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ABSTRACT 

A study of adsorption equilibria of oxygen, nitrogen and 

oxygen-nitrogen mixtures on types 4A, 5A, 13X and Na-Mordenite mole- 

cular sieve pellets has been made. 

Pure component isotherms, using a volumetric apparatus, have 

been measured for each gas on each adsorbent at pressures up to 9 bar 

and for temperatures of 278.15,293.15 and 303.15 K. 

Curve fitting of the pure canponent isotherms has been attempted 

using the kinetic model of Gonzalez and Holland, the vacancy solution 

model, the statistical thermodynamic model and a mathematical equation 

similar to the Hill-de Boer model. With the exception of the kinetic 

model, good curve fitting was obtained. 

Binary equilibria data have been measured, using a constant 

volume method, for mixtures of oxygen and nitrogen at pressures of 

1.7 and 4.4 bar and at temperatures of 278.15,293.15 and 303.15 K 

for each of the adsorbents. These results have been presented graph- 

ically as equilibrium phase compositions and corresponding total 

adsorption loadings. 

The binary experimental equilibria data have been examined 

against values predicted by mixture models (kinetic model, the extended 

vacancy solution model, the statistical thermodynamic model, the Cook 

and Basmadjian model, and the ideal adsorbed solution theory) using 

regression parameters obtained from the pure component isotherms. The 

statistical thermodynamic model and the ideal adsorbed solution theory 

gave the best representation of the experimental data. 

The activity coefficients of the adsorbed phase for the binary 

experimental data have been calculated and the results showed no 

appreciable deviation of the adsorbed phase fron ideality. 
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CHAPTER 1 

INTRODUCTION 

Adsorption has become an important unit operation which is 

employed canmercially for the separation of a wide variety of gases. 

The adsorption of gaseous solutes from air in fixed beds is a basic 

operation in process technology and is used for purifying air by 

removing undesirable components, and may also be used. for separation 

of components as in oxygen enrichment. 

There are fundamentally two types of gas adsorption processes, 

which can be differentiated by the way in which adsorbed species are 

desorbed. In one type the adsorbed species are renoved by raising 

the temperature of the adsorbent and in the other type the total 

pressure of the. system is reduced to affect desorption. The first 

type is used when the solute constitutes only a small portion of the 

feed gas, while for bulk separation pressure reduction is the preferred 

mode of'separation. 

In this Chapter an introdaction to pressure swing adsorption 

(PSA) is presented, some of the characteristics of the zeolite mole- 

cular sieves are described and finally the objectives of the present 

work are outlined. 

1.1 Pressure Swing Adsorption (PSA) 

Pressure swing adsorption (PSA), which is a short time cycle 

adsorption/desorption process in fixed beds of adsorbent using gas 

pressure variation as the principal operating parameter, is beccaing 

increasingly popular for air separation(1'2'3). Up to 95 per cent pure 
t33 

oxygen may be produced. Since many of the applications of oxygen 

do not require the high purity of oxygen produced by cryogenic processes, 

PSA processes using zeolite adsorbents may be advantageous. 
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Although the technique of separation by PSA has been known for. 

at least twenty years with patents dating from 1960(4,5,6), it is 

regarded as a rather complex process. It includes separate adsorption, 

depressurization, desorption (regeneration) and repressurization steps. 

The regeneration step relies on contacting the adsorbent with a gas 

stream containing the adsorbate at a significantly lower pressure than 

the minimum level obtained during the adsorption part of the cycle. 

In practice, this is achieved by using part of the product stream fron 

the adsorption period as a purge at a reduced total pressure. * A 

typical two bed PSA process is shown in Figure 1.1. Commercially, in 

order to accommodate a steady flow of feed and product, several beds, 

usually three or more in parallel, are used 
(1). 

The design and optimization of PSA processes require basic 

experimental equilibria and rate data on the effect of temperature and 

pressure for each of the gases involved and their mixtures. Pure gas 

adsorption has been studied quite extensively 
7 22). 

An abundance of 

pure gas equilibria and rate data exist in the literature and good 

success has been achieved in the correlation of these data. By 

comparison, however, gas mixture data are extremely scarce and there 

is little published work on adsorption on zeolite molecular sieves. 

The development and commercial manufacture of zeolite molecular 

sieves have provided the primary impetus for the expanded industrial 

utilization of adsorptive processing in process cycles such as PSA. 

Numerous references detail their industrial scope(23) and their physical 
(24 

characteristics-27ý . However, a brief review will be of value'here. 

1.2 Characteristics of Zeolite Molecular Sieves 

Zeolites are crystalline hydrated alumina silicates of sodium, 
(24) 

potassium, magnesium, calcium, strontium and barium. When the 

ol 

water of hydration is driven off the crystal does not collapse or' 
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rearrange but rather gives cavities which are interconnected by empty 

pores of fixed and uniform dimension varying frcm about 3-10 Angstrom 

units in diameter. 

Structurally the-zeolites are "framework" alumino-silicates which 

are based on an infinitely extending three dimensional network of AM4 

and Sio4 tetrahedra linked to each other by sharing oxygen atoms. 

Generally they are represented by the following empirical formula: 

M2/nO. AR203. xSiO2. yH2O 

where M is the cation, n is the cation valency and x is generally equal 

to or greater than 2. 

The molecular sieving properties of zeolites are uniquely deter- 

mined by their pore diameters, the magnitude of which determines what 

size molecules are totally excluded from the interior of the zeolite. 

Quite apart from their molecular sieving effects zeolites are also 

effective in selectively adsorbing particular components from a mixture 

of molecules capable of penetrating the entire zeolite. This. is caused 

by the interaction of the zeolite with certain molecular parameters 

such as the dipole meanents(27). One selective adsorption that is being 

practised is the separation of oxygen from air by the preferred adsorp- 

tion of nitrogen. Another is the selective adsorption of sulphur 

canpounds from natural gas. A third is the selective adsorption of 

aromatics fron hydrocarbon mixtures. 

Compared with other adsorbents such as silica gel, activated 

alumina and activated carbon molecular sieve adsorbents can offer 

higher adsorption design loadings, resistance to fouling and coking, 

more complete impurity removal from the process stream and unique 

selective adsorption based on molecular size. In commercial operations 

these properties may lead to reduced adsorbent requirements, lower 
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pressure drop, greater operating flexibility, elimination or reduction 

of product loss due to co-adsorption, longer adsorbent life and more 

reliable and uniform performance 
(23) 

The molecular sieves which are of interest to air separation are 

type-A, - type X and mordenite-type. For types A and X, they are normally 

produced as types 4A (NaA) and 13X (NaX) in which sodium is the alkali 

metal. Through an ion exchange mechanism about 75 per cent of the 

sodium ions are replaced by calcium ions thus producing types 5A (CaA) 

and lOX (CaX). The effective pore diameters of all of these types are 

shown in Table 1.1 and the kinetic diameters for various gases are 

given in Table 1.2. 

In order to utilize the adsorption characteristics of. zeolites 

in separation processes, commercial molecular sieve adsorbents are 

prepared as pelleted agglomerates containing a high percentage of the 

crystalline zeolite together with the necessary amount of an inert 

binder amounting to about 20 per cent of the total weight of the pellet. 

Adsorption equilibrium in molecular sieves, has been extensively 

studied and the behaviour of single systems involving a single adsorb- 

able component is now fairly well understood. However, the practical 

applications of zeolites as selective adsorbents generally involve the 

adsorption of multicomponent mixtures. Available experimental data 

for such systems are very limited. This is true in adsorption involving 

binary gas mixtures'of oxygen and nitrogen. Only three reported works 

appear in the literature 
(28,29,55) 

, one of which 
(29) 

has been carried 

out at a low temperature (-129°C) which would be uneconcmical on a 

commercial scale for separating air compared to other methods(27) In 

the other two works, very limited data are presented on type 5A mole- 

cular sieve 
(28,55) 

and the mordenite type 
(55) 

A number of techniques for predicting binary equilibria adsorption 



-6- 

TABLE 1.1 

Nominal Pore Diameters for Different Zeolites(24) 

Type Nominal Pore Diameter 
Ao 

4A 4 

5A 5 

13X 10 

lox 8 

Na-Mordenite 6.7 

TABLE 1.2 

Kinetic Diameters for Various Gases(24) 

Gas Kinetic Diameter 
A 

He 2.6 

H2 2.89 

Ar 3.4 

02 3.46 

N2 3.64 

CO 3.76 

Co2 3.3 

SO2 3.6 

H2S 3.6 

CH4 3.8 

C2H2 3.3 

C2H4 3.9 

C3H8 4.3 

Cyclopropane 4.23 

Propylene 4.5 

Benzene 5.85 

Cyclohexane 6.0 
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from pure component isotherms have been published(30-43). The lack 

of a comparative analysis of their merits due to lack of experimental 

data makes it difficult to choose between one method and another. 

Therefore the objects of the present investigation included a quanti- 

tative comparative analysis. 

1.3 Objectives of'-Present Work 

The objectives of the present work were: 

1. Experimental 

(a) To measure oxygen and nitrogen isotherms on a variety of 

molecular sieve adsorbents at three temperatures, 278.15, 

293.15 and 303.15 K with pressures up to 9 bar. 

(b) To measure binary equilibria of oxygen-nitrogen mixtures on 

the same variety of adsorbents at the same temperatures and 

two different pressures, namely 1.7 bar and 4.4 bar. 

2. Theoretical 

(a) To analyse and correlate the isotherm data with recent models 

published in literature. 

(b) To evaluate the usefulness of the above models by predicting 

the binary equilibria data and comparing the results with the 

experimental data. 

(c) To measure the deviation of the binary system from ideal. 

behaviour in the adsorbed phase by calculating the activity 

coefficients. 

The adsorbents studied in this work were Laporte type 4A, 5A and 

13X and two other samples provided by EKA (Sweden). In this work these 

two samples are referred to as EKA 5A and Na-Mordenite. 

The oxygen and nitrogen gases used were BOC commercial grade. 
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CHAPTER 2 

LITERATURE SURVEY 

In this Chapter a brief review is made of models correlating 

pure component isotherms and prediction theories for gas-mixture 

adsorption. The thermodynamics of adsorption are also described. 

The phenomenon of adsorption of a solute on a solid surface may 

be a result of intermolecular forces of the van der Waal type between 

solid molecules and solute molecules colliding with the solid surface, 

or a result from a chemical interaction between the solid and the 

adsorbed component. The process in the first case is known as physical 

adsorption and the latter as chemisorption. The chemisorption process 

is of fundamental importance in the field of catalysis but is not 

normally of interest in relation to adsorption as a means of 
. 

separation 

for it is commonly irreversible. 

In physical adsorption the gas molecules will tend to attach 

themselves onto the surface of the adsorbent when the intermolecular 

forces between the solid and gas phase are greater than those between 

the gas molecules themselves. In general terms a dynamic equilibrium 

is established between the rate at which gas molecules condense on the 

surface and the rate at which they escape to the bulk gas phase. For 

a given system the position of this equilibrium is determined by the 

temperature of the system and the pressure of the gas. Physical adsorp- 

tion is readily reversible and is accompanied by evolution of heat due 

to phase change. 

The process of adsorption of a gas molecule from a flowing bulk 

gas stream by a commercial moleculer sieve pellet in a bed of adsorbent 

may be described by the following steps. 

6 
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(a) Transfer of the adsorbate from the bulk stream across a 

fictitious film to the surface of the pellet. 

(b) Transfer of the adsorbate through the macropore structure 

of the clay binder to the surface of the zeolite crystal. 

(c) Adsorption of the gas molecule onto the surface of a zeolite 

crystal. 

(d) Penetration by the adsorbate molecule into the intracrysta- 

lline cavity of the zeolite crystal. 

(e) Heat release at the surface of crystal due to phase change. 

(f) Transfer of the generated heat to the surface of the pellet 

by conduction. 

(g) Transfer of the generated heat frag the surface to the bulk 

gas stream. 

(h) Transfer of the heat from the bulk gas stream into the wall 

of the container holding the molecular sieve pellets. 

If all the heat transfer rates (items f-h) tend to infinity 

isothermal adsorption takes place. 

2.1 Thermodynamics of Adsorption 

The thermodynamics of physical adsorption equilibrium has been 

(44) (36) (45) discussed by Hill , Myers and Prausnitz, and Van Ness. The 

validity of thermodynamic equations to the adsorbed phase is based on 

the following assumptions. 

(a) The adsorbent is assumed to be thermodynamically inert. 

(b) The adsorbed phase (or the 2-D phase) is considered to be 

in thermal and mechanical equilibrium with the adsorbent 

solid and the gas phase (3-D phase) and the adsorbed phase 

is in phase equilibrium only with the gas phase. 

(c) The adsorbent possesses a surface area which is an indepen- 

dent variable uninfluenced by temperature, pressure, canpo- 
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sition or the amount of the material adsorbed. This 

assumption is not valid for a molecular sieve adsorbent 

because the area of adsorption depends on the molecule 

size. But later in this Chapter it will be shown how this 

can be overceme. 

(d) The Gibbs definition of adsorption holds. This means a 

negligible adsorbed phase volume. 

For a 3-D fluid phase the fundamental thermodynamic property is 

given by: 

d (nU) Td(nS) - Pd(nV) +E (uidni) (2.1) 

The basic equation for the 2-D phase is analogous to Equation (2.1) 

with the pressure and volume terms replaced by the appropriate coordi- 

nates for a 2-D phase. Thus the pressure is replaced by the spreading 

pressure, r, and the molar volume by the molar area, a. 

d(nU) = Td(nS) - Trd(na) + E(uidni) (2.2) 

Equation (2.2) is the fundamental property relation since all other 

equations interrelating thermodynaaaic properties such as enthalpy, H, 

Helmholtz-free energy, F, and Gibbs-free energy, G, of the 2-D phase 

are derived from it. 

Expanding the differentials of Equation (2.2) and replacing ni 

by nxi gives: 

n(dU - TdS + nda - Euidxi) + dn(U - TS + na - Euixi) =0 (2.3) 

Since n and do are independent and arbitrary the terms between the 

parentheses must separately be zero. 

dU = TdS - nda + Euidx 
1 (2.4) 
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U= TS - Tra+Euixi (2.5) 

Equating the differential of U fron Equation (2.5) to that of Equation 

(2.4) gives the Gibbs-Duhem equation for the 2-D phase: 

-SdT + adir - Exidui =O (2.6) 

Restricting Equation (2.6) for a constant temperature gives the Gibbs 

adsorption isotherm: 

ad7r - Exidui =0 (constant T) (2.7) 

When one uses the equilibrium criterion that the chemical potential 

of each species present is the same in both the adsorbate and gas phase 

and assuming ideal gas behaviour: 

diti = duig = RT d £n y? (2.8) 

The Gibbs adsorption isotherm then becomes: 

-adir + RTE(x d in yIP) =0 (constant T) (2.9) 

For a binary gas mixture at constant temperature and pressure: 

A dir "x 1-yi 
_ nt (1-y) dy1 (2.10) R yl 1 

For a pure adsorbate, Equation (2.9) becanes: 

T7r 
+d in P=O (2.11) 

Equations (2.10) and (2.11) are the basic thermodynamic equations for 

a binary gas mixture and pure gas isotherm models respectively. It will 

be shown later in this Chapter how pure component isotherms or gas 

mixture models are derived frcm these equations. 
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A proposed model for the description of the equilibrium between 

the gas phase and the adsorbed phase is said to be thermodynamically 

consistent if it satisfies the Gibbs adsorption isotherm equation. 

2.2 Pure Gas Adsorption Theories 

Adsorption theories of pure gases on solids can be classified 

into the following groups. 

(a) Kinetic models based on ideal localized adsorption. In 

this group falls the basic Langmuir equation and its 

(46-52,31) by other authors extensions by other authors 

(b) Models based upon mobile monolayers. The basic theory is 

that the adsorbed phase may be characterized by a two- 

dimensional equation of state(7,54,56-63). 

(c) Potential theory of Polanyi and its extensions by other 

authors(33,81,64,65), 

(d) Statistical thermodynamics model by Ruthven and co-workers 
(67,68). 

(e) The vacancy solution model by Suwanayuen. and Danner 
(69). 

2.2.1 Kinetic models 

The first theoretical treatment of adsorption isothezms was done 

by Langmuir(46,47). He applied both kinetic and thermodynamic consid- 

erations to a monolayer adsorption model in order to obtain the 

expression: 

n K'P 

n 1+K'P (2.12) 
m 

Implicit in its development were the following assumptions. 

1. The adsorbate in the bulk gas phase behaves as an ideal gas. 

2. The amount adsorbed is confined to a monoiolecular layer. 

3. Every part of the surface has the same energy of adsorption. 
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4. Negligible adsorbate-adsorbate interaction. 

S. The adsorbed molecules are localized, i. e. they have definite 

points of attachment to the surface. 

Many workers 
(7,17,70-74) 

used the Langmuir model for correlation 

of adsorption isotherms or for developing models describing the rate 

of diffusion of gases into molecular sieves and it has been found to 

have limited applicability. 

The Langmuir equation has provided a source for numerous modified 

equations 
(31,48-52,75) 

. The extension of Langmuir model for multilayer 

adsorption by Brunauer et al (BET theory) received more attention. The 

BET equations derived by Hill 
(52) 

using statistical mechanics are shown 

below for an infinite number of layers and also for m layers. 

C P/Ps 

nm (1 - P/Ps) (1 - (1 - C)P/Ps) 
(2.13) 

nc 
(P/Ps) 1- (m + 1) (P/PS)m +m (P/Ps)m+l 

(2.14) 
na1- (P/P) m+l 

ss 
in s1+ (C - 1) (P/P) -C (P/P) 

Implicit in these equations is the assumption that the formation of the 

mth layer depends on the (m-l)th layer. The BET theory found great use 

in the field of determination of specific surface area of adsorbents 
t76). 

In another modification of Langmuir's theory, Gonzalez and 

Holland 
(31,75) 

developed a kinetic model based on multilayer adsorption 

by assuming that the ratio of the adsorption equilibrium constants of 

consecutive adsorbed layers are equal and is the same for any gas over 

the same adsorbent. The expression so obtained for the amount of gas 

adsorbed in m layers is given by: 

(m-1) m 

l+K P 
J{1 

+Ox + 03(K1 P)2+ .... +8 
2 

(K1P)m-1 
1 

(2.15) 
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where: 

9= K2 =K=.... =K (2.16) 
12 m-1 

The variations of nm,, 9 and K1 in Equation (2.15) with temperature is 

accounted for by use of expressions of the form: 

C2/T 
nm = C1e 

For the data collected by Gonzalez and Holland 
(75) for the adsorption 

of hydrocarbons on activated carbon and silica gel they found that the 

contributions of the third and higher order layers were negligible and 

thus their equation was used for two layers. 

In general the kinetic models have two major disadvantages: 

(a) The experimental isotherms usually do not conform with the 

" simple equations' of these models due to the simplifying 

assumptions embedded in them. Their deficiency will be 

more pronounced when such models are used for prediction 

of multi-component adsorption. 

(b) They are thermodynamically inconsistent, i. e. they do not 

satisfy the Gibbs adsorption isotherm (Equation (2.11)) 

unless the value of the mcnolayer coverage, nm, is the sane 

for each gas studied on the same adsorbent. This means 

that if such models'are used to correlate the adsorption 

isotherms of say two gases on certain adsorbents, the 

curve fitting procedure of the experimental isotherms should 

be done simultaneously for obtaining the same value of n m 
for each gas. This again will attribute to poor curve 

fitting if the affinities of two gases in the adsorbent 

vary widely. 
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2.2.2 Two-dimensional isotherm theories 

Two-dimensional equations of state, relating spreading pressure 

(it), area (A), and temperature (T), have been used by many investi- 

gators(7,54,56-63) to obtain equations for expressing the amount of 

gas physically adsorbed as a function of pressure and temperature. 

In the 3-D phase (gas phase) the equation of state describing 

the volumetric behaviour of the gas phase is represented in a general 

form by: 

P RT f (V, T) (2.17) 

and: 

Rim f(V, T) 
I 
V 

P-*O 

Similarly for a 2-D phase (adsorbed phase) the equation of state 

describing its behaviour may be represented by: 

it = RT g (a, T) (2.18) 

and: 

Rim g (a"T) =1 a 
lr-+O 

Introducing the concept of the fraction monolayer capacity of adsorbent 

which is expressed by: 

ýn_ß 
na m 

where ß is defined as the molar area of adsorbate at full monolayer 

capacity. 

Equation (2.18) may thus be written as: 

RT 
ß9 

(ý, T) 
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At constant temperature the total derivative of lr is: 

dir = 
RT (3 -.! j 

1Idý 
(2.19) 

Substituting for a in Equation (2.11) and equating the differential of 

it with Equation (2.19) yields: 

d Ln P-a 
iT)d (2.20) 

l atJ 
T 

Integrating: 

In P= Ia 
a(ý'T)J d £n'$ + kn K(T) 

lT 
0 

where Ln K(T) is an integration constant, hence the general isotherm 

equation may be written as: 

P= K(T) . G(ý, T) (2.21) 

The general restriction for the function G is: 

Lim G($, T) = 

If an ideal gas law is assumed to describe the two dimensional 

phase, a linear adsorption isotherm (Henry's law) is obtained. 

Adsorption is characterized by two types of interaction. At 

very low coverage (Henry's law region) lateral interactions between 

adsorbed molecules are negligible and equilibrium data obtained in 

this region are directly dependent on the vertical interaction, that is, 

the interaction between the adsorbent and the adsorbing molecules. 

For a homogeneous surface, this interaction is uniform all over the 

surface. Lateral interactions are caused by the non-ideality of the 
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two-dimensional film that constitutes the adsorbed monolayer and the 

2-D equation of state chosen must account for this non-ideality. 

Table (2.1) represents typical adsorption equations derived through 

the procedure outlined above. One of the most canmori used equations 

of state is the Hill De Boer-59). This is based on the use of the 

2-D analogue of the van der Waals equation of state: 

2 
n= 

RT 
- 

R- 
2 

(2.22) 

Several investigators (7'S8'77'78) have applied the Hill De Boer 

equation for correlating their adsorption data. In the analysis and 

interpretation of equilibrium data for zeolitic adsorption this model 

has a limited applicability. Although an apparently satisfactory 

correlation of equilibrium data is obtained, the basic assumptions 

fron which the model isotherm is derived is generally not fulfilled 

and it is therefore doubtful whether the parameters have a real physical 

significance.. The main defect has been attributed towards the hetero- 

. geneity of the adsorbent which is not accounted for by the model(7) 

Ross and Olivier 
(56,57 ) developed a model to account for hetero- 

geneity of adsorbents. The heterogeneous surface is visualized as a 

large collection of homogeneous patches each of which is characterized 

by a particular adsorption potential and the adsorption isotherm for 

each patch is given by the Hill De Boer equation. The distribution of 

the adsorption potential over the entire heterogeneous surface was 

selected to be according to the Gaussian distribution function: 

1 
-(u 0i_ 

v0) 
2 

F(Uo) = exp 2 (2.23. ) 
1 sý 2s 

The degree of surface coverage of the whole surface is obtained by 
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integrating 4i over all the patches: 

. 00 

F (Uo) d U0 (2.24) 

'ýi 

Although the model has the advantage of obtaining constants 

which are not affected by the surface heterogeneity of the adsorbent, 

its ccmplexity prohibits its use for other applications such as kinetic 

modelling. When this model was extended for the prediction of gas 

mixture adsorption by Hoory and Prausnitz(32) it required a correlating 

parameter and therefore such a model will be a correlating model rather 

than a predictive one. 

Other groups of investigators 
(60-63) 

applied virial-type adsorption 

equations truncated at an appropriate point for representing pure gas 

data. However when such models are used for the prediction of gas 

mixture equilibrium improved results are obtained by adding higher 

order terms. In this case the correlation becomes more empirical and 
(61, 79,80). the value of its parameters exhibit randaa behaviour 

2.2.3 Potential theory 

Polanyi 
(81) 

defined the adsorption potential as the free energy 

change in transferring a gas molecule to the adsorbed phase. A chara- 

cteristic curve which is the relationship between n, the moles adsorbed, 

and E, the potential, is formed using the Polanyi theory. The main 

assumption of the potential theory is that E is independent of temper- 

ature and is a function of the volume of the adsorbed phase. The 

familiar equation for this adsorption potential is: 

P 
E=n. RT In p 

(2.25) 

In an extension of the Polanyi theory, Dubinin et a1(65) suggested 

that similar types of adsorbates on a given adsorbent would have equal 
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adsorption potentials when equal amounts were adsorbed. The amount 

adsorbed was calculated as the moles adsorbed, n, times the molar 

volume of the adsorbate, VL, measured as a saturated liquid at the 

temperature of adsorption. They arrived at the following equation: 

a 
VT In 

[ 
-Ps) 

gas 1 

RT T In 
pP 

gas 2 

This means that if the amount adsorbed is plotted against: 

VT In 
pI 

-S P L 

(2.26) 

all points for similar adsorbates should fall on one curve. 

Later Lewis et al modified Equation (2.26) to allow its use 
(65) 

for temperatures above the critical point and to correct for non- 

idealities in the gas phase at higher pressures. They proposed: 

_f= 
RT In f 
VL 

1 

fs 
RT 

In 
Vf 

L2 
(2.27) 

where VL is the molar volume of adsorbate as a saturated liquid at 

the adsorption pressure. 

Maslan et a1(34) found that the Lewis correlation gave separate 

lines for the adsorption of oxygen and nitrogen on carbon at -150°C. 

Grant and Manes 
(33) 

suggested the use of the molar volume of the 

adsorbate as a saturated liquid at the normal boiling point. They 

re-correlated Maslan et al results but still obtained two separate 

Curves. 

Dubinin(64) suggested that for different adsorbates the forces 

of attraction of the molecules to the surface of adsorbent are not the 

same and he then introduced the concept of the coefficient of affinity 
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B. He defined the coefficient of affinity to be the ratio of the 

adsorption potential of the adsorbates. According to the theory of 

dispersion interaction 
(81) 

the ratio of interactions of two adsorbates 

could be approximated by, the ratio of the polarizability of their 

molecules. Hence: 

B_ 
El a pl 

E2 ap2 
(2.28) 

For molecular sieves Dubinin defined the equation of the characteristic 

curve to be of the form: 

n nm exp (-k E2/B2 ) (2.29) 

It should be noted that n and k are the characteristics of the adsor- m 
bent and are not dependent on the adsorbate used. 

Dubinin suggests the following approaches for defining both the 

adsorbed phase volume, VL, and the saturation vapour pressure, P 

Adsorbed phase volume, VL 

(a) For temperatures below the normal boiling point the normal 

saturated liquid volume at the adsorption temperature is 

used. 

(b) For temperatures between the normal boiling point and the 

critical temperature a linear interpolation between the 

molar volume at the notmal boiling point and the van der 

Waal's co-volume, b, is used. 

(c) For temperatures above the critical temperature the liquified 

volume of adsorbate, VL, is taken to be equal to the van der 

Waal's co-volume, b. 

Saturation vapour pressure, Ps 

(a) For all temperatures below the critical temperature, Tc, 
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the saturation vapour pressure is taken from tabular data. 

(b) Above the critical temperature the following expression is 

used: 

2 P 
T c E= RT In 

T 
c 

(2.30) 

Danner 
(74) 

correlated his adsorption data of oxygen, nitrogen 

and carbon monoxide on molecular sieves, type 5A and 10X, using Aubinin's 

interpretation of the potential theory but he obtained different values 

of k and nm for each adsorbate. 

In another modification of the potential theory Cook and. 

(82) 
Basmadjian suggested that the adsorbed phase volume is estimated 

in terms of the saturated liquid properties. 

VL = v1 

for temperatures less than the boiling point. 

oTm. VL vl 
To 

for temperatures greater than the boiling point of the liquid. The 

and m for oxygen and nitrogen are given below 0 values of vi ,To 
ýýý 

To K v1 m3/moll m 

oxygen 90.18 
, 
2.8176 x 10- 5 

0.3844 

nitrogen 77.35 3.5210 x 10 5. 
0.00404 

On comparing the values obtained for VL for oxygen and nitrogen 

at the temperatures of this present work by the methods of Cook and 

Basmadjian and Dubinin, wide discrepancies were obtained. 
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The main advantage of the Polanyi theory is that isotherms of 

similar adsorbates can be predicted by knowing the characteristic 

curve of the adsorbent. However, this has to be balanced against the 

fact that no accurate correlation of isotherms could be obtained for 

some gases and investigators interpreted differently the choice of the 

molar volume of the adsorbate, VL. 

2.2.4 Statistical thermodynamic theory 

Ruthven and co-workers 
(S-7'68) derived an isotherm model for 

adsorption on zeolites, based on statistical thermodynamics. The model 

isotherm is based on the following assumptions. 

(a) The rate of interchange of adsorbate molecules between 

zeolite cavities is sufficiently low so that the system 

can be treated as if a given adsorbate molecule is confined 

to a particular cavity but not adsorbed at specific local- 

ized sites within the cavity. 

(b) The molecular interaction between molecules in the same 

cavity is represented by a reduction in the free volume of 

the cavity due to the finite size of occluded molecules. 

(c) The effect of adsorbate molecules in the neighbouring cavities 

are neglected. 

(d) The adsorbate-adsorbent interaction is characterized by the 

Henry's law constant which may be determined experimentally 

from the limiting slope of the isotherm at low concentrations. 

The equation for isotherms thus obtained was: 

KP + (KP) 
2 

(1 - 2ß/v) 
2+.... 

+ (M-1) 
(1 - bi-ß/V) 

_ 1+ KP + 
2: (KP) 2 (1 - 2ß/v) 2+.... 

+t (1 - Mß/v)M 

(2.31) 
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The saturation limit M (an integer) is determined by the 

condition M v/ß since the teen (1 - Mß/v) cannot be 

negative. 

From the model isotherm it can be seen that for very low pressures 

higher orders of i5? can be neglected and hence the equation reduces to 

the Langmuir model. 

In the original development of the theory the adsorbate-adsorbate 

interaction has been accounted for but Ruthven and co-workers 
(68) found 

that it is generally small and can be neglected. 

The isotherm model now contains only two adjustable parameters, 

the Henry's law constant, i, and the effective co-volume of the adsor- 

bate, T. Ruthven and co-workers suggested that ß can be estimated 

according to Dubinin's interpretation of the molar volume of adsorbate 

(see Section 2.2.3) and the Henry's law constant can be either estimated 

by the limiting slope of the isotherm at low concentrations or by curve 

fitting the theoretical isotherm to the experimental data. 

The main difficulty in the application of this model seemed to 

be the accurate estimation of the co-volume of the adsorbate. In a 

later publication Ruthven(28) suggested that by matching the experi- 

mental data to a family of theoretical isotherm curves calculated for 

different values of the parameter (v/ß), the appropriate values of 

both and ß can be found. 

This model has been successfully used to correlate single coxpo- 

.. nent equilibrium data for the light paraffins(6? 
3) 

, olefins(14)r oxygen, 

nitrogen and carbon monoxide 
(28) 

on type A zeolite and ethane and 
, 

ethylene on type 13X zeolite(78). However, the model was found to be 

unsatisfactory for high adsorbate loadings at a value of n/M = 0.7(68). 
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2.2.5 The vacancy solution model 

Suwanayuen and Danner 
(69) 

developed an isotherm equation based 

on treating the adsorption equilibrium as an osmotic equilibrium between 

two vacancy solutions (gas phase and adsorbed phase) having different 

compositions. The vacancy solution is canposed of the adsorbates and 

vacancies which are vacuum spaces acting as a solvent for the system. 

Using the equilibrium criterion that the chemical potential of both 

phases must be equal, they derived the following equation of state for 

the adsorbed phase: 

-RT In 13 Xis (2.32) 
a3 

where a3 is the partial molar surface area of the vacancy and is given 

by: 

A 
a3 =n (2.33) 

m 

xis is the mole fraction of the vacancy and is given by: 

x3 s= (1 -0 

The non-ideality of the adsorbed solution is accounted for by 

the activity coefficient 13 whose composition dependence could be 

expressed by a'two-suffix Margules equation 
(83). 

Ln Y3 = 
T3 (Xls) 

2. 

or by Wilson's equation 
(83). 

(2.34) 

AA 
kn Y3 in (xs + A31 xlS) xs 

13 
- 

31 
1 

x1 + A13 xis xis + A31 x1S 

(2.35) 

In both equations x1s is the fraction coverage and is given by: 
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1n 
m 

(2.36) 

The equation of state (Equation (2.32)) together with the Gibbs 

adsorption equation (Equation (2.11)) were used to develop the isotherm 

equation depending on the choice of the activity coefficient expression. 

For the 2-suffix Margules equation: 

n -2 w13 
exp 

¢ 
(2.37) b 1-ý RT 

Whilst for Wilson's equation: 

(1-A31) 

b1-ý X15 
A31 + (1 - A13) 

1A31 (1 - A31) 4 (1 -. A13) ". 
P [i_ 

(1-A31) ý A13+ (1-A13) ý 

(2.38) 

The integration constant, b, is defined so that there is agreement with 

Henry's 1aw (see Table 2.1) as the pressure approaches zero. 

From the isotherm equation it is seen that the Langmuir model will 

be approached if the non-ideality of the adsorbed phase is neglected, 

that is, if A13 = A31 1. 

The isotherm model using Wilson's equation (Equation (2.38)) has 

been tested by the authors for the adsorption of oxygen, nitrogen, 

carbon monoxide on zeolite type 10X and hydrocarbons and carbon dioxide 

on activated carbon at different temperatures. They found the correlation 

was successful for both adsorbents. 
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2.3 Prediction Theories for Adsorption of Gaseous Mixtures 

In the case of adsorption of. gas mixtures at a given tanperature 

and pressure a caaplete specification of the system is given by the 

total amount adsorbed and the compositions of both the gas and the 

adsorbed phase. 

In a binary mixture, as in the case of vapour-liquid equilibrium, 

a relative volatility has been defined as: 

y1/x1 
a1,2 = y2/x2 

(2.39a) 

In adsorption work, a selectivity coefficient has been defined (36): 

xl/y1 1 
S1,2 

X2/Y2 a1,2 
(2.39b) 

The selectivity coefficient, S1, `, is greater than unity if component 

1 is the more strongly adsorbed whilst the relative volatility, a1,2, 

is greater than unity if component one is less adsorbed. 

Prediction theories for the adsorption of gaseous mixtures can 

be classified into the following groups: 

(a) extensions of pure gas equations; 

(b) extensions of the Polanyi Potential Theory; 

(c) empirical methods; 

(d) ideal adsorbed solution theory; 

(e) real adsorbed solution theory. 

2.3.1 Extensions of pure gas equations 

In this group the gas-mixture adsorption equilibrium is derived 

in terms of parameters of the pure gas isotherm equations. The deri- 

vation can be classified into the following sections. 

(i) Derivations based on ideal localized adsorption. In 

I 
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this group comes the various extensions of the Langmuir 

theory for gaseous mixtures 
(31,53,75,84-86) 

0 

(ii) Derivations based on mixed mobile adsorption. This is 

an extension of the two-dimensional equation of state 

. developed for the pure component system(7'32) 

(iii) Extension of the statistical thermodynamics model for 

gaseous mixtures 
(42) 

. 

2.3.1.1 Extensions of Lanumuir theo 

Markham and Benton 
(84) 

were the first to extend the Langmuir model 

for the adsorption of gaseous mixtures. They considered the kinetics 

of simultaneous adsorption to derive the following equation for a 

binary mixture for the adsorption of ccmponent one: 

nl Kl P1 

m 1+KjP1+K2P2 
1 

(2.40) 

Later Kemball et a1(85) pointed out that Markani extensions for 

Langmuir theory is thermodynamically inconsistent if different values 

of n are used, because according to the Gibbs adsorption formula it 

is stated that the area of each site is a fixed quantity determined 

solely by the geometry of the surface. Postulating separate nm values 

also makes the correct derivation algebraically impossible since the 

fraction of the surface uncovered with the gas is now given by the 

term: 

n n l 2 1- - n n m m l 2 

a quantity which has no limiting meaning unless n=n ml m2 
By use of statistical thermodynamics Kernball et al surmounted the 

problem of using different values of m and arrived at exactly the same 
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equation but with a constant value of nm for both components. The use 

of a constant value of m yields equations in term of adsorbed phase 

composition in which the tens nm no longer exists: 

(Ki/K2) yl 
xl 1+( (Ki/K2) - 1) yl 

(2.41) 

The extended Langmuir model has been used by Danner 
(74) for 

predicting binary equilibrium of 02-N2, N2-Co, Co-02 on zeolite mole- 

cular sieves, type 5A and lOX, but poor predictions were obtained. 

Hill 
(53) 

extended the multilayer BET theory to gaseous mixtures 

and arrived at a complex equation which has been simplified by Arnold-(86) 

by assuming that Raoult's law was applicable. Thus Arnold showed that: 

nl 

n m 

C1LlC1- (1-C/C1)L 

(1 - L) (1 - (1 - C) L) 
(2.42) 

where: 

rr 
L1 Pl/PS ,L=E Lj ,C=E Cj Lj/L 

1 j=i j=l 

The extended BET theory has been tested by White and Schneider 
(87) 

for the adsorption of binary mixtures of 02 N2 and 02 Ar on chromic 

oxide gel, by Arnold 
(86) 

for the adsorption of 02-N2 on Anatase and 

by Danner 
(74) 

for the adsorption of 02 N2, N2-Co and 02-Co on zeolite 

molecular sieves, types 5A and lOX. All the three investigators have 

found great deviations from the experimental and the predicted values. 

However, Mason and Cooke 
(88) 

applied the BET theory for the adsorption 

of hydrocarbon mixtures on silica gel and their experimental data were 

predicted reasonably good. 

The bi-molecular kinetic model of Gonzalez and Holland 
(31,75) for 

a gaseous mixture is given by: 
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n K1 P1 (1 +AE K1 P1) 

nl (1 +E K1 P1) (2.43) 

implicit in its derivation are the assumptions listed before for pure 

components plus the assumption that the adsorption of a given molecule 

in a given layer is independent of the identity of the molecule adsorbed 

beneath it in a previous layer. 

GonzatCz and Holland tested their model against their experimental 

data on hydrocarbon mixtures on silica gel and activated carbon and the 

Mason and Cooke(88) experimental data on silica gel. Also, the model 

has been tested by Sircar and Myers 
(39) 

on the experimental data of 

Szepesy and Illes(89) for hydrocarbon mixtures on activated carbon. 

Relatively good predictions were obtained in both investigations. No 

test of this model has been yet made on zeolite molecular sieves. 

2.3.1.2 Mixed mobile adsorption 

A gaseous mixture is considered to be in equilibrium with a two- 

dimensional monolayer film on a homogeneous surface. By introducing 

the concept of surface fugacity, the equation of equilibrium between 

the two phases is given by(32,45): 

a RT fl P K1 ßlyl (2.44) 

The surface fugacity f1a of cangonent 1 can be calculated from a two- 

dimensional equation of state by the exact thermodynamic relation 
(32). 

RT kn f 
la 

IT RT 
dA - RT In ART 

(2.45) 
n 

A1T, A, n 
An 

21 

Numerical results for Equation (2.45) can be obtained by the use of 

an equation of state, e. g. Hill de Boer equation (Equation (2.22)). 

For a binary mixture the constants a and ß are related to those of 

8 
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the pure components by the following mixing rules: 

ß xý 1+ x2 ß2 (2.46) 

a= a1 x12 + 2a- xl x2 + a2 x22 (2.47) 

Substitution into Equation (2.45) yields the surface fugacity for 

component 1 and further substitution in Equation (2.44) yields: 

kn Pyl = In 
Xa- ßll 

aJ 
+a- 0 aRT 

(a1Xl+a12x2) 

where: 

a12 a 

(2.48) 

and with a similar equation for ccmponent 2. Binary mixture adsorption 

equilibrium can be predicted by solving Equation (2.48) and its 

analogous equation for component 2 simultaneously. 

This model has been tested for predicting binary equilibrium 

adsorption of hydrocarbon mixtures on hanogeneous carbon black 
(77 

and 

zeolite, type 13X 
(78) 

and. 02-N2 mixtures on zeolite, type 5A(7 . 

Although good predictions were obtained, the parameters obtained for 

(7) 
the zeolite, type 5A, showed no physical significance. 

2.3.1.3 Extension of the statistical thermodynamic model 

Based on the same assumptions for the pure isotherm model (Equation 

(2.31)) Ruthven and co-workers(42) extended their earlier work to the 

binary system producing the following expression for component 1: 

Kl Pl +ZE (Kl Pl) 
i 

j 
(K2 P2) ißl/v -jß2/v) 

i+j/ 

nl 
1+ Kl p1 + K2 P2 +EE (Kl Pl)i(K2 P2)(I - ißl/v - jß2/v)i+/i! j! 

ji 

(2.49) 
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with a corresponding equation for component 2. The summations in 

Equation (2.49) are carried out over all values of i (number of molecules 

of component 1 in-zeolite cavity) and j (number of molecules of compo- 

nent 2 in zeolite cavity) satisfying the restrictions i+j>2; 

i0 l+j 0 2: v. 

If-both K1 p1 and K2 p2 are sufficiently small the higher order 

terms in Equation (2.49) can be neglected and thus the equation reduces 

to the extended Langmuir equation for binary gas mixtures. 

This model has given relatively good predictions for the adsorption 

of binary hydrocarbon mixtures 
(42,78,90) 

, binary mixtures of 02-N2, 

N2-CO, CO-02, CH4-C02 on zeolite molecular sieves 
(28 

and binary mixtures 

of CH4 CO2 on molecular sieves, types 5A and 13X(53). 

2.3.2 The potential theory 

Lewis and co-workers(36) extended the potential theory to gas 

mixtures by assuming that the adsorption potential for each gas in the 

mixture could be obtained fron the characteristic curve for the pure 

gases. They pointed out that the correlation for the pure gases 

indicated that at constant temperature the amount adsorbed was the 

important factor in determining the adsorption potential and thus they 

further assumed that in mixtures the potential value of the individual 

components was determined by the total amount of adsorbate. Their 

method of prediction is outlined in the following steps. 

(a) An adsorbed phase composition and the total pressure of the 

mixture are assumed. Then from the pure gas isotherms and 

the following correlation: 

n n l 2 
+ =. 1 

n0 (p) n2 (P) 
(2.50) 

the actual amount adsorbed of both components can be calculated. 
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In Equation (2.50) n1 (P) and n2o(P) are the accounts 

adsorbed for pure component 1 and pure component 2 at the 

total pressure of the mixture. 

(b) The total volume of the adsorbate is then determined by 

summing the products of the moles of each component adsorbed 

times its molar volume as a saturated liquid, VL, at the 

adsorption pressure. 
f 

(c) From the pure gas characteristic curve values of 
V 

£n 4 

L 
for each of the gases are read. If both components are 

on the same correlation curve, the same value of the 

adsorption potential will be obtained. The value of 

(fs/f) is then calculated. The authors have suggested 

that the value of VL used may be either the corresponding 

pure component molar volume or the average molar volume of 

the mixture. 

(d) The fugacities fs and f are related to composition by the 

Lewis and Randall type fugacity rule. fs was taken to be 

equal to the fugacity of the pure saturated liquid at the 

adsorption temperature times the mole fraction of that 

component in the adsorbate. The values of f so calculated 

were used to determine the gas phase composition by assuming 

that the fugacity for a component is equal to its mole 

fraction in the gas phase times its fugacity as pure gas at 

the same temperature and total pressure of the mixture. 

(e) The pressure at which the mole fraction in the gas phase 

add to unity is compared with the original assumed total 

pressure.. If there is a significant difference the calcu- 

lations are repeated with a new assumed adsorbed phase 

composition. 

4 
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(f) A relative volatility value is then calculated and assumed 

to be composition independent. 

The main disadvantages of this model are its assumption of compo- 

sition independence of the relative volatility which generally is not 

the case encountered in most adsorption systems and uncertainties 

connected with the molar volume, VL. 

In another extension Maslan et a1(34) have suggested that both 

the adsorbate total volume and the mixture potential could be treated 

as additive functions, i. e. 

nT VL 
T= 

nl VL 
1+ 

n2 VL 
2 

f 
n RT In S 

f 12 
=n RT In 

ff 

1 

(2.51) 

f 
+n RT In f (2.52) 

2 

Introducing the concept of mole fraction in the adsorbed phase Equation 

(2.52) was rearranged as: 

X1 X2 
= 

x1 Y2 
f1 f2 fs fs /(fs /f12) (2.53) 

12 12 

For a given adsorbate composition the denominator of the right side 

of Equation (2.53) may be determined from the characteristic curve of 

the adsorbent. The two fugacities in the numerator are known and thus 

this will leave the gas canposition as represented by the left side of 

the equation unknown which can be determined by a trial and error 

procedure. 

A third extension of potential theory is reported by Grant and 
(33) 

Manes. Their prediction method is based on the assumption that the 

adsorbate behaves as an ideal liquid mixture with the standard state 

taken to be the pure adsorbate at the adsorbate volume of the mixture. 

Using Raoult's law together with the adsorption potential equation: 
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E=nRT In 
ff 

pure l 

they arrived at the following equation: 

f 

Vl 
In x1 f 

Sl, 

L1 1 
= 

v1 
Ln x2 f s' 

fI 
L2 J2 

(2.54) 

Equation (2.54) together with the condition x1 + x2 =1 determines the 

compositions of the adsorbed phase frag given values of fi, (fs) and 

i 
VL . Substituting the proper values of xi into either terns of 

i 
Equation (2.51ß) and using the correlation curve the total mixture 

adsorbate volume can be determined. The individual amount adsorbed 

of each component can be then determined using the following equations: 

nT (x1 VL + x2 VL) = VL 
12T 

nl = xi ßT 

The extensions of the Polanyi theory has been tested by Danner 

and Wenzel (29) for the adsorption of binary gas mixtures on zeolite 

molecular sieves, type 5A and lOX and poor results were obtained. 

The extension of the Polanyi theory by Grant and Manes is 

thermodynamically inconsistent for it predicts no separation effect 

at saturation 

2.3.3 Empirical methods 

In a thermodynamic analysis of gas-mixture adsorption Broughton 
(92) 

developed the following equation: 

n1 (P) ni (P) 

kn Pi d n1 - Rn P1' d nl = 

00 

n2 (P) n2 (P) 

Ln P2 d n20 - Jan P2 d n2 (2.55) 

00 
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Based on the above equation Lewis et al 
(30) developed their 

empirical method for prediction of gas mixture adsorption by employing 

the following relationships: 

P1 + P2 =P 

n n l 2 
+ =1 

n0 (P) n2 (P) 

xPn l 
n1 = a1,2 = constant x1 2l y2 = P2 1 

(2.50) 

(2.39a) 

Equation (2.50) is an empirical equation based on their experimental 

observations for the adsorption of hydrocarbon mixtures on both silica 

gel and carbon. In their analysis of their experimental work they 

found that the relative volatility a1 1,2 is almost canposition independent 

and thus it was assumed to be constant. 

Combining the above four equations yields: 

1n 
0 (P) 

al'2B-i 
ni (P) in(al 2 B) = (n2 (P) - ni (P) ) in P-2 In P2 dn 

a2 1,2 ' 
0 

n0 (P) 

Ln Pi d n1 (2.56) 

o 

0 where B= n1 (P)/n2 (P). 

The only unknown in the above equation is a1,2 for which a unique 

solution can be obtained by trial and error. Once a1,2 is determined 

the individual amount adsorbed can be evaluated through Equations (2.39a) 

and (2.50) by assuming a gas phase composition. 

Cook and Basmadjian(35) attempted to improve the method of Lewis 

et al by taking into account the isobaric variation of the relative 

volatility with composition. The starting point of their approach was 
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an equation proposed by Basmadjian(93) for predicting the relative 

volatility when it is small (< 4) and constant: 

ni (P) 
po 

Ln a1 kn 1d 
no (2.57) 1,2 

nl (P) 
o. 

p2 
0 

n 

Cook and Basmadjian have extended the use of Equation (2.57) to 

systems with variable relative volatilities. Briefly their method 

consists of evaluating the relative volatility at both extremes of 

infinite dilution and interpolating the values at intermediate ccmpo- 

sitions through an empirical procedure. The detailed steps of the 

procedure are as follows. 

(a) The two limiting relative volatilities are estimated by 

, assuming that they can be described by a relation analogous 

to Equation (2.57). 

n0 (P) 
po 

In (a 1 
In 1d 

n° (2.57a) 1#2) 
x1=1 ni (P) 

o 
p2 

1 
n2 (p) 

Pi 
! tn(a )_ to d n° (2.57b) 1,2 

x2=1 n2 (P) 
o 

p2 
64 

(b) The limiting relative volatilities are used for evaluating 

the indeterminate limiting ratios, P/x; 

pl 
P(a1,2) (2.58) 

1 
x2=1 x2=1 

P2 

[ci 
P/(a12) (2.59) 

x x1=1 
1 

These are then entered on a plot of total amount adsorbed, 

nT vs P/x. The values are located at the points C and D in 
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Figure 2.1, which also shows plots of the pure canponent 

isotherms 1 and 2. 

(c) The binary curves AC and BD are next constructed based on 

the assumption that they can be represented by the same form 

of equation as the pure component isotherms over the binary 

concentration range. In fact the curves AC and BD were 

found to be linear by an appropriate choice of coordinates 

(semilog or log-log scale). 

(d) The desired binary isotherms nl = f1(P1) and n2 = f2(P2) 

can be derived from the curves AC and BD. Values of P1/x1 

and P2/x2 are read off for each total amount adsorbed and 

one of the unknown mole fractions, say x2, calculated by 

combining the equations x1 + x2 =1 and P1 + P2 = P. 

(Pl/xl) ^. P 

(2.60) x2 (P1/xl) - (P 
z/x2) nT nT 

Cook and Basmadjian tested their method against non-intersecting 

monolayer adsorption isotherms and intersecting isotherms - multilayer 

adsorption. They found that their method gave reasonable predictions 

for monolayer adsorption of binary mixtures but failed to give quanti- 

tative results of multilayer adsorption particularly for systems with 

azeotropes. 

Danner and Wenzel 
(29) 

tested the above method against their binary 

mixtures on zeolites, type 5A and lOX and relatively good predictions 

were obtained especially for the system CO-N2 on both adsorbents. 

Yon and Turnock(40) introduced the concept of loading ratio 

correlation (LRC) for adsorption on molecular sieves. The LRC is in 

fact an extension of the Langmuir expression for monolayer adsorption. 

The concept of monolayer capacity, m, is replaced by the maximum 
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attainable loading, no, for the molecular sieve. The basic LRC 

equation for the pure component is given by: 

LRC n= (K P)1/C/ I1 + (K P)1/CI (2.61) 
ll J 0 

where c is a constant. The correlating equation is produced by taking 

logarithms and describing K by a temperature dependent function: 

Ln P=A1+ A2/T +c Rnln/(no-n) I (2.62) 

A1 and A2 are LRC constants describing the temperature dependence of 

K. 

The value of c can also be described by a temperature dependent 

function as: 

c= A3 + A4/T 

Yon and Turnock then extended the LRC to multicomponent systems 

using the method of Markham and Benton(84): 

n 1/c *r 1/c 
(LRC)i =ni (K. Pi) 

i/ 1+E (Kj Pi) 
3 (2.63) 

0f j=1 

or: 

r 
In Pi =A1+ A2 /T + ci In (LRC)i/(1 -E (LRC)j) (2.64; 

ii j=1 

Yon and Turnock suggested that if the pure ccmponent LRC constants 

fail to predict adequately the adsorption characteristics of the adsor- 

bates in multiccenponent systemsappropriate modified LRC constants can 

be obtained through correlation of gas mixture experimental results to 

Equation (2.64). In this way the LRC technique becomes a correlating 

technique rather than a predictive technique. 

Duckett and Dunlop 
(41) 

developed a simple empirical method based 
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on the use of a mean value of the relative volatility and Lewis' 

equation (Equation (2.50)). The mean relative volatility is given 

by: 

1 
Inl (P) 

Pl 
cl dn (2.65) 
m1,2 n1 (P) 

o 
p2 

or if the isotherm data are not available at low pressures the following 

equation is used instead: 

1 Jnl (P) 
pl 

adn (2.66) 
m1,2 

nl (P) nl, min n 11)2 
l, min n 

The individual amounts adsorbed can be calculated by employing Lewis' 

equation and are given by: 

nl = 
1 (2.67) 

1+a y2 1 

n0 (P) 1ß1,2 yl n2 (P) 

Y2 

2 m1,2 yl nl (2.68) 

Duckett and Dunlop tested their model against binary data of 

Lewis et al 
(3O), 

Ledermann and Williamsýýlý and Danner and Wenzelý29ý 

but only fair predictions were obtained. 

2.3.4 The ideal adsorbed solution theory (LAST) 

A significant development in the prediction of gas mixture 

adsorption behaviour has been accomplished by Myers and Prausnitz(36). 

They proposed a method of treating adsorption equilibrium analogous 

to the description of vapour-liquid equilibrium by solution thermo- 
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dynamics. An ideal adsorbed solution has been defined whose behaviour 

is analogous to an equilibrium vapour-liquid system which follows 

Raoult's law.. Deviations from the ideal adsorbed solution can be 

described in terms of adsorption activity coefficients; 

The chemical potential of component i in the adsorbed phase at 
(36) 

a constant temperature and spreading pressure is given by 

ui(T, n, x...... )= Gi (T) + RT Ln Pi (n) + RT ßn Yi xi 

The chemical potential for component i in the gas phase with the same 

reference state is: 

ui(T, P, yi) = G1 (T) + RT In P yi (2.70) 

If the equality of chemical potentials of each component in both the 

gas and adsorbed phase is used as a criterion of equilibrium in an 

adsorption systen, the following equation is obtained: 

P yi = Pi (n) i xi (constant T) (2.71) 

There is one additional degree of freedom in adsorption equil- 

(2.69) 

ibriun as compared to vapour-liquid equilibrium. In Myers and Prausnitz 

treatnent the spreading pressure, it, is chosen as the additional inten- 

sive property of the adsorbate. In vapour-liquid equilibrium specifi- 

cation of two of the three variables, P, T and x, completely defines the 

system. In adsorption equilibrium three of the four variables, P, T, 

x and n must be specified to define the system. 

The ideal adsorbed solution is described analytically by Equation 

(2.71) with yi equal to unity. It is also described as an adsorbed 

mixture for which the area change and enthalpy change of mixing are 

zero for a hypothetical mixing process at constant temperature and 

spreading ressure(36) p The criterion of zero area change of mixing 
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leads to the following expression for a binary mixture: 

a a1° (n) x1 + a2 x2 (constant T) . (2.72) 

or: 

1 x1 X2 
+ (2.73) 

nt 
ni (n) n2 (, r) 

In order to utilize Equations (2.71) and (2.73) for prediction 

of binary gas mixture adsorption equilibrium, a further relation is 

needed between the spreading pressure and directly measurable quantities. 

This relation is given by Gibbs adsorption equation (Equation (2.11)) 

which can be written in an integral form as: 

0 P 
An 
RT nd InP 

0 

(2.11a) 

Another form of Equation (2. lla) is given by Kidnay and Myers 
(37) 

as: 

0 n 
An 

_ 
dIn pdn 

RTd Inn 
0 

(2. lib) 

Calculation of the spreading pressure, ir, requires the specific area 

(A) of the adsorbent which is assumed to be uninfluenced by temperature, 

pressure or the amount of material adsorbed. In a molecular sieve 

adsorbent this is not valid and this assumption is overcome by the use 

of fl in place of the term [2J. n is calculated from the right-hand 

side of Equation (2. llb) and is readily applicable to adsorption in 

(95) 
molecular sieves. 

The prediction calculation for binary gas adsorption by IAST 

proceeds as follows. 

(a) Experimental isotherms are obtained for pure canponents 1 

and 2 (see Figure 2.2a). 
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(b) Equation (2. lla) or (2. llb) is applied to the experimental 

data for the pure component isotherm yielding two relation- 

ships (see Figure 2.2b): 

t21 = n1 (pi) (2.74) 

ý2 = n2 (p2 ) (2.75) 

(c) Equation (2.71) with yi set to unity is written for both 

components: 

p Yl = p1 (n) x1 (2.71a) 

P y2 = p2 00 x2 (2.71b) 

(d) The mixing process is carried out at constant values of it 

or 0: 

00 
Tr 1= ir 2 

or: 

"1 = n2 (2.76) 

(e) In addition there are two mole fractions constraints: 

x1+x2 =1 

y1+y2 =1 

(f) The above equations in steps (b) to (e) constitute a set 

of seven independent equations with nine unknowns, x1, x2,0 

0 0 'l' y2' P1 ' P2o' il l' SI 2, and P. By fixing two thermo- 

dynamic degrees of freedan, such as P and n, all the remaining 
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variables can be calculated. 

(g) The total amount adsorbed can be calculated by means of 

Equation (2.73) since the experimental data for pure compo- 

nent adsorption give the values of n1° and n2 . 

IAST has been tested by Myers and Prausnitz on the binary hydro- 

carbon mixture data of Szepesy and I11es(89) and Bering and Serpenskii(96) 

(29,37,94,95,97-99) by other investigators 37,94,95,97-99) 
. Good predictions were 

achieved and deviations from IAST in some cases were accounted for by 

the activity coefficient(66,95,99) 

Although IAST is based on calculating the spreading pressure or 

n from raw pure component equilibrium data, some investigators (78,97,98) 

have applied IAST using isotherm models quite satisfactorily. 

The IAST has the following three major advantages. 

(a) The model is thermodynamically consistent, i. e. it satisfies 

the Gibbs adsorption equation. 

(b) It does not depend upon the applicability of a particular 

isotherm, (e. g. Langmuir, BET, .... ) to pure component data. 

(c) It forms a basis for the calculation of the activity 

coefficients of adsorbate mixtures. This is achieved by 

obtaining binary experimental data at constant temperature 

and pressure for the entire range of gas composition and 

using Equation (2.10) for calculating the spreading pressure 

of the mixture. By determining the spreading pressure the 

corresponding vapour pressure, po, of each component can be 

obtained from the pure component data. The activity coef- 

ficients can then be obtained by using Equation (2.71). 

The major disadvantage of this method occurs when the spreading 

pressure curves of the pure components are quite apart from each other. 

In this case pure gas adsorption data far above the total binary mixture 
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pressure will be required in order to obtain equal spreading pressures 

for both components. This difficulty was encountered by Danner 
(74) 

on 

his analysis of his binary data of 02-CO on molecular sieves, types lOX 

and 5A. 

Different intensive variables that determine the standard state 

other than the spreading pressure have been used by other investigators 
(37-39). 

Kidnay and Myers 
(37) 

used the total amount adsorbed but this method is 

applicable only if the slopes of the pure isotherms on a logarithmic 

plot at different values of amount adsorbed are the same. Fernbacher 

and Wenzel 
(38) defined the standard state as pure ccmponent i adsorbed 

at the sane temperature on the same total adsorbent surface area A and 

the same adsorbate volume of the mixture. Sircar and Myers 
(39) 

applied 

the reduced potential for condensable vapours which is defined by: 

_ 
ýi 

12=- 
r 12 

S 

2.3.5 Real adsorbed solution 

A real adsorbed solution is defined by taking into account the 

possible interaction between the molecules of the different adsorbates 

competing to occupy the active sites of an adsorbent surface. Using 

solution thermodynamics such interactions are accounted for by the 

activity coefficients of all the adsorbates. The activity coefficient 

for a component i is given by Equation (2.71) which can be rewritten 

in the form: 

P 
Yi 

o 
(2.719) 

xi Pi (it) 

The useful thermodynamic concept for efficiently expressing the non- 

ideality of an adsorbed mixture is the molar excess Gibbs energy which 
(36) 

given by6) 
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GE = RT E xi In y1 (2.77) 

The molar excess Gibbs energy may be positive or negative or zero. 

The adsorbed solution is ideal when GE equals to zero. When the molar 

excess Gibbs energy of a solution is greater than zero the adsorbed 

solution is said to exhibit positive deviations from ideality whereas 

if it is less than. zero the deviations from ideality are said to be 

negative. 

In a binary solution system any expression used for correlating 

the molar excess Gibbs energy in terms of the adsorbed phase compositions 

must obey the following two boundary conditions. 

Gý O when x1 =O 

GE O when x2 =O 

Table 2.2 lists the various models used in gas phase-adsorbed phase 

equilibria for the molar excess Gibbs energy and the subsequent activity 

coefficients for a binary system. (These are identical to equations 

for vapour-liquid equilibria. ) 

A thermodynamic relation which provides a useful tool for relating 

activity coefficients is the Gibbs-Duhem equation (Equation (2.6)). 

Applying. the Gibbs-Duhem equation at a constant temperature and spreading 

pressure gives: 

ExidIn yi =O (2.78) 

which may be written in a differential form for a binary mixture as: 

dIn y1 dInY2 
x1 d xl - x2 d x2 

(2.79) 

The Gibbs-Duhem equation thus says that in a mixture the activity 
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coefficients of the individual components are related to each other. 

The utility of the Gibbs-Duhem equation is best realised through the 

concept of the total excess Gibbs energy. The total excess Gibbs 

energy gE for a binary adsorbed solution containing n1 moles of ccnpo- 

nent 1 and n2 moles of component 2 is defined by: 

gE RT (n1 In yI + n2 In y 2) (2.80) 

Equation (2.80) gives gE as a function of both yl and y2. Upon 

applying the Gibbs-Duhem equation, the individual activity coefficients 

yl or y2 are related to gE by differentiation: 

E 
RT Ln Y1 = 

ä-n (2.81) 
1 

T, ir, n2 

E 
RT In Y2 = 

ä-n 
(2,82) 

2 
T, Tr, n 

Equation (2.77) to (2.82) are useful tools for correlating binary 

experimental data obtained at constant temperature and pressure for the 

entire range of gas phase compositions. This is achieved by the 

following steps. 

(a) The spreading pressure of the mixture I 
RTJ 

for the experi- 

mental mixture point of interest is calculated using 

Equation (2.10). 

(b) For each spreading pressure value obtained in step (a) the 

corresponding vapour pressure of each component, P°(n), is 

obtained using the pure component isotherms. A plot is then 

made for the vapour pressure of each component vs the mole 

fraction in the gas phase. 

(c) The individual activity coefficients are calculated using 

Equation (2.717) and the corresponding equation for the 
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other component. 

(d) For each of the experimental points the molar excess Gibbs 

energy is calculated by Equation (2.77). 

(e) One of the equations given in Table 2.2 is chosen. The 

parameters in that equation are adjusted to minimize the 

deviations between GE calculated from the equation and GE 

found from experiment in step (d). 

(f) Selecting an arbitrary value of mole fraction in the gas 

phase of one of the components, between 0 and 1, and using 

Equation (2.7l7a) together with the expression selected for 

correlating the experimental activity coefficients and using 

the plots obtained in step (b), the mole fraction in the 

adsorbed phase can be determined by an iterative procedure. 

The steps outlined above provide a means for correlating the 

experimental binary equilibria data. No method has been yet published 

for predicting activity coefficients since all the models used for 

expressing GE in terms of composition contain adjustable parameters 

which are determined by the experimental binary data. 

Glessner and Myers 
(95) 

used three suffix Margules equation of the 

form: 

kn y. = (2B - A) x22 + 2(A - B) x23 (2.83) 

In y2 = (2A - B) x12 + 2(B - A) x13 (2.84) 

for correlating their activity coefficients of the binary mixture 

CO2-C2H6 on molecular sieve, type 5A. 

Costa et al 
(101) 

used the Wilson and Uniquac equations for 

correlating the activity coefficients of binary hydrocarbon mixtures 

on activated carbon. They then used the binary parameters obtained 
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from Wilson's and Uniquac's to predict their ternary experimental 

equilibrium results. The predicted ternary data were found to be in 

good agreement with their experimental data. 

2.3.5.1 The vacancy solution model 

Suwanayuen and Danner 
(43) developed a prediction technique for 

gas mixture adsorption utilizing the vacancy solution model for pure 

components: According to the vacancy solution model the binary 

mixture adsorption equilibrium becomes an equilibrium between ternary 

vacancy solutions, the third component of which is the vacancy defined 

to be the solvent of the system. 

The equilibrium equation governing the distribution of an adsorbate 

between the adsorbed and gas phase is obtained by equating the chemical 

potentials in the adsorbed and gas phase. 

nT 
Iil 

n äl 
yi p Ii Xi n exp RT J exp [RTJ (2.85) 
1 MT M 

where: 

n= nl + n2 + n3 = xl nm + x2 nm (2.86) 
T12 

nT = nl + n2 

xis = xi 'TI, 
T= 

xi 4, 

The partial molar area ai is given by the following expression: 

n m 
ai = a3 +1-nn, i=1 or 2 (2.87) 

MT T 

The equation of state expressing the spreading pressure, n, as 

a function of the vacancy partial molar area, activity coefficient 
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and the adsorbed phase composition is given by Equation (2.32). Upon 

applying this equation with Equation (2.87) gives an expression for 

(? r ai/RT): 

-nn ýRTi 
1+ 

ýT 

n 

mi 
kn y3 x3s (2.88) 

T 

The standard free energy of adsorption (A Gi )"is given by: 

G0 nm 

exP RT bi 
AD exp (A31 - 1) (2.89) 

The final equilibrium equation for the distribution of adsorbate is 

obtained by substituting Equation (2.89) into Equation (2.85): 

m ßi3 
na 

Yip ° Yi Xi nTn 
MT 

bi CXP (A . 1) eXp RT 
(2.90) 

L 

The composition dependence of the activity coefficients is obtained 

by the use of Wilson's equation 
(83) for a ternary vacancy solution 

system: 

Ln yi =1- kn (xis + xjs Aij + x3s A13) 

xi 

xis + xi Aij + xis ßi3 

s 
+ 

x4 Aji 

xiS Aji + xjs + xis AJ3 

S 

+s 
x3 

S31 S 
for i, j = 1,2 or 2,1 

xi A31 + xj A3j + x3) 

(2.91) 

Ln y3 a1- Rn (x, s A31 + x2S A32 + X35) 

Contd/... 
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+ 

S 
x1 A13 

SSS Lxi 
+ x2 A12 + x3 A13 

S 
x3 

SSS 
xl A31 + x2 A32 + x3 

S 
x2 A23 

1S X121 + X2S + X3S x'23 

(2.92) 

In these equations for the activity coefficients the parameters 

A13' A31' A23 and A32 account for adsorbate-vacancy interactions caused 

by non-ideality in the adsorbed phase and are obtained from regression 

of the pure component vacancy equation (Equation (2.38)). The parameters 

A12 and A21 represent adsorbate-adsorbate interactions and have to be 

estimated from theoretical considerations or regressed from experimental 

binary adsorption data. For systems with similar adsorbates these 

interactions can be neglected by setting A12 and A21 equal to unity. 

For systems with similar adsorbates the prediction procedure for 

the ternary system is outlined below. 

(a) Regression of the pure component experimental isotherm data 

by Equation (2.38) gives the parameters nm ' bit A3 and 
i 

A31 for each component. 

(b) The mole fraction of component i in the adsorbed phase is 

selected. 

(c) The maximum total number of moles of mixture in the adsorbed 

phase is obtained using Equation (2.86). 

(d) The term Or ai/RT) is obtained from Equation (2.88). 

(e) Equations (2.91) and (2.92) give the activity coefficients. 

(f) Solving the two equilibrium equations, corresponding to 

adsorbate 1 and 2 as expressed by Equation (2.90) simultaneously 

gives y1 and nT. 

Suwanayuen and Danner tested their model with A12 and A21 set to 

unity against two different kinds of systems: 

(a) binary mixtures of 02, N2 and CO on zeolite, type lOX, and 
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(b) binary hydrocarbon mixtures on activated carbon. 

For the zeolite system the predictions were reasonably accurate but not 

as accurate as for the carbon system. In the system 02 -N 2 on zeolite 

lOX the predictions were poor and were improved by taking into consid= 

eration the adsorbate-adsorbate interactions. 

2.4 Summary of Literature Cited 

Previous work on pure component and gas-mixture adsorption on 

molecular sieves have shown: 

(a) The kinetic models such as Langmuir and BET theory have 

limited applicability for correlation of pure component 

isotherms. The predictions obtained by the extensions of 

these models for gas mixture adsorption have been relatively 

poor. 

(b) Two-dimensional isotherm models, such as the Hill-de Boer 

model, have correlated pure component isotherms with - 

reasonable accuracy. However, the parameters obtained have 

shown no physical significance. The extension of this model 

for gas-mixture adsorption has predicted relatively good 

experimental binary data. 

(c) The potential theory depends on the determination of the. 

adsorbed phase volume and this has been interpreted differ- 

ently by many authors. Generally no accurate correlation 

of pure component isotherms have been obtained. The exten- 

sions of this theory to gas-mixture adsorption has failed 

to provide reasonable predictions of experimental binary 

data. 

(d) Out of the empirical methods used for prediction of gas- 

mixture adsorption the Cook and Basmadjian method seems 

to be the best for the other methods are based on composition 
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independence of relative volatility, mean relative volatility 

or a correlating procedure. 

(e) The ideal adsorbed solution theory has predicted experi- 

mental binary data reasonably good. 

(f) The statistical thermodynamic model and the vacancy solution 

model have correlated pure component data with a good 

accuracy. The extensions of these models for gas-mixture 

adsorption have given good predictions of experimental 

binary data. 
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CHAPTER 3 

EXPERIMENTAL WORK 

AND 

BASIC RESULTS 

This chapter describes the experimental apparatus and procedure 

used for: 

(a) the measurement of pure component isotherms of 

oxygen and nitrogen on Laportes 4A, 5A and 13X, 

Eka 5A and Na-mordenite molecular sieve pellets 

at three temperatures 278.15,293.15 and 303.15 K 

with pressure up to 9 bar; 

(b) the measurement of binary equilibrium data of 

oxygen-nitrogen system on the same adsorbents at 

the same. temperatures and two pressures 1.7 and 

4.4 bar. 

The calculation procedures required to obtain the pure component isotherms 

and the binary equilibrium data are also described and the basic experi- 

mental results are presented. 

3.1 Apparatus 

The same apparatus was used for measuring both the pure component 

isotherms and the binary equilibrium data. This apparatus is outlined in 

Figure 3.1. It comprised an adsorption vessel, a holding vessel, a dia- 

phragm circulating pump and a vacuum system. The gas phase pressure was 

measured by a high accuracy Bell and Howell pressure transducer, range 

O- 10 bar. The millivolt signal from'the transducer was recorded on a 

pen recorder. The vacuum system comprised a water cooled oil diffusion 
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Legend for FIGURE 3.1 

Valves 

-Number 

1,10,11,13,14 

2,12,15 

6 

3-5,7-9 

16,17 

Type 

" HOKE sealed valves type 4100 series 

Y" Edwards diaphragm vacuum valves 

Glass stop-cock 

HOKE bellow sealed valves type 
4600 series 

1" Edwards diaphragm vacuum valves 

Valve Specification 

15 cold trap vent 

' 16 roughing valve 

17 backing valve 

18 throttle valve 

19 air admittance valve 

Items not illustrated 

2 Pen potentiometric recorder, bridge supply, cathetometer, 

electric furnace and oxygen analyser. 
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pump, a rotary backing pump, a Penning vacuum gauge and liquid nitrogen 

cooled cold trap. The vacuum section of the apparatus was constructed 

mainly from 15 mm copper tube and Edwards diaphragm valves. The testing 

section of the apparatus was constructed from 6.35 mm stainless steel tubes 

and HOLE bellow sealed valves. The adsorption and holding vessels were 

approximately 670 cm3 constructed from stainless steel and maintained at 

a constant temperature using a thermostatically controlled 50 litre water 

bath set at the desired temperature of adsorption. During the calibration 

of the internal system of the apparatus a calibrated glass volume of 

1107.01 cm3 was submerged in the same bath and connected to the system 

via a flexible stainless steel tube. 

The activation of the adsorbent sample was achieved with the aid 

of an electric furnace set at 300°C. 

When measuring the binary equilibrium data an oxygen analyser was 

used for determining the oxygen concentration of the gas phase system. 

A full specification of the equipment used and operating procedures 

are given in Appendix II. 

3.2 Pure Gas Adsorption 

The technique used in measuring pure gas adsorption in this research 

was a volumetric method. The experimental and calculation procedure for 

measuring the adsorption isotherms are described below. 

3.2.1 Experimental procedure 

The internal volumes of the various parts of the system were first 

accurately determined by expanding helium from the unknown volumes to an 

accurately calibrated glass-bulb'of 1107.01 cm. The calibration proce- 
3 

dure is outlined in Appendix II. 

The cold trap in the vacuum system was filled with 13X molecular 

sieve pellets. Prior to each activation period of the experimental samples, 
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the pellets in the cold trap were regenerated to ensure negligible conta- 

mination of the experimental samples. The adsorbent samples were activated 

at 300 C in the adsorption vessel under a vacuum of lo -5 torr. The acti- 

vation period was stopped when the vacuum no longer decreased from lÖ-5 

torr on the vacuum gauge. This normally took about 18 - 20 hr. After 

the activation period was completed, the adsorption vessel was pressurized 

with helium to a pressure of about 2 bar and left to cool down. it was 

then evacuated, sealed off and connected to the rest of the system in the 

water bath. 

After the adsorption vessel has reached the desired adsorption 

temperature, the circulating system which consisted of the holding vessel 

and the inter-connecting pipe network was evacuated. The pressure trans- 

ducer was then adjusted to give a zero reading. A quantity of gas was 

bled into the circulating system from the gas cylinder supply via a 

silica gel gas drier and the pressure was recorded. The gas was then 

expanded into the adsorption vessel and left to reach equilibrium with 

the adsorbent sample. The final pressure was recorded. The adsorption 

vessel was then sealed off and a new dose of gas again fed to the circu- 

lating system and the pressure recorded. The gas was again expanded into 

the adsorption vessel, left to reach equilibrium and the final pressure 

recorded. This procedure was repeated for about sixteen consecutive runs 

until the final equilibrium pressure recorded was up to 9 bar. 

The mass of the adsorbent sample used in the experiment could not 

be accurately determined directly because the mass of the adsorption 

vessel was out of the limit of the analytical balance. The mass of the 

samples were hence determined by the following method: 

At the end of the experimental run the adsorption vessel was sealed 

off, disconnected from the experimental system and connected to the vacuum 

line. It was then heated under vacuum for about 3 hours, sealed off, 
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connected back to the experimental system in the water bath and left to 

reach thermal equilibrium. Using helium expansion from the known volumes 

of the apparatus to the adsorption vessel, the voidage volume in the 

adsorption vessel was determined. Adsorbent samples from the adsorption 

vessel were then taken off and a 30 cm3 HOKE stainless steel cylinder 

was filled with some of these adsorbents. This cylinder was connected 

to the vacuum line via aV HOKE bellow sealed valve. The adsorbent 

samples in the cylinder were then reactivated by heating the cylinder 

under vacuum. The cylinder was then sealed off and left to cool down 

in the water bath. Again using helium expansion the voidage volume in 

the cylinder was determined. The cylinder was then evacuated, sealed 

off, disconnected from the system and weighed. The cylinder was next 

emptied, evacuated, its'volume determined by helium expansion, re-evacu- 

ated, sealed off and re-weighed. The difference between the two masses 

yielded the absolute mass of the sample in the cylinder. From the know- 

ledge of the voidage volume and the volume of the cylinder, the absolute 

density of the adsorbent sample was hence determined. The actual mass 

of the adsorbent used in the experiment was determined by multiplying 

the absolute density of the adsorbent by the volume occupied by the 

adsorbents in the adsorption vessel. The mass used was normally about 

500 grams. 

3.2.2 Calculation procedure for Gibbs adsorption 

In a volumetric apparatus the quantity adsorbed usually determined 

is the Gibbs adsorption which is defined as the number of moles of gas 

which must be injected into a fixed evacuated volume containing the adsor- 

bent to bring the equilibrium pressure and temperature to the desired 

values, less the number of moles which would be injected to produce the 

same equilibrium conditions if no adsorption occurred(i02). Another 

definition of adsorption is the absolute adsorption which is the total 
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number of moles of gas in the range of the operative surface molecular 
(81) 

forces between the gas and solid. The difference between the two 

quantities is due to the volume of the adsorbed phase. The relationship 

between the Gibbs and the absolute adsorption is given by: 

1 Gibbs 
nabs 

1_V 
Vg 

(3.1) 

Investigators interpreted differently the determination of the volume of 

the adsorbed phase. Great variations are found between Dubinin's and 

Cook and Basmodjian method (see Section 2.2.3). In the earlier stage of 

this research it had been decided to determine the adsorbed phase volume 

by comparing isotherms obtained from the volumetric apparatus to those 

obtained by gravimetric method using the same adsorbent sample. However, 

due to differences in the degree of adsorbent activation in both processes 

it was found that the difference between them could not be attributed to 

the adsorbed phase volume. Hence it was decided to base the calculation 

procedure of the amount adsorbed on the Gibbs adsorption. 

Daly 
(7 

applied the 20 constant equation of state developed by 

Bender 
(103) 

for determining the fugacity coefficients for oxygen and 

nitrogen within a temperature range of 0- 50°C and up to a pressure of 

100 bar. From his results it was found that both gases could be assumed 

to behave ideally within the pressure range of this work. 

A material balance was performed on the number of moles present in 

the gas and the adsorbed phase before and after the addition of a new 

dose of gas to the adsorption vessel, i. e. 

Number of moles initially PD VD 'A1 VA 
(3.2) present before addition R TB +R TB + W1 (3. 
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(In the case of the first addition of gas the last two terms are 

equated to zero) 

Number of moles finally 
__ 

pA2 VD 
+ 

pA2 VA 
+w (3.3) 

present after addition R TD R TB 2 

The total amount adsorbed per unit mass of adsorbent at a given addition 

number is given by the expression: 

_ 
PD VD PA1 VA 

_ 

PA2 VD 

_ 

PAZ VA 
nGibbs R TB 

+R 
TB 

+ W1 
R TB R TB 

WA (3.4) 

3.3 Binary Gas Adsorption 

The measurement of binary gas adsorption equilibria may be achieved 

using either a dynamic method or a constant volume method(sl). In the 

dynamic method a gas mixture of known composition is allowed to pass over 

the outgassed adsorbent until equilibrium is reached, as indicated by con- 

stancy of the outlet gas composition. The absorbent container is then 

isolated from the system and the total amount adsorbed is estimated by 

pumping off the adsorbed layer and measuring its volume, pressure, compo- 

sition and temperature. In the constant volume method a gas mixture of 

known composition is admitted to the outgassed adsorbent within a closed 

constant volume system. The gas mixture is circulated within the system 

until equilibrium is reached which is indicated by constancy of the total 

pressure. A portion of the gas system is then isolated from the adsorbent 

and its contents withdrawn for analysis. The individual amounts adsorbed 

can'be determined by making a material balance before and after the gas 

addition to the adsorption chamber. 

The constant volume method is the more common method and it is the 

one used in this research work. 
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3.3.1 Experimental procedure (constant volume method) 

The same adsorbent samples were used in measuring both the pure gas 

isotherms and the binary equilibrium data. 

After reactivation of the adsorbent sample and evacuation of the 

system, the adsorption vessel was first allowed to reach equilibrium with 

a known amount of one of the pure gases under a certain pressure. It was 

then sealed off and the rest of the system evacuated-and then pressurized 

with a certain amognt of the other gas such that when expanded to the 

adsorption vessel, the equilibrium pressure reached the desired value 

which was approximately 1.7 or 4.4 bar. When gas was then expanded to the 

adsorption vessel the gas mixture was circulated round the system by the 

diaphragm pump until equilibrium was reached. The pressure was then 

recorded with the circulating pump switched off. Both the holding vessel 

and adsorption vessel were then sealed off. The holding vessel was dis- 

connected from the system and its gas analysed using the oxygen analyser. 

It was then connected back to the system. The circulating system was 

evacuated, pressurized with the same second gas and the same procedure 

again repeated. This procedure was repeated for six consecutive runs, 

after which the adsorbent sample was reactivated and the whole procedure 

repeated reversing the roles of the gases. By making a material balance, 

which is described in the next section, both x, y diagrams (where x and y 

are mole fractions in the adsorbate and gas phase respectively) and the 

individual amounts adsorbed were calculated. 

3.3.2 Calculation procedure (constant volume method) 

The calculation procedure. was based on Gibbs adsorption and it was 

also assumed that both gases, oxygen and nitrogen, behaved ideally within 

the pressures studied. 

Equation (3.4) (with the second and third terms equated to zero) was 

used to obtain the amount of pure gas adsorbed after the initial addition. 
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For the next consecutive additions, material balances were performed for 

each component before and after the addition of a new dose of gas to the 

adsorption vessel. 

For oxygen: 

Number of moles initially PD VD YD 
+ 

pAl VA YAl 
+ Viol (3.5) 

present before addition R TB R TB ýl 

Number of moles finally PA2 VD YA2 
+ 

pA2 VA yA2 
+W (3.6) 

present after addition R Tß R TB D2 

The total amount of oxygen per unit mass of adsorbent at a given addition 

number is given by the, expression: 

_ 
PD VD 'D PA1 VA YAl 

_ 

PA2 VD YA2 
_ 

PA2 VA YA2 
nl 

(Gibbs) RTB+R TB 
+ W01 

R TB R TB 
w (3.7: 

For nitrogen: 

I PD VD(1-yD) PA1 VA('-yA1) PA; VD('-yA2) 

- n2(Gibbs) R TB 
+R TB 

+ N1 R TB 

PA2 VA('-yA2) 

RT 
WA (3.8) 

B 

3.4 Basic Experimental Results 

The basic results presented in this section include pure component 

adsorption isotherms for 02 and N2 and binary gas mixture adsorption data 

, 
for these gases. These results are presented in graphical form and tabu- 

lated results are presented in Appendix I. 

3.4.1 Pure gas adsorption results 

The adsorption isotherms of oxygen on Laportes 4A, 5A and 13X, 
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EKA 5A and Na-M"ordenite molecular sieve pellets at 278.15,293.15 and 

303.15 K are presented in Figures 3.2 - 3.6. The adsorption isotherms 

of nitrogen on Laportes 4A, 5A and 13X, EKA 5A and Na-Mordenite molecular 

sieve pellets at 278.15,293.15 and 303.15 K are presented in Figures 3.7 

- 3.11. The tabulated results are presented in Appendix I. 

3.4.2 Binary gas adsorption results 

The adsorption data of the binary gas mixtures of nitrogen and 

oxygen on Laportes 4A, 5A and 13X, EKA 5A and Na-Mordenite molecular 

sieve pellets were determined at 278.15,293.15 and 303.15 K and at two 

pressures of approximately 1.7 and 4.4 bar. 

In order to completely specify the adsorption equilibria at a given 

temperature and total pressure, when a binary gas mixture is adsorbed, 

the compositions of both the gas and adsorbed phases must be specified 

together with the total amount adsorbed. The method of presentation of 

these variables which has been used here is a plot of total amount adsor- 

bed per unit mass of adsorbent as a function of the adsorbed phase com- 

position together with a plot of the adsorbed phase composition versus 

the gas phase composition. A summary of the results obtained is shown 

graphically in Figures 3.12 - 3.21 and in tabular form in Appendix I. 

4 
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CHAPTER 4 

ANALYSIS AND INTERPRETATION OF EXPERIMENTAL DATA 

In this chapter the experimental data reported in the previous 

chapter are compared with theoretical models described in Chapter 2. 

The work conveniently falls into two areas, namely pure component 

adsorption and binary gas mixture adsorption. 

4.1 Pure Gas Adsorption 

In this section an analysis and interpretation of the pure compo- 

nent isotherms are made. A comparison of the basic isotherms on the 

five adsorbents studied is made. The experimental isotherms are corre- 

lated with theoretical models. The values of Henry's law constants 

obtained from the theoretical models are compared. The isosteric heats 

of adsorption are calculated. 

4.1.1 Comparison between adsorbents and adsorbates 

The isotherms reported in the previous chapter are all of type I 

(81) 
according to BET classification. 

The oxygen isotherms on Laportes 4A, 5A and 13X, EKA 5A and Na- 

Mordenite are replotted in Figures 4.1 - 4.3, showing the comparison 

between adsorbents: 

(a) Figure 4.1 shows that at a temperature of 278.15 K 

and for pressures up to 1 bar 

Adsorption of oxygen Adsorption of oxygen Adsorption of oxygen 
on > on > on 

Na-Mordenite EKA 5A Laporte 5A 

Adsorption of oxygen Adsorption of oxygen Adsorption of oxygen 
on > on > on 

Laporte 5A Laporte 4A Laporte 13X 
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Between pressures of 1 bar and 10 bar there is less 

difference between Na-Mordenite and EKA 5A and at 

pressures approaching 10 bar the adsorption capacity 

for both adsorbents are approximately the same. The 

adsorption of oxygen on Laporte 4A is approximately 

the same as that on Laporte 13X for pressures greater 

than 1 bar. 

(b) Figure 4.2 shows that at a temperature of 293.15 K 

and for pressures up to 1 bar 

Adsorption of oxygen Adsorption of oxygen Adsorption of oxygen 
on > on > on 

Na-Mordenite EKA 5A Laporte 5A 

Adsorption of oxygen Adsorption of oxygen Adsorption of oxygen 
on > on on 

" Laporte 5A Laporte 4A Laporte 13X 

Between pressures of 1 bar and 10 bar there is again less 

difference between Na-Mordenite and EKA 5A. The adsorption 

of oxygen on Laporte 5A approaches the same value for both 

Laportes 4A and 13x for pressures greater than 1 bar. 

(c) Figure 4.3 shows that at a temperature of 303.15 K and for 

pressures up to 10 bar 

Adsorption of oxygen Adsorption of oxygen Adsorption of oxygen 
on > on > on 

Na-Mordenite EKA 5A Laporte 5A 

Adsorption of oxygen Adsorption of oxygen Adsorption of oxygen 
on on > on 

Laporte SA Laporte 4A Laporte 13X 

For pressures greater than 5 bar the adsorption of oxygen 

on Laportes adsorbents are approximately the same. 
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From Figures 4.4 - 4.6 for the nitrogen isotherms or. the five 

adsorbents studied the following can be deduced. 

At the three temperatures studied and for pressure up to 1 bar 

Adsorption of nitrogen Adsorption of nitrogen Adsorption of nitrogen 
on > on > on 

NA-Mordenite EKA 5A Laporte 5A 

Adsorption of nitrogen Adsorption of nitrogen Adsorption of nitrogen 

on > on f2 on 
Laporte 5A . Laporte 4A Laporte 13X 

Between 1 bar and 10 bar there is less difference between mordenite 

and EKA 5A and at pressures approaching 10 bar EKA 5A adsorbs more 

than the mordenite. The adsorption of nitrogen on Laporte 5A 

approaches that on Laportes 4A and 13X for pressures greater than 

1 bar. For adsorption temperatures 293.15 and 303.15 K the adsorp- 

" tion of nitrogen on Laporte 5A tend to be_lower than that on Laportes 

4A and 13X for pressures greater than 5 bar. 

From the above it is clear that the two samples of zeolite type 5A 

from different manufacturers, Laporte (U. K. ) and EKA (Sweden), have sig- 

nificantly different affinities for both gases. Possible explanations 

that can be offered are different thermal treatment during processing of 

the zeolite and the type and proportion of binder used. These factors 

(104) 
affect both the equilibrium and kinetic properties of zeolite samples. 

For all the adsorbent samples studied in this work, nitrogen was 

more strongly adsorbed than oxygen. Table 4.1 shows the ratios of nitrogen 

to oxygen adsorbed on the five adsorbents at the temperatures and pressures 

of the gas mixture adsorption studied in this work. For both Na-Mordenite 

and EKA 5A the ratio decreases with a decrease of temperature and an 

increase of pressure, whereas for Laportes adsorbents the ratio decreases 

with an increase of temperature at a pressure of 1.7 bar, and is nearly 

constant at pressure of 4.4 bar for the three temperatures. These data 
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TABLE 4.1 

Affinity Ratio of Nitrogen to Oxygen (pure components) 

on Laportes 4A, 5A and 13X, EKA 5A and Na-Mordenite 

Molecular Sieve Pellets 

Adsorbent N2/02 
mole basis 

Temperature 
K 

Pressure 
bar 

Laporte 4A 2.8 278.15 1.76 
2.7 293.15 1.73 
2.5 303.15 1.72 
2.2 278.15 4.41 

. 
2.2 293.15 4.42 
2.1 303.15 4.40 

Laporte 5A 2.7 278.15 1.73 
2.6 293.15 1.71 
2.5 303.15 1.71 
2.0 278.15 4.44 
2.0 293.15 4.44 
2.0 303.15 4.44 

Laporte 13X 3.0 278.15 1.74 
2.8 293.15 1.74 
2.8 303.15 1.75 
2.2 278.15 4.44 
2.3 293.15 4.41 
2.3 303.15 4.34 

EKA 5A 2.7 278.15 1.73 
2.8 293.15 1.76 
2.8 303.15 1.75 
1.9 278.15 4.45 
2.1 293.15 4.45 
2.1 303.15 4.43 

Na-Mordenite 2.2 278.15 1.75 
2.4 293.15 1.74 
2.6 303.15 1.73 
1.6 278.15 4.41 
1.7 293.15 4.44 
1.8 303.15 4.45 
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are for pure components. Separation factors for binary gas mixtures 

are discussed in Section 4.2. 

4.1.2 Analysis and interpretation of results 

The purpose of this section is to compare the experimental pure 

component isotherm data with various theoretical models. 

Previous analysis and interpretation of equilibrium data for zeo- 

litic adsorption (see Chapter 2) have indicated the following: 

(a) The simple models such as Langmuir and its extensions 

have limited applicability. 

(b) Models based on mobile monolayers such as the Hill 

de Boer model gave satisfactory correlation of equi- 

librium data but the basic assumptions from which the 

model isotherms are derived are generally not fulfil- 

led and it is therefore doubtful whether the parameters 

have a real significance. 

(c) The potential theory depends on the determination of 

the adsorbed phase volume and this has been interpreted 

differently by many authors. Generally no accurate 

correlation of experimental data on molecular sieves has 

been obtained using this model. 

The experimental data of this work has been tested against the 

following models: 

(a) The kinetic model of Holland and Gonzalez(31,75) 

(hereafter referred to as the kinetic model) as this 

gives a measure of the applicability of the ideal 

localised models. This model is represented by 

Equation (2.15): 
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(m-1) m 

n 1+K 
1P1+ OK 1P+ 03 (K1 p)2 + ... +0 

2 
Kl Pm-1 (2.15) 

1 

(b) A rational function equation of the form: 

Al nn 

A2-n exP A3-n 4n 

where A1, A2, A3 and A4 are regression parameters. 

This equation has no physical background and it 

is chosen to be in an identical form to the Hill de Boer 

equation which proved to correlate the molecular sieve 

(4.1) 

data reasonably well. Equation (4.1) will be used later 

for prediction of binary gas adsorption using the ideal 

adsorbed solution theory 
(36) 

and the empirical method by 

(35) 
Cook and Basmadjian. 

(c) The statistical thermodynamic model by Ruthven and co- 

, (67,68) 
which is given by: 

n= 

(a) 

_ KP+ (K P) 
2 

(1 -2 ß/v) 
2+.... 

+ (M-1) ; 
(1 -M ß/v) 

M 

- 1+ KP+1j (K P) 
2 

(1-2 ß/v) 
2 

.... + 
(KM 

(1-M ß/v) 
M 

(2.31) 

The vacancy solution model by Suwanayuen and Danner 
(69) 

which 

is given by: 

nm A 1- (1-A31) 

b1- 
13" A31 + (1-A13) $ 

I A31(1 - A31) ¢ (1 - A13) $ 
exp 1- (1-A31) A13 + (1-A13) (2.38) 

The above four models were fitted to the experimental data using 

curvilinear regression analysis. A computer programme was written which 
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incorporated a NAG 
(105) 

subroutine E04FCF. This subroutine used an 

optimised search technique to obtain the values of the regression para- 

meters corresponding to the minimum sum of squares of the residuals, 

where the residual was defined as the difference between the experimental 

and predicted pressures for the vacancy solution model and for Equation 

(4.1), and as the difference between the experimental and predicted amount 

adsorbed for the kinetic model and the statistical thermodynamic model. 

The kinetic model (Equation (2.15)) was used for two layers because 

it has been found that the contribution of higher layers offered no better 

fitness of the experimental data. The parameters K1 and $ were used in an 

exponential temperature dependent form. The parameter nm has been used by 

Gonzalez and Holland in an exponential temperature dependent form. 

However, this implies that the surface area of the adsorbent is a function 

of temperature, which contradicts the third assumption upon which the 

Gibbs adsorption formula is based (see Section 2.1). In this work nm has 

been assumed to be temperature independent. In order to retain the thermo- 

dynamic consistency of the model the curve fitting procedure of the 

experimental data for both gases was done simultaneously for obtaining 

the same value of nm and 0 for each gas. Table 4.2 contains the regres- 

sion parameters together with the sum of squares of relative residuals. 

(The relative residuals are defined as the residuals divided by the 

experimental values). From Table 4.2 it is seen that the nitrogen data 

on all the adsorbents were fitted better than the oxygen data. This 

could be attributed to the fact that the simultaneous fitting affected 

the oxygen data due to the high affinity of nitrogen on all adsorbents 

studied. Also Table 4.2 shows that the data on EKA 5A are poorly fitted 

and for Laporte 4A the value of 0, which is the ratio of K in the second 

layer to that in the first layer, is negative which gives no physical 

meaning. In general, it is seen that from the sum of squares of the rela- 

tive residuals, this model fitted the experimental data poorly and its 
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effect will be pronounced when this model is used for prediction of 

gas mixture adsorption. 

Equation (4.1) was curve fitted to each individual isotherm in 

order to obtain the best fit. The regression parameter together with 

the sum of squares of relative residuals are presented in Table 4.3 

whilst the comparison of the experimental isotherms with the predicted 

values are presented in graphical form in Appendix I. From Table 4.3 

it is seen that for nitrogen on all adsorbents, the parameter A3 is of 

a high order which means that the effect of the first term in the exponen- 

tial expression in Equation (4.1) is negligible. From the graphs in 

Appendix I it is seen that a reasonably good fitting is obtained. 

The curve fitting by the statistical thermodynamic model was 

obtained by the same least squares technique used for the other models, 

rather than by the graphical procedure described by Ruthven(28). The 

Henry's law constant, K, and the molecular volume, were used in an 

exponential temperature dependent form. The results are shown in tabular 

form in Table 4.4 whilst comparisons of the experimental isotherms with 

the predicted values are presented in graphical form in Figures 4.7 - 

4.16. From the graphs it is seen that a good fitting for all the adsorbents 

is obtained. From Table 4.4 the calculated value of ß for oxygen on Laporte 

4A and EKA 5A is approximately temperature independent whilst for nitrogen 

the calculated value for Laporte 13X is temperature independent. The 

molecular volume, ß, for oxygen on EKA 5A was the closest value to the 

Van der Waal co-volume for oxygen (53 A3/molecule). For nitrogen the 

closest value of ß to the Van der Waal co-volume (65 A3/molecule) was 

found to be on Laporte 4A. For the rest of the adsorbents some deviations 

are encountered between ß and the respective Van der Waal co-volume. 
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The vacancy solution model contains four independent parameters: 

nm, b, A13 and A31" An initial attempt for curve fitting the experi- 

mental data was made using the parameters b, A13 and A31 in an exponential 

temperature dependent form but a poor correlation was obtained. Therefore, 

it was decided to curve fit each experimental isotherm individually in 

order to obtain the best fit. The parameter nm which is the limiting 

adsorption amount is known to be temperature independent. Consequently, 

if nm value is known at one temperature, it should be approximately the 

same at all temperatures and only three parameters need to be determined. 

Since the most reliable limiting value from an isotherm is obtained at 

the lowest temperature, the limiting value, nm, was determined for 278.15 

K isotherms. Only the three remaining parameters were determined for the 

other adsorption isotherms. One more point to note is that when the va- 

cancy solution model was extended for prediction of gas mixture adsorption, 

the total limiting adsorption concentration was. taken as the average of 

those of the adsorbates (see Equation (2. $6)). This definition has the 

advantage of being applicable to the description of adsorbed mixtures 

containing adsorbates which have unequal values of the saturation amount. 

Thus this allows the individual curve fitting of oxygen and nitrogen 

isotherms. The results of the regression analysis are shown in tabular 

form in Table 4.5 whilst comparisons of the experimental isotherms with 

the predicted values are presented in graphical form in Appendix I. The 

graphical results show that the model fitted the experimental data 

reasonably well. From Table 4.5 it is seen that the interaction coef- 

ficients A13 and A31 show wide variation with temperature especially for 

02 and N2 on Laporte 4A, 02 on Laporte 5A, 02 and N2 on Laporte 13X and 

N2 on Na-Mordenite. 

Comparison of Henry's Law Constants 

The values of Henry's law constant, K", for oxygen and nitrogen on 
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the five adsorbents studied were obtained from the kinetic model, statis- 

tical thermodynamic model, the vacancy solution model and Equation (4.1). 

For Equation (4.1), as the pressure approaches zero the value of A2 » n, 

hence the value of K" was taken to be equal to Al/A2. The values of K" 

were then used to obtain the values of Ao and U0 in the temperature de- 

pendent form-of the Henry's law constant, i. e. 

K" = A0 exp (- Uo/RT) 

where U0 is + ve. For the kinetic and the statistical thermodynamic 

models the values of A0 and U0 were obtained from Tables 4.2 and 4.4 

respectively using the necessary conversion factors. For the vacancy 

solution model and Equation (4.1) a linear regression analysis was made 

to obtain the values of A0 and U0. The Henry's law constants for the 

four models are shown in a tabular form in Table 4.6. From Table 4.6 it 

. is noticed that the values of Henry's law constants obtained from the 

statistical thermodynamic model, the vacancy solution model and Equation 

(4.1) are in fairly good agreement with each other whilst the Henry law 

constants from the kinetic model (with exception of Laporte 5A) are sig- 

nificantly different, especially for oxygen,. This deviation could be 

attributed to the effect caused by the simultaneous fitting (see Table 

4.2). 

Isosteric Heat of Adsorption 

The isosteric heat of adsorption, qST, (heat of adsorption at con- 

stant amount adsorbed) is given by the following expression 
(56) 

: 

qST = RT2 
a 

TP (4.2) 

The isosteric heat of adsorption at any value of the amount adsorbed, n, 

can be obtained graphically from Equation (4.2), by plotting the adsorption 

isostere as In P vs T and determining the slope, which equals - qST/R. In 
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practice, however, it is usual to use an integrated form of Equation (4.2) 

and apply the equation to isotherms at two temperatures. Thus integrating 

Equation (4.2) gives: 

IT T 1p2 
qST =R TT -T 

In 
Pl (4.3) 

The temperature to which this value of qST refers to is given by the 

expression 
(56) 

: 

"11+1 k-1 (4.4) 
T2 T1 T2 

and the pressures are given by the expression 
(56) 

: 

P= (P1 P2) 

The experimental isosteric heats of adsorption, qST, were evaluated 

from Equation (4.3) using two isotherms of 278.15 and 303.15 K for both 

oxygen and nitrogen on the five adsorbents studied. The predicted qST 

values for the four models were evaluated also from Equation (4.3) by 

the use of the theoretical isotherms predicted by the models at 278.15 

and 303.15 K. For all the adsorbents studied the experimental qST were 

in fair agreement with the values predicted by the vacancy solution model, 

the statistical thermodynamic model and Equation (4.1), whilst the values 

of qST predicted from the kinetic model (with exception of Laporte 5A) 

were significantly different, the highest deviation being encountered for 

Laporte 13X. The results for Laporte 13X are represented graphically in 

Figures 4.17 - 4.18. For the four models the values of qST for the five 

adsorbents studied were almost constant with loading (i. e. qST ö). 

General Concluding Remarks on the Pure Component Isotherms 

The statistical thermodynamic model, the vacancy solution model and 

Equation (4.1) fitted the experimental pure component isotherms of oxygen 
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and. nitrogen reasonably well. However, the vacancy-adsorbate, A31, and 

the adsorbate-vacancy, A13, interactions obtained from the vacancy solu- 

tion model showed opposite wide variation from unity at a particular 

temperature on some of the adsorbents studied. This could affect the 

model when used for gas-mixture adsorption prediction. 

The fitted isotherms obtained by the kinetic model were rather poor 

particularly for EKA 5A isotherms. This could be attributed to the effect 

caused by the simultaneous fitting and the inheritance of the model on the 

basic assumptions of the Langmuir model. 

4.2 Binary Gas Adsorption 

In this section analyses and interpretations of the binary gas 

equilibria data are made. The effects of both temperature and pressure 

on separation factors and total amount adsorbed are studied. A compari- 

son of the basic binary equilibria data on the five adsorbents studied 

is made. The experimental equilibria data are compared with predictions 

from theoretical models. The activity coefficients for the binary gas- 

solid systems studied are calculated. 

4.2.1 Effect of temperature and pressure on binary gas adsorption 

For all the binary gas-solid systems reported in Chapter 3 the 

following points are deduced from Figures 3.12 - 3.21: 

(a) The separation factor (y02 xN2/yN2 x02) decreases 

slightly with increasing temperature. However, it 

is less sensitive to temperature change than is the 

total amount adsorbed. 

(b) The effect of temperature on the separation factor 

is slightly more pronounced at a pressure of 1.7 bar 

than at a pressure of 4.4 bar. 
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(c) At a particular pressure the effect of temperature 

on the separation factor is more pronounced at high 

oxygen concentration in the adsorbed phase than at 

low concentration. 

(d) The total amount of mixture adsorbed is a strong 

function of the adsorbed phase composition, decrea- 

sing more sharply at high oxygen concentration. 

This would be expected in view of the stronger 

affinity of the molecular sieves studied for nitrogen 

in preference to oxygen. 

(e) Within the two pressures studied the effect of increase 

of pressure tends to decrease the separation factor 

slightly., trhilst of course the total amount adsorbed 

is affected considerably by increase of pressure. 

A comparison of the actual experimental binary loadings for oxygen 

and nitrogen for a 50 mold gas mixture with values predicted for pure 

components at the same partial pressures is presented in Table 4.7. 

From Table 4.7 it is observed that at all the temperatures and pressures 

investigated the binary loadings of oxygen and nitrogen are less than the 

loadings predicted for pure components at the same partial pressures. 

These data clearly demonstrate the need for models to describe binary 

adsorption equilibria and a number of models are compared with the experi- 

mental data in Section 4.2.3. 

4.2.2 Comparison of separation factors between adsorbents 

The binary gas mixture adsorption equilibria on Laportes 4A, 5A and 

13X, EKA 5A and Na-Mordenite are replotted in Figures 4.19 - 4.24 showing 

the comparison between adsorbents. The following points are deduced: 
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1. At a temperature 278.15 K and pressure 1.7 bar (Figure 4.19) 

(a) For low oxygen concentration in the adsorbed phase up to 30%: 

Separation Separation Separation Separation 
factor on > factor on > factor on n factor on 

EKA 5A Na-Mordenite Laporte 5A Laportes 4A and 13X 

(b) For mole fraction of oxygen in the adsorbed phase between 

0.3 and 0.8: 

Separation Separation Separation Separation Separation 
factor on 0 factor on > factor on > factor on > factor on 

Na-Mordenite EKA 5A Laporte 5A Laporte 13X Laporte 4A 

For mole fractions of oxygen in the adsorbed phase greater 

than 0.8 the separation factor on Laporte adsorbents are 

approximately the same. 

(c) For a given adsorbed phase concentration: 

Total amount Total amount Total amount Total amount Total amount 
adsorbed on > adsorbed on > adsorbed on > adsorbed on 91 adsorbed or. 

Mordenite EKA 5A Laporte 5A Laporte 13X Laporte 4A 

2. At a temperature 278.15 K and pressure 4.4 bar (Figure 4.20) 

(a) For oxygen concentrations in the adsorbed phase up to 20% 

the separation factor for the five adsorbents is, approxi- 

mately the same and the total amount adsorbed on Laportes 

adsorbents is approximately the same and less than that of 

EKA 5A and Na-Mordenite. The total amount adsorbed on EKA 

5A is more than that on Na-Mordenite for this concentration 

range. 

(b) For oxygen concentrations in the adsorbed phase greater than 

20%: 

Separation Separation Separation 
factor on S2 factor on > factor on 
Mordenite EKA 5A Laportes adsorbents 
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The separation on Laportes adsorbents is approximately 

the same throughout the entire concentration range. 

(c) For a-given oxygen concentration in the adsorbed phase 

greater than 20%: 

Total amount Total amount Total amount Total amount Total amount 
adsorbed on > adsorbed on > adsorbed on > adsorbed on 12 adsorbed on 

Mordenite EKA 5A Laporte 5A Laporte 13X Laporte 4A 

3. At a temperature 293.15 K and pressure 1.7 bar (Figure 4.21) 

For the entire range of oxygen concentration in the adsorbed 

phase: 

Separation Separation Separation Separation Separation 
factor on n factor on > factor on n factor on > factor on 

Na-Mordenite EKA 5A Laporte 5A Laporte 13X Laporte 4A 

and 

Total amount Total amount Total. amount 
adsorbed on > adsorbed on > adsorbed on 

Mordenite EKA 5A Laportes adsorbents 

4. At a temperature 293.15 K and pressure 4.4 bar (Figure 4.22) 

(a) For oxygen concentrations in the adsorbed phase up to 10% 

the separation factors on the five adsorbents are approxi- 

mately the same. The total amount adsorbed is also approxi- 

mately the same for both EKA 5A and Na-Mordenite and is 

greater than that on Laportes adsorbents. 

(b) For oxygen concentrations in the adsorbed phase greater 

than 10%: 

Separation 
factor on 

Na-Mordenite 

Separation Separation 
fl factor on > factor on 

EKA 5A Laportes adsorbents 

and 
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Total amount Total amount Total amount Total amount 
adsorbed on > adsorbed on > adsorbed on > adsorbed on 

Mordenite EKA 5A Laporte 5A Laporte 4A & 13X 

S. At a temperature 303.15 K and pressure 1.7 bar (Figure 4.23) 

(a) For oxygen concentration in the adsorbed phase up to 10% 

the separation factor on EKA SA and Na-Mordenite is 

approximately the same and is slightly greater than 

that on Laportes adsorbents. 

(b) For oxygen concentrations in the adsorbed phase greater 

than 10%: 

Separation Separation Separation Separation Separation 
factor on > factor on > factor on n factor on > factor on 

Na-Mordenite EKA 5A Laporte 5A Laporte 13X Laporte 4A 

For oxygen concentrations in the adsorbed phase greater 

" than 80% the separation on Laportes adsorbents is approxi- 

mately the same. 

(c) For the entire range of oxygen concentrations in adsorbed 

phase: 

Total amount Total amount Total amount 
adsorbed on > adsorbed on > adsorbed on 

Na-Mordenite EKA 5A Laportes adsorbents 

6. At a temperature 303.15 K and pressure 4.4 bar (Figure 4.24) 

(a) For oxygen concentrations in the adsorbed phase up to 10% 

the separation factor for the five adsorbents is approxi- 

mately the same. 

(b) For oxygen concentrations in the adsorbed phase greater 

than 10%: 

Separation Separation Separation 
factor on 2 factor on > factor on 

Na-Mordenite EKA 5A Laportes adsorbents 
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(c) For the entire range of oxygen compositions in the 

adsorbed phase: 

Total amount Total amount Total amount 
adsorbed on > adsorbed on > adsorbed on 

Na-Mordenite EKA 5A Laportes adsorbents 

General observation 

From the above it is clear that the zeolite samples of the Mordenite 

type and type 5A (EKA) gave better separation factors than the other sam- 

pies studied. Going back to Table 4.1 it is seen that the highest N2/02 

ratio for the pure components is on Laporte 13X and the lowest ratio isý 

on Na-Mordenite. From this one might expect a better separation factor 

on Laporte 13X than on Na-Mordenite but the opposite is true. The expla- 

nation that might be offered to this is that Na-Mordenite has a signifi- 

cantly greater affinity for nitrogen than Laporte 13X which in turn might 

restrict the active sites of the zeolite for 02 when the binary mixtures 

are studied and thus a better separation factor is obtained. 

The significant difference in the separation factor between EKA 5A 

and Laporte 5A could be due to reasons stated before when discussing the 

pure component isotherm, that is different thermal treatment during pro- 

cessing the zeolite and the type and proportion of binder used. 

Comparison with Published Data 

The following comparisons are made for the binary equilibria data 

obtained in this work with other published data: 

(a) The binary equilibria data on Laporte 5A and EKA 5A 

at temperatures 293.15 and 303.15 K and a pressure 

1.7 bar are compared with data of Huang (28) 
on Linde 

5A (U. S. A. ) at 298 K and a pressure 0.8 in Figure 4.25. 

From the figure it is seen that the separation factor on 

Linde 5A is almost identical to Laporte 5A at 293.15 K 
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while the total amount adsorbed could be in line with 

EKA 5A if the differences in temperature and pressure 

are considered. 

(b) The binary equilibria data on Laporte 5A and EKA 5A at 

temperatures 293.15 and 303.15 K and pressure 4.4 bar 

are compared with data of Torii et al 
(55j 

on 5A (Japan) 

at 298.15 K and pressure 4.91 bar in Figure 4.26. From 

the figure it is noticed that the separation factor on 

5A (Japan) at pressure 4.9 bar is almost identical to 

that on Laporte 5A at 293.15 K while the total amount 

adsorbed on 5A (Japan) are similar to that on EKA 5A at 

293.15 K. 

Although there is reported work by Torii et al on 

5A at 298.15 K and pressure 0.98 bar, no comparison could 

be made due to the reported data being below 30 per cent 

oxygen concentration in the adsorbed phase. 

It is worthwhile to note that Torii et al 
(55) 

tested 

their data on 5A at a temperature 298.15 K and pressure 

2.94 bar against predicted values from the ideal adsorbed 
(36) 

theory (IAST) and the results showed significant deviations. 

However, in Section 4.2.3 it is shown that the IAST predicted 

the binary data of this work within good accuracy. 

(c) The binary equilibria data on Na-Mordenite at temperature 

303.15 and 293.15 K and pressure 1.7 bar are compared with 

the data of Torii et al 
(55) 

on Mordenite (Japan) at 298.15 K 

and pressure 0.98 bar in Figure 4.27. From the figure it 

is seen that the separation factor on Mordenite (Japan) is 

significantly greater than that on Mordenite of this work 

while the total amount adsorbed could be similar if the dif- 

ferences in temperature and pressure are considered. 
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(d) The binary equilibria data on Na-Mordenite at temperatures 

of 303.15 K and 293.15 K and pressure 4.4 bar are compared 

with the data of Torii et al(55) on Mordenite (Japan) at 

298.15 K and pressure 4.91 bar in Figure 4.28. From the 

figure it is noticed that the separation factors on Morde- 

nite (Japan) is significantly better than that on Mordenite 

of this work but the total amount adsorbed is significantly 

less on Mordenite (Japan). 

4.2.3 Analysis and interpretation of results 

The purpose of this section is to compare the experimental data with 

predicted values from various theoretical models and to measure the devia- 

tion of the experimental binary systems from ideal behaviour in the 

adsorbed phase by calculating activity coefficients. 

4.2.3.1 Models considered 

The models considered in this work are: 

(a) The kinetic model of Gonzalez and Holland(31,75) given by 

Equation (2.43) : 

n I(iP1 (1+OEK1 P1) 
nl (1 +E K1 P1) 

(2.43) 

and the corresponding equation for the other component. 

(b) The extended statistical thermodynamic model for gas mixtures 
(28,42) 

mixtures given by Equation (2.49): 

Kl p1 + (K1 Pl) 
i (K2 P2) (1 

l/v j 62/v) i+j 
! J! 

nl z 
1+ K1 p1 + K2 P2 +1 (Kl Pl) (K2 P2) (1-i ßl/v -jß2/v)i+j/i: j 

(2.49) 

and the corresponding equation for the other component. 

(c) The semi-empirical model of Cook and Basmadjian(35), 

(see Section 2.3.3). 
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(d) The ideal adsorbed solution theory (IAST)(36) p(see Section 2.3.4). 

(e) The extended vacancy solution model for gas mixtures 
(43) 

given by Equations (2.85) to (2.92). 

The kinetic model given by Equation (2.43) was used with the regres- 

sion parameters determined from pure component isotherms (see Table 4.2). 

For a particular total pressure of gas-mixture and adsorption temperature 

the mole fraction of one of the components in the gas phase was selected 

and the partial pressures of both components were calculated. The indi- 

vidual amounts adsorbed were calculated from Equation (2.43) and the 

corresponding equation for the other component. The mole fraction of 

each component in the adsorbed phase was then determined. This procedure 

was again repeated for another selected value of gas phase composition 

until the system was completely specified. 

The statistical thermodynamic model given by Equation (2.49) and the 

corresponding equation for the other component together with the regression 

parameters listed on Table 4.4 were used. The prediction procedure is 

identical to the kinetic model but this model contains two adjustable 

parameters, i and j, which are the number of molecules of component i and 

component j in a zeolite cavity respectively. These parameters were first 

selected arbitrarily and were then adjusted until the total amount adsorbed 

approached the pure component values at both boundaries. A listing of the 

computer programme which was written in Fortran 77 version is shown in 

Appendix III. 

For the semi-empirical model of Cook and Basmadjian Equation (4.1) 

was used as the fitting model for the pure component isotherms. The pre- 

diction procedure used is outlined in the following steps: 

(a) At a particular total pressure of the gas mixture 

and adsorption temperature, the amount adsorbed of 
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each pure component n0, n2 was evaluated from Equation 

(4.1) using regression parameters listed in Table 4.3. 

(b) The two limiting relative volatilities were estimated from 

Equations (2.57a) and (2.57b). Numerical integration was 

used for evaluating these equations. 

(c) Equations (2.58) and (2.59) were used for evaluating the 

indeterminate limiting ratios P/x. 

(d) It was then assumed that the binary curves AC and BD shown 

in Figure 2.1 could be linearized in a log-log plot. The 

slope of each of the binary curves were hence determined 

through the knowledge of the co-ordinates at both ends of 

the lines by steps (a) and (c). 

(e) The total amount adsorbed of the mixture was evaluated by 

incrementing the distance between the two pure component 

values evaluated in step (a) into a number of steps. 

(f) For each value of the total amount adsorbed evaluated in 

step (e) the corresponding value of P/x was evaluated 

through the knowledge of the slopes of the binary lines 

determined in step (d). 

(g) One of the unknown mole fractions in the adsorbed phase 

was evaluated by Equation (2.60) and using the mole frac- 

tion constraint x1 + x2 = 1, the individual amounts adsorbed 

were evaluated for each value of total amount adsorbed 

determined in step (e). 

A listing of the computer programme which was written in Fortran 77 

version is shown in Appendix III. 

For the ideal adsorbed solution theory (ZAST) Equation (4.1) was 

again used as the fitting model for the pure component isotherms. The 

prediction procedure used is outlined in the following steps: 
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(ä) The amount adsorbed of each pure component at the 

total pressure of the gas mixture was evaluated from 

Equation (4.1) using regression parameters listed in 

Table 4.3. 

(b) Knowing the functional relation of the gas pressure 

to the amount adsorbed (Equation (4.1)), the spreading 

pressure of each component, or more precisely the term 

RT' corresponding to the amount adsorbed for each pure 

component at the total pressure of the mixture was evalu- 

ated by Equation (2. llb) using numerical integration. 

These spreading pressures represent the mixture spreading 

pressure at the two ends, i. e. when only pure component 1 

is present and in the second case when only pure component 

2 is present. The spreading pressure of the mixture will 

lie between these two values and was evaluated by incremen- 

ting the distance between these two values into a number of 

steps. 

(c) For each spreading pressure value evaluated in step (b) 

the corresponding amount adsorbed of each of the pure 

components was evaluated from Equation (2. llb) through 

application of Newton-Raphson search method. 

(d) The equilibrium pressure of each pure component (P°) cor- 

responding to the amount adsorbed evaluated in step (c) 

was obtained using Equation (4.1). 

(e) Combining Equations (2.71a) and (2.71b) the mole fraction 

of each component was evaluated by: 

X1 (P2 - P)I(P2 - Pi) (4.5) 

x2 1-x1. 
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(f) The mole fraction of each component in the gas phase 

was evaluated from Equation (2.71a)-and applying the 

mole fraction constraint yl + y2 = 1. 

(g) The total amount adsorbed was evaluated from Equation 

(2.73). The individual amounts adsorbed were hence 

calculated through the knowledge of the mole-fractions 

in the adsorbed phase determined in step (e). 

A listing of the computer programme which was written in Fortran 77 

version is shown in Appendix III. 

The vacancy solution model given by Equations (2.85) - (2.92) was 

used with the regression parameters determined from the pure component 

isotherms (see Table 4.5). It was assumed that the adsorbate-adsorbate 

interactions parameters A12 and A21 are unity. The prediction procedure 

already outlined in Chapter 2 (Section 2.3.5.1) was used. A listing of 

the computer programme used is shown in Appendix III. 

4.2.3.2 Calculation of activity coefficients 

The deviation of an adsorbed solution from ideal behaviour is acco- 

unted for by considering the activity coefficients for each component in 

the adsorbed phase. The activity coefficients can be calculated by. 

Equation (2.7l7a) using the binary equilibria data together with the pure 

component isotherms. The procedure used for calculating the activity 

coefficients for the binary systems studied is outlined below: 

(a) The average mixture pressure was taken to be the 

adsorption pressure. The amount adsorbed of one 

of the pure components, say oxygen, at the pressure 

of the mixture was determined by Equation (4.1) using 

the regression parameters listed in Table 4.3. 

Equations (4.1) and (2.11) were then used to determine 
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the spreading pressure of this pure component, or more 

precisely the term RT, corresponding to the amount 

adsorbed at the pressure of the mixture. 

(b) Equation (2.10) which gives the spreading pressure of 

the mixture can be re-written in an integrated form 

between the limits yl = 1, n= ni and yl = yl, n=n as 

yl 
x-y 

All = 
ARAw 

= nt 
11d 

yl (constant P and T) (4.6) 

1 
yl y2 

where An =n- ni 

:. n= il 1+ An (4.7) 

Equations (4.6) and (4.7) can be used to calculate the 

spreading pressure of any binary mixture, or more pre- 

cisely n, being its value always comprised between the 

spreading pressure Ri and no of the less and more adsorbed 

pure component respectively. The expression nt 
yl y1 

in 
12 

x- 1 

Equation (4.6) will be indeterminate at the lower limit 

yl = 1. This was overcome by curve fitting this expression 

to a nth order polynomial using NAG subroutine E02ACF(105). 

The order of the polynomial wad adjusted to give the best 

fit. Generally for all the binary systems studied the best 

fit was obtained for n=4. The spreading pressure of a 

specific binary mixture was hence evaluated using numerical 

integration of Equation (4.6) and adding the value of the 

less adsorbed pure component spreading pressure (oxygen) 

to it. 

pure component respectively. The expression nt 
y1ly21 

in 

Equation (4.6) will be indeterminate at the lower limit 

(c) For each spreading pressure value evaluated in step (b) 

the corresponding amount adsorbed of each of the pure 

components was evaluated from Equation (2.11) through 
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application of Newton-Raphson search method. 

(d) The equilibrium pressure of each pure component (Pi) 

corresponding to the amount adsorbed evaluated in 

step (c) was obtained using Equation (4.1). 

(e) The activity coefficients for each experimental point 

could hence be determined by Equation (2.71ä) and the 

. corresponding equation for the other component. 

A listing of the computer programme used for evaluating the activity 

coefficients is shown in Appendix III. 

4.2.3.3 Interpretation of results on Laporte 4A 
_ 

The binary equilibria experimental results on Laporte 4A molecular 

sieve pellets are replotted on Figures 4.29 - 4.34 together with the 

. predicted equilibria data by the five models studied. The models were 

used at the average pressure of the experimental data. For the statis- 

tical thermodynamic model the predictions were obtained for the values 

of i, number of molecules of oxygen in the adsorbed phase, and j, number 

of molecules of nitrogen in the adsorbed phase, in Equation (2.49), adjus- 

ted to 10 and 6 respectively. 

For the three temperatures and two pressures studied the statistical 

thermodynamic model, Cook and Basmadjian model and the ideal adsorbed 

solution theory (LAST) gave approximately the same predicted separation 

factors and the predicted values were in good agreement with the experi- 

mental values with the exception of a maximum deviation of about 7% with 

the experimental data at temperature 278.15 K and pressure 1.7 bar. The 

predicted total amount adsorbed by these three models were almost iden- 

tical to each other at temperatures 303.15 and 293.15 K and pressure of 

1.7 bar while slight deviations between the models were encountered at a 

temperature 278.15 K and pressure 1.7 bar and at the three temperatures 
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at pressure 4.4 bar. The predicted total amount adsorbed were again 

in good agreement with the experimental data with the exception of some 

deviations which could be due to the effect of variation of pressure in 

the experimental runs. 

The vacancy solution model gave reasonably good predicted separa- 

tion factor for oxygen concentration in the adsorbed phase greater than 

50%. For oxygen concentration-in the adsorbed phase less than 50%, a 

slight deviation was encountered with the experimental data and these 

deviations were more pronounced at mixture pressures of 4.4 bar and 

were approximately 10%. The predicted total amount adsorbed at tempera- 

ture 278.15 K and pressure 1.7 bar and at the three temperatures at 

pressure 4.4 bar showed significant deviations with the experimental 

data. 

Suwanayuen and Danner 
(43) 

suggested that some improvement of the 

. vacancy solution model could be achieved by including the interaction 

parameters A12 and A21. They suggested that the interaction parameters 

could be estimated from an equation analogous to that introduced by 

(83) 
Wilson for a bulk liquid mixture which is given by: 

Ili 
j nmj exp RT 

(4.8) 

i 
i=1, j =2 

or 

i=2, j=1 

where the energies of interactions aii and Xij are given by: 

a x11 __ Z 
(- u01 - RT) 

xij Xi 

(4.9) 

(4.10) 
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The value of the co-ordination number, Z, is adjusted until a 

reasonable improvement is achieved. The model hence will be a corre- 

lating model rather than a predictive model. 

Estimation of the interaction parameters A12 and A21, where compo- 

nent 1 is oxygen and component 2 is nitrogen, through Equations (4.8) - 

(4.10) showed that A21 was less than unity and A12 greater than unity. 

The effect of these interaction parameters on both separation and total 

amount adsorbed was hardly significant. This is quite obvious because 

deviation of an adsorbed solution from ideality is pronounced when either 

both interaction coefficients are less than unity in which case positive 

deviation from ideality is encountered or both interaction coefficients 

are greater than unity in which case negative deviation from ideality is 

(106) 
encountered 

The predictions obtained by the Kinetic model showed no'isobaric 

variation of the separation factor with concentration and also the sepa- 

ration factor is independent of total pressure. An interesting case 

obtained on Laporte 4A was that a better separation factor was predicted 

by the model at the high temperature 303.15 K rather than the low temper- 

ature 278.15 K. 

The predictions of the Kinetic model were in good agreement with 

the experimental data at temperature 293.15 K and both pressures. Some 

deviations between the model and the experimental data were encountered 

at temperature 303.15 K and both pressures. The predictions obtained by 

the kinetic model at temperature 278.15 K and both pressures were rather 

poor. The predictions are far from quantitative agreement with the 

experimental data. The failure of the Kinetic model at temperature 

278.15 K could be due to its inheritance of the three major assumptions 

of the Langmuir model, i. e. no adsorbate-adsorbate interactions, adsor- 

bent surface is homogeneous and the adsorbed molecules are localized. 
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These assumptions generally do not conform to the experimental system 

especially at low temperatures where more is adsorbed. The assumption 

of the bi-molecular layer formation by the model does not contribute a 

lot to systems such as molecular sieves since due to their small pore 

size the number of layers formed are restricted and in fact in these 

systems the overwhelming contribution to separation is affected in the 

first molecular layer. From the regression parameters of the pure com- 

ponents shown in Table 4.2 it is seen that the value of 0 obtained on 

Laporte 4A is negative which has no physical meaning but due to its 

small value its effect was rather insignificant. From Henry's law con- 

stants shown in Table 4.6 it is seen that the Henry law constant for 

oxygen at temperature 278.15 K was significantly low as compared to the 

other models and its effect may have contributed significantly to the 

failure of the model at temperature 278.15 K. 

The activity coefficients for oxygen and nitrogen on Laporte 4A at 

the three temperatures and two pressures studied are represented graphi- 

cally in Figures 4.35 and 4.36. From the figures it is seen that no 

significant deviations from ideality, i. e. from unity are noticed. apart 

from the data at temperature 293.15 and 278.15 K and pressure 1.7 bar 

which could be due to the assumption of constant total pressure upon 

which the calculation of the activity coefficients were based (there 

were minor variations in pressure) since deviations are noticed only for 

one component, i. e. nitrogen. 

4.2.3.4 Interpretation of results on Laporte 13X 

The binary equilibria experimental results on Laporte 13X molecular 

sieve pellets are replotted on Figures 4.37 - 4.42 together with the pre- 

dicted equilibria data by the five models studied. For the statistical 

thermodynamic model the predictions were obtained for values of i and j 

in Equation (2.49) adjusted to 15 and 6 respectively. 
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For the three temperatures and two pressures studied the statis- 

tical thermodynamic model, Cook and Basmadjian model and the ideal 

adsorbed solution theory (LAST) gave again approximately the same pre- 

dicted separation factors and the predicted values were in good agree- 

ment with the experimental data. The predicted total amounts adsorbed 

by the three models are approximately the same and the predicted values 

were in good agreement with the experimental values with exception of 

the experimental data at temperature 278.15 K and pressure of 4.4 bar 

where a deviation of about 5% was noticed. 

The predictions obtained by the vacancy solution model were rather 

poor, significant deviations were encountered between the model and the 

experimental data and these deviations were increasing with decrease of 

temperature. The effect of including the interaction parameters A12 and 

A21 served no gain of improvement for again A12 (02 - N2) was above unity 

and A21 (N2 - 02) was less than unity. From Figures 4.37 - 4.42 it is 

seen that for all the experimental data on Laporte l3X the model predicts 

the total amount adsorbed approaching both experimental values of the 

pure components adsorbed, hence one could say that the deviation of the 

model could be due to the effect of the physical meaning of the inter- 

actions A13 and A31 for both components. From Table 4.5 it is seen that 

the values of the interactions A13 and A31 especially for temperature 

278.15 K vary widely, one interaction is high above unity and the other 

is far below unity.. 

The prediction obtained by the kinetic model on Laporte 13X at- 

temperature 303.15 K and pressure 1.7 bar was in good agreement with the 

experimental data. The values predicted by the model coincided with 

values predicted by the statistical thermodynamic model, Cook and 

Basmadjian"model and IAST. Since the model predicts no effect of pres- 

sure on the separation factor, slight deviations were noticed at temper- 

ature 303.15 K and pressure 4.4 bar. The predictions obtained at the 
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other two temperatures were far from quantitative agreement with the 

experimental values especially for the temperature of 278.15 K. These 

deviations could be due to similar reasons as that of Laporte 4A. 

The activity coefficients for oxygen and nitrogen on Laporte 13X 

at the three temperatures and the two pressures studied are represented 

graphically in Figures 4.43 - 4.44. From the figures it is seen that 

no significant deviations from ideality are encountered, with the excep- 

tion of data at temperature 303.15 K and 1.7 bar. Since no significant 

deviations from ideality are encountered at pressure 4.4 bar these devia- 

tions could be due to the assumption of constant pressure upon which the 

calculations of the activity coefficients are based and to errors involved 

in the evaluation of Equation (4.6). 

4.2.3.5 Interpretation of results on Laporte 5A 

" The binary equilibria results on Laporte 5A molecular sieve pellets 

are replotted on Figures 4.45 - 4.50 together with the predicted equili- 

bria data by the five models studied. For the statistical thermodynamic 

model the predictions were obtained for values of i and j in Equation 

(2.49) adjusted to 10 and 4 respectively. 

For the three temperatures and two pressures studied the statistical 

thermodynamic model, Cook and Basmadjian model, and IAST gave again 

approximately the same predicted separation factors and the predicted 

values were in good agreement with the experimental values. The predicted 

total amounts adsorbed by the three models were also in good agreement with 

the experimental data at pressure 1.7 bar while at pressure 4.4 bar a 

maximum deviation of 5% was noticed. 

The predicted separation factors obtained by the vacancy solution 

model were rather poor for oxygen concentration in the adsorbed phase 

less than 60%. For oxygen concentrations above 60% there was a fairly 

good agreement between the experimental data and the model. The devia- 
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tions between the predicted total amount adsorbed and the experimental 

values were small at binary mixtures approaching pure components. The 

predicted total amount adsorbed was significantly different from the 

experimental values for binary mixtures away from both ends of pure 

components. The failure of the model could be due to reasons stated 

before for Laporte 13X and again the effect of including the estimated 

values of the interaction coefficients A12 and A21 as given by Equations 

(4.8) - (4.10) offered no gain in improvement of the model. 

The predicted separation factors obtained by the kinetic model 

were far from quantitative agreement with the experimental values except 

for the data at temperature 278.15 K and pressure 4.4 bar, where smaller 

deviations are noticed. It is surprising to obtain good predictions by 

this model at the low temperature rather than the high temperature where 

smaller amounts are, adsorbed and hence adsorbate-adsorbate interactions 

might be less. Inspection of Table 4.6 shows that the Henry law constants 

obtained by the model for the pure components are close to the values of 

the other models at temperature 278.15 K and large deviation of about 22% 

for oxygen is noticed at the higher temperatures. 

The activity coefficients for oxygen and nitrogen on Laporte 5A at 

the three temperatures and two pressures are represented graphically in 

Figures 4.51 and 4.52. From the plots it is seen that no significant 

deviations from ideality are encountered. 

4.2.3.6 Interpretation of results on EKA 5A 

The binary equilibria experimental results on EKA 5A molecular 

sieve pellets are replotted on Figures 4.53 - 4.58 together with the 

predicted equilibria data by the five models studied. For the statis- 

tical thermodynamic model the predictions were obtained for values of i 

and j in Equation (2.49) adjusted to 8 and 4 respectively. 

For the three temperatures studied at pressure 1.7 bar and for 
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temperature at 303.15 K and pressure 4.4 bar, the separation factors 

predicted by the statistical thermodynamic model, Cook and Basmadjian 

model and LAST were approximately the same and were in good agreement 

with the experimental data. For temperatures 293.15 and 278.15 K at 

pressure 4.4 bar there was slight deviation between the statistical 

thermodynamic model and the other two models, i. e. Cook and Basmadjian 

model and IAST, and the separation factors predicted by the statistical 

thermodynamic model- coincided with the experimental data. The predic- 

ted total amounts adsorbed by the statistical thermodynamic model and 

IAST were approximately the"same for the three temperatures at the two 

pressures studied, whilst the total amount adsorbed predicted by Cook 

and Basmadjian was slightly different. The experimental total amounts 

adsorbed were in good agreement with the predicted values at 1.7 bar 

pressure. while a maximum deviation of 5% was noticed for data at pressure 

4.4 bar. 

The predictions obtained by the vacancy solution model followed the 

same trend as that on Laporte 5A and the reasons for failure could be due 

to reasons stated before. 

The Kinetic model hardly predicted any separation and its failure 

is due to the poor fitting of the pure component isotherms by the model. 

The activity coefficients for oxygen and nitrogen on EKA 5A at the 

three temperatures and two pressures studied are represented graphically 

in Figures 4.59 and 4.60. At pressure 1.7 bar no appreciable deviation 

from ideality is noticed except at temperature of 278.15 K which could be 

due to the effect of assuming constant adsorption pressure since devia- 

tions are noticed for one component only (nitrogen). At pressure 4.4 bar 

and temperature 303.15 K no appreciable deviations from ideality are 

noticed but for the other two temperatures negative deviations from ideality 

are noticeable especially for temperature 278.15 K and explains why the 
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ideal adsorbed solution showed slight deviations from the experimental 

equilibrium data. 

4.2.3.7 Interpretation of results on Na-Mordenite 

The binary equilibria experimental results on Na-Mordenite molecular 

sieve pellets are replotted on Figures 4.61 - 4.66 together with the pre- 

dicted equilibria data by the five models studied. For the statistical 

thermodynamic model the predictions were obtained for values of i and j 

in Equation (2.49) adjusted to 7 and 6 respectively. 

For the three temperatures and two pressures studied the separation 

factors predicted by the statistical thermodynamic model, Cook and Basmad- 

jian model and LAST were approximately the same but deviations of about 

10% between the statistical thermodynamic model and the other two models 

were noticed for temperature 278.15 K at pressure of 1.7 bar for oxygen 

concentration in the adsorbed phase below 40%. The predicted separation 

factors by these three models were in good agreement with the experimental 

data and the predictions by the statistical thermodynamic model for tem- 

perature 278.15 K and pressure 1.7 bar gave better representation of the 

experimental data than the other two models. The predicted total amount 

adsorbed by the three models varied and the lowest predictions were 

obtained by the Cook and Basmadjian model. The experimental total amount 

adsorbed at pressure 1.7 bar and the three temperatures studied were in 

good agreement with the statistical thermodynamic model and IAST, the 

maximum deviation noticed was 5% which was at temperature 303.15 K. The 

total amount adsorbed predicted by Cook and Basmadjian model showed a 

maximum deviation of about 15% below the experimental data. The experi- 

mental total amount adsorbed at pressure 4.4 bar and temperatures 303.15 

and 278.15 K were in good agreement with the predicted values by the 

statistical thermodynamic model vand IAST but a maximum deviation of about 

8% was noticed between these two models and the experimental data at 
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293.15 K. The predicted total amount adsorbed by Cook and Basmadjian 

model showed a maximum deviation of about 15% for temperature 293.15 K. 

The predicted separation factors obtained by the vacancy solution 

model showed significant deviations from the experimental data for oxy- 

gen concentration in the adsorbed phase below 40% at temperatures 303.15 

and 293.15 K for both pressures studied. Inspection of Table 4.5 showed 

that the regression interaction parameters A13 and A31 for pure nitrogen 

vary widely at these two temperatures, one interaction is far above unity 

and the other is below unity and this could be the possible explanation 

for the failure of the model at low oxygen concentration. For temperature 

278.15 K at both pressures studied the model showed good agreement with 

the experimental total amount adsorbed and separation factors. 

The predictions obtained by the Kinetic model showed that better 

separation factors are obtained at the high temperatures rather than the 

low temperatures. The predictions were rather poor for temperatures 

293.15 and 303.15 K. The best predictions obtained that were in a reason- 

able agreement with the experimental data were at temperature 278.15 K 

and pressure 1.7 bar. 

The activity coefficients for oxygen and nitrogen on Na-Mordenite 

at the three temperatures and two pressures studied are represented 

graphically in Figures 4.67 - 4.68. From the plots it is seen that no 

significant deviations from ideality are encountered. 

General Concluding Remarks on Binary Gas Adsorption 

The statistical thermodynamic model and IAST gave reasonably good 

predictions of the binary equilibria data obtained in this work. The 

Cook and Badmadjian model also predicted the data within a good accuracy, 

but significant deviations between the model and the experimental total 

amount adsorbed on Na-Mordenite were noticed. The vacancy solution model 

showed fairly good predictions on Laporte 4A and Na-Mordenite. The 
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failure of the model on the other systems studied was attributed to the 

physical significance of the interaction-coefficients A13 and A31. 

Improvement of the vacancy solution model by including the interactions 

A12 and A21 as estimated by Equations (4.8) - (4.10) was insignificant 

since the interactions were above and below unity. The predictions 

obtained by the Kinetic model were rather poor in most cases and a com- 

plete failure of the model was noticed on EKA 5A. Although the kinetic 

model showed good predictions in some cases, it is not recommended for 

use since it fails to offer reasonable predictions at certain tempera- 

tures with the same adsorbent where relatively good predictions have 

been obtained on other temperatures. 

Generally speaking, for all the systems studied in this work no 

significant deviations from ideality were noticed and thus no attempt 

has been made to correlate the activity coefficients by expressions 

from Table 2.2. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

This thesis comprises experimental work and a ccmparison with 

theoretical models associated with pure gas and binary gas adsorption 

of oxygen and nitrogen on molecular sieve pellets, types 4A, 5A and 

13X, supplied by Laporte Chemicals Ltd. (U. K. ) and 5A and Na-Mordenite, 

supplied by EKA (Sweden). The following conclusions have been drawn. 

5.1 Experimental Isotherm Data (Figures 4.1 to 4.6) 

(i) The isotherms measured on Na-Mordenite molecular sieve 

pellets for both gases, oxygen and nitrogen, gave the 

highest affinity as compared to the other adsorbents 

studied, for pressures up to 1 bar. 

(ii) For pressures more than one bar the affinity on EKA 5A 

for both gases approached that on Na-Mordenite and for 

pressures approaching 10 bar EKA 5A adsorbed more nitrogen 

than Na-Mordenite. 

(iii) The affinity on Laporte's 4A and 13X for oxygen and 

nitrogen were approximately the same with the pressure 

range 1-9 bar but for temperature 303.15 K Laporte 4A 

adsorbed more oxygen than Laporte 13X. 

(iv) For pressures up to 1 bar Laporte 5A adsorbed more oxygen 

and nitrogen than Laporte's 4A and 13X. 

(v) For pressures greater than 1 bar the affinity on Laporte 

5A for oxygen and nitrogen approached that on Laporte 4A 

and 13X. For adsorption temperatures 293.15 and 303.15 K 

the adsorption of nitrogen on Laporte 5A tends to be lower 

than that on Laporte's 4A and 13X for pressures greater 
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than 5 bar. 

5.2 Theoretical Isotherm Models (Figures 4.7 to 4.16,1.1 to 1.20) 

Models have been used for curve fitting the experimental pure 

component isotherm data, determining Henry's law constants and predicting 

the isosteric heats of adsorption of oxygen and nitrogen on Laporte's 

4A, 5A and 13X, EKA 5A and Na-Mordenite molecular sieve pellets. 

(i) Curve fitting of the experimental pure component isotherm 

data was attempted using the kinetic model of Gonzalez 

and Holland, the vacancy solution model, the statistical 

thermodynamic model and a mathematical equation given by 

Equation (4.1). The vacancy solution model, the statistical 

thermodynamic model and Equation (4.1) fitted the experi- 

mental data within a good accuracy. The curve fitted 

isotherms obtained by the kinetic model were rather poor, 

particularly for EKA 5A (see Table 4.2). 

(ii) In the case of the vacancy solution model, the vacancy- 

adsorbate, A31, and the adsorbate-vacancy, A13' interactions 

showed opposite and wide variation from unity indicating 

no physical significance (see Table 4.5). 

(iii) The Henry's law constants determined from the statistical 

thermodynamic model, the vacancy solution model and 

Equation (4.1) were in a'fairly good agreement with each 

other whilst the Henry's law constants determined from the 

kinetic model were significantly different (see Table 4.6). 

(iv) The predicted isosteric heats of adsorption for oxygen and 

nitrogen by the statistical thermodynamic model, the 

vacancy solution model and Equation (4.1) were in fair 

agreement with each other and almost constant with loading. 

The values were approximately equal to the values of U0 
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in Table 4.6. 

5.3 Experimental Binary Data (Figures 3.12 to 3.21,4.19 to 4.28) 

(i) The experimental binary loadings for oxygen and nitrogen 

were less than the loadings predicted for the pure compo- 

nents at the same partial pressures (see Table 4.7 for 

50 mol % gas mixtures). 

(ii) The separation factor (y 
02 

xN2 /yN2 x02 ) is much less 

sensitive to temperature or pressure change than is the 

total amount adsorbed. 

(iii) The separation factor decreased with increasing temperatures 

and this effect was more pronounced at 1.7 bar than at 

4.4 bar. 

(iv) The separation factors obtained on EKA 5A and Na-Mordenite 

were almost identical and greater than those obtained on 

Laporte's adsorbents. However, for adsorption at 303.15 K 

and 1.7 bar, the separation factors on Na-Mordenite were 

greater than that on EKA 5A. 

(v) The sepäration factors on Laporte 5A were greater than 

those on Laporte 4A and 13X at 278.15 K and 1.7 bar. For 

temperatures 293.15 and 303.15 K at 1.7 bar the separation 

factors on Laporte 5A were approximately the same as those 

on Laporte 13X and greater than those on Laporte 4A. For 

the three temperatures studied at 4.4 bar the separation 

factors on Laporte adsorbents were approximately the same. 

(vi) The total amount adsorbed on Na-Mordenite was the highest 

as compared to the other adsorbents studied, EKA 5A gave 

greater total amount adsorbed than Laporte adsorbents and 

generally Laporte 5A showed the highest total amount 

adsorbed as canpared to Laporte adsorbents 4A and 13X. 
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(vii) The separation factors on Laporte 5A were similar to 

published data on zeolite type 5A from two different 

origins. However, the total amount adsorbed on Laporte 

5A was significantly less. 

(viii) Comparison of binary data on Na-Mordenite obtained in 

this work with published data showed that the separation 

factors on Na-Mordenite of this work were less but the 

total amounts adsorbed were significantly higher. 

5.4 Theoretical Gas-Mixtures Models (Figures 4.29 to 4.68) 

Predictions of the experimental binary equilibria data obtained 

on Laporte's 4A, 5A and 13X, EKA 5A and Na-Mordenite molecular sieve 

pellets were attempted using the kinetic model of Gonzalez and Holland, 

the vacancy solution model, the statistical thermodynamic model, Cook 

and Basmadjian model and the ideal adsorbed solution theory (IAST). 

Activity coefficients were calculated. 

(i) The calculated activity coefficients for all the binary 

gas-solid systems studied in this work showed no appreciable 

deviation from ideality. 

(ii) The statistical thermodynamic model and IAST predicted 

the binary experimental equilibrium data to a reasonable 

accuracy. 

(iii) The Cook and Basmadjian model also predicted the binary 

experimental data with a good accuracy except that signi- 

ficant deviations between the model and the experimental 

total amount adsorbed on Na-Mordenite were noticed. 

(iv) The vacancy solution model showed fairly good predictions 

on Laporte 4A and Na-Mordenite. The failure of the model 

on the other systems studied was attributed to the physical 

significance of the interaction coefficients A13 and A31 
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for both pure gases, oxygen and nitrogen. Improvement of 

the model by taking into account the interaction coefficients 

A12 and A21 as estimated by Equations (4.8) to (4.10) was 

insignificant since the interaction coefficients were above 

and below unity. 

(v) The predictions obtained by the kinetic model were rather 

poor in most cases and a complete failure of the model was 

noticed on EKA 5A. 

5.5 Recommendations for Further Work 

(a) Industrial separation of air by adsorption involves mainly 

a ternary mixture of nitrogen, oxygen and argon. Hence it 

is recommended to obtain binary equilibrium data of 02 Ar 

and N2-Ar and ternary equilibrium data of N2-02-Ar. A 

further test of the validity of the gas mixture models will 

also be required. 

(b) No reported work appear in literature for determining the 

rates of diffusion in the binary gas mixture 02-N2 on 

zeolites. Hence it is recommended that experimental rate 

data be obtained and a realistic model proposed for this 

system. 
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APPENDIX I 

EXPERIMENTAL RESULTS 

Tables I. 1 - I. 10 Adsorption isotherms for 02 and N2 on Laportes 

4A, 5A and 13X, EKA 5A and Na-Mordenite molecular 

sieve pellets at temperatures 278.15,293.15 and 

303.15 K. 

Tables I. 11 - 1.15 Binary adsorption equilibrium data for 02/N2 on 

Laportes 4A, 5A and 13X, EKA 5A and Na-Mordenite 

molecular sieve pellets at temperatures 278.15, 

293.15 and 303.15 K and pressures 1.7 and 4.4 bar. 

Figures I. 1 - I. 10 Comparison of Equation (4.1) with experimental 

isotherms data of oxygen and nitrogen on Laportes 

4A, 5A and 13x, EKA 5A and Na-Mordenite molecular 

sieve pellets at temperatures 278.15,293.15 and 

303.15 K. 

Figures I. 11 - 1.20 Comparison. of the vacancy solution model with 

experimental isotherms data of 02 and N2 on Laportes 

4A, 5A and 13X, EKA 5A and Na-Mordenite molecular 

sieve pellets at temperatures 278.15,293.15 and 

303.15 K. 
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Pressure 
bar 

0.457 
0.724 
1.0 
1.324 
1.614 
1.937 
2.349 
2.851 
3.435 
4.032 
4.588 
5.331 
6.261 
6.987 
8.04 

Pressure 
bar 

0.531 
0.707 
1.003 
1.34 
1.666 
2.079 
2.572 
3.125 
3.679 
4.261 
5.163 
6.115 
7.158 

TABLE I. 1 

Adsorption Isotherms for Oxygen on Laporte 4A Molecular 

Sieve Pellets at 278.15,293.15 and 303.15 K 

T= 278.15 K 

Amount adsorbed 
mol/kg of adsorbent 

0.065 
0.101 
0.135 
0.175 
0.212 
0.255 
0.308 
0.368 
0.435 
0.5009 
0.573 
0.642 
0.727 
0.795 
0.877 

T= 293.15 K 

Pressure Amount adsorbed 
bar mol/kg of adsorbent 

0.520 0.053 
0.816 0.082 
1.102 0.111 
1.401 0.142 
1.819 0.183 
2.278 0.226 
2.814 0.276 
3.441 0.332 
4.02 0.381 
4.599 0.430 
5.262 0.485 
6.403 0.574 
7.331 0.648 
7.955 0.694 

T= 303.15 K 

Amount adsorbed 
mol/kg of adsorbent 

0.046 
0.062 
0.087 
0.118 
0.146 
0.18 
0.221 
0.263 
0.306 
0.350 
0.41 
0.474 
0.536 
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TABLE 1.2 

Adsorption Isotherms for oxygen on Laporte 5A Molecular 

Sieve Pellets at 278.15,293.15 and 303.15 K 

T= 278.15 K 

Pressure Amount adsorbed 
bar mol/kg of adsorbent 

T= 293.15 K 

Pressure Amount adsorbed 
bar mol/kg of adsorbent 

0.26 0.042 0.280 0.0312 
0.579 0.091 0.520 0.059 
0.932 0.143 0.792 0.09 
1.279 0.195 1.078 0.123 
1.642 0.246 1.413 0.159 
2.01 0.298 1.774 0.196 
2.402 0.348 2.140 0.235 
2.757 0.397 2.558 0.274 
3.155 0.448 2.975 0.314 
3.547 0.497 3.462 0.359 
3.975 0.551 3.989 0.408 
4.257 0.618 4.571 0.457 
4.750 0.672 5.197 0.512 
5.287 0.732" 5.949 0.571 
5.962 0.799 6.878 0.641 
6.610 0.866 7.796 0.707 
7.433 0.943 8.547 0.761 
8.332 1.022 

T= 303.15 K 

Pressure Amount adsorbed 
bar mol/kg of adsorbent 

0.327 0.032 
0.666 0.062 
0.972 0.089 
1.251 0.114 
1.55 0.140 
1.852 0.166 
2.193 0.195 
2.609 0.229 
3.092 0.269 
3.620 0.310 
4.170 0.352 
4.763 0.396 
5.411 0.442 
6.096 0.495 
6.963 0.55 
7.869 0.606 
8.716 0.654 
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TABLE 1.3 

Adsorption Isotherms for Oxygen on Laporte 13X Molecular 

Sieve Pellets at 278.15,293.15 and 303.15 K 

T= 278.15 K 

Pressure Amount adsorbed Pressure 
bar mol/kg of adsorbent bar 

0.341 0.043 0.365 
0.619 0.0799 0.709 
0.926 0.119 1.057 
1.218 0.159 1.413 
1.559 0.202 1.813 
1.915 0.246 2.218 
2.302 0.296 2.61.5 
2.719 0.348 3.039 
3.139 0.396 3.496 
3.584 0.447 3.998 
4.044 0.502 4.497 
4.532 0.560 5.021 
5.214 0.627 5.448 
5.964 0.704 6.071 
6.792 0.784. 6.836 
7.498 0.852 7.718 
8.259 0.920 8.449 
8.880 0.973 9.068 

T= 293.15 K 

T= 303.15 K 

Pressure Amount adsorbed 
bar mol/kg of adsorbent 

0.448 0.037 
0.845 0.067 
1,234 0.098 
1.506 0.119 
1.740 0.137 
1.947 0.153 
2.193 0.173 
2.446 0.192 
2.719 0.213 
3.011 0.235 
3.320 0.257 
3.713 0.287 
4.159 0.319 
4.625 0.351 
5.148 0.387 
5.677 0.424 
6.281 0.470 
7.095 0.521 
7.728 0.560 
8.571 0.611 

Amount adsorbed 
mol/kg of adsorbent 

0.0397 
0.072 
0.105 
0.138 
0.176 
0.212 
0.249 
0.286 
0.326 
0.369 
0.411 
0.455 
0.488 
0.536 
0.603 
0.667 
0.717 
0.761 
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TABLE 1.4 

Adsorption isotherms for oxygen on EKA 5A Molecular 

Sieve Pellets at 278.15,293.15 and 303.15 K 

T= 278.15 K 

Pressure Amount adsorbed 
bar mol/kg of adsorbent 

0.2095 0.052 
0.449 0.109 
0.730 0.174 
1.063 0.245 
1.40 0.314 
1.813 0.390 
2.220 0.472 
2.670 0.553 
3.153 0.636 
3.680 0.719 
4.217 0.801 
4.924 0.899 
5.706 1.006 
6.576 1.115 
7.553 1.226 
8.305 1.313 

T = 293.15 K 

Pressure Amount adsorbed 
bar mol/kg of adsorbent 

0.246 0.039 
0.536 0.084 
0.853 0.132 
1.185 0.181 
1.579 0.236 
2.044 0.298 
2.523 0.359 
3.025 0.421 
3.561 0.485 
4.123 0.547 
4.717 0.617 
5.384 0.680 
6.1i3 0.750 
6.834 0.818 
7.553 0.879 
8.247 0.938 
8.873 0.988 

T = 303.15 K 

Pressure Amount adsorbed 
bar mol/kg of adsorbent 

0.292 0.037 
0.633 0.0796 
0.987 0.122 
1.351 0.165 
1.747 0.2096 
2.146 0.255 
2.586 0.302 
3.042 0.349 
3.508 0.396 
4.032 0.447 
4.60 0.4998 
5.233 0.556 
5.986 0.619 
6.734 0.685 
7.511 0.745 
8.259 0.799 
8.885 0.845 
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TABLE 1.5 

Adsorption Isotherms for Oxygen on Na-Mordenite Molecular 

Sieve Pellets at 278.15,293.15 and 303.15 K 

T 278.15 K 

Pressure Amount adsorbed 
bar mol/kg of adsorbent 

0.269 0.099 
0.586 0.204. 
0.937 0.313 
1.333 0.4197 
1.755 0.525 
2.209 0.624 
2.718 0.715 
3.228 0.80 
3.732 0.88 
4.312 0.967 
5.038 1.044 
5.867 1.134 
6.870 1.227 
7.967 1.311 
8.744 1.383 

T= 293.15 K 

Pressure Amount adsorbed 
bar mo1/kg of adsorbent 

0.303 0.069 
0.636 0.141 
1.0 0.213 
1.412 0.29 
1.876 0.369 
2.249 0.457 
2.887 0.526 
3.419 0.592 
3.935 0.659 
4.553 0.723 
5.253 0.791 
6.098 0.861 
6.997. 0.930 
7.833 0.989 
8.722 1.045 
9.329 1.079 

T= 303.15 K 

Pressure Amount adsorbed 
bar mol/kg of adsorbent 

0.353 0.059 
0.704 0.119 
1.071 0.176 
1.435 0.232 
1.855 0.292 
2.311 0.353 
2.765 0.411 
3.223 0.464 
3.686 0.514 
4.152 0.561 
4.644 0.611 
5.287 0.667 
6.032 0.728 
6.841 0.790 
7.730 0.853 
8.644 0.908 
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TABLE 1.6 

Adsorption Isotherms for Nitrogen on Laporte 4A Molecular 

Sieve Pellets at 278.15,293.15 and 303.15 K 

T= 278.15 K 

Pressure Amount adsorbed 
bar mol/kg of adsorbent 

T= 293.15 K 

Pressure Amount adsorbed 
bar mol/kg of adsorbent 

0.205 0.104 0.305 0.093 
0.370 0.182 0.552 0.166 
0.599 0.277 0.842 0.246 
0.892 0.382 1.193 0.336 
1.240 0.505 1.610 0.435 
1.715 0.649 2.110 0.541 
2.248 0.792 2.657 0.644 
2.877 0.93 3.277 0.749 
3.603 1.063 3.935 0.852 
4.544 1.226 4.756 0.958 
5.604 1.354 5.603 1.059 
6.495 1.452 6.420 1.145 
7.285 1.523 7.224 1.219 
7.894 1.572 7.991 1.283 
8.43 1.609 

T= 303.15 K 

Pressure Amount adsorbed 
bar mol/kg of adsorbent 

0.359 0.085 
0.627 0.147 
0.936 0.214 
1.330 0.295 
1.791 0.382 
2.314 0.474 
2.877 0.562 
3.466 0.648 
4.054 0.723 
4.599 0.789 
5.262 0.864 
5.798 0.926 
6.461 0.984 
7.333 1.055 
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TABLE 1.7 

Adsorption Isotherms for Nitrogen on Laporte 5A Molecular 

Sieve Pellets at 278.15,293.15 and 303.15 K 

T= 278.15 K 

Pressure Amount adsorbed 
bar mol/kg of adsorbent 

T= 293.15 K 

Pressure Amount adsorbed 
bar mol/kg of adsorbent 

0.149 0.096 
0.356 0.207 
0.624 0.327 
0.966 0.454 
1.381 0.585 
1.864 0.716 
2.457 0.855 
3.139 0.984 
3.776 1.131 
4.843 1.271 
5.945 1.3917 
6.819 1.483 
7.679 1.562 
8.547 1.629 

T= 303.15 K 

Pressure Amount adsorbed 
bar M01/kg of adsorbent 

0.197 0.059 
0.432 0.118 
0.697 0.182 
1.004 0.249 
1.361 0.320 
1.77 0.395 
2.257 0.472 
2.747 0.548 
3.3 0.622 
3.859 0.691 
4.395 0.757 
5.087 0.826 
5.876 0.898 
6.622 0.958 
7.303 1.010 
7.864 1.051 
8.422 1.088 

0.175 0.07 
0.386 0.142 
0.641 0.220 
0.95 0.306 
1.328 0.394 
1.705 0.482 
2.160 0.566 
2.689 0.655 
3.279 0.748 
3.941 0.836 
4.444 0.903 
5.102 0.972 
5.847 1.047 
6.627 1.115 
7.499 1.183 
8.186 1.231 



- 222 - 

TABLE 1.8 

Adsorption Isotherms for Nitrogen on Laporte 13X Molecular 

Sieve Pellets at 278.15,293.15 and 303.15 K 

T= 278.15 K 

Pressure 
bar 

0.21 
0.375 
0.59 
0.837 
1.121 
1.45 
1.827 
2.25 
2.713 
3.243 
3.868 
4.568 
5.511 
6.298 
7.085 
7.767 
8.279 

Pressure 
bar 

0.294 
0.579 
0.873 
1.157 
1.439 
1.771 
2.12 
2.473 
2.859 
3.255 
3.691 
4.197 
4.680 
5.226 
5.964 
6.785 
7.441 
8.064 
8.644 

Amount adsorbed 
mol/kg of adsorbent 

0.102 
0.182 
0.274 
0.370 
0.470 
0.576 
0.683 
0.789 
0.9 
1.013 
1.125 
1.238 
1.37 
1.465 
1.55 
1.618 
1.666 

T 303.15 K 

Amount adsorbed 
mol/kg of adsorbent 

0.077 
0.143 
0.208 
0.268 
0.326 
0.387 
0.448 
0.506 
0.566 
0.625 
0.688 
0.753 
0.818 
0.88 
0.958 
1.036 
1.097 
1.15 
1.196 

T= 293.15 K 

Pressure Amount adsorbed 
bar mol/kg of adsorbent 

0.270 0.089 
0.461 0.151 
0.691 0.215 
0.962 0.287 
1.279 0.366 
1.645 0.452 
2.307 0.587 
2.619 0.646 
3.136 0.734 
3.693 0.823 
4.239 0.917 
4.999 1.007 
5.611 1.086 
6.256 1.151 
6.90 1.214 
7.523 1.269 
8.011 1.312 
8.454 1.349 
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TABLE 1.9 

Adsorption Isotherms for Nitrogen on EKA SA Molecular 

Sieve Pellets at 278.15,293.15 and 303.15 K 

T= 278.15 K T= 293.15 K 

Pressure Amount adsorbed Pressure Amount adsorbed 
bar mol/kg of adsorbent bar mol/kg of adsorbent 

0.088 0.123 0.113 0.088 
0.222 0.263 0.269 0.183 
0.412 0.431 0.475 0.292 
0.691 0.61 0.732 0.409 
1.072 0.801 1.061 0.533 
1.586 0.991 1.459 0.658 
2.274 1.171 1.911 0.777 
3.121 1.346 2.412 0.889 
4.117 1.525 2.961 0.991 
5.423 1.68 3.539 1.092 
6.829 1.808 4.242 1.185 
7.91 1.906 5.019 1.277 
8.717 1.968 5.854 1.362 

6.70 1.439 
7.504 1.503 
8.206 1.554 

T= 303.15 K 

Pressure Amount adsorbed 
bar mol/kg of adsorbent 

0.143 0.078 
0.322 0.161 
0.548 0.25 
0.826 0.345 
1.166 0.447 
1.573 0.553 
2.031 0.653 
2.546 0.751 
3.140 0.849 
3.768 0.945 
4.580 1.041 
5.452 1.132 
6.408 1.22 
7.25 1.288 
7.947 1.339 
8.537 1.376 
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Adsorption Isotherms for Nitrogen on Na-Mordenite Molecular 

Sieve Pellets at 278.15,293.15 and 303.15 K 

T = 278.15 K 

Pressure Amount adsorbed 
bar mol/kg of adsorbent 

0.088 0.184 
0.246 0.406 
0.499 0.654 
0.954 0.905 
1.671 1.129 
2.609 1.313 
3.547 1.434 
4.573 1.528 
5.728 1.612 
6.817 1.683 
7.816 1.736 
8.863 1.782 
9.519 1.815 

T= 293.15 K 

Pressure Amount adsorbed 
bar mol/kg of adsorbent 

0.107 0.112 
0.256 0.243 
0.463 0.390 
0.777 0.545 
1.216 0.705 
1.772 0.852 
2.434 0.977 
3.165 1.080 
3.910 1.163 
4.580 1.225 
5.275 1.277 
6.144 1.332 
6.968 1.376 
7.762 1.414 
8.581 1.449 

T = 303.15 K 

Pressure Amount adsorbed 
bar mol/kg of adsorbent 

0.133 0.101 
0.319 0.219 
0.58 0.35 
0.951 0.494 
1.425 0.637 
1.992 0.761 
2.614 0.8696 
3.316 0.961 
3.997 1.037 
4.647 1.098 
5.299 1.149 
5.993 1.195 
6.736 1.237 
7.465 1.277 
8.371 1.320 
9.014 1.347 
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APPENDIX II 

DETAILED CALIBRATION PROCEDURES AND EQUIPMENT 

SPECIFICATIONS 

A Calibration Procedures 

(a) Calibration of the system 

(b) Operating procedure for the oxygen analyser 

B Egiinent Specifications 

Table 11.1 Uncertainties in Volume Determination 

Table 11.2 Determined Absolutes Densities for Laporte's 4A, 5A and 

13X, EKA 5A and Na-Mordenite at Temperature 293.15 K 

Figure II. 1 Schematic Sketch of the Adsorption Vessel 
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A. Calibration Procedures 

(a) Calibration of the system 

(i) Measure the internal volume of the glass sphere Vo (see Figure 

3.1). This is done in the following way. 

(a) Clean the glass sphere thoroughly by hot water and soap and 

then by acetone. 

(b) Weigh the glass sphere several times when empty and when 

full of water at a known temperature. Obtain an average 

value. 

(c) Determine the density of water used. 

(d) The volume hence can be evaluated by dividing the mass of 

water in the glass sphere by the water's density. 

(ii) Measure the internal volume of the system by using the calibrated 

glass bulb, a mercury manometer and a cathetometer. The volumes 

to be measured are defined below. 

Volume No. Defined by Valves (see Figure 3.1) 

Vd Pipe network between valves 1,2,3,12,13,14 
and 6 with valves 10 and 11 open and mercury at 
datum level. 

VCR Circulation volume defined by valves 4,5,7 
open and valves 3,8 and 9 closed. 

VA Adsorption vessel volume with valves 8 and 9 
closed. 

VAD Voidage volume in adsorption vessel when full 
of adsorbents. 

The technique for measuring these volumes are presented below. 

Vd 

(a)' Measure the datum level of the mercury column, ho, in the 

manometer using the cathetaneter, the atmospheric pressure, 

PA, using the barometer, and the room temperature, TR. 
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(b) Close valves 1 and 3. 

(c) Evacuate the system and then close valve 6. 

(d) Close valve 2 and bleed helium into the system using valve 

1. 

(e) Measure the new mercury level, hl, corresponding to an 

internal pressure, Pl. 

(f) Open valve 6 and record the new mercury level, h2, corres- 

ponding to the final pressure, P2. 

(g) Compute the value of Vd from the following equation: 

P2 Vc TR (P2 th2 - Pl Ahl) A2 
Vd 

(P1-p2) TB 
+ (P1 - P2) 

where Ahl = ho - hl 

Ah2 = ho - hl 

A 
P1 = PA + Ah, p1+ A2 

P= PA + Ah 
2 

2p1+A1 

p= density of mercury at TR 

A1, A2 = areas of limbs of manometer 

TB = bath temperature 

(a) Evacuate the whole system with valves 8 and 9 closed. 

(b) Close valves 2 and 3 and bleed helium into the system 

using valve 1. 

(c) Measure the new mercury level, hl, corresponding to the 

internal pressure, Pl. 

(d) Open valve 3 and record the new mercury level, h2, corres- 

ponding to the final pressure, P2. 

(e) Compute the value of VCR from the following equation: 
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(PL P2) Vd TB (P1-P2) 
VCR - P2 TR 

+ P2 
Vc 

(a) Evacuate the whole system. 

(P1 Ah1 - P2 Ah2) A2 TB 

P2 TR 

(b) Close valves 8 and 9 and bleed helium into the system 

using valve 1. 

(c) Measure the new mercury level, hl, corresponding to the 

internal pressure, PV 

(d) Open valves 8 and 9 and record the new mercury level, h2, 

corresponding to the final pressure, P2. 

(e) Compute the value of VA from the following equation: 

(P1 P2) Vd TB (P1 P2) (P1-P2) VCR 
VA 

P2 TR + 
P2 

Vc + P2 
+ 

(P1 h1 - P2 h2) A2 TB 

P2 TR 

Repeat the above process for VAD when the adsorption vessel is 

full of adsorbents. 

(iii) Measure the absolute density of each adsorbent sample used by 

filling 30 ca3 HOKE stainless steel cylinder with a known weight 

of activated adsorbents and measure the internal volume of the 

cylinder using the technique described for VCR. The absolute 

density is obtained by dividing the mass of adsorbents used by 

the volume occupied by the adsorbents in the cylinder. 

The various volumes within the apparatus are given in Table II. 1 

together with the standard deviation associated with each. The absolute 

density determined for each adsorbent sample is given in Table 11.2 

together with the standard deviation associated with it. 
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TABLE II. 1 

Uncertainties in Volume Determination 

Volume Designation 
Calibrated Volume 

3 
an 

Standard Deviation 

3 
cm 

Vd 134.820 1.07 

VCR 745.706 0.913 

VA 665.94 1.277 

Laporte 4A 

VAD(T 
= 303.15 K) 

462.65 1.01 

VAD(T 
= 293.15 K) 

468.01 0.191 

VAD(T 
= 278.15 K) 

469.19 1.04 

Laporte 5A 

VAD(T 
= 303.15 K) 

486.011 0.819 

VAD(T 
= 293.15 K) 

488.867 0.844 

VAD(T 
= 278.15 K) 

492.147 0.841 

Laporte 13X 

VAD (T = 303.15 K) 
498.672 2.93 

VAD(T 
= 293.15 K) 

503.3 0.365 

VAD(T 
= 278.15 K) 

504.34 0.369 

EKA 5A 

VAD(T 
= 303.15 K) 

484.656 0.298 

VAD(T 
= 293.15 K) 

488.641 0.902 

VAD(T 
= 278.15 K) 

494.492 0.801 

Na-Mordenite 

VAD(T 
= 303.15 K) 

470.975 0.276 

VAD(T 
= 293.15 K) 

483.307 0.231 

V 487.145 0.513 
AD(T = 278.15 K) 
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TABLE 11.2 

Determined Absolute Densities for Laporte's 4A, 5A and 13X, 

EKA 5A and Na-Mordenite at Temperature 293.15 K 

Adsorbent 
Absolute Density 

g/cm3 

Standard Deviation 

- g/Cm3 

Laporte 4A 2.552 0.168 

Laporte 5A 3.18 0.034 

Laporte 13x 2.845 0.174 

EKA 5A 3.367 0.194 

Na-Mordenite 2.711 0.100 
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(b) Operating procedure for the oxygen analyser 

(i) Switch power on and allow 12 hours warm up, prior to 

calibration. 

(ii) Select the 0-25 per cent oxygen range by the front panel 

switch. 

(iii) Select the 0-10 millivolt output range by an internal 

switch. 

(iv) Connect the output terminals to a pen recorder adjusted 

to read in the 10 millivolt range. 

(v) Switch lamp and FEEDBACK off and adjust AMPLIFIER BALANCE 

until meter reads between zero and 2.5 per cent oxygen 

on the pen recorder. Switch lamp and FEEDBACK on again. 

(vi) Plug in sample selector to zero gas (oxygen-free nitrogen 

is chosen) and adjust the by-pass needle valve so that 

the by-pass rotameter reads at least 10 per cent of scale. 

Allow two minutes for the analyser to reach equilibrium, 

then adjust the mechanical zero control. When the zero 

is approximately correct, open the FEEDBACK switch. 

This increases the sensitivity by a factor of at least 

100 and permits an extremely accurate zero adjustment. 

Close the FEEDBACK switch. 

(vii) Plug in the sample selector to span gas (oxygen gas is 

chosen). Check that the sample flow is normal, i. e. by- 

pass rotameter reads at least 10 per cent of scale. Allow 

ten minutes for the analyser to reach equilibrium then 

adjust the SPAN CONTROL to give the correct analyser 

reading, i. e. 100 per cent. 

(viii) Adjust any discrepancy between the analyser and the pen 

recorder reading, with the internal SET METER control. 
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This should not require frequent readjustment. 

(ix) Plug in the sample selector to the sample gas line. 

The analyser is now ready for sample analysis. 

B. Equipment Specifications 

1. Vacuum system 

Manufacturer: Edwards High Vacuum Ltd., Crawley. 

Oil Diffusion Pump: Type: E04 

Pump speed: 600 lit/s 

Ultimate vacuum: 10 7 torr 

Fluid charge: 175 ml 

Number of stages: 4 

Backing Pump: Type: ED200 

Displacement: 190 lit/min 

Ultimate vacuum: 10 -4 torr 

Total oil required: 1.85 litres 

Vacuum Gauges: (a) Penning Type: 6 

Ranges: 10-2 to 10 -7 torr 

(b) Pirani 11 

Ranges: 3.0 - 0.001 torr 

Vacuum Valves: " and 1" speedivalves, diaphram type 

2. Water bath 

Manufacturer: Grant Instrunents Ltd., Cambridge. 

Type: SX5O, size: 50 lit, sensitivity: 

+ O. 1°C, uniformity: + 0.05 C 

3. Cooler unit 

Manufacturer: Grant Instruments Ltd., Cambridge. 

Type: CC2O 

For cooling water down to O°C 
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4. Pressure transducer 

Manufacturer: Bell and Howell Ltd., Basingstoke. 

Type: 4-306-0221, range: 0-150 psi 

Sensitivity: 42.45 mvolts, non-linearity 

and hysteresis: + 0.06% full range 

output 

S. Bridge supply and balance unit 

Manufacturer: Bell and Howell Ltd., Basingstoke. 

Type: 8-125, output voltage: 3-12 volts 

Current: 35 mAmps maximum, output 

resistance: 0.2 ohms, noise and ripple 

<+0.01 per cent output 

6. Valves 

Manufacturer: Hoke International Ltd., New Barnet, Herts. 

(a) Type: 4600 series, 316 stainless 

steel bellows sealed valves, 

maximum. operating pressure: 300 psig, 

tube size: 1/4" o. d. 

(b) Type: 4100 series, 316 stainless 

steel bellows sealed valves, 

maximum operating pressure: 1000 psig, 

tube size: 1/4" o. d., 'Gyrolok' tube 

fitting s 

7. Circulating pump 

Manufacturer: McDonald and Dawson Ltd., Ashbourne. 

Typo: D/416-1E 

Maximum working pressure: 60 psig, 

flow-rate: 2-10 I/min 
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8. Adsorption vessel and holding vessel 

(Schematic sketch shown in Figure II. 1. ) 

Stainless steel, maximum operating 

pressure: 150 psi, dimensions: 0.15 mx 

0.09 m 

9. Oxygen analyser 

Manufacturer: Taylor Servamex Ltd., Crowborough, Sussex. 

Type: O. A. 137, ranges: 0-2.5,0-5, 

0-10,0-25 and 0-100 per cent 

Accuracy: + 0.05% oxygen, sample 

maximum pressure: minimum 0.74 ]/m2, 

347 kN/m2, sample flow-rate: 100 ml/min 

Response time: 7 seconds, level sensi- 

tivity: < 0.01% per degree of tilt 
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Figure 111 Schematic Sketch of the Adsorption Vessel 
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APPENDIX III 

COMPUTER PROGRAMMES 

Programme Ruthven Prediction of Binary Gas Adsorption by 

the Statistical Thermodynamic Model 

Programme Cook Prediction of Binary Gas Adsorption by 

Cook and Basmadjian Model 

Programme IAST Prediction of Binary Gas Adsorption by 

the Ideal Adsorbed Solution 

Programme Vacancy Prediction of Binary Gas Adsorption by 

the Vacancy Solution Model 

Programme Act Calculation of the Activity Coefficients 

for the Binary Experimental Data 
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PROGRAM RUTHVEN 

PREDICTION OF BINARY ADSORPTION 
FROM PURE COMPONENT ISOTHERMS BY 
THE STATISTICAL THERMODYNAMICS METHOD 

NCMENCLATURE OF PROGRAM 

EQUATION 2.49 IN TEXT IS USED FOR 
EVALUATING THE AMOUNT ADSORBED OF 
N2 . ITS' CORRESPONDING EQUATION 
IS USED FOP 02 . 

PRES=TOTAL PRESSURE OF MIXTUFE 
T=TEMPEPATURE OF ADSORPTICN 
VPOFE=POQE VOLUME OF ZEOLITE CAVITY 
CMOL=CCNVEPSIQN FACICR FOR CONVERTING 

MOLECULE/CAVITY TO MOL/KG 
M=I IN EQUATION 2.49 AND ITS CORRESPONDING EQUATION 

( TAKEN AS NO. OF MOLECULES OF 02 IN ZEOLITE CAVITY ) 
NvJ IN ECUATIf]N 2.49 AND ITS CORRESPONDING ECL)A1IGN 

( TAKEN AS NO. OF MOLECULES OF N2 IN ZEOLITE CAVITY ) 
A(I)=REGREScIGN PARAME1ERS OBTAINED FROM 

THE PUPE COMPONENTS ISOTHERMS 
A(1), &(2)=HENRY'S LAW CONSTANTS FOR 
THE STRONGLY ADSCREED COMPONENT I. E. N2 
A(3), A(4)=HENRY'S LAW CONSTANTS FOR 
THE LESS ADSOPEED COMPONENT I. E. 02 
A(5). A(6) EFFECTIVE MOLECULAR VOLUME GF N2 
A(7)PA(8)=EFFECTIVE MOLECULAR VOLUME OF 02 

Y1M=MOLF FRACTION OF 1 IN GAS P! -ASE (I. E. N2 ) 
Y2M=MOLE FRACTION OF 2 IN AS PI-ASE (I. E. 02 ) 
pUl=PARTIAL PRESSURE CF N2 
P02=PAPTIAL OPESSUFE OF 02 
6IN1= I OR J F&CTORIAL IN EQUATION 2.49 

AND ITS CORRESPONDING EDUA1IÜN FOR THE OTHER COMPONENT 
EIN2= (I-1) ºJP (J-1) FACTORIAL IN ECUATION 2.49 

AND ITS CORRESPONDING Ef+USTICN FCF THE CThEk COPPuNENT 
SUM= SUM OF DENOMENATOF IN EQUATION 2.49 OP ITS' 

CORRESPONDING EGUATICN TO yAx1MUM VALUES OF 
M AND N(I. E. F0; N2 OR 02 ) 

SOMA=SUM OF NUMERATOR IN ECUAIICN 2.45 70 MAXIMLJM 
VALUFS OF M ANC N 
(FOR N? ) 

SUMP=SUM 0; NUMERATOR 1N ECUI-TICN 2.49 10 MAXIMUM 
VALUE OF N . HEN M=C 
(FOR N2) 
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c 
c 

44 

SUMC=SUM OF NUMERATGR IN THE CORRESPONGING EQUATION 
TO EQUATION 2. '9 10 MAXIMUM 

X1M=MOLE FRACTION OF N2 IN ADSORBED PHASE 
X2M=MOLE FRACTION OF 02 IN ADSORBED PHASE 
RV=SEPARATION FACTO} AS DEFINED IN TEXT 

VALUES OF "M AND N 
(FOP 02) 

X1=AMOUNT ADSORBED OF N2' 
X2=AMOUNT ADSORBED OF C2 

EQUATION 2.49 OR ITS 
TO MAXIMUM 

EQUATION 2.49 OR ITS 
TO MAXIMUM 

SUi1t-=5UM CAF NUMERATOR IN THE CORRESPONDING 
EQUATION TO EQUATICN 2.49 TO f AXIrUM 

VALUE OF M WHEN N=C 
(FOR 02) 

SUMD=SUM OF DENOMENATOR IN 
CORRESPONDING EQUATION 
VALUE OF N WHEN M=0 
(FCR N2 OR 02) 

SUME=SUM OF DENOMENATOR IN 
CORRESPONDING EQUATION 
VALUE OF M WHEN N=O 
(FOR N2 OR 02) 

DIMENSION A(8), PO1(ý'1), P02(51), X1M(bl), X2M(51), 
lY1M(51), Y2"(51), XT(51), kl(51), X2(51), RV(51), 
28IN1(15), RIN2(1, ) 

CHAPACTEP*80 TITLE(4) 
READ(*, 3) TITLE 
WRITE(2,3) TITLE 
READ*, PPES, T 
READ*, VjPCRE, CMOL 
READ*, M, N 
READ, (A(t), i=1,8) 
WRITE (2,25) PPES, T 
CALCULATE THE INCREPENT SIZE OF MCLE FRACIICN 
IN GAS PHASE 
DYI=(1.0-0.0)/5C. 0 
DO 44 J=2,50 
Yli`1(J) =0.0+(J-1)*DYI 
Y2M(J)=1.0-YIM(J) 
P01(J)-Y1M(J)*PRES 
PC. 2(J)=Y2M(J)*PRES 
BINI(1)=1.0 
DO 5 1=2,15 
5IN1(I)=AIN1(I-1)*I 
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BIN2(1)=1.0 
BIN2(2)=1.0 
DO 17 I=3,15 

17" BIN2(I)=RIN? (I-1)*(1-1) 
DO 45 J=2,50 
Sum=0.0 
SL'MA=fl. O 
SUMB=0.0 
SUMC=0.0 
SUMD=0.0 
SUME=0.0 
SUMF=0.0 
DO 13 I=3, N+1 

13 SUMS=((A(I)*EYP(A(2)/T))*PO1(J))**(I-1)4 
1(1-(I-1)*A(5)*EXP(A(6)/T)/VPURE)**(I-1)/BIN2(1-1)+SUMB 

00 14 I=2, N 
14 SUMD=((t(1)*ExP(A(2)/T))*POl(J))**j* 

1(1-I*A(5)#ErP(A(6)/T)/VNORE)**I/BIN1(1)+SUMD 
DO 12 K=1, M 
DO 11 1=1, N 

11 SUM=(A(1)*EXP(A(2)/T)*P01(J))*VI* 
l(A(3)*EYP(A(4)/T)*PC2(J))**K* 

"2(1-I*A(5)*ExP(A(6)/T)/VPORE- 
3K*A(7)*E)P(A(8)/T)/VPGFE)**(I+K) 
3/(BINl(I)*PIN1(K))+SUM 

12 CONTINUE 
DO 16 K=1, M 
De 19 I=2, N+1 

19 SUMA=lA(1)*EYP(A(2)/T)*P01(J)) (I-1)* 
1(A(3)*EXP(A(4)/T)*PO2(. i))**K* 
2(1-(. I-1)*A(5)*EXP(A(6)/T)/VPORE- 
3K*A(7)*EYP(A(P)/T)/VPDPE)*/((1-1)+K) 
3/(EIN2(I-1)*BIN1(K))+SLMA 

16 CONTINl! E 
DO 21 I=3, M+1 

21 SUMC=(A(3)*E'P(A(4)/T)*PO2(J))**(I-1)* 
1(1-(I-1)*A(7)*EXP(A(6)/T)/VPOFE)**(1-1)/BIN2(1-1)+SUMC 

DO 22 I=?., M 
22 SUviE=(A(3)*EXP(4(4)/T)*P02(J))**I* 

111-I*A(7)*ExP(e(b)/T)/bFGýEI**I/ölnllI)+5trME 
xl(J)=(A(1)*FxP(A(2)/T)*PO1(J)+SLPIA+SUMB)/ 

1(1+A(1)*EXP(A(2)/T)*P01(J)+A(3)*EXF(A(4)/T)*PC"2(J)+ 
2CUM+SUMD+SUME ) 
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DC 28 K=2, F+1 
DO 29 I=1, N 

29 SUNF=(A(1)*FXP(A(2)/T)*F01(J))* I* 
1(A(3)*EXP(4(4)/T)*PC2(J))**(K-1)* 
2(1-I*A(5)*EXP(A(6)/T)/VFORE-(K-1)*A(? )*EXP(A(8)/T)/VPGRE) 
3**(I+(K-1)) 
4/(3IN1(I)*BIN2(K-1))+SLMF 

28 CONTINUE 
X2(J)=(A(3)*EXP(A(4)/T)*P02(J)+SUMF+SUMC)/ 

1(1+4(1)*EXP(A(2)/T)*PO1(J)+4(3)*EXP(4(4)/T)*PO2(J)+ 
2SUM+S('ME+SUMD) 

X1(J)=X1(J)$CMOL 
X2(J)r' 2(J)*C%C1L 
XT(J)=X1(J)+x? (J) 
X1M(J)=)l(J)/XT(J) 
X2M(J)=1.0-XlM(J) 
RV(J)=(Y2M(J)cY1M(J))/(Y1M(J)*X2M(J)) 

45 CONTINUE 
WRITE (2,170) 
WPITE(2,180) (Y2M(J), X2V(J), X1(J), X2(J), XT(J), RV(J), J=2, tiC) 
Sl0P 

C ............. FORMAT SECTIGN....................... 
3 FORMAT(A) 
25 FORMAT(//T6 'F0UILIL'R1UM PRESSURE', F10.5, 'BAR'// 

1T6, '1EMPFRAI'JPE OF ADSGFPT10N', F10.3, '(EGREES KELVIN'//) 
170 FORMAT (////T7, 'ADSGRPTIGN E0U1LIBRIA'//T6s'MOLE FRACTION', 

1T23, 'MCLE FP4CTIUN', T39, 'AMOUNl ADSORBED, MOL/KG OF ADSL93ENT' 
1, T81, 'REL. VOL. '! 
2T6)'GAS PHASE, ', T22, 'ADSMED PHASE ', T35, 'CCMPONENT1', T52, 
3'COMPONENT 2', T69, '1OTAL'//) 

180 FORMAT (TSPF9.7pT24PF9.7pT39jEl2. '.,,. 9752PE12.5pT6bpEl2o5pT81 
1, F9.7) 

END 
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PROGRAM COOK 

PREDICTION OF BINARY ADSORPTION 
FROM PURE COMPONEtT ISOTHERMS BY 
COOK AND BASMADJIAN METHOD 

EQUATION 4.1 IN TEXT IS USED AS THE 
CORRELATING EQUATION FOR THE PURE 
COMPONENTS ISOTHERMS 

NOMENCLATURE OF PROGRAM 

PRES=PRESSURE OF MIXTURE 
T=TEMPEPATUPE OF ADSORPTION 
A1, A2=REGRESSION PARAMETERS OF EQUATION 4.1 
FOR THE PURE COMPONENT ISOTHERMS 
(1 FOR LESS ADSORBED ( 02 )'2 FOR STRONGLY ADSORBED ( N2 
X1E=ASSUMED AMOUNT ADSCRBED AT PRESSURE OF MIXTURE 
W1=AMOUNT ADSORBED OF PURE 1 AT PkESSURE OF MIXTURE 
W2=AMOUNT ADSORBED CF PURE 2 AT PRESSURE OF MIXTURE 
Flll=INTEGRATION OF NUMERATOR OF EQUATION 2.57A IN TEXT 
FI12=INTE. GRATION CF NUMERATOR OF EQUATION 2.578 IN TEXT 
F121=INTEGRATION OF DENOMENATOR OF EQUATION 2.57A 
FI22=INTEGRATION OF DENOMENATOR OF EQUATION 2.57B 
B1=SEPARATION FACTOR AT X2=1.0 
B2=SEPARATION FACTOR AT X1=1.0 
PI1=Pl/xl 
PI2=P2/X2 
Xl=MOLE FRACTION OF 1 IN ADSORBED PHASE 
X2=MOLE FRACTION OF 2 IN ADSORBED PHASE 
P1=PARTIAL PRF. SSURE OF 1 
P2=PARTIAL PRESSURE OF 2 
XT=TOTAL AMOUNT ADSORBED 
X1M=AMOUNT ADSORBED OF 1 
X2M=AMOUNT ADSORBED CF 2 
Y1=MOLE FRACTION OF 1 IN GAS PHASE 
Y2=MOLE FRACTION OF 2 IN GAS PHASE 
RV12=SEPARATION FACTOR ( Y1. X2 / Y2. X1 ) 
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COMMON/SEA/ A1(10), A2(1C), TP, J 
DIMENSION Y1(51), Y2(51), PI1(51), FI2(b1), PI11(51) 

1, PI22(51), X1(51), X2(51), XlM(51)PXZh(51)PXTM(51), 
2XT(51), RV12(51) 

CHARACTER*80 TITLE(4) 
READ(*, 3) TITLE 
WRITE(Z, 3) TITLE 
READ*, PRES, T 
READ*, (A1(I), I=1,4), (A2(I), I=1,4) 
WRITE (2925) PRES, T 

C CALCULATE THE AMOUNT ADSORBED OF EACH PURE 
C COMPONENT AT THE TOTAL PRESSURE OF MIXTURE 

TP=PRES 
XlE=0.5 
CALL SEARCH (X1E, b1,1) 
CALL SEARCH (X1E, W2,2) 

C EVALUATE THE INTEGRALS OF EQUATIONS 2.57A AND 2.57B 
CALL SPREAD (W1, FI11,1) 
CALL SPREAD (W2, FI12,1) 
CALL SPREAD (W1, FI21,2) 
CALL SPREAD (W2, FI22,2) 
B1=EXP(l/W2*(FI12-FI22)) 
B2=EXP(1/W1*(FI11-FI21)) 
PI1(51)=PRES*B1 
PI2(1)=PRES/B2 

C ASSUME THE BINARY ISOTHERMS ARE LINEAR 
C IN A LOG-LOG PLOT AND EVALUATE THEIR SLOPES 
C FROM THE KNOWN END POINTS 

W22=ALOG(W2) 
W11=ALOG(W1) 
PI11(51)=ALOG(PI1(51)) 
PI22(1)sALOG(PI2(l)) 
PI11(1)=ALOG(PRES) 
PI22(51)=ALOG(PRES) 
SL1=(W22-Wll)/(PI11(51)-PI11(1)) 
SL2=(W22-W11)/(PI22(51)-PI22(1)) 

C CALCULATE THE INCREtENT SIZE OF LOG OF 
C TOTAL AMOUNT ADSORBED 

DXMT=(W22-W11)/50.0 
DO 45 J=2,50 
XTM(J)=W11+(J-1)*DXP! T 

C CALCULATE THE RATIOS Pl/X1 AND P2/X2 FOR EACH 
C TOTAL AMOUNT ADSORBED EVALUATED IN THE PREVIOUS STEP 

PI11(J)=(SL1*PI11(1)-W11+XTM(J))/SL1 
PI22(J)x(SL2*PI22(l)-º. 11+XTM(J))/SL2 
PI1(J)=EXP(PI11(J)) 
PI2(J)-EYP(PI22(J)) 
XT(J)=EXP(XTM(J)) 
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C CALCULATE THE INDIVIDUAL AMOUNTS ADSOk5ED OF 
C EACH COMPONENT , THE COMPOSITION OF EACH COMPONENT 
C IN BOTH PHASES AND THE SEPARATION FACTOR 

X2(J)-(PI1(J)-PRES)/(PI1(J)-PI2(J)) 
X1(J)=1.0-X2(J) 
X1M(J)-XI(J)*XT(J) 
X2M(J)=X2(J)*XT(J) 
Y1(J)=PT1(J)*X1(J)/PRES 
Y2(J)=1.0-Y1(J) 

45 RV12(J). -(Y1(J)*X2(J))/(Y2(J)*X1(J)) 
WRITE(2p170) 
WRITE(2p180) (Y1(J), X1(J), X1M(J), X2M(J), XT(J), 

1RV12(J), J=2,50) 
STOP 

C ............. FORMAT SECTION....................... 
3 FORMAI(A) 
25 FORMAT(//T6, 'EQUILIBRIUM PRESSURE', F10.5, 'BAR'// 

1T6, 'TEMPERATURE OF ADSORPTION', F10.3, 'GEGREES KELVIN'//) 
170 FORMAT (////T7, 'ADSLRPTIGN EQUILIBRIA'//T6, 'MOLE FRACTIJN', 

1T23, 'MOLE FRACTION', T39, 'AMOUNT ADSORBED, MOL/KG OF ADSORBENT' 
1, T81, 'PEL. VOL. '! 
2T6. 'GAS PHASE, ', T22, 'ADSORBED PHASE', T39, 'COMPONENT 1', T52, 
3'COPPONENT 2', T69, 'TOTAL'//) 

180 FORMAT (TR, F9.7, T24, F9.7, T39, E12.5, T52, E12.5, TE6, E12.5, 
1T81, F9.7) 

END 
C 
C 
C 

SUBROUTINE SEARCH (D1, DR, JCOMP) 
C THIS SUBROUTINE SEARCHS FOR A ROOT USING 
C NEWTON-RAPHSON METHOD 

FD"FUNCS(DIP JCOMP) 
40 DELX FD/(FDER(D1, JCCMP)) 

Dl=Dl-DELX 
FD=FUNCS(fl1, JCCMP) 
IF(AB5(DELX). LE. 0.1E-C8) GOTO 60 
GOTO 40 

60 DR=D1 
RETURN 
END 
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C 

C 

C 

45 

C 
3 
25 

170 

1b0 

C 
C 
C 

C 
C 

40 

60 

C 
C 
C 

C 
C 
C 

CALCUI ATE IHE T01 AL AUUN1 ACSQ? bED 
X1(J)=Y1C(J)'>20(J1/(4.1f°'(J)7X20(J)+X2hAJ)*X10( )) 
CALCI'LATE THE SEPAFATIG(, 4 FACTO-: 
ýV(J)=C 2'"'(Jx1 "(J))/(Y1 "(J)'ß)2M(.! )) 
CALCULATE THE INDIV10UAL aM0LNTS ALS0PBED 
X1(J)=X)'(J) XT(J 
X2(J)=x2, M(J)*XT(J) 
MPITF(2,170) 
hRITE(2,180) (Y2M(J), X2M(J), Xl(J), X2(J), XT(J), R1(J), J=2,50) 
STÜP 

............. FORMAT SFCTIUN....... 0.0............. 
FOº<"AT(A) 
FORMAT(//T6, 'EOUILIEPIUM PRESSURL', F10.5, 'BAR'/I 

1T6, 'TEMMPFP, ýTUQE OF ADSLkPTIUN', F10.3, '0EGkLLS KELVIN'//) 
F0? MAT (////T7, 'ADSCPPT1ON ECL1LI? EIA'//Tý:, 'M0LE FRACTIJN', 

1T23, '' OI EP ACTILr. ', T3S, 'AMOUt'T ADSCPBEL MUL/KG OF ADSCKUE'1 
1, T819'REL. VOL. '/ 
2T6, 'GAS PHASE, ', 122, 'ADSCRBED PHASE', T39, 'CCiPONENT1', 152, 
3'CCl PONFNT 2', T69, '10TAL'//) 

FLRVAT (T6, Fo. 7, T24, FS. 7, T39, E12.5, T52, E12.5, Tb&, E12.5, Tb' 
1, FY. 7) 

END 

SUBROUTINE SFARCH (L1, CR. JFUN, JCUMP) 
THIS SUFPOUTJ E SEAFCHS Ff-F. A kEUT USING 
NEwTON-PhPHSI)N MET-CD 
FD=FW"CS(D1, JFUN, JCCMP) 
DELX=FD/ (FDF'-' (D1, JFLN,. jCtJMP) ) 
D1=D1-PFLt 
FD=FUNCS(Dl, JFUN, JCCMP) 
IF(APS(DELX). LE. O. 1E-OL, ) GCTU 60 
GGTC 40 
GR=CT 
RET LIP N 
Et0 

SU3PCUTINF SPPFAD ?! C, PIU, JCCj P) 
CGS "OSEAI alAtlý) 

1, II(`1), °C1C51). ýC2(71)r 
2J, TP, eIf5i). x2 0 l: i) 

11 MEII 'I ICIr) LICi) ýN(E ) 
THIS SL'RZ)GUTIE CLM FUIES TE SP EA[; ING 
Fi! K A CIVET nt CljN t0ý1 ED rLh FARE 
1-APE: 711DtL LE bCF 1CC INCPti`, ENT 
GLTL(?, 4), JCC'MN 

PkESSU E FCNCT1ON 
Cllr HC, 4E INT uS INC- 
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SUBROUTINE SOREADO(CoPIC9JCOh-P) 
COMMON/SEA/ A1(10), A2(10), TP, J 
DIMENSION X(101), OLP(141), A(8) 

C THIS SUBROUTINE EVALUATES THE INTEGRALS OF EQATIONS 2.57A 
C AND 2.578 USING TRAPEZOIDAL RULE FOR 100 INCREMENIS 

GOTO (3,4), JCOMP 
3 DO 5 I=1,4 
5 A(I)=Al(I) 

GOTO 8 
4 DU 7 I=1.94 
7 A(I)=A2(I) 
8 DX=X0/100.0 

SUM=0.0. 
Xll)=0.0 
00 11 I=2,101 
X(I)=X(I-1)+DX 
X11=X(I) 
DLP(I)=ALOG(((A(1)*Xll)*EXP(X11/(A(3)-X11)- 

lA(4)*X11))/(A(2)-Xll)) 
11 SUM=SUMIDLP(I) 

PI0=nX*(SUM-0.5*DLP(101)) 
RETURN 
END 

C 
C 
C 

FUNCTION FUNCS(X, JCOMP) 
CONMM. ON/SEA/ A1(10), A2(10), TP, J 
DIMENSION A(9) 
GG-TO (30p4O)tjCOMP 

30 00 31 I=1,4 
31 A(I)=A1(I) 

GOTO 100 
40 DO 41 I=1,4 
41 A(I)=A2(I) 
C ISOTHERM FUNCTION 
100 FUNCS=(((A(1)*X)*EXP(X/(A(3)-X)-A(4)*X)) 

1/(A(2)=X))/TP-1.0 
RETURN 
END 

C 
C 
C 

FUNCTIC' FDER (X, JCCttP ) 
C FUNCTION FDFR COMPUTES THE DERIVATIVE OF FUNCS 
C(I. F. THE iSCTHERM FUNCTION ) FOR USE IN 
C SULRt1UTINE SEARCH 

CUMNON/SEA/ Al(10), A2(IC), TP, J 
DIMENSION A(P) 
G[ TO (30,4O), JCGMP 

30 DO 31 I=l, 4 
31 A(I)=A1(I) 

GOTO 100 
40 DC 41 I=1,4 
41 A(I)=A2(I) 
100 11=Exp(x/(A(3)-? )-A(4) X) 

z? =A(117.1+n(1)ýký(lA(3l/(A(3)-x)ýý2)-a(4l) 
1#Z1/(A(2)-x) 

23=7; 14e(1)*y*711(A(2)-X)#*2 
FE'CR=73/TP 
RETUPNJ 
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PROGRAM LAST 

PREDICTION OF BINARY ADSORPTION 
FROM PURE COMPONENT ISOTHERMS BY 
ThE IDEAL ADSORBED SOLUTION THEORY 
(I. A9S. T. ) 

EGUATION'4.1 IN TEXT IS USED AS THE 
CORRFLATING EQUATION FOR THE PURE 
COMPONENT ISOTHERMS 

NOMENCLATURE OF PROGRAM 

PPES=PRFSSUpE OF MIATURE 
1EMP=TEMPERATURE OF ADSORPTION 
A1, A2=REGRESSION PARAMETERS FOR 

EQUATION 4.1 FOR BOTH PURE COMPONENTS 
I1 FOR STRONGLY ADSORBED COMPONENT 

2 FOR LESS ADSORBED COMPONENT ( 02 
X1E=ASSUMED AMOUNT ADSORBED AT PRESSURE OF 
X10=AMOUNT ADSORBED OF PURE COMPONENT 1 AT 

SPREADING PRESSURE LF MIXTURE 
X20=AMOUNT ADSORBED OF PURE COMPONENT 2 AT 

SPREADING PRESSIRE OF MIXTURE 
PI10=SPPEADING PRESSURE OF PURE COMPONENT 1 
P120=SPREADING PRESSURE OF PURE COMPONEN1 2 
PI=SPREADING PRESSURE OF MIXTURE 
P01=EQUILIBRIUM PRESSURE OF PURE COMPONENT 

AT THE SPREADING PRESSURE OF"M1)TUkE 
P02=EOUILIBPIUM PRESSURE OF PURE COMPONENT 

AT THE SPREADING PRESSURE OF MIXTURE 
X1MmMOLE FRACTION OF 1 IN ADSORBED PHASE 
X2McMOLF FRACTION OF 2 IN ADSORBED PHASE 
YIM=MOLE FRACTION OF 1 IN GAS PHASE 
Y2M=MOLE FRACTION OF 2 IN GAS PHASE 
XT=TOTAL AMOUNT ADSORBED 
X1=AMOUNT ADSORBEF) OF COMPONENT 1 
X2=AMCiUNT ADSORt3ED CF CCMPONENT 2 
RV=SFPAPATICN FACICF i Y2M. X1M / Y1M. X2M ) 

N2 

MIXTURE 
THE 

THE 
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C 

C 
C 

C 
C 

C 
C 
C 
C 
C 
C 

C 
C 

C 
C 

C 
C 

C 
C 

CGMMON/SEA/ Al(8), A2(8) 
1, PI(`l), POl(51), P02(51), 
2J, TP9Xl0(51), X20(51) 

DIMENSION X1M(51), X2M(51), Y1M(51), Y2M(51), 
lXT(51), x1(51), X2(51), Rv(51) 

CHARACTER*80 TITLEl4) 
READ(#, 3) TITLE 
WRITE(2,3) TITLE 
READ*, PRES, TEMP 
READ*, (A1(I), I=1,4), (A2(I), I=1,4) 
WRITE (2,25) PPES, TEMP 
CALCULATE THE AMOUNT ADSORBED OF BOTH 
PURE COMPONENTS AT 1HE TOTAL PRESSURE OF MIXTURE 
TF=PRES 
X1E=0.5 
CALL SEARCH (XIE, X10(51))1,1) 
CALL SEARCH (XlE, X20(1), 1,2) 
CALCULATE THE SPREADING PRESSURE OF BOTH PURE 
COMPONENTS COPRESPONDING TO THE PRESSURE OF MIXTURE 
CALL SPREAD (X10(51), PI10,1) 
CALL SPREAD (X? O(1), P12C, 2) 
THE SPREADING PRESSURE OF THE BINARY MIXTURE LIES 
BETWEEN THE PURE COMPONENTS SPREADING PRESSURES AT 
PRESSURE OF MIXTURE I. E. PI10 AND FI20 

CALCULATE THE INCPEVEtT SIZE OF THE SPREADING PRESSURE 
OF THE BINARY MIXTURE 
DPI=(PI10-PI20)/50.0 
P01(51 )=PPES 
P02(1)=PRES 
DO 45 J=2+50 
PI(J)=PI20+(J-1)*DPI 
CALCULATE THE AMOUNT ADSORBED OF THE 
CGI, PONEITS AT THE SPREADING PRESSURE 
CALL SEARCH (X10(51), x10(J), 2,1) 
CALL SEARCH (X20(1), X2G(J), 2,2*) 
CALCULITE THE EQUILIBRIUM PRESSURE CF 
COMPONEr'TS AT THE SIREADING PFESSUkE 
P01(J)=FUNCS(X10(J), 3,1) 
P02(J)=FIJNCS(X? O(J), 3,2) 

PURE 
CF MIXTURE 

THE PURE 
OF MIXTURE 

EVALUR"TE THE 90LE FRACTIONS OF 80TH COMPONENTS 
IN THE ADSOQßED PHASE 
X1M(J)=(P02(J)-PRES)/(PC2(J)-P01(J)) 
X2M(J)=1.0-)lM(J) 
EVALUATE THE MOLE FRACTIONS OF BOTH COMPONENTS 
IN THE GAS PHASE 
Y1M(J)=PO1 (J1*k1M(J)/PRES 
Y2m(J)=1.0-Y1M(J) 
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C CALCULATE THE TOTAL AMUL'NT ADSORBED 
X1(J)=XiC(J)*X20(J)I(X1t^(J)*X20(J)+X2M, (4)$X10(J) ) 

C CALCULATE THE SEPAFATICN FACTOR 
RV(J)=(Y2M(J)* 1M(J))/(Y1M(J)' X2M(J)) 

C CALCULATE THE INDIVIDUAL AMOUNTS ADSORBED 
Xl(J)=x3`"(J)* T(J) 

45 X2(J)=)ZM(J)*XT(J) 
ýRITE(2,170) 
wRITE(2,180) (Y2M(J), X2M(J), X1(J)9X2(J), XT (J), RV(J), J=2,50) 
STOP 

C ............. FORMAT SECTION....................... 
3 FOKMAT(A) 
25 FORMAT(//Th, 'EOUILIBRIUM PRESSURL'sF10.5, 'BAR'/I 

1T6, 'TEMPF. PATURE OF ADSL PTIONS, Fl0.3s'GEGkEES KELVIN'//) 
170 FORMAT (////T7, 'ADSORPTION EOUILIBFIAI//TE, 'MOLE FRACTION', 

1T23, '"OLE FPACTIOn', T3S, 'AMOUNT ADSCRBED, MUL/KG OF ADSGR3Et`1 
1, T81, 'REL. VOL. '/ 
2Tb, 'GAS PHASE , ', 'T22, 'ADSORBED PHASE', 739, 'CCMPONENT1', T52P 
31COMPONFNT 2', T69, 'TOTAL'//) 

180 FORt'AT (T8, F9.7, T24sF5.7sT39, E12.5, T52sE12.5, Tb6, E12.5, Tbl 
1, F9.7) 

END 
C 
C 
C 

SUBROUTINE SEARCH (G1, DR"JFUN, JCOMP) 
C THIS SUEROUTINE SEAFCHS FUR A ROUT USING 
C NEWTON-PAPHSON METHOD 

FD=FUNCS(D19JFUN, JCOMP) 
40 DELX=FD/(FDEP(D1, JFUN, JCOMP)) 

D1=D1-PEL 
FD=FUNCS(Dl, JFUN, JCOMP) 
IF(A2S(DELX). LE. O. lE-08) GGTD 60 
GOIO 40 

60 DR=G1 
RETURN 
ENO 

C 
C 
C 

SL3PCUTJNE SPPEAD(XG, PIO, JCUhP) 
CU"NQNISEA/ 41(6), A2(8) 

1, PI(5l))001(51). P02(51), 
2J, TP, x10(51). x20(51) 

DIMENSICN x(1C1), DLe(1C1), A(6) 
THIS SURPOUTINE COMPUTES THE SPREADING PRESSURE FUNCTION 
FGR A GIVE' M'CUNT tDSCRBED FGR A FURE CDh"FCNENT USING 
TPAPEICIDAL IZULE FOP 100 INCPEMENTS 
GLTC (B, 4), JCCMP 
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3 DO 5 I=1,4 
5 A(I)aA1(I) 

GOTO 8 
4 DO 7 I=1,4 
7A(I)aA2(I) 
8 DX=X0/100.0 

sum-os 0 
X(1)-0.0 
DO 11 I=2,101 
X(I)=Y(I-1)+DX 
X22=X(1)*X(I) 
X3sX(I)*X22 
X11=X(I) 
DLP(I)=1.0+x11*(A(3)/(A(3)-X11)**2-A(4)) 

1+X11/(A(2)-X11) 
11 SUM SUM+DLP(I) 

PIO=DX*(SUM-0.5*DLP(101)) 
RETURN 
END 

C 
C. 
C 

FUNCTION FUNCS(XX, JFUN, JCOMP) 
COMMON/SEA/ A1(8), A2(8) 

1, P1(51), P01(51), P02(51), 
2J, TP, X10(51), X20(51) 

DIMENSION A(8), OLP(101) 
GOTO (10,20º50), JFUN 

10 X=XX 
GOTO (30,40)ºJCOMP 

30 DO 31 I=1,4 
31 A(I)=A1(I) 

GOTO 100 
40 DO 41 I=1,4 
41 A(I)=A2(I) 
C ISOTHERM FUNCTION 
100 FUNCS=(((A(1)*X)*EXP(X/(A(3)-X)-A(4)*X)) 

1/(A(2)-X))/TP-1.0 
RETURN 

C SPREADING PRESSURE FUNCTION 
20 GOTO (3,4), JCOMP 
3 DO 5 I=1,4 
5 4(I)=A1(I) 

x10(J)=Xx 
DX=X10(J)/100.0 
GOTO 8 

4 DO 7 I=1+4 
7 A(I)=A2(I) 

X20(J)=xX 
Dx=X20(J)/100.0 

8. SUM=0.0 
X=o. 0 
DO 11 1=2,101 
x11=x+Dx 
x22=X11#xil 
X3=X22*x11 
DLP(I)=1. O+X11#(A(3)/(A(3)-X11)**2-A(4)) 

1+X11/(A(2)-x11) 
11 SUM=SUM+DLP(I) 

Xax11 
FUNCS=DX*(SU�-0.5*DLP(1C1))/PI(J)-1 
P ETukm 
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50 X=XX 
GOTO (60,70), JCOMP 

60 DC 80 Ia1,4 
80 A(I)=Al(I) 

GO10 90 
70 DC 85 I=1,4 
85 A(t)=A2(I) 
C ISOTHERM FUNCTION 
90 FUNCS=((A(1)*X)*EXP(X/(A(3)-X)- 

kEIUPN 
END 

C 
C 
C 

FUNCTION FDER(XX, JFUN, JCOMP) 
C FUNCTION FDEP COMPUTES THE DERIVATIVE OF THE FIRST 
C TWO FUNCTIONS IN FUK S FOR*USE IN SUBROUTINE SEARCH 

COMMON/SEA/ A1(8), 
1A2(6), PI(51), P01(51), PC2(51), 
2J, TP. X10(51), X20(51) 

DIMENSION A(8), DLP(101) 
GOTO (10,20), JFUN 

10 X=XX 
GOTO (30,40), JCGMP 

30 DO 31 I=], 4 
31 A(I)=A1(I) 

GOTO 100 
40 DO 41 I=1,4 
41 "A(I)zA2(I) 
l00 Z1-EXP(X/(c(3)-X)-A(4)*X) 

Z2=A(1)*71+A(1)*X#((A(3)/(A(3)-x)**2)-A(4)) 
1*Z1/(A(2)-x) 

Z3=12+4(1)*X*Z1/(A(2)-X)**2 
FOER=Z3/TP 
R ETURN 

20 GOTO (3,4), JCOMP 
3 DC 5 I=1,4 
5 A(I)=A1(I) 

x10(J)aXX 
). =x10(J) 
GOTO 8 

4 DO 7 I=1,4 
7 A(I)=A2(I) 

X20(J)=%x 
)=X20(J) 

8 74=1. O+Y*((A(3)/(A(3)-X)**2)-A(4))+X/(A(2)-X) 
FDEp=74/PI(J) 
RETI+RN 
END 
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PROGRAM VACANCY 

PREDICTION OF BINARY ADSORPTION 
FROM PURE COMPONENT ISOTHERMS 
BY THE VACANCY. SOLUTION MODEL 

NOMENCLATURE OF PROGRAM 

P=TOTAL PRESSURE OF MIXTURE 
TEMP=TEMPERATURE OF ADSORPTION 
INTER=1 ADSORBATE-ADSORBATE INTERACTIONS (Z12, Z21) 

ARE TAKEN TO BE EQUAL TO UNITY 
-ANY INTEGER OTHER THAN 1 ADSCRBATE-ADSORBATE 

INTERACTIONS ARE ESTIMATED FROM EQUATIONS 
4.8-4.10 IN TEXT 

Z=COORDINATION NUMBER ACCORDING TO 
WILSCNS EQUATION 

OST1=INFINITE DILUTION ISO*STERIC HEAT OF 
ADSORPTION FOR COMPONENT 1( 02 ) 

QST2=INFINITE DILUTION ISOSTERIC HEAT OF 
ADSORPTION FOR COMPONENT 2( N2 ) 

R=UNIVERSAL GAS CONSTANT 
B1=HENRYS LAW CONSTANT FOR COMPONENT 1 
B2=HENRYS LAW CONSTANT FOR COMPONENT 2 
Z13=ADSOREATE-VACANCY INTERACTION FOR COMPONENT 1 
Z31=VACANCY-ADSORBATE INTERACTION FOR COMPONENT 1 
Z23. ADSORBATE-VACANCY INTERACTION FOR COMPONENT 2 
Z32=VACANCY-ADSORBATE INTERACTION. FOR COMPONENT 2 
Z12PZ21=INTERACTION PARAMETERS BETWEEN COMPONENT 1 

AND COMPONENT 2 
V1M=MAXIMUM NUMBER OF MOLES OF COMPONENT 1 IN 

ADSORBED PHASE 
V2M=MAXIMUM NUMBER OF MOLES OF COMPONENT 2 IN 

ADSORBED PHASE 
VTT=MAXIMUM TOTAL NUMBER OF MOLES OF MIXTURE IN 

ADSORBED PHASE 
VT=TOTAL NUMBER OF MOLES OF MIXTURE IN 

ADSORBED PHASE 
V1=NUMBER OF MOLES OF 1 IN ADSORBED PHASE 
V2=NUMBER OF MOLES GF 2 IN ADSORBED PHASE 
Y1=MOLE FRACTION OF 1 IN GAS PHASE 
Y2=MOLE FRACTION OF 2 IN GAS PHASE 
X1=MOLE FRACTION OF 1 IN ADSORBED PHASE 
X2=MOLE FRACTION OF 2 IN ADSORBED PHASE 
RV=SEPAR4TION FACTOR ( Y1. X2 / Y2. X1 ) 
X1S=MOLE FRACTION OF 1 IN ADSORBED PHASE 

VACANCY SOLUTION 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

4 

c 
c 

C 

X2S=MOLE FRACTION OF 2 IN ADSORBED PHASE 
VACANCY SOLUTION 

X3S=MOLE FRACTION OF 3 (VACANCY) IN ADSORBED PHASE 
VACANCY SOLUTION 

PHI18ACTIVITY COEFFICIENT 
VACANCY SOLUTICN 

PHI2=ACTIVITY COEFFICIENT 
VACANCY SOLUTICN 

PHI3=ACTIVITY COEFFICIENT 
VACANCY SOLUTION 

PI1=SPREADING PRESSURE OF 
PI2sSPREADING PRESSURE OF 

OF 1 IN ADSORBED PHASE 

OF 2 IN ADSORBED PHASE 

OF 3 (VACANCY) IN ADSORBED 

1 IN ADSORBED MIXTURE 
2 IN ADSORBED MIXTURE 

COMMON/SE4/XM, P, B1,82, Z13, Z31, Z23, Z32, VXM, 
1V2M, VTM, XIE, Z12, Z21 

DIMENSION Vi(51), V2(51), VT(51), x1(51), X2(51), Y1(51), 
lY2(51), VTT(51), RV(51) 

CHARACTER*80 TITLE(4) 
READ (*, 3) TITLE 
WRITE (2,3) TITLE 
V1(l)=0.0 
V2(51)=O. 0 
X1(1)"0.0 
Y1(1)-0.0 
X1(51)=1.0 
Y1(51)p1.0 
READ*, INTER 
IF(INTER. E0.1) GOTO 4 
READ*, Z, QSTI, QST2, R 
READ *, P, TEMP 
WRITE (2,25) P, TEMP 
READ*, B1, B2, Z13, Z31, Z23, Z32, V1M, V2M 
X1E=0.5 
CALCULATE THE AMOUNT ADSORBED CF BOTH 
PURE COMPONENTS AT THE TOTAL PRESSURE OF MIXTURE 
CALL SEARCH (X1E, VT(1), 2) 
CALL SEARCH (XlE, VT(51), 1) 
ESTIMATE THE ADSORBATE-ADSORBATE INTERACTIONS 
IF(INTER. EQ. l) THEN 
212.1.0 
Z21=1.0 
ELSE 
A11=-2.0/Z*(-QST1-R*TEMP) 
A22. -2.0/Z*(-QST2-R*TEMP) 
A12=(All*A22)**0.5 
Z12=V2N/V1M*EXP((A11-A12)/(R*TEMP)) 
121=V1M/V2M*EXP((A22-A12)/(R*TEMP)) 
END IF 
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C CALCULATE THE INCREMENT SIZE OF THE 
C MOLE FRACTION IN THE ADSORBED PHASE 

DXI=(1.0-0.0)/50.0 
DO 45 J=2,50 
X1(J)=0.0+(J-1)*DXI 

C CALCULATE THE MAXIMUM TOTAL NUMBER OF MOLES 
C OF MIXTURE IN ADSORBED PHASE 

VTT(J)=X1(J)*V1M+(1.0-X1(J))*VZM 
XM=X1(J) 
VTM=VTT(J) 

C EVALUATE THE TOTAL AMOUNT ADSORBED. 
CALL SEARCH (X1E, VT(J), 3) 

C CALCULATE THE INDIVIDUAL AMOUNTS ADSORBED 
V1(J)=VT(J)*XM 
V2(J)=VT(J)*(1.0-XM) 

C CALCULATE THE MOLE FRACTIONS OF BOTH COMPONENTS 
C IN THE GAS PHASE AND THE SEPARATION FACTORS 

Y1(J) FUNCS(VT(J), 4) 
Y2(J)=1.0-Y1(J) 
X2(J)=1.0-XM 

45 RV(J)=(Yl(J)*X2(J))/(Y2(J)*XM) 
WRITE (2,170) 
WRITE (2,180) (Yl(J), X1(J), V1(J), V2(, )), VT(J), RV(J), 

1J=2,50) 
STOP 

C ............. FORMAT SECTION....................... 
3 FORMAT(A) 
25 FORMAT(//T6, 'EQUILIBRIUM PRESSURE', FlO. 5, 'BAR'// 

1T6, 'TEMPERATURE OF ADSORPTIOP', F10.3, 'DEGREES KELVIN'//) 
170 FORMAT (////T7, 'ADSORPTION EQUILIBRIA'//T60MOLE FRACTION', 

1T23, 'MOLE FPACTION', T39, 'AMOUNT ADSGRBED, MOL/KG OF ADSORBENT' 
1, T81, 'REL. VOL. '/ 
2T6, 'GAS PHASE, ', T22, 'ADSORBED PHASE', T39, 'COMPONENT1', T52, 
3'COMPONENT 2', T69, 'TOTAL'//) 

180 FORMAT (T8', F9.7, T24, F9.7, T39, E12.5, T52, E12.5, T66, E12.5, T81 
1, F9.7) 

END 
C 
C 
C 

SUBROUTINE SEARCH (D1, DR, JFUN) 
C THIS SUBROUTINE SEARCHS FOR A ROOT 
C USING LINEAR INTERPOLATION 

E1=FUNCS(Dl, JFUN) 
IF(E1. GT. 0.0) GOTO 40 

C ......... E1. LT. 0.0........ 
D3 1.01*D1 
E3=FUNCS(D39JFUN) 
SLO=(E1-E3)/(D1-D3) 
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IF(SL0. LT. 0.0) GOTO 20 
C ......... TYPE (1) CURVE......... 
10 IF(E3. GT. 0.0) GOTO 70 

D3.1.1#D3 
15 E3=FUNCS(D3, JFUN) 

IF(E3. LT. -0.99999999999) GOTO 20 
GOTO 10 

C ........ TYPE (4) CURVE........... 
20 D3=0.95*D1 
30 E3-FUNCS(03, JFUN)' 

IF(E3. GT. 0. C) GOTO 70 
IF(03. GT. 0.1E-15) GOTO 35 
03.1.2*01 
GOTO 15 

35 D3=0.95*D3 
G0T0 30 

C ....... E1. GT. 0.0....... 
40 D3=1.01*D1 

E3-FUNCS(D3, JFUN) 
SLO=(El-E3)/(D1-D3) 
IF(SLO. 1T. 0.0) G0T0 60 

C ............ TYPE (2) CURVE............ 
D3=0.95*D1 

50 E3=FUNCS(D3, JFUN) 
IF(E3. LT. 0.0) GOTO 70 
D3.0.95*03 
G0T0 50 

C ........ TYPE (3) CURVE.......... 
60 IF(E3. LT. 0.0) G0T0 70 

D3=1.1*D3 
E3=FUNCS(D3, JFUN) 
G0T0 60 

70 D2=0.5*(D1+D3) 
E2-FUNCS(D2, JFUN) 
IF(D3. GT. D1) G0T0 80 
D1L=D1 
ElL=E1 
D1=D3 
E1=E3 
D3=D1L 
E3=ElL 

80 D12=D1*Dl 
022=D2*D2 
D32=D3*D3 
DR=D2 

90' DENOM=DETEM(1.0, D1, D12,1.0, D2, D22,1.0, D3, D32) 
AOaDETEM(E1, D1, D12, E2,02,022, E3, D3, D32)/DENCM 
A1=DETEM(1. O, E1,012,1. O, E2,022,1.0, E3, D32)/DENOM 
A2=DETEM(1.0,01, E1,1.0,02, E2,1.0, D3, E3)/DENOM 
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SUMZ=A1#A1-4.0*A2*A0 
IF(SUMZ. LE. O. O) GOTO 130 
DRP=(-Al+SORT(SUMZ))/(2.0*A2) 
DRM"(-A1-SQRT(SUMZ))/(2.0*A2) 
IF(DRP. LE. 0.0) DR=DRM 
IF(DRM. LE. 0.0) DR=DRP 
IF(DRP. GT. 0.0. AND. DRM. GT. 0.0) GOTO 100 
GOTO 110 

100 DRLaDR 
DRPL=AeS(DRP-DRL) 
DRML=ABS(DRM-DRL) 
IF(DRPL. LT. DRML) DRBDRP 
IF(DPML. LT. DPPL) DR=DRM 

110 CONTINUE 
C .......... CHECK FOR CONVERGENCE.............. 

ER FUNCS(DR, JFUN) 
IF(ABS(ER). LT. 0.1E-07) GOTO 999 
IF(DR. LT. D1) GOTO 130 
IF(DR. GT. D3) GOTO 130 
IF(DR. LT. D2) GOTO 120 

C .......... DR. LT. D3. AND. GT102. I""""".......... 
D1=D2 
D12=D22 
El=E2 
D2=DR 
D22=DR*DR 
E2=ER 
GOTO 90 

C ............... DR. LT. D2. AND. GT. Dl........... 
120 D3=D2 

D32=D22 
E3=E2 
D2-DR 
D22=DR*DR 
E2=ER " 
GOTO 90 

C .......... USE A LINEAR TECHNIQUE ................ 
130 SLO=(E1-E3)/(D1-D3) 

CON=0.5*(E1-SLO*D1+E3-SLO*D3) 
DR=-CON/SLO 
ER=FUNCS(DR, JFUN) 
IF(ABS(ER). LT. 0.1E-07) GOTO 999 
IF(ER. GT. 0.0) GOTO 140 

C . oessso.... ER. LTo0e0..... 
D3=DR 
E3=ER 
GOTO 130 

C ........ ER. GT. 0.0 ............... 
140 01=DR 
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E1=ER 
GOTO 130 

999 CONTINUE 
RETURN 
END 

C 
C 
C" 

FUNCTION FUNCS (X, JFUN) 
COMMON/SEA/XM, PpB1sB2s213, Z31sZ23, Z32sV1M, V2M, PVTM. *XIE 1, Z12, Z21 
GOTO (10,20), JFUN 
X1S=XM*X/VTM 
X2S=(1.0-XM)*X/VTM 
X3S=1.0-(X/VTM) 
PHI1=EXP(1.0-ALOG(X1S+Z12*X2S+X3S*Z13)-(X1S/(X1S+X2S*Z12+ 

1X3S*Z13)+Z21*X2S/(X1S+Z21*X2S+X3S*Z23)+X3S*Z31/(X1S*Z31+ 
2X2S*Z32+X3S))) 

PHI2=EXP(1.0-AI. OGCX2S+Z21*X1S+X35*Z23)-(X2S/(X25+Z21*X1S+ 
1X3S*Z23)+Z12*X1S/(X2S+Z12*X1S+X3S*"Z13)+X3S*Z32/(X2S*Z32+ 
2X1S*Z31+X3S))) 

PHI3=EXP(190-ALOG(XlS*Z31+X2S*Z32+X3S)-(XlS*Zl3/(XlS+ 
1Z12*X2S+X3S*Z13)+X2S*Z23/(Z21*X1S+X2S+X3S*Z23)+X3S/(X1S*Z31+ 
2X2S*Z32+X3S))) 

PI1=(1.0+(VTM-V1M)/X)*ALOG(PHI3*X3S) 
PI2=(1.0+(VTM-V2M)/X)*ALOG(PHI3*X35) 
GOTO (10,20,50,60)sJFUN 

C ISOTHERM FUNCTION FOR PURE COMPONENT 1 
10 FUNCS=((V1M/B1)*(X/V1M)/(1.0-X/V1M)*(Z13*(1.0- 

1(1.0-Z31)*(X/V1M))/(Z13+(1.0-Z13)*X/V1M))*EXP(( 
2-Z31*(1.0-Z31)*X/V1M)/(1.0-(1.0-Z31)*(X/V1M)) 
3-((1.0-Z13)*X/V1M)/(Z13+(1.0-Z13)*X/V1M)))/P-1.0 

RETURN 
C ISOTHERM FUNCTION FOR PURE COMPONENT 2 
20 FUNCS=((V2M/B2)*(X/V2M)/(1.0-X/V2M)*(Z23*(1.0- 

1(1.0-Z32)*(X/V2M))/(Z23+(1.0-Z23)*X/V2M))*EXP(( 
2-Z32*(1.0-Z32)*X/V2M)/(1.0-(1.0-Z32)*(X/V2M)) 
3-((1.0-Z23)*X/V2M)/(ZZ3+(1.0-Z23)*X/V2M)))/P-1.0 

RETURN 
C SUM OF THE EQUILIBRIUM EQUATIONS FOR COMPONENTS 1 
C AND 2 IN THE BINARY MIXTURE 
50 FUNCS-(PHI1*XM*X*V1M*Z13/(VTM*B1)*EXP(Z31-1.0)* 

IEXP(-PIl)+PHI2*(1.0-XM)*X*V2M*Z23/(VTM*B2)* 
2EXP(Z32-1.0)*EXP(-P12))/P-1.0 

RETURN 
C EQUILIBRIUM EQUATION FCR COMPONENT 1 IN THE 
C BINARY MIXTURE 
60 FUNCS (PHI1*XM*X*V1M*Z13/(VTM*B1)*EXP(Z31-1.0) 

1*EXP(-PI1))/P 
RETURN 
END 
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C 
C 
C FUNCTION DETEM (Al, 
C FUNCTION DETEM EVALUATES A THREE DIMENSIONAL 
C DETERMINANT FOR USE IN SUBROUTINE SEARCH 

DETEM=Al*(B2*C3-B3*C2)-A2*(B1*C3-B3*C1) 
1+A3*(B1*C2-C1*B2) 

RETURN 
END 
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PROGRAM ACT 

THIS PROGRAM CALCULATES THE ACTIVITY 
COEFFICIENTS FOR THE EXPERIMENTAL 
BINARY SYSTEM 

NOMENCLATURE OF PROGRAM 

NtNUMBER OF DATA POINTS- 
M1=ORDER OF POLYNOMIAL PLUS ONE 
TP-AVERAGE EQUILIBRIUM PRESSURE 
Al=REGRESSION PARAMETERS FGR PURE COMPONENT 

1( 02 ) FOR EQUATION 4.1 IN TEXT 
A2=REGRESSION PARAMETERS FOR PURE COMPONENT 

2( N2 ) FOR EQUATION 4.1 IN TEXT 
Y02=MOLE FRACTION OF COMPONENT 1 IN GAS PHASE 
X02=MOLE FRACTION OF COMPONENT 1 IN ADSORBED PHASE 
YN2=MOLE FRACTION OF COMPONENT 2 IN GAS PHASE 
XN2=MOLE FRACTION OF COMPONENT 2 IN ADSORBED PHASE 
WT=TOTAL AMOUNT ADSORBED 
PA=EXPERIMENTAL EQUILIBRIUM TOTAL PRESSURE 
W1E=ASSUMED AMOUNT ADSORBED 
WOO=AMOUNT ADSORBED OF COMPONENT 1 AT THE 

TOTAL PRESSURE OF THE MIXTURE 
WNN=AMOUNT ADSORBED OF COMPONENT 2 AT THE 

TOTAL PRESSURE OF THE MIXTURE 
PI02-SPREADING PRESSURE OF PURE COMPONENT 1 AT 

THE TOTAL PRESSURE OF THE MIXTURE 
PI01=SPREADING PRESSURE OF PURE COMPONENT 2 AT 

THE TOTAL PRESSURE OF THE MIXTURE 
PIM=SPREADING PRESSURE OF THE BINARY MIXTURE 
WI1=AMOUNT ADSORBED OF PURE COMPONENT 1 AT 

THE SPREADING PRESSRE OF THE MIXTORE 
wI2wAMOUNT ADSORBED OF PURE COMPONENT 2 AT 

THE SPREADING PRESSURE OF THE MIXTURE 
P01=EQUILIBRIUM PRESSURE OF PURE COMPONENT 1 

AT THE SPREADING PRESSURE OF THE MIXTURE 
P02=EQUILIBRIUM PRESSURE OF PURE COMPONENT 2 

AT THE SPREADING PRESSURE OF THE MIXTURE 
PA1=PARTIAL PRESSURE OF 1 IN MIXTURE 
PA2-PARTIAL PRESSURE OF 2 IN MIXTURE 
ACT1=ACTIVITY COEFFICIENT OF 1 IN ADSORBED PHASE 
AC72=ACTIVITY COEFFICIENT OF 2 IN ADSORBED PHASE 
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COMFON/SEA/ M1, WIE, PIM(35), JsWI1(35)r'I2(35), YO2(35), 
1A1(8)ºA2(8)'A(20), YN, 2(35), w00, wtNN, PIO1, PI02, PIM1(35), TP 

DIMENSION X02(35)sWT(35), PA(35)ºX(35), 
1Y(35), P01(35)*, P02(35), PA1(35), PA2(35)_, 
2XN2(35), ACT1(35), ACT2(35) 

CHARACTER*80 TITLE(2) 
READ. (*92) TITLE 
WRITE(2,2) TITLE 
READ *, N, M1, TP 
READ*, (A1(I), Is1,4), (A2(I), I. 1,4) 
READ*, (Y02(I)sXO2(I), WT(I), PA(I), I=N, 1, -1) 
DO 3 I-Nsl, -1 
XN2(I)-1.0-X02(I) 
YN2(I)=1.0-Y02(I) 

C CALCULATE THE EXPRESSION NT. (X1-Y1) / Y1. Y2 IN 
C ECUATICN 4.6 IN TEXT 

Y(I)-WT(I)*(XO2(I)-Y02(I))/(YO2(I)*YN2(I)) 
X(I)-Y02(I) 

3 CONTINUE 

.C 
CALCULATE THE AMOUNT ADSORBED OF BOTH PURE 

C COMPONENTS AT THE TOTAL PRESSURE OF MIXTURE 
w1E"0.5 
CALL SEARCH (W1E, WOO, 1s1) 

. CALL SEARCH (W1E, wNN, 1,2) 
C CALCULATE THE SPREADING PRESSURE OF BOTH PURE 
C COMPONENTS AT THE TOTAL PRESSURE OF THE MIXTURE 

CALL SPREAD (WOO, PI02s1) 
CALL SPREAD (WNN, PI01s2) 

C CURVE-FIT THE EXPRESSION NT. (X1-Y1) / Y1. Y2 IN 
C EQUATION 4.6 IN TEXT TO A POLYNOMIAL OF DEGREE 
C . 

(Ml-1) USING NAG SUBROUTINE E02ACF 
SUM=0.0 
M=M1-1 
N1 N 
CALL E02ACF (X, Y, N1, A, M1, REF) 

C WRITE THE ORDER OF THE POLYNOMIAL 
WRITE (2,5) M 

C WRITE THE COEFFICIENTS OF THE POLYNOMIAL 
WRITE (2,6) (A(I), I=1, M1) 
WRITE (2,7) 
DO 100 J=N, 1, -1 
ZaX(J) 
S=A(M+1) 
I-M 

40 S=S*Z+A(I) 
IF(I-1) 80,80,60 

60 I0I-1 
GOTO 40 

80 Tr-Y(J) 
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100 
C 
C 

C 

C 

C 
C 

C 
"C 

C 

C 

110 

C 
2 
5 

6 
7 

8 
9 
11 

120 

130 

C 
C 
C 

H=S-T 
W=H/T*100.0 
SUM W*W/1.0E+04+SUM 
WRITE( 2,8) Z, S, T, H, W 
CONTINUE 
WRITE THE MAXIMUM DEVIATION OF THE COMPUTED VALUE 
FROM THE EXPERIMENTAL VALUE 
WRITE (2,9) REF 
WRITE THE SUM OF SQUARES OF THE RELATIVE RESIDUAL 
WRITE (2,11) SUM 
DO 110 J. 1, N 
EVALUATE THE SPREADING PRESSURE OF THE MIXTURE 
CALL PRES (1.0, Y02(J), PIMJ(J)) 
PIM(J)-PI02+PIM1(J) 
CALCULATE THE AMOUNT ADSORBED OF BOTH PURE 
COMPONENTS AT THE SPREADING PRESSURE OF MIXTURE 
CALL SEARCH (W1E, WI1(J), 2,2) 
CALL SEARCH (WlE, w12(J), 2,1) 
CALCULATE THE EQUILIBRIUM PRESSURE OF BOTH PURE 
COMPONENTS AT THE SPREADING PRESSURE OF MIXTURE 
P01(J)=FUNCS(WI1(J), 3,2) 
P02(J)RFUNCS(WI2(J), 3,1) 
'CALCULATE THE PARTIAL PRESSURE OF BOTH COMPONENTS 
PA1(J)=TP*YN2(J) 
PA2(J)=TP*YO2(J) 
CALCULATE THE ACTIVITY COEFFICIENTS OF BOTH COMPONENTS 
ACT1(J)-PA1(J)/(P01(J)*XN2(J)) 
ACT2(J) PA2(J)/(PO2(J)*XO2(J)) 
CONTINUE 
WRITE (2,120) 
WRITE(2,130)(Y02(J), X02(J), ACT2(J), ACT1(J), J=1, N) 
STOP 
............ FORMAT SECTION ....................... 
FORMAT (A) 
FORMAT (///5X, 'FOR DEGREE OF ', I2, ' THE It 

11COEFFICIENTS ARE '/) 
FORMAT (5X, E12.4) 
FORMAT (/5X, 'X', 7X, 'F(X)', 8X, 'FIT', 7X, 'RESIDUALS', 

18X, 'ERROR'/T52, 'PERCENT'/) 
FORMAT (IX, F7.2,3E12.4,3X, F9.4) 
FORMAT (///5X, 'NAG FINAL REFERENCE DEVIATION IS ', E12.4) 
FORMAT (/5X, 'SUM OF SQUARES OF THE ', 

10ABSOLUTE ERRORS = ', E15.7) 
FORMAT (////T6, 'MOLE FRACTIONI, T23, OMOLE FRACTIONI, T50, 

1'ACTIVITY COEFFICIENTI, T77, 'ACTIVITY COEFFICIENT'/ 
2T6, OOF OXYGENI, T23, OOF OXYGENI, T50, SOF OXYGEN', T77, 
31OF NITROGEN '/T6, 'GAS PHASE', T22, 'ADSORBED PHASE'//) 

FORMAT(T8, Fc. 7, T24, F9.7, T52, F9.7, T79, F9.7) 
END 
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SUBROUTINE SEARCH (D1, OR, JFUN, JCCMP) 
C THIS SUBROUTINE SEARCHS FOR A ROOT 
C USING NEWTON, RAPHSON METHOD 

FD-FUNCS(Dl, JFUN, JCOMP) 
40 DELX-FD/(FDER(D1, JFUN, JCOMP)) 

Dl Dl-DELX 
FD=FUNCS(D1, JFUN, JCOMP) 
-IF(ABS(DELX). LE. 0.1E-08) GOTO 60 
GOTO 40 

60 DR-D1 
RETURN 
END 

c 
c 
c FUNCTION FDER(X, JFUN, JCOMP) 

COMMON/SEA/ M1, WIE, PIM(35), J, wIl(35), WI2(35), Y02(35), 
1A1(8), A2(8), A(20), YN2(35), w'OO, WNN, PI01, PI02, PIM1(35), TP 

DIMENSION B(20), DLP(101) 
C FUNCTION FDER EVALUATES THE DERIVATIVE OF THE 
C FIRST Two FUNCTIONS IN FUNCS FOR USE IN SEARCH 

GOTO (10,20), JFUN 
10 GOTO (30,40), JCOMP 
30 DO 31 I=1,4 
31 B(I)=Al(I) 

GOTO 100 
40 DO 41 I=1,4 
41 B(I)=A2(I) 
100 Zl=EXP(X/(B(3)-X)-B(4)*X) 

Z2=B(l)*Z1+B(1)*X*((B(3)/(B(3)-X)**2)-B(4)) 
1*Z1/(B(2)-X) 

Z3=ZZ+B(1)*X*Z1/(B(2)-X)**2 
FDER=23/TP 
RETURN 

20 GOTO (3,4). JCOMP 
3 DC 5 I=1,4 
5 B(I)=A1(I) 

GOLD 8 
4 DO 7 I=1,4 
7 B(I)=A2(I) 
8 Z4=1.0+X*((B(3)/(B(3)-X)**2)-B(4))+X/(6(2)-X) 

FDER=Z4/PIM(J) 
RETURN 
END 

C 
C 
C 
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SUBROUTINE SPR. EAD(XO, PIO, JCOMP) 
COMMON/SEA/M1, WIE, PIM(35), J, WI1(35), W12(35), Y02(35), 

1A1(8)"A2(8), A(20), YN2(35), WOO, WNN, P101, PI02, PIM1(35), TP 
DIMENSION Y(101), DLP(1C1), B(20) 

C THIS SUBROUTINE COMPUTES ThE SPREADING PRESSURE FUNCTION 
C FOR A GIVEN AMOUNT ADSORBED FOR A PURE COMPONENT 

GOTO (3,4), JCOMP 
3 DO 5 I=1#4 
5 B(I)=Al(I) 

DX=XO/100.0 
X(1)=0.0 
GOTO 8 

4 DO 7 I=l, 4 
7 B(I)=A2(I) 

DX=X0/100: 0 
X(1)=0.0 

8 SUM=0.0 
DO 11 I=2,101 
X(I)=X(1-1)+DX 
X22=X(I)*X(I) 
X3=X(I)*X22 
X11=X(I) 
DLP(I)=1. O+X11*(B(3)/(B(3)-Xll)**2-B(4)) 

1+X11/(8(2)-X11) 
11 SUM=SUM+DLP(I) 

PIO=DX*(SUM-0.5*DLP(101)) 
RETURN 
END 

C 
C 
C 

SUBROUTINE PRES (XI, XO, PIO) 
COMMON/SEA/M1, W1E, P*IM(35), J, WI1(35), MI2(35), Y02(35), 

lAl(8), A2(8), A(20), YN2(35), WOO, WNN, P101, PI02, PIM1(35), TP 
DIMENSION X(101), DLP(101), B(20) 

C THIS SUBROUTINE COMPUTES THE SPREADING PRESSURE FUNCTION 
C FOR A GIVEN AMOUNT ADSORBED FOR A BINARY MIXTURE 

DO 9 I=1, M1 
9 B(I)=A(I) 

DX=(X0-XI)1100.0 
X(1)=XI 
D=B(M1) 
K=M1-1 

42 D=D*X(1)+B(K) 
IF(K-1) 82,82,62 

62 K=K-1 
GOTO 42 

82 SUM-D 
D=B(M1) 
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K=M1-1 
41 D=D*XO+B(K) 

IF (K-1) 81,81,61 
61 K=K-1 

GOTO 41 
81 SUM=SUM+D 

DO 13 I=2,100 
X(I)=X(1-l)+DX 
X11-X(I) 
D B(M1) 
K=Ml-1 

40 D-D*X11+B(K) 
IF(K-1) 80,80,60 

60 K=K-1 
GOTO 40 

80 DLP(I)-D*2.0 
13 SUM=SUM+DLP(I) 

PIO=DX/2.0*SUM 
RETURN 
END 

C 
C 
C 

FUNCTION FUNCS(XX, JFUN, JCOMP) 
COMMON/SEA/ M1,4t1E, PIM(35), J, NI1(35), WI2(35), Y02(35), 

1A1(8), A2(8), A(20), YN2(35), wOO, WNN, PI01, PI02, PIM1(35), TP 
DIMENSION B(20), DLP(101) 
GOTO (10,20,50), JFUN 

10 X-XX 
GOTO (30,4O), JCDMP 

30 DO 31 I. 1,4 
31 B(I)=A1(I) 

GOTO 100 
40 DO 41 I=1,4 
41 B(I)=A2(I) 
C ISOTHERM FUNCTION 
100 FUNCS=(((B(1)*X)*EXP(X/(B(3)-X)-B(4)*X)) 

1/(B(2)-X))/TP-1.0 
RETURN 

C SPREADING PRESSURE FUNCTION 
20 GOTO (3,4), JCOMP 
3 DO 5 I. 1,4 
5 B(I)-Al(I) 

DX-XX/i00.0 
x-o. 0 
GOTO 8 

4 00 7 I=1,4 
7 B(I)=A2(I) 

DX=XX/100.0 
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Xz0.0 
8 SUM=0.0 

DO 11 Iw2,101 
X11=X+DX 
X22-x11*X11 
X3 X22*Yll 
DLP(I)a1. O+X11*(B(3)/(B(3")-X11)**2-B(4)) 

1+X11/(B(2)-X11) 
SUM=SUM+DLP(I) 

11 xtxll 
FUNCS=DX*(SUM-0.5*DLP(101))/PIM(J)-1 
RETURN 

50 X=XX 
GOTO (60,70), JCOMP 

60 DO 80 Is1; 4 
80 B(I)-A1(I) 

GOTO 90 
70 DO 85 Is1,4 
85 B(I)-A2(1) 
C ISOTHERM FUNCTION 
90 FUNCS=((B(1)*X)*EXP(X/(B(3)-X)- 

1B(4)*X))/(B(2)-X) 
RETURN 
END 
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