-

context view to search result data. It allowed the visualization of large amounts of data as

well giving users the ability to browse search results opportunistically. This also introduced the

concept of using multiple views to produce different views of the data.

The comparison tool allowed the comparison of search results which existed in multiple

searches. The tool provided a method of seeking interesting information through the comparison

and augmentation of similar search results. The visual-history tool introduced a novel method of

displaying a search history. The design allowed users to browse opportunistically, and avoided

the problems of previous history systems (such as branching). The tool was designed to be

compact and unobtrusive.

In addition to these tools, several information management techniques were discussed. The

use of a desktop workspace was considered because of increased flexibility over a fixed workspace,

which is important in the visualization of multiple searches. Techniques for both automatic

(colour coordination) and manual (drop-box) management of information were discussed. Colour

coordination could be used to group together information from the different search threads. A

drop-box would allow users to manually store and categorize information from different sources

for future recall. An integrated data window was suggested (as part of the desktop interface)

that would group together information from different search threads, allowing users to more

easily locate information to be recalled.

The three tools, as well as the information management techniques discussed, all formed

the basis for the final design of EvoBerry, the evolving search and berry-picking tool. During

the design process, the evolving search interface went through a prototype stage and a final

implementation phase. Although the prototype was generally thought to be inferior to the final

version, it contained some tools made unavailable in the final version, due to time constraints.

In the next chapter both the prototype, and final implementation of the EvoBerry tool will be

discussed, along with different technical challenges of implementing such a tool.

116

Chapter 5

EvoBerry

There were two main differences between the EvoBerry interface and previous interfaces (such as

the coordinated bracketing tool and the SES tool). First EvoBerry made use of a desktop-style

workspace (similar to the desktop interfaces used in both the Windows and OS-X operating

systems). This was part of a move towards a more flexible layout that would help users manage

the data and tools within the work space. This increase in secondary notation (user’s control

over their displays and the arrangement of their workspace) is supported by authors (Hendry et

al. [46], Petre et al. [12], and Kirsch [62]). The second main difference was the data structure

employed. With the integration of several different tools, and the inclusion of history and recall

tools, it was necessary to develop a universal data structure that would be employed by all the

tools. A diagram of the data structure can be seen in Figure 5.64. The data is organized into

a hierarchical tree which encompasses a search session. Starting at the top, the search process

can be broken up into several search threads (generated every time users input a query). Within

the search thread, there are several search sessions (generated every time users open a search

result). Within the search sessions are several web pages.

Search threads are the data objects that sit at the highest level. A search is comprised

of several search threads, such that every time a search is input into the search engine a new

thread is generated. This structure was borne directly from the evolving search theory, where

with every search performed, a user’s information need is changed. It was theorized that each

search would take a slightly different direction and as a result would deal with slightly different

information than the previous search. Thus all information generated from a single search is

considered to be part of the same group. Search threads consist of any number of search sessions

and web pages.

Every time users open a search result, a search session is created. Theoretically, all the web

pages that users view from a single source (the starting web page) should be related, e.g. each

117

web page was discovered by following a link from a previous web page that (at some point)

originated from a search result. Thus all web pages opened from a single search result can be

grouped together as being similar. A search session can consist of any number of web pages.

The lowest level of data object is the web page.

Figure 5.64: Data Structure: This is a data structure developed specifically for the evolving
search tool. When a search is generated, a set of results are returned. These results form the basis
for the search thread. A search thread is the highest level object in the structure, it contains a set
of search results, and is identified by the query used to gather the results. Whenever users opens
a search result from the search threads result list, a search session is created. A search session
contains all the web pages viewed, which originate from an initial search result.

The only criticism of this data structure is the fact that sometimes searches performed by

users will all follow the same topic, and in their mind are all part of the same group. Ideally, in

this situation users group them together under the same thread. However, this structure forms

the basis for the automatic organization of data, and as such, by default, each search generated

becomes a thread. This lowers the cognitive overhead that would take place if users had to

manually categorize each search as it was generated. Ideally, this automatic structuring system

would act in the background, while still allowing users to customize the information manually,

and reorganize and re-categorize threads.

A prototype of the EvoBerry interface was developed as a precursor to the final version. Both

utilized the same layout (desktop workspace) and data structure, but each differed in certain

aspects, such as data display and tools made available. This chapter discusses the EvoBerry

interface, first presenting the prototype version, looking at the different tools and techniques

used in the design. Next a technical discussion is presented, of the programming required to

build the underlying tools, as well as some of the technical challenges of building such a tool.

118

The last section presents the final version of the EvoBerry interface, discussing the changes that

took place between the prototype and the final version.

Figure 5.65: EvoBerry prototype. The prototype can be divided into three separate parts, the
tool bar (top), desktop (centre), and search bar (bottom). The toolbar varies in appearance based
on which frame is being clicked on. In general it contains buttons that allow interaction with the
data within the frames, e.g. buttons to open up web pages, and bookmark results. The bottom
contains the search bar, which allows users to manage existing searches, as well as perform new
searches. The centre is dominated by the desktop which contains all the data and support tools.

5.1 Prototype version

Figure 5.65 shows a view of the prototype interface which can be split into three primary parts,

(1) the search bar (at the bottom of the interface), (2) the desktop (centre of the interface),

and (3) the tool bar (at the top of the interface). The search bar contains two tools, the query

tool and the thread tool. The query tool is where users input their searches. When a search

is submitted, a set of search results is returned, and then a coloured block (representing that

search) is added to the thread tool.

When a search is performed a set of search results is returned to the desktop. The results

are placed into a results frame on the desktop for users to inspect. Three other frames exist on

119

the desktop: these are tool frames (the drop box, comparison tool, and the term searcher).

The toolbar contains a set of buttons that can be used to perform different actions upon the

results, e.g. open web pages, bookmark results, zoom in/out. Note that the buttons available

on the toolbar differs based on the frame that has been currently selected, since different frames

have different functions.

One other view, not shown here is the web browser view. When a search result is opened,

the corresponding web page is sent to a Java web browser window for displaying (based on the

JDIC web browser [23]). This section will look at the prototype tool in detail. The prototype

was written using the Java (1.4) programming language [118], and utilized the Java interface

to the Google Web API [3], in order to get the search result data. The underlying technology

behind the prototype tool is more thoroughly discussed in the technical discussion section. Each

of the parts of the interface mentioned above, as well as the Java web browser used for viewing

web pages, will be discussed in detail.

5.1.1 View I : search bar

The search bar sits at the bottom of the interface (see Figure 5.65 - bottom), and contains two

tools, the query tool (bottom of the search bar) and the thread tool (top of the search bar).

Users begin the search by inputting search terms into the query tool, and pressing submit. A

search request is then sent to the search engine, which in turn returns a set of results which are

visualized on the desktop as a results frame. On the search bar is a small drop-down box, which

allows users to change the type of the search. There are four principal search types, the web

search, the title search, url search and phrase search.

The web search is the standard search; it simply sends the search terms straight to the

Google web service, and returns a set of search results. The title search restricts the search to

only words in the title of the web pages. This is useful if users are attempting to recall a web

page, but can only remember the title. If the search terms [africa safari] were being used for

the search, then switching to a title search would be equivalent to adding the Google modifier

[allintitle] (e.g. [allintitle: africa safari]) to the query.

Selecting a URL search, restricts the search to only words found in the URL of the web page.

This is useful if users are attempting to recall a web page, but can only remember certain parts

of the URL. For the search [safari], switching to a url search would be equivalent to adding the

Google modifier [allinurl] (e.g. [allinurl: safari]) to the query. Selecting a phrase search, restricts

the search to a particular phrase, which has to be matched exactly. This is useful if users want

to match a quote, or want to make sure that the stop words are not removed from the search.

For the search [the big five], switching to a phrase search would be equivalent to adding a pair

of quotation marks [“ ... ”] (e.g. [“the big five”] to the query.

120

The thread tool also sits on the search bar. Each time a search is made, a thread is generated

(see the data structure in Figure 5.64) and a thread icon (a coloured block) is added to the thread

tool. Each thread is assigned a unique color when it is generated, and this colour is used for

every frame and information container which is borne from this search. This helps associate and

group together data from the same thread. Clicking on the thread icon will minimize/maximize

all the items currently open from the same thread, helping to organize the data and reduce

visual clutter.

5.1.2 View II : desktop

The desktop is where all the main interactions take place, and forms the bulk of the tools

view. Like other desktop interfaces, there exist windows upon the desktop, which in turn can be

minimized, maximized, resized and closed depending on the user’s wishes. The greatest strength

of the desktop interface is the ability to reposition the windows, containing both data and tools

with minimum fuss. Note that throughout this work, the term frame is used instead of window,

when referring to a container on the desktop. This reflects Java programming conventions [118],

where the containers are called frames (e.g. JFrame, JInternalFrame).

As stated previously, whenever users perform a search, a results frame is added to the

desktop, containing the results of the search. The tool starts with three tool frames already on

the desktop by default, the comparison tool frame, the drop-box tool frame and the term searcher

tool frame. Additionally, interactions with the data in the results frame can generate link tool

frames, which contain web pages linking to and from a web page. When users wish to add a

textual note to the drop-box, a notepad frame is created on the desktop. Each of the frames

will be looked at in turn.

The results frame contains the search results returned from the search engine. The query

entered into the search engine is displayed as a title at the top of the results frame. The search

results are ordered as a list, according to relevance. Search results have two states: (1) the

graphical state (see Figure 5.66 - left), displaying a pair of overlapped bars, which happens

when the result is not currently in focus (has not been clicked on) and (2) the textual state (see

Figure 5.66 - right), displaying textual information about the selected search result (which is

now in focus). A description of the display and interaction techniques is given later on.

The comparison tool frame contains the comparison tool, which is used to find similar search

results which exist in multiple searches. The comparison tool matches search results that were

generated by different searches, but which come from the same website, and share the same

base URL. These ‘similar’ results are ordered in a list, represented by the website’s URL, with

each object ordered according to the number of intersections (threads that it exists in) that it

contains.

121

Figure 5.66: Prototype results frame: This shows two views of the prototype results frame,
on the left is the normal view, and on the right is the zoomed-in view. Each bar has a length
corresponding to a specified piece of metadata (in this case page size). The inner-bar is part of
interactions with the term searcher tool. When a keyword is specified in the term searcher, then
the inner bar is generated in each search result that contains that keyword. Each inner-bar has a
length equal to the number of occurrences of the specified keyword in the web page.

The term searcher tool frame contains the term searcher tool that is used to find search

results that contain specific keywords. The tool contains two functions through which to filter

search results: (1) an automatically generated list of suggested keywords (based on an analysis

of the returned search results data), and (2) a textbox, through which users can specify a set of

keywords to filter with. The list of suggested keywords is filtered for stop-words and each entry

in the list of suggested keywords, is represented by a word, and a number specifying the number

of search results that the word appears in. The results are ranked according to the number of

search results they appear in. The term currently being used to search with, is written at the

top of the frame.

The drop-box tool aids users in managing the search result data, allowing them to store,

search results, web pages, addresses and notes, to be recalled later. Objects added to the drop-

box are represented in a list format, with one entry for each object. Each entry is represented by

a specific reference number, a piece of text from the piece of information, and a symbol stating

what type of information it is. The entry’s colour is dependent on the thread it originated from.

The tool contains a function for adding text notes made by the users, as well as a function

for filtering the displayed objects according to type (e.g. URLS, search results, web pages and

notes). These functions are represented by a note button and drop-down box respectively.

The link tool frame can contain one of two types of data, either web pages which link to a

particular web page, or web pages that are linked from a particular web page. These are referred

to as LinkTo and LinkFrom frame respectively. Link tool frames are generated when users press

122

either the LinkTo or LinkFrom buttons in the toolbar, which in turn create a frame containing

a list of all the web pages that link to or from the web page of the search result, currently in

focus. The link tool frames share the same display techniques as a normal results frame. The

functions of both link tool frames are discussed in more detail in the toolbar section.

When users wish to write down a piece of text as a note, the ‘create note’ button on the

drop-box (symbolized by a pencil) can be used to generate a notepad frame, a plain frame upon

the desktop which has a space to write text, and a submit button. Once the submit button has

been pressed, the frame is closed and the data is added to the drop-box. The different frames

each have different functions and different forms of interaction, and furthermore interact with

each other in different ways. The next section looks at these interactions in more detail, as well

as the display techniques used for each.

Frames

The display of the results frame varies depending on user’s interactions with it. As stated

previously, a search result has two states, selected and not selected. When selected, the search

results textual information is displayed (the title in this case), and when not, the search result

is displayed as a bar whose height is determined by a specified piece of metadata. The data

used for the bar height can be mapped to many different variables, such as page size, image

count and link count. These two states form the basis of the visual-bracketing technique that is

applied to the search result list. However these are only the basic states, there are three other

special states that appear, when users interact with the zoom tool, term searcher tool, or the

comparison tool.

Interactions with the zoom tool in the toolbar can change the display of the data currently

in focus. By zooming-in the data in the focus increases (displaying the title, the search results

snippet of text, URL and page size). When the term searcher tool is used to find a specific term

of interest, then a set of secondary inner bars appear, sitting in the foreground of the existing

search result bars (see Figure 5.66). The height of the inner bar is based on the term count of

term currently specified in the term searcher tool. The results frame implements a system called

similarity highlighting, which is used to link search results that originate from the same website.

When a search result is selected, the URL is checked against those stored in the comparison

tool. If a match is found, then the selected result, as well as all other results that share the

same website, are highlighted in red.

When a results frame is created, it is assigned its own unique colour, which all other frames

and information related to that results frame use. This colour coordination helps group together

pieces of data that originated from the same thread. Each results frame is assigned its own

toolbar, which appears when the results frame has been clicked upon. From the toolbar, more

123

interactions can be made with the results frame data. These are interactions discussed in the

toolbar section. The results frame also interacts with the drop-box. Information in the results

frame can be placed in the drop box, in one of two ways (1) selecting and dragging a search-

result into the drop-box, or (2) right-clicking on a search result will activate a pop-up menu,

where users can choose what information to send to the drop-box. Information placed in the

drop box can be recalled by double clicking on its entry inside of the drop box, which will in

turn open the textual information of the entry in a notepad frame on the desktop (which can

then be edited).

Figure 5.67: Prototype toolbar: Each results frame has an associated toolbar, which becomes
active when that results frame is clicked upon. The toolbar consists of a the search thread name,
buttons for interacting with the search result data and a drop-down box containing the different
search sessions that users generate.

5.1.3 View III : tool bar

The toolbar is located at the top of the screen, and is used for interactions with the data in

the results frame. Each results frame has its own toolbar, which is colored according to the

thread (and results frame) that it belongs to. There are five buttons and a drop-down box on

the toolbar; these are used for the bookmark function, web browser function, zoom function,

LinkFrom function, and LinkTo function (see Figure 5.67) . The drop-down box is a search

session history, and contains a list of all the user’s search sessions in this thread. Each function

is discussed in turn.

The bookmark function highlights the currently selected web page in green. This makes the

result stand out from the surrounding search results, making it easier to retrieve later on in the

search. Clicking on the bookmark button multiple times, while selecting a result, switches the

124

highlighting on and off. The web browser function opens the currently selected search result’s

web page, inside a Java web browser window. When this happens, an entry is stored in the

search session history, so that it can be recalled later. Both the search session history and the

web browser are discussed later in this chapter.

Use of the zoom in/out button, as described previously, changes the amount of information

available in the focus of a results frame. Clicking on the button multiple times will switch

between the zoomed-in and zoomed-out states. When users click on the LinkTo function, a

link tool frame is added to the desktop. The frame shares the same display and interaction

techniques as a normal results frame. The results gathered in a LinkTo frame are all the web

pages that link to the URL of the currently selected search result. These are obtained through

use of the Google function, [link:], which creates a search that specifically targets web pages

that link to the specified URL e.g. searching for web pages that link to [www.safari.com], would

send the search [link:www.safari.com] to the Google web service.

When users click on the LinkFrom function, a link tool frame is added to the desktop. The

frame share the same display and interaction techniques as a normal results frame. The results

gathered in a LinkFrom frame are all the hyperlinks gathered from the web page, that lead to

external sources (other web pages, outside of the current website). The search session history

stores all search sessions as entries in a drop-down box. Whenever a search result is opened in

the web browser, an entry is stored in the search session history. When users click on the search

session history, the drop-down box opens and a list of links are displayed, one for each search

session. Each entry in the list consists of a unique number assigned to the search session and the

title from the first web page in the search session. Clicking on the ‘open’ button will open the

currently selected search session in a new browser window. The functions of the results frame

can also be accessed by right clicking on a search result, opening a popup which allows users to

use the bookmark, web browser and zoom functions.

5.1.4 Java web browser

Whenever a search results web page is opened, a new web browser window is created external

to the program. The web browser was designed using the JDIC toolkit [23], which allows the

creation of Java based web browsers, and uses Internet Explorer to render its web pages inside

a JFrame. A view of the web browser’s toolbar can be seen in Figure 5.68. There are two

rows of functions in the web browser. The top row of functions are the standard web browser

interaction tools, consisting of a set of buttons (stop, refresh, forwards, backwards etc.) and a

url address bar. All of these functions, operate exactly as in a normal web browser. The second

row contains a design of the visual-history toolbar (mentioned in chapter 4 - section 4.3).

125

Figure 5.68: Prototype web browser toolbar: This shows a view of the prototype’s browser
toolbar. In addition to all the standard web browser functions, there is also a visual-history toolbar
and overview attached (see chapter 4 for more details on the visual-history toolbar). The toolbars
main view and overview can extend as far as the web browser window it is linked to. The overview
can be used to scroll the main view.

The version of the visual-history toolbar that was added to the browser window was a cut-

down version of the original design. Instead of including all the tools and views specified in

section 4.3.2, only the main view and the minimized overview were included. As with the

previously described visual-history toolbar design, every time a web page is viewed, a block

is added to the toolbar, which in turn forms a tree-like structure, which users can navigate

opportunistically. The page/block currently being viewed is highlighted in red. Clicking on

a block opens up the web page that it represents in the main web browser view, and moves

the focus to the new block. If the toolbar extends beyond the width of the Internet Explorer

window, then the overview can be used to scroll the visual-history bar along, to view the hidden

columns. Moving the cursor over a web page block in the toolbar will generate a pop-up with

that web pages title, so users can easily identify the web page blocks. When a session is recalled

from the search session tool, the complete web page history for that particular session is also

returned and displayed in the visual-history toolbar, allowing users to revisit web pages easily.

5.1.5 Overview

The prototype interface introduced a workspace containing different tools that could be used

for aiding users in performing evolving searches. The aim was to address the evolving search

interface issues, described in chapter one. The way each tool helps users deal with the different

interface issues is presented.

The search result information is visualized in different ways. Replacing the original text of

search results with two-dimensional bars reduced the screen space taken up, and provided a

format where metadata can easily be compared. The visual-bracketing technique was applied

to the results to give two semantic levels (the focus, in text, and the context, as bars) which

allowed users to view more data while still being able to read the specifics on each search result.

126

Similarly, the visual-history toolbar provided a graphical representation of the search history in

a compact toolbar. These aspects of the tool all contribute to visualizing the large amounts of

data generated.

The addition of the visual-bracketing, combined with the bar representation, has allowed

a more compact display, which in turn allows users to browse the data opportunistically by

jumping from one part of the results to another with a single click. Similarly, the graphical

representation of the visual-history toolbar allowed users to move opportunistically over the

search history.

The prototype organizes the data in a way that allows quick and easy recall, and also im-

plements tools to aid the users in recalling specific information. Each web browser session that

was created was stored within the thread of its specific session history tool, and could easily be

recalled. Recalling a session also loaded up that session’s web page history (using the visual-

history toolbar), so that users can recall specific web pages simply by clicking on them. Manual

history tools also exist that allow users to mark specific search results for recall later. This can

be done in the short-term (using bookmark highlighting) or in the long-term (placing a result

in the drop-box).

Tools were developed to aid users in seeking interesting results. The comparison tool and

similarity highlighting allowed users to view the intersections of multiple searches. The term

searcher permits users to filter search results based on specific key words. Filter tools provided

in the drop-box, allow users to find entries based on type. Functions that allowed users to draw

upon information from different sources also exist. For example, the LinkTo and LinkFrom

frames both allow users to draw upon information leading to and from a specific web page, as

well as generate information faster than if users had hunted the links down normally. The query

tool can be used to specify different types of queries (e.g. title, phrase, URL).

The desktop workspace chosen allowed users better workspace management as well as more

control over the positioning of data and tools. Thread coloring automatically links data together,

and allows users easier recall. Data can be stored and manually managed through the drop-box.

Better workspace management, as well as reduced visual clutter, is achieved through the thread

tool which allows users to quickly minimize all frames and windows associated with a specific

thread. The EvoBerry prototype was the initial attempt in this research at solving the evolving

search issues laid out in chapter one. Through the use of an informal evaluation, problems and

issues were discovered with the interface and technology.

Limitations

The evaluation lead to the discovery that, even after explaining the functions of the tools, users

were still confused as to the meaning of the bars in the results frame and were displeased with

127

this new display format. While users enjoyed using the term searcher tool, the meaning of the

size of the bars was initially lost to them. It was felt that replacing them with textual titles,

and a form of highlighting (for the term searcher tool) would be more appropriate. Research

has shown that graphical representations can be useful in search result visualization ([45], [70]),

however it must complement the existing visualization structures.

The evaluation also identified a problem with the use of an external web browser window.

It was found that having to continually switch between the main view and the various browser

windows incurred a high cognitive load, much to the dissatisfaction of users. Ideally the web

page would open as a frame on the desktop, however the web browser toolkit utilized did not

allow this due to a problem with mixing Java light-weight and heavy-weight components (see

the technical discussion in section 5.2.2 for more details). This problem is addressed in detail in

the final version of the tool.

It was also discovered that the implementation for the LinkTo function was cumbersome to

use because (1) it required performing a new web search to acquire the data (which in turn took

some time to process), and (2) many times a LinkTo search would return no results, since the

information may not have been stored on Google. Users also commented, that by placing this

information in a separate frame, it created a void between the two pieces of essentially linked

information.

The term searcher tool was highlighted as another problem area in two respects. (1) The

search tool orders the list of suggested keywords by term count, and (2) the inner bar’s height

was based on the term count. It was later discovered that the use of search term count as a

measure of relevance is an erratic and unpredictable method at best. For some pages the number

of times a term appears in a page indicates its relevance in the field, e.g. a website advertising

holidays will have the word holiday appear many times; However, very often ‘stop words’ (see

section 3.1.1) will appear more often than non-stop words. Even after filtering these stop words,

common non-stop words will appear in great quantities e.g. in the search [web visualization],

both web and visualization will appear many times. The problem is that, quite often, the more

interesting keywords will be unique, and very often only appear once or twice in the web page.

For example, the name of an author in a given area of research is often important for seeking

related research papers, however the name will very often only appear once or twice on the

author’s home page. This showed the term searcher tool as inefficient in aiding users to find

relevant web pages.

These observations formed the basis for the redesigning of the EvoBerry interface. During

the implementation of the EvoBerry prototype, technical problems with the interface were noted.

The solutions to many of these problems directly contributed to the changes made in between

the prototype and the final version of the EvoBerry interface. The next section looks in detail

128

at the underlying technology behind both versions of the EvoBerry interface, as well as the

technological challenges that needed to be overcome to produce the final version of the interface.

5.2 Technical discussion

This section presents the technical aspects of the EvoBerry interface in two parts, (1) the

technologies used in designing the EvoBerry interface, and (2) the technical challenges that

needed to be overcome in order to produce a fully functional evolving search tool. It should

be noted that both the prototype and the final version of the EvoBerry interface shared many

common technologies. This section will use the name EvoBerry interface to refer to both of the

tools, and will specify explicitly when referring to one prototype or the other.

5.2.1 Technologies used

The EvoBerry interface was written in the Java programming language [118], with Java 1.2 for

the initial prototype, and version 1.4 to write the final version. Java was used to create the GUI

interface, the data structure for storing the data, and provided various ‘listeners’ that allowed

users to interact with the interface. The only two services that were not provided as part of the

standard Java development kit were the abilities to gather search results from a search engine,

and render web pages within Java containers. This section discusses the different technologies

involved in the design of the EvoBerry interface, looking at each of the following areas: (1) the

interface display, (2) underlying data structure, (3) interaction techniques, (4) data gathering

and (5) web page rendering.

The interface display was primarily built using the Java Swing Toolkit, although a small

amount of the AWT Graphics package was used to design the final version’s session bar and

the visual-history toolbar. The Swing toolkit was invaluable, as it gave access to interactive

tools such as the JDesktopPane which allowed the creation of a desktop-type interface. The

Java collection classes (HashMap and ArrayList) both provided useful pre-built models for data

storage, and were used to develop the data structure required. Data was organized according

to the structure specified in the introduction to this chapter (according to search threads and

sessions). Data was stored in two structures, the DataPool, and the ConfigFile. The DataPool

was used to contain permanent, unmodifiable data, such as the search results returned from

the web service. The ConfigFile was used to contain the temporary variables that change when

users interact with the interface, such as the location of the search result currently in focus, and

the number of search threads currently being displayed.

A large number of EventListener objects were used to allow users to interact with the

tool. This provides a wide range of functionality such as clicking (left and right), scrolling and

129

dragging of objects. Different listeners, combined with renderer objects, were required to create

the visual-bracketing technique. For data gathering, at the time of the design of the EvoBerry

prototype, only Google [3] provided a web API with a Java interface. This was far more ideal

than the alternatives which was to write a program that performed the search and harvested

the information from the HTML pages of search results returned. This was far less efficient and

would take longer to obtain results. Near the end of the development of the final version of the

EvoBerry interface, Yahoo! [127] introduced a Java compatible web API. It was decided to use

this service because the Google web API had not been updated for a long period of time, and

was frequently returning errors.

The Java SDK provides methods to retrieve and display simple HTML pages using the

JEditorPane. However rendering more complicated web pages utilizing non-standard web tech-

nologies such as Javascript, applets and Macromedia Flash content was not currently supported,

neither was the display of non-HTML file types such as PDF documents. This prompted a search

for a Java library that allowed a fully functional rendering of a web page. The JDIC web browser

[23] was discovered, which utilized existing web browser renderers (Mozilla web browser[32] and

Microsoft Internet Explorer [90]) to render web pages within Java containers. However, there

are still problems and challenges to effectively integrate this technology into the EvoBerry design

(detailed in the technical challenges - section 5.2.2).

The design of the display, and techniques utilized, were greatly dependent on the data

available for each search result. Both the Google and Yahoo! APIs provide a set of standard

search result information as part of the data returned for each query. Typically they return the

following information: (1) the title of the web page, (2) the URL address, (3) the size of the

page (in kilobytes), and (4) a snippet of text, showing the query terms in context. Additional

information can be obtained through the API, but this would require users to perform specific

additional searches, e.g. obtaining a list of all web pages that linked to a specific URL requires

a special secondary search to be performed. In addition to this, different types of search can be

performed to filter the data returned, typically these include (1) a title search (limiting the search

to words in web page titles), (2) a url search (limiting the search to words in url addresses), and

(3) phrase searches (the search results must contain a specific phrase). This is in addition to all

the boolean operators that can be applied to a standard search engine.

Many of the tools of both the prototype and final version of the EvoBerry interface require

information that is not available through the APIs. In the prototype, information on the different

keywords present in each web page was required to use the term searcher tool, and the LinkFrom

function requires knowledge of all the links in a web page. The final version of the EvoBerry

interface also utilizes knowledge of a web page’s hyperlinks for use in its overview, as well as

information on the amount of text and images present in each web page. As a result, it was

130

necessary to extend the data gathering process beyond the standard processes presented through

the API; as each search result was returned, its URL was extracted, the page looked up and

retrieved. Each page was parsed to gather information, including the structure of the web page,

frequency analysis of the page, as well as further keyword and HTML tag information. While

this extended the range of information available to use with the interface, it also generated its

own set of problems (discussed in the technical challenges section).

5.2.2 Technical challenges

Several problems had to be overcome in order to implement a functional version of the EvoBerry

interface. These problems can generally be divided into two areas: (1) display problems, and

(2) speed problems.

Display

One of the essential components of any evolving search interface is the ability to allow users

to browse web pages. The initial tools developed (such as the coordinated bracketing and SES

tool.) forwent the need for an integrated web browser, instead using a Java RunTime function to

activate the operating system’s native browser as an external window and open web pages within

that program. However this generated two problems: (1) the web pages were being opened in

separate windows external to the program, and (2) the functions and data of the web browser

could not be integrated into the search tool. Integrating the web browser view into the main

search tool was considered a priority because of the increase in cognitive load that developed

from having to switch between multiple browser windows and the search tool. Additionally, the

evolving search tool aimed to help users in web page browsing and history recall, which meant

access to information specific to the browser (e.g. which web pages were viewed, and in which

order) was needed.

As mentioned previously, utilizing the JEditorPane to view web pages was not ideal given

the inability to view web pages which utilized non-standard web technologies; an integrated Java

web browser was needed. At the time of design, the JDIC Java web browser [23] was one of

the few Java libraries available that allowed the creation of Java based web browser containers,

which could be easily utilized as part of a Java interface. However, it was quickly discovered

that a problem existed in mixing the JDIC web browser object (a Java heavy-weight component)

and the JInternalFrame’s used on the JDesktopPane (both Java light-weight components). The

problem stems from the mixing of light-weight and heavy-weight components [33]. A heavy-

weight component is one that is associated with its own native screen resource, while a light-

weight component is one that “borrows” the screen resource of an ancestor, meaning it has no

native resource of its own. It is generally recommended not to mix these two types of components

131

since there are significant differences between light-weight and heavy-weight components that

become painfully obvious when the two are mixed. Below are a list of the most common

differences:

• transparency: light-weight components can have transparent pixels, whereas heavy-

weight components are always opaque.

• shape: light-weight components can appear to be non-rectangular (because of the trans-

parency) whereas heavy-weight components are always rectangular.

• mouse events: mouse events on a light-weight component fall through to its parent;

mouse events on a heavy-weight component do not fall through to its parent.

• overlap: when a light-weight component overlaps a heavy-weight component, the heavy-

weight component is always on top, regardless of the relative z-order of the two compo-

nents.

The final point (on overlapping) is the one that is of the most concern to the design of the

tool. Placing the web browser object in a JInternalFrame allows it to be moved around the

desktop, in the same way as the results frame and other frames on the desktop, and is highly

ideal given the desktop workspace being utilized as the focus of the tool. However when the

Web browser object is placed into a JInternalFrame, a problem of overlapping between different

frames on the desktop occurs, where the web browser’s contents will always be on top obscuring

all other Internal frames. The problem is illustrated in Figure 5.69. This problem exists because

of the fact that a light-weight component re-uses the screen real estate of its nearest heavy-weight

ancestor and is therefore restricted to the z-order position of that ancestor. When placing a light-

weight object ‘on top’ of a heavy-weight object, it still appears as if the heavy-weight object is

on top, because the light-weight object it is rendering its contents in the native window of the

frame (its first heavy-weight ancestor), while the heavy-weight object is rendering its contents

in its own native window, which is actually a child of the frame’s native window.

The recommended solution to this problem (as stated by Sun Microsystems [33]) is “Do not

place heavy-weight (AWT) components inside a JInternalFrame”. This is problematic given the

aim of integrating the web browser into the desktop and left three choices: (1) place the web

browser in an external window (JFrame) where the view will not overlap with other objects, (2)

leave the web browser within an internal frame on the desktop and ignore the visual problems of

the overlapping frames, or (3) integrate the web browser into the tool, but not within a flexible

internal frame, instead as a panel with a fixed position.

As mentioned previously, the external window was not ideal given the fact that users should

not have to switch between the tool and an external browser window. It was also decided that the

132

Figure 5.69: Java light-weight/heavy-weight problems. A light-weight component is over-
lapped by a heavy-weight component

problem of overlap was both a visual eyesore and interfered with a user’s workspace management,

since web browser windows would have to be constantly moved to allow the viewing of search

results. In the end, it was decided to split the space between the web browser and the desktop

to stop the overlapping of objects. This required the use of a JSplitPane, which is discussed in

the implementation of the final version of the EvoBerry interface (see section 5.3).

Speed

In order for the EvoBerry interface to be efficient, it was necessary that all the functions worked

quickly and efficiently. While the Java components used to display the interface were indeed

processor intensive, it did little to slow down or diminish user’s browsing. However, data gath-

ering for the EvoBerry interface presented several challenges because of the long lengths of time

needed to gather information across the WWW. A quirk in the Google API is that it returns

search results in sets of ten results. Hence, obtaining results beyond the first ten results requires

the interface to specify a different starting point from which to gather results. This was trouble-

some because it required the data gathering program to perform five searches in order to gather

fifty search results.

It was necessary to gather the web pages for each each search result returned, in order to

gather specific metadata about the web page (e.g. keyword and image counts). This constituted

a challenge, since the process of extracting a web page’s information required the program to

open a port to connect to each website, and download the required page. While connecting to

a single website merely takes one or two seconds, when attempting to gather information from

several websites this often tripled the time taken for the web search.

133

In the prototype of the Evoberry interface, the LinkTo function allowed users to see which

web pages were linked to the current web page being viewed. The problem with this function,

was that the underlying method of obtaining this information required an additional web search

to be performed. Compared to its sister function, LinkFrom (which displays its data within a

few seconds), this function required at least sixty seconds to gather the data, which may put

off users from using this function, as well as slowing down search progress overall. In the end,

it was decided to remove the LinkTo function, since the study showed that it did not add much

to the browsing experience.

The solution to the problem of gathering both search results and web pages quickly was to

utilize different processing threads. Naturally, both gathering processes operate sequentially,

gathering one set of data first, storing it, and then once the process is finished, gathering the

next set of data. By running the processes in parallel, the time taken to perform each search

was greatly reduced (from two minutes to just over 10 seconds), because sets of search results,

and web pages were all being gathered in parallel using a large number of threads. It should

be noted that in the final version of the EvoBerry interface, the switch from the Google API to

Yahoo! meant that search results were no longer being returned in sets of ten, and so search

results no longer needed to be gathered through the use of multiple threads, although threads

were still used to parse the web pages.

5.3 Final version

Both the prototype and the final version of EvoBerry shared the same essential technologies,

both were written using Java (1.4) and both utilized the JDIC web browser to visualize web

pages. A minor difference in technologies was a change in the search engine used to gather

search results, from Google to Yahoo!. This was partly due to the increase in API functionality

that had become available since this research started, and partly due to technical difficulties

that had been experienced with the Google Web API (see technical discussion section). The

design differences between the two tools, are presented.

A small change in the underlying data gathering systems was made, moving from Google’s

web service to Yahoo!’s. Essentially the same data was returned, albeit via a different search

engine. The display of search results underwent some major changes because it was deter-

mined that the bar visualization utilized in the prototype was initially confusing to users. As

a result, the display was changed back to the textual representation utilized in the original

visual-bracketing technique (see chapter 4). However the bar visualization was still useful as a

secondary display technique, and was utilized in the results overview (see section 5.3.1). With

the move away from a bar visualization, it became difficult to visualize the term count for each

134

search result. Combined with problems previously mentioned of establishing relevance through

term count, it was decided that the term searcher tool would not be re-implemented for the final

version.

The design of frames on the desktop underwent some major changes. Users were spending

too much time moving between linked, but physically separate tools, e.g. the tool bar and results

frame. This greatly increased user’s cognitive load, and it was believed that by more closely

associating the controls to the data (integrating the functions and data within a single results

frame), a quicker and more efficient form of browsing could be facilitated. It was also decided

that the multiple tool frames which existed on the desktop added to the visual clutter, since

no more than one tool was ever active at any one time. The tools were integrated into a single

frame, allowing better user control. This reduced the visual clutter, and also grouped the tools

together so that they could be found more easily.

Both the LinkTo and LinkFrom frames provide the ability to move between the links to and

from a web page and were useful for navigating and discovering new information. However the

implementation for LinkTo required extra searches to performed, unnecessarily slowing down

the browsing process. The decision was made to not to include these functions in the final

version.

Both the thread tool and the search type options (url, title and phrase) were both removed in

the second prototype. The thread tool was considered obsolete, given the integration of all the

separate frames associated with a single thread into a single results frame. The change in search

engines created a change in available services, hence there was not enough time to re-implement

the search bar functionality, and as a result it was not included in the final version.

Perhaps the biggest change between the two versions was the move from an external web

browser to an internal web browser. This was a because of the unnecessary amount of cognitive

overhead that was caused by having to switch between the external browser and the work space.

While this web browser view could not be fully integrated into a frame on the desktop due to

technical constraints, it was however incorporated into a fixed resizable partition on the desktop

(using a JSplitPane). This allows users to assign working space to the web browser and work

space dynamically as needed. Furthermore tabbed panes are included (like the Opera and Fire

Fox web browsers) to aid users in managing web pages.

The final version of the EvoBerry interface can be seen in Figure 5.70. While the tool still

shares the same desktop workspace, many of the principal components have been redesigned.

The toolbars have now been integrated into the results frames, essentially merging the functions

and data related to a single thread, into one single place. The query tool has been moved the to

the top of the interface, but has been significantly cut down to its bare components (removal of

thread tool, and different search options). All the different tool frames have been integrated into

135

Figure 5.70: EvoBerry final version. This is a view of the final EvoBerry version. As with the
prototype, this utilizes a desktop interface, however this now shares the main view with a slide-able
panel containing a tabbed web browser (far right). The desktop, now only contains two types of
frames, the toolbox frame (far left) and the results frames (three frames in the centre).

Figure 5.71: EvoBerry parts 1-3. The EvoBerry tool is discussed in terms of its different
parts/components, (1) the results frame, (2) the toolbox, and (3) the tabbed browser.

136

a single toolbox frame. The most significant difference between the two interfaces is the new

tabbed browser pane, which renders the web pages. The following section describes the different

techniques and tools used in the final version of EvoBerry. The tool is described in terms of its

principle components. There are three main parts (as seen in Figure 5.71) are, (I) the results

frame, (II) the toolbox, and (III) the tabbed web browser,

5.3.1 Part I : results frame

As with the previous version, a results frame is returned whenever users perform a search, and is

automatically assigned a unique colour. However, the new version of the interface integrates the

(previously separate) toolbar functions with the main view of the results as well as the session

history. Figure 5.72 shows the new results frame design. The results frame can be split into

three view panels, (as shown by Figure 5.73) and a function toolbar across the top of the frame.

The search result information returned from the search engine is shown in both the overview

and the main view. Each of these functions is presented.

The toolbar is positioned across the top of the results frame. This contains the four functions

that can be used to interact with the data, bookmark, open web page, zoom (in/out) and create

new (blank) web page. The overview is shown as a column, located on the left of the results

frame. The information returned by the search engine is shown in two views, the overview and

the main view. The overview displays the search result data at a lower level of detail than the

main view. Each search result in the overview is represented by a bar denoting the number of

external links present in that web page. Icons are also assigned to bars which were linked to

search results which were not HTML web pages (e.g. pdf, word documents) as well as web pages

with special attributes (e.g. lots of images or text).

The main view is located in the centre/right of the results frame, and occupies the bulk

of the results frames view. The search result information returned by the search engine is

also displayed in the main view. Results are shown as lines of text (the web page’s title) and

visual-bracketing is applied to the results display. Users can browse the results through several

interaction methods including mouse clicks, scrolling, using the mouse wheel, and keyboard key

strokes.

The Session bar is shown as a bar across the bottom of the results frame. This is effectively

a graphical representation of the prototype’s search session history, but instead of adding entries

to a drop-down box, the tool adds icons (representing each session) onto the session bar every

time a search result is opened.

These different parts of the results frame interact together in different ways, for example,

pressing the ‘open web page’ button in the tool bar, opens the web page associated with the

current selected search result in the tabbed web browser, as well as adding a new session icon to

137

Overview icons

Bookmarked
results

Session bar icons

The number details
rank, the bar
represents the
quantity of pages
viewed in session.

 many images

a lot of text pdf doc

post script

Power Point

word docexcel doc

result
ranking

number
of links

Properties

These contain the
properties of the
bookmarked items.

Bookmarks

Web pages

Figure 5.72: Detailed look at the results frame. When a search is performed, the search
results are returned in a results frame. Each results frame is assigned a unique thread colour when it
is generated, which is used to associate objects and data that all belong to the same search thread.
Along the top is the toolbar, which can be used to interact with and manipulate the search results
in the main view. The overview (left) shows the search result data at a lower semantic level, and
main view (centre/right) shows the results returned using the visual-bracketing technique. At the
bottom is the session bar, which contains icons representing each of the search sessions.

Over
View Main View

Session Bar

Figure 5.73: Layout of the results frame. The three main parts of the results frame are
illustrated here, the over view (left), the main view (centre/right), and the session bar (bottom).

138

the session bar. Descriptions of these interactions are provided in both this section (subsection

5.3.1) and the toolbox (subsection 5.3.2) and tabbed browser (subsection 5.3.3) sections. Next,

the four different parts of the results frame (described above) will be described in detail, and

discussed.

Toolbar

There are four buttons arrayed across the top of the toolbar: bookmark, open web page, new

page, and zoom in. Most of these functions replicate previously designed functions within the

first prototype, for example, the bookmark button still highlights a search result in green and

the zoom button still increases the textual detail available in the main view, and the open web

page button still opens the currently selected search result in a web browser. As with the first

prototype, both the bookmark and zoom actions can be reversed by pressing the button a second

time, while selecting the appropriate result. However there are some minor differences. Because

of the changes in interface design, web pages are now opened in the internal tabbed browser view

(see tabbed browser section) and zooming in will increase the level of detail of all the results

in the main view (not just the selected result). A new function is the new page button, which

allows users to create a blank web page in the tabbed browser view, in case they have need of

a separate web page.

Overview

The overview’s relation to the main view is much akin to the relationship between the view of

the aforementioned coordinated bracketing tool as detailed in chapter 4 (see Figures 5.72 and

5.73). In the coordinated bracketing tool, three different coordinated views were used to show

data at different semantic levels (i.e. using visual-bracketing). Similarly, in this implementation

of the results frame, the overview shows the data in the main view at a different semantic level,

and is also coordinated with the main view. This means that when a result is selected in the

main view (bringing it into focus and highlighting it in blue), the corresponding result in the

overview will also be brought into view. This also works in reverse: selecting a result in the

overview will bring the corresponding result in the main view into focus. Some search results

in the overview contain icons which are used to communicate the different properties of their

associated web pages. This includes alerting users to search results that link to non-HTML data

(e.g. pdf and word documents) as well as web pages that meet specific criteria (e.g. web pages

containing a lot of text or images.). This helps users identify special properties of search results

without having to view them, and helps users seek results of interest. A full list of the overview

icons is shown in Figure 5.72.

139

1

17

no. of
results

1

3

no. of
results

Figure 5.74: The visual-bracketing technique. On the left is a view of traditional search
result visualization where three results are displayed. On the right is the data data using the
visual-bracketing technique, where three times the amount of results can be displayed. The visual-
bracketing technique displays different semantic levels of data in ‘brackets’ (see chapter 4 for full
description).

Main view

The main view displays results according to the visual-bracketing method. The display creates

three ‘brackets’ of information. Information in the focus forms the first bracket (currently being

selected - highlighted in blue) and shows the most amount of textual. The next bracket is formed

by the five results either side of the focus (coloured in white), which show search results at a

lower level of semantic detail. The final bracket is formed by the remaining results (coloured in

grey), which are shown at a lower font size. A diagram of the visual-bracketing technique applied

to the search results can be seen in Figure 5.74. As mentioned previously, a certain amount

of coordination takes place between the overview and the main view. However, coordination

between the two views (as well as other views) can be affected by other tools. For example,

bookmarking a result in the main view (which highlights the result in green) will also bookmark

the corresponding result in the overview, and vice versa. Results in the main view are also

coordinated with data from other results frames, through the use of similarity highlighting.

Like in the prototype’s results frame, selecting a search result that shares a website with a

search result in a second search will automatically highlight and bring that result into view in

that second search (see comparison tool for more details).

Interaction with the results in the main view can be achieved in several ways. Users can move

among the search results by simply clicking on the result, this will change the view, bringing

the selected result into focus. The focus can also be changed by rolling the mouse wheel, or

140

Figure 5.75: Right-click pop-up. When users right-click on a search result in the results frame,
a pop-up menu will appear, with shortcut functions allowing them to open a web page linked to the
current search result, as well as bookmark and zoom-in on the current search result. The pop-up
also provides options for sending different types of information to the drop-box.

pressing the up and down keys. The results in the main view can also be manipulated through

use of the right mouse button. Right-clicking on a search result will activate a pop-up menu (see

Figure 5.75), which will give users quick access to functions in the toolbar (e.g. open web page,

bookmark, and zoom), as well as options to add specific data to the drop-box (e.g. address, text,

search result). Note that an alternative to having to click the zoom-in button is to double click

on the currently selected result, which will automatically increase the level of detail. Double

clicking on the result when it is already zoomed-in will open the result’s web page in the tabbed

browser. An alternative way of sending information to the drop-box (as opposed to right-clicking

and selecting a command) is to click and ‘drag’ the search result from the main view, into the

drop box. This automatically adds the whole search result to the drop-box, so that it can be

recalled later.

Session bar

The session bar (see Figure 5.73) occupies the same role as the session history in the prototype,

keeping a record of all the search sessions created by users, so that they can be recalled later.

The only difference is that the sessions are now stored as icons instead of title text. There are

two types of icons which are added to the session bar: (1) session icons and (2) bookmark icons.

Whenever a search result is opened (and a search session is created), then a session icon is added

to the session bar. The different session icons can be seen in Figure 5.72. In general, each icon

is represented by a small picture of a white piece of paper, and contains a number in its centre,

and a small bar across the bottom of the icon. The number represents the ranking of the search

result which was used to create the search session, and the bar indicates how many web pages

were visited during that session. Notice that the bar has three different colours, green indicates

1-5 pages, yellow indicates 5-20 pages, and red indicates 20 or above pages. If the particular

search result has any special properties or is of a special file type then the icon will also have

special symbols attached to it (these are the same symbols used in the overview, see Figure 5.72

141

for a detailed description).

Whenever a search result is bookmarked in the main view, a bookmark icon is added to

the session bar. The purpose of this is to allow users to quickly relocate bookmarks which are

outside of the current view. Bookmark icons are designed in exactly the same way as session

icons, except for their colour, which is green, not white. Users can interact with session (and

bookmark) icons in different ways. Clicking on a icon in the session bar will show the selected

icon in full colour (bringing it to the foreground), while ‘graying-out’ the other icons (sending

them to the background), helping users identify which icon is currently being manipulated.

Double clicking on a session icon has two effects: (1) if the corresponding session is already open

in the tabbed browser, it will bring its tab to the front, and (2) if the corresponding session has

already been closed, then it will reopen the session in the tabbed browser. Double clicking on a

bookmark icon will change the main view’s focus to that specific result. As with the main view,

right-click can be used to activate a pop-up menu, with a set of commands, including ‘open

session’, ‘copy session’ and ‘remove session’. The website address of the web page linked to the

session icon is displayed at the top of the pop-up menu for easy identification. Users can also

identify the icon by hovering the mouse cursor over the session icon, which will in turn pop-up a

tag stating the page’s title. If users generate more icons on the session bar than there is space,

then the scroll buttons (arrowed button on the left and right of the bar) can be used to scroll to

the icons not being currently displayed in the view. Alternatively, if there are too many icons,

users can choose to filter the icons based on type (bookmark or session), using the filter tool

(located below the session bar).

5.3.2 Part II : toolbox

The toolbox frame combines two of the tools of the prototype interface, the comparison tool

and dropbox, and a third tool, the notepad, all contained within a single frame on the desktop.

Each of these tools can be seen in Figure 5.76, on the left is the initial state showing buttons

to activate each of the tools. When one of the tools is activated, it occupies the majority of

the frame’s space, and a pair of tabs representing the two inactive tools are shown, and can be

clicked upon to switch between the tools. Details of each tool are presented.

Comparison tool

The tool mirrors the first prototype version of the comparison tool in functionality. Whenever

a search is added to the workspace, the intersection of websites between the new search and the

existing searches is calculated, and the resultant websites are added to the comparison view.

This allows users to view which websites appear in multiple searches. The tool also shares similar

interaction techniques with the prototype, clicking on a website entry in the comparison tool

142

Figure 5.76: The toolbox and its three different tools. This figure shows the starting view
of the toolbox (far left), and the views of the three different tools, the comparison tool (centre-left),
the drop-box tool (centre-right), and the note-pad tool (far right). When EvoBerry is first activated,
the toolbox is displayed in its starting view, but when one of the tools is selected, the view changes
to that of the tool. The comparison tool is used to visualize intersections between the multiple
searches, the drop-box allows users to add search results for storage, and the note pad allows users
to write textual notes (that can be stored in the dropbox).

will highlight its corresponding search results in their results frames, as well as bring them into

focus. Double-clicking on a website entry will open it in the tabbed web browser. The major

difference between the prototype version, and final version is the use of display techniques. In

the prototype, each web page entry was simply represented by the website’s URL. In the final

EvoBerry version, coloured blocks show which searches the website is found in. The number of

blocks indicates the quantity of searches that this URL exists in, and the colour of the blocks

associates the URL with the search thread that it came from.

Drop-box

The drop-box also shares similar features with its prototype predecessor. Many of the basic

interaction techniques are similar; results can be added to the drop-box, by either (1) dragging

them from the results frame directly into the dropbox, or (2) by right-clicking on the result in

focus and selecting which piece of information to send to the drop box. Double-clicking on drop-

box entries will reopen the information in small frame on the desktop. Display techniques are

also similar, drop-box entries are represented by a string of text (the URL, but varies depending

on the type of information stored), and an icon which represents what type of information is

contained in the entry. Results are also colour coded by which search thread the information

came from, and can be filtered according to type. However this implementation of the drop-box

differs from the prototype. Two buttons have been added to the tool, ‘view’ and ‘remove’.

143

The view button replicates the double-click function (reopening the selected information), but

provides a more obvious visual cue. The remove button will remove the selected entry from the

drop-box, a function that can also be performed by selecting and dragging an entry outside of

the drop-box. The notepad function was replaced and extended in the final version with the

notepad tool.

Notepad

The notepad is a simple tool consisting of a text box, in which users can write notes, and a

button which submits the notes as an entry in the dropbox.

5.3.3 Part III: Tabbed Browser

When redesigning the EvoBerry prototype, one of the main concerns was that using an external

web browser increased user’s cognitive overhead, because of the amount of switching that had

to be done between the web browser and Evoberry views. The ideal solution, would be to

include the web browser within its own internal frame, so that it could be viewed side-by-side

with the results frames, and could be repositioned and resized with ease. However there were

some technical constraints as to how the web browser could be displayed in Java. The problem

stemmed from the fact that the web browser (a Java heavy-weight component) could not be

added to a frame on the desktop (a Java light-weight component). Thus the tabbed browser

was added to the main view inside a split-pane (Java JSplitPane).

The split-pane (see Figure 5.77), can be resized along the horizontal axis by dragging the

edge of the split-pane across the main view. In this implementation the split pane can be slid

across the rest of the desktop covering the other frames and obscuring the background. The

advantage of the split-pane, is that the web browser is no longer external. It can now be used

side-by-side with the results frames, and can be resized as necessary, depending on whether

users are concentrating on the web browser or the results frames more. The disadvantage of this

method is that it is very easy to lose frames ‘underneath’ the split-pane if users are not careful

(see Figure 5.77). Given that the alternative to the split-pane was an external browser, it was

decided to utilize the split-pane in this way. The layout of the tabbed browser can see in Figure

5.78. The tool clearly consists of three main parts: the browser controls (top), the web page

view (middle), and the visual-history toolbar (bottom). These are be discussed in turn.

Browser controls

As with the prototype’s version, the web browser contains all the standard web browser functions.

Buttons are provided for the backwards, forwards, refresh, and stop functions. An address bar

is also provided, which allows users to see the URL address of the web page currently being

144

Figure 5.77: The Splitpane. This figure illustrates usage of the splitpane. On the left the
splitpane shares an equal amount of screen space between the desktop and the tabbed web browser.
Note that the tabbed web browser is shown to be transparent to illustrate the fact that objects on
the desktop are obscured by the web browser view when it is moved. The advantage of obscuring
objects (as opposed to repositioning them) is that users frames and desktop space will not become
distorted when the tabbed web browser view is extended. However the disadvantage of this can
be seen on the right, where moving the web browser view too far may cause frames to be lost
underneath.

Figure 5.78: The tabbed web browser view. This shows a view of the tabbed web browser
used in the EvoBerry interface. The web browser is broken up into three views, the browser controls
(at the top), the main web page view (centre), and the visual-history toolbar (bottom).

145

viewed, and modify the URL. However, unlike the external web browser, this web browser utilizes

a tabbed presentation. When users open a search result in the tabbed browser, a search session

is created within a new tab. The tab will, from that point forward, contain all the information

on web pages viewed in that specific tab and record it in the visual-history toolbar (see below).

When a second search session is created, a second tab is created, and immediately comes to the

foreground.

Switching between search sessions is simply a matter of clicking on the corresponding tab.

Each tab can be identified in one of two ways, either (1) by its thread colour, where search

sessions from the same search thread are assigned the same colour, or (2) by a label assigned to

each tab, which is based on the first unique word in the search result description. As mentioned

previously, when a search session is created, a session icon is added to the session bar of the

result frame where it originated from. This means that whenever the tab containing the session

is closed, it can be reopened, simply by double-clicking on the session icon. Additionally, all the

web pages viewed in that session can be recalled through use of the visual-history bar.

Web page view

As with the prototype, the design is developed around the JDIC web browser [23], which in turn

renders web pages using Microsoft’s Internet Explorer [90]. A quirky feature of this method is

that many of the Internet Explorer’s shortcut functions are active, even though their equivalent

buttons are not visible, for example, pressing the keys CTRL and F will pop-up the Internet

Explorer’s ‘find term’ function.

Figure 5.79: The visual-history toolbar. This view utilizes the visual-history technique
explained in chapter 4. At the top of this view, is main view of the visual-history toolbar, that
visualizes users web page history as a two-dimensional map. Below are buttons which can be used
to interact with the view, allowing users to hide the visual-history, scroll the results, or bookmark
specific web pages.

Visual-history toolbar

The visual-history tool bar (see Figure 5.79) operates in much the same way as its prototype

predecessor. Both share the same column/block layout and utilize the same visual-history

techniques to deal with web page block placement and overflow (see section 4). Both the

146

prototype and the current visual-history toolbar utilize similar interaction techniques. When a

new web page is opened, it is added as a block in the display, and users can revisit any page in

the history simply by clicking on its corresponding block. A blue coloured highlighting allows

users to keep track of which block (web page) is currently being viewed. However, there are

a few differences between this visual-history toolbar and the previous prototype. A bookmark

function has been introduced, that allows users to highlight web pages of interest within the

visual-history toolbar. This function highlights specified blocks in green, and can be reversed

simply by clicking the button a second time. Also the overview bar has been replaced with

a pair of scroll buttons, that allow users to scroll the visual-history display when the columns

extend past the width of the browser.

5.3.4 Overview

This section presented the final version of the EvoBerry interface. Design changes have taken

place between the development of the prototype interface and the final version. The three most

significant changes to the interface were (1) the integration of tools and data into a single results

frame for each search thread, (2) a change in the results frame display, from graphical bars to

text, and (3) the move from a external web browser to an internal tabbed web browser. Each of

the tools, developed as part of the interface, contributed to aiding users in performing evolving

searches. Each of the different interface issues that the tools addressed is presented.

The issues of information visualization and opportunistic searching were both addressed

through the use of the visual-bracketing and visual-history tools. The application of the visual-

bracketing technique to the search results within the results frame allows users to view more re-

sults, at varying levels of semantic detail and provides a graphical representation which promotes

opportunistic movement through the data. Similarly the graphical display of the visual-history

tool provides a more compact presentation of the information (web page history in this case), as

well as displaying the list of search result data in a manner that is more easily browsed, allowing

users to move between search results opportunistically.

The issue of information recall was addressed through different automatic and manual history

systems. Search sessions are automatically recorded as session icons on the session bar, which

allows search sessions to be recalled with ease. Once a search session is reopened in the tabbed

browser, that session’s visual-history toolbar will be displayed, allowing users to recall specific

web pages from the history instantly. The bookmark function can mark specific search results

to be recalled later. Search results can also be dragged into the drop-box and reopened later.

The issue of information-seeking was addressed by the comparison tool, as well as other minor

tools provided for finding specific information, both in the search result data and history data.

The comparison tool (in conjunction with the similarity highlighting) allowed users to view the

147

intersections of multiple searches, in order to find interesting results. Tools were provided to

filter the search history data, in both the drop-box, and the session-bar.

The issue of information management was addressed in several ways. A desktop interface

allowed users to better manage the tools and data within the workspace. Data management is

present at two levels (1) data is automatically managed into threads (using thread coloring),

sessions (via the session bar) and web pages (within the visual-history toolbar), and (2) data

can also be manually managed through use of the drop-box.

148

Chapter 6

Experiment and results

Experimentation is an important part of any research. After thoroughly investigating both the

design and implementation of an evolving search tool, it is important to critically analyze the

contributions of the tool. However, evaluating visualizations is difficult; experiments with human

participants are time consuming, defining and setting up the whole experiment is a challenge on

its own, and it is often hard to analyze and consolidate any certain conclusions.

As part of the development of the EvoBerry interface, it was decided that an evaluation

must be performed to determine the effectiveness of the tool in aiding users to perform evolving

searches. It was hypothesized that users of the EvoBerry interface would exceed the performance

of users of traditional web search tools in terms of speed, accuracy, and number of searches

generated (this is elaborated on later). This chapter is split into three main sections. The first

section, visualization experiments, discusses the design of different visualization experiments in

the research. The second section introduces the concept of the information-seeking experiment,

and how these are different to previous experiments in the area of search result visualization

and information retrieval. The third section, the experimental design, details the design of the

experiment used to test the EvoBerry interface.

6.1 Visualization experiments

Most visualization experiments can be classified as either Heuristic Evaluations, which are con-

cerned with finding problems with the tool’s usability, or Empirical Evaluations, where the

efficiency of a tool is determined, based on observations of how users interact with the tool,

and a statistical analysis of the their performance. The differences between the two forms of

evaluation are summarized below:

Heuristic evaluation belongs to a set of techniques called discount usability engineering meth-

ods [81], which emphasize a quick, immediate and easy way to evaluate user interface designs.

149

Jakob Nielsen’s usability heuristics
Visibility of system status Does the system keep the user up-to-date?
Match between system and
the real world

Is information presented in a logical order, with words,
phrases and concepts familiar to the user?

User control and freedom Does the system support ‘undo’ and ‘redo’ functions on user
actions?

Consistency and standards Are actions and labels consistent through out the tool ?
Error prevention Have all errors been eliminated?
Recognition rather than re-
call

Are the objects, actions and options visible? Are all tools
and buttons clearly defined and visible?

Flexibility and efficiency of
use

Does the tool cater for experienced as well as novice users?
Does the tool offer customizability or shortcuts to speed
the interactions of more expert users?

Aesthetic and minimalist de-
sign

Has all irrelevant information been removed ? Are all the
functions and objects free of unnecessary visual clutter?

Help users recognize, diag-
nose, and recover from er-
rors

Are error messages provided? And if so are they helpful?

Help and documentation Is documentation provided where necessary?

Table 6.12: Nielsen’s usability heuristics. Nielsen [82] outlined ten rules for good usability,
his Usability Heuristics. These can be used as part of a heuristic evaluation, to identify which parts
of a interface will cause the user problems.

Features Heuristic evaluation Empirical evaluation
Objectives Evaluate the tool’s usability. Varies. Often to evaluate the effectiveness of

the visualization technique or tool.
Methodology Experts inspect tool with a

set criteria.
Observe subjects using tool in strict experi-
mental conditions.

Structure of
experiment

Single condition (the tool it-
self) is tested.

Can vary. Usually either one or two conditions
are tested, although several more conditions is
not uncommon.

Data obtained Qualitative data. Usually
problems with the interface.

Both qualitative and quantitative data. De-
tails about users satisfaction, as well as statis-
tics about user performance.

Turnover Quick. Several iterations are
possible, and results can be
processed quickly.

Long. Often takes a long time to conduct sev-
eral experiments.

Amount
of personnel

Small. 3 to 4 is optimal. Can vary between 5 and 50. The more per-
sonnel, the more accurate the results.

Personnel Usability specialists. Test subjects. Backgrounds and experience
vary depending on the objectives of the ex-
periment.

Table 6.13: The differences between heuristic and empirical evaluations. This is a
summary of the main differences between the two different forms of evaluating visualizations.

150

The objective of this form of evaluation is to identify flaws in the tool’s design before it is

empirically evaluated. To this end a handful of usability experts are recruited to evaluate the

visualization using a set of established criteria. The usability experts identify flaws in the vi-

sualization, and communicate these to the tool designer who can re-design according to the

suggestions made. This form of evaluation is quick and easy, and is best repeated several times.

This method has come under criticism because of the lack of statistical evidence to support any

claims of the tool’s effectiveness, and as a result heuristic evaluations are usually a precursor to

a more detailed empirical evaluation.

Jakob Nielsen [82] outlined a set of ten usability heuristics (see Table 6.12), which became

associated with Heuristic Evaluation. The concept was to provide usability evaluators with these

set of criteria when inspecting the visualization, so that they may appraise the visualization based

on the ten criteria. For each criterion, the evaluator would assign a severity rating (usually

between one and ten) which would indicate where any potential visualization flaws may lie.

Nielsen [82] commented that the optimal number of evaluators is four (see Table 6.13), and also

showed that effectiveness (in terms of benefits compared to cost) of the evaluation dropped as

the number of evaluators increased. A pseudo-heuristic evaluation, based on Nielsen’s usability

heuristics, was performed as part of the design process of the EvoBerry tool with two usability

experts. While the number of evaluators was not adequate, the comments provided were helpful,

and several iterative evaluations were undertaken before the tool was finally completed.

By comparison, empirical evaluations are more stringent and rigorous. While the specific

objectives of empirical evaluations can vary from experiment to experiment, they generally

revolve around testing the effectiveness of a visualization design or tool. Empirical evaluations

usually take the form of a strictly controlled experiment, where user’s interactions with the tool

are observed and recorded. To this end, a group of test subjects are gathered (numbers can

vary between 5 and 50) and are usually presented with a set of tasks to undertake within a

set time. The nature of these tasks can vary greatly depending on the experiment, although

fact-finding and comparison questions are common. Sometimes users are asked to perform

specific tool interactions (e.g. bookmark page X). Data from empirical evaluations can be both

qualitative and quantitative. The qualitative data is usually based on information gathered

from questionnaires (given either before or after interactions with the tool), and is used to

obtain personal information as well as opinions about the interface from the user. Quantitative

data usually comes in the form of speed (time taken to complete tasks) and accuracy (number

of correctly answered questions), but can vary depending on the system in the experiment, e.g.

a search result experiment might also capture data on the number of searches generated and

the number of web pages looked at. This data can be analyzed using statistical analysis to

determine trends in user behaviour and tool effectiveness.

151

Unlike heuristic evaluations, these take a long time because larger numbers of people are

involved. One of the biggest differences between these two forms of evaluation is their structure.

The heuristic evaluation only involves testing a single visualization (a single test condition),

comparing it against a set of established criteria. However an empirical evaluation can compare

data from more than one visualization, and hence can test several different conditions. For

example, in an experiment by Hightower et al [47], the effectiveness of the Pad++ navigation

tool was tested, and two conditions were used: web browsing with the Netscape Navigator web

browser only, and navigating with the Netscape Navigator and Pad++ interface.

When an experiment tests more than one condition, it will generally fall into one of two

designs, either the between-subjects design, where two separate sets of subjects are used for each

condition, or the within-subjects design where all the subjects are exposed to both conditions.

Each design has different advantages and disadvantages.

The between-subjects design allow the experimental designer to keep the design constant

between the different conditions; for example, the task “find a web page containing a picture

of a kangaroo” can be applied to different conditions, since different subjects are used for each

condition. However, in a within-subjects design, where both conditions use the same subjects,

users would know where to seek out their answers after undergoing one condition. However the

problem with the between-subjects design, is that larger numbers of subjects are needed, since

each subject has only one condition applied to them. It is more difficult to compare sets of

users, since differences in subject’s abilities may make results incomparable.

In a within-subjects design, the differences in subject backgrounds and abilities can be con-

trolled because both treatments are applied to the same set of users, making their results com-

parable. Because both treatments are applied to the same users, a smaller test group is needed.

However, the experimental designer must be careful to craft two sets of tasks that are similar in

design, but do not give users the benefit of any learning effects that may take place (which would

aid them in completing the tasks). To this extent, experiment designers can counterbalance the

experiments to reduce the learning effects, for example with when comparing two interfaces (A

& B) with two sets of tasks (T1 & T2), the experimental designer would split the group into

two randomly generated groups, where one group would use Task T1 with interface A, and Task

T2 with interface B, and the second group would use the opposite.

Perhaps the biggest difference between empirical evaluations and heuristic evaluations are

the personnel involved. Heuristic evaluations only require a handful of subjects for evaluation,

whereas empirical evaluations need between 5 and 50 people (the more the better). These num-

bers generally depend on factors such as user background requirements, time taken to complete

experiments, and availability of subjects. The test-subjects chosen for the experiment can also

152

vary, based on the specific requirements of the experiment, e.g. North et al. [83] specifically se-

lected users with a computer science background and knowledge of database manipulation when

testing their Snap-together visualization. Motivation can also play a part in most experiments;

users are often given an incentive such as money, or course credits in the case of students, in

order to get them to take part in the experiment. Some experiments are specifically designed to

motivate the user to perform well, by offering performance based rewards (as seen in Veerasamy

et al. [117]).

It should be noted that an empirical evaluation is sometimes preceded by a usability evalua-

tion, in order to determine whether the designs and techniques used in a tool will be understood

by users. Unlike heuristic evaluations, these are performed with normal experimental subjects

(not experts) and usually require larger test subject populations. Examples include the experi-

ments of Grewal et al. [38], North and Shneiderman [84], and Nowell et al. [85].

Grewal et al. [38] wished to test the viability of their R-wheel and Tepee visualization designs

before implementing them in a tool (and consequently performing an empirical evaluation).

These novel visualizations displayed the search result information from multiple-term queries.

In their experiment, users were asked to demonstrate their comprehension of the visualization

by ranking presented images of the visualizations, according to their perceived relevance. By

ranking the visualizations accurately, the users displayed a good grasp of the concepts behind

the visualization. The design of the experiment was distinctive, since no tool was involved in

the experiment (simply static images of the search result representation), and hence none of the

user’s interactions with the visualization were observed. Grewal’s intention was merely to test

the viability of the design before investing time in placing either design into a tool. As a result,

there was no need to compare the visualization against a search result visualization, success was

determined on the user’s comprehension of the visualization and the principles which govern

it. Similarly, an experiment by North and Shneiderman [84] tested the abilities of users to

construct their own coordinated-visualization interfaces, as a prelude to testing their operation

with their coordinated views tool. In the experiment, subjects were given specifications (either

as an image or textual) from which they were meant to build a coordinated interface using

North’s Snap-together tool. Like Grewal’s experiment, the purpose was to determine user’s

abilities to comprehend the new visualization principles introduced as well as manipulate them

for more effective interactions. However, unlike Grewal’s experiment, the subject was told to

interact with the tool, although the operations that the subject were asked to undertake did not

fully simulate typical user interactions with the tool.

The differences between these two models is elaborated upon in this section, which in turn

153

takes a more detailed look at the differences between the information retrieval and information-

seeking experiments, as well as the reasons for these differences and the challenges in designing

an information-seeking experiment.

6.2 Information-seeking experiment

The research literature details experiments that have been undertaken to measure the effective-

ness of different search results visualizations. However, the majority of these are classified as

information retrieval experiments, and are unsuitable for testing evolving searches. In this work,

a distinction is made between information retrieval and information-seeking experiments. The

differences between the two forms of experiments, reflect changes in search technology, and users

search behaviour, which in turn have forced new testing requirements for search visualizations

in online environments.

Degree of control

The different types of experiment impose different degrees of control over the behaviour of users

during a search. Information retrieval experiments often exercise a high degree of control over

the way users behave during a search, e.g. controlling the search terms they use, the data they

view, and reformulation patterns. In contrast, information-seeking experiments often exercise

a low degree of control over the way users behave during a search, in order to promote a more

natural search process.

The majority of information retrieval experiments restrict the information available to the

user, for example, Hightower et al. [47] restricted their test subjects to only viewing information

from the CHI database and National Park Service website during the experiment. Similarly, in

an experiment by Veerasamy et al. [116] the test subject’s data were restricted to a database

containing information from the TREC information retrieval track. The advantage of this

methodology is that it allows experiment designers to predict the answers to specific experimental

tasks, by reducing the variation in the information provided to the user. The disadvantage

of this methodology is that the natural web search process of users is affected by restricting

movement across the information. For example, users will not be free to explore the information

opportunistically, and cannot follow hyperlinks to external sources (that would normally be

available) which may in turn lead to relevant information.

Some information retrieval experiments restrict users in their search methodology, affecting

their ability and opportunity to reformulate their queries. For example, in experiments by both

Reiterer et al. [92] and Sebrecht et al. [99], test subjects were provided with set queries to enter

into the search interface, and were not allowed to define their own queries. Reiterer further

154

constrained test subjects by not allowing them to reformulate their queries. The advantage of

this method is that by controlling the search methodology of test subjects, the environmental

variables are kept consistent which makes the searches more comparable, and the impact of the

visualization more apparent. However the disadvantage of controlling the search methodology

is that it disrupts the user’s natural search process. This is best illustrated by the fact that

removing reformulation from the search process will greatly affect the chances of users finding

relevant results if they began with only a vague information need.

Some information retrieval experiments restrict users, in terms of the type of information

that can be viewed. For example, in an experiment by Veerasamy and Heikes [117], test subjects

were forbidden from viewing web pages during an experiment. The purpose of this was to make

users evaluate the relevance of web pages “blindly” (without being able to first view the web

page) and thus force them to rely solely on the information provided by the visualization. The

advantage of this methodology, was that it evaluates the visualization’s effectiveness without

the impact of external influences. However, the disadvantage of this methodology is that very

often users in an evolving search collect information from viewing web pages to reformulate their

queries, thus by restricting them from viewing web pages, the user’s natural search process is

disrupted and search effectiveness is reduced.

Tasks

Different types of experiment also use different sets of tasks. Information retrieval experiments

often use directed search tasks, which are often quick, easy to perform, and can usually be

satisfied with a single query. Information-seeking experiments often use more difficult tasks,

which cannot be satisfied with a single query, such as tasks requiring the comparison of informa-

tion from several different sources. A consequence of using different tasks is that the different

experiment types also have different durations, information-seeking tasks often taking longer

because of increased difficulties of the task. The reasons for these differences stem from the

models that the different experiments are based on. Information retrieval experiment tasks are

based around the information retrieval search model, which consisted of directed search strate-

gies, thus information retrieval experiments mostly utilized tasks based on directed searching.

Information-seeking experiment tasks are based on information-seeking models, and thus consist

of browsing strategies. As a result, information-seeking experiments mostly utilize tasks based

on browsing.

A consequence of the difference between experimental tasks, is that the different tasks also

have different durations. Information retrieval tasks utilize directed questions and thus are

quick to complete, for example, Hightower [47] reported average completion times to be around

60 seconds, and Sebrechts [99] reported task times of no greater than 120 seconds per task.

155

By comparison, information-seeking tasks often have far longer durations, due to the amount

of browsing that users need to undertake in order to gather enough information to form an

effective query. For example, Reiterar’s extended fact finding tasks [92], and the comparison

tasks present in Hightower et al [47], both cannot be satisfied with single queries.

Time restrictions

Restrictions between the different types of experiment can vary. Information retrieval exper-

iments often impose a time limit on each task, and are short in duration, while information-

seeking experiments often have no time limit, which often makes their duration more variable.

Information retrieval experiments often impose a time limit for each task test subjects undertake,

for example Reiterer’s [92] fact-finding tasks were limited to five minutes each. By comparison,

information-seeking experiments do not restrict the user’s time, because (1) the subjects often

need to spend a long time browsing and comparing information and (2) restricting the user’s

time pressures them into completing the tasks quickly, and may discourage them from browsing

opportunistically.

The two types of experiments have different advantages and disadvantages. But an information-

seeking experiment is more suitable for testing an evolving search interface for the following

reasons: (1) information-seeking experiments allow users to retain a more natural search pro-

cess, unlike information retrieval experiments, which restrict several aspects of the user’s search,

such as the data and search methodology, and (2) information-seeking experiments allow users

to reformulate their searches, an important aspect of the evolving search process. However

information-seeking experiments are not easy to design, and are difficult to implement, some-

thing which will be described in the next section.

6.2.1 Experimental design challenges

Because information-seeking experiments aim to create a different testing environment to infor-

mation retrieval experiments, the challenges and difficulties are different. The main difficulty in

designing an information-seeking experiment for testing an evolving search interface is to simu-

late a user’s evolving search task accurately. An evolving search task is difficult to complete, it

requires users to create multiple searches either because they do not have enough information to

formulate an accurate search query, or because they need to gather information from different

sources. A result of these multiple searches is an increase in experimental time. Two challenges

that can be identified from this description of the evolving search are the need to design a set

of ‘difficult’ search tasks, and the difficulties encountered by the increased experiment time.

A ‘difficult’ search task can be defined as a one that cannot be completed with a single query,

156

completed with information from a single website, or completed with user’s starting knowledge.

The best way to address all three criteria is by using a comparison task. When users are asked

to compare different pieces of information, they are forced to draw information from several

different sources, which often means generating several different queries, as well as consulting

several different websites.

There are many dangers with using comparison tasks; many websites exist that provide

comparisons on certain topics (e.g. electronic equipment, geographical facts), and the WWW

is home to many encyclopedic web sites (such as Wikipedia.com [120]) which could aid users

in quickly finding the required information. Mostly this requires the experiment designer to be

diligent and investigate the area thoroughly before setting the experiment. Tasks that involve

a visual comparison of the information are usually good for evolving search tasks, because the

information cannot easily be found through the use of a textual query (e.g. a comparison of the

positions or distances of different locations on a map).

The second challenge is based around the increased experimental time, a result of using dif-

ficult search tasks, and of encouraging users to browse. This in turn generates two experimental

problems, test subjects are less likely to volunteer for the experiment because the length of time

required to complete the experiment, and as time passes, users will eventually tire of the tasks

and as a result their performance will deteriorate. Certainly, reducing the experimental time is

an important factor in both of these problems, however this must be balanced with keeping the

search tasks difficult to complete, as well as retaining the users natural search process.

Looking at the first problem, the traditional monetary reward is often a sufficient incentive

to take part in an experiment, as long as the value of the reward compensates the elapsed time

equally. The second problem involves motivating users during the experiment which can be

more difficult. One idea is to use themed searches that would interest the user, for example

questions about planning a holiday in an exotic country. By engaging the attention of the users

with interesting content, they are more likely to browse opportunistically.

The problems in designing an information-seeking experiment for testing an evolving search

interface have been presented, and solutions have been discussed. The next section presents a

description of an evolving search experiment, based on the ideas discussed.

6.3 Experimental design

In order to test the effectiveness of the EvoBerry tool, an information-seeking experiment was

designed and executed. The hypothesis for the experiment was that the EvoBerry interface,

when compared against a standard web searching tool, would perform significantly better in the

following areas:

157

• Speed: Users of the EvoBerry interface will spend less time performing evolving search

tasks than users performing the same tasks using standard web search tools.

• Accuracy: Users of the EvoBerry interface will answer more of the task questions cor-

rectly than users performing the same tasks using standard web search tools.

• Searches performed: Users of the EvoBerry interface will perform less web searches

during an evolving search task than users performing the same tasks using standard web

search tools.

Test subjects would be gathered and instructed in the use of the EvoBerry tool, then test

subjects would perform two evolving search scenarios (each comprised of three evolving search

tasks), one for each experimental condition. The experimental conditions would be performing

the evolving search scenario (1) using the EvoBerry tool, and (2) using a standard web search

tool (Microsoft Internet Explorer). These will be referred to as the EvoBerry and Internet

Explorer (IE) conditions respectively. The experimental specifics are summarized in Table 6.14.

This section describes the experiment in terms of the experimental procedures carried out, and

the experimental data gathered during the experiments.

Experimental specifics
Conditions being com-
pared:

Two. (1) Using the EvoBerry tool, (2) using Internet Explorer.

Experimental design: Within-subjects design.
Time limit: None. Estimated completion time is 30 minutes.

Test subjects
Target user: Subjects with computer experience who use search engines ex-

tensively (at least once every day and have performed evolving
searches before).

Test subject popula-
tion:

20 users.

Monetary incentive: Performance based. £5 for participating, and an additional £5
for completing the majority of questions correctly.

Training: Oral presentation of the tool’s functions, as well as a small booklet
which contained instructions on how the different tools worked.
Users were given training thirty minutes time prior to the start of
the experiment.

Technology
Search engine utilized: The Yahoo! search engine was utilized for both the EvoBerry tool

and the Internet Explorer tool.
Experiment computer: The experiment was conducted on a Pentium 4, 2.4 gigahertz

machine, with a 19 inch TFT monitor, running the Windows op-
erating system.

Table 6.14: Experimental specifics. Note that specific information was obtained on test
subjects using a pre-experiment questionnaire, in order to filter out subjects which did not fit the
profile of the target user.

158

Holiday scenario: Thailand
1. You decide to go to Thailand on holiday, and you want to spend most of your time on the

beach. You haven’t settled on which seaside town you want to visit, but you want one
with easy access to an airport, so you can take a plane straight from Bangkok airport.

Find 3 airports that are based in coastal or island towns in Thailand.
2. You remember that not too long ago there was the tsunami disaster in Thailand which

destroyed many beach resorts in Thailand.

Find 3 beach towns in Thailand that were unaffected by the tsunami.
3. You find out that there are no flights available to go to Phuket, but you still want to

visit the islands in that area.

Find the next closest airport to Phuket airport.
Holiday scenario: South Africa

1. You decide to take a safari Holiday in Africa, because you hear about the “big five”, a
term used to refer to the 5 most popular safari animals.

Find 3 countries where you can go see the “Big Five” animals.
2. You finally settle on visiting the country of South Africa.

Find 3 South African national parks or game reserves, at which you can view the “big
five”.

3. You are unable to get a flight to South Africa, but you find out that several of South
Africa’s national parks extend beyond the boundaries of South Africa, joining national
parks in other countries.

Name 1 of these special national parks, that join national parks in South Africa to na-
tional parks in other countries.

Table 6.15: Evolving search scenarios. The two scenario’s, Holiday scenario: Thailand and
Holiday scenario: South Africa, were used in the experiment (one for each test condition). Each
task consisted of some background information (top - normal text) followed by a question to answer
(bottom - italicized text). Each scenario contained three questions.

159

6.3.1 Experimental procedure

The experiment compares the performance of test subjects in two conditions, when using the

EvoBerry tool to complete an evolving search, and when using a standard web search tool to

complete an evolving search. Time and monetary constraints restricted the experiment to only

20 test subjects, and as a result a within-subjects experimental design was chosen in order to

maximize the significance of the results due to the less than ideal numbers of test subjects.

To minimize the impact of any learning effects, counterbalancing was applied (half the users

performed the experiment in a different order). In each condition the subjects were presented

with a scenario (see Table 6.15) and asked to complete three evolving search tasks. It was

estimated that each condition would take 30 minutes to complete. The experimental procedure

for each test subject was as follows:

1. Test subject is given a 5 page technical guide demonstrating the use of the EvoBerry tool

(See appendices A.84).

2. Test subject is given a demonstration of the key features of the tool by the experiment

designer, using the tool.

3. Test subject is allowed up to 30 minutes to read through the technical guide, and to

interact with the interface. The test subject is encouraged to perform mock searches with

the tool, and investigate the different features.

4. The test subject is given an oral description of the experiment, as well as the tasks he

will be required to perform. The test subject is told that the amount of monetary reward

received is based on performance, and that there is no time limit. The test subject is told

to inform the experiment designer if any queries arise during the experiment.

5. The test subject is assigned a scenario to perform using the EvoBerry tool. The user is

told to inform the experiment designer after completing the questions to the best of his

ability.

6. After completing the first scenario, the test subject fills in a questionnaire designed to

gather qualitative information for the experiment (see appendices A.89 and A.90).

7. The test subject is given a 5 minute break.

8. The test subject performs the second scenario using the Internet Explorer web browser.

The user is told to inform the experiment designer after completing the questions to the

best of his ability.

9. Once the test subject has completed the scenario the experiment is over.

160

Search behaviour variables
Variable Data recorded
Searches: Number of searches generated, search terms used in each search.
Search results: Number of search results opened, rankings of each search result

opened, URL address of each search result opened.
Web pages: Number of web pages opened, URL address of each web page

opened.
Tool usage variables

Comparison tool Number of clicks upon the tool.
Drop-box Number of clicks upon the tool, number of objects stored in the

drop-box.
Bookmarks Number of objects bookmarked, URLs of objects bookmarked.
Session bar Number of clicks upon the tool, number of sessions reopened,

rankings of session bar objects.
Notepad Number of clicks upon the tool.
Visual-history toolbar Number of clicks upon the tool, number of bookmarks added.

Table 6.16: Logging program variables. These are the variables which were automatically
recorded by EvoBerry’s logging program. These included details of the users search behaviour
(e.g. searches performed, web pages viewed) as well as users tool usage (e.g. number of uses of
the comparison tool, drop-box). Note that the logging program was implemented after the first 5
experiments had been carried out. See appendix B.91 for more details.

(1) Tool usage questions
How often did you use the book marking function?
How often did you use the comparison tool?
How often did you use visual-history tool?

(2) Opinions on the different tools
Were the instructions in the walkthrough easy or hard to understand?
Was the comparison tool easy to use?
Was the visual-history function easy to use?
As a whole, was the tool easy or hard to use?

(3) Opinions on the interface in general
Was there anything that you didnt like or found confusing about the visualization?
Any other comments (e.g. any features you particularly liked?)

Table 6.17: Questionnaire questions. Three sets of questions were asked in the post-experiment
questionnaire: (1) the amount of usage of certain tools in the interface, (2) the usability of certain
tools in the interface (easy/hard), and (3) general opinions about the interface. The first two sets of
questions consisted of line-length items, where users had to mark on a line to indicate their answer
to the question. Text boxes were also provided for users to add comments. The final set of questions
just used text boxes where users wrote their thoughts and opinions.

161

Figure 6.80: Answer sheet program. The same program is utilized in both the EvoBerry and
IE conditions. This contains the user’s search scenario and search tasks, which come in the form of
questions that must be answered. Space is also provided for the test subject’s answer. A separate
text box is also provided for web page URLs. This ensures that test subjects use the tool to locate
the information (as opposed to recalling the information from memory), forcing them to provide
evidence of where they obtained the information from.

6.3.2 Experimental data

A substantial amount of data was gathered from the experiment. The primary concern of the

experiment was to compare the performance of the two tools, which was done by recording the

accuracy, time taken to complete the scenario, and number of searches generated by test subjects.

In addition to this, information on other aspects of test subject’s search behaviour (such as the

number of search results opened, and web pages viewed), as well as the user’s opinions on the

tool, were also recorded and analyzed. Data was gathered by four different methods, (1) the

‘answer sheet’ program, which recorded the test subject’s answers to the search tasks, (2) an

inbuilt logging program that recorded all of the actions with the EvoBerry interface and its

tools, (3) a screen capture program, that recorded the entire session as a video, and (4) a post-

experiment questionnaire which gathered opinions on the tool, and any problems test subjects

162

experienced during their search.

Answer sheet

In both experimental conditions, an ‘answer sheet’ program was provided (written in Java). The

answer sheet served a dual purpose: (1) it detailed the search scenario to users as well as the

different search tasks that users had to complete, and (2) it provided space for users to input

their answers to the search task questions. In the EvoBerry condition, the answer sheet was

integrated onto the desktop of the EvoBerry tool as an internal frame, whereas in the Internet

Explorer condition, the answer sheet is provided as a separate window. A screen shot of the

answer sheet can be seen in Figure 6.80. When a user completed a search task (question) they

click on the ‘next’ button to proceed to the next search scenario. Whenever the next button

is used, the answers are automatically saved and the time is logged, so that the time taken to

complete each question can be logged automatically.

Logging program

Having written the entire EvoBerry tool in Java, it was simple to generate a record of all of the

user’s interactions with the tool. In particular, the system automatically compiles a log of every

instance a search was generated, which search results were looked at and what web pages were

viewed by users. Tool usage data was also recorded, specifically the number of times each tool

was clicked upon. A summary of the different variables recorded is summarized in Table 6.16.

Video capture

Each of the sessions were recorded using a screen capture program which recorded user’s every

movement on the screen. The screen captures were stored as a high-quality 640x480 AVI video.

Two videos were recorded for each user (a separate video was made for each condition), with each

video averaging around 600-900 megabytes. In total over 30 gigabytes of video data was obtained

from all the experiments. The videos allowed the session to be replayed and analyzed in-depth,

especially allowing post-analysis of how users utilized the tool and their search behaviour while

interacting with the tool.

Questionnaire data

At the end of the experiment, test subjects were given an exit questionnaire. Three types of

questions were posed on the test subjects tool usage, opinions of the different tools and their

ease of use, and general opinions or comments about the interface. These questions can be seen

in Table 6.17. A combination of line-length items and text boxes were used in the questionnaire.

Test subjects marked their opinions using the line-length items, and provided more detailed

163

opinions in writing in the text boxes. When analyzing the results, their line-length items were

divided into 3 equal sections, which were labeled positive, borderline, and negative, depending

on the position marked. If no mark was made or it was stated that they never used the tool,

then “never used” was marked.

6.4 Overview

This chapter has presented the design of an information-seeking experiment simulating an evolv-

ing search. The first half of the chapter establishes the distinction between an information

retrieval and a information-seeking experiment, and the difficulties of designing an information-

seeking experiment. The two challenges in designing an information-seeking experiment were

(1) the creation of a ‘difficult’ search task, that could not be answered with the results of a

single query, and (2) the problems brought about by the increased experimental time such as

difficulties in acquiring test subjects, and difficulties in keeping test subjects motivated during

the experiment. In the second half of the chapter, a detailed description of the experiment is

presented.

164

Chapter 7

Results and analysis

This chapter presents the results of the experiment, and a detailed analysis of said results. The

first half of the chapter consists of a presentation of the experimental results. An explanation of

the different abbreviations used for each of the data variables is given and the data is presented

in a series of tables summarizing the information in a readable format and observations on

both the questionnaire and video data are given. The second half of the chapter consists of the

analysis. The analysis is presented in three sections based on the different types of data: (1)

comparison data, the data comparing the performance of the two interfaces, (2) tool usage data,

the data comparing the usage of specific tools within each interface and (3) search progress data,

which track changes in the user’s performance through out the search session. The final part

of the analysis takes a critical look at the experimental factors that could have influenced the

results received.

7.1 Experimental results

A large amount of data was recorded during the experiment, for both EvoBerry and Internet

Explorer interactions, and can be divided into five categories, comparison data, tool usage data,

search progress data, questionnaire data, and video data. Each of these categories of data contains

different variables that were recorded and analyzed.

Note that due to some technical issues a small amount of data (three out of forty videos) were

corrupted and lost. While this does not affect the results which were recorded automatically

(e.g. accuracy, time), other data (such as tool usage) could not be ascertained from these videos.

See appendix B for full details.

165

Comparison data

The two interfaces are compared on the basis of the time taken to complete each scenario, the

accuracy of the test subjects answers, the number of searches performed by the test subject,

the number of search results opened (threads generated) by the subject, and number of web

pages opened by the test subject. Table 7.18 shows a list of the variables and their respective

abbreviations. All of the comparison data is reported in full in appendix B.91 and a summary

of these results can be seen in Table 7.19, where the averages result for each variable is given.

The time in both conditions (EvT and IeT) is recorded in minutes. With regards to the

accuracy variable, each scenario has 3 questions, the first and second question are both worth

3 points each because they ask users to find 3 pieces of information in each question. The last

question is only worth 1 point because it only asks the subject to find 1 piece of information.

In total each scenario is worth 7 points. Note that every time a user opens a search result from

the search result list as a web page this is recorded as a search thread (as per the conventions

laid down at the start of chapter 4).

Abbreviations
EvoBerry Internet Explorer

Time EvT IeT
Accuracy EvA IeA
Searches EvSc IeSc
Threads EvTh IeTh
Web pages EvPg IePg

Table 7.18: Comparison data abbreviations. Abbreviations of the comparison data variables
recorded are provided above. The time in both conditions (EvT and IeT) is recorded in minutes.
The accuracy of each test subject is a score between 0 and 7.

time accuracy searches threads web pages
EvoBerry 36.35 mins 6.10 9.777 21.555 50.5
Internet Explorer 27.85 mins 6.05 11.684 17.263 54.789

Table 7.19: Summary of the comparison results: Above is a short summary of the results
obtained from the experiment. The five main variables compared are time taken to complete the
scenario (in minutes), the number of correct answers given (out of 7), the number of searches
performed, the number of search results opened (number of threads followed), and the number of
web pages viewed. Each variable is described in terms of its average score (mean). The entire data
set and subsequent calculations can be found in appendix B.91.

Tool usage data

The data concerning the usage of EvoBerry functions was logged automatically each time a test

subject used a specific function. The data on the use of the different Internet Explorer functions

was recorded from observations of user’s videos. A list of the abbreviations of the different

functions whose usage was recorded is shown in Table 7.24. The tool-usage data is displayed in

166

No. of uses (times clicked upon)
0 1-5 6-10 11-20 21+

History bar usage (no. of users) 15 4 0 0 1
Session bar usage (no. of users) 14 4 1 0 1
Bookmark usage (no. of users) 12 7 1 0 0
Dropbox usage (no. of users) 12 3 4 0 1
”Find” function usage (no. of users) 11 7 0 1 1
Comparison tool usage (no. of users) 8 9 1 1 1

Table 7.20: Summary of EvoBerry function usage. This table shows the number of uses
(in clicks) of each tool by test subjects. The rows describe the different EvoBerry functions, along
with how many of the 20 test subjects used the tool, and how many times they used each tool.

No. of uses (times clicked upon)
0 1-5 6-10 11-20 21+

History usage (no. of users) 19 1 0 0 0
Bookmark usage (no. of users) 20 0 0 0 0
“Find” function usage (no. of users) 9 9 1 1 0

Table 7.21: Internet Explorer function usage. This table shows the number of uses (in clicks)
of each tool by test subjects. The rows detail the different Internet Explorer functions along with
how many test subjects used the tool, and how many times they used each tool.

Abbreviations
EvoBerry Internet Explorer

User progress - time EvPT (1-3) IePT (1-3)
User progress - accuracy EvPA (1-3) IePA (1-3)
User progress - searches EvPSc (1-3) IePSc (1-3)

Table 7.22: Search progress data abbreviations. The abbreviations of the search progress
variables recorded are detailed above.

time (means) accuracy (means) searches (means)
Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

Evo 17.497 9.664 8.373 2.85 2.7 0.55 4.777 2.722 2.111
IE 14.519 6.814 5.96 2.7 2.75 0.6 5.473 3.105 3.368

Table 7.23: Search progress data (means). This table details the progress of test subjects
when completing a scenario in terms of average time spent per question, average score per question
and average searches generated per person. Results for both EvoBerry and Internet Explorer tools
are provided. The entire data set and subsequent calculations can be found in appendice B.92 and
B.93.

167

full in appendix B.94, and a summary of this data can be seen in tables 7.20 and 7.21. Each

tool’s usage data is reported in terms of the number of times test subjects interacted with the

data, recorded by the computer as the number of times they clicked on that particular function.

The usage is grouped into several blocks (0, 1-5, 6-10, 11-20, and 21+ uses).

Abbreviations
EvoBerry Internet Explorer

Browser history EvHs IeHs
Bookmark EvBm IeBm
Find function EvFd IeFd
Session bar EvSb N/A
Dropbox EvDb N/A
Comparison tool EvCo N/A

Table 7.24: Tool usage data abbreviations. The abbreviations of the tool-usage variables
recorded are detailed above. Note that only the first 3 tools have comparable counter parts in
both interfaces. In the row ‘browser history’ the visual-history toolbar is compared with Internet
Explorer’s browser history tool. EvBm specifically refers to the combined usage of the results frame
highlighting bookmark, and the visual-history’s bookmark function.

Search progress data

Information detailing test subject’s progress at different points in the search was also recorded.

This includes the time taken to complete each question in the scenario, accuracy on a question

by question basis, and the number of searches needed to answer each question. These are useful

for following test subjects progress over time with regards to a specific variable. Note that

each variable abbreviation is followed by a number between 1 and 3, which is used to identify

the question that the variable refers to e.g. EvPT1 refers to the time taken by test subjects to

complete question 1 in the EvoBerry scenario. This data is reported in full in appendix B.92 and

B.93. A list of the abbreviations used for these variables is listed in Table 7.22 and a summary

of the results can be seen in Table 7.23.

Tool frequency of use
frequently moderately rarely never used

Comparison tool 1 1 7 11
History-bar 6 2 6 6
Bookmark (highlighting) 2 3 7 8

Table 7.25: Questionnaire results (frequency of use): This information was extracted from
one of the sections of the post-experiment questionnaires. This particular section refers to the
frequency of use of specific tools by test subjects.

7.1.1 Questionnaire data

The questionnaire data was used to capture test subject opinions on the performance and ap-

pearance of the Evoberry interface and its tools. The quantitative data is summarized in Tables

168

Tool ease of use
Positive Borderline Negative Never Used

Comparison Tool opinion 13 3 0 4
History bar opinion 12 3 1 4
Walkthrough 18 1 1 n/a
Entire Tool opinion 16 2 2 n/a

Table 7.26: Questionnaire results (ease of use): This information was extracted from one of
the sections of the post-experiment questionnaires. This particular section refers to the ease of use
of specific tools, as reported by test subjects .

7.25 and 7.26. Through the questionnaires, test subjects provided interesting and varied feed-

back, as well as help in identifying benefits and flaws in the design. Note that throughout the

rest of this thesis, references to individual test subjects will be made using their code numbers

(A01 to 20). Below is a summary of the main comments reported by the subjects.

• Comparison tool: Test subjects reported positively about the comparison tool1. Of

all the EvoBerry tools, it was the most used, and was the most highly praised, and only

positive comments were received about the tool. Subject A13 commented positively on

how his searching patterns were changed by the comparison tool, enabling him to drill

down and discover pertinent results more quickly.

• Web Tab Panel: The fixed space that comprised of the web tab panel came under a large

amount of criticism2 due to its fixed position (although it can be resized) which meant

that all other windows in the workspace had to be reorganized around it. The fact that all

the web pages are displayed in this space, and that test subjects spend a large portion of

their time viewing web pages, meant that the size of the panel had to be constantly resized

back and forth. The sheer amount of room taken up by the web tab panel (combined with

its fixed position) meant that results frames often became cluttered in the left hand side of

the workspace. One complaint (by subjects A02, A04, and A07) was that, if one was not

careful, results frames would sometimes be generated behind the web tab panel because of

the fact that a splitpane method was used (see the design in chapter 5 - subsection 5.2.2

for the reasons behind using the splitpane).

• Results frames: There were mixed comments about the results frames. Some test sub-

jects enjoyed (subjects A03, A17) the element of organization introduced by creating a

division between the search results and web pages. Others thought that because of their

size and the lack of space brought on by a fixed web panel (see the previous comments on

1Subjects which reported positively about the comparison tool were, A01, A04, A06, A07, A10, A13, A14,
A19, and A20

2Subjects which reported negatively about the web tab panel were, A07, A11, A17, A18, A20

169

web tab panel), the workspace became cluttered far too quickly. The coordinated colour-

ing between the results frames and their spawned web pages in the web tab panel was

commended by a couple of subjects (subjects A03, A19), stating that it aided them in

re-identifying their tabs correctly and keeping track of their searches.

• History tools: Both tools (the visual-history toolbar and the session bar) were under-

utilized. The visual-history tool was praised (by subjects A11, A12) because it did not

lose any web pages generated by forward movements, if users moved backwards. The

session bar received some criticism (from subjects A4, A14) over the size and complexity

of its icons. Unlike many of the other controls (such as those for the results frame), these

were designed to be small and inconspicuous, because the session bar had to be capable

of displaying a large number of objects visibly.

• Other tools: No comments were made about the other Toolbox tools (note pad and the

drop box), which is not surprising given the secondary roles of the tools, as short term data

storage containers. Observations of search behaviours showed that the lack of usage of the

notepad was due to the fact that the answer sheet was often used instead to write notes

on. Another tool which was mentioned was the “Find” tool. Although a side feature of

the tool, it was nevertheless used extensively by test subjects in both conditions. A couple

of subjects (A14, A15) complained that the find tool should be more instantly obvious

(CTRL-F had to be pressed to summon it).

• Search Behaviour: A comment made by test subjects (A07, A10, A13), was that they

felt they were under-utilizing the tools provided. This much is evident from the results on

tool usage presented earlier in this section (see Table 7.20). It was also noted that time

and continued usage was needed in order to become more familiar with the tools, and be

able to use them more efficiently.

• Experimental design: One comment (by subject A13) was made about the pre-experiment

training; it was felt that more time could have been allocated to the training, and perhaps

a mock-search could have been provided for test subjects to attempt to complete. There

was some confusion over the role of the answer-sheet window: some test subjects assumed

that it was a natural part of the program, and were confused when they discovered no

shortcuts had been provided for sending information to the answer sheet.

• Technical errors: A small number of technical errors were reported during the sessions

(such as crashes, and tools doing unexpected things). All technical errors were investi-

gated throughout the course of the experiment and were isolated and removed. The most

common error was that the interface crashed unexpectedly, a fault later linked to a virus

170

on the computer which was affecting Internet Explorer’s rendering of the web page in the

web tab panel. This was subsequently remedied. Some technical errors occurred from

test subjects performing unexpected actions, such as submitting a second query before the

first query had resolved. Simple measures could be taken (such as locking down the input

system while a search was being performed) were introduced to counter these effects.

The single largest criticism3 with the interface was the split-pane in which the web tab panel

resided. Test subjects commented that they grew frustrated with having to resize the split-pane

when switching between the results frames and the web pages. They expressed the opinion that

a free-floating window that could be moved around and overlaid (like the other internal frames

on the desktop) would be more beneficial. Another suggestion was the use of fixed components

in a fixed layout that did not need to be moved around and a suggestion was made for tabbing

the results frames, so that they could be organized easier.

Reports during the sessions indicated a decline in EvoBerry’s speeds during the course of

the search. It was noted, especially towards the end of their sessions that, as the number

of searches performed increased, the speed of the tool decreased. This is attributed to poor

internal tool design, while the speed of certain facets of the tool (such as the data-gathering)

were looked at thoroughly, others (such as data handling over time) was not looked at so closely.

The preliminary test runs with the tool did not flag this problem since (1) they mostly looked

at surface problems with the interface and (2) evaluators of the tool in the preliminary tests

neither spent as much time using the tool, nor created as many searches as the test subjects in

the experiment. The exact cause of the slow down is as yet undetermined, although it has been

suggested that the problem is associated with a lack of scalability in the internal data structure.

These speed issues will be looked at more closely in future versions of the tool.

7.1.2 Video data

A large amount of video data was gathered from the search sessions and was useful in observing

the search behaviour’s of the users. Review of the videos called attention to several different

recurring behaviours, present in the search session’s of users. These behaviours were related to

(1) user interactions while generating searches, (2) user interactions with web pages, (3) user

interactions with the comparison tool, and (4) user interactions with the workspace.

Behaviour 1 : search generation

Two distinct behaviours were noted when observing users generating searches. In the first

behaviour, a large number of searches are generated very quickly. and after the search results

3Subjects which complained about usage of the split-pane were, A07, A11, A17, A18, and A20

171

are returned, the first ten results will be quickly skimmed through. If pertinent information is

spotted, then web pages will be opened and viewed, otherwise the query will be reformulated

immediately and a new set of search results generated. The behaviour was named impulsive

search behaviour, because of the speed at which users would generate and discard searches

without thoroughly inspecting the returned search results. The behaviour was noted in a number

of users in the Internet Explorer condition4.

The second search behaviour only applied to a small number of users (test subjects A04

and A15), where users displayed a search behaviour which ran contrary to those displayed in

an impulsive search behaviour. In this case the user would generate a search and then spend

time opening a number of search results and investigating them thoroughly. This was named

the exploratory search behaviour and is characterized by generating few searches, but exploring

each of these lists of search results thoroughly.

Behaviour 2 : web pages

The video data also highlighted a pattern specifically related to the way users view web pages.

A small number of users (subjects A06, A13 and A20) followed a consistent pattern whereby

they would perform searches, and open search results (generate threads) but for the most part

only view one or two web pages (if any) from that search result before returning to the main

search result list. Once or twice during their search, the users would concentrate on a single

thread, opening between 10 and 20 web pages from a single search result. It would appear

that these users perform only a cursory inspection of the majority of search results that they

open (visiting only one or two web pages), but once they find a search thread that interests

them they will investigate it thoroughly, opening a large number of web pages. This pattern of

search behaviour bears much resemblance to the depth-first search pattern from Tauscher and

Greenburg’s [114] search patterns (as seen in chapter 2 - subsection 2.2.3).

Behaviour 3 : comparison tool

Analysis of the videos showed that some test subjects (subjects A06, A13) relied solely on the

comparison tool; generating searches and consulting the comparison tool (to find any search

intersections) before actually viewing the results in the search results list. However one con-

sequence of this search behaviour was that test subjects often performed a large number of

searches to create these intersections, which in turn cluttered the screen with results frames. It

was interesting to note that not only were many of the users experimenting with the tool, but

were also applying it to helping solve their search scenarios.

4Subjects displaying impulsive search behaviour in the Internet Explorer condition were, A01, A02, A06, A07,
A10, A12, A13, A14, A15, A16, A18, A19, A20

172

Behaviour 4 : workspace

The video data also provided an opportunity to observe the behaviours of users when managing

their data. When observing test subjects using the EvoBerry tool, two contrary behaviours

were identified. A small set of test subjects were noted for their strict management of windows

and web pages, only keeping active results frames and web tabs open and in clear view, while

closing all unused frames and tabs. Running in contrast was another group, which showed little

or no management of their information, this group would generate many results frames and web

pages, leaving them open overlaying each other and cluttering up the view of the workspace.

When observing test subjects using Internet Explorer, another distinct search behaviour

was noted. A small group of users (test subjects A02, A03, A04, A15, A17 and A18) would

utilize either two or three explorer windows and continually switch usage between these different

windows. Often these windows were seen to be used in parallel, often for comparing information

from two different sources. The best example of this performed by multiple users in the thailand

holiday scenario, was using one window to open search results from the search engine, while

another window was used to display a map or list of airports.

At this stage only a cursory examination of the search behaviour’s of users was possible due to

time constraints and a greater emphasis being placed on analyzing the comparison and tool usage

data. Future analyses will focus more upon these qualitative aspects of the search behaviour

of users. These behaviours will be discussed again later in the chapter with regards to the to

the comparison and tool usage data. The behaviours observed in the videos combined with

the statistical data from the logs, help to explain the performance differences between the two

conditions (EvoBerry and Internet Explorer).

7.1.3 Overview

The results received were positive, but complex in nature (see Table 7.19). It is a clear that

not all of the hypotheses were fulfilled, but the results did not deviate far from the expected

outcome, and in some aspects, the tool exceeded the expectations. A preliminary examination

of the results, in comparison with the experiment’s hypotheses, indicates the following:

1. Test subjects (on average) completed the search scenarios faster in the Internet Explorer

condition than in the EvoBerry condition.

2. Test subjects (on average) were equally accurate in both the Internet Explorer and EvoBerry

conditions.

3. Test subjects (on average) performed less searches in the EvoBerry condition than in the

Internet Explorer condition.

173

The fact that test subjects were faster in completing the search scenario in the Internet

Explorer condition was not surprising. Much can be explained by the difficulties of comparing

experimental interfaces, given the differences in tool usage experience. More surprising was the

fact that, in spite of test subjects relative inexperience with the tool, they still achieved scores

through EvoBerry that equalled (and sometimes surpassed) their scores in the Internet Explorer

condition.

However this simple analysis still leaves many questions unanswered, for example, why do

test subjects create less searches when using EvoBerry than when using Internet Explorer, but

open more search results? Was test subject inexperience the only factor affecting the speed, or

did particular tools in the interface aid or hinder search progress? An in-depth investigation of

the results is necessary. The data presented is further analyzed using the following techniques:

Descriptives

The data descriptives provide a simple and quick method of analyzing the data. In addition to

the previously used mean (average), a number of other data descriptives such as the median,

mode, standard deviation and range are presented in this analysis of the data.

T-test analysis

Solely calculating the means is not an effective method to describe the difference between two

data sets, because it does not provide a measure of what constitutes a ‘significant’ difference.

One method (mentioned already in chapter 4 - subsection 4.2.3) is Welch’s t-test [26], which

can be applied to two data sets to determine the significance of the difference of the results.

Note that Welch’s t-test was chosen over the more commonly used ‘Student’s’ t-test because

an equal variance between the two groups is not assumed. A two-tailed paired t-test was used,

with an alpha value of 0.05. A two-tailed test was chosen because there was equal chance of the

parameters shifting in the opposite direction of the hypotheses (e.g. there was an equal chance of

EvT > IeT and IeT > EvT). A paired test was performed since the results being compared both

originated from the same source (test subject). The alpha-value chosen is standard measurement

in most t-tests.

What is important to remember, is that the result of a t-test is the p-value, a measure of the

significance of the difference in the results. The p-value represents the percentage chance that

the results of the experiment would be different if the exact same experiment was performed

on a completely different set of test subjects, e.g. a p-value of 0.01 signifies that there is a

1% chance of a different outcome. As a result, the lower the p-value, the better. As a general

measure, the p-value is often compared against the alpha value (in this case 0.05), and a p-value

equal or lower than the alpha-value is considered a significant difference.

174

One of the problems with any form of analysis is that the accuracy and significance of the

results is very much dependent on the number of results available, and in general the higher

the number of results being compared the more significant the difference in the results. In the

experimental design (chapter 6 - subsection 6.3.1) it was commented that the number of subjects

used in the experiment was not ideal, and that twice that number (40 or 50 test subjects) would

yield more significant results.

Correlation

A correlation between two variables helps identify relationships between different variables, and

in turn can help explain performance differences in the comparison data, as well as link the

usage of specific tools to changes in performance. A method of finding the degree of correlation

between two sets of data is the Pearson product-moment correlation coefficient [26] (also known

as PMCC). The PMCC is usually denoted by the value r.

The value r is a measure of the extent to which two measurement variables ”vary together”,

and must be a value between -1 and +1. The magnitude of r ”indicates” the strength of the

relationship, and the sign of r reveals the direction of the relationship. A value of -1 indicates

a perfect negative relationship where all data points lie on a single line but that Y increases

as X decreases. A value of +1 indicates a perfect positive relationship, where all data points

lying on the same line and with Y increasing with X. An r of 0 shows that a linear model is

inappropriate that there is no linear relationship between the variables. For the purposes of

this analysis, an r of value 0.80 (positive or negative) or higher will be of sufficient strength to

be considered a correlation (based on [66]). An r value of greater than 0.5 will be considered a

much weaker correlation, but a correlation none the less.

Figure 7.81: Types of correlation. On the left is a positive linear correlation (as x increases so
does y), in the centre is a negative linear correlation (as x increases, y decreases) and on the right
is a line with no correlation.

Using these three techniques, analysis of the three sets of data (comparison, tool usage,

search progress) was performed. The following three sections will look at each of these sets in

175

detail, applying the techniques and discussing the results.

7.2 Comparison data

The initial analysis consisted of comparing seven descriptives of the data, which either give the

data a representative value (mean, median, mode) or measured the size and variability of the

data (standard deviation, range, minimum, maximum). The comparison data descriptives are

provided below.

Time Mean Median Mode Standard
deviation

Range Min Max

EvT 36.35 34 33 8.677 35 17 52
IeT 27.85 23 19 12.368 47 13 60

Table 7.27: Data descriptives: time

Table 7.27 compares the descriptives of EvT and IeT. There is a large difference in the

average time, as shown by differences in the mean, median and mode, with test subjects in the

Internet Explorer condition completing scenarios quicker. The descriptives also show that the

IeT variable has both a larger range and standard deviation than EvT. While on average, test

subjects performed faster in the IeT condition, their results showed less consistency and greater

deal of variability.

Time Mean Median Mode Standard
deviation

Range Min Max

EvA 6.1 6 6 0.852 3 4 7
IeA 6.05 6 7 1.145 4 3 7

Table 7.28: Data descriptives: accuracy

Table 7.28 compares the descriptives of EvA and IeA. There is a great deal of similarity

between the two sets of results (as demonstrated by similar means and medians), which is

not surprising given the extremely small ranges of the data. The significance of the difference

between these two sets of data cannot be established easily using these descriptives. When

compared with the differences in time (as demonstrated by EvT and IeT), it can be seen that

test subjects in the Evoberry condition took longer, but performed equally well. As mentioned

previously, this can be seen as a positive result, showing that test subjects perform equally well

using an unfamiliar tool. However it is still unclear as to whether the time difference was a result

of the users unfamiliarity with the tool, or some other factor e.g. a tool, or search behaviour

specific to the EvoBerry condition.

176

Time Mean Median Mode Standard
deviation

Range Min Max

EvSc 9.777 10 7 3.888 12 4 16
IeSc 11.684 9 9 6.591 23 4 27

Table 7.29: Data descriptives: searches

Table 7.29 compares the descriptives of EvSc and IeSc. The descriptives show that on average

test subjects in the Evoberry condition generated less searches than in the Internet Explorer

condition. However, the difference between the means is less than 2 searches, and it is difficult

to determine whether this is indeed a significant difference. The range of results seems to also

be much larger in the Internet Explorer condition, than in the EvoBerry condition. Note that

while EvT is greater than IeT, EvSc is actually lower than IeSc. In essence, test subjects in the

EvoBerry condition spent a longer time on the search scenario, but performed less searches, which

goes against the conventional wisdom that creating more searches, will increase the amount of

information users have to view, and furthermore increase the amount of time taken to complete

the scenario.

Time Mean Median Mode Standard
deviation

Range Min Max

EvTh 21.555 17.5 25 11.627 47 9 56
IeTh 17.263 14 12 8.830 36 9 45

Table 7.30: Data descriptives: threads

Table 7.30 compares the descriptives of EvTh and IeTh. The results show that on average

test subjects in the Evoberry condition created more threads than in the Internet Explorer

condition. Both the median and mode seem to suggest that test subjects create a larger number

of threads in the EvoBerry condition. Although EvTh and IeTh show similar minimums, EvTh

has a far larger range. Note that both EvT and EvTh are greater than IeT and IeTh respectively.

It is possible that the increase in EvT is not related to the number of searches that test subjects

create, but is instead a product of the number of search results opened (and as a result, number

of search threads created). This might also suggest that test subjects adopt different search

behaviours while using the different interfaces, EvoBerry users generating less searches than

Internet Explorer users, but viewing more of the search results.

Table 7.31 compares the descriptives of EvPg and IePg. The results show that on average

test subjects open more web pages in the Internet Explorer condition. An extremely large

amount of variability in the data was reported, with a range of 160 for IePg (compared to the

90 in EvPg), and while both sets share similar minimums, the difference in maximums is great.

177

Time Mean Median Mode Standard
deviation

Range Min Max

EvPg 50.5 46 65 24.103 90 23 113
IePg 54.789 41 -* 38.980 160 19 179

Table 7.31: Data descriptives: web pages: -* note that the mode of IePg is not available,
since no single page count appears more than once in this data set.

Given such a large difference in ranges, it is difficult to say whether the means are an effective

representation of the data. Note that the web page data shares some similarities with the search

data, where EvSc > IeSc and EvPg > IePg.

7.2.1 Analysis : comparison data

In this analysis the following assumption is made; during a search session, a test subject’s time,

searches, threads and web pages will all share a positive linear relationship, i.e. as they create

more searches, the time, threads opened and web pages generated will also increase. In the

descriptives, different trends were identified, some of which conformed to this assumption and

others which ran contrary to this assumption.

The trends which conformed to this assumption were the relationships between time and

threads (EvT > IeT and EvTh > IeTh), and between searches and web pages (EvSc > IeSc and

EvPg > IePg). Given the evidence from the first trend, it was postulated that a relationship

between time and threads exists in both conditions, thus whatever factor caused the differences in

experimental time also created a similar difference in the amount of threads generated (and vice

versa). If such a relationship is assumed to exist, then differences in test subject’s performances

can more easily be explained, e.g. the reason test subjects spent more time completing scenarios

in the EvoBerry condition may be related to whatever factor caused them to view more search

results. A similar theory could be postulated for the relationship between test subject’s searches

and web pages. This theory is explored further in this section.

Several trends ran contrary to the stated assumption. These were the relationships between

time and searches (EvT > IeT and EvSc < IeSc), threads and searches (EvTh > IeTh and

EvSc < IeSc), time and web pages (EvT > IeT and EvPg < IePg), and threads and web pages

(EvTh > IeTh and EvPg < IePg). It was hypothesized that the first two trends (time and

searches, and searches and threads) are linked. The relationship between time and searches

shows that although test subjects spent a longer time using the EvoBerry tool (than with

Internet Explorer), they created less searches with the EvoBerry tool. This might suggest that

when utilizing EvoBerry, test subjects (on average) spend more time browsing the results of

their searches, than when utilizing Internet Explorer. The relationship between searches and

threads shows that when utilizing the EvoBerry tool, test subjects created less searches, but

178

opened up more search threads (viewed more search results). This seems to support the previous

implication, that test subjects are spending more time exploring their data (and creating less

searches) than when using Internet Explorer, in particular spending more time viewing and

opening search results.

These two trends bear a resemblance to the afore mentioned impulsive and exploratory search

behaviours (as detailed in the video data - section 7.1.2). The progress of the test subjects in

the EvoBerry condition is characteristic of an exploratory search behaviour, resulting a large

number of search results and threads being generated. The progress of test subjects in the

Internet Explorer condition is characteristic of an impulsive search behaviour, which results in

more searches, but fewer threads. The existence of impulsive search behaviour in the Internet

Explorer condition is further supported by the fact that even though IeSc is higher than EvSc,

EvT is significantly higher than IeT, a trend that would appear if test subjects were ‘impulsively’

generating searches, and very quickly discarding their results and reformulating. Part of the

cause of this shift in search behaviour may be a result of the difference in the technologies of the

two interfaces. On the basis that the Internet Explorer tool is quicker at performing searches

than the EvoBerry tool (by only 5-10 seconds or so), it is possible that the interface encouraged

test subjects to reformulate searches more often, given the little effort required, and in turn

forming a more impulsive search behaviour.

The last two trends (time and web pages, and threads and web pages) also appear to be

linked. The relationship between time and web pages shows that although test subjects spent a

longer time using the EvoBerry tool, they viewed less web pages than in Internet Explorer. The

relationship between threads and web pages shows that although test subjects using EvoBerry

opened more search results, they viewed less web pages. A theory could be posited to explain

these two trends, based on two different search behaviours in Tauscher and Greenburg’s [114]

search patterns (as seen in chapter 2 - subsection 2.2.3), depth-first and breadth-first searching.

When utilizing Internet Explorer, a depth-first search is adopted, where few search results

are opened, web pages from these search results are explored in depth, and many links from

these web pages are followed onto other pages. When utilizing EvoBerry, a breadth-first search

is adopted, where many search results are viewed and opened, but not explored in detail, instead

concentrating on opening more search results. The two sets of behaviours (impulsive/exploratory

search behaviours and depth-first/breadth-first searching) exhibit similarities, but the relation-

ship between the two sets of behaviours is not all-inclusive, e.g. test subjects may exhibit the

characteristics of an impulsive search behaviour, but not depth-first searching. Video evidence

(see section 7.1.2) was discovered confirming the existence of these behaviours in small groups

of test subjects.

The data descriptives allow quick conclusions to be formed, without having to inspect the

179

results in-depth, an advantage when dealing with large amounts of data. However there are

limitations to an analysis based only on the descriptives of the data, because the results can

sometimes be misleading. For example, it is possible to skew the mean of a set of results by in-

cluding a significantly large or small data point (which would normally be considered an outlier).

This limitation in the means, can in turn affect assumptions about (1) relationships established

between sets of results, and (2) the significance of differences between sets of results. The fol-

lowing two subsections will apply Pearson’s correlation and Welch’s t-test to the comparison

data.

variables r
EvT - IeT -0.012
EvA - IeA -0.143
EvSc - IeSc 0.037
EvTh - IeTh -0.180
EvPg - IePg 0.384

Table 7.32: Pearson’s correlation : between conditions. This shows the correlations between
variables in the two different conditions. Note that the closer a correlation is to 1.0 or -1.0, the
greater the correlation. Correlations close to 0.0 mean there is no relation between the two variables.

EvoBerry variables r Internet Explorer variables r
EvT - EvA 0.112 IeT - IeA 0.005
EvT - EvSc 0.173 IeT - IeSc 0.274
EvT - EvTh 0.483 IeT - IeTh 0.658
EvT - EvPg 0.451 IeT - IePg 0.688
EvA - EvSc -0.064 IeA - IeSc 0.119
EvA - EvTh 0.003 IeA - IeTh 0.377
EvA - EvPg 0.043 IeA - IePg 0.094
EvSc - EvTh 0.182 IeSc - IeTh 0.596
EvSc - EvPg -0.084 IeSc - IePg 0.478
EvTh - EvPg 0.301 IeTh - IePg 0.641

Table 7.33: Pearson’s correlation: within conditions. On the left shows the correlations of
the EvoBerry condition variables, the right shows the correlations of the Internet Explorer condition
variables.

Correlation analysis

Pearson’s correlation5 was applied to variables between conditions (Table 7.32), and variables

within conditions (Table 7.33). Between conditions looks at the correlations between two vari-

ables in different conditions, e.g. correlating time taken between the EvoBerry and Internet

Explorer conditions (EvT and IeT). Within conditions looks at correlations between different

variables when using the same tool, e.g. correlating time taken with searches performed for

users of the EvoBerry tool (EvT and EvSc). Looking at the results of correlation (both between

and within conditions) no strong correlations can be found (r ¿= 0.80), however a number of

180

weaker correlations were noted (IeT - IeTh, IeT - IePg, IeSc - IePg, and IeTh - IePg).

At the start of the chapter it was posited that a relationship existed between time and

threads in both conditions, on the basis that EvT > IeT and EvTh > IeTh. A theory could be

posited to explain the correlation between time and threads, based on the different interfaces

used by EvoBerry and Internet Explorer. The EvoBerry interface displays fifty results at a

time, while the Internet Explorer interface only displays 10 results at a time, meaning there is

a difference in the number of search results that can be opportunistically viewed. By increasing

the number of search results in the view, the EvoBerry interface is encouraging test subjects

to spend more time viewing and opening search results, thus increasing the time spent in the

EvoBerry condition.

Looking at Table 7.33, correlations to support this theory can be seen in both the Internet

Explorer (IeT - IeTh) and EvoBerry (EvT - EvTh) conditions, although these are both weak

correlations and thus the theory is difficult to prove and will require further experimentation

and more experimental data. It was also posited that a relationship existed between searches

and web pages in both conditions, however a correlation was only found in the Internet Explorer

condition.

compared variables p-value
EvT - IeT 0.007
EvA - IeA 0.880
EvSc - IeSc 0.422
EvTh - IeTh 0.203
EvPg - IePg 0.911

Table 7.34: T-test results of the comparison data: A two-tailed, paired t-test
was performed on the comparison data to determine the significance of the differences
in the results.

T-test analysis

A two-tailed paired t-test analysis was performed on the comparison data, the results of which

can be seen in Table 7.34. Of the t-test values only the difference between the times of the

two sets of data was seen to be highly significant (p-value = 0.007). At the opposite end of the

scale, two of the sets of results have p-values very closely approaching 1.0, the accuracy data

(p-value = 0.88) and the page data (p-value = 0.91). While this does not mean that the results

are significantly similar, it does show that the means for the accuracy and web pages are very

much indistinct, and that the two groups do not differ by a significant margin. These results

have implications with regards to previous theories.

5Before Pearson’s correlation was applied, each set of data was screened for outliers, to increase the accuracy
of any correlations found.

181

Previously it was posited that a relationship existed between the time taken and threads

generated. A theory based on the assumption that both, times (EvT and IeT) and threads

generated (EvTh and IeTh) were significantly different. There is a significant difference in time

(p-value = 0.007) but the difference between the threads is not close enough to significance

(p-value = 0.203) to guarantee that this theory is valid.

Two theories were also posited which stated that the search behaviour (and hence their

search data) of test subjects differ based on the interface being utilized. The theory of impul-

sive/exploratory search behaviour was based on differences in time, searches, and threads. The

completion times in each condition (EvT and IeT) were significantly different, however both

the differences in number of threads (EvTh and IeTh) and number of searches (EvSc and IeSc)

generated in each condition were not significant enough to validate this theory (p-value’s of 0.203

and 0.422 respectively). These results only partially support the theory, and it is unclear as to

whether an increase in the number of experimental results will bring these differences closer to

significance.

The theory of depth/breadth-first search behaviours was based on differences in time, threads

and web pages. The completion times in each condition (EvT and IeT) were significantly

different, however the differences between the number of threads (EvTh and IeTh) generated

and web pages viewed (EvPg and IePg) were not significant. Given that two of the results

(threads and web pages) are not significant, it is unlikely that enough of a difference exists to

confirm this theory.

Overview: comparison data

An analysis of the comparison data was performed, looking at the descriptives of the data, the

correlations between different variables, and the significance of the differences between the data

sets. The analysis identified two areas of interest, (1) the relationship between time and threads,

and (2) the relationship between searches, threads and web pages. It was theorized that the

difference in time (between EvT and IeT) was a result of whatever factor caused a difference in

the threads generated. This was of particular interest because it would help explain why the

results (EvT > IeT) differed from the original hypothesis (EvT < IeT).

It was posited that thread generation was linked to differences between the two interfaces,

specifically the number of search results displayed. EvoBerry displayed a larger amount of

results, and thus encouraged test subjects to spend more time exploring search results. The

evidence only partially supported this theory, the t-test showed a significant difference in only

one of two the pertinent variables (time), and although correlation existed in both variables, it

was a weak correlation.

A trend was exhibited related to the differences in time, searches, threads and web pages,

182

which ran contrary to previous assumptions. Two theories were presented to explain these

differences, relating to impulsive/exploratory search behaviour, and depth-first/breadth-first

search behaviour. A review of the video evidence shows the existence of these behaviours among

small groups of users, however these small numbers combined with a low level of significance in

the difference between the groups make it difficult to prove these theories.

The analysis has galvanized a number of interesting theories on the reasons for the differences

in the comparison data. However, evidence to support these theories is still weak, and more

experimentation needs to be carried out to gain more statistically significant results. It is

possible that the performance of the users may have been affected by other experimental and

technological factors. The analysis is continued in the following sections, looking at the tool

usage and search progress data each in turn.

7.3 Tool usage data

The data showed that the tools of both interfaces were underutilized. Table 7.21 shows that

with the exception of a single tool (the ‘find’ function), the majority of test subjects did not

utilize the tools provided in Internet Explorer. Similarly, looking at Table 7.20, it can be seen

that with the exception of the comparison tool, all of the EvoBerry tools were only utilized by

25-50% of the test subjects. These results are not surprising. It has been established in browser

history system literature (see Tauscher [114], Berkun [11], and Kaasten [60]) that web browsers

history tools (such as the bookmark tool, and history) are under-utilized. The research seems

to indicate that bookmark system are more often used for long-term recall, where users knows

they will revisit the web page many times. In the case of short-term recall, the research (as well

as our own observations) show that users will more often attempt to recreate previous searches

when recalling previous information, rather than utilize the browsers history tool.

Previous research (see [110]) has shown that it is difficult to encourage test subjects to use

unfamiliar tools (such as the Evoberry tool). A comment that showed up in the questionnaire

results, (subjects A04, A10), suggested that some found it difficult to adjust to the tool, and

confessed that once they were focused on the task, they forgot about the EvoBerry’s tools and

used the interface as if it was Internet Explorer. However this opinion was not shared by all.

A large number of test subjects (as illustrated by the questionnaire results in section 7.3.1)

expressed interest in the comparison tool, citing it as a useful tool. The results of the tool usage

data (see Table 7.20) show that the comparison tool was the most utilized of all the EvoBerry

tools.

183

Comparison data variables
Tool usage Time Accuracy Searches Threads Web pages
Session bar 0.235 -0.495 -0.197 -0.065 0.101
Visual-history 0.483 0.317 -0.061 0.033 0.638
Bookmark 0.271 -0.194 0.072 -0.018 -0.232
Drop box 0.038 0.048 -0.083 0.350 0.275
Comparison tool -0.195 0.412 -0.108 -0.278 -0.034
Find tool -0.448 0.139 -0.216 0.011 -0.027

Table 7.35: Correlation of comparison and tool usage data.

7.3.1 Analysis : tool usage data

Pearson’s correlation coefficient6 was applied to the EvoBerry tool usage data in order to de-

termine any relationships between tool usage and user performance (shown in table 7.35). The

data showed no strong correlations between user performance and tool usage, however a num-

ber of weaker correlations were identified. A weak positive correlation was identified between

visual history usage and web page generation (EvPg - EvHs). This correlation implies that as

the visual-history usage increases, so does the number of web pages viewed, but it is difficult

to determine whether the increased web page views was a positive effect (the tool encouraged

more detailed browsing of web pages) or a negative effect (the tool hindered test subjects efforts

forcing them to open more web pages).

It is interesting to note that several observations made in both the questionnaire and video

data relate to some of the weak correlations identified in table 7.35. While these correlations have

r values below the guideline set earlier in the chapter (an r of at least 5.0), they still provide an

interesting outlook on how tool usage may affect the users performance. Two such correlations

linked increased tool usage to increased user performance. A weak positive correlation was

identified between usage of the comparison tool and user accuracy, implying that comparison

tool usage increased user accuracy. This may help to explain why the tool has been praised by

the majority of its users (see questionnaire data - section), and had the highest usage of all the

EvoBerry tools (see the tool usage descriptives - subsection). A weak negative correlation was

identified between usage of the find tool, and time taken by users, implying that increased find

tool usage lowers the time taken for users to complete scenarios. It was posited that using the

find tool allowed test subjects to cut down on the time taken to view web pages, and as a result

lower the time taken to complete scenarios. Interest was garnered in the find tool because of its

high usage by test subjects, and observations during the experiments, as well as questionnaire

and video data showed that not all users were reminded of the functions existence because it’s

existence is not explicit (there is no graphical widget or button representing the tool on the

desktop) and test subjects must remember to use Ctrl-F key combination to activate it when in

the tabbed browser.

184

There was also a weak negative correlation between the accuracy of test subjects and session

bar usage. This correlation implies that as session bar usage increases, accuracy decreases. This

is supported by questionnaire data showed that test subjects exhibited a certain amount of

dissatisfaction with the session bar tool, with criticism of its visibility and complexity.

Overview

Analysis of the tool-usage data has identified interesting trends related to four of the tools

present in the Evoberry interface and has highlighted the fact that different tools in the EvoBerry

interface have different effects upon search progress. Two of the tools were identified as having

a positive influence on search progress, namely the comparison tool, and the find tool. Two of

the tools were identified as having a negative influence on search progress, namely the session

bar and the visual-history. At the moment the correlations identified have been weak, but are

supported by observations in both the questionnaire and video data.

7.4 Search progress data

The search progress data allowed the analysis of changes in the test subject’s accuracy, time

and searches over the course of the search session, in both conditions. This information is useful

when attempting to isolate behaviours or trends which are specific to certain parts of the search

session. The search progress data records test subject’s accuracy for each search task, time spent

on each task, and the number of searches generated during each task in the search scenario. The

initial analysis of the search progress data consisted of looking at the data descriptives.

Time Mean Median Mode Standard
deviation

Range Min Max

EvT1 17.497 15.68 13.57 6.882 31.34 5.36 36.7
IeT1 14.519 12.56 N/A 9.103 31.22 2.3 33.52

EvT2 9.664 8.955 N/A 4.180 15.8 0.1 15.9
IeT2 6.814 5.2 2.25 4.747 18.9 2.25 21.15

EvT3 8.373 8.365 N/A 3.585 12.86 2.92 15.78
IeT3 5.96 4.21 N/A 5.687 20.93 1.15 22.08

Table 7.36: Data descriptives: EvPT - IePT. This set of data describes the differences
between the search progress data related to time, between the two conditions.

Table 7.36 compares the descriptives of the EvoBerry time progress data (EvPT1-3) and

its Internet Explorer counterpart (IePT1-3). On average the EvoBerry condition shows higher

times per question, an unsurprising result, given that EvT and IeT have already been identified

as being significantly different in that respect. The range, minimum and maximum all vary

185

Time Mean Median Mode Standard
deviation

Range Min Max

EvA1 2.85 3 3 0.489 2 1 3
IeA1 2.7 3 3 0.732 3 0 3

EvA2 2.7 3 3 0.732 3 0 3
IeA2 2.75 3 3 0.716 3 0 3

EvA3 0.55 1 1 0.510 1 0 1
IeA3 0.6 1 1 0.502 1 0 1

Table 7.37: Data descriptives: EvPA - IePA. This set of data describes the differences
between the search progress data related to accuracy, between the two conditions.

Time Mean Median Mode Standard
deviation

Range Min Max

EvSc1 4.777 4.5 6 2.734 9 1 10
IeSc1 5.473 4 2 4.005 14 1 15

EvSc2 2.722 2.5 5 1.637 5 0 5
IeSc2 3.105 3 1 2.024 6 1 7

EvSc3 2.111 2 1 1.323 5 0 5
IeSc3 3.368 2 3 4.336 19 0 19

Table 7.38: Data descriptives: EvSc - IeSc. This set of data describes the differences between
the search progress data related to searches generated, between the two conditions.

greatly, and it should be noted that in both conditions, a common minimum and a common

maximum is rarely shared (e.g. EvPT1 and IePT1 share similar ranges but, IePT1 has a lower

minimum). Note that the mode is not available for several of the compared variables, since very

few results appear more than once, often differing by one or two seconds. Two pieces of data

are worth noting in the descriptives: (1) on average EvoBerry progress time is always greater

than Internet Explorer by a factor of 2.9-3.0 minutes, a result that may prove to be significant,

and (2) there is a steady decline in the means of both EvPT and IePT, with the time taken

to answer each question dropping as time progresses. These will be discussed further in this

section.

Table 7.37 compares the descriptives of the EvoBerry accuracy progress data (EvPA1-3)

and its Internet Explorer counterpart (IePA1-3). Both conditions performed equally well (on

average) for each question, with nearly exactly the same data averages, and levels of variance,

which is unsurprising given the results of the EvA - IeA t-test (p-value = 0.880). The spread

of points that can be scored per task (3 in the first two questions, and 1 in the last) is a very

small range, and so deviations away from the mean are unlikely.

Table 7.38 compares the descriptives of the EvoBerry search progress data (EvPSc 1-3) and

186

its Internet Explorer counterpart (IePSc 1-3), showing that in terms of average searches per-

formed, the EvoBerry condition seems to produce lower searches per question than the Internet

Explorer condition. While the T-test (see Table 7.32) has shown the differences between EvSc

and IeSc to not be significantly different, it is important to establish whether this holds true

for the search progress data. Like the time progress data, there also seems to be a trend, of

a decrease in the values over time. An interesting aspect of the data, is the difference in the

variance between the two sets of data. In question 3, the range differs greatly (EvPSc3 = 5,

IePSc3 = 19) which is strange given that both minimums are the same (zero), showing that

at the later stages of the search, users in the Internet Explorer condition produce far greater

amount and range of searches than their EvoBerry counterparts.

7.4.1 Analysis : search progress data

The descriptives identified two areas of interest in the search progress data, increases in test

subjects efficiency over time, (in terms of task time and searches per task), and differences in

test subjects performance when utilizing the different tools. In the first area of interest, the data

is analyzed within individual conditions, and in the second area, the data is analyzed between

the two conditions.

T-test analysis : within condition

A gradual decrease in both time taken to complete questions (EvPT, IePT) and number of

searches per question (EvPSc, IePSc) throughout test subject’s search sessions was noted. The

differences between the second and third question results (in both time and searches) were

expected, given that the second question required them to locate three pieces of information,

while the third question required test subjects to locate only one piece of information. However

both the first and second question required test subjects to locate three pieces of information,

and a large difference in both time and searches was discovered between the two questions.

A t-test comparing the differences between the time taken to complete questions 1 and 2,

and the searches taken to complete question 1 and 2, was performed and the differences between

both sets of data proved to be significant (see Table 7.39). Combining this significant difference

with the fact that the accuracy across both groups remains the same means that there was

an increase in test subject’s efficiency over time. Two theories were proposed to explain this

increase in efficiency: that test subjects became more familiar with the tool’s functions over

time, and thus efficiency increased (i.e. a learning curve), or as information gathered increased,

the need to search for new information decreased (because of recall), lowering the number of

searches, and the time taken to complete questions. However, it was posited that if the effect

was indeed a product of a learning curve, then it would not be present in the Internet Explorer

187

condition, given that test subjects are already intimately familiar with the tool.

T-test analysis : between conditions

The significance of the differences in the search progress data can be seen in Table 7.40. The t-

test showed only one result was significantly different (EvPT3 - IePT3, p-value = 0.001). Given

this evidence, the theory was posited that the significant difference in session times between

the two conditions (EvT and IeT) is somehow related to the last stages of the search session

(EvPT3 and IePT3). This discovery prompted an investigation into whether the time taken to

complete the final question could be linked to an affecting variable, which in turn would help

explain the time difference created between the two tools.

Pearson’s correlation coefficient was applied to the data, in an attempt to establish a rela-

tionship between EvPT3 and the EvoBerry tool usage, as well as between IePT3 and Internet

Explorer tool usage. A summary of the findings is presented in Table 7.41. A weak positive

correlation was discovered between visual-history tool usage and the time taken to complete

the third question in the EvoBerry condition. This correlation is supported by the previously

posited theory that visual-history toolbar was affecting search progress, and implies that the

visual-history toolbar played a part in increasing test subject’s time in the later stages of the

search scenario. The next section will move onto the experimental factors that may have affected

the data.

7.5 Experimental factors

Certain aspects of the experimental design were not ideally implemented due to external con-

straints, and may have affected the experimental results. These aspects were sample size, expo-

sure to the tool, and utilization of the tools.

Sample size

A large sample size is important for gathering accurate and significant results. As discussed

previously, the lower the number of test subjects, the greater variance in the results and thus

the lower the significance of the results received in the experiment. While it is possible to gather

significant results with a test subject group of 20 subjects (as demonstrated by the experiment),

the majority of differences in results were not significant. Given a larger test population, it is

believed that a more significant set of results could be obtained.

The test subject population was set to twenty subjects for three reasons: (1) the experi-

mental money allocated was only enough to pay 20 test subjects, (2) the time taken to conduct

each experiment (minimum of 2 hours) constrained the amount of experiments that could be

188

EvoBerry data p-value Internet Explorer data p-value
EvPT1 - EvPT2 0.002 IePT1 - IePT2 0.003
EvPSc1 - EvPSc2 0.005 IePSc1 - IePSc2 0.025

Table 7.39: Search progress data : within conditions t-test A t-test was performed to confirm the
significance of the difference between the speed and number of searches taken to complete question 1 and
question 2 (in both conditions). The t-test was a paired two-tail test, and all differences were seen to be
highly significant.

compared variables p-value
EvPT1 - IePT1 0.209
EvPT2 - IePT2 0.263
EvPT3 - IePT3 0.001

EvPA1 - IePA1 0.452
EvPA2 - IePA2 0.833
EvPA3 - IePA3 0.748

EvPSc1 - IePSc1 0.390
EvPSc2 - IePSc2 0.574
EvPSc3 - IePSc3 0.483

Table 7.40: T-test results of the search progress data: A two-tailed, paired t-test
was performed on the comparison data to determine the significance of the differences in the
results.

EvoBerry correlations r Internet Explorer cor-
relations

r

EvPT3 - EvSb 0.143 IePT3 - IeFd -0.306
EvPT3 - EvHs 0.502
EvPT3 - EvBm 0.026
EvPT3 - EvDb -0.075
EvPT3 - EvCo 0.086
EvPT3 - EvFd -0.333

Table 7.41: EvPT3 and IePT3 correlations. This table shows the correlations of the time
taken to complete the third question (in both conditions) correlated against the different tool usages.
Note that in the Internet Explorer condition the only tool represented is the find tool, because no
correlations could be established in either the bookmark or history tools given that their usages
were 0 and 1 respectively.

189

conducted in the given time period, and (3) given the large experimental time, it was already

difficult to find 20 willing participants (even with the monetary incentive). With a fixed amount

of experimental money, the only way to pay for more test subjects would be to lower the mon-

etary incentive per person, which is undesirable because it would drop the incentive to a rate

that would be too low to attract test subjects. Lowering the experimental time is difficult when

implementing an evolving search experiment, which requires a long and difficult search. Short

of finding a method of performing an evolving search experiment in a lower time bracket, the

only other option would be to change from a within-subjects experiment to a between-subjects

experiment. This change would be undesirable because it would require twice as many test

subjects to satisfy the same conditions, and would mean that any comparison of the results

would be affected by individual differences between the test subjects.

In the area of psychology, experiments with test subject populations of fifty or more are

required as a bare minimum to get significant results. However this is primarily due to the

differences in structure and objectives between interface experiments and psychological experi-

ments. For example, experiments testing a new interface, test subjects need to be given some

training time in order to familiarize themselves with the interface, whereas psychological exper-

iments which test human conditions often use innate tasks where no learning is required, thus

removing the training time and lowering experimental time because they are using inborn skill

sets. This in effect leads to a lower monetary pay per person, and allows the experiment designer

more funds to secure more subjects. There are also cases where a psychological experiment will

only utilize a handful of test subjects; in these cases significant results are obtained by repeating

the experimental test several times. Depending on the time taken per task, this can sometimes

be as large as 100 or 1000 times in the space of a few hours. However the current design for

search result interface experiments means that this is not possible, evolving searches are long

and often require information to be obtained through-out the process meaning that parts cannot

be skipped. Thus repeating the experiment several times would not be ideal given that most

scenarios have a duration of at least 30 minutes.

Tool exposure

Exposure to the tool is important because people are far more used to interacting with the

Internet Explorer interface than the EvoBerry interface. A higher level of exposure to the

EvoBerry tool, preferably over several sessions, is needed to obtain more comparable results.

Two solutions to this problem, which were not applicable at the time of design were designing

the tool as an add-on to an existing web browser and exposing test subjects to the tool over a

longer period of time. The first solution was not applicable at the time, because the technology

was not available to add the types of techniques in the design to a standard web browser such as

190

Internet Explorer. The second solution, exposing test subjects to the tool over longer periods of

time, can be handled in two ways (both of which were not deemed suitable at the time). Firstly,

the experiment could be carried out over the course of several days, so that the user’s abilities

with the tools could be monitored closely. This presented new problems, such as attracting test

subjects who would be willing to sit through a 2 hour experiment over the course of several days.

Similarly with restricted funding, it would not have been possible to pay users for the time they

would spend over the several days, unless the number of test subjects used was lowered, which

would have a knock-on effect lowering the significance of results and increasing the variance.

The second method of exposing test subjects to the tool over a long period of time would be to

install the tool locally on their systems, so that test subject’s search behaviours can be monitored

in day-to-day situations. However this too is fraught with problems. First, some systems are

not compatible with all the tools used, for example the web browser renderer for EvoBerry is

a Windows specific component, and would not work on either Mac OSX or any Linux system.

Second, guaranteeing that test subjects use the tool for their daily searching would be difficult.

The third problem is privacy; by recording test subject’s search behaviour, every web page

visited would be recorded, something that they may not wish.

Tool utilization

Tool utilization was low overall, with no tool in the EvoBerry interface being utilized by more

than half the test subjects. However, analysis of tool usage shows that certain tools (such as

the comparison tool and find tool) improve search efficiency, and thus, encouraging test subjects

to utilize these tools may change the results considerably. However, getting the test subjects

to utilize the various tools incorporated into the interface is difficult. Even if they enjoy using

the tool it is often difficult to break out of old searching habits once they start concentrating

on the task at hand. One way of ensuring that test subjects use the tools is to explicitly state

that they should use specific tools in specific parts of the experiment, e.g. ‘use the visual-history

tool to recall page X’. The first problem is that it does not model a true evolving search, where

users generally browse opportunistically when searching, and by specifying which actions to

perform users natural search process is disrupted. The second problem is that certain tools have

no directly comparable counterpart in Internet Explorer (such as the comparison tool), so the

experimental questions would not be similar. Another method of ensuring that test subjects

use a tool is by removing its equivalent versions, thus leaving test subjects no choice but to use

the provided tool. For example removing the navigation buttons (backwards and forwards) in a

web browser, and replacing it with the visual-history toolbar, would force test subjects to only

use the history toolbar when navigating among web pages.

191

7.6 Overview

In this chapter the experimental results were presented and analyzed in detail. The results

received differed from the initial hypotheses, but were nonetheless positive and interesting. Of

the three main comparison variables, EvoBerry users were significantly slower than Internet

Explorer users, but highly similar in accuracy, and with no significant differences in number

of searches created. It was remarked that test subjects achieved the same level of accuracy

with EvoBerry as with Internet Explorer, even though they were less familiar with utilizing the

EvoBerry tool. The significant difference in time between the conditions was a concern, and

identifying the factors which contributed to this difference, became the focus of the analysis.

In the comparison data, a weak correlation between the time taken to complete scenarios

and the number of threads generated was identified. As thread generation increased so did

time taken and thus it was theorized that whatever factor was increasing thread generation also

increased the time taken by test subjects. It was posited that thread generation was linked

to differences between the two interfaces, specifically the number of search results displayed.

EvoBerry displayed a larger amount of results, and thus encouraged test subjects to spend more

time exploring search results.

In the tool usage data, four tools were identified as having influenced search progress. The

comparison tool was seen to have a positive influence on accuracy, and received a high amount

of commendation (as detailed by the questionnaire data). The find tool was seen to have a

positive influence on time taken to complete the scenario, but was under-utilized because it was

not explicitly represented in the interface’s display (and thus easily forgotten). It was posited

that increased usage of both of these tools would improve search efficiency.

The session bar was seen to have a negative influence on accuracy, and was criticized for its

small icon size and complexity. A relationship was established between the visual-history tool,

and the number of web pages viewed, where increased usage of the tool would increase web

pages viewed. It is difficult to determine whether the increased web page views was a positive

effect (the tool encouraged more detailed browsing of web pages) or a negative effect (the tool

hindered the search efforts forcing test subjects to open more web pages), although it should be

noted that no negative comments were received regarding the tool.

In the search progress data, a significant difference was discovered (between the two condi-

tions) in the time taken to complete the third question. It was posited that the difference in

time between the two conditions may be related to whatever factors increased the time taken

to complete the final question. A weak correlation was established between EvPT3 and visual-

history usage, showing that visual-history tool may have played a part in increasing the test

subjects time in the later stages of the search.

It is also possible that the experimental results were affected by external constraints, such

192

as the sample size, tool exposure and tool utilization. It was theorized that by increasing the

number of experimental subjects a more significant set of results could be obtained. It was

also believed that increased exposure to the interface, as well as encouraging test subjects to

utilize the different tools of the EvoBerry interface, would improve performance, bringing the

experimental results closer to the hypothesized results.

In summary, it was discovered that a combination of factors such as search behaviour, tool

usage and experimental factors, all influenced the experimental results. The analysis also showed

the effectiveness of the different tools in the EvoBerry interfaces, as well as identifying specific

tools which were beneficial to test subjects, as well as tools which were detrimental to the search

progress of test subjects.

193

Chapter 8

Conclusion

The focus of this research was to address the issues presented by the evolving search, and to

design a search tool that would aid users in performing evolving searches. This final chapter

will summarize the achievements in this work, discuss the challenges of the research, and look

at the future direction of the research.

8.1 Achievements

In the process of investigating the visualization of evolving searches, significant contributions

were made to research in this area. These contributions can be divided into three main cat-

egories: (1) theoretical work, investigating the background behind the evolving search model,

(2) technical work, designing and implementing tools to aid users in evolving searches, and (3)

experimental work, testing the efficiency of the tools developed.

Theoretical work

The evolving search model was originally designed around the interactions of users within li-

braries and with databases. Although, the model has been referenced with regards to web search

behaviour (see, [43], [71]) neither investigation nor evidence had been put forward to support

the existence of evolving searches in an online environment. Evidence was compiled supporting

the existence of the evolving search as a web searching behaviour, based on observations of web

search behaviour taken from various sources ([57], [59], [102]). Interface issues related to the

evolving search (based on Bates [6] work) were noted and discussed. This was presented in

chapter 1. A comprehensive investigation of the differences between the evolving search model

and other theories and models related to web searching was presented. The investigation dis-

cussed the differences between information-retrieval and information-seeking search models, in

194

addition to presenting important information-seeking models in detail. It was determined that

while some of the aspects of evolving search could be seen in these information-seeking mod-

els, other aspects remained unique to the evolving search model. This related work of search

theories, was presented in chapter 2.

Technical work

Bates’s [6] work identified several interface issues that needed to be addressed to enable users

to perform more efficient evolving searches. These were combined with other interface issues,

specific to information-seeking on the WWW, which were not present during the time of Bates’s

research. These issues formed the basis of the design specifications for the tools developed to

aid users in their evolving searches. A comprehensive investigation of the different visualization

technologies and tools that could aid users in performing evolving searches was presented. The

current technologies used for web searching were also presented and discussed, as well as their

limitations with regards to performing evolving searches. This related work of visualization

techniques and technologies was presented in chapter 3. Tools that aided users in their evolving

searches were designed, implemented and included in a set of published works. Three tech-

niques/tools featured prominently: (1) the visual-bracketing technique (featured in [95]), which

aided users in viewing large amounts of search results, (2) the search similarity tool (featured

in both [110] and [111]), which aided users in seeking interesting and pertinent search results,

and (3) the visual-history toolbar, which aided users in recalling specific web pages from their

browser history. Each of these techniques was described and presented in chapter 4.

These works culminated in the design and implementation of the EvoBerry interface, an in-

tegrated search tool for aiding users in evolving searches. The EvoBerry interface (introduced in

chapter 5) aided users in different aspects of their search. The visual-bracketing technique was

applied to the display of the search results, and allowed users to move quickly and opportunis-

tically over their data. Both the comparison tool and the similarity highlighting enabled users

to find interesting and pertinent results by displaying the intersections of multiple searches.

Tools were provided for recalling search data. The session bar could be used to recall users

web browsing sessions, and the visual-history toolbar allowed users to recall individual web

pages. Both search result data and user inputted text could be stored in the drop-box, and

search results of interest could be highlighted and returned to later. Chapter 5 presented an

in-depth look at the different stages taken in the design of the tool, from the initial prototype,

to the final version. The technical challenges behind designing such a tool were also discussed.

195

Experimental work

In order to evaluate the effectiveness of the EvoBerry interface and its various tools, an information-

seeking experiment was designed and implemented using 20 test subjects. A within-subjects

experimental design was used, and each of the subjects was tasked with completing two search

scenarios, one using the EvoBerry tool, the other using Internet Explorer. An automatic log-

ging program recorded all of the users interactions with each of the tools and buttons in the

EvoBerry tool. In addition to performance data (time, accuracy and number of searches gener-

ated per user), various other variables related to the performance of users (such as number of

search results opened, and web pages viewed) were also recorded. Screen capture videos were

made of each user’s search sessions, and over 20 gigabytes of screen-capture videos were gath-

ered. These videos enabled us to observe users search patterns and behaviours in detail. User’s

opinions on the EvoBerry interface and its individual tools were gathered through the use of

a post-experiment questionnaire. Both the design of the experiment and the results obtained

were presented in chapter 6.

An analysis of the results was presented in chapter 7. When comparing the performance of

users in the two conditions (EvoBerry and Internet Explorer) it was discovered that the accu-

racy of users was very similar between the two conditions. Although different to the expected

hypothesis, this is seen as a positive outcome, showing that users were able to perform as effi-

ciently with the EvoBerry tool (a tool which the test subjects have had little training or exposure

to) as with the Internet Explorer tool (a tool that all test subjects have used extensively). A

correlation was also made between users accuracy and usage of the comparison tool. Of all

the tools that formed the EvoBerry interface, the comparison tool was the most highly praised

(as evident in the questionnaire data) and the most often used of the tools (as evident in the

tool-usage data). Given this evidence, it was determined that the similarity tool was a valuable

asset in aiding users in performing evolving searches. The analysis also helped identify parts of

the EvoBerry tool which did not contribute positively to the search progress of users (such as

the visual-history toolbar and session bar) providing information which benefit future design’s

of evolving search tools.

8.2 Challenges of the research

Much was learned through the investigation, development and experimentation of evolving

searches, and the resulting work has added to the current research in the area. However, various

challenges and issues arose over the course of the work, many of which were discussed earlier

in this thesis. This section will review the main challenges, as well as the rationale behind the

solutions chosen.

196

Challenge I : issues addressed

The first challenge arose early in the research, and involved choosing which interface issues were

to be addressed in the work. Several interface issues were presented in Bates’s work, but not all

of these issues were applicable to the research. This was due to the fact that Bates’s theories

were modeled around the interactions of users with library services and databases, thus were

not all applicable to searching on the WWW. Some interface issues could not be accurately

mapped to web searching. For example, one of Bates’s interface issues provides the ability to

switch between multiple search strategies, however some of the strategies that she lists, such

as area scanning, cannot be replicated in a web search interface. In the case of area scanning,

information on the WWW is not neatly ordered and classified like books on a library shelf, thus

related web resources are rarely located physically close together, and cannot be browsed as

easily as scanning a shelf of books.

Only three of Bates’s six interface issues were addressed in this work, and were supplemented

with two other interface issues, ‘information-seeking’ and ‘information management’. These

interface issues were not mentioned by Bates because they were problems that did not exist in

the searching of library or database services. The rationale behind both information-seeking and

information management was that users should be provided with the means to respectively, seek

and manage data efficiently, due to the large amounts of information generated while performing

evolving searches on the WWW.

Challenge II : tool design

The second challenge was related to the design of the tool. The Java programming language was

used to implement the tool, and provided a very flexible set of tools for designing the interface.

However, certain aspects of Java, crucial to the design of the EvoBerry interface, have not

yet advanced to the point where the interface’s functions can be fully realized. The aspect of

concern is the Web Browser object utilized in the EvoBerry tool, developed by the JDIC project

[23]. The JDIC web Browser was utilized because (at the time), it was the only Java package

that could render a web page exactly as displayed in a web browser, within a Java program.

However, the JDIC web browser was not ideal because it was designed as a Java heavy-weight

program, and thus did not interact well with the JDesktopPane interface utilized, which was

a Java light-weight component. This resulted in the use of a JSplitPane to contain the Web

Browser object.

During the experiment, users complained that the JSplitPane was inconveniant to interact

with, because it was not contained within a JInternalFrame, and could not be moved around

freely on the desktop. This resulted in users having to constantly resize the split-pane when

switching between viewing search results and browsing web pages. In addition to this, sometimes

197

new searches were generated ‘beneath’ the split-pane, and were lost to users. The only alternative

to utilizing a JSplitPane was to open web pages in an external web browser, which was not

considered a viable option, given that users would then be forced to constantly switch between

the EvoBerry window, and the web browser windows. The split-pane was not ideal for the

EvoBerry tool, and will be replaced once Java technology advances to the point where web

browser objects can exist within JInternalFrames.

Challenge III : experimental design

The third challenge was related to the design of the EvoBerry experiment, and was linked to

the fact that evolving searches are both long and difficult to complete. An evolving search

takes a long time to complete because users often begin with an incomplete information need.

Either they have not identified a particular piece of information to pursue (e.g. are browsing

opportunistically) or do not have enough personal knowledge to form an effective search engine

query. Attempting to simulate an EvoBerry search accurately within an experiment can cause

problems, because of the large amount of time required to complete the search. Experimental

subjects are paid a monetary reward based on the amount of time they spend performing the

experiment, but in experiments with long durations, such as evolving search experiments, higher

amounts of money must be paid out per subject, thus lowering the amount of test subjects that

can be gathered. Less test subjects means a lower chance of obtaining significant results.

Even without the issue of monetary reward, the time taken to complete the experiment may

act as a deterrent to potential test subjects, who are too busy to spend such a large amount of

time in an experiment. The large experimental time also affects the experimental results, since

the motivation of users deteriorates as time progresses. In order to more accurately compare

performance differences between two tools, the same users should perform similar tasks using

both tools, i.e. a within-subjects experimental design should be used. However, in the case of

an evolving search experiment this would double the already long experimental time, since users

have to perform two sets of tasks instead of one. While this leads to more accurate results, it

also makes it more difficult to get a large number of test subjects.

The three challenges presented in this section had different effects upon the research and the

experiments conducted. Focusing on only a select set of interface issues concentrated the re-

search in a particular direction, leaving other areas of the evolving search neglected, but open

to future research. Placing the web browser object within a JSplitPane was not an ideal so-

lution and inconvenienced users, but was considered a better alternative to using external web

browser windows. There are plans to change this design in future implementations. The long

experimental times associated with evolving search experiments will continue to be troublesome

198

in future experiments, and perhaps encouraging users to utilize the EvoBerry interface for their

web searches would be an easier method of observing user performance.

8.3 Future work

The research presented, as well as the experiment conducted in this work are merely the tip

of the iceberg, and there is still much work to be done in the area of evolving searches. The

future of this work can take many directions: (1) extending and improving the current designs

and experiments, (2) investigating other evolving search issues, not covered in this work, and

(3) following new lines of research inspired by the results received from the experiment.

8.3.1 Extending the current design

The current design can be improved upon in two ways: (1) by fixing flaws in the original

design, and (2) using new technology to overcome constraints in the original design. The results

analysis showed that some tools, such as the session bar, created a negative effect upon users

performance, necessitating the need to remove or redesign such tools for future versions. It was

also discovered that some tools enhanced user’s search performance, such as the find tool, and

as a result should be made more prominent in future versions of the tool.

The design of the EvoBerry tool suffered from a few technical constraints (such as having a

fixed web browser) which, through improvements in technology, may no longer be an issue. The

number of different Web APIs has increased greatly over the last 3 years, and the services have

also improved and diversified. New services are now available, and searches of images, audio and

video media can now be seen as part of the standard Web API services. The current EvoBerry

design is suitable for research purposes, however deeper integration of the EvoBerry tools within

current web browsers is needed. This can be done in one of two ways, either by embedding the

tools directly into web browsers (as either plug-ins or toolbars), or generating the tool as an

‘in-page’ interface (such as the current web search engines) with the tools embedded into a web

page using Java Servlets or Macromedia Flash technology.

By embedding the EvoBerry tools into the web browser, the portability and usability of

the tools will be increased, as well as the acceptability of such tools by users. Inclusion of the

EvoBerry tools as a plug-in would also create a more comparable interface for future experi-

ments, and would potentially allow longer exposure of the tool to users. Embedding the tools

into the web page itself removes the limitations of browser-dependent plug-ins, and makes the

tools instantly accessible to any person in the world. However, unlike browser plug-ins, the

performance of the tools would also be dependent on bandwidth, and as a result (given the

complexity of some of the EvoBerry tools) the performance of the tools would suffer greatly

199

over connections with a low bandwidth. Storing and accessing user’s personal information (such

as past searches, and web pages viewed) would also become more troublesome, since the tool

(and its data) are not stored locally.

These changes in technology also affect the way that experiments will be conducted. Moving

to an embedded design allows easier access, and in turn more wide-spread availability of the

tool. This is beneficial to experimental design in several ways: (1) increasing the availability of

the tool increases users exposure to the tool, and in turn gives them more experience in using the

tool making for a more accurate experiment, (2) increasing the availability of the tool increases

the potential test subject population, which in turn will increase the significance of any results

obtained, and (3) using a plug-in would allow a more accurate comparison of the tool with a

standard web browser (sans the EvoBerry plug-in).

8.3.2 Investigating new issues

This research has only looked at 3 of the 6 interface issues reported by Bates [6] in her work. The

research could be expanded to encompass the remaining three issues detailed by Bates, although

different designs and techniques would need to be utilized, perhaps requiring the development

of a separate tool. These interface issues are presented.

Many of the different strategies described by Bates were based on searching in a library, and

thus not applicable to web searching. However, research and our own observations have shown

that web searching (as well as the evolving search) does not consist of one search strategy, but

instead a variety of different strategies applied at different parts of the search, and in different

situations. Investigating the different search strategies, as well as the design of tools to support

them may prove to be a fruitful area of research.

Bates theorized that designing an new interface around an analogy would aid users in un-

derstanding its functions. The analogy posited by Bates was that of a library, where users could

‘browse’ the books on a shelf, and ‘flip’ through the pages of the books. Perhaps, other analogies

could be used in the design of tools, for example, a ‘berry-picking’ interface, where users moved

between various ‘bushes’ (searches), inspecting and selecting ‘berries’ (search results). As tech-

nologies change and improve, the amount and sources of information available increase, and as a

result so does the range of information-switching that can take place. A larger number of Web

APIs are now available, with even greater numbers of new services, allowing tool designers to

draw on information from several different search engines, as well in several different forms of

data. Indeed, future technologies may enable access to specialized searches of specific websites

(e.g. Amazon.com, Ebay.com) allowing a greater degree of information-switching.

200

8.3.3 Following new research

The research has identified search result comparison as a useful technique when performing web

searches, and has prompted further investigation into its application within the online searching

environment, as well as other areas of searching. Given the results received from the experiment,

a more detailed investigation of the impact of search result comparison is needed. The creation

of a web browser plug-in, based on the design of the comparison tool, is being considered.

This would allow a more focused and comparable experiment, which would more clearly show

the performance difference created by the tool. The research performed was limited to the

comparison of searches by a single user in a current search session. It would be interesting

to examine the effects of extending this time-frame, observing the effects of allowing users to

compare searches separated by days, months or even years. Examining the effects of allowing

users to compare their searches with that of different users may show interesting results.

The research also restricted users in the type of information being compared as well, as

well as the programs interpretation of ‘similarity’ between different pieces of information. The

comparison principle can be extended to other pieces of metadata (images, keywords), as well

as other rules of similarity (e.g. web pages containing the following keywords...). The compar-

ison of multiple searches is not a technique that is solely restricted to searching in the online

environment. Search result comparison (and indeed the principles of the evolving search) can

be extended to other domains, where users must search through a large amount of data with

only a vague information need, e.g. searching through old emails or files on your hard drive.

8.4 Overview

This thesis has investigated various aspects of the evolving search, and provided a solution

to enable users to perform and manage their own evolving searches. A comprehensive study

was performed, and demonstrated that the techniques and ideas utilized were useful. While

beneficial components of the system were indeed identified, further experimentation needs to be

carried out in order to determine the full effectiveness of the tool; in particular increasing users

exposure to the tool over a longer period of time is necessary.

This thesis has generated new ideas which can be further developed and expanded upon.

There is more research to be done in the area of search result comparison, and the comparison

of multiple searches. Extending the principles of search result comparison to searches separated

by different times (days, weeks, months), users, or programs may be beneficial.

Furthermore, the principles of the evolving search are not confined to the WWW alone.

The issues of (1) starting a search with a vague information need, and (2) having to search

through large amounts of data, are not unique to searching on the WWW, and can be seen in

201

searches of emails, documents, spreadsheets etc. Hence the technologies, techniques and ideas

that have been presented in this thesis, especially those to manage users in their exploration and

comparison of results between searches, can easily be adapted, extended and usefully applied to

a great number of other domains.

202

Appendix A

Experimental hand-outs

This part of the appendices contains copies of the three hand-outs given to users during the

experiment. The pre-experiment questionnaire was used to screen users and determine their

web searching history, as well as their experience with Evolving searches. The EvoBerry guide

was given before the experiment, and served as a reference guide to the user, when learning how

to use the tool, as well as during the experiment. The post-experiment questionnaire, was given

to the user after the experiment in order to gauge the users opinions on the EvoBerry interface

and its tools.

203

Figure A.82: Pre-experiment questionnaire page 1.

204

Figure A.83: Pre-experiment questionnaire page 2.

205

Figure A.84: EvoBerry guide page 1.

206

Figure A.85: EvoBerry guide page 2.

207

Figure A.86: EvoBerry guide page 3.

208

Figure A.87: EvoBerry guide page 4.

209

Figure A.88: EvoBerry guide page 5.

210

Figure A.89: Post-experiment questionnaire page 1.

211

Figure A.90: Post-experiment questionnaire page 2.

212

Appendix B

Logged and observed data

This part of the appendices contains all the data compiled from the automatic logs and obser-

vations of the test subject’s screen capture videos. Note that different systems were used to

capture different pieces of data, the main time and and accuracy data was always recorded from

the answer sheet, while the number of searches, threads, and web pages were captured through

observations of the screen captures. All of the tool-usage data and some of the search progress

data was also recorded through observations of the screen capture videos. A legend is provided

with a recap of the names of the different variables of the data recorded in Table B.42.

Corrupt data

Three out of the Forty videos were found to be corrupted, and thus some of the data is missing.

In cases where data is a compared, then data which cannot be paired is ignored. For example,

When performing a paired t-test on EvSc and IeSc, the data for users A01, A07 and A11 were

ignored since they cannot be paired. If a piece of data in a table is corrupted, then an X is

placed within the box. Note that that none of the accuracy or time data was corrupted, since

this was recorded by the answer sheet programs automatic logging program. The three corrupt

videos were:

• A01-EvoBerry session video: In the comparison data this affected the variables, EvSc,

EvTh, EvPg. In this search progress data, EvPT1-3 and EvSc1-3 were affected. No tool

usage data for EvoBerry was recorded.

• A07-EvoBerry session video: In the comparison data this affected the variables, EvSc,

EvTh, EvPg. In this search progress data, EvPT1-3 and EvSc1-3 were affected. No tool

usage data for EvoBerry was recorded.

213

• A11-Internet Explorer session video: In the comparison data this affected the vari-

ables, IeSc, IeTh and IePg. In the search progress data, IePT1-3 and IeSc1-3 were affected.

No tool usage data for Internet Explorer was recorded.

Legend
Comparison data EvoBerry Internet Explorer
Accuracy EvA IeA
Time EvT IeT
Searches EvSc IeSc
Threads EvTh IeTh
Web pages EvPg IePg

Search progress data EvoBerry Internet Explorer
Accuracy EvPA (1-3) IePA (1-3)
Time EvPT (1-3) IePT (1-3)
Searches EvPSc (1-3) IePSc (1-3)

Tool usage data 1 : Both EV & IE EvoBerry Internet Explorer
History EvHs IeHs
Find EvFd IeFd
Bookmark EvBm IeBm

Tool usage data 2 : Only EV EvoBerry
Session bar EvSb
Drop-box EvDb
Comparison tool EvCo

Table B.42: Legend of variables in the experimental data.

214

Figure B.91: Combined comparison data.

Figure B.92: EvoBerry search progress data.

215

Figure B.93: Internet Explorer search progress data.

Figure B.94: Combined tool usage data.

216

Appendix C

Miscellanous

Some data, when in a printed format is far too vast in quantity to fit in the thesis. Below are

two of the sets of data could not be fit into the thesis, but are available upon request.

C.1 Questionnaire data

Because of the extra eighty pages that would be needed to accommodate the post-questionnaire

data, this data was not included within the thesis. However, photocopies of the user’s post-

experiment questionnaires are available upon request. The results of the user’s post-experiment

questionnaire can be seen in chapter 6.

C.2 EvoBerry tool java code

The program spans over 100 classes, some of which are significantly large. If you wish to receive

a copy of the code, and instructions on how to setup the program on your computer, email me

at es45@kent.ac.uk, and I will make the code available for download.

217

Bibliography

[1] Anand Agarawala and Ravin Balakrishnan. Keepin it real: Pushing the desktop metaphor

with physics, piles and the pen. In Proceedings of CHI 2006, pages 1283–1292. ACM Press,

2006. http://citeseer.ist.psu.edu/761044.html.

[2] Christopher Ahlberg and Ben Shneiderman. Visual information seeking: tight coupling

of dynamic query filters with starfield displays. In CHI ’94: Proceedings of the SIGCHI

conference on Human Factors in Computing Systems, pages 313–317, New York, USA,

1994. ACM Press.

[3] Google Web API. Soap search api. (website), August 2006. http://www.google.com/apis/.

[4] Eric Z. Ayers and John T. Stasko. Using Graphic History in Brows-

ing the World Wide Web. In Proceedings of 4th International World Wide

Web Conference (WWW4), pages 259–270. O’Reilly publishing, December 1995.

http://www.citeseer.ist.psu.edu/195150.html.

[5] David J. Barnes, Mark T. Russell, and Mark C. Wheadon. Developing and adapting UNIX

tools for workstations. In Proceedings of the European UNIX Users Group (EUUG), pages

321–333. EUUG, Buntingford, UK, 1988.

[6] Marcia J. Bates. The design of browsing and berrypicking techniques for the online search

interface. Online review, 13(5):407–424, 1989.

[7] Patrick Baudisch, Bongshin Lee, and Libby Hanna. Fishnet, a fisheye web browser with

search term popouts: a comparative evaluation with overview and linear view. In AVI

’04: Proceedings of the Working Conference on Advanced Visual Interfaces, pages 133–140,

New York, USA, 2004. ACM Press.

[8] Nicholas J. Belkin. Interaction with texts: Information retrieval as information-seeking be-

havior. In Information Retrieval, pages 55–66. Universitaetsverlag Konstanz, Von der Mod-

ellierung zur Anwendung, 1993. http://www.citeseer.ist.psu.edu/belkin93interaction.html.

218

[9] Nicholas J. Belkin, Colleen Cool, Adelheit Stein, and Ulrich Thiel. Cases, scripts, and

information-seeking strategies: On the design of interactive information retrieval systems.

In Expert Systems with Applications, volume 9(3), pages 379–395. Elsevier Science Pub-

lishers Ltd., 1994. http://www.citeseer.ist.psu.edu/belkin94case.html.

[10] Nicholas J. Belkin, Robert N. Oddy, and Helen M. Brooks. Ask for information retrieval:

Part 1. background and theory. In Journal of Documentation, volume 38(2), pages 61–71.

Emerald Group Publishing Limited, 1982. http://www.scils.rutgers.edu/ belkin/articles/.

[11] Scott Berkun. How to build a better web browser. (online article), 2004.

http://www.scottberkun.com/essays/essay37.htm.

[12] Alan F. Blackwell, Kirsten N. Whitley, Judith Good, and Marian Petre. Cognitive factors

in programming with diagrams. In Artificial Intelligence Review, volume 15(1/2), pages

95–114. Springer Netherlands, 2001. http://www.citeseer.ist.psu.edu/375325.html.

[13] Christine L. Borgman. Why are online catalogs still hard to use? In Journal of the

American Society for Information Science, volume 47(7), pages 493–503. John Wiley and

Sons, New York, 1996.

[14] Kevin W. Boyack, Brian N. Wylie, and George S. Davidson. Domain visualization using

vxinsight for science and technology management. In Journal of the American Society for

Information Science, volume 53(9), pages 764–774, New York, USA, 2002. John Wiley &

Sons, Inc.

[15] Auto Bracketing. (website), august 2006. http://www.dpreview.com/.

[16] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual Web search

engine. In Computer Networks and ISDN Systems, volume 30(1), pages 107–117. Elsevier

Science Publishers Ltd., 1998. http://www.citeseer.ist.psu.edu/brin98anatomy.html.

[17] Fidel Cacheda and Ángel Viña. Experiencies retrieving information in the world

wide web. In ISCC ’01: Proceedings of the Sixth IEEE Symposium on Computers

and Communications, page 72, Washington, DC, USA, 2001. IEEE Computer Society.

http://www.citeseer.ist.psu.edu/cacheda01experiencies.html.

[18] Stuart K. Card, Lichan Hong, Jock D. Mackinlay, and Ed H. Chi. 3book: A 3d electronic

smart book. In AVI ’04: Proceedings of the Working Conference on Advanced Visual

Interfaces, pages 303–307, New York, USA, May 2004. ACM Press.

219

[19] Stuart K. Card, George G. Robertson, and William York. The webbook and the web

forager: An information workspace for the world-wide web. In Proceedings of the Confer-

ence on Human Factors in Computing Systems CHI’96, pages 416–417. ACM press, 1996.

http://www.citeseer.ist.psu.edu/card96webbook.html.

[20] Chun Wei Choo, Brian Detlor, and Don Turnbull. Information seeking on the web: An

integrated model of browsing and searching. First Monday (online article), 5(2), 2000.

http://www.firstmonday.org/issues/issue5 2/choo/index.html.

[21] Clusty. The clustering search engine. (website), August 2006. www.clusty.com.

[22] Andrew Cockburn and Steve Jones. Which way now? analysing and

easing inadequacies in www navigation. In International Journal of Hu-

man Computer Studies, volume 45, pages 105–129. Academic Press Inc, 1996.

http://www.citeseer.ist.psu.edu/cockburn00which.html.

[23] JDIC (JDesktop Integrated Components). Web browser project, August 2006.

https://jdic.dev.java.net/.

[24] John Cugini, Sharon Laskowski, and Marc Sebrechts. Design of 3-d visualiza-

tion of search results: Evolution and evaluation. In Robert F. Erbacher; Philip

C. Chen; Jonathan C. Roberts; Craig M. Wittenbrink, editor, SPIE, volume 3960,

pages 198–210. SPIE–The International Society for Optical Engineering, February 2000.

http://www.citeseer.ist.psu.edu/323698.html.

[25] Richard L. Daft and Karl E. Weick. Toward a model of organizations as interpretation

systems. In Academy of Management Review, volume 9, pages 284–295. Academy of

Management, 1984.

[26] Fergus Daly, David J. Hand, Chris Jones, Daniel Lunn, and Kenvin McConway. Elements

of statistics. Addison-Wesley, 1997.

[27] Bert J. Dempsey, Robert C. Vreeland, Robert G. Sumner Jr., and Kiduk Yang. Design and

empirical evaluation of search software for legal professionals on the www. In Information

Processing and Management: an International Journal, volume 36(2), pages 253–273.

Elsevier Science, 2000.

[28] Caroline M. Eastman. 30,000 hits may be better than 300: precision anomalies in internet

searches. In Journal of the American Society for Information Science, volume 53(11),

pages 879–882, New York, USA, 2002. John Wiley & Sons, Inc.

220

[29] Stephen G. Eick, Joseph L. Steffen, and Eric E. Sumner Jr. Seesoft-a tool for visualizing

line oriented software statistics. In IEEE Transactions on Software Engineering, volume

18(11), pages 957–968, Piscataway, NJ, USA, 1992. IEEE Press.

[30] David Ellis. A behavioural approach to information retrieval system design. In Journal of

Documentation, volume 45(3), pages 171–212, London, UK, 1989. Aslib, The Association

for Information Management.

[31] David Ellis and Merete Haugan. Modelling the information seeking patterns of engineers

and research scientists in an industrial environment. In Journal of Documentation, vol-

ume 53, pages 384–403. Emerald Group Publishing Limited, 1997.

[32] FireFox. Mozilla’s firefox web browser. (website), August 2006.

http://www.mozilla.com/firefox/.

[33] Amy Fowler. Java heavy and light weight components. online article, August 2006.

http://java.sun.com/products/jfc/tsc/articles/mixing/.

[34] George W. Furnas. The fisheye view: a new look at structured files. In Readings in

information visualization: using vision to think, pages 312–330, San Francisco, CA, USA,

1999. Morgan Kaufmann Publishers Inc.

[35] George W. Furnas and Samuel J. Rauch. Considerations for information

environments and the navique workspace. In Proceedings of International

Conference on Digital Libraries (DL 98), pages 79–88. ACM press, 1998.

http://www.citeseer.ist.psu.edu/furnas98considerations.html.

[36] Google. Web search engine. (website), August 2006. http://www.google.com.

[37] Matthew Gray. Wandex indexing service. (website), 1993.

http://en.wikipedia.org/wiki/Search engine.

[38] Ratvinder S. Grewal, Mike Jackson, and Jon Wallis. Using visualisation to interpret search

engine results. In Proceedings of The Active Web 1999, pages 15–25. (online proceedings),

January 1999. http://seed.scit.wlv.ac.uk/papers/activeweb99.html.

[39] Grokker. Web search engine. (website), August 2006. http://www.grokker.com/.

[40] Masum Z. Hasan, Alberto O. Mendelzon, and Dimitra Vista. Visual web surf-

ing with Hy+. In CASCON ’95: Proceedings of the 1995 conference of the Cen-

tre for Advanced Studies on Collaborative research, page 28. IBM Press, 1995.

http://www.citeseer.ist.psu.edu/hasan95visual.html.

221

[41] Masum Z. Hasan, Alberto O. Mendelzon, and Dimitra Vista. Applying database Visual-

ization to the World Wide Web. In ACM SIGMOD record, volume 25(4), pages 45–49.

ACM Press, 1996. http://www.citeseer.ist.psu.edu/hasan96applying.html.

[42] Susan Havre, Elizabeth Hetzler, Ken Perrine, Elizabeth Jurrus, and Nancy Miller. Inter-

active visualization of multiple query results. In INFOVIS ’01: Proceedings of the IEEE

Symposium on Information Visualization 2001, pages 105–112, Washington, DC, USA,

2001. IEEE Computer Society.

[43] Marti A. Hearst. User interfaces and visualizations. In Baeza-Yates, Ricardo A.; Ribeiro-

Neto Berthiers(Eds.): Modern Information retrieval, chapter 10, pages 257–324. Addison

Wesley Longman, 1999.

[44] Marti A. Hearst and Jan O. Pedersen. Reexamining the cluster hypothesis: Scatter/gather

on retrieval results. In Proceedings of SIGIR-96, 19th ACM International Conference on

Research and Development in Information Retrieval, pages 76–84, Zurich, CH, 1996. ACM

press. http://www.citeseer.ist.psu.edu/hearst96reexamining.html.

[45] Marti A. Hearst and Jan O. Pedersen. Visualizing information retrieval results: a demon-

stration of the tilebar interface. In CHI ’96: Conference Companion on Human Factors

in Computing Systems, pages 394–395, New York, USA, 1996. ACM Press.

[46] David G. Hendry and David J. Harper. An informal information-seeking environment. In

Journal of the American Society for Information Science, volume 48(11), pages 1036–1048,

New York, USA, 1997. John Wiley & Sons, Inc.

[47] Ron R. Hightower, Laura T. Ring, Jonathan Helfman, Benjamin B. Beder-

son, and James D. Hollan. Graphical multiscale web histories: A study of

padprints. In UK Conference on Hypertext, pages 58–65. ACM Press, 1998.

http://www.citeseer.ist.psu.edu/hightower98graphical.html.

[48] H. P. Hogeweg-de Haart. Characteristics of social science information: A selective review

of the literature. part ii. In Social Science Information Studies, volume 4, pages 15–30,

1984.

[49] Lars Erik Holmquist. Flip zooming: Focus+context visualization of linearly or-

dered discrete visual structures. In Breaking the Screen Barrier (thesis). Göteborg

University, Dept. of Informatics, Göteborg University (publisher), May 2000.

http://www.viktoria.se/fal/publications/play/2000/dissertations/leh/.

[50] Christoph Holscher and Gerhard Strube. Web search behavior of internet experts and

newbies. In Proceedings of the 9th International World Wide Web conference on Computer

222

Networks : The International Journal of Computer and Telecommunications Networking,

pages 337–346, Amsterdam, The Netherlands, 2000. North-Holland Publishing Co.

[51] Timo Honkela, Samuel Kaski, Krista Lagus, and Teuvo Kohonen. WEBSOM—

self-organizing maps of document collections. In Proceedings of WSOM’97, Work-

shop on Self-Organizing Maps, Espoo, Finland, June 4-6, pages 310–315. Helsinki

University of Technology, Neural Networks Research Centre, Espoo, Finland, 1997.

http://www.citeseer.ist.psu.edu/honkela97websom.html.

[52] Adobe Inc. Photoshop tool : OS X version. (website), 08 2006.

http://www.adobe.com/products/photoshop/.

[53] Peter Ingwersen. Cognitive perspectives of information retrieval interaction: Elements of a

cognitive IR theory. In Journal of Documentation, volume 52, pages 3–50. Emerald Group

Publishing Limited, 1996.

[54] Bernard J. Jansen and Udo Pooch. A review of web searching studies and a framework

for future research. In Donald H. Kraft, editor, Journal of the American Society for

Information Science and Technology, volume 52(3), pages 235–246. ASIS, John Wiley and

Sons Inc, 2000.

[55] Bernard J. Jansen and Amanda Spink. An analysis of web searching by european

alltheweb.com users. In Information Processing and Management, volume 41(2), pages

361–381, Tarrytown, NY, USA, 2005. Elsevier Science.

[56] Bernard J. Jansen and Amanda Spink. How are we searching the world wide web? A

comparison of nine search engine transaction logs. In Information Processing Management:

An International Journal, volume 42(1), pages 248–263. Elsevier Science, 2006.

[57] Bernard J. Jansen, Amanda Spink, Judy Bateman, and Tefko Saracevic. Real life informa-

tion retrieval: a study of user queries on the web. In ACM SIGIR Forum, volume 32(1),

pages 5–17, New York, USA, 1998. ACM Press.

[58] Bernard J. Jansen, Amanda Spink, and Jan Pedersen. A temporal comparison of altavista

web searching: Research articles. In Journal of the American Society for Information

Science, volume 56(6), pages 559–570, New York, USA, 2005. John Wiley & Sons, Inc.

[59] Bernard J. Jansen, Amanda Spink, and Tefko Saracevic. Real life, real users, and real

needs: a study and analysis of user queries on the web. In Information Processing and

Management, volume 36(2), pages 207–227, Tarrytown, NY, USA, 2000. Elsevier Science.

223

[60] Shaun Kaasten and Saul Greenberg. Designing an integrated bookmark / his-

tory system for web browsing. In Proceedings of Workshop on History Keeping

in Computer Applications, College Park. University of Maryland, December 1999.

http://www.citeseer.ist.psu.edu/kaasten99designing.html.

[61] Shaun Kaasten and Saul Greenberg. Integrating back, history and bookmarks in web

browsers. In CHI ’01: Extended Abstracts on Human Factors in Computing Systems,

pages 379–380, New York, USA, 2001. ACM Press.

[62] David Kirsh. The intelligent use of space. In Artificial Intelligence, volume 73(1-

2), pages 31–68, Essex, UK, 1995. Elsevier Science Publishers Ltd. http://icl-

server.ucsd.edu/ kirsh/Articles/Space/AIJ1.html.

[63] Matthew Koll. Major trends and issues in the information industry. (online article), 1999.

http://www.asidic.org/news/techsumf99.html.

[64] Carol Collier Kuhlthau. Developing a model of the library search process: Cognitive and

affective aspects. In Reference Quarterly (winter), volume 28(2), pages 232–242. American

Library Association, 1988.

[65] Steve Lawrence and C. Lee Giles. Accessibility of information on the web. In Intelligence,

volume 11(1), pages 32–39, New York, USA, 2000. ACM Press.

[66] Jan Lethen. Properties of pearson’s correlation, November 1996.

[67] Ying K. Leung and Mark D. Apperley. A review and taxonomy of distortion-oriented pre-

sentation techniques. In ACM Transactions on Computer-Human Interaction (TOCHI),

volume 1(2), pages 126–160, New York, USA, 1994. ACM Press.

[68] Maurice B. Line. Information requirements in the social sciences. In Access to the Litera-

ture of the Social Sciences and Humanities, pages 146–158, Queens College, City University

of New York, New York, 1974. Queens College Press.

[69] Jock D. Mackinlay, George G. Robertson, and Stuart K. Card. The perspective wall: detail

and context smoothly integrated. In CHI ’91: Proceedings of the SIGCHI conference on

Human factors in computing systems, pages 173–176, New York, USA, 1991. ACM Press.

[70] Thomas M. Mann. Visualization of WWW-search results. In R.R. Wag-

ner A.M. Tjoa, A. Cammelli, editor, Proceedings of the International Work-

shop on Web-Based Information Visualization (WebVis’99) (in conjunction with

DEXA’99, Tenth International Workshop on Database and Expert Systems Appli-

cations), pages 264–268, Florence, Italy, September 1999. IEEE Computer Society.

http://www.citeseer.ist.psu.edu/mann99visualization.html.

224

[71] Thomas M. Mann. Visualization of Search results from the World Wide Web. Phd thesis,

University of Konstanz, Germany, 2002.

[72] Thomas M. Mann and Harald Reiterer. Case study: A combined visualization approach

for www-search results. In Proceedings of the IEEE Visualization 1999 (Vis 99). IEEE,

USA, 1999. http://www.citeseer.ist.psu.edu/492831.html.

[73] Gary Marchionini. Information seeking in electronic environments. Cambridge University

Press, New York, USA, 1995.

[74] Gary Marchionini. Interfaces for end-user information seeking. In Journal of the

American Society for Information Science, volume 43(2), pages 156–163. John Wi-

ley and Sons, New York, January 1999. http://www3.interscience.wiley.com/cgi-

bin/abstract/10049647/ABSTRACT.

[75] Mark McCahill, Farhad Anklesaria, Paul Lindner, Dan Torrey, and Bob Alberti. Gopher

protocol. (website), 1991. http://en.wikipedia.org/wiki/Gopher protocol.

[76] Ethical media. Opte project : A map of the internet. (website), august 2006.

http://www.ethicalmedia.com/splash/mapofinternet/.

[77] Nancy Miller, Beth Hetzler, Grant Nakamura, and Paul Whitney. The need for metrics

in visual information analysis. In NPIV ’97: Proceedings of the 1997 Workshop on New

Paradigms in Information Visualization and Manipulation, pages 24–28, New York, USA,

1997. ACM Press.

[78] Alan L. Montgomery and Christos Faloutsos. Identifying web browsing trends and pat-

terns. In Computer, volume 34(7), pages 94–95, Los Alamitos, CA, USA, 2001. IEEE

Computer Society Press.

[79] Nielsen’s net ratings. Nielsen inc. (website), August 2006.

http://searchenginewatch.com/showPage.html?page=2156451.

[80] Cartia news maps. Newsmaps: Topographic mapping of information. (website), 1995.

http://mundi.net/maps/maps 015/.

[81] Jakob Nielsen. Usability engineering at a discount. In Proceedings of the third interna-

tional conference on human-computer interaction on Designing and using human-computer

interfaces and knowledge based systems (2nd ed.), pages 394–401, New York, NY, USA,

1989. Elsevier Science Inc.

225

[82] Jakob Nielsen. Finding usability problems through heuristic evaluation. In CHI ’92:

Proceedings of the SIGCHI conference on Human factors in computing systems, pages

373–380, New York, USA, 1992. ACM Press.

[83] Chris North and Ben Shneiderman. Snap-together visualization: A user

interface for coodinating visualizations via relational schemata. In Ad-

vanced Visual Interfaces, pages 128–135. World Scientific Publishers, 2000.

http://www.citeseer.ist.psu.edu/article/north00snaptogether.html.

[84] Chris North and Ben Shneiderman. Snap-together visualization: Can users construct and

operate coordinated visualizations? In Advanced Visual Interfaces, pages 128–135. World

Scientific Publishers, 2000. http://www.citeseer.ist.psu.edu/north00snaptogether.html.

[85] Lucy Terry Nowell, Robert K. France, Deborah Hix, Lenwood S. Heath, and Edward A.

Fox. Visualizing search results: some alternatives to query-document similarity. In SIGIR

’96: Proceedings of the 19th Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval, pages 67–75, New York, USA, 1996. ACM

Press.

[86] Vicki L. O’Day and Robin Jeffries. Orienteering in an information landscape: how infor-

mation seekers get from here to there. In CHI ’93: Proceedings of the SIGCHI conference

on Human Factors in Computing Systems, pages 438–445, New York, USA, 1993. ACM

Press.

[87] Robert N. Oddy. Information retrieval through man-machine dialogue. In Journal of

Documentation, volume 33(1), pages 1–14. Emerald Group Publishing Limited, 1977.

[88] Christopher Olston and Ed H. Chi. Scent Trails: integrating browsing and searching on

the web. In ACM Transactions on Computer-Human Interaction, volume 10(3), pages

177–197, New York, USA, 2003. ACM Press.

[89] Tiger OSX 1.4 operating system. Apple computers inc. (website), August 2006.

www.apple.com.

[90] Windows O/S. Microsoft corporation. (website), August 2006. www.microsoft.com.

[91] Ramana Rao and Stuart K. Card. The table lens: merging graphical and symbolic repre-

sentations in an interactive focus + context visualization for tabular information. In CHI

’94: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,

pages 318–322, New York, USA, 1994. ACM Press.

226

[92] Harald Reiterer, Gabriela Tullius, and Thomas M. Mann. Insyder: a content-based visual-

information-seeking system for the web. In International Journal on Digital Libraries,

volume 5(1), pages 25–41. Springer-Verlag, 2005.

[93] Jonathan Roberts, Nadia Boukhelifa, and Peter Rodgers. Multiform Glyph Based Search

Result Visualization. In Proceedings of Information Visualization 2002, pages 549–554.

IVS, IEEE, July 2002. http://www.cs.kent.ac.uk/pubs/2002/1371.

[94] Jonathan C. Roberts, Nadia Boukhelifa, and Peter Rodgers. Visual Depictions of Search

Results: using glyphs and coordinated multiple-views. In YLEM Journal (Artists us-

ing science and technology), volume 24(2), pages 8–10. YLEM, CA, USA, January 2004.

http://www.cs.kent.ac.uk/pubs/2004/2025.

[95] Jonathan C. Roberts and Edward Suvanaphen. Visual bracketing for web search result

visualization. In IV ’03: Proceedings of the Seventh International Conference on Informa-

tion Visualization, page 264, Washington, DC, USA, 2003. IEEE Computer Society.

[96] George G. Robertson and Jock D. Mackinlay. The document lens. In UIST ’93: Proceed-

ings of the 6th annual ACM symposium on User interface software and technology, pages

101–108, New York, USA, 1993. ACM Press.

[97] Tefko Saracevic. The stratified model of information retrieval interaction: Extension and

applications. In Proceedings of the ASIS (American Society for Information Science)

Annual Meeting, volume 34, pages 313–27. Wiley periodicals inc, 1997.

[98] Opera search engine. Opera software. (website), August 2006. http://www.opera.org.

[99] Marc M. Sebrechts, John Cugini, Sharon J. Laskowski, Joanna Vasilakis, and Michael S.

Miller. Visualization of search results: A comparative evaluation of text, 2d, and 3d

interfaces. In Research and Development in Information Retrieval, pages 3–10. ACM

press, 1999. http://www.citeseer.ist.psu.edu/sebrechts99visualization.html.

[100] Ben Shneiderman. Designing the user interface. Addison-Wesley, 1998.

[101] Thumb shots. Thumbnails search engine. (website), August 2006. www.thumbshots.org.

[102] Craig Silverstein, Monika Henzinger, Hannes Marais, and Michael Moricz. Analysis of a

Very Large Altavista Query Log. In ACM SIGIR Forum, volume 33(1), pages 6–12. ACM

press, 1998. http://www.citeseer.ist.psu.edu/silverstein98analysis.html.

[103] Amanda Spink. Study of interactive feedback during mediated information retrieval. In

Journal of the American Society for Information Science (JASIS), volume 48(5), pages

382–394. John Wiley and Sons, New York, 1997.

227

[104] Amanda Spink, Minsoo Park, Bernard J. Jansen, and Jan Pedersen. Multitasking during

web search sessions. In Information Processing and Management, volume 42(1), pages

264–275. Elsevier Science, 2006.

[105] Anselm Spoerri. Metacrystal: visual interface for meta searching. In CHI ’04: Extended

Abstracts on Human Factors in Computing Systems, pages 1558–1559, New York, USA,

2004. ACM Press.

[106] Anselm Spoerri. Toward enabling users to visually evaluate the effectiveness of different

queries or engines. In Journal of Web Engineering, volume 3(3-4), pages 298–313. Rinton

Press, 2004. http://www.scils.rutgers.edu/ aspoerri/Publications/JWE2004public.pdf.

[107] Stephen K. Stoan. Research and library skills: An analysis and interpretation. In College

and Research Libraries, volume 45(2), pages 99–109. Association of College and Research

Libraries, 1984.

[108] Sue Stone. Humanities scholars: Information needs and uses. In Journal of Documentation,

volume 38, pages 292–312. Emerald Group Publishing Limited, 1982.

[109] Bongwon Suh, Allison Woodruff, Ruth Rosenholtz, and Alyssa Glass. Popout prism:

adding perceptual principles to overview+detail document interfaces. In CHI ’02: Proceed-

ings of the SIGCHI conference on Human Factors in Computing Systems, pages 251–258,

New York, USA, 2002. ACM Press.

[110] Edward Suvanaphen and Jonathan C. Roberts. Explicit versus Implicit: An

Analysis of a Multiple Search Result Visualization. In Ebad Banissi et al, edi-

tor, Information Visualization, pages 731–736. IEEE Computer Society, July 2004.

http://www.cs.kent.ac.uk/pubs/2004/1991.

[111] Edward Suvanaphen and Jonathan C. Roberts. Textual Difference Visualization of Mul-

tiple Search Results utilizing Detail in Context. In Paul G. Lever, editor, Theory and

Practice of Computer Graphics, pages 2–8, Bournemouth, June 2004. EGUK, IEEE Com-

puter Society. http://www.cs.kent.ac.uk/pubs/2004/1927.

[112] R. Swan, J. Allan, and D. Byrd. Evaluating a Visual Information Retrieval Interface: As-

pInquery at TREC-6. In CIIR technical report (Position paper for CHI 1998 Workshop on

Information Exploration), 1998. http://www.citeseer.ist.psu.edu/swan98evaluating.html.

[113] Russell C. Swan and James Allan. Aspect windows, 3-d visualizations, and indirect com-

parisons of information retrieval systems. In SIGIR ’98: Proceedings of the 21st Annual

International ACM SIGIR Conference on Research and Development in Information Re-

trieval, pages 173–181, New York, USA, 1998. ACM Press.

228

[114] Linda Tauscher and Saul Greenberg. How people revisit web pages: empirical findings

and implications for the design of history systems. In International Journal of Human-

Computer Studies, volume 47(1), pages 97–137, Duluth, MN, USA, 1997. Academic Press,

Inc.

[115] Anne M. Treisman and Gary Gelade. A feature-integration theory of attention. In

Cognitive Psychology, volume 12(1), pages 97–136. Elsevier Science, January 1980.

http://www.ncbi.nlm.nih.gov/entrez/.

[116] Aravindan Veerasamy and Nicholas J. Belkin. Evaluation of a tool for visualization of

information retrieval results. In Proceedings of the 19th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, pages 85–92. ACM

press, 1996. http://www.citeseer.ist.psu.edu/veerasamy96evaluation.html.

[117] Aravindan Veerasamy and Russell Heikes. Effectiveness of a graphical display of retrieval

results. In Proceedings of the 20th Annual International Conference on Research and

Development in Information Retrieval, pages 236–245, New York, USA, 1997. ACM Press.

[118] Java Programming Language (version 1.5). Sun microsystems. (website), August 2006.

http://java.sun.com.

[119] W. Wertheimer. Laws of organization in perceptual forms (untersuchungen zur lehre von

der gestalt ii). In Psycologische Forschung, volume 4, pages 301–350. Springer-Verlag,

1923.

[120] Wikipedia. online encyclopedia (website). http://en.wikipedia.org/, 2000.

[121] T. D. Wilson. On user studies and information needs. In Journal of Documentation,

volume 37(3-15). Emerald Group Publishing Limited, 1981.

[122] T. D. Wilson. Models in information behaviour research. In Journal of Docu-

mentation, volume 55(3), pages 249–270. Emerald Group Publishing Limited, 1999.

http://informationr.net/tdw/publ/papers/1999JDoc.html.

[123] Windiff. Microsoft sdk tools. (website), August 2006.

http://en.wikipedia.org/wiki/WinDiff.

[124] Jeremy M. Wolfe. Guided search 2.0. a revised model of visual search. In Psychonomic

bulletin and review, volume 1(2). Psychonomic Society Publications, 1994.

229

[125] Dietmar Wolfram, Amanda Spink, Bernard J. Jansen, and Tefko Saracevic.

Vox populi: The public searching of the web. In Journal of the Amer-

ican Society of Information Science, volume 52(12), pages 1073–1074, 2001.

http://www.citeseer.ist.psu.edu/wolfram01vox.html.

[126] Paint Shop Pro X. Corel Inc. (website), August 2006. http://www.corel.com/servlet/.

[127] Yahoo! Web search API, August 2006. http://developer.yahoo.com/search/.

230

