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ABSTRACT 

 

Fines in smelter grade aluminas are recognised as a significant process problem in aluminium 

smelting. However the understanding of the nature of this fine material and how it impacts on the 

reduction process are less clearly understood. The combination of new analytical methods such 

as Variable Pressure Scanning Electron Microscopy and very high field Solid State NMR 

provide new insights into the spatial distribution of phases within aluminas, and suggest how 

such fine materials are generated, particularly during calcination in the alumina refinery. 

 

 

INTRODUCTION 

 

The bulk of the alumina produced for the smelting of aluminium is produced by the Bayer 

process [1]. Gibbsite Al(OH)3 grows by precipitation and agglomeration in the clarified Bayer 

liquor and is subsequently recovered by filtration and calcined to form smelter or “metallurgical 

grade alumina (SGA). The isomorphous transformation from Gibbsite to alumina leaves a 

similarly aggregated, polycrystalline material. The break-up of this aggregated material in any of 

the handling processes in filtration, calcination and transport leads to the inevitable formation of 

finer material than the initial particle size distribution recovered from precipitation. Importantly, 

this attrition continues through the handling of the alumina at the smelter before it reaches the 

reduction cell. Taylor et al. provide profiles of this attrition for a number of smelters [2]. When it 

comes to understanding or predicting the behaviour of an alumina in the reduction process, the 

nature of the fine (<40 m) and ultra-fine (<20 m) size fractions can be particularly revealing. 

 

Although the chemical purity of SGA is often very high (often more than 99.7% Al2O3) the 

microstructure is typically highly disordered, with large variations between, and even within, 

individual particles, as discussed below. The tolerances for alumina purity are fairly strict 

however the variation in microstructure less regulated, partly because it is not easy to measure 

and report, and is considered less relevant in the smelter. Nevertheless, there is considerable 

evidence that particularly in the case of fine materials, not only their presence, but their 

composition and microstructure, have significant impacts on the reduction process. 

 

In this paper we explore the nature and origin of these variations in the distribution of alumina 

phases between different sized particles. 

 



 

IMPACTS OF CALCINATION ON FINES 

 

The analysis of the bulk SGA sample provides only a limited picture of the material. For 

example, impurity phases and even a high alpha alumina content in the fine particles are 

averaged out and barely noticed in x-ray diffraction (XRD) based analysis of the bulk material. 

Yet there is every reason to expect differences in phases with particle size. For some calcination 

technologies, finer particles are retained longer in the hot zone in the furnace, due to internal 

recirculation, or the flow characteristics of the fine versus the coarse particles. Even if the phase 

transformation reactions from transition alumina to the thermodynamically stable alpha alumina 

are slow, the longer heating times will inevitably result in a higher content of alpha alumina in 

the smaller size fractions. For similar retention times, the increased area for heat transfer in small 

particles may also effect the phase transformation reaction and hence the conversion to alpha 

alumina. This effect becomes very obvious when a ‘typical’ alumina is size fractionated and the 

various fractions studied by XRD (figure 1). When moving to finer size fractions the alpha 

alumina content, indicated by the sharp reflections in the diffractograms, increases significantly. 

It is also interesting to note, in this example, the additional peak (at around 15-16° 2theta) 

observed only for the intermediate size fractions, which indicates the presence of an additional 

impurity phase. 

 

 
Figure 1. X-ray diffractograms for a size fractionated smelter alumina. From front to back: bulk, 

plus 125 m, 90-125 m, 40-90 m, 20-40 m and minus 20 m. Note that the alpha alumina 

(indicated by the sharp and narrow peaks) content is increasing in the finer size fractions. 
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The particle size distribution of the gibbsite going in to the calciner and the final product coming 

out is not the same. Despite the best efforts in design and operation, some of the fines are  

generated in the calciner which may increase the alpha alumina content of the alumina. This 

particle breakage is both influenced by the calciner technology and the strength of agglomeration 

of the original gibbsite [3]. Agglomerates break up into smaller fragments due to mechanical 

forces or thermal shock when contacting hot gases or solids. Furthermore, during the phase 

transformation of the Gibbsite into alumina, the crystallites shrink (largely along the c-axis 

direction in the gibbsite lattice) which can cause further mechanical stress in the particles and 

fragmentation. The alumina particles will also break up due to mechanical forces from collisions 

between the particles themselves or between particles and other surfaces. 

 

The cross sectioned alumina particle to the left in figure 2 provides an example of the effect of 

the c-axis shrinkage in an agglomerated particle. In the gibbsite particles the crystallites may 

have different orientations (reflected in the morphology which can be radial or 

mosaic/agglomerated) depending on the mechanism of particle growth and how the precipitation 

stage is operated. When gibbsite reacts to form the transition aluminas and the crystallites shrink, 

cracking can occur at the crystallite/grain boundaries. Also of note in the figure is the charge 

contrast that occurs at the perimeter of the particle. In the ESEM the denser, structurally more 

ordered, alpha alumina phase results in a difference in the observed charge contrast as compared 

to the intermediate and more amorphous transition aluminas. This shows up as the bright white 

features in the images. The charge contrast phenomenon, unique to the Environmental and 

Variable Pressure SEM, occurs due to differences in the materials ability to dissipate the charge 

build-up experienced by uncoated samples under the electron beam. Charge contrast imaging, 

and its implications for studying smelter grade alumina, is discussed in more detail elsewhere 

[4]. 

 

 
Figure 2.  A cross-sectional Scanning Electron Microscope image of a smelter alumina particle.  

Shrinkage in the gibbsite c-axis direction leads to cracking between the crystallites. Note also the 

alpha alumina at the perimeter and along some of the internal boundaries of the particle. 

 



Not surprisingly, there appears to be a difference in the distribution of the alpha alumina phase 

for material produced by different calcination technologies. For the modern gas suspension, fluid 

flash or circulating fluid bed calciners the alpha alumina seems to be preferentially located at the 

outer surface of the particles, compared to the rotary kiln calcined aluminas where a more even 

distribution is observed. This indicates that the high heating rates and short residence times in the 

modern calciners lead to structural variations not only between particles, but also within them. 

Another possible consequence of the shell formation is that the particles may crack due to a 

build-up of internal vapour pressure as the water generated in the phase transition is released 

from the structure. It is also interesting to speculate on what an alpha alumina shell means for the 

alumina properties in the smelter. It is probable that particularly the kinetics of HF-scrubbing and 

the dissolution properties are influenced by these compositional variations. 

 

In the smelter, the presence of large amounts of alpha alumina in the fine particles can be 

problematic for a number of reasons: 

 

 Dispersion, dissolution and sludge formation due to the slower dissolution of alpha 

alumina and the tendency for fine particles to stick together. 

 

 Crust formation and crust evolution as the compositional variations in the alumina is 

likely to influence the strength of the crust and the reactions in the crust as it picks up 

HF and bath vapours. 

 

 Alumina flowability and handling, since the flow characteristics for alpha alumina 

fines (or material with large amounts of fines mixed into it) are very different, 

transportation and handling becomes more difficult. Segregation effects can also 

occur, which further amplifies the detrimental effects of the alpha alumina laden 

fines. 

 

 Feed control may also be compromised (especially for volumetric point fed cells) due 

to segregation and density differences for material with large amounts of alpha 

alumina fines. 

 

CCI in the ESEM can be a very useful technique to investigate the distribution of alpha alumina 

between particles and also within particles as it allows direct observation of alpha alumina 

distribution in cross sectioned particles. As can be seen from the image above (figure 2) it is 

relatively easy to discern the over-calcined fine alumina particles. Notice also the shape of the 

larger of the over-calcined particles; clearly a fragment of a larger particle. Particle morphology 

or shape is another important factor for the flowability of the material. 

 

 

THE NATURE OF UNDER CALCINED FINES 

 

As the size and energy efficiency of calciners increases, under- (boehmite, chi-alumina, gamma-

alumina) or un-calcined (gibbsite) particles might be anticipated to be more prevalent in some 

technologies. For example, alumina fines from refineries using gas suspension or fluid flash 

calciners, are expected to differ in phase composition from those in refineries equipped with 



circulating fluidised bed or rotary kiln calciners where fines are more highly calcined. In most 

technologies,the gibbsite dust is expected to come predominantly from the ESP filters and may 

include material that has by-passed the calcination stage altogether. As the structure is well 

ordered, gibbsite, even at low levels, is expected to be detected in the X-ray diffractograms of the 

bulk material and is frequently reported on the specification sheet. In the aluminium smelter, 

gibbsite containing dust is detrimental as it can cause: 

 

 Increased dusting 

 

 Loss of bath 

 

 A direct decrease in the alumina content available for reduction 

 

 Additional HF formation 

 

 Cell instability 

 

Gibbsite (Al(OH)3) remains relatively stable at temperatures up to 250°C, before it starts to 

convert to boehmite and/or the transition aluminas (depending on the reaction conditions). This 

means that, unlike the transition aluminas, the hydroxyls are retained even if the material is pre-

heated (in the hoppers or feeders) before being fed into the cell. For the transition aluminas a 

significant part of the adsorbed water (in the form of loosely bound, or physisorbed, surface 

species) are removed when the material is heated. This relatively labile exchange is also reflected 

in the location specific MOI values [5]. The LOI values reflect the loss of the residual structural 

hydroxide species which are essential to the structures of the transition aluminas. The 

comparison is seen in the thermograms below (figure 3). 

 

The effect of gibbsite in the SGA is that a large amount of hydrogen enters the cell with the 

material in the form of hydroxyls in the gibbsite. By weight approximately 35% of the gibbsite 

will react to form H2O (which also means that there is less alumina available for metal 

production!). Once the material is heated, this water loss will occur very rapidly when such 

particles come in contact with the bath, and the hydroxide reacts to form H2O and Al2O3. The 

near explosive formation of large amounts of water vapour may then carry fine particles back up 

the feeder hole (volcano effect) increasing dusting. 

 



 
Figure 3. Thermograms of pure Bayer gibbsite (black line, right y-axis) and two smelter grade 

aluminas: with no gibbsite (green line, left y-axis) and with residual gibbsite (red line, left y-

axis). 

 

The presence of gibbsite in the alumina will also have a small impact on the energy consumption 

and thermal balance of the cell. Compared to the dissolution of alumina, which requires 106-130 

kJ per mole of Al2O3 [6], the reaction of gibbsite to transition alumina (reaction 1): 

 

2Al(OH)3(s) -> Al2O3(s) +3H2O(g)      (1) 

 

requires about 260 kJ of energy per mole of gibbsite [7]. In both cases, another 90-112 kJ of 

energy per mole of Al2O3 is needed to lift the temperature to the electrolyte temperature at which 

it dissolves [6]. 

 

Another consequence of gibbsite in the fines (or bulk for that matter) is that this also has direct 

process and economic impacts is the loss of bath through the formation of HF. Water (or 

hydroxyls or hydrogen) introduced to the bath (in any form) has the potential to react to form 

HF, according to reactions 2 and 3 [8]: 

 

2AlF3 (g or diss) + 3H2O(g) -> 6HF(g) + Al2O3(s or diss)   (2) 

3H2O(g) + 3NaAlF4(g) -> 6HF(g) + Al2O3(s) + Na3AlF6(s)   (3) 

 

Compared to surface water, much of which is lost before dissolution, the hydroxyl (OH) is a 

much more potent HF source [9]. Even a few percent of gibbsite would add significantly to the 



total HF burden. The capture efficiency of the fluoride containing duct gases/particles is high, 

however this circuit fails to capture all the volatiles and particulates lost into the potroom, so 

such fluoride losses become significant and can be problematic also in the quality of the working 

environment. The lost electrolyte will have to be supplemented by additional AlF3 which is 

another direct financial loss. The increased HF generation from the OH in gibbsite introduces a 

further challenge in meeting increasingly stringent emission limits.  

 

As seen in figure 3, thermo gravimetric analysis (TGA) can be used to qualitatively detect even 

small amounts (<1 wt-%) of gibbsite in the alumina. However, to quantify the gibbsite (and 

estimate the financial and environmental impacts) XRD analysis with Rietveld refinement is a 

far more useful technique. Gibbsite is a highly crystalline material and even small amounts in the 

bulk gives rise to detectable peaks. The distribution of gibbsite in the various size fractions can 

readily be studied by analysing sieved material. As with alpha alumina, for particular calcination 

technologies the gibbsite content is higher in the fine size fraction. Depending on how the ESP 

dust is treated, boehmite (AlOOH) can also be present. In figures 4 and 5 the X-ray 

diffractograms and Rietveld refinements of the bulk and the sub 40 micron size fraction for an 

industrial alumina sample are displayed and the quantitative results can be seen in table 1. 

 

Table 1. XRD results. 

 GoF* gibbsite boehmite total-gamma** theta alpha 

 Chi2 (wt-%) (wt-%) (wt-%) (wt-%) (wt-%) 

Bulk 0.49 1.2 N/A 54.9 24.1 19.8 

<40 m 0.16 22.0 4.9 35.7 20.4 17.0 
*) GoF, goodness of fit, a measurement of the quality and accuracy of the Rietveld refinement (<1 is 
generally considered to be a reasonable fit). 
**) Refers to the total gamma alumina content, including both the gamma and the gamma-prime phases. 

 

 
Figure 4. X-ray diffractogram and Rietveld profile refinement for an industrial alumina (bulk). 

Some characteristic peaks are indicated in the diagram. 

gibbsite 

alpha 



 

 
Figure 5. X-ray diffractogram and Rietveld refinement for an industrial alumina (<40 m size 

fraction). Some characteristic peaks are indicated in the diagram. 

 

Another very useful technique for detecting the presence of under calcined material is the 

measurement of pore size distribution. The pore size distribution can be evaluated at the same 

time as the better established BET specific surface area measurements [10], by analysing the 

adsorption branch of the isotherm using the BJH method [11]. The pore size is very much a 

function of the degree of calcination. When heated, adjacent hydroxyls in the gibbsite react 

through a proton capture mechanism to form water that diffuses out via the structural channels in 

the gibbsite lattice; this also forms the nucleus of a pore. During the early stage of the calcination 

reaction the pore density is high and average size is less than 2 nm, resulting in the very high 

specific surface areas (up to 350 m
2
g

-1
 and above). The progressive loss of hydroxyl groups, and 

the structural rearrangement that accompany this, result in an expansion of the pore size. The 

bimodal distribution seen in figure 6 indicates an alumina with two distinct pore populations 

indicating a mixture of microporous (high surface area, small pore size, low degree of 

calcination) and mesoporous (lower surface area material, larger pore size) materials. When 

performing BET surface area and BJH pore size distribution measurements on the aluminas, 

special care has to be taken in the preparation so as not to induce phase transformation during 

pre-treatment. For example, the typical degas temperature of 200°C, often used in the industry, is 

high enough to alter phase distribution and thus also the pore size. 

 

The alumina pore size distribution may have implications for dry-scrubber performance as it is 

critical in providing access to internal surfaces and reactive sites. An interesting question that 

arises from this is if the small pores are as accessible to HF on the same time scale as the larger 

pores. Also of note is that the material with the smaller pore size has a larger surface area, thus 

contributing more to the total surface area (as reported on the specifications sheet). 

 

boehmite 

gibbsite 

alpha 



 
Figure 6. Pore size distribution measurement revealing a mixture of microporous (high surface 

area, small pore size) and mesoporous (lower surface area material, larger pore size) materials. 

 

 

A MORE COMPLEX PROBLEM? 

 

The microstructure of smelter aluminas is particularly complex relative to their compositional 

analysis. The more amorphous transition alumina phases, (not gibbsite or alpha-alumina) 

comprise the bulk of the material, and have a large influence on the properties and thus 

performance of the alumina in the smelter – for example the influence on the dissolution 

characteristics. These phases are however notoriously difficult to characterise, using 

‘conventional’ techniques, such as laboratory based XRD, due to their lack of crystallographic 

long range order. Structural analysis of SGA is further complicated by the co-existence of a wide 

range of these transition alumina phases [12]. 

 

These ‘amorphous’ phases are important in the dissolution process and for crust formation and 

stability. Physi- and chemisorbed surface water or hydroxyl aid the dissolution process by 

improving the dispersion of alumina on and in the bath. The transition aluminas also contribute 

the large surface area critically important for HF adsorption and scrubbing capacity. The trade-

off however is increased formation of HF from structural hydroxyl species introduced into the 

electrolyte with aluminas of higher surface area. Indeed the ‘residual hydroxyl’ has been 

considered to be the main source of HF formation in the smelter [8]. 

 

There is clearly a need to understand not only the amount, but also the distribution of the 

transition alumina phases in the SGAs in order to fully understand and predict performance 



characteristics. ESEM and TEM are particularly useful techniques as they allow the distribution 

of phases within cross sectioned particles to be studied. As discussed in more detail elsewhere 

[4], the charge contrast phenomena in the ESEM allows particularly alpha to be ‘seen’. For long 

term soak calcined samples, the alpha alumina generally show a distribution that correlates with 

the gibbsite growth rings (see the papers by Roach et al and Baroni et al [13, 14]) which hints 

towards a impurity or defect catalysed mechanism for the transformation reactions (figure 7, 

left). This banding is attributed to variations in Na concentration associated with the cycling of 

gibbsite particles through precipitation as they grow to sizes harvestable in product filtration. As 

could be seen in figure 2, rapid- or flash calcined samples often display a preferential 

distribution of alpha alumina around the outer surface/perimeter of the particle, possible a result 

of heat and mass transfer limitations due to the short calcination times and rapid heating rates 

(figure 7, right). Examination of cross sectioned alumina grains also can reveal the presence of 

inclusions within the particles (figure 8). 

 

 
Figure 7. Left Image: Soak calcined cross sectioned alumina grain with high alpha alumina 

content (similar to what is achieved in some rotary kiln calcination operations), Right Image: 

cross sectioned Gas Suspension calcined alumina grain. 

 



 
Figure 8. Left Image: Cross sectioned alumina grain displaying the presences of small inclusion 

possible filter back wash or scales incorporated in the alumina matrix, Right Image: Enlargement 

of a selected area. 

 

Another technique that shows considerable promise for examining SGAs is Solid State Magic 

Angle Spinning NMR (SS MAS NMR) [15]. SS MAS NMR studies gives insight into the 

structural co-ordination of all the aluminium ions in the structure, irrespective of long range 

ordering [16], which is key to understanding the forms of alumina. Chemical shift ranges for 

aluminium in different coordinations with oxygen (or hydroxyls) are typically −10 to 20 ppm for 

octahedrally coordinated aluminium (AlO6), 30 to 40 ppm for pentahedrally coordinated 

aluminium (AlO5) and 50 to 80 ppm for tetrahedrally coordinated aluminium (AlO4) [16, 17]. 

Several NMR studies explore the transition aluminas [17-21] but the technique has not yet been 

widely applied to SGAs. The co-existence of the different transition alumina phases and the 

influence of the second-order quadrupolar interaction cause spectral broadening; however the 

availability of higher magnetic fields allows some of these problems to be overcome [22]. 

 



 
Figure 9. SS-NMR results from an industrial alumina sample A) bulk material, B) <40 m 

fraction. The blue line is the experimental spectrum and the magenta line is the sum of the 

individual fitted curves. Note that the experiments were run and fitted at three different magnetic 

field strengths (important for the robustness of the method) although only the 14.1 T results are 

shown here. 

 

The 
27

Al SS MAS NMR spectra at 14.1 T obtained on both the bulk (A) and sub 40 m size 

fraction (B) of an industrial alumina sample are shown in figure 9. The NMR parameters and 

relative abundance (intensities) of each site are shown in table 2. The key to the robustness and 

uniqueness of these fits, despite the significant spectral overlap, is that the experiments and fits 

are performed at different magnetic field strengths (7.1 T, 11.7 T and 14.1 T) and that the same 

parameters are used to fit the spectra at all fields. The ability to fit all three fields accurately with 

spurious parameters would be highly coincidental and is hence unlikely. Also the positions (and 

parameters) of several of the peaks are not arbitrary as they are largely determined by the known 

phases that are present in this sample on the basis of the x-ray evidence (i.e. gamma-, theta- and 

alpha-alumina). 

 

Table 2. Peak parameters used in the curve fitting of the NMR data, collected at 7.1, 11.7 and 

14.1 T, for an industrial alumina sample and the resulting peak intensities. 
 27Al 

NMR Peak 
Chemical 
Shift /ppm 

Mean CQ / MHz 
(± 1 MHz) 

ΔCQ / MHz 
(± 1 MHz) 

Alumina 
Intensity / % 

Alumina 
Phase 



B
u

lk
 (

A
) 

Tetrahedral 1 79.5(0.5) 6.5 4.0 12(1) Theta 

Tetrahedral 2 71.5(0.5) 7.0 6.0 20(0.1) Gamma 

*Pentahedral 32(1) 6.0 7.0 5(2) ** 

Octahedral 1 15.5 6.0 7.0 43(1) Gamma 

Octahedral 2 14.5(0.5) 2.5 3.5 4.5(0.5) Alpha 

Octahedral 3 9.5(1) 3.0 5.5 14.5(1.5) Theta 

<
 4

0
 

m
 (

B
) 

Tetrahedral 1 78(1) 6.5 4.0 13.5(0.5) Theta 

Tetrahedral 2 72(1) 8.0 6.0 15(1) Gamma 

*Pentahedral 28(1) 6.0 10.0 7(2) ** 

Octahedral 1 16(1) 6.0 10.0 28(2) Gamma 

Octahedral 2 15.5(0.5) 2.5 3.5 21(0.5) Alpha 

Octahedral 3 9.5(0.5) 3.0 5.5 13.5(1.5) Theta 
*) Possibly a quasi-octahedral peak (see discussion)  
**

) 
Small quantity of AlO5 from some less ordered component of gamma- or other transition alumina 

(such as the more X-ray amorphous chi- or rho-aluminas). 

 

The peaks centred at a chemical shift of approximately 30 ppm, could either indicate the 

presence of quasi-octahedral [15, 23] or pentahedral (AlO5) aluminium coordination in 

accordance with previously reported values for the chemical shift [17, 24, 25]. However, the 

higher value of CQ and ΔCQ more likely indicates the presence of pentahedral coordination. CQ is 

the quadrupole coupling constant and it is a measure of the departure from the spherical 

symmetry of the electrical charge distribution around the nucleus, ΔCq is the distribution of the 

quadrupolar coupling constant and indicates a structural disorder. The presence of penta-

coordinated aluminium is consistent with the disordered nature of the alumina sample and is 

thought to originate from more highly distorted/disordered sites/components in an X-ray 

amorphous alumina component. Disordered or even amorphous aluminas which lack long-range 

order, limit the accuracy of XRD methods for quantitative phase measurements of SGAs, but are 

no constraint on the NMR analysis. 

 

 

CONCLUDING REMARKS 

 

Alumina fines are often regarded as a problem in aluminium smelting. However few studies 

examine the link between the nature of the fines and the specific process or operational problems 

encountered. Likewise, in the alumina refinery, considerable effort goes into understanding the 

generation of, but perhaps not always the nature of the fines. 

 

Separating the fines from the bulk material and characterising these using existing techniques 

(such as X-ray diffraction and BET specific surface area measurements) is a useful way to 

observe if the fines contain over- or under calcined material. This requires little investment and 

has the potential return of better prediction of the behaviour of a specific SGA and required 

operational response, and provides a compelling argument to adopt this practice. 

 

The use of novel analytical methods such as Environmental Scanning Electron Microscopy and 

very high field Solid State NMR provide new insights into the distribution of alumina phases and 

reveal a complex microstructure with large structural variations even within single alumina 

particles. These studies provide valuable and detailed insight into how the fine material can be 



generated, particularly during the calcination stage in the alumina refinery, and reveal amorphous 

components which are in fact critically important for the properties and therefore the 

performance of the material in the smelter. 
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