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Abstract

The Bell-LaPadula security model is a hybrid model that
combines mandatory access controls and discretionary ac-
cess controls. The Bell-LaPadula security model has been
widely accepted in military environments for its capability
to specify military style confidentiality policies. The role
based access control (RBAC) model has attracted extensive
research effort and has been acknowledged as a flexible and
policy natural model.

This paper investigates a way of modeling Bell-LaPadula
security policies using the RBAC model. The capability
of modeling Bell-LaPadula security policies using RBAC
model means that applications that are implemented using
the RBAC model can then be deployed in military environ-
ments and will meet their requirements for information con-
fidentiality.

1. Introduction

The Bell-LaPadula model is one of the most influen-
tial security models in military environments. The Bell-
LaPadula model was designed to impose strict confiden-
tiality protection on critical information. Though it pro-
vides excellent protections over information confidentiality
for military applications, it is, to some extent, too strict for
use in commercial scenarios where information integrity is
of greater importance. Thus applications built on the Bell-
LaPadula model are mostly used in military environments
or similar.

The RBAC model has been widely accepted as a policy
natural access control model and it is suitable for most com-
mercial scenarios. Applications built on the RBAC model
have been implemented and widely deployed by commer-
cial companies and educational institutes.

This paper investigates a way of modeling Bell-LaPadula
security policies using the RBAC model. The ability to
model Bell-LaPadula security policies using the RBAC
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model means that applications that are implemented based
on RBAC model can be deployed in military environments
to meet their requirements for information confidentiality.
Our investigation leads to the development of a mapping
algorithm that can map any given Bell-LaPadula security
policy to an equivalent RBAC policy.

The rest of this paper is organized as follows. Section 2
provides an introduction to the RBAC model, the Manda-
tory Access Control Model and the Bell-LaPadula Model.
Section 3 presents the mapping algorithm that can construct
a RBAC security policy based on a given Bell-LaPadula se-
curity policy. Section 4 reviews previous related research
on this topic. Section 5 concludes the paper.

2. Access Control Models

2.1. Mandatory Access Control

Mandatory access control imposes security control over
subjects and resources based on the predefined attributes of
the subjects and the resources. Permissions are not transfer-
able from the owner to another subject.

The Lattice Based Access Control (LBAC) model [9],
one of the most common used MAC model, uses lattices
to describe multi-level security policies. Sensitivity levels
and categories are combined together as security levels. Se-
curity levels are then organized as lattices that specify the
orders between the security levels, which defines the dom-
inate relation between the security levels. Subjects and ob-
jects are all associated with security levels. Each object is
associated with a security level to indicate the security clas-
sification it is in. An object’s security level should accu-
rately describe the security classification according to the
information it contains and the system’s policy of classi-
fying information. A subject’s association with a security
level follows the rules that the least possible sensitivity level
is applied to the subject, which is no more than necessary to
do his job, and the categories applied to the subject are only
those categories needed to be known by the subject.

A multi-level security policy requires that subjects can
only read objects of dominated security levels and can only
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write to objects of dominating security levels 1. This is also
known as the no read up principle and the no write down
principle.

2.2. The Bell-LaPadula Model

A Bell-LaPadula policy [2] is a policy combines a multi-
level security policy with a discretionary access control pol-
icy. Bell-LaPadula policies enforce both multi-level secu-
rity policies (to ensure the confidentiality requirements) and
the discretionary access control policies (to ensure the flex-
ibility of access control policies). When enforcing a Bell-
LaPadula policy, a subject is allowed to have access to an
object if and only if the subject is allowed to have access
to the object by both the multi-level security policy and the
discretionary access control policy.

In the Bell-LaPadula Model, a system consists of the fol-
lowing components.

• S is the set of subjects of the system.
• O is the set of objects of the system.
• K is the set of security levels of the system.
• ≤d is the dominance relation defined over the set ofK,

which is a partial order.
• F is a set of triples (fs, fo, fc) where fs and fc are the

functions mapping subjects to their maximum security
levels and current security levels, and fo is a function
mapping objects to their security levels.

• P = {e, r, a, w} is the set of access methods, repre-
senting executing, reading, appending, and writing re-
spectively.

• B ⊆ S ×O × P is the set of current accesses that are
available to users.

• M ⊆ S × O × P is the discretionary access control
set.

Bell-LaPadula models a system state as a quadruple
(b,m, f, h), where b ⊆ B contains the current allowed ac-
cess to users, m ⊆ M is the current discretionary access
control matrix, f = (fs, fo, fc) ∈ F is the security level
function triple, and h is the object hierarchy.

The Bell-LaPadula model claims that if a system satisfies
the following three properties, the system is secure.

Simple Security Property (s, o, p) ∈ S ×O × P satisfies
the simple security property if and only if one of the
following two rules holds:

• p = e or p = a

• p = r or p = w and fo(o) ≤d fc(s)

*-Property ∀(s, o, p) ∈ S×O×P satisfies the *-property
if and only if one of the following rules holds:

1The write operation here means appending which involves only
adding new information but does not involve any retrieval of information.

• p = e

• p = a and fc(s) ≤d fo(o)
• p = w and fc(s) = fo(o)
• p = r and fo(o) ≤d fc(s)

Discretionary Security Property A system state
(b,m, f, h) satisfies the discretionary security
property if and only if, ∀(s, o, p) ∈ b, (s, o, p) ∈ m.

2.3. Role based Access Control

Sandhu et al. [11] identified the motivation of using
roles as basic constructs in access control models and intro-
duced several models of RBAC, and conceptualized RBAC
into four different models,the base model, the hierarchical
model, the constrained model and the consolidated model.

Ferraiolo and Kuhn [4] presented a detailed description
of the RBAC model, and provided the definition of roles,
transactions and a formalization of RBAC. Roles were de-
fined by using a set of transactions, and transactions were a
set of high level activities that users could perform. A user
had the right to perform a transaction if the transaction was
a permitted transaction of his current active role set.

Oppliger et al. [7] and Chadwick et al. [3] proposed two
similar ways of implementing RBAC based on Attribute
Certificates. Attribute certificates are used as protected to-
kens to convey attribute information.

Gavrila and Barkley [5] formally specified the role man-
agement of a RBAC system, and defined the consistency
of a RBAC system using a set of properties. Gavrila and
Barkley also showed that given a consistent RBAC system,
performing legitimate management operations maintained
the consistency of the system.

NIST proposed a reference model of RBAC [8] which
was subsequentlyapproved as an American national stan-
dard [1]. The RBAC reference model is defined in terms
of four different model components which are: the Core
RBAC, the Role Hierarchy, Static Separation of Duty Re-
lations, and Dynamic Separation of Duty Relations. The
Core RBAC specifies the essential elements of the RBAC
model which are the minimum set of elements. The other
three components can be integrated with the Core RBAC
component to add more features.

Core RBAC [1] consists of five basic elements, which
are the U , R, A, O, and S, and five relations, which are
RA, PA, U − S, S −R, and PRM .
U refers to the set of legitimate users in the system. R is

the set of roles existing in the system. A is the operations
that are recognized by the system, andO is the set of objects
that are protected by the system. S is the set of sessions in
the system that are handling users’ requests.

Operations and objects are bound to each other to con-
struct permissions, denoted by PRM where PRM ⊆ A×
O. A permission is an approval for performing an operation



on a specified target. Users are allocated roles, as speci-
fied by the RA relation where RA ⊆ U × R, which is the
user assignment relation. Permissions are allocated to roles,
which are specified by the permission assignment PA rela-
tion where PA ⊆ PRM × R. U − S(s : S) → U is a
mapping of a session onto the corresponding user, and the
S − R(s : S) → 2R is a mapping of a session onto a set of
roles.

The authorization decision making function
CheckAccess takes as input the current session, the
requested operation, and the object that is the target of
the operation. The CheckAccess function will return a
Boolean value as a result to indicate whether the request is
authorized or not.

The Role Hierarchy is a component that can enhance
the Core RBAC component by specifying relations between
roles to support a role hierarchy. With role hierarchies,
some roles can be superiors of other roles. Superior roles
acquire the permissions allocated to subordinate roles.

The Static Separation of Duty component enhances the
Core RBAC component with the capability of imposing
constraints on the user assignment to roles, so that users
can not be assigned memberships of conflicting roles.

The Dynamic Separation of Duty component augments
the Core RBAC component with the capability of impos-
ing constraints on the set of roles that can be activated by
a user’s session. In this way, users cannot activate certain
specified roles at the same time though they can be mem-
bers of all these roles.

3. RBAC Implementation of The Bell-
LaPadula Security Policies

This section presents an algorithm that can map a given
Bell-LaPadula security policy to a RBAC policy.

The mapping of a Bell-LaPadula security policy to a
RBAC policy is an algorithm of two parts. The first part
is to simulate the mandatory access control of a given Bell-
LaPadula security policy using a RBAC policy. The sec-
ond part is to tailor the previously constructed RBAC pol-
icy to enforce the discretionary access control of the Bell-
LaPadula security policy.

3.1. Simulating MAC

To simulate the mandatory access control in a Bell-
LaPadula security policy, e and w access related permis-
sions are organized by roles without subordinate roles or
superior roles, and r and a access related permission are or-
ganized by two disjoint sets of roles with appropriate hier-
archies. The hierarchies are constructed in accordance with
the order of the security levels.

Step 1 : User Mapping. User mapping is the process of
constructing a set of users in the RBAC Policy based
on the set of subjects M.S in the given military secu-
rity policy.
The mapping can be denoted by a bijective function as
follows:ψs : M.S → P.U
To each subject s ∈M.S, there exists a u ∈ P.U such
that u = ψs(s) and s = ψ−1

s (u) where ψ−1
s is the

inverse function of ψs.
Step 2 : Object Mapping. Object mapping is to construct

P.O, the set of objects in the RBAC policy, based
on the object set M.O in the military security pol-
icy. Each of the objects in the RBAC policy represents
one and only one object in M.O of the military secu-
rity policy. This can be formalized as the following:
ψo : M.O → P.O where ψo is a bijective function.

Step 3: Role Mapping. R, the set of roles in the RBAC
policy, consists of four disjoint set of roles constructed
based on the set of subjects and the set of security lev-
els in the Bell-LaPadula security policy, which are the
executing role set Re, the appending role set Ra, the
reading role set Rr and the writing role set Rw. Four
bijective functions fre, frr, fra, and frw are defined
as below to implement the mapping.

• ψre : M.S → Re. To each subject s ∈ M.S, a
corresponding role re = ψre(s) is constructed in
the set Re. re is the executing role of the subject
s.

• ψrr : M.K → Rr. To each security level
k ∈ M.K, a corresponding role rr = ψrr(k) is
constructed in the set Rr. rr is the reading role
of the security level k.

• ψra : M.K → Ra. To each security level
k ∈ M.K, a corresponding role ra = ψra(k)
is constructed in the set Ra. ra is the appending
role of the security level k.

• ψrw : M.K → Rw. To each security level
k ∈ M.K, a corresponding role rw = ψrw(k) is
constructed in the set Rw. rw is the writing role
of the security level k.

Therefore, each subject is mapped to a role in Re, and
each security level is mapped into three different roles
in Rr, Ra, and Rw respectively. Roles in Re will be
used to manage permissions related to e access, and
roles in Rr, Ra, and Rw will be used to managed per-
missions of r, a, and w access respectively.

Step 4 : Action Mapping. The set of possible accesses are
mapped to the RBAC policy as the Action set P.A =
{e, r, a, w} where e, r, a, and w have the same mean-
ings as they have in the Bell-LaPadula model. The
mapping function fa(x) = x where fa maps accesses
in the Bell-LaPadula model to actions in the RBAC



model.
Step 5 : Permission Construction. The permission set of

the RBAC policy, P.PRM , is constructed as follows:
P.PRM = P.A× P.O

Step 6 : Permission Allocation. Permission allocation
mapping is to construct the permission allocation
relation in RBAC policies. The RBAC permission
allocation is divided into four different mappings,
which maps the permissions related to e, r, a, and w
to the roles in Re, Rr, Ra, and Rw respectively. The
mapping can be formalized as below.

• To a given subject s, if there exists an object
o such that (s, o, e) ∈ b, then PA = PA ∪
{(re, (e, oo))} where re = ψre(s) and oo =
ψo(o). Thus if a subject s is authorized to have
e access to the object o, the subject s’s executing
role re is allocated with the permission (e, oo).

• ∀k ∈ K and ∀o ∈ O, if fo(o) = k, then PA =
PA ∪ (rr, (r, oo)) where rr = ψrr(k) and oo =
ψo(o). Thus for each security level k, its reading
role rr is allocated with the permission of having
r access to all the objects whose original objects
are of the security level k.

• ∀k ∈ K and ∀o ∈ O, if fo(o) = k, then
PA = PA ∪ (ra, (a, oo)) where rar = ψra(k)
and oo = ψo(o). Thus for each security level k,
its appending role ra is allocated with the permis-
sion of having a access to all the objects whose
original objects are of the security level k.

• ∀k ∈ K and ∀o ∈ O, if fo(o) = k, then PA =
PA∪(rw, (w, oo)) where rw = ψrw(k) and oo =
ψo(o). Thus for each security level k, its writing
role rw is allocated with the permission of having
w access to all the objects whose original object
is of the security level k.

Step 7 : Role Assignment Mapping. Role assignment
mapping constructs the role assignment relation of
the RBAC policy based on the given Bell-LaPadula
policy.

• ∀s ∈ S, (re, u) ∈ RA where u = ψu(s) and
re = ψre(s).

• ∀s ∈ S, (rr, u) ∈ RA where u = ψu(s) and
rr = ψrr(fs(s)).

• ∀s ∈ S, (ra, u) ∈ RA where u = ψu(s) and
ra = ψra(fs(s)).

• ∀s ∈ S, (rw, u) ∈ RA where u = ψu(s) and
rw = ψrw(fs(s)).

Let k = fs(s). This mapping assigns each user u
mapped from the subject s four role memberships,
which are the executing role re of the subject s, the

reading role rr, the appending role ra and the writing
role rw of the security level k.

Step 8 : Hierarchy Mapping. The Role Hierarchy is
mapped based on the relation ≤d of the military
policy. The ≤d relation in the military policy allows
reading permission to increase from subordinate secu-
rity levels to superior security levels, and appending
permission to decrease from subordinate security
levels to superior security levels.
The mapping creates relations between the roles in the
reading role set Rr and relations between the roles in
the appending role set Ra.

• The construction of relations between the reading
roles is achieved by the function ψhr : ≤d→
H , where the function is defined as: Let j and k
both be in K and j ≤d k,(jr, kr) = ψhr((j, k)),
where jr = ψrr(j) and kr = ψrr(k).

• The construction of relations between the ap-
pending roles is achieved by the function ψha :
≤d→ H , where the function is defined as: Let
j and k both be in K and j ≤d k, (ka, ja) =
ψha((j, k)), where jr = ψrr(j) and kr =
ψrr(k).

In summary, the first part of the algorithm maps a Bell-
LaPadula security policy’s MAC to a RBAC policy. Sub-
jects are mapped as users in the RBAC policy and objects
are mapped as objects in the RBAC policy. Four sets of
disjoint roles are created, and they are used to organize the
permissions related to e, r, a and w access respectively. A
user is assigned membership to one role in each of the four
sets of roles according to the corresponding subject of the
user and the security level of the subject.

3.2. Enforcing DAC

The second part of the algorithm enforces the DAC part
by tailoring the permission allocations constructed by the
first part, which are authorized by the MAC part but not
authorized by the DAC part. After the tailoring, users are
assigned to roles that can invoke no more permissions than
authorized by the Bell-LaPadula security policy. Details of
the algorithm are as follows.

Modifying e related permission allocation. To each sub-
ject s ∈ S, if there exists an object o such that
(s, o, e) ∈ b but (s, o, e) /∈ m, the subject is granted e
access to the object o by the mandatory access control
but not by the discretionary access control. In this case,
the related permission shall be removed. The removal
can be formalized as the following: PA = PA −
{(ψre(s), (e, ψo(o)))|∀s∀o, (s, o, e) ∈ b ∧ (s, o, e) /∈
m}



Modifying r related permission allocation. To any given
subject s ∈ S, let rr = ψrr(fs(s)) be the reading
role of s. Modifying r related permission allocation
is to tailor the r permission allocation to a subject s
such that only r permissions that are granted by both
the mandatory access control and the discretionary ac-
cess control will be allocated. Let Rs denotes the set
of roles containing the role rr and all its subordinate
roles.
If there does not exist an object o ∈ O such that
(s, o, r) ∈ b but (s, o, r) /∈ m, the subject s is granted
the same permissions to have r access by the manda-
tory access control as by the discretionary access con-
trol. In this case, there is no need to modify the r re-
lated permission allocation of the reading role rr of the
subject s.
If there exists at least one object o such that (s, o, r) ∈
b but (s, o, r) /∈ m, the following algorithm shall be
applied to modify the r related permission allocation
to the subject s.

• Construct a new role rsr, and put it into the role
set R by R = R ∪ {rsr}.

• Modify the role assignment relation RA. RA =
RA− {(rr, us)} ∪ {(rsr, us)}. This is to assign
the user us of the subject s to be a member of
the new role rsr, and revoke the user us’s role
membership of the role rrr.

• Allocate permissions to the role rsr. To each
object o ∈ O that (s, o, r) ∈ b and (s, o, r) ∈
m, then the permission (r, fo(o)) is allocated
to the role rsr. Therefore PA = PA ∪
{(rsr, (r, fo(o)))|∀o ∈ O, (s, o, r) ∈ b ∧
(s, o, e) ∈ m}.

Modifying a related permission allocation. To each sub-
ject s ∈ S, let ra = ψra(fs(s)) be the appending
role of s. Modifying a related permission allocation
is to tailor the a related permission allocation to a sub-
ject s’s corresponding user such that only those a re-
lated permissions granted by both the mandatory ac-
cess control and the discretionary access control will
be allocated.
If there does not exist an object o ∈ O such that
(s, o, a) ∈ b but (s, o, a) /∈ m, the subject s is granted
the same permissions of a access by the mandatory
access control as granted by the discretionary access
control. In this case, there is no need to modify the a
related permission allocation of the appending role ra
of the subject s.
If there exists at least one object o such that (s, o, a) ∈
b but (s, o, a) /∈ m, the following algorithm shall be
applied to modify the a related permission allocation
for the subject s.

• Construct a new role rsa, and put it into the role
set R by R = R ∪ {rsa}.

• Modify the role assignment relation RA. RA =
RA− {(ra, us)} ∪ {(rsa, us)}. This is to assign
the user us of the subject s to be a member of
the new role rsa, and revoke the user us’s role
membership of the role rra. The new role rsa is
now the appending role of the subject s.

• Allocate permissions to the role rsa. To each
object o ∈ O that (s, o, a) ∈ b and (s, o, a) ∈
m, then the permission (a, fo(o)) is allocated
to the role rsa. Therefore PA = PA ∪
{(rsa, (a, fo(o)))|∀o ∈ O, (s, o, a) ∈ b ∧
(s, o, a) ∈ m}.

Modifying w related permission allocation . To each
subject s ∈ S, let rw = ψrw(fs(s)) be the writing
role of s. Modifying w related permission allocation is
to tailor the w related permission allocation to a sub-
ject s’s corresponding user such that only those w re-
lated permissions granted by both the mandatory ac-
cess control and the discretionary access control will
be allocated.
If there does not exist an object o ∈ O such that
(s, o, w) ∈ b but (s, o, w) /∈ m, the subject s is granted
the same permissions of w access by the mandatory
access control as granted by the discretionary access
control. In this case, there is no need to modify the w
related permission allocation of the writing role rw of
the subject s.
If there exists at least one object o such that (s, o, w) ∈
b but (s, o, w) /∈ m, the following algorithm shall be
applied to modify the w related permission allocation
for the subject s.

• Construct a new role rsa, and put it into the role
set R by R = R ∪ {rsw}.

• Modify the role assignment relation RA. RA =
RA−{(rw, us)}∪{(rsw, us)}. This is to assign
the user us of the subject s to be a member of
the new role rsw, and revoke the user us’s role
membership of the role rrw. The new role rsw is
now the writing role of the subject s.

• Allocate permissions to the role rsw. To each ob-
ject o ∈ O that (s, o, w) ∈ b and (s, o, w) ∈
m, then the permission (w, fo(o)) is allocated
to the role rsw. Therefore PA = PA ∪
{(rsw, (a, fo(o)))|∀o ∈ O, (s, o, w) ∈ b ∧
(s, o, w) ∈ m}.

4. Related Work

Sandu [10] argued that lattice based access control model
can be simulated by RBAC policies using dual role hierar-



chies. Permissions for reading and writing are allocated to
roles in two separate sets of roles, and each user is assigned
as members of two matching roles in the two separate sets
of roles. The role hierarchy associated with reading is con-
structed in the same order as the security lattice, while the
role hierarchy associated with writing is constructed in an
inverse order as the security lattice. Sandu has not presented
a proof of the algorithm, though the examples were convinc-
ing. Neither did Sandu provide any ways of analyzing if a
RBAC policy complies with a given security policy based
on lattice based access control.

Nyanchama and Osborn [6] presented a way to model
mandatory access control in RBAC systems. Nyanchama
and Osborn argued that this could benefit from the flexi-
ble permission allocation management provided by RBAC
models as well as the powerful modeling capability of
RBAC models. MAC is realized in RBAC by treating
roles as security levels of the MAC system and imposing
an acyclic information flow requirement in the way roles
are organized. The acyclic information flow requirement is
based on five constraints, which ensure that information can
not flow from a higher security level to a lower one.

The above mentioned research only investigated the rela-
tionship between the RBAC model and the MAC model, but
did not cover the relationship between the RBAC model and
the Bell-LaPadula model, which is the focus of this work.

5. Conclusions

This paper identifies the need for enforcing Bell-
LaPadula security policies using the RBAC model and in-
vestigates the potential way of representing Bell-LaPadula
security policies using the RBAC model. The investigation
results in the development of a mapping algorithm that can
map a given Bell-LaPadula security policy into a RBAC se-
curity policy.

The mapping algorithm shows that Bell-LaPadula secu-
rity policies can be represented by RBAC security policies.
Therefore applications built based on RBAC model have the
potential to be applied in military environments.

The contribution of this work is as the follows. Firstly,
we identify the need for modeling the Bell-LaPadula model
using RBAC, which is caused by the industry having to im-
plement separate systems for commercial applications and
for military applications. Secondly, we develop a mapping
algorithm that can construct a RBAC security policy based
on a given Bell-LaPadula security policy. The mapping al-
gorithm shows that it is possible to model military security
policies using the RBAC model. Besides the academic im-
portance of showing the flexibility and power of the RBAC
model, it is also important to industry, as applications built
based on the RBAC model can be deployed in military en-
vironments and enforce Bell-LaPadula policies. There is

no need to build separate applications which use the Bell-
LaPadula model just for military scenarios.

A weakness of our approach is that the RBAC policies
constructed by the suggested algorithm are not very elegant,
as there are no optimizations of the role sets and the role hi-
erarchies used by the policies. There may be some unused
roles in the policies and the number of roles can be unnec-
essarily large. But the existence of such an algorithm indi-
cates that there could be other algorithms that can map Bell-
LaPadula security policies into RBAC policies, which may
construct RBAC policies that are more elegant than those
constructed by the suggested algorithm. This is a subject
for further research.
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