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Abstract 

The purpose of this work is to provide a research tool for the field of nonverbal com-

munication, with the primary goal being to transform motion capture data or manually coded 

3D animation data into nonverbal metric data that allow for the application of standard statis-

tical methods such as analysis of variance, factor analysis, and multiple regression analysis.  

For this purpose, three nonverbal coding systems describing (1) static body postures, 

(2) dynamic body movements, and (3) proper body part motions such as head nods have been 

developed. A geometrical model describing postures and movements as flexion angles of 

body parts on three clearly understandable and nonverbal relevant dimensions—the sagittal, 

the rotational, and the lateral—provide the basis for math formulas which allow the transfor-

mation of Euler rotation angles of motion capture data or 3D animation data into metric 

measures describing body postures, movements, and proper motions. 

Furthermore, math formulas were developed to compute about 30 nonverbal cues de-

scribed in the literature that can be understood as geometrical features of body parts: e.g. pos-

tural openness, symmetry, and expansiveness, head positions and head nods, gaze direction 

and body orientation, pointing behavior and relational gestures, interactional synchrony, prox-

emics and touch, including statistics such as rates, velocity, and acceleration of movements. 

To transform motion capture and 3D animation data into nonverbal metric measures, 

the software APEx (Automatic Parameter Ex

Keywords: nonverbal communication, nonverbal behavior, nonverbal coding system, 

nonverbal cues, pattern recognition, kinesics, body language, body postures, body move-

ments, motion capture, 3D character animation, data extraction, software, program, APEx. 

traction of Nonverbal Parameters) has been de-

veloped with a number of convenient features converting motion capture data into more than 

150 metric nonverbal parameters. In addition, statistical parameters are supplied for each 

nonverbal parameter such as mean, standard deviation, minimum, and maximum. 
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Chapter 1: Introduction 

Nonverbal communication is a vital and important part of everyday human interaction, 

its roots grounded in the early days of humankind before language unfolded (Argyle, 1975; 

Birdwhistell, 1970; Burgoon, 1994; Darwin, 1872). The interest of philosophers and scientists 

in understanding the latent principles of unspoken dialogue is enormous (Burgoon & Hoobler, 

2002). In order to provide deeper insight into the nature of nonverbal communication, thou-

sands of scientific studies have been conducted since the 1950s in all sorts of different areas 

such as psychology, anthropology, sociology, education, linguistics, and medicine (Harrigan, 

Rosenthal, & Scherer, 2005). In more recent times, studies have also been conducted in 

neurorobotics science and engineering in interdisciplinary areas in conjunction with social 

cognitive neuroscience in order to construct human-like robots for everyday assistance 

(Bicho, Louro, & Erlhagen, 2010; Schaal, 2007; Vogeley & Bente, 2010).  

Numerous studies have demonstrated the enormous impact of nonverbal behavior such 

as facial expressions, gaze behavior, touch, gestures, postures, and movements on person per-

ception, impression formation, and interaction control (Andersen, 2008; Burgoon, Guerrero, 

& Floyd, 2010; Guerrero, Andersen, & Afifi, 2010; Knapp, Hall, & Horgan, 2013; Manusov, 

2005; Manusov & Patterson, 2006; Remland, 2009; Riggio & Feldman, 2005), and these have 

helped to reveal the unconscious nature of the processes involved in the encoding and decod-

ing of nonverbal messages (Castelli, Carraro, Pavan, Murelli, & Carraro, 2012; Choi, Gray, & 

Ambady, 2005; Dimberg, Thunberg, & Elmehed, 2000; Hofmann, Gschwendner, & Schmitt, 

2009; Mehrabian, 1972). Nonverbal communication science postulates the automaticity and 

unconscious character of nonverbal communication, the high degree of automation, and a 

direct connection between the encoding and decoding processes (Lakin, 2006). Nonverbal 

communication “can thus be seen as unaware, efficient, uncontrollable and unintentional” 

(Vogeley & Bente, 2010, p. 1079).  
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The effect of nonverbal behavior arises not only from nonverbal cues with certain se-

mantic meanings such as the facial expressions of basic emotions but also from “dynamic 

qualities that are implicit to the ongoing behavior and can hardly identified with the naked 

eye” (Vogeley & Bente, 2010, p. 1079). Research has found that dynamic qualities of move-

ments such as speed, periodicity, or complexity of body movements convey socially relevant 

information which cannot be consciously identified but which may have a stronger impact on 

social perception than the static aspects of nonverbal cues (Grammer, Filova, & Fieder, 1997; 

Grammer, Honda, Juette, & Schmitt, 1999; Riggio & Friedman, 1986). 

Johansson’s (1973, 1976) point light displays are an impressive demonstration of how 

dynamic qualities of nonverbal behavior convey socially relevant information. Point light 

displays visualize body motions, usually the human gait, with white spots moving on a black 

background and representing the major body joints of a body*

                                                
* Various animations of point light displays can be viewed at www.biomotionlab.ca. 

. This method allows us to study 

body motions on an experimental basis, and several studies using this technique have shown 

that people can recognize sex (Barclay, Cutting, & Kozlowski, 1978; Cutting, Proffitt, & Ko-

zlowski, 1978; Kozlowski & Cutting, 1977; Mather & Murdoch, 1994; Troje, 2002), age 

(Montepare & Zebrowitz-McArthur, 1988; Montepare & Zebrowitz, 1993), identity (Cutting 

& Kozlowski, 1977; Jacobs, Pinto, & Shiffrar, 2004; Loula, Prasad, Harber, & Shiffrar, 2005; 

Stevenage, Nixon, & Vince, 1999; Troje, Westhoff, & Lavrov, 2005; Westhoff & Troje, 

2007), emotions (Atkinson, Dittrich, Gemmell, & Young, 2004; Barliya, Omlor, Giese, 

Berthoz, & Flash, 2013; Brownlow, Dixon, Egbert, & Radcliffe, 1997; Chouchourelou, 

Matsuka, Harber, & Shiffrar, 2006; Gross, Crane, & Fredrickson, 2012), or personality traits 

(Thoresen, Vuong, & Atkinson, 2012), merely by observing white spots moving on a black 

background. Displaying static pictures of point light displays allowed recognition only on a 

chance level, showing evidence that the relevant social information is coded only in the body 

motions (Atkinson et al., 2004; Kozlowski & Cutting, 1977; Loula et al., 2005). 
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In order to find the spatiotemporal characteristics explaining the participant’s judg-

ments, some mathematical methods have been suggested which provide geometrical data. 

Johansson (1973, 1976) described a two-dimensional vector analysis model for calculating the 

velocity and acceleration of each point light according to its moves on the monitor surface of 

the point light display, but other studies preferred simpler measures such as walking speed in 

paces per minute (Kozlowski & Cutting, 1977), ratings by participants to classify gait charac-

teristics (Montepare & Zebrowitz-McArthur, 1988), or measures of static body characteristics 

such as walkers' shoulder and hip width (Barclay et al., 1978) or the torso torques of male and 

female walkers (Cutting et al., 1978).  

Troje (2002, 2008) developed a framework to obtain parameterizations of human mo-

tion characteristics from motion capture data. His approach transforms the spatiotemporal 

three-dimensional trajectories of discrete data points captured on a person’s body into a repre-

sentation that allows for the application of standard methods of linear statistics and pattern 

recognition. These trajectories are the time series of 3D Cartesian coordinates of 15 data 

points representing the main joints of the human body. For periodic motions such as human 

gait, Troje uses Fourier decompositions to achieve low-dimensional linear components that 

represent biologically and psychologically relevant attributes. After the motion capture data 

are linearized for each data point, PCA is applied to the Fourier-transformed time series of all 

of the participating walkers in order to reduce the dimensionality of the data points. The re-

sulting data are used in a subsequent discriminant analysis to explain group differences with 

the spatiotemporal characteristics of the spots. For this purpose, a discriminant function can 

be computed, resulting in a discriminant vector that can be decomposed into different terms 

describing the structural and kinematic differences between the groups, and this can be used 

to generate point light displays visualizing the spatiotemporal characteristics of each group. 

Several studies used Troje’s approach of a Fourier decomposition of motion capture data 

(Barliya et al., 2013; Troje et al., 2005; Westhoff & Troje, 2007). 
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The point light display research paradigm was groundbreaking for the investigation of 

biological motion, but the method is highly adapted to the situation of human walkers. For 

analysis of human gait, it may be appropriate to neglect the postures and positions of body 

parts, in particular the head, the hands, and the feet, by replacing them with dots and consider-

ing only the Cartesian coordinates of the dots for data analysis and Fourier decomposition. 

Nevertheless, for other situations in which nonverbal communication occurs the pos-

tures of body parts are highly relevant and should be considered. In particular, body move-

ments are transitions between sequentially arranged and always visible and meaningful body 

postures which convey important nonverbal messages such as attitudes, emotions, motives, 

status, and interpersonal relationships (Mehrabian, 1972, 1981). According to Burgoon (2010, 

p. 273), most of the research on postures is dated and may no longer be valid, so an update of 

the research on body postures is needed along with research on body movements which is 

desirable for new insights beyond the findings of the point light display research paradigm. 

The effort of coding body postures and body movements is enormous—the body can 

show a number of different positions and movements for each part every second. Harrigan 

(2005, p. 138) recommended coding only the body parts of interest, but manual coding is still 

enormously time-consuming and error-prone. Since motion capture systems are efficient and 

accurate, it seems reasonable to use motion capture data to analyze body postures and move-

ments. The problem with motion capture data is that they describe the orientation of body 

parts in space with so-called Euler rotation angles. In small ranges between 0° and 15°, they 

appear to reflect the flexion angles of body parts, but this is not actually the case. Euler angles 

instead denote the angles to be used by successive rotation of a body part about the x-, y-, and 

z-axes of its center, which is hard to imagine. In addition, there are many sequences which 

apply different rotation angles in order to reach the same orientation in space. For these rea-

sons, Euler rotation angles are not meaningfully interpretable, and are not included in nonver-

bal data analysis.  
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Since the Euler rotation angles of motion capture data are useless for the analyses of 

body postures and proper body part motions, i.e. rotations of a body part around its center 

such as head nodding, it is essential to develop a method for transforming motion capture data 

into useful nonverbal parameters qualified for standard analytical methods and allowing a 

novel kind of nonverbal research method. This approach results in a nonverbal coding system 

which provides values accurately describing body postures and body movements on a metric 

scale, which has never been done before. Nonverbal position and movement data with the full 

spectrum of metric information on clearly understandable and nonverbal relevant dimensions 

are a novelty, and allow the application of standard statistical methods such as analysis of 

variance, factor analysis, and multiple regression analysis. 

Furthermore, the nonverbal literature was reviewed in the search for nonverbal cues 

that can be calculated from motion capture data, and the following groups of nonverbal cues 

were taken into account: the five immediacy cues (Mehrabian, 1969b, 1972), the nonverbal 

involvement behavior (Patterson, 1982), the relaxation cues originally discovered by Goffman 

(1961) and described by Mehrabian (1969b, 1972), the expansiveness behavior observed by 

Scheflen (1972), pointing gestures and touching behavior as described by Henley (1977), in-

teractional synchrony in the sense of posture mirroring and motor mimicry (Bavelas, Black, 

Chovil, & Lemery, 1988; Bavelas, Black, Lemery, & Mullett, 1986, 1987), and sagittal head 

nods, rotational head shakes, and lateral head tilts as described by Bente (1989).  

This set of around 30 nonverbal cues describes the most investigated characteristics of 

postures, movements, and dyadic relations and allows the updating of existing research find-

ings and discovery of new research findings on nonverbal communication.  
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Purpose of the Work 

The purpose of this work is to provide a research tool for the field of nonverbal com-

munication, with the primary goal being to transform motion capture data or manually coded 

3D animation data into nonverbal metric data that allow for the application of standard statis-

tical methods such as analysis of variance, factor analysis, and multiple regression analysis.  

For this purpose, three nonverbal coding systems describing (1) static body postures, 

(2) dynamic body movements, and (3) proper body part motions such as head nods have been 

developed. A geometrical model describing postures and movements as flexion angles of 

body parts on three clearly understandable and nonverbal relevant dimensions—the sagittal, 

the rotational, and the lateral—provide the basis for math formulas which allow the transfor-

mation of Euler rotation angles of motion capture data or 3D animation data into metric 

measures describing body postures, movements, and proper motions. 

Furthermore, math formulas were developed to compute about 30 nonverbal cues de-

scribed in the literature that can be understood as geometrical features of body parts: e.g. pos-

tural openness, symmetry, and expansiveness, head postures and head nods, gaze direction 

and body orientation, pointing behavior and relational gestures, interactional synchrony, prox-

emics and touch, including statistics such as rates, velocity, and acceleration of movements. 

To transform motion capture and 3D animation data into nonverbal metric measures, 

the software APEx (Automatic Parameter Ex

  

traction of Nonverbal Parameters) has been de-

veloped with a number of convenient features converting motion capture data into more than 

150 metric nonverbal parameters. In addition, statistical parameters are supplied for each 

nonverbal parameter such as mean, standard deviation, minimum, and maximum. 
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Importance of the Work 

This work provides the first systematic and comprehensive method for transforming 

motion capture data including Euler rotation angles into metric data in three nonverbal mean-

ingful dimensions, thereby allowing the researcher to apply standard statistical methods such 

as analysis of variance, factor analysis, and multiple regression analysis. In addition, a com-

prehensive set of around 30 nonverbal cues including statistical parameters is supplied. 

Various researchers used motion capture systems to calculate measures from the three-

dimensional Cartesian coordinates of point light spots, e.g., body part flexion angles as pro-

jection in the two-dimensional sagittal plane (e.g., Barliya et al., 2013; Crane & Gross, 2007; 

Das, Lazarewicz, Wilson, & Finkel, 2009; Gross, Crane, & Fredrickson, 2010) or duration, 

velocity, and acceleration of point light spot movements (Ada, Suda, & Ishii, 2003; Gross et 

al., 2012; Naugle, Hass, Joyner, Coombes, & Janelle, 2011; Pollick, Paterson, Bruderlin, & 

Sanford, 2001). Other researchers supply motion capture libraries with various avatars and 

corresponding motion capture data (Busso et al., 2008; Ma, Paterson, & Pollick, 2006).  

Obviously, the nonverbal research community requires accurate spatiotemporal 

measures and could benefit from an all-round research tool based on nonverbal research find-

ings which provides transformation functions for motion capture and animation data. 

 

Limitations and Assumptions 

The research tool APEx can be used with Windows XP and higher. APEx supports the 

reading of global translation and rotation data (i.e., Cartesian coordinates and Euler angles 

which are globally related to the center of the 3D world) stored in text files using the comma 

separated values (CSV) format (see Chapter 7, p. 91). A script is provided (see Appendix B, 

p. 110) that allows the export of the required global data from the 3D animation software 

MotionBuilder into csv files. For other software, a corresponding script is to be written. 
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Organization of the Work 

Chapter 1: Introduction highlights the great significance of nonverbal communica-

tion for interpersonal communication and social interaction and reports the current state of 

nonverbal communication research regarding unconscious nonverbal messages conveyed by 

dynamic qualities of body movements. After a review of the methods and findings of the 

point light display paradigm marking a milestone in this research field, the basic drawbacks of 

this research paradigm and the use of motion capture data are discussed, the solution provided 

by this work is described, and perspectives for future applications are presented. 

Chapter 2: Nonverbal Communication reviews common definitions of nonverbal 

communication. Because of the complexity of the research subject, many different views have 

been expressed since the 1970s, and they are still hotly debated. 

Chapter 3: Review of the Literature on Nonverbal Coding Systems reviews the 

literature on the history, advantages, and disadvantages of the most commonly used nonverbal 

coding systems. After postulating four requirements with which a nonverbal coding system 

should comply, the existing coding systems are evaluated in terms of their suitability. The 

Bernese coding system does not meet the criteria of supplying metric measures and describing 

body movements but has been proven to be the most suitable coding system and therefore 

provides the basis for the development of the SRL coding system, as described in Chapter 4.  

Chapter 4: Measuring Body Positions and Body Movements describes the SRL 

coding system supplying 135 flexion angles for 15 body parts. The basic idea and the geomet-

rical model are presented, and successive images illustrate how flexion angles describe posi-

tions and movements as deviations from base positions. Math formulas are derived which 

allow the transformation of uninterpretable Euler rotation angles into meaningful SRL flexion 

angles. The scope and limits of the math formulas are described, characteristics of the SRL 

flexion angles discussed, and recommendations for choosing the best base position offered. In 

addition, 26 statistical parameters are described and recommendations for their use are given. 
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Chapter 5: Review of the Literature on Nonverbal Cues reviews the main findings 

of kinesic research in order to find the best set of nonverbal cues computable from motion 

capture and animation data. After a brief overview of nonverbal codes found by researchers 

since the 1950s, the historical development of nonverbal research regarding gestures, facial 

expressions, postures, movements, gaze, touch, and proxemics is described. The research 

findings lead to the discovery that those nonverbal cues relate to three fundamental dimen-

sions of human socio-emotional perception and behavior (Mehrabian, 1972; Osgood, 1966; 

Schlosberg, 1952; Vogeley & Bente, 2010; Wundt, 1896), thereby providing a theoretical 

framework for the parameters computed by APEx: (1) evaluation/pleasure/pleasantness, (2) 

potency/status/dominance/power/control, and (3) responsiveness/arousal/activation/activity. 

Chapter 6: Measuring Nonverbal Cues describes the nonverbal parameters devel-

oped according to the nonverbal cues found as an expression of the three nonverbal dimen-

sions outlined in Chapter 5. Their operationalization is presented along with geometrical 

models, math terms, and details of their implementation in APEx. 

Chapter 7: The Program APEx describes input data files, output data files, program 

handling, and functions of the software. For the purpose of exporting motion capture data or 

3D animation data from the 3D animation software MotionBuilder, an installation guide and 

step-by-step instructions for the script ExportGlobalData are supplied. The user interface of 

APEx allows the user to load multiple input data files, to define data fields, and to set various 

program options controlling APEx. Moreover, the user can manipulate APEx’s transformation 

process by modifying the nonverbal parameter list defining how APEx transforms the input 

data or by creating new definitions of nonverbal parameters. 

Chapter 8: Limitations and Future Directions shows the limitations of this ap-

proach and outlines the direction of future developments: collision detection, pattern recogni-

tion, facial recognition, and eye tracking could be key components of an all-round nonverbal 

research tool for the future. 



10 

 This page is intentionally left blank. 



11 

Chapter 2: Nonverbal Communication 

Theories and findings from nonverbal communication research form the basis of the 

conceptual framework used for this work. They are required for the understanding of the de-

veloped research instruments. The latest textbooks, e.g., those written by Andersen (2008), 

Burgoon et al. (2010), Knapp et al. (2013), Manusov and Patterson (2006), More, Hickson, 

and Stacks (2009), Remland (2009), and Richmond, McCroskey, and Hickson (2007), de-

scribe the interpersonal perspective of nonverbal communication, exploring the communica-

tion process between individuals. In the last decade, this perspective was extended to include 

the intrapersonal perspective of social cognitive neuroscience in order to explore the cogni-

tive processes and neural mechanisms responsible for the production and perception of non-

verbal behavior. Those processes have become a key topic in social cognitive neuroscience, 

which has recently evolved into an autonomous scientific discipline (Vogeley & Bente, 2010). 

 

Approaches in Nonverbal Research 

The research on nonverbal behavior and nonverbal communication began with Dar-

win’s work The expression of the emotions in man and animals (1872), which concluded that 

“the young and the old of widely different races, both with man and animals, express the same 

state of mind by the same movements” (p. 352). Scientific research on nonverbal behavior 

and communication using scientific methods and resulting in the fundamental works which 

lay the foundation of contemporary nonverbal theories started in the early 1950s (Knapp, 

2006). As depicted in Figure 1, the online database PsycINFO lists 10,899 publications re-

garding the keywords nonverbal communication or nonverbal behavior. Annual publications 

numbered seven in the 1950s, increased to 55 in the 1960s, 196 in the 1970s, 223 in the 

1980s, and 236 in the 1990s, and reached 320 after the millennium. 
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Figure 1. Number of publications about NVC or NVB listed in PsycINFO. 

These publications originate from many areas such as communication, psychology, 

anthropology, ethnology, sociology, linguistics, psychotherapy, and education (Harrigan et 

al., 2005), and as a result they are based on different approaches. Traditionally, anthropolo-

gists and sociologists such as Margaret Mead, Gregory Bateson, Edward Hall, Ray 

Birdwhistell, and Erving Goffman favored the nurture approach (Moore et al., 2009). They 

believed that nonverbal communication is learned, similarly to verbal communication, and did 

not accept that some nonverbal cues such as basic emotional facial expressions are universal 

across cultures. In contrast to this approach, the nature approach of Darwin presumes that 

nonverbal behavior relies on a biological, genetically determined signaling system of human 

beings and other animals, and this theory is still used by researchers such as the psychologist 

Ekman (2003b), the zoologist Morris (1980), and the communication scientists Andersen 

(2008) and Remland (2009). Most contemporary psychologists and communication research-

ers such as Burgoon et al. (2010), Knapp et al. (2013), Manusov and Patterson (2006), Moore 

et al. (2009), Remland (2009), and Vogeley and Bente (2010) emphasize the functional ap-

proach, which focuses on the functions of nonverbal communication. 
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Definition of Nonverbal Communication 

There is no generally accepted definition of nonverbal communication. In the 1970s, 

different points of view emerged (for an overview see Burgoon, 1980), which are still hotly 

debated. The definitions can be classified as those relying on specifying nonverbal behavior, 

separating nonverbal from verbal communication, the standard communication model, and a 

biological signaling system. 

Specifying nonverbal behavior. A frequently used approach lists various behaviors 

indicating nonverbal communication (similar to Table 8, see p. 61) without mentioning any 

criterion which may or may not belong to the list (e.g., Barker & Collins, Benson & Frandsen, 

Leathers, as cited in Andersen, 2008). This approach offers no criteria about which behavior 

type belongs to the list, and as a result contemporary scholars give a more precise definition. 

Separating nonverbal from verbal communication. In the attempt to find criteria to 

identify nonverbal communication, human communication is seen as separated into two anti-

thetical parts, the verbal and the nonverbal part. The most common definition of this kind is 

supplied by Mehrabian (1972): “In its narrow and more accurate sense, ‘nonverbal behavior’ 

refers to actions as distinct from speech. It thus includes facial expressions, hand and arm ges-

tures, postures, positions, and various movements of the body or the legs and feet” (p. 1). An-

dersen (2008, p. 18) gives the most elaborate list of 19 distinct categories which distinguish 

nonverbal from verbal communication, and refers to the first three categories as the three fun-

damental differences for defining nonverbal communication: “Nonverbal messages include all 

communication that is analogic, nonlinguistic, and typically governed by the right brain hemi-

sphere” (p. 5). The three fundamental differences between nonverbal and verbal communica-

tion rely on the results of decades of nonverbal research and come to surprising conclusions, 

but the approach is criticized by other scholars for not fully meeting the complexity of human 

communication as described in the following subsections. 

Analogic vs. digital messages. According to Andersen (2008),  
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analogic messages have a direct, nonarbitrary, intrinsic relationship to the thing they 

represent (Andersen, 1986; Watzlawick et al., 1967; Wilden, 1972). Such messages 

look or sound like what they refer to or represent. . . . Digital communication, by con-

trast, indirectly communicates information via arbitrary codes such as language. (p. 5) 

This point of view has a surprising consequence for gestures. Andersen (2008) consid-

ers the sign languages of deaf-and-dumb people and symbolic hand gestures, called emblems, 

to be digital, and as a result part of verbal rather than nonverbal communication. Other schol-

ars do not accept Andersen’s conclusion, and they maintain their view that symbolic hand 

gestures belong to nonverbal communication. Burgoon et al. (2010, p. 204) argue that regard-

ing nonverbal codes as analogic creates a “false dichotomy” because although emblems must 

indeed be regarded as digital they are nevertheless nonverbal. 

Linguistic vs. nonlinguistic messages. According to Andersen (2008), language is an 

indirect communication system that conveys information using linguistic symbols, which are 

arbitrary representations for other things. In contrast, nonverbal communication is a direct 

communication system that conveys information using nonlinguistic signs, which “naturally 

represent the things they stand for” (p. 8). 

Left vs. right brain hemisphere. Andersen, Garrison, and Andersen (1979) reviewed 

the neurophysiological literature relating to nonverbal communication, and they concluded 

that neural correlates of nonverbal functions are located in the right brain hemisphere, where-

as the left brain hemisphere is responsible for verbal functions. They suggested treating non-

verbal behavior that is assumed to be a linguistic and left-hemispheric code as verbal. 

According to Purves et al. (2008, p. 550), nearly all neuroscience researchers explor-

ing the neural basis of language agree that in the majority of humans almost all cortical re-

gions that are part of language comprehension and expression reside in the left hemisphere, 

whereas the corresponding cortical regions in the right hemisphere are responsible for the 

emotional coloring of speech prosody and other nonverbal aspects of language. Purves et al. 
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noted that there is evidence that the cortical representation of language is independent of the 

perceived or expressed symbols that can be verbal indications as well as gestures of a sign 

language. 

Burgoon et al. (2010) argued that this only applies to where stimuli are initially per-

ceived and that contemporary researchers have suggested “a far more complex, synchronized 

relationship between the two brain hemispheres in the perception, comprehension, retrieval, 

and encoding of social information (Borod, 1993; Ross, 2000)” (p. 213). 

Research results of social cognitive neuroscience support the objection that the hemi-

spheric lateralization refers only to the perception and expression of stimuli. Vogeley and 

Bente (2010) described nonverbal communication with regard to psychological processes and 

neural mechanisms. Social cognitive processes such as mindreading, mentalizing, and theory 

of mind attribute mental states to others by interpreting nonverbal information. Vogeley and 

Bente noted that neuroimaging studies in this field have consistently shown that brain areas of 

the social neural network (SNN) are involved. As depicted in Figure 2, the SNN includes the 

medial prefrontal cortex (MPFC), the superior temporal sulcus (STS), the amygdala (A), and 

the anterior temporal poles (TP) (p. 1082). In particular, the posterior STS (pSTS) is involved 

in the perception and interpretation of socially relevant nonverbal cues and inferring the other 

person’s mental states (p. 1083); this applies also to the temporo-parietal junction (TPJ) 

(Vogeley & Roepstorff, 2009). MPFC, STS, TP, pSTS, and TPJ exist in both hemispheres. 

 
Figure 2. Locations of brain areas involved in the social neural network 

Drawings adapted from “view of a human brain” by NEUROtiker, 2007. 
Retrieved from Wikimedia Commons. 
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Standard communication model. The definitions of this category rely on the mathe-

matical communication model of Shannon and Weaver (1949), also known as the standard 

view of communication, and later revised as the Sender-Message-Channel-Receiver Model of 

Communication (SMCR Model of Communication) by Berlo (1960). The basic statement is 

that a sender encodes a message and transmits it over a channel to a receiver who decodes the 

message. The central element is the message and the terms encoding and decoding stress that 

the sender translates the message into signals according to the chosen communication channel 

(e.g., text, speech, facial expressions, hand gestures, body movements) and the receiver trans-

lates the received signals back by reconstructing the original message. Therefore, definitions 

regarding nonverbal communication can be classified into definitions with sender orientation, 

receiver orientation, and message orientation. The key difference between these three catego-

ries is which viewpoint (sender, receiver, or message viewpoint) decides which behavior con-

stitutes nonverbal communication. This question has been heavily contested since the 1970s. 

Sender orientation. A definition with sender orientation advocates that only intention-

al behavior can be considered to be part of nonverbal communication (Motley, as cited in 

Andersen, 2008 and in Burgoon et al., 2010). The problem is that unconscious messages are 

not taken into account, but most nonverbal behavior is either well-learned, automated, and 

unaware (Burgoon et al., 2010; Lakin, 2006) or it is based on a biological signaling system 

which operates mostly outside our consciousness (Darwin, 1872; Ekman, 1973, 2003a; Ek-

man & Friesen, 1971; Ekman et al., 1987; Ekman, Sorenson, & Friesen, 1969). 

Receiver orientation. This category relies on the axiom “one cannot not communi-

cate” of Watzlawick, Beavin, and Jackson (1967/2008, p. 75). The receiver orientation postu-

lates that any behavior a receiver interprets as a message is communication: “If a receiver 

obtains meaning from another's action, then communication has occurred” (Andersen, 2008, 

p. 16). The drawback of this approach is that every behavior is interpreted as communication, 

including those which might be informative but not communicative (Burgoon et al., 2010). 
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Message orientation. The message orientation was introduced by Burgoon (1980, 

1985), and her definition is widely known. She periodically revised her definition and the 

latest one reads: “Communication refers to the process of creating meanings between senders 

and receivers through the exchange of signs and symbols” (Burgoon et al., 2010, p. 12). She 

assumed four criteria deciding which nonverbal behavior constitutes nonverbal communica-

tion and stressing that nonverbal behavior need not be regarded as intentional: 

Communication is viewed as only including those behaviors that form a socially 

shared coding system. This includes behaviors that (1) are typically sent with intent, 

(2) are used with regularity among members of a given social community, society, or 

culture, (3) are typically interpreted as intentional, and (4) have consensually recog-

nized meanings. (p. 16) 

Burgoon’s definition of nonverbal communication includes: (1) the sender encoding 

intended messages and unconsciousness messages, (2) the receiver decoding the message, (3) 

the message, which creates the meanings between the sender and receiver, and (4) a socially 

shared coding system ensuring consensually recognized meanings of messages, according to 

the social meaning model of nonverbal behavior of Burgoon and Newton (1991). 

The receiver orientation has the advantage that the researcher can investigate research 

questions outside the research topic of nonverbal communication. Burgoon et al. (2010) sug-

gested distinguishing between nonverbal information, nonverbal behavior, and nonverbal 

communication. Information includes any perceived stimuli, behavior includes any action, and 

communication includes any intentional message targeted at a receiver. Whereas the receiver 

orientation denotes all nonverbal behavior as nonverbal communication which is perceived 

and interpreted, the distinction between nonverbal behavior and nonverbal communication 

allows us to differentiate between nonverbal communication that creates shared meanings 

between two individuals and nonverbal behavior that is unilaterally perceived and interpreted 

by a receiver without any communication intention on the part of the sender. 



18 

Biological signaling system. The expression of the emotions in man and animals is 

Darwin's (1872) contribution to the understanding of a biologically based and genetically de-

termined signaling system for both animals and humans. He was the first scientist to send a 

questionnaire with rating scales and photos showing emotional expressions to different ethnic 

groups asking them which emotions were depicted. His method has become the most popular 

research method in the field of facial expression (Ekman, 2003a). From the worldwide re-

sponses, he drew the conclusion that facial expressions of emotion are innate, inherited, and 

therefore universal to humanity. Ekman and Friesen (1969) tried to disprove Darwin’s view, 

but instead have identified two primary types of communication codes: intrinsic codes and 

arbitrary codes (Remland, 2009). “An intrinsic communication code is a biologically shared, 

innate signaling system in which a particular species uses symptoms for its communication 

with other members of the species” (p. 6). In contrast, an arbitrary communication code is a 

socially constructed signaling system that uses symbols (arbitrary codes) or signs (iconic 

codes) to convey messages (p. 8). Whereas signs show directly what they mean, the associa-

tion between a symbol and what the symbol represents must be learned. Spoken or written 

words are symbols. The two communication codes complement each other: “Communication 

takes place whenever two or more individuals, using a socially shared or biologically shared 

signaling system, send and receive a message” (Remland, 2009, p. 5). 
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Chapter 3: Review of the Literature on Nonverbal Coding Systems 

Requirements of a New Nonverbal Coding System 

A new nonverbal coding system should meet the following four requirements. 

Separation of description and evaluation. According to Frey and Pool (1976), a 

nonverbal coding system should describe nonverbal behavior without any interpretation or 

evaluation of the observed behavior. Any data collection based on inferences about nonverbal 

behavior contains implicit presumptions or explicit theories about the meaning or effect of 

nonverbal cues, and therefore prevents new results and discoveries in nonverbal research. 

Experimental control of nonverbal behavior. The second requirement is the use of a 

research method within the experimental paradigm of the social sciences community enabling 

the examination of causal relationships between nonverbal behavior and its hypothesized ef-

fects on social cognitive processes such as person perception or impression formation. 

Metric scale of nonverbal data. Acquired nonverbal data should operate on a metric 

scale to enable the use of sophisticated statistical approaches developed in the last few dec-

ades to detect and examine causal relationships in complex systems. Advanced statistical 

techniques such as analysis of variance, multiple regression analysis, exploratory and con-

firmatory factor analysis, path analysis, structural equation modeling, and time series analysis 

can only be applied if the nonverbal data operate on a metric scale. 

Description of both body positions and body movements. Two different aspects of 

nonverbal behavior belong together: body positions and body movements. Nonverbal behav-

ior is normally a sequence of alternating body positions and body movements. Each body 

movement starts with a body position and ends with a body position. Body positions and body 

movements have a great influence on the nonverbal communication process. Therefore, as the 

fourth and last requirement, a nonverbal coding system should describe body positions as well 

as body movements. 
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Separation of Descriptive and Evaluative Research Methods 

Traditional nonverbal communication research does not meet the criterion of separa-

tion of description and evaluation which is necessary for exploring nonverbal communication. 

Frey and Pool (1976) ) point out that traditional nonverbal research has primarily used three 

methods of data collection, which—because of implicit assumptions or explicit hypotheses—

reduce behavioral observations to incomplete data where valuable and detailed information is 

lost or biased by subjective ratings: generic, restrictive, and evaluative coding. As visualized 

in Figure 3 (see p. 24), all three methods have in common that the nonverbal behavior cannot 

be reconstructed from the collected data. Although these coding methods could theoretically 

provide explanations for different phenomena such as emotional impressions or person per-

ception, important information about subtle cues or the dynamics of behavior is not available. 

Generic coding. The observed behavior may be exhaustively captured, but is pooled 

into only a few categories so important details are lost. For example, nodding and shaking of 

the head could be combined in a category of head movements so that subsequent distinctions 

are no longer possible.  

Restrictive coding. Specific behaviors may be recorded, avoiding the risk of regard-

ing distinct nonverbal cues as identical, but only a few closely defined cues are collected. 

Donaghy (1989) has pointed out that this kind of coding causes the problem of “neglecting the 

interrelationship that all nonverbal behaviors have to one another” (p. 299).  

Evaluative coding. The description of nonverbal behavior is ignored entirely. The ob-

served behavior is directly interpreted, subjectively evaluated, and rated on defined psycho-

logical scales. Therefore, these rating scales may give information about the subjective im-

pressions of particular observers induced by a specific nonverbal behavior, but information 

about which specific nonverbal behavior induced these impressions is lost. 

Only complete and detailed coding is capable of reconstructing observed behavior, 

and therefore the description and evaluation of nonverbal behavior should be separate.  
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Descriptive Coding Systems for Nonverbal Behavior 

Early coding systems. Several coding systems have been developed that are purely 

based on the physical description of body movements without confounding evaluation and 

description. Harrigan (2005) gives a brief overview of coding systems that have gained great-

er attention in the research of nonverbal behavior; however, they all use qualitative symbols 

or lack the accuracy to measure body positions and body movements, which require data on a 

metric scale. Birdwhistell (1952, 1970), an anthropologist and pioneer in the study of body 

movement, is known for having popularized the descriptive approach to nonverbal behavior 

research. He created a complex coding system for recording body movements using verbal 

and numerical symbols. Scheflen (1964, 1972), a psychiatrist greatly influenced by 

Birdwhistell, analyzed recordings of therapist-client interactions and coded the nonverbal be-

havior with a similar system of qualitative symbols. Labanotation (Hutchinson, 1961; Laban, 

1956) is another exhaustive coding system using graphical symbols which was specifically 

designed for dance movements. The Benesh Movement Notation (Benesh & Benesh, 1983) is 

a dance notation system that can document any form of human movement, but it is also based 

on graphical representation of the human body. The Eshkol-Wachmann Movement Notion 

(Eshkol & Wachmann, 1958; Golani, Zeidel, & Eshkol, 1969) uses a spherical coordinate 

system to determine the orientation in space for each limb of the human body.  Although this 

coding system uses a numerical system, it has a resolution of only 45° between two positions 

and therefore lacks the accuracy required to describe body positions. The Bernese System for 

Time Series Notation of Movement Behavior (BTSN) (Frey & Pool, 1976) uses the three Car-

tesian axes to assign numerical values to the position of each body part.  As we will see in the 

next section, this coding system only meets the first requirement for a nonverbal research in-

strument, but it is the most accurate coding system developed in the twentieth century. 
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The Bernese system for time series notation of movement behavior. The Bernese 

coding system is a spatial-temporal coding system that uses the Cartesian coordinate system to 

describe the direction and position of each body part of a sitting individual by assigning nu-

merical values to the various deviations of the body parts from a base position. The nonverbal 

behavior is coded from video tapes into a data matrix twice or five times each second and for 

each body part, thereby covering all possible positions and directions of the head, chest, hips, 

arms, hands, legs, and feet (Frey, Hirsbrunner, Florin, Daw, & Crawford, 1983). The result of 

the Bernese coding system is a detailed data protocol enabling high degrees of reliability and 

objectivity, and this classifies the Bernese coding system as a transcription method with com-

plete and detailed records, as depicted in Figure 3 (see p. 24). 

Descriptive accuracy has been demonstrated in a static reconstruction task comparing 

original data protocols coded from video tapes with real people with second-order data proto-

cols coded from pictures with human models whose body parts were placed in the same posi-

tions as those recorded in the original data protocols. Ninety-eight percent of the second-order 

codes were identical to the original ones (Frey & Pool, 1976). It should be noted, however, 

that this reconstruction task only examined the reliability of the data protocols and not their 

accuracy, because the data protocols were only compared in rough instead of exact positions. 

It is likely that the body positions of the models did not exactly match the original ones. 

Nonverbal data from the Bernese coding system operate statistically on the ordinal 

scale level (Frey et al., 1983), because rough, easily localizable positions are used to take into 

account that human coders are unable to measure precise angular degrees and spatial distances 

simply through appearance. Furthermore, only body positions are measured, not movements. 

Other disadvantages are that only the nonverbal behavior of sitting individuals can be coded, 

and that the coding procedure is very time-consuming and expensive. Depending on the de-

gree of activity, the notation can be up to 200 times the length of the video being coded 

(Bente, Senokozlieva, Pennig, Al-Issa, & Fischer, 2008). 
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Experimental Control of Nonverbal Behavior 

Nonverbal research found that social perception depends primarily on nonverbal cues. 

Many other sources, however, such as the physical appearance of the sender, the situational 

context, or the cultural background of the receiver might influence the impression formation. 

One primary research task is to investigate thoroughly the causal relationship between non-

verbal behavior and impression formation. As pointed out by Cook, Shadish and Campbell 

(2002), no other scientific method is as appropriate for studying causal relationships as the 

experiment in which (1) the presumed cause is manipulated to observe the outcome afterward, 

(2) the controlled variation of the cause is related to the observed variation in the outcome, 

and (3) various methods are used to exclude other possible explanations of the effect, i.e., 

variation in the outcome. To allow inferences about causal relationships in behavioral rating 

studies which determine the effects of specific body movements on the impression formation 

with rating scales, nonverbal behavior has to be manipulated systematically in order for the 

researcher to observe its effects while controlling the effects of other influential variables. 

Early attempts at experimental control. As shown in Figure 3 (see p. 24), several at-

tempts have been made to fulfill the requirements of an experimental approach, but they have 

failed in large part for various reasons: Lewis, Derlega, Shankar, Cochard, and Finkel (1997) 

instructed actors to vary singular nonverbal cues and found that they were unable to keep oth-

er aspects of their nonverbal behavior consistent. This approach also failed to meet the re-

quirement for controlling the influence of the physical appearance of the actors. Other studies 

considered this aspect by using hand drawings (Schouwstra & Hoogstraten, 1995), retouched 

photos (Frey et al., 1983) or pictures of wooden figures (Trautner, 1991). These static tech-

niques do not, however, allow investigation of the effect of body movements on impression 

formation and person perception. First attempts to separate body movements from human 

physical appearance were animated, graphically reduced object representations like geomet-

rical shapes (Heider & Simmel, 1944), point light displays (Johansson, 1973), or pixelated 
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video sequences (Berry, Kean, Misovich, & Baron, 1991). The first attempts to vary body 

movements systematically while controlling physical appearance were computer-simulated 

point light displays (Cutting & Proffitt, 1981).  

 
Figure 3. Classification of nonverbal research methods. 

Adapted from Bente et al. (2008, p. 271).   

Computer simulation. Bente introduced 3D computer animation technology as a 

nonverbal research method and developed software tools based on the Bernese System for 

Time-Series Notation of Human Movement Behavior in order to control both nonverbal be-

havior and physical appearance. Initially, Bente (1989) developed a computer program for the 

simulation of head movements using a simple wireframe model of a human head which sat on 

static human models. This approach has been successfully used in studies investigating gen-

der-specific nonverbal behavior in dyadic interactions (Bente, Donaghy, & Suwelack, 1998; 

Bente, Feist, & Elder, 1996). Leuschner showed “that the implicit geometry of the BCS has to 

be understood in terms of projection angles of an object’s local axes rather than in terms of 
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generic rotation angles” (Bente, Petersen, Krämer, & De Ruiter, 2001, p. 304), and developed 

a software module (Leuschner, 1999) that transforms the projection angles of the Bernese 

coding system (BCS) into the Euler rotation angles of 3D software animation tools. Based on 

this software module, the experimental platform for the computer simulation of nonverbal 

behavior ICARUS was developed (Bente, Petersen, et al., 2001). This research software tool 

is able to link the Bernese position time series protocols to a professional 3D computer anima-

tion platform (Softimage 3D), allowing for interactive editing of the Bernese projection angles 

and displaying smooth animations of realistic 3D-models. A subsequent evaluation study 

showed that 3D character animation of nonverbal behavior leads to the same impressions as 

the original video sequences (Bente, Krämer, Petersen, & de Ruiter, 2001). 

Although accuracy and precision were significantly improved, the transcription proce-

dure remained time-consuming and error-prone—depending on the abilities of human coders.  

More efficient and precise than manual coding motion capture systems allow for the automat-

ed measuring of human motions, as in the software project EVE (Bente & Krämer, 2004). 

This research tool was also based on the Bernese coding system, but a lot of effort is needed 

before the software development allows the editing of Bernese codes and controlling of the 

3D animation software. Depending on the lifetime of the hardware, operating system, and 3D 

animation software, the research tools date quickly. Moreover, the latest professional 3D ani-

mation tools are excellent and complement each other by using various input devices, editing 

facilities, and rendering techniques. 

Since 2005, Bente and his team have conducted cross-cultural nonverbal researches 

using high performance 3D character animation. The last research project investigated univer-

salities and differences on nonverbal communication in Germany, the United States, and the 

United Arab Emirates (Bente, Leuschner, Al Issa, & Blascovich, 2010) and relied primarily 

on the techniques and methods available with professional 3D animation software (Bente et 

al., 2008): dyads of interacting people from these three countries were videotaped, and their 
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nonverbal behavior was manually coded with 3D character animation software and repro-

duced with 3D animated video clips, as depicted in Figure 4. The video clips show the coded 

nonverbal behavior with wooden manikins, which drew on the culture, age, gender, hairstyle, 

and dress style of the original people, and were displayed to subjects who rated their impres-

sions on several rating scales measuring psychological constructs. 

 

 
Figure 4. Screenshots of original videos and of 3D animations. 
USA = United States of America, GER = Germany, UAE = United Arab Emirates. 
Adapted from Bente, Leuschner, Al-Issa, and Blascovich (2010, p. 765).  

 

The last generation of motion capture systems seriously decreased the ecological va-

lidity of the experimental situation because of the intrusive nature of motion capture suits and 

their cabling, but optical motion capture systems that are less intrusive are now available. This 

new data collecting method allows the development of an improved coding system with accu-

rate metric data quality. The Bernese coding system has been proven to be the most suitable 

coding system, and therefore provides a basis for the development of the SRL coding system 

complying with all four requirements of the nonverbal coding system, as described on p. 19.  
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Chapter 4: Measuring Body Positions and Body Movements 

The SRL coding system comprises three nonverbal coding systems which describe 

body positions and body movements on a metric scale. The static SRL system is qualified to 

describe static body positions (Leuschner, 1999). The dynamic SRL system is derived from the 

static SRL system and is qualified to describe body movements based on two subsystems: the 

global SRL system and the local SRL system. All three coding systems complement each oth-

er. Whereas the static SRL system accurately describes the position of a body part without any 

information about the movement that leads to this position, the global dynamic SRL system 

exactly describes the movements of a body part, and the local dynamic SRL system detects the 

origin of every movement. All three coding systems are described in detail in this chapter. 

 

The Static SRL System: Measuring Body Positions 

The static SRL system precisely describes body positions by measuring the deviation 

of each body part from its base position, also known as flexion, on three commonly used and 

psychologically meaningful dimensions: nodding, shaking, and tilting the head. These three 

dimensions were originally used by the Bernese coding system to describe head positions and 

I decided to use this concept for all body parts. The application of the static SRL system to all 

body parts simplifies the nonverbal coding system and overcomes the restriction of the Berne-

se coding system to sitting people, as it is able to describe any position of any body part. 

Basic concept. The base position of a body part, also known as frame of reference, 

can be any position, e.g., the upright and forward-looking position of the head. The deviation 

of the actual position from this base position is described by the sagittal flexion as the amount 

the head is tilted forward or backwards, by the rotational flexion as the amount the head is 

turned to the side, and by the lateral flexion as the amount the head is tilted to the side. For 

any other body part, similar considerations can be applied. For example, the base position of 
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the hands could be parallel to the armrests of the chair for a sitting person. The sagittal dimen-

sion describes how a hand is pointing up or down, the rotational flexion how a hand is point-

ing left or right, and the lateral flexion how a hand is rotated about its longitudinal axis.  

Geometrical model. To describe the basic concept of the static SRL system in mathe-

matical terms, I constructed a geometrical model which uses the Cartesian coordinate system 

with the left-to-right 𝑥-axis, the back-to-front 𝑧-axis, and the down-to-up 𝑦-axis, as depicted 

in Figure 5 (see 1a). The global point of origin with the 𝑥-, the 𝑦-, and the 𝑧-axis, which re-

mains always in the upright and straightforward looking position, is the base position or the 

reference system of the local point of origin with the 𝑥*-, the 𝑦*-, and the 𝑧*-axis, which ro-

tates with movements and is therefore the actual position of a body part (see 1b). With these 

six axes, several planes can be defined, with the SRL flexion angles being given angles be-

tween these planes.  

Sagittal dimension. The sagittal dimension describes up/down movements by rota-

tions around the sagittal moving 𝑥*-axis (corresponding to nodding of the head), which re-

sults in a specific position of the 𝑦*-axis on the vertical back-to-front sagittal moving 𝑦*𝑧*-

plane defined by the 𝑦*- and the 𝑧*-axis (see 1c). The sagittal flexion is the angle 𝛼 between 

the 𝑥*𝑦*-plane and the corresponding sagittal reference 𝑦𝑥*-plane, which describes the top-

most position of the 𝑦*-axis on the sagittal moving 𝑦*𝑧*-plane and is defined by the fixed 𝑦-

axis and the co-moving 𝑥*-axis (see 2a). 

Rotational dimension. The rotational dimension describes side-to-side movements by 

rotations around the rotational moving 𝑦*-axis (corresponding to shaking of the head), which 

results in a specific position of the 𝑧*-axis on the horizontal rotational moving 𝑥*𝑧*-plane 

defined by the 𝑥*- and the 𝑧*-axis (see 1c). The rotational flexion is the angle 𝛽 between the 

𝑦*𝑧*-plane and the corresponding rotational reference 𝑧𝑦*-plane, which describes the fore-

most position of the 𝑧*-axis on the rotational moving 𝑥*𝑧*-plane and is defined by the fixed 

𝑧-axis and the co-moving 𝑦*-axis (see 3a). 
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Figure 5. The geometrical model of the SRL coding system. 
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Lateral dimension. The lateral dimension describes the sideways movements by rota-

tions around the lateral moving 𝑧*-axis (corresponding to tilting of the head to the shoulder), 

which results in a specific position of the 𝑦*-axis on the left-to-right vertical lateral moving 

𝑥*𝑦*-plane defined by the 𝑥*- and the 𝑦*-axis (see 1c). The lateral flexion is the angle 𝛾 bet-

ween the 𝑦*𝑧*-plane and the corresponding lateral reference 𝑦𝑧*-plane, which describes the 

topmost position of the 𝑦*-axis on the lateral moving 𝑥*𝑦*-plane and is defined by the fixed 

𝑦-axis and the co-moving 𝑧*-axis (see 4a). 

Math terms. In 3D animation software, objects are oriented by Euler rotations. To 

reach a specific orientation described by the Euler angles 𝑥, 𝑦, and 𝑧, each object is consecu-

tively rotated about the global 𝑥-, 𝑦-, and 𝑧-axis by these angles, which can be exported from 

the 3D animation software to calculate the SRL angles. The orientation of the unit vectors of 

the local point of origin can be calculated as the multiplication of three rotation matrices 

𝑅𝑥(𝑥), 𝑅𝑦(𝑦), and 𝑅𝑧(𝑧) for the Euler angles 𝑥, 𝑦, and 𝑧 (e.g., Vince, 2011, pp. 118–123): 

 

𝑅𝑥(𝑥) = �
1 0 0
0 𝑐𝑜𝑠(𝑥) −𝑠𝑖𝑛(𝑥)
0 𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑥)

� (1) 

𝑅𝑦(𝑦) = �
𝑐𝑜𝑠(𝑦) 0 𝑠𝑖𝑛(𝑦)

0 1 0
−𝑠𝑖𝑛(𝑦) 0 𝑐𝑜𝑠(𝑦)

� (2) 

𝑅𝑧(𝑧) = �
𝑐𝑜𝑠(𝑧) −𝑠𝑖𝑛(𝑧) 0
𝑠𝑖𝑛(𝑧) 𝑐𝑜𝑠(𝑧) 0

0 0 1
� (3) 

𝑅𝑥𝑦𝑧 = 𝑅𝑧(𝑧) ∙ 𝑅𝑦(𝑦) ∙ 𝑅𝑥(𝑥) = �
𝑚11 𝑚12 𝑚13
𝑚21 𝑚22 𝑚23
𝑚31 𝑚32 𝑚33

� (4) 

 

In the resulting matrix 𝑅𝑥𝑦𝑧 of Equation (4), the first column represents the coordi-

nates of the unit vector of the 𝑥*-axis, the second column the coordinates of the unit vector of 

the 𝑦*-axis, and the third column the coordinates of the unit vector of the 𝑧*-axis. These three 

vectors plus the three unit vectors of the global point of origin �⃗� = (1,0,0), �⃗� = (0,1,0), and 
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𝑧 = (0,0,1) are required to define the planes of the SRL model. The SRL angles 𝛼, 𝛽, and 𝛾 

can be calculated from Equations (5) – (7), which are derived from the general formula for 

calculating the angle between two planes (e.g., Vince, 2010, pp. 201–203): 

 

𝑐𝑜𝑠(𝛼) =
𝑚11 ∙ 𝑚33 − 𝑚31 ∙ 𝑚13

�𝑚11
2 + 𝑚31

2
       𝑠𝑖𝑛(𝛼) = �

+�1 − 𝑐𝑜𝑠2(𝛼)   if 𝑚23 ≤ 0
−�1 − 𝑐𝑜𝑠2(𝛼)   if 𝑚23 > 0

� (5) 

𝑐𝑜𝑠(𝛽) =
𝑚11 ∙ 𝑚22 − 𝑚21 ∙ 𝑚12

�𝑚22
2 + 𝑚21

2
       𝑠𝑖𝑛(𝛽) = �

+�1 − 𝑐𝑜𝑠2(𝛽)   if 𝑚31 ≤ 0
−�1 − 𝑐𝑜𝑠2(𝛽)   if 𝑚31 > 0

� (6) 

𝑐𝑜𝑠(𝛾) =
𝑚11 ∙ 𝑚33 − 𝑚31 ∙ 𝑚13

�𝑚33
2 + 𝑚13

2
       𝑠𝑖𝑛(𝛾) = �

+�1 − 𝑐𝑜𝑠2(𝛾)   if 𝑚21 ≥ 0
−�1 − 𝑐𝑜𝑠2(𝛾)   if 𝑚21 < 0

� (7) 

 

Scope and limits. Calculating both the cosine and the sine of each flexion angle al-

lows us to determine angles within a range of –180° to +180°, which are appropriate for de-

scribing any orientation of a body part.  

The signs of the SRL angles are based on the rotation behavior of the coordinate axes: 

(a) a positive sign of a sagittal angle indicates a lowered body part, a negative sign a raised 

body part; (b) a positive sign of a rotational angle reports a turn to the left side, a negative 

sign a turn to the right side; (c) a positive sign of a lateral angle shows a tilt to the right side, a 

negative sign a tilt to the left side. 

It should be noted that there is a gap in the definition of an SRL reference plane when 

the co-moving axis matches its fixed axis. Such a singularity occurs, for example, when the 

head is lowered by 90°. In this position, a rotational deviation from the base position cannot 

be determined, because a forward-looking position cannot be reached with rotational move-

ments. In the case of singularities, APEx outputs a missing value (i.e., no value at all). 

Characteristics. To investigate the characteristics of the SRL system, three consecu-

tive rotations about the local 𝑥*-, 𝑦*-, and 𝑧*-axis were applied to the static SRL model, each 

at 30 degrees, but in different order, as depicted in Figure 5 (see picture series 2 to 4). The 

SRL model has the following characteristics. (a) In all cases, the sagittal angle 𝛼 indicates the 
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amount the head has to rotate about the 𝑥*-axis to reach the topmost position on the 𝑦*𝑧*-

plane. The same applies to the lateral angle 𝛾 about the 𝑧*-axis on the 𝑥*𝑦*-plane, and the 

rotational angle 𝛽 indicates the amount the head has to rotate about the 𝑦*-axis to reach the 

foremost position on the 𝑥*𝑧*-plane (see 4b–c), with the Euler angles being meaningless for 

this purpose. (b) A rotation about a local axis always results in the corresponding flexion an-

gle of the same size as the rotation angle of the movement. (c) A rotational move has a high 

impact on existing sagittal and lateral flexions because a rotational move changes the direc-

tion of the sagittal and lateral reference planes (see 2a–b, 4b–c, and 5a–d). (d) Sagittal or lat-

eral moves have only slight influence on other flexion angles (see 3a–c, 4a–b), except in some 

special cases, for example, when the 𝑦*-axis tilts laterally to the other side of the correspond-

ing reference plane (see 𝛽 in 2b–c). (e) The resulting end positions after three identical rota-

tions are not the same if they occur in a different order (compare 2c–3c–4c). Hence, a se-

quence of moves is not commutative. These characteristics are much more obvious when we 

view the videos, which are available as supplementary material at www.apex-download.eu. 

About the base position. If no base position is specified, the global center of the 3D 

world is used as the base position. The base position of each model joint is shown in 3D ani-

mation software, when all Euler rotation angles are set to zero. For dyadic interactions with 

sitting individuals, it is recommended that the static SRL parameters use the chair as the base 

position in order to achieve rotational SRL values describing flexions from the forward-

looking position on the chair. In all other cases, the base positions of the model joints can re-

main unchanged. In the case of standing individuals, a position directly facing the interaction 

partner may be used as the base position by placing an object into the 3D world pointing to 

the interaction partner and specifying this object as the base in APEx. If the subjects are mov-

ing around, and if an object pointing in the direction of the camera is used as a common base 

for both interaction partners, the rotational SRL values will describe flexions related to the 

camera view and therefore may be more comprehensible when viewing animated video clips.  
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The Global Dynamic SRL System: Measuring Body Movements 

The advantage of the static SRL system lies in the fact that it accurately describes the 

static position of a body part in three psychologically meaningful dimensions, and its disad-

vantage is that it is not qualified to describe body movements. Investigation of the SRL model 

showed that a movement on a single dimension, such as nodding the head, can result in 

changes in all three dimensions. In particular, movements in the rotational dimension, such as 

shaking the head, can cause sagittal flexions to transform into lateral flexions, and vice versa. 

As shown in Figure 5 (5a–d), a lowered head with a sagittal flexion of 45° will convert into a 

tilted head with a lateral flexion of 45° while turning to the side by rotating 90° about the 𝑦*-

axis. Since the values of the flexion angles change on all three dimensions, it cannot be de-

termined in which dimension a movement occurs only by looking at the values. If, however, 

the base position is rotated into the initial position of a movement, the SRL angles of the end 

position will indicate the movement as the deviation of the end position from the initial posi-

tion. As depicted in Figure 5 (6a–d), the rotational flexion angle 𝛽 correctly indicates a rota-

tional move of 90° at the end of the move. Therefore, the global dynamic SRL system, which 

uses the initial position of a movement as the base position for the SRL angles of the end po-

sition, accurately describes body movements. 

Basic concept. A body movement is expressed by the three SRL flexion angles indi-

cating the deviation of the end position from the initial position for each body part involved in 

a movement. In this special case of using the initial position of a movement as the base posi-

tion of the end position, SRL flexion angles are measurements of body movements. 

Geometrical model. The global dynamic SRL system uses the SRL model of the static 

SRL system, but sets the local point of origin of the previous time point as the global point of 

origin (i.e., the base position) of the actual time point to calculate the SRL flexion angles. 

Math terms. The method of rotating the base position of a body part into the local 

point of origin at a previous time point is known as a coordinate transformation (e.g., Vince, 
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2011, pp. 143–154), in which the previous position of a body part is defined as the new frame 

of reference for the actual position. A coordinate transformation can be performed by using 

the inverse rotation matrix 𝑅𝑥𝑦𝑧 of Equation (4) with the Euler angles −𝑥’, −𝑦’, and −𝑧’ of 

the new frame of reference, as shown in Equation (8). To calculate the SRL flexion angles, 

Equations (5) – (7) are applied on matrix 𝑅𝑥𝑦𝑧 of Equation (8). 

 
𝑅𝑥𝑦𝑧 = 𝑅𝑥(−𝑥′) ∙ 𝑅𝑦(−𝑦′) ∙ 𝑅𝑧(−𝑧′) ∙ 𝑅𝑧(𝑧) ∙ 𝑅𝑦(𝑦) ∙ 𝑅𝑥(𝑥) (8) 

 

Scope and limits. Since the global dynamic SRL system uses the geometrical model 

and the formulas of the static SRL system, the scope and limits of the static SRL system also 

apply to the global dynamic SRL system (see p. 31). The only difference between the static 

and the global dynamic SRL system is the frame of reference that is used. Whereas the static 

SRL system uses the origin of the 3D world, a chair, or any other object of the environment, 

the global dynamic SRL system uses the position of the body part at the previous time point. 

Characteristics. With a coding resolution of two or five time points per second, this 

approach results in many flexion angles indicating the type and number of these small units of 

movements of a body part between two time points. To achieve comparability between meas-

urements of different coding resolutions, the obtained values can be subsequently transformed 

into degrees per second (dps), which is a measure of the actual movement speed. 

To demonstrate the difference between the static and the global dynamic SRL system, 

the nine movements of Figure 5 (2a–c, 3a–c, 4a–c) are performed once more, but now with a 

human model sitting on a chair that is rotated 45° about the 𝑦-axis. As shown in Table 1, the 

Euler angles are exported and the SRL angles are calculated with the chair as base position. 

Compared with Figure 5, the Euler angles are nearly unrecognizable because of the 𝑦-rotation 

of about 45°, whereas the static SRL angles remain the same. As expected, the global dynamic 

SRL angles precisely reproduce the movements performed with the 3D animation software. 
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Table 1 

Comparison of Euler angles, static SRL angles, and global dynamic SRL angles 

  Euler angles  Static SRL angles  Global dynamic SRL 
Movement  𝑥 𝑦 𝑧  𝛼 𝛽 𝛾  𝛼 𝛽 𝛾 
Base position  0.00 45.00 0.00  0.00 0.00 0.00  0.00 0.00 0.00 
Sagittal 30°  30.00 45.00 0.00  30.00 0.00 0.00  30.00 0.00 0.00 
Rotational –30°  21.80 17.83 –15.23  26.57 –30.00 –16.10  0.00 –30.00 0.00 
Lateral 30°  27.46 5.07 12.55  26.33 –39.81 13.90  0.00 0.00 30.00 
Base position  0.00 45.00 0.00  0.00 0.00 0.00  0.00 0.00 0.00 
Rotational –30°  0.00 15.00 0.00  0.00 –30.00 0.00  0.00 –30.00 0.00 
Lateral 30°  7.63 12.95 30.87  0.00 –26.57 30.00  0.00 0.00 30.00 
Sagittal 30°  37.63 12.95 30.87  30.00 –26.33 33.69  30.00 0.00 0.00 
Base position  0.00 45.00 0.00  0.00 0.00 0.00  0.00 0.00 0.00 
Lateral 30°  26.57 37.76 39.23  0.00 0.00 30.00  0.00 0.00 30.00 
Sagittal 30°  56.57 37.76 39.23  30.00 0.00 33.69  30.00 0.00 0.00 
Rotational –30°  43.99 18.21 13.17  39.81 –30.00 16.10  0.00 –30.00 0.00 
Note. These are examples (2) – (4) in Figure 5 with values resulting from a 3D model sitting on a chair initially rotated by 45°. 

 

The Local Dynamic SRL System: Measuring Nodding, Shaking, and Tilting 

The global dynamic SRL system describes body movements regardless of the origin of 

the movements. For example, a sagittal lowered head could be the direct result of a head nod 

or the indirect result of a trunk movement. When a person leans the own body forward with-

out moving the head, the head is lowered in relation to the environment, but remains upright 

in relation to the trunk. In order to detect the origin of this head movement, the head should be 

related to the chest, and the hips to the base. In relation to the chest, the head position remains 

unchanged, but in relation to the base, the hips are rotated and are hence responsible for the 

lowered head position. This consideration leads to the local dynamic SRL system. 

Basic concept. In the local dynamic SRL system, the both positions of a body part at 

two time points are related to the corresponding positions of the hierarchically superior body 

part, before the base position is set equal to the body part position of the previous time point. 

Geometrical model. To detect a proper motion, i.e., a movement directly performed 

by a body part, the local points of origin used at the actual and at the previous time point are 

both related to the local point of origin of his parent body part that is the immediate superior 

in the hierarchical structure of the human body skeleton, as depicted in Figure 6. 
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Figure 6. Generic hierarchical skeleton structure of a human 3D model.  

Math terms. In order to isolate the activity of a body part, three coordinate transfor-

mations have to be performed. As shown in Equation (9), one coordinate transformation re-

lates the body part of interest at time point 𝑡 to itself at time point 𝑡 − 1¸ and two other coor-

dinate transformations—one for each time point—relate the body part of interest to the Euler 

angles 𝑥, 𝑦, and 𝑧 to the body part superior in the skeleton hierarchy with the Euler angles 𝑥’, 

𝑦’, and 𝑧’:  

 
𝑅𝑥𝑦𝑧 = �𝑅𝑥(−𝑥𝑡−1′ ) ∙ 𝑅𝑦(−𝑦𝑡−1′ ) ∙ 𝑅𝑧(−𝑧𝑡−1′ )� ∙ �𝑅𝑥(−𝑥𝑡′) ∙ 𝑅𝑦(−𝑦𝑡′) ∙ 𝑅𝑧(−𝑧𝑡′)�

∙ �𝑅𝑥(−𝑥𝑡−1) ∙ 𝑅𝑦(−𝑦𝑡−1) ∙ 𝑅𝑧(−𝑧𝑡−1)� ∙ �𝑅𝑧(𝑧𝑡) ∙ 𝑅𝑦(𝑦𝑡) ∙ 𝑅𝑥(𝑥𝑡)� 
(9) 

 

Scope and limits. As the local dynamic SRL system is based on the geometrical model 

and formulas of the static SRL system, the scope and limits of the static SRL system also apply 

to the local SRL system (see p. 31). 

Characteristics. Using Equation (9) would lead to the values depicted in Table 1 if 

the head moved by proper motions. If the trunk is performing the movements instead while 

the head is fixed on the trunk, the same values would occur for the trunk and the values for 

the head would be zero, indicating that the head is not moving by its own activity. 

 
1. Hip joint 
2. Chest joint 
3. Head joint 
4. Right arm joint 
5. Right elbow joint 
6. Right hand joint 
7. Left arm joint 
8. Left elbow joint 
9. Left hand joint 
10. Right leg joint 
11. Right knee joint 
12. Right foot joint 
13. Left leg joint 
14. Left knee joint 
15. Left foot joint 

3 

6 5 4 

2 

7 8 9 

1 10 

11 

12 

13 

14 

15 
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Implementation 

The SRL coding system with the static, global dynamic, and local dynamic subsystem 

is implemented for the 15 joints of a generic 3D human model. Table 2 shows the 15 involved 

joints and the body parts that are influenced by the rotations of these joints. For hierarchical 

dependencies between body parts, please refer to Figure 6. 

 
Table 2 

SRL Coding System 

Body joints used for all three  
SRL coding subsystems 

Body part primarily  
involved by moves 

Body parts secondarily  
involved by moves 

Range of  
flexion angles 

Hip joint Hips all other body parts –180°…+180° 
Chest joint Chest whole upper part of the body –180°…+180° 
Head joint Head only head –180°…+180° 
Right arm joint Right upper arm whole right arm –180°…+180° 
Right elbow joint Right forearm right forearm and right hand –180°…+180° 
Right hand joint Right hand only right hand –180°…+180° 
Left arm joint Left upper arm whole left arm –180°…+180° 
Left elbow joint Left forearm left forearm and left hand –180°…+180° 
Left hand joint Left hand only left hand –180°…+180° 
Right leg joint Right thigh whole right leg –180°…+180° 
Right knee joint Right lower leg right lower leg and right foot –180°…+180° 
Right foot joint Right foot only right foot –180°…+180° 
Left leg joint Left thigh whole left leg –180°…+180° 
Left knee joint Left lower leg left lower leg and left foot –180°…+180° 
Left foot joint Left foot only left foot –180°…+180° 
Note. The range of the flexion angles applies to the sagittal, rotational, and lateral SRL dimension. 

 

Recommendations 

Because of their inherent features, the three different SRL coding subsystems have dif-

ferent uses. The static SRL coding system is suitable for describing body positions, whereas 

the dynamic SRL coding systems are appropriate for describing body movements. The remain-

ing question is when each of the latter should be used. 

The local dynamic SRL subsystem is most appropriate for describing proper motions, 

because it describes movements of a body part in relation to the hierarchically superior body 

part. Thus, the local dynamic sagittal values are best suited to detecting head nodding by ana-

lyzing sign changes of these values. To detect head shaking or head tilting, sign changes of 
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the local dynamic rotational or lateral values should be taken into account. On the other hand, 

the local dynamic SRL subsystem cannot accurately measure the visual impression of body 

movements, e.g., if the whole upper part of the body including the chest, head, and both arms, 

is leaning forward, it is possible that the whole upper part of the body is moved only by the 

hips. The appropriate coding system for measuring the visual impression of body movements 

is the global dynamic SRL system, which describes movements of body parts in relation to the 

environment and, therefore, their visual impression. Two examples illustrate this.  

In the first example, a person is leaning forward on their elbows. If an interaction part-

ner says something, the person may sit up and look in the direction of the partner. In this mo-

tion, two movements are involved: the head is raised to an upright position by the chest and 

simultaneously turned toward the interaction partner by the neck. Hence, the muscular work is 

divided between raising part of the chest and turning part of the head, which is accurately 

measured by the local dynamic SRL flexion angles by indicating values on the sagittal dimen-

sion of the chest and values on the rotational dimension of the head. This may be interesting 

for some research questions, but in terms of visual impression it is more important that the 

head is raised up. The global dynamic SRL angles take into account that the head is raised by 

indicating values on the sagittal dimension of the head; the same applies for the chest. 

In the second example, starting from a leaning back position, a person bends forward 

while the head is kept upright. In this case, the local parameters would measure a reasonable 

value on the sagittal dimension of the head because the direction of the chest is turning from a 

raised position to a lowered position, which must be handled by a sagittal counter-movement 

by the head joint to keep the head upright. In terms of visual impression, this counter-

movement is not important, but the unchanged orientation of the head in relation to the envi-

ronment is important and this would be produced only by the global dynamic parameters. 

Therefore, the global dynamic SRL subsystem is appropriate for research questions regarding 

visual impressions of body movements. 
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Statistical Parameters 

For statistical purposes, the Bernese coding system contains three parameters (Fisch, 

Frey, & Hirsbrunner, 1983): complexity of body movements (CBM), time spent in motion 

(TSM), and dynamic activation of body movements (DBM). The original parameters relied on 

the ordinal Bernese coding system, but have now been extended and adapted to the SRL cod-

ing system. The three subsystems are not only accurate for describing body positions and 

movements, but also take full advantage of the metric features of the SRL flexion angles. For 

the statistical description of body moves, four groups of parameters have been developed, 

which are described in detail in the following: complexity parameters, time spent in motion 

parameters, magnitude parameters, and activation parameters. 

Complexity parameters. The complexity parameters (for formulas see Table 3, p. 43) 

were derived from the Bernese parameters. They describe the complexity of body movements 

by the number of dimensions or joints involved in body movements. Instead of the Bernese 

dimensions, however, they use the dynamic SRL dimensions. The group complexity consists 

of four parameters: (1) the global dynamic complexity is calculated as the number of global 

dynamic SRL dimensions with flexion angles greater than zero, and hence indicates the num-

ber of SRL dimensions that are globally involved in body movements; (2) the local dynamic 

complexity is calculated as the number of local dynamic SRL dimensions with flexion angles 

greater than zero, and hence describes the number of SRL dimensions that are locally involved 

in body movements by proper motions; (3) the translational complexity is calculated as the 

number of joints that are moving through space, which are detected with the non-zero Euclid-

ean distance between the position of a joint at time point t and its position at time point t–1; 

(4) the joint complexity is calculated as the number of joints that are rotating with proper mo-

tions, detected by at least one local dynamic SRL dimension of a joint with a flexion angle 

greater than zero. It should be noted that complexity of body movements could also be meas-

ured with the media-related parameter Video Pixel Difference (see p. 89). 
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Time spent in motion parameters. The time spent in motion parameters (for formu-

las, see Table 4, p. 44) indicate the percentage of time in which body motions occur. A time 

point with at least one moving body joint is determined by a joint complexity greater than ze-

ro. The parameter Time spent in motion is calculated for five conditions: (1) regardless of the 

movements of an interaction partner (TSM); (2) if only the person of interest is moving but 

not their partner (TSM only A); (3) if only the partner is moving (TSM only B); (4) if both 

people are simultaneously moving (TSM A and B); and (5) if at least one of both people is 

moving (TSM A and/or B). 

Magnitude parameters. The magnitude parameters (for formulas, see Table 5, p. 44) 

take full advantage of the metric features of the SRL flexion angles. They indicate the extent 

of body movements and are calculated as the sum of the absolute SRL flexion angle values of 

involved joints. The parameter group magnitude consists of three parameters: (1) the global 

dynamic magnitude is calculated as the sum of the absolute values of the global dynamic SRL 

flexion angles, and hence indicates the extent of both direct and indirect movements; (2) the 

local dynamic magnitude is calculated as the sum of the absolute values of the local dynamic 

SRL flexion angles, and hence is the extent of proper motions; (3) the translational magnitude 

is calculated as the sum of the Euclidean distances between two consecutive time points of 

involved joints, and hence is the extent of body movements in space. Determined for a single 

joint, the translational magnitude represents its velocity v through space, i.e., the speed of the 

joint. Therefore this parameter is useful for the calculation of activation parameters, which 

are described in the next section. 

Activation parameters. The activation parameters (for formulas and details, see Ta-

ble 6, p. 46) are based on the translational magnitude, i.e., the Euclidean distance between the 

positions of a joint at two time points, and describe characteristics of body movements, such 

as duration, velocity, or acceleration. The parameter group activation consists of seven pa-

rameters: (1) the number of movement phases; (2) the average duration of movement phases 
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(in seconds); (3) the number of pause phases; (4) the average duration of pause phases (in 

seconds); (5) the average velocity of body movements (per second); (6) the average accelera-

tion of movements (per second squared); and (7) the average deceleration of movements (per 

second squared). 

Averages of complexity and magnitude parameters. The complexity and magnitude 

parameters are calculated for any time point in the given time sequence as well as averaged 

over the whole time sequence. Two different types of averages are calculated for each param-

eter of both groups (for formulas, see Table 3, p. 43, and Table 5, p. 44): (1a) first, the com-

plexity of body movements (CBM) indicates the average number of dimensions or joints in-

volved in body movements during the whole time sequence; (1b) the complexity of activation 

phases (CAP) has the same meaning, but only averages the time points with active body 

movements; (2a) second, the magnitude of body movements (MBM) averages the extent of 

direct and indirect body movements during the whole time sequence; (2b) the magnitude of 

activation phases (MAP) has the same meaning, but only accounts for time points with active 

body movements.  

Recommendations for statistical parameters. APEx contains all statistical parame-

ter groups—the complexity, the TSM, the magnitude, and the activation parameters—for five 

subsets of body parts: the head, the trunk (with hips and chest), the upper and the lower ex-

tremities, and the whole body with all 15 joints. Within APEx, the user can easily define other 

subsets with the joints of a typical 3D human model.  

Regarding the predefined subsets, 20 complexity and 15 magnitude parameters are 

calculated for each time point, and in addition, 40 complexity, 30 magnitude, 35 activation, 

and 25 TSM parameters are determined for the whole time sequence. This results in 35 pa-

rameters for each time point and 130 statistical parameters for each time sequence. 

The two different complexity and magnitude parameter groups with their global dy-

namic, local dynamic and translational parameters have their advantages and disadvantages. 
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The right choice of parameters depends on the research question. In the following, some gen-

eral guidelines are given. 

Whereas the complexity parameters indicate the number of dimensions or joints that 

are involved in body movements, the magnitude parameters take full advantage of the metric 

characteristics of the SRL flexion angles and take into account the amount of each single an-

gle. Therefore, the magnitude parameters are recommended because of their superiority to the 

complexity parameters, which are nevertheless retained for historical reasons, such as compat-

ibility with previously used software and with earlier nonverbal studies. 

The translational parameters offer the best results for complex body actions, such as 

walking or dancing, because they directly represent the movement through space. Yet they 

fail to capture pure rotation movements of the head, hands, and feet, because rotating joints do 

not move through space. Such pure rotation movements occur frequently with the head nods, 

hand gestures, and foot tapping of sitting individuals, and are taken into account by the dy-

namic SRL parameters. For research questions regarding impression formation, the global 

dynamic parameters should be preferred to the local dynamic parameters, which are fully 

explained in the section ‘Recommendations’ on p. 37. 
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Chapter 5: Review of the Literature on Nonverbal Cues 

Since the 1950s, scholars in the research field of nonverbal communication have de-

veloped and published various typologies of nonverbal codes. Inspection of the most recently 

published textbooks (Andersen, 2008; Burgoon et al., 2010; Harrigan, 2005; Knapp et al., 

2013; Moore et al., 2009; Remland, 2009; Richmond et al., 2007) showed that the various 

typologies describe almost the same set of nonverbal codes which are the subject of scientific 

research and academic education. The review Nonverbal communication: Research areas and 

approaches by Burgoon, Humphreys, and Moffitt (2008) lists a set of nonverbal codes with 

the greatest degree of scholarly endorsement, as shown in Table 7. 

 

Table 7 

Nonverbal codes 

Nonverbal code Description 
Physical  
appearance 

Appearance-perception and use of manipulable aspects of outward appearance such as 
clothing, hairstyle, cosmetics, fragrances, adornments, and grooming; sometimes includes 
non-manipulable features such as weight, height, skin color, physiognomy, and body odor. 

Kinesics Perception and use of visual bodily movements, including facial expressions, gestures, pos-
tures, gaze, trunk and limb movements, and gait. 

Vocalics 
(Paralanguage) 

Perception and use of vocal cues other than the words themselves, including such features as 
pitch, loudness, tempo, pauses, intonation, dialect, non-fluencies, and resonance. 

Haptics Perception and use of touch as communication, including such aspects as body location, 
frequency, duration, intensity, and instrument of touch. 

Proxemics Perception, organization, and use of interpersonal distance and spacing as communication; 
can include arrangements of space in physical environments. 

Chronemics Perception, organization, and use of time as a message system, including such code ele-
ments as punctuality, waiting time, lead time, and amount of time spent with someone. 

Artifacts Perception, organization, and use of manipulable objects and environmental features that may 
convey messages from their designers or users; can include fixed elements such as architec-
ture, semi-fixed features such as furniture and decorations, and mobile features such as an 
automobile; personal artifacts such as a backpack or pen set are also often included. 

Note. Adapted from “Nonverbal communication: Research areas and approaches” by Burgoon et al. (2008, p. 789). 

 

Regarding the nonverbal codes listed in Table 7, kinesics, haptics, and proxemics are 

supported by motion capture systems and 3D animation software, and within the kinesics 

code, body postures and movements  can be considered. Hand gestures can be taken into ac-

count as long as distinct positions of single fingers are not of interest or motion capture sys-

tems are able to capture finger motions. 
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The Importance of Kinesics 

The anthropologist Birdwhistell was one of the earliest authorities in the research field 

of nonverbal communication, and he coined the term kinesics (derived from the Greek word 

for movement). Birdwhistell defined kinesics as “the study of body-motion as related to the 

non-verbal aspects of interpersonal communication” (1952, p. 3). Popular books frequently 

use the term body language for what is scientifically known as kinesics. The contemporary 

definitions used by today’s scholars (Andersen, 2008; Burgoon et al., 2010; Harrigan, 2005; 

Moore et al., 2009; Richmond et al., 2007) show that the term kinesics is still understood in 

the same way and refers to the study of all visible forms of human body movements, includ-

ing facial, eye, head, trunk, limb, hand, finger, and foot movements. 

Burgoon et al. (2010) stated that “kinesics is perhaps the most commanding and influ-

ential of the nonverbal codes” (p. 112). In every situation the face displays useful information 

which can be used to uncover emotions and mood states (Cohn & Ekman, 2006). People rely 

more on nonverbal codes than on verbal codes, and in particular more on kinesic cues than 

any other nonverbal cue for determining social meaning (Burgoon & Hoobler, 2002). With an 

estimated 700,000 different physical signs (among them 20,000 facial expressions, more than 

5,000 hand gestures, and about 1,000 postures), the possibilities of sending kinesic codes 

seem to be unlimited, and accordingly the visual channel accounts for 80% of sensory percep-

tion (20% comes from the other senses), and observers can still identify facial expressions and 

body movements within 125 microseconds (Pei; Birdwhistell; Krout; Hewes; McLeod & 

Rosenthal; as cited in Burgoon et al., 2010, p. 113). 

The following topics in particular are of interest to researchers: gestures, facial ex-

pressions, postures, movements, gaze, and the non-kinesics codes proxemics and touch. In the 

following sections, the history of research and the main findings with regard to these nonver-

bal cues are summarized. 
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Gestures 

Following Efron (1941), Ekman and Friesen (1969) suggested five categories of ges-

tures: emblems, illustrators, regulators, adaptors, and affect displays. The head, face, eyes, 

hands, or any other body part can display them. A gesture can fulfill different functions or 

convey different meanings at the same time, and as a result can belong to more than one of 

these five categories. Obviously, hand gestures have the best possibilities of conveying sym-

bolic, illustrative, or regulative information. In the following subsections, the five categories 

of Ekman and Friesen are described. 

Emblems. Emblems have a clear symbolic meaning which is well known to the mem-

bers of a culture, class, group, or secret society, and therefore they can be replaced by a direct 

verbal translation or other nonverbal symbols conveying the same meaning. Observers per-

ceive emblems as meaningful und intentionally expressed, and accordingly senders of em-

blems use them almost intentionally, being aware of their use and taking responsibility for 

them. Emblems can be used for greetings, requests, promises, insults, threats, or expression of 

thoughts and emotional states. Emblems are culture-specifically learned, and as a result, their 

usage and meanings differ from culture to culture. 

Illustrators. Illustrators are gestures accompanying the speech to support the under-

standing of the receiver and capture and maintain their attention. They trace the path of the 

speech, illustrate elements, emphasize important verbally expressed points, and visualize the 

rhythm of speech. Ekman and Friesen (1969) described six types of illustrators: (1) ideo-

graphs clarify the direction or path of speech; (2) pictographs draw pictures; (3) kinetographs 

show bodily actions; (4) deictic movements point to a present object; (5) spatial movements 

depict a spatial relationship between objects; and (6) batons are gestures emphasizing words 

or phrases and can occur repeatedly in the rhythm of the speech to support and energize what 

is being said. 
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Regulators. Regulators are movements designed to maintain the flow of conversation 

and regulate the turn-taking between conversational partners. The most common regulator is 

the head nod followed from eye contacts, slight movements forward, small postural shifts, 

eyebrow raises, and other small nonverbal acts related to the conservational flow and intended 

to gain and hold a listener's attention and to take, hold or pass the turn. 

Adaptors. Adaptors are movements originated in early childhood to satisfy personal 

needs and are usually not intended for communication. They ensure physical and psychologi-

cal comfort by performing bodily actions to sit comfortable, protecting against environmental 

stimuli, eating food and answering the call of nature, managing emotions, achieving and 

maintaining interpersonal contacts or learning instrumental activities. Ekman and Friesen 

(1969) described three types of adaptors: (1) self-adaptors, such as shading the eyes, scratch-

ing the head, shifting the body, smacking the lips, or styling the hair, are learned to manage 

sensory input, to facilitate food ingestion and digestion, or to properly groom, cleanse, and 

enhance physical attractiveness; (2) alter-directed adaptors are movements related to other 

people, such as taking from or giving to them, caring for children and older people, establish-

ing intimacy and sexual relationship, or attacking and defending other people; (3) object 

adaptors are originally learned in the manipulation of objects, such as using a tool, smoking a 

cigarette or driving a car, and this behavior can occur in part as an object-adaptor during a 

conversation if an association with the learned behavior is triggered. 

Affect displays. Affect displays are facial displays expressing emotions and conserva-

tional signs as described in the following section. 
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Facial Expressions 

The human face is able to express more than 10,000 different facial displays (Ekman, 

2003b, p. 14). The face can convey unambiguous and well-known signs, regulate the flow of 

conversation, and show feelings, emotions, and moods; even the inexpressive face is informa-

tive. The face is “commanding”, not only because of the rich range of its nonverbal messages, 

but also because of its permanent presence and visibility (Ekman, Friesen, & Ellsworth, 1972, 

p. 1). Most contemporary scholars (e.g., Andersen, 2008; Burgoon et al., 2010; Knapp et al., 

2013; Remland, 2009; Richmond et al., 2007) agree that people make facial expressions for 

the expression of conversational signals and the expression of emotions. 

Expression of conversational signals. As described in the previous section, Ekman 

and Friesen (1969) proposed five categories of kinesic behavior. Of these categories, em-

blems, illustrators, and regulators are also referred to as conversational signals (Ekman, 

1979). Although they are derived from hand gestures, they correspond also to facial expres-

sion. Bavelas and Chovil (1997, 2000, 2006) found that discourse-oriented facial displays and 

hand gestures are both interdependent on and fully integrated with the spoken word. Xu, Gan-

non, Emmorey, Smith, and Brauna (2009) found in a functional MRI study that symbolic ges-

tures are processed in the same areas of the brain as language. They suggest that these parts of 

the brain initially supported the link between gesture and meaning and were then adapted for 

the spoken word as humans evolved. When speaking, people use facial emblems, symbolic 

gestures with a clear, socially agreed meaning, such as winking with one eye, facial regula-

tors, to control begin, end or turn-taking of a conversation, such as raising an eyebrow or 

opening the mouth, and facial illustrators conveying the meaning or content of the spoken 

word and hence punctuating it with eyebrow and head movements. Burgoon et al. (2010, p. 

128) extended this categorical framework by developing an integrated taxonomy of gestures 

and facial expressions with eight categories, which integrates the work of Bavelas and Chovil 

(1997, 2000, 2006) and McNeill (as cited in Burgoon et al., 2010). 
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Expression of emotions. Research on facial expression of emotions produced two 

theoretical approaches: the categorical view and the dimensional view. 

The categorical view. The English naturalist Darwin (1872) suggested in his work The 

Expression of the Emotions in Man and Animals that human facial displays expressing emo-

tions are innate, inherited, and universal. Inspired by Darwin, the academic psychologist 

Tomkins (1962–1963; Tomkins & McCarter, 1964) developed his affect theory, postulating 

nine biologically-based affects. As the academic mentor of Paul Ekman and Caroll Izard, he 

encouraged them, independently of one another, to verify Darwin’s findings empirically about 

the universal nature of facial expressions (Ekman, 2003b, pp. 3–4). Ekman and Friesen 

showed photos with facial expressions to people from seven different cultures, among them 

two original, preliterate cultures untouched by Western culture, to determine whether the 

same facial expression would be interpreted as the same emotion (Ekman & Friesen, 1971; 

Ekman et al., 1972; Ekman et al., 1969). They found a set of six primary or basic emotions 

that are used and interpreted in very similar ways across different cultures all over the world. 

At the same time, Izard (1971) worked independently with his own set of faces and achieved 

comparable results across seven other cultures. He found also differences between cultures, 

suggesting that facial expressions can be altered or suppressed by cultural display rules. These 

findings for nonverbal accents are supported by Elfenbein and Ambady (2002a, 2002b, 2003) 

revealing an in-group advantage for observers in recognizing and interpreting the facial ex-

pressions of people who are from the same culture as they are themselves. On the other hand, 

studies with blind people evidence the universality and inheritance of the basic facial expres-

sions. Eibl-Eibesfeldt (as cited in Andersen, 2008, Burgoon et al., 2010, Remland, 2009, and 

Richmond et al., 2007) found that blind children display basic facial expressions similar to 

those of sighted children. Galati, Scherer, and Ricci-Bitti (1997) confirmed that there were 

almost no significant differences between congenitally blind and sighted adults in their facial 

expressions. Burgoon et al. (2010) concluded from this that “although there may be nonverbal 
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accents in people's facial expressions of emotions” (p. 45), “certain emotions are distinct and 

universal (Ekman, 1971; Izard, 1977; Tomkins, 1962), and all humans are hardwired to expe-

rience and express these emotions similarly, beginning in childhood” (p. 290). Most scholars 

agree that facial expressions relying on the six primary emotions happiness, sadness, anger, 

fear, surprise, and disgust are universal and carry the same fundamental meaning for all hu-

mans (Andersen, 2008; Burgoon et al., 2010; Ekman & Friesen, 1975; Ekman et al., 1987; 

Knapp et al., 2013; Moore et al., 2009; Remland, 2009; Richmond et al., 2007). Other emo-

tions, such as contempt, pride, shame, guilt, interest, love, and warmth have been suggested to 

be expressed universally, but may also be culturally learned. Emotions can be blended to pro-

duce complex or mixed facial expressions (Burgoon et al., 2010; Moore et al., 2009; 

Remland, 2009). 

Regarding the specific link between emotional experience and facial expression, as 

originally postulated by Darwin (1872), contemporary scholars have taken four positions 

(Burgoon et al., 2010, p. 297): (1) the universalistic perspective relies on a direct biological 

link between emotional experience and emotional expression and presumes that the face ex-

press directly internal emotions; (2) the neurocultural perspective is an extension of the uni-

versalistic perspective and supposes that cultural display rules can alter the expression of an 

internal emotion; (3) the behavioral perspective assumes that social motives influence facial 

expressions, i.e., people show facial displays in order to achieve their goals; (4) the function-

alist perspective suggests that facial expressions rely on social control, i.e., the anticipated 

consequences of expressing an emotion in a certain social context. In the latter two cases, fa-

cial expressions do not always reflect internal emotions. 

The dimensional view. At the beginning of the twentieth century, the Darwin's thesis 

that facial expressions of emotions are universal became a popular research topic among aca-

demic psychologists in the USA (Ekman et al., 1972, p. 7). Like Darwin, they presented pic-

tures with facial displays to people, asking them which emotions they saw (Takehara, 2007, p. 
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66) or tried to provoke emotions under controlled conditions (Russell & Fernández-Dols, 

1997, p. 8). Because of the lack of a conceptual and methodical framework, however, they 

came to the conclusion that people cannot recognize emotional facial expressions of others 

(Ekman et al., 1972, p. 8). The low recognition rate improved substantially as Woodworth 

(1938) reanalyzed the experimental data of Feleky (1914), both academic psychologists at 

Columbia University, and found that an emotional notion does not denote a dedicated emo-

tion, but belongs to a set of just a few. He devised a linear scale to categorize human facial 

expressions with the following six items: (1) love, happiness, mirth; (2) surprise; (3) fear, suf-

fering; (4) anger, determination; (5) disgust; (6) contempt.  

In order to investigate the characteristics of Woodworth’s linear scale, Schlosberg 

(1941) applied it to Frois-Wittmann’s (1930) facial picture set, confirmed that facial expres-

sions can be categorized according to Woodworth’s six discrete categories, but concluded 

from his findings that the scale is rather continuous and circular and can be adequately de-

scribed by two underlying dimensions: (1) pleasantness-unpleasantness and (2) attention-

rejection. Inspired by Duffy's concepts of activity (1951) and Lindsley's activation (1951), 

Schlosberg (1954) added a third dimension, (3) sleep–tension, and, without realizing it, veri-

fied empirically in subsequent studies (Engen, Levy, & Schlosberg, 1957, 1958; Levy & 

Schlosberg, 1960; Woodworth & Schlosberg, 1954) the three dimensions of feelings original-

ly suggested by the German academic psychologist Wundt (1896, p. 98, translated from Ger-

man): (1) pleasantness-unpleasantness, (2) tension-relaxation, and (3) excitement-calming. 

Triandis and Lambert (1958) confirmed with a cross-cultural study that Schlosberg’s conclu-

sions are also valid for Greek subjects and that Schlosberg’s method can be used with non-

Western groups. Wundt understood the dimension tension-relaxation in the sense of increas-

ing and decreasing attention (Blumenthal, 1975, p. 1085) ), but in contrast Schlosberg includ-

ed rejection as the opposite of attention, and this dimension was subject to several modifica-

tions by other researchers. 
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Using semantic differential and factor analysis techniques and reinterpreting this di-

mension as control, Osgood (1966) found three expression dimensions and named them (1) 

pleasantness, (2) control, and (3) activation, and showed that they correspond to the semantic 

dimensions (1) evaluation, (2) potency, and (3) activity of linguistic signs (Osgood, Suci, & 

Tannenbaum, 1957), which were later found to measure affective meanings in the sense of 

Wundt’s three dimensions of feelings (Osgood, 1962, p. 19). Conducting a major international 

research project in more than 20 countries over a period of 15 years, Osgood, May, and Miron 

(1975) provided evidence that the three dimensions of affective meanings are cross-cultural 

universals. Many researchers in this field agree that judgments of facial expressions can be 

described in these or similar dimensions (Bales, 2000; Fontaine, Scherer, Roesch, & 

Ellsworth, 2007; Mehrabian, 1980; Morgan & Heise, 1988; Russell & Mehrabian, 1977; 

Scherer, 2005; Sokolov & Boucsein, 2000), but authors using multidimensional scaling 

(Abelson & Sermat, 1962; Feldman, 1995; Reisenzein, 1994; Russell, 1980, 2009; Russell & 

Bullock, 1985; Shepard, 1962a, 1962b) prefer a two-dimensional structure with the orthogo-

nal dimensions valence (corresponding to pleasantness-evaluation) and arousal (correspond-

ing to activation-activity). Scholl (2013) pointed out that several studies showed repeatedly 

that a third dimension dominance or power (corresponding to control-potency) is necessary, 

for example, to distinguish between anger as an expression of dominance and fear as an ex-

pression of submission. Vogeley and Bente (2010, p. 1079) emphasize that these three basic 

dimensions constitute socio-emotional functions such as person perception, impression for-

mation, communication of emotions, and interpersonal attitudes. Scholl (2013) concluded also 

in his interdisciplinary review of dimensional research that “these three dimensions are likely 

to function as fundamental dimensions of interaction and communication as perceived and 

enacted by humans” (p. 3) and came to the conclusion that “humans construct their social 

world along these three dimensions of socio-emotional perception and action” (p. 5).  
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Postures, movements, gaze, touch, and proxemics 

Mehrabian (1969a, 1969b) reviewed the experimental findings of nonverbal research 

regarding body posture, position, movement, facial, and implicit verbal cues that are related to 

the communication of attitudes, status, and responsiveness and found that these correspond to 

the three facial expression dimensions of Osgood (1966). In compliance with their meaning in 

nonverbal communication, he named them (1) evaluation, (2) potency or status, and (3) re-

sponsiveness. According to Mehrabian (1970, 1972), (1) the pleasantness of a relationship is 

communicated through immediacy or proxemic cues expressing directness, positive attitudes, 

preference, sympathy, liking, and affiliation of a communicator toward the addressee on the 

evaluation dimension, (2) the direction of control within a relationship is communicated 

through relaxation cues expressing power, status and social control in the potency or status 

dimension, and (3) the activation within a relationship is communicated through activity cues 

expressing intended and perceived persuasiveness in the responsiveness dimension. Subse-

quent work by Mehrabian and Russell (Mehrabian & Russell, 1974a, 1974b; Russell & 

Mehrabian, 1977) provided a set of three orthogonal dimensions of basic emotional states, (1) 

pleasure-displeasure, (2) dominance-submissiveness, and (3) arousal-non-arousal, also 

known as the pleasure-arousal-dominance (PAD) emotional state model (Mehrabian, 1995, 

1996; Valdez & Mehrabian, 1994). A set of three scales for measuring pleasure, dominance, 

and arousal (Mehrabian & Russell, 1974a) is equally suitable for state and trait emotions and 

has been applied in different fields, such as analysis of emotions (Mehrabian, 1997) and tem-

peraments (Mehrabian, 1991, 1995), emotional responses to colors (Valdez & Mehrabian, 

1994), conversational agents expressing emotions (Becker, Kopp, & Wachsmuth, 2004, 

2007), or three-dimensional coordinate systems for representing emotional states (Tao, Liu, 

Fu, & Cai, 2008). Kudoh and Matsumoto (1985; 1987) investigated the interpretation of body 

postures in Japan and found evidence that the nonverbal dimensions also applied to non-

Western cultures. 
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Dimension of evaluation, pleasure, and pleasantness. This dimension is affected by 

the five immediacy cues (touching, distance, forward lean towards the addressee, eye contact, 

and body orientation) described by Mehrabian (1969b, p. 203; 1972, p. 25) and nonverbal 

involvement behavior (interpersonal distance, gaze, touch, body orientation, forward lean, 

facial expressiveness, talking duration, interruptions, postural openness, relational gestures, 

head nods, and paralinguistic cues) outlined by Patterson (1982, p. 233) and others (Coker & 

Burgoon, 1987; Edinger & Patterson, 1983; Haase & Tepper, 1972; LaCrosse, 1975; 

Mehrabian & Williams, 1969; Palmer & Simmons, 1995; Rosenfeld, 1966).  

The expression of immediacy cues and nonverbal involvement behavior plays a central 

role in nonverbal communication: mutual eye contact, leaning forward and turning toward the 

addressee, close interpersonal distance and touching, and smiling and head nodding create 

connection and involvement with other people, signal availability and inclusion, communicate 

sympathy, friendliness, sympathy, liking, and affiliation, and convey feelings of interpersonal 

warmth, closeness, friendship, and affiliation (Andersen, 2008, p. 191). 

Furthermore, positive affection and greater depth of relationship are not only ex-

pressed by smiling, closer proximity, mutual eye contact, and mutual touch, but also by simi-

lar body postures, similar hand gestures, and similar speech patterns (Burgoon, Buller, Hale, 

& DeTurck, 1984; Burgoon, Buller, & Woodall, 1989; Coutts, Schneider, & Montgomery, 

1980; Hale & Burgoon, 1984; Scheflen, 1964; Street & Giles, 1982). Similarities in nonverbal 

behavior are identified in the literature as interactional synchrony, posture mirroring, or motor 

mimicry (Bavelas et al., 1988; Bavelas et al., 1986, 1987; Chartrand & Baaren, 2009; 

Chartrand & Dalton, 2009). Interactional synchrony is associated with mutual liking, positive 

affect and rapport in interpersonal interactions (Bernieri & Rosenthal, 1991; Chartrand & 

Bargh, 1999; LaFrance, 1982; Tickle-Degnen & Rosenthal, 1987; Wallbott, 1995) and occurs 

in particular when two individuals share the same viewpoint (Scheflen, 1964).  
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Dimension of potency, status, dominance, power, and control. This so-called verti-

cal dimension*

Relaxation cues were originally discovered by Goffman (1961) and described in detail 

by Mehrabian (1969b, p. 205; 1972, p. 11). This set of cues consists of asymmetrical place-

ment of the limbs, sideways and/or backward lean of the communicator, and arm openness 

(see also LaFrance & Mayo, 1978, p. 99). A relaxed face also increases the perception of 

power (Agunis et al., 1998). According to Mehrabian (1969b, 1972), relaxation cues corre-

spond with status differences: a communicator is more relaxed with an addressee of lower 

status and less relaxed with an addressee of higher status. The meta-analysis by Hall, Coats, 

and LeBeau (2005, p. 907) noted that the results of studies examining postural relaxation are 

contradictory; also an erect and less relaxed posture can be perceived as confident, powerful, 

and social potent. Carney, Hall, and LeBeau (2005, p. 118) reported that powerful people are 

seen as having more erect posture and more forward lean. On the other hand, several studies 

support the finding that powerful people appear as more relaxed and relaxed people appear as 

more dominant and powerful (Burgoon, Birk, & Pfau, 1990; Burgoon et al., 1998), but 

Burgoon (1991, p. 254) found some evidence that these findings may only be valid for males. 

 is “one of the most fundamental dimensions” (Burgoon et al., 2010, p. 343) 

and is expressed by relaxation cues, expansiveness, touch, gaze behavior, and head position. 

Expansiveness means generally occupying more space and invading the space of other 

people. Powerful people stand taller, talk and interrupt more, and use expansive gestures, ex-

pansive postures, and expansive placement of limbs, holding the arms and legs apart while 

sitting or standing, such as the arms-akimbo posture (Andersen, 2008, p. 321; Argyle, 1988, 

p. 208; Hai, Khairullah, & Coulmas, 1982; Henley, 1977, pp. 28, 127; Leffler, Gillespie, & 

Conaty, 1982; Mehrabian, 1968, p. 297; 1972, p. 19; Scheflen, 1972, p. 24). 

                                                
* Status, power, and dominance are different but interrelated aspects of the vertical dimension. Many authors 
emphasize the importance of treating them as different concepts (Agunis, Simonsen, & Pierce, 1998; Andersen, 
2008; Burgoon, Johnson, & Koch, 1998; Dunbar, 2004; Edinger & Patterson, 1983; Harper, 1985), but 
Mehrabian and other authors use these terms interchangeably. The meta-analysis by Hall et al. (2005) uses verti-
cal dimension as a collective term. 
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As a much more direct form of invading the space of other people, powerful people 

are more likely to point to conversational partners and to touch them (Carney et al., 2005, p. 

117; Henley, 1977, pp. 105, 118, 127; Leffler et al., 1982, p. 159; Moore & Porter, 1988, p. 

161). Even as a dominance signal, touch can evoke feelings of composure, immediacy, simi-

larity, equality, informality, trust, affection, depth of relationship, and interpersonal warmth 

(Burgoon, 1991, p. 254), but in most cases touches enacted by dominant people refer to con-

trol touches, which are intended to direct the behavior, attitude, or emotional state of other 

people (Burgoon et al., 2010, p. 157). 

The gaze of powerful people, known as visual dominance behavior, follows distinct 

patterns of looking while speaking and listening: they look more and stare at the addressee 

when speaking and look less and avert the gaze when listening, whereas submissive people 

follow the opposite pattern (Argyle, 1988, p. 97; Dovidio & Ellyson, 1982; Dovidio, Ellyson, 

Keating, Heltman, & Brown, 1988; Henley, 1977, p. 153). The head position also plays an 

important role. An upward tilted head is perceived as a sign of dominance, a downward tilted 

head as a sign of submissiveness (Bente et al., 2010, p. 772; Carney et al., 2005, p. 118; Mast 

& Hall, 2004, p. 158). 

Hall et al. (2005) examined in a meta-analysis including 120 decoding studies and 91 

encoding studies nonverbal behavior related to the vertical dimension, such as postural relaxa-

tion, interpersonal distance, touch, gaze, and others. Despite the very heterogeneous results of 

the included studies, the meta-analysis revealed clear evidence that decoding of nonverbal 

behavior relies on a common cause, such as stereotypes or neural correlates. In particular, 

perceivers associated higher levels of the vertical dimension with 

. . ., more gazing, more lowered brows, a more expressive face, more nodding, less 

self touching, more touching of others, more hand/arm gestures, more bodily open-

ness, less bodily relaxation, more bodily shifting, smaller interpersonal distances, . . . 

(Hall et al., 2005, p. 914)  



 

60 

Dimension of responsiveness, arousal, activation, and activity. This dimension is 

characterized by greater activity, expressiveness, and responsiveness, positively correlating 

with intended as well as perceived persuasiveness, and is particularly expressed by higher 

rates of facial expressions, hand gestures, eye contacts, head nods, smaller interpersonal dis-

tance, and speech, and is accompanied by more intonation, more speech volume, and lengthier 

communication (Mehrabian, 1969b, p. 206; 1972, p. 13; Mehrabian & Williams, 1969, p. 52). 

Furthermore, Mehrabian and Williams found that persuasive effort was associated 

with more eye contact, more head nodding, and less backward lean (p. 53). Timney and Lon-

don (as cited in Kleinke, 1986, p. 82) reported that participants instructed being persuasive to 

their interaction partners substantially increased their gaze, but this seems only be valid for 

males, as female participants tend to gesture more (Coker & Burgoon, 1987, p. 468).  

It has been shown that higher activity and responsiveness also correlate with positive 

evaluation and liking (Bentler, 1969). This adds weight to the question of whether activity is 

an independent dimension, but Mehrabian and Williams (1969) show that a higher level of 

activity supports immediacy cues and therefore enhances the intensity of liking (p. 54).  

McGinley, LeFerve, and McGinley (1975) found in their study about the impact of 

body postures on persuasiveness that open body postures (“leaning backward, legs stretched 

out, knees apart, one ankle crossed over the other knee, elbows away from her body, hands 

held outward, and arms held outward from her body”, p. 687) have more power to change 

other people’s opinion than closed body postures (“elbows next to her body, arms crossed, 

hands folded in her lap, knees pressed together, feet together, and legs crossed at either knees 

or the ankles”, p. 687). Burgoon et al. (1990) investigated several kinesic cues in terms of 

their impact on credibility and persuasiveness and reported that nonverbal immediacy cues 

and kinesic expressiveness have a substantial effect on persuasiveness. Facial pleasantness 

and smiling were mostly persuasive, followed by facial expressiveness, body movements, 

pitch variety, fluency, and eye contact. 
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Chapter 6: Measuring Nonverbal Cues 

In this chapter, the nonverbal parameters corresponding to the nonverbal cues humans 

use in relation to the three nonverbal dimensions outlined in Chapter 5 and found realizable 

through the transformation of motion capture data are described. Operationalization and math 

terms including scope and limits are given together with a description of their implementation 

in APEx. Table 8 shows which nonverbal cues can be calculated from which function. The 

use of these functions to compute nonverbal parameters is explained in Chapter 7. 

 

Table 8 

Calculation Functions For Nonverbal Cues 

Dimension Nonverbal code Nonverbal cue Calculation function 
Evaluation 
Pleasure 
Pleasantness 

Immediacy cues Interpersonal distance Dyadic Proxemics p. 76  
Interpersonal touch Dyadic Proxemics p. 76 
Forward lean Static SRL Sagittal* p. 27 
Eye contact and gaze Direction p. 71 
Body orientation Direction p. 71 

Nonverbal  
involvement behavior  
(includes also the  
immediacy cues)  

Postural openness Openness p. 68 
Relational gestures Direction p. 71 
Head nods Local Dynamic SRL Sagittal* p. 35 
Interactional synchrony Dyadic Mimicry p. 78 

Potency 
Status 
Dominance 
Power 
Control 

Relaxation cues Asymmetry of limbs Symmetry p. 62 
Backward lean Static SRL Sagittal* p. 27 
Sideways lean Static SRL Lateral* p. 27 
Arm openness Openness p. 68 
Postural shifts Global Dynamic SLR* p. 33  

Expansiveness Expansiveness of arms/legs Expansion p. 67 
Arms akimbo posture Distance p. 66 
Pointing behavior Direction p. 71 
Touching behavior Dyadic Proxemics p. 76  

Visual dominance behavior Eye contact and gaze Direction p. 71 
Dominant head position Upward head tilt Static SRL Sagittal* p. 27 
Dominant head motions  Head nods Local Dynamic SRL Sagittal* p. 35 

Responsive- 
ness 
Arousal 
Activation 
Activity 

Activity Rates of movements Activation* p. 40 
Velocity of movements Activation* p. 40 
Acceleration of motions Activation* p. 40 

Responsiveness Interpersonal distance Dyadic Proxemics p. 76  
Eye contact and gaze Direction p. 71 
Forward lean Static SRL Sagittal* p. 27 

Body openness Backward lean Static SRL Sagittal* p. 27 
Expansivity of arms/legs Expansion p. 67 
Openness of arms/legs Openness p. 68 
Crossed arms/legs Crossed/Folded p. 68 

* For the nonverbal parameters shown in italics, please refer to Chapter 4: Measuring Body Positions and Body Movements. 
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Symmetry 

Symmetry of body postures or corresponding body parts has been investigated in vari-

ous nonverbal studies. Asymmetry in the arrangement of arms and legs  is associated with 

body relaxation in order to communicate dominance in status relationships (Hall et al., 2005; 

Mehrabian, 1969a, 1972), whereas arm symmetry with uncrossed arms and legs as shown by 

physicians during medical encounters increases satisfaction and lowers anxiety in patients 

(Beck, Daughtridge, & Sloane, 2002). Asymmetrical postures of babies lying in a supine posi-

tion can be diagnostically useful for early identification of Asperger’s syndrome (Teitelbaum 

et al., 2004; Teitelbaum, Teitelbaum, Nye, Fryman, & Maurer, 1998) or autism spectrum dis-

orders (Esposito, Venuti, Maestro, & Muratori, 2009). 

Operationalization. The term symmetry is rarely defined within nonverbal studies 

(Harrigan, 2005, p. 158), but is commonly used in bilateral symmetry, precisely defined and 

operationalized by Weyl (1989): 

Bilateral symmetry, the symmetry of left and right . . . is so conspicuous in the struc-

ture of . . . the human body. Now this bilateral symmetry is a strictly geometric and . . 

. an absolutely precise concept. A body, a spatial configuration, is symmetric with re-

spect to a given plane E if it is carried into itself by reflection in E. Take any line 1 

perpendicular to E and any point p on l: there exists one and only one point p' on l 

which has the same distance from E but lies on the other side. (p. 4) 

This plane E is also known as the sagittal plane, and the perpendicular line as the sag-

ittal axis of the human body (e.g., Dorland, 2011), and are denoted as the sagittal 𝑦*𝑧*-plane 

and the sagittal 𝑥*-axis in the SRL model (p. 28) and depicted in Figure 5 (p. 29). As illus-

trated in Figure 7, the 3D human body is bilaterally symmetrical because each of the two cor-

responding joints of the limbs is equidistant from the sagittal 𝑦*𝑧*-plane. If the plane in Fig-

ure 7 were half-transparent and half-reflecting, both pictures—one shining through from the 

other side and one reflected from this side—would match perfectly. 
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Figure 7. Sagittal plane, sagittal axis, and center of moment of the human body. 

To demonstrate the symmetry of a 3D human model, the coordinates of the joints of 

the extremities should be transformed into the reference frame of the center of moment first 

(Cutting & Proffitt, 1981), which is invariant regarding motions. For standing, walking or 

dancing individuals, the center of moment is the intersection of the lines connecting each 

shoulder with the hip joint on the opposite side of the torso, as shown in the little illustration 

on the right in Figure 7. These two diagonals intersect close to the chest joint of the 3D hu-

man model (the location of the chest joint is marked in Figure 6, p. 36). For sitting individu-

als, the invariant center of moment is usually the hip joint. It is, however, useful to use the 

chest joint as a reference frame for the upper extremities because sitting individuals tend to 

turn toward their interaction partner, and then the chest joint becomes the center of moment. 

APEx is able to allow the researcher to define individual symmetry parameters and to choose 

the appropriate reference frame for each symmetry parameter according to their needs. 

After a joint has been referenced to the center of moment, it can be reflected to the 

other side of the sagittal plane by changing the sign of the 𝑥*-coordinate as the sagittal plane 

crosses the sagittal 𝑥*-axis of the center of moment at its zero point (see Figure 7). If the 

original point matches the reflected point, we can say that both joints are in bilateral sym-
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metry as defined by Weyl (1989). Otherwise, if they do not match they are not symmetrical, 

and the degree of asymmetry increases with the distance between both points. By calculating 

the Euclidean distance between the original and the reflected point of origin of a joint, we 

have a measurement for the symmetry of a pair of corresponding body joints which increases 

with higher degrees of asymmetry. The perfect bilateral symmetry between two body joints is 

indicated by a zero value. 

Math terms, scope, and limits. To transform the point 𝑝 into another frame of refer-

ence with the point of origin 𝑝′, the coordinates 𝑝𝑥, 𝑝𝑦, and 𝑝𝑧 are translated by subtracting 

𝑝𝑥′ , 𝑝𝑦′ , and 𝑝𝑧′ , and then inversely rotated by Euler angles 𝑥′, 𝑦′, and 𝑧′, resulting in the coor-

dinates 𝑝𝑥∗ , 𝑝𝑦∗ , and 𝑝𝑧∗, as shown in Equation (10):  

 

�
𝑝𝑥∗
𝑝𝑦∗

𝑝𝑧∗
� = 𝑅𝑥(−𝑥′) ∙ 𝑅𝑦(−𝑦′) ∙ 𝑅𝑧(−𝑧′) ∙ �

𝑝𝑥 − 𝑝𝑥′
𝑝𝑦 − 𝑝𝑦′

𝑝𝑧 − 𝑝𝑧′
� (10) 

 

Equation (10) is similar to Equations (8) and (9) (p. 34 and 36), which transform rota-

tion matrices according to Equation (4) (p. 30) into another frame of reference, whereas Equa-

tion (10) transforms coordinate values. The Euclidean distance between a point with the coor-

dinates 𝑝𝑥, 𝑝𝑦, and 𝑝𝑧 and its reflection with the coordinates −𝑝𝑥∗, 𝑝𝑦∗ , and 𝑝𝑧∗ is calculated by 

using Equation (11): 

 

𝑑 = �(−𝑝𝑥∗ − 𝑝𝑥)2 + (𝑝𝑦∗ − 𝑝𝑦)2 + (𝑝𝑧∗ − 𝑝𝑧)2 (11) 

 
After calculating the symmetry value d for each joint of the extremities, symmetry val-

ues for the upper, the lower, and the whole body are obtained by adding the symmetry values 

of the corresponding joints.  
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Implementation. The zero value indicates the perfect symmetry of a pair of body 

parts. Higher values mean higher degrees of asymmetry. Table 9 (see p. 66) shows the sym-

metry parameters implemented by default in APEx which are computed for each time point of 

the sequence. To ensure comparability between various 3D human models, all symmetry val-

ues can be optionally related to a measurement which relies on known body proportions. In 

his world-renowned drawing Vitruvian Man (see Figure 8), Leonardo da Vinci illustrated that 

a man with outstretched arms fits exactly into a square. An empirical study confirmed that the 

proportion of body height to wingspan is 1.023, which is within the 2.3% error margin of the 

hypothesized value of one (Johnson & McPherson, 2006). Therefore, all distance parameters 

such as Symmetry can be optionally calculated as the percentage of the body height.  

 
Figure 8. Vitruvian Man by Leonardo da Vinci. 

Redrawn by Hans Bernhard, 2010. 
Retrieved from Wikimedia Commons. 

 

It is noteworthy that the middle of the circle is the center of moment for moving indi-

viduals, whereas the middle of the square is the center of moment of those sitting (see p. 63). 
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Table 9 

Symmetry Parameters 

Parameter Range Description 
Symmetry Hands ≥ 0% Euclidean distance between hand joints after mirroring 
Symmetry Elbows ≥ 0% Euclidean distance between elbow joints after mirroring 
Symmetry Shoulders ≥ 0% Euclidean distance between arm joints after mirroring 
Symmetry Upper Extr. ≥ 0% Sum of the values of hands, elbows, and shoulders 
Symmetry Feet ≥ 0% Euclidean distance between foot joints after mirroring 
Symmetry Knees ≥ 0% Euclidean distance between knee joints after mirroring 
Symmetry Hips ≥ 0% Euclidean distance between leg joints after mirroring 
Symmetry Lower Extr. ≥ 0% Sum of the values of feet, knees, and hips 
Symmetry Body ≥ 0% Sum of values of upper and lower extremities 
Note. The zero value indicates perfect symmetry of a pair of body parts. Higher values mean higher degrees of asymmetry.  
To ensure comparability between 3D models, the values can be optionally calculated as the percentage of the body height of 
the 3D model. By default, all symmetry parameters are computed for each time point of the animated time sequence. 

 

Distance 

Operationalization.The distance between two body parts or body joints is a frequent 

issue of several nonverbal cues, such as expansiveness, openness, self-touch, or arms akimbo. 

Therefore, a general calculation function Distance is realized in order to calculate the Euclidi-

an distance between two joints or markers using their Cartesian coordinates. Furthermore, a 

function of Less Than is provided to detect touches (p. 76) or arms-akimbo postures (p. 116).  

Math terms, scope, and limits. The general formula for the Euclidean distance bet-

ween two points 𝑝 and 𝑞 has no limit and is represented by Equation (12): 

 

𝑑 = �(𝑞𝑥 − 𝑝𝑥)2 + (𝑞𝑦 − 𝑝𝑦)2 + (𝑞𝑧 − 𝑝𝑧)2 (12) 

 
Implementation. By default, four intermediate values are calculated (see Table 10). 

 

Table 10 

Distance Parameters 

Parameter Range Description 
Distance Hands ≥ 0 (0…100%) Euclidean distance between both hand joints 
Distance Elbows ≥ 0 (0…100%) Euclidean distance between both elbow joints 
Distance Feet ≥ 0 (0…100%) Euclidean distance between both foot joints 
Distance Knees ≥ 0 (0…100%) Euclidean distance between both knee joints 
Note. Higher values mean greater distances between body parts. By default, four distance parameters for the hands, elbows, 
feet, and knees are computed for each time point of the animated time sequence, but do not appear in output files. Instead, they 
serve as intermediate values in preparation for the calculations for the nonverbal parameter Openness. 
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Expansion 

Expansive gestures are often used by dominant people and constrictive gestures by 

submissive people. The degree of expansion communicates the actor’s status compared with 

the status of others (DePaulo & Friedmann, 1998; Remland, 1982; Tiedens & Fragale, 2003). 

Expansive gestures claiming lots of physical space are often combined with joking and laugh-

ter, and they have also been linked to expressiveness and pleasantness, establishing and main-

taining the center of attention, and attempting to positively influence interaction partners 

(Burgoon & Newton, 1991; Coker & Burgoon, 1987; Dunbar & Burgoon, 2005). 

Operationalization. Postural expansion can be obtained by moving an extremity 

straight away from the body or by enlarging the body shape with postures such as arm akim-

bo, whereas constriction is achieved by drawing body parts in or crossing them over the body 

(Eibl-Eibesfeldt, 1975). To construct a measurement for expansion, it is necessary to measure 

the distance between the body parts of the extremities and the body shape, which is a difficult 

and complicated task. An acceptable simplification is to calculate the Euclidean distance be-

tween the joint of interest and the three central joints of the 3D model, namely the hip, the 

chest, and the head, and to choose the smallest distance. After calculation of the expansion 

value for each part of the limbs, the expansion for the upper, the lower, and the whole body is 

obtained by adding the values of the corresponding joints. 

Math terms, scope, and limits. The general formula for the Euclidean distance be-

tween two points 𝑝 and 𝑞 expressed by Equation (12) is used (p. 66). 

Implementation. Table 11 shows the expansion parameters implemented in APEx by 

default. Higher expansion values mean greater distances between extremities and body shape. 

To ensure comparability between different 3D human models, all expansion values can be 

optionally calculated as the percentage of the body height of the 3D human model. 
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Table 11 

Expansion Parameters 

Parameter Range Description 
Expansion Hand L ≥ 0% Smallest of the distances of the left hand to the three central joints 
Expansion Elbow L ≥ 0% Smallest of the distances of the left elbow to the three central joints 
Expansion Hand R ≥ 0% Smallest of the distances of the right hand to the three central joints 
Expansion Elbow R ≥ 0% Smallest of the distances of the right  to the three central joints 
Expansion Upper Extrem. ≥ 0% Sum of the values of both hands and both elbows 
Expansion Foot L ≥ 0% Smallest of the distances of the left foot to the three central joints 
Expansion Knee L ≥ 0% Smallest of the distances of the left knee to the three central joints 
Expansion Foot R ≥ 0% Smallest of the distances of the right foot to the three central joints 
Expansion Knee R ≥ 0% Smallest of the distances of the right knee to the three central joints 
Expansion Lower Extrem. ≥ 0% Sum of the values of both feet and both knees 
Expansion Body ≥ 0% Sum of the values of upper and lower extremities 
Note. R = right, L = left. Higher values mean greater distances between body parts of extremities and body shape. To ensure 
comparability between different 3D human models, the values can be calculated as the percentage of the body height of the 3D 
human model. By default, all of the expansion parameters are computed for each time point of the animated time sequence. 

 

Openness 

Openness of the arrangement of arms or legs is assumed as a relevant attitude- or af-

fect-communicating variable (Machotka, 1965). An open arrangement of the arms has been 

found to communicate a positive attitude (Mehrabian, 1969a). Open arms or legs can also 

indicate the degree of relaxation which is communicated as dominance in terms of status or 

power relationships (Kudoh & Matsumoto, 1985; Mehrabian, 1972). Within intimate relation-

ships, various levels of body openness determine various degrees of mutual openness and 

serve the function of regulating nonverbal intimacy between partners during interactions 

(Burgoon, Stern, & Dillman, 1995; Manusov, 2005). Openness in combination with other 

persuasive cues can be a sign of responsiveness (Mehrabian & Williams, 1969).  

Operationalization. Openness of body postures is defined as the accessibility of the 

body by means of an open arrangement of the arms and the legs (Mehrabian, 1969a). On the 

other hand, closedness describes the degree to which the hands, arms, legs, and feet meet or 

intersect (Harrigan, 2005, p. 178). To construct a measurement, the distances between the 

corresponding body parts of both body sides can be calculated using Equation (12), p. 66 (see 

also Table 10). For the upper part, the lower part, and the whole body, the calculated values 
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are added. As can be seen in Figure 9, this measurement is suitable if the extremities do not 

intersect or touch each other. In the 3D human model in the middle, the values of the distance 

parameters increase to the left as the body parts move apart from each other (see Body: 39.8, 

68.8, and 142.9), but also to the right (39.8, 45.0, and 72.8), where the body parts are used as 

a barrier and therefore create the impression of closedness rather than openness. 

 
Figure 9. Distance and openness values of different body positions. 

It is obvious that body closedness, expressed by the use of arms or legs as barriers, al-

so implies distances between body joints. To solve this problem and obtain a measurement for 

the openness of a body posture, the parameter Distance has been refined. Folded arms can be 

determined by using the Euclidean distance between a hand and its corresponding elbow on 

the opposite body side. If a hand joint is located within a sphere around the opposite elbow 

joint by a radius equal to a forearm length, it can be assumed that the hand joint is somewhere 

on the opposite side of the body and that its forearm serves as a barrier in front of the body 

(e.g., a hand touches part of the arm on the other side of the body or is simply held in front of 

the chest), the parameter Folded Arms is assigned a value of 0.5, and a value of one if both 

hands lie near to their opposite elbows. This also applies to the feet: a value of 0.5 indicates 

that one foot touches the other leg, and a value of one indicates a cross-legged position (e.g., 

lotus position) for the parameter Folded Legs. The commonly used posture in which a lower 

leg rests on its opposite knee, as shown in the rightmost picture of Figure 9, is assigned a val-

ue of one for Crossed Legs. This position can be assumed if one knee joint is higher than the 

knee joint used as a pillar and its corresponding foot is on the opposite side of this knee. 
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By assigning these values to the parameters Folded Arms, Folded Legs, and Crossed 

Legs, we can use them as weights to correct the values of the nonverbal parameter Distance. 

As summarized in Table 12, the nonverbal parameter Openness Upper Extremities equals the 

sum of the parameters Distance Hands and Distance Elbows if the corresponding weights are 

zero. If one arm is folded, this will subtract half of the distance between the hands from the 

distance between the elbows. In the case of double-folded arms, the full distance between the 

hands is subtracted, resulting in a zero value for Openness Upper Extremities. This also ap-

plies to the lower extremities; the higher value of Folded and Crossed Legs is used as a 

weight. The parameter Openness Body sums up the values of the extremities. The openness 

values depicted in Figure 9 show useful values: if only one arm or leg is folded, this will re-

duce the openness values by half. In addition, double-folded arms or crossed legs—creating 

the highest impression of closedness—result in zero values for the parameter Openness. 

Math terms, scope, and limits. Equation (12) for Euclidian distance is used (p. 66). 

Implementation. Table 12 shows the openness parameters implemented by default in 

APEx which are computed for each time point of the animated time sequence. The openness 

values, which are based on the distance values, can be optionally calculated as the percentage 

of the body height of the 3D model. The zero value indicates the maximum level of 

closedness, and higher values mean greater openness of body positions. 

Table 12 

Openness Parameters 

Parameter Range Description  
Folded Arms 0, .5, 1 Indicates whether none (= 0), one (= .5), or both (= 1) arms are folded. 
Folded Legs 0, .5, 1 Indicates whether none (= 0), one (= .5), or both (= 1) legs are folded. 
Crossed Legs 0,  1 Indicates whether none (= 0) or one lower leg rests on the opposite knee (= 1). 
Openness Upper 
Extremities ≥ 0% Sum of distance values of elbows and hands. In the case of folded arms, 

half (= .5) or full (= 1) hand distance is subtracted from elbow distance.  
Openness Lower 
Extremities ≥ 0% Sum of distance values of knees and feet. In the case of folded or crossed 

legs, half (= .5) or full (= 1) foot distance is subtracted from knee distance. 
Openness 
Body ≥ 0% Sum of openness values of upper and lower extremities. 

Note. The zero value means maximum level of closedness. Higher values mean greater openness of body positions. To ensure 
comparability between different 3D models, the openness values can be calculated as the percentage of the body height. 0=not 
folded/crossed; .5=one arm/leg touches the other arm/leg; 1=both arms/legs touch each other. 
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Direction  

The direction parameter refers to body orientation, relational gestures, pointing behav-

ior, and head direction as an approximation for eye contact. Gaze behavior has an impact on 

the attractiveness of the interaction partner (Mason, Tatkow, & Macrae, 2005; Williams & 

Kleinke, 1993) or on personality impression (Larsen & Shackelford, 1996), and is most sus-

ceptible to gender differences (Bente et al., 1998; Burgoon, Buller, & Woodall, 1996; Henley, 

1995). Studies of human visual behavior discovered that people with high status receive more 

visual attention (Dovidio & Ellyson, 1982; Dovidio et al., 1988). Body orientation influences 

immediacy and persuasiveness (Mehrabian, 1969b, 1972; Mehrabian & Williams, 1969). 

3D head and gaze direction. The gaze direction can be determined by using the point 

of origin of the eyeballs of a 3D human model. Because animation data for eyeballs are usual-

ly not available, the gaze can be approximated by the direction of the head. The approxima-

tion is quite accurate, if the direction is calculated using three invisible markers attached to 

the head. The direction marker is between the eyes, and the other two markers are near the 

ears but at the same height as the eye marker.  

Operationalization. As depicted in Figure 10, the line labeled 𝑢�⃗  denotes the direction 

of eye contact, the line labeled 𝑣 the head direction, and the angle δ between both lines esti-

mates the extent to which a person is averting their gaze from the interaction partner. 

 
Figure 10. Approximation of the gaze direction. 

𝑢�⃗  

𝑣 

𝑢�⃗  

𝑣 
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Math terms. The described lines are vectors intersecting at the halfway point between 

the two ear markers of the person of interest. Vector 𝑢�⃗  aims at the eye marker of the interac-

tion partner, vector 𝑣 at the person of interest’s own eye marker. The angle δ between two 

intersecting vectors can be calculated according to Equation (13) (Vince, 2007, p. 25): 

 

𝛿 = 𝑐𝑜𝑠−1 �
𝑢�⃗ ∙ 𝑣

‖𝑢�⃗ ‖ ∙ ‖𝑣‖� 

    = 𝑐𝑜𝑠−1 �
𝑢𝑥 ∙ 𝑣𝑥 + 𝑢𝑦 ∙ 𝑣𝑦 + 𝑢𝑧 ∙ 𝑣𝑧

�𝑢𝑥2 + 𝑢𝑦2 + 𝑢𝑧2 ∙ �𝑣𝑥2 + 𝑣𝑦2 + 𝑣𝑧2
� 

(13) 

 

Scope and limits. The angle 𝛿 is within the range of 0° ≤ 𝛿 ≤ 180° and has no sign. It 

includes no information about the head direction or if the gaze is averted from the partner. 

2D head and gaze direction. For research questions regarding interpersonal domi-

nance in visual interactions, it is of interest to know whether the gaze is raised or lowered and 

to what extent the gaze is averted horizontally in each case regardless of the other dimension. 

Therefore, the horizontal and the vertical dimensions should be considered separately. 

Operationalization. The solution is to split the 3D angle into two 2D angles, one angle 

for horizontal gaze averting and one angle for vertical gaze averting. This can be achieved by 

projecting the 3D angle onto both a horizontal and a vertical plane: (1) the line of head direc-

tion and the line of eye contact are projected onto a horizontal plane so the horizontal devia-

tion of the viewing direction from the eye contact direction can be measured, as depicted top 

left in Figure 10. (2) The line of the viewing direction is projected onto a vertical plane which 

stands upright along the line of eye contact so the vertical deviation of the viewing direction 

from eye contact can be measured, as depicted bottom left in Figure 10. 

Math terms. Whereas the projection onto the horizontal plane is done by setting the 𝑦-

value of the coordinates of all four markers to zero before using Equation (13), the projection 

of the point of origin 𝑝 of the eye marker onto the vertical plane requires the calculation of the 

nearest point 𝑝′ on the vertical projection plane, as depicted in Figure 11. The vertical projec-
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tion plane is defined by the straight upward pointing unit vector �⃗�0 and the vector 𝑢�⃗ , which 

connects point 𝑎, the halfway point between the ear markers of the person of interest, with 

point 𝑏, the eye marker of the interaction partner. The cross-product of both vectors yields the 

normal vector 𝑛�⃗ , which is perpendicular to this vertical plane. The point 𝑝′ is now determined 

by moving point 𝑝 in the direction of vector 𝑛�⃗  by factor 𝜆 (Vince, 2007, p. 115), as shown in 

Figure 11 and represented by Equations (14). 

 
Figure 11. The positions of the nearest points 𝑝′ on a plane and 𝑝′′ on a line to a point 𝑝. 

 

𝑝′ = 𝑝 − 𝜆 ∙ 𝑛�⃗ = 𝑝 −
𝑝 ∙ 𝑛�⃗ + 𝑛0
‖𝑛�⃗ ‖2 ∙ 𝑛�⃗  (14) 

 

Since the normal vector 𝑛�⃗  depends on the unit vector �⃗�0 = (0, 1, 0), Equation (14) can 

be simplified to: 

 

�
𝑝𝑥′
𝑝𝑦′

𝑝𝑧′
� = �

𝑝𝑥
𝑝𝑦
𝑝𝑧
� −

𝑝𝑥 ∙ 𝑢𝑧 − 𝑝𝑧 ∙ 𝑢𝑥 + 𝑎𝑧 ∙ 𝑢𝑥 − 𝑎𝑥 ∙ 𝑢𝑧
𝑢𝑥2 + 𝑢𝑧2

∙ �
𝑢𝑧
0

−𝑢𝑥
� (15) 

 

After location of the coordinates of point 𝑝′ according to Equation (15), the angle 𝛿 

between vector 𝑢�⃗  and vector 𝑝′ can be calculated using Equation (13). The angle 𝛿 is within 

𝑝 

𝛿 

𝑢�⃗  

𝑣 
𝑝′ 

𝑝′′ 
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the range of 0° ≤ 𝛿 ≤ 180° and has no sign indicating whether the gaze is averted by a raised 

or a lowered head. To get this information, the point 𝑝′′ on vector 𝑢�⃗  nearest to point 𝑝′ can be 

determined, as depicted in Figure 11 and calculated by Equation (16) (Vince, 2007, p. 85): 

 

𝑝′′ = (𝑝′ ∙ 𝑢�⃗ 0) ∙ 𝑢�⃗ 0        with 𝑢�⃗ 0 =
𝑢�⃗
‖𝑢�⃗ ‖ (16) 

 

If the 𝑦-value of point 𝑝′ is greater than the 𝑦-value of point 𝑝′′, then the head is raised 

and angle 𝛿 is assigned a negative sign, similarly to a sagittal SRL flexion. Equation (16) is 

also used for horizontal projection. A negative sign is assigned if the 𝑧-value of point 𝑝′ is 

greater than the 𝑧-value of point 𝑝′′, which means that the head is turned away from the inter-

action partner to the observer. If the sign is not needed, the function Absolute Value of APEx 

can be used to get values without a sign. 

Scope and limits. The horizontal and vertical 2D direction parameters cover the range 

of −180° ≤ 𝛿 ≤ +180° and indicate how much and where the head is averted. There is a gap 

in the definition of the vertical projection plane, when vector 𝑢�⃗  points in the same or opposite 

direction as unit vector �⃗�0, which results in a zero value for the divisor in Equation (15). This 

singularity occurs when one person’s head is exactly above the other person’s head, and as a 

result no vertical deviation from the direct viewing line between them exists. Another singu-

larity occurs if the person’s head is averted from the interaction partner by 90°. This angle is 

meaningless for the vertical dimension, and its projection on the vertical plane may result in 

distorted values. This also applies to the horizontal angle if the person is looking straight up-

ward. In all cases of singularities, APEx outputs a missing value (i.e., no value at all). 

Implementation. Table 13 on p. 75 shows the variables output by APEx for each di-

rection parameter. The zero value indicates no deviation from the direct line and, in the case 

of head direction, could refer to “direct eye contact.” Higher values mean higher degrees of 

averting. The direction of other body parts such as the upper part of the body or relational 
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hand gestures are often the subject of nonverbal research (Harrigan, 2005; Manusov, 2005). 

Therefore, the direction parameter is also implemented for other body parts. By default, the 

direction parameter for the head aims at the nose, for hips at the hips, for the chest, the left, 

and the right hand aims at the chest of the interlocutor. Figure 10 indicates the red markers of 

the five body parts (p. 71) which are used by the calculation function ‘Direction (forward)’. 

Because the markers measuring the direction of the chest and the hips are placed on the back 

of the 3D human model, another version of the calculation function has been implemented in 

APEx: the calculation function ‘Direction (backward’) takes into account that vector 𝑣 points 

in the opposite direction (see Table 20, p. 115). 

 

Table 13 

Direction Parameters 

Parameter Range Description 
Direction Joint: 
3D Deviation 

0°…180° Deviation of the line projected straight from the direct line to  
the target of the interaction partner in three-dimensional space: 
only positive sign (no negative sign) = any direction in 3D 

Direction Joint:  
2D Deviation  
Horizontal 

–180°…+180° Deviation from direct line to target, projected on a horizontal plane: 
positive sign = turned away from the interlocutor to the observer 
negative sign = turned away from the interlocutor as well as the ob-
server 

Direction Joint:  
2D Deviation 
Vertical 

–180°…+180° Deviation from direct line to target, projected on a vertical plane: 
positive sign = direction is raised above the direct line to partner 
negative sign = direction is lowered below the direct line to partner 

Note. The zero value means no deviation. Higher values mean greater deviation between the line straight ahead and the direct 
line to the target. By default, all three parameters are calculated for the joints the head, the chest, the hips, the right hand, or the 
left hand. Their targets are listed in the text. 

 

 

  



 

76 

Dyadic Proxemics and Touch 

Hall (1963, 1974) originated the name proxemics and defined the channels distance, 

touch, frontal body orientation, and input from the senses (touch, vision, audition, olfaction, 

and temperature). He concluded from his studies that humans have four social distances be-

tween touch and 30 feet which vary in terms of their perceptual characteristics and type of 

status, relationship, and the affiliation of the interacting individuals: intimate, personal, so-

cial, and public space. According to Harrigan (2005, p. 145), proxemics is the most frequently 

investigated nonverbal code, and the measurement of proxemics varies from study to study in 

terms of the reference points used: interpersonal distances between heads and torsos were also 

measured as well as between hands, feet, or chair edges. The most comprehensive reviews of 

proxemics research, including more than 700 studies, are provided by Hayduk (1983) and 

Aiello (1987). Harrigan (2005, p. 148) recommended the measurement of interpersonal dis-

tance, frontal body orientation, trunk lean, postural shifts, touch, and gaze.  

Operationalization. Whereas the measurements of body orientation, trunk lean, pos-

tural shifts, and gaze are operationalized by other calculation functions (see Table 8, p. 61), 

interpersonal distance and touch can be operationalized by the Euclidian distance between the 

body joints of two people. The correct operationalization of touch would require consideration 

of the body surfaces of both. Since motion capture systems track only the position of markers 

on the body surface which are transformed into the positions of the person’s body joints by 

the motion capture software, touch can only be derived from the interpersonal distance be-

tween the body joints and markers of two people. If the interpersonal distance falls below a 

certain value, it can be assumed that touch has occurred. 

Math terms, scope, and limits. Equation (12) for Euclidian distance is used (p. 66). 

Implementation. APEx’s implementation of proxemics determines the shortest dis-

tance between two people using a specified set of body joints or markers, which could be dif-

ferent for each. As shown in Table 14 (p. 77), eight nonverbal parameters are realized with the 
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calculation function Dyadic Proxemics in the default configuration. The nonverbal parameter 

Dyadic Proxemics Body represents the shortest distance between two people, the three non-

verbal parameters Dyadic Proxemics Head, Dyadic Proxemics Chest, and Dyadic Proxemics 

Hips yield the distances between the heads, chests, and hips of two people, and four more 

nonverbal parameters measure the distances between hands and feet to the interaction partner. 

 

Table 14 

Dyadic Proxemics Parameters 

Parameter Range Description 
Dyadic Proxemics Body ≥ 0 Shortest distance between two people using all joints/markers 
Dyadic Proxemics Head ≥ 0 Distance between the heads of two people 
Dyadic Proxemics Chest ≥ 0 Distance between the chests of two people 
Dyadic Proxemics Hips ≥ 0 Distance between the hips of two people 
Dyadic Proxemics Hand R ≥ 0 Shortest distance between right hand and joints/markers of partner 
Dyadic Proxemics Hand L ≥ 0 Shortest distance between left hand and joints/markers of partner 
Dyadic Proxemics Foot R ≥ 0 Shortest distance between right foot and joints/markers of partner 
Dyadic Proxemics Foot L ≥ 0 Shortest distance between left foot and joints/markers of partner 
Note. Because body joints lie beneath the body surface, the zero value means the touch of two markers. Higher values mean 
greater interpersonal distance. To ensure comparability between differently sized 3D models, the values can be calculated as 
the percentage of the body height of the given 3D model. In this case, the percentage value of two different people can differ, 
although they are calculated from the same interpersonal distance. 

 

To determine touch, APEx includes a calculation function named Less Than, which re-

turns the value one if a distance falls below a given value. The default configuration of APEx 

includes four nonverbal parameters, as indicated in Table 15. 

 

Table 15 

Dyadic Touch Parameters 

Parameter Range Description 
Dyadic Touch Body 0 or 1 Indicates whether touch between two people has happened 
Dyadic Touch Hand R 0 or 1 Indicates whether the right hand touched the interlocutor 
Dyadic Touch Hand L 0 or 1 Indicates whether the left hand touched the interlocutor 
Dyadic Touch Hands 0, 1, or 2 Indicates the number of hands touching the interlocutor 
Note. These nonverbal parameters have no own calculation functions. Instead, they use the general function less than to de-
termine whether a previously calculated dyadic proxemics value falls below a certain cutoff value: 0 = no interpersonal touch,  
1 = interpersonal touch probably happened. 
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Dyadic Mimicry 

Research has shown that interactional synchrony has considerable social influence 

(Bavelas et al., 1988; Bavelas et al., 1986). Interactional synchrony happens in several com-

munication channels, such as body postures, motions, vocalics, and speech (Chartrand & Dal-

ton, 2009). Chartrand and Baaren (2009) define motor mimicry as the “adoption of the man-

nerisms, postures, gestures, and motor movements of one's interaction partner” (p. 225), and 

LaFrance (1982) defines posture mirroring as “the degree to which two or more people adopt 

mirror-imaged postures vis-a-vis each other in a face-to-face interaction” (p. 281). Bavelas et 

al. (1986) found that motor mimicry is intended to be seen by the interaction partner as having 

the social function of creating a “fellow feeling” (Bavelas et al., 1987) of liking, understand-

ing, rapport and togetherness, which leads to positive social outcomes (Scheflen, 1964). Mo-

tor mimicry has been found to be an unconscious act and therefore notably different from con-

scious imitation (Bandura, 1962; Chartrand & Bargh, 1999; Decety & Sommerville, 2009). 

As depicted in Figure 12, rotational mimicry (see left side) means that a person mimics the 

positions of the limbs on the same body side as their counterpart by rotating mentally into the 

posture of the interaction partner. By contrast, mirror mimicry (see right side) means that a 

person, like a mirror image, mirrors their counterpart and imitates the positions of the limbs 

on opposite body sides. 

 
Figure 12. Rotational mimicry (left) and mirror mimicry (right). 
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Operationalization. Rotational mimicry is defined by the degree to which two body 

postures match. The static SRL dimensions measure the orientation of each body joint and 

have the advantage that they are independent of body size and proportions. If the static SRL 

flexion angles equal each other for each corresponding body joint of two people perfect rota-

tional mimicry can be assumed, whereas differences between the static SRL flexion angles 

represent differences in the body postures. To obtain a rotational mimicry measure, the static 

SRL flexion angles are first calculated and related to the corresponding person’s center of 

moment (see p. 63) for all body joints of both people. Then the absolute differences of the 

static SRL flexion angles of each body joint between both 3D human models are formed and 

added up. In the case of mirror mimicry, one of the 3D human models is self-mirrored at its 

sagittal plane (see Figure 7), before application of the same procedure as outlined above. 

Math terms. To calculate static SRL flexion angles related to the person’s center of 

moment, Equation (8) is used (p. 34) before Equations (5) – (7) are applied (p. 31). After the 

static SRL flexion angles are calculated for both people, the absolute angle differences of their 

corresponding body joints are added according to Equation (17): 

 

𝑚𝑡
𝑚𝑖𝑚 = ���𝜑𝐴,𝑡,𝑗,𝑑

𝑠𝑡𝑎𝑡 − 𝜑𝐵,𝑡,𝑗,𝑑
𝑠𝑡𝑎𝑡 �

3

𝑑=1

15

𝑗=1

 

𝑚 = measurement, 𝑚𝑖𝑚 = mimicry, 𝑡 = time point no., 𝑗 = joint no., 𝑑 = dimension no. 
𝜑𝐴,𝑡,𝑗,𝑑
𝑠𝑡𝑎𝑡  = angle of static SRL dimension 𝑑 of joint 𝑗 at time point 𝑡 from Person A (Person B) 

(17) 

 

In the case of mirror mimicry, one person is mirrored at the sagittal plane by changing 

the sign of the 𝑦- and the 𝑧-values of the Euler rotation angles. After calculation of the SRL 

flexion angles of both people, Equation (17) is applied but uses the corresponding joints of the 

opposite body side of the mirrored person. 

Scope and limits. Please refer to the scope and limits of the static SRL system (p. 31). 

For the static SRL formulas, there are singularities in rare cases. In such cases, APEx outputs 

a missing value for the rotational or mirror mimicry (i.e., no value at all). 
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Implementation. Table 16 shows the Dyadic Mimicry parameters implemented in 

APEx by default. The parameter Dyadic Mimicry Body considers all 15 body joints and re-

lates them to the hips. The parameter Dyadic Mimicry Upper Extremities uses the six arm 

joints related to the chest joint and the parameter Dyadic Mimicry Lower Extremities uses the 

six leg joints related to the hip joint. The parameter Dyadic Mimicry All Extremities is the 

sum of the parameters Dyadic Mimicry Upper Extremities and Dyadic Mimicry Lower Ex-

tremities which are designed for sitting individuals. It is problematic to relate the upper ex-

tremities of sitting individuals to the hips, because people tend to rotate their upper body part 

and lean backward or forward. In these cases, the measures for dyadic mimicry are more valid 

if they relate the upper extremities to the chest. Each of these four nonverbal parameters 

yielded in the output file a value for ‘Dyadic Rotational Mimicry’ and ‘Dyadic Mirror Mimic-

ry’. The zero value indicates identical or mirrored body postures, whereas higher values indi-

cate different body postures. 

 
Table 16 

Dyadic Mimicry Parameters 

Parameter Range Description 
Dyadic Mimicry Upper Extremities 0…3240 Dyadic mimicry of the upper extremities  

with the six arm joints related to the chest 
Dyadic Mimicry Lower Extremities 0…3240 Dyadic mimicry of the lower extremities  

with the six leg joints related to the hips 
Dyadic Mimicry All Extremities 0…6480 Sum of the dyadic mimicry of the upper  

and the lower extremities 
Dyadic Mimicry Body 0…8100 Dyadic mimicry of the whole body 

with all 15 body joints related to the hips 
Note. The zero value indicates perfect mimicry. Higher values mean higher degrees of different body postures. The maximum 
values are very unlikely to occur because nobody can twist all body joints in each of three dimensions about 180°. The body 
joint to which the other body parts are related can be selected in APEx under reference system. 
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Generic dyadic parameters 

The generic dyadic parameter group consists of four measures giving information 

about (1) the common nonverbal expression of two people in dyadic interaction, (2) the per-

centage proportion accounted for by the share contributed by each person, (3) the net contri-

bution, i.e., the contribution additional to the share of the interaction partner, and (4) the per-

centage proportion accounted for by the net contribution of a person. 

Operationalization. At each time point, the interaction partner’s value is added in or-

der to achieve the common nonverbal expression A+B, and subtracted to yield the net contri-

bution A–B. For the percentage proportions, the nonverbal parameter value of A and its net 

contribution A–B are related to the common nonverbal expression A+B. 

Meaning of (A+B). The sum (A+B) represents the common dyadic nonverbal expres-

sion of person A and person B with reference to the respective nonverbal parameter. If a pa-

rameter is unipolar with only positive values, the zero value indicates that neither person ex-

presses the nonverbal behavior of interest. If the used parameter is bipolar, with positive and 

negative values, the zero value indicates contrary nonverbal expressions of both people and 

can be investigated by the difference explained below. 

Meaning of (A-B). The difference (A–B) indicates the extent of nonverbal behavior of 

person A in contrast to person B. The sign of this measure has the following meaning: (1) a 

positive difference means that the nonverbal parameter of person A has a higher value than 

the nonverbal parameter of person B; (2) a negative difference means that the nonverbal pa-

rameter of person A has a lower value than the nonverbal parameter of person B. 

Implementation. Table 17 shows the generic dyadic parameters predefined by de-

fault in APEx. APEx is able to accept requests for generic dyadic parameters of any non-

dyadic nonverbal parameter, to take into account the corresponding number of output varia-

bles, and to ensure the correct application of the calculation routines to each output variable. 
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Table 17 

Generic Dyadic Parameters 

Base Derived dyadic parameter 
Symmetry Upper Extremities Dyadic Symmetry Upper Extremities 
Symmetry Lower Extremities Dyadic Symmetry Lower Extremities 
Symmetry All Extremities Dyadic Symmetry All Extremities 
Expansion Upper Extremities Dyadic Expansion Upper Extremities 
Expansion Lower Extremities Dyadic Expansion Lower Extremities 
Expansion All Extremities Dyadic Expansion All Extremities 
Openness Upper Extremities Dyadic Openness Upper Extremities 
Openness Lower Extremities Dyadic Openness Lower Extremities 
Openness All Extremities Dyadic Openness All Extremities 
Direction Head Dyadic Direction Head 3D Deviation 
 Dyadic Direction Head 2D Deviation horizontal 
 Dyadic Direction Head 2D Deviation vertical 
Direction Chest Dyadic Direction Chest 3D Deviation 
 Dyadic Direction Chest 2D Deviation horizontal 
 Dyadic Direction Chest 2D Deviation vertical 
Direction Hips Dyadic Direction Hips 3D Deviation 
 Dyadic Direction Hips 2D Deviation horizontal 
 Dyadic Direction Hips 2D Deviation vertical 
Direction Hand R Dyadic Direction Hand R 3D Deviation 
 Dyadic Direction Hand R 2D Deviation horizontal 
 Dyadic Direction Hand R 2D Deviation vertical 
Direction Hand L Dyadic Direction Hand L 3D Deviation 
 Dyadic Direction Hand L 2D Deviation horizontal 
 Dyadic Direction Hand L 2D Deviation vertical 
 

 

 

 

 

 

Camera Parameters 

This section describes parameters relating to technical features of video clips. The mi-

croanalysis of nonverbal behavior based on 3D character animation includes the presentation 

of animated video clips to subjects rating their impressions. Research found that camera fea-

tures like camera angle, camera framing, and camera proxemics have an impact on impres-

sion formation as outlined below. The following parameters may be useful for examining the 

technical features of animated video clips before they are presented as stimulus material. 
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Camera Angle. The camera angle is the angle between the horizontal and the actual 

camera viewing line. According to Mamer (2009), three basic categories of camera angles can 

be described: low-angle shot, high-angle shot, and eye-level shot. The low-angle shot denotes 

a camera below the eye level of the subject, and hence points upwards. The subject filmed 

from this position appears “threatening, powerful, and intimidating” (p. 7). The high-angle 

shot describes a camera position above the eye level of the subject, and hence angles down-

wards. Subjects filmed in this way tend to look “diminished, intimidated, threatened,” and 

“insignificant” (p. 8). Eye-level shots are taken with the camera on the eye level of the sub-

jects, and these appear “neutral” (p. 9) because the observer is visually on the same level as 

the subject. True eye level appears too confrontational, so the camera position in most shots is 

slightly above or below eye level. 

Operationalization. The static sagittal SRL flexion angle measures the angle of the 

camera pointing upwards or downwards, and as a result can be used to measure the camera 

angle. The sagittal dimension is independent of rotational flexion if no lateral flexion exists, 

which would be unusual for a camera placement. Therefore, no frame of reference is needed. 

Math terms, scope, and limits. For math terms, please refer to Chapter 4, the section 

entitled “The Static SRL System: Measuring Body Positions”, on p. 30. The scope and limits 

of the math terms are described on p. 31. 

Implementation. Table 18 (p. 90) summarizes the implementation of the media-

related parameters in APEx. High-angle shots are indicated by remarkable positive values, 

low-angle shots with remarkable negative values, and eye-level shots with values around zero 

for the sagittal dimension of the camera. Although output, the rotational dimension is irrele-

vant, and the lateral dimension might be used to check whether the camera is upright.  

Camera Framing. Visual emphasis or intensity can be obtained through camera 

framing, defined as the relative size of the image of an object within the borders of the televi-

sion frame (Tiemens, 2005), and camera proxemics, defined as the distance between subject 
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and camera (Mamer, 2009). In principle, three basic positions can be distinguished (Hayward, 

2000; Mamer, 2009): long shot, medium shot, and close-up. The long shot includes the full 

human body, either as a full-body shot with a near camera or as an extreme long shot with a 

far camera. Whereas the full-body shot allows us to see both body language and facial expres-

sions, the extreme long shot can be used to diminish the subject because the loss of visual 

details associated with the decreased relative size of the subject de-emphasizes the subject. 

The medium shot represents how people interact in life because it puts the observer on the 

same level as the subject being filmed from the waist up and is generally neutral in its presen-

tation of the subject compared with the long shot and the close-up. The close-up is a head shot 

which gives the subject greater importance by emphasizing details, provides the greatest psy-

chological intimacy and identification with the subject, is suitable for showing dyadic interac-

tions, can create suspense and involvement, and can be used to influence the perceiver (Hay-

ward, 2000; Mamer, 2009; Masters, Frey, & Bente, 1991; Vogeley & Bente, 2011). 

Operationalization. According to Tiemens (2005), camera framing is the relative size 

of the image of an object within the borders of the monitor frame. The only body part which is 

mostly visible and hence can be used in each case, from the extreme long shot to the close-up, 

is the head of the subject. Camera framing is operationalized as the percentage of the height 

of the head related to the height of the monitor frame. As depicted in Figure 13, two invisible 

markers have to be set up for accurate measurement of the head height, one at the top of the 

head and one at the lowest point of the chin. 

 
Figure 13. Measuring the head height with markers 
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Geometrical Model. Camera settings such as camera proximity, camera resolution, 

and lens perspective influence the screen image displayed by the monitor (Mamer, 2009), i.e., 

the positions of the points of the 3D world projected onto the screen image (see Figure 15 on 

p. 87). The 2D positions on the screen are calculated by the perspective transformations of the 

viewing pipeline of the 3D animation software which uses a frustum as geometrical model for 

the projection (Buss, 2003). As colored gray in Figure 14, a frustum is a rectangular pyramid 

with the top portion removed. The bottom and top sides are referred to as the far and near 

planes and define which part of the 3D world is relevant for the projection. The point (𝑥,𝑦, 𝑧) 

within the frustum of Figure 14 is projected to the point (𝑥′,𝑦′, 𝑧′) on the near plane repre-

senting the screen image. This image has a resolution of 𝑤 × ℎ and is defined by the left bot-

tom point (𝑙,𝑏,−𝑛) and the right top point (𝑟, 𝑡,−𝑛). The so-called field of view 𝜃 represents 

the angle between the top-bounding plane and the bottom-bounding plane of the frustum. 

 

 

 
Figure 14. The frustum of the viewing pipeline used in 3D animation software. 

Adapted from Buss (2003, p. 56). 

 

 

(0, 0,− 𝑛) 

𝑤 = width 
ℎ = height 
𝑙 = left 
𝑟 = right 
𝑏 = bottom 
𝑡 = top 
𝑛 = near 
𝑓 = far 

3D world 

Screen 
image 

(𝑧 = −𝑓) 
Far plane 

(𝑧 = −𝑛) 
Near plane 

𝜃 

(𝑥,𝑦, 𝑧)  

(𝑥′,𝑦′, 𝑧′)  

(𝑙, 𝑏,−𝑛)  

(𝑟, 𝑡,−𝑛)  
𝑤 

ℎ 



 

86 

Math terms. First, the coordinates of all relevant points are referenced to the camera 

whose base position is pointing in the opposite direction of the 𝑧-axis, because this is the as-

sumption of the following math terms. After this coordinate transformation according to 

Equation (10), the near plane is 𝑧 = −𝑛 and the far plane 𝑧 =  −𝑓 far away from the camera. 

The 𝑥′- and 𝑦′-coordinates of the projected point result from multiplying the coordinates of 

the point (𝑥,𝑦, 𝑧) by the projection matrix 𝑆 (Buss, 2003), represented by Equation (18). 

 

𝑆 =

⎝

⎜⎜
⎛

2𝑛
𝑟−𝑙

0 𝑟+𝑙
𝑟−𝑙

0

0 2𝑛
𝑡−𝑏

𝑡+𝑏
𝑡−𝑏

0

0 0 −(𝑓+𝑛)
𝑓−𝑛

−2𝑓𝑛
𝑓−𝑛

0 0 −1 0 ⎠

⎟⎟
⎞

  (18) 

 

The values 𝑡, 𝑏, 𝑟, and 𝑙 can be calculated by Equations (19) – (22) (Buss, 2003) using 

𝑤 (width), ℎ (height), 𝑛 (near plane), 𝑓 (far plane), and 𝜃 (field of view), which are usually 

provided by the camera settings of the 3D character animation software. 

 
𝑡 = 𝑛 ∙ tan (𝜃 2⁄ ) (19) 

𝑏 = −𝑛 ∙ tan (𝜃 2⁄ ) (20) 

𝑟 = (𝑤 ℎ⁄ ) ∙ 𝑡 (21) 

𝑙 = (𝑤 ℎ⁄ ) ∙ 𝑏 (22) 
 

After the 𝑥′- and 𝑦′-values of the top marker 𝑝 and the chin marker 𝑞 have been ob-

tained, the media-related parameter Camera Framing 𝑐𝑓% can be calculated according to 

Equation (23). 

 

𝑐𝑓% =
�(𝑞𝑥′ − 𝑝𝑥′)2 + (𝑞𝑦′ − 𝑝𝑦′)2

ℎ  ∙ 100 (23) 

 

The values of the parameter Camera Framing 𝑐𝑓% depicts the percentage of the head 

height related to the frame height ℎ.  
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Scope and limits. Mathematical singularities such as a frame height of zero are practi-

cally non-existent. If the head is not visible or the user specifies incorrect values for 𝑤 

(width), ℎ (height), 𝑛 (near plane), 𝑓 (far plane), or 𝜃 (field of view), APEx will output miss-

ing values (i.e., no value at all). 

Implementation. Following Buss (2003, pp. 54–58), the coding of Equations (18) – 

(22) applies the OpenGL statements glViewport (defines screen image matrix), gluPerspective 

(defines projection matrix 𝑆), gluLookAt (defines coordinate transformation matrix regarding 

camera direction), and gluProject (projects a 3D point onto the screen image using the previ-

ously defined matrices). The graphic standard OpenGL is usually installed on each Windows 

computer. The field of view 𝜃 should be chosen to be equal to the angle that the screen image 

adopts in the field of view of the person looking at the image (Buss, 2003). Table 18 (p. 90) 

summarizes the implementation of the media-related parameters. The parameter Camera 

Framing is the percentage of head height related to frame height. 

 

 

 
Figure 15. Scene with camera and frustum in a 3D character animation software. 

 

 



 

88 

Camera Proxemics. The parameter Camera Proxemics complements the parameter 

Camera Framing. Whereas the latter one describes the graduations between all distances very 

well, especially for the long shot and extreme long shot, the parameter Camera Proxemics is 

able to distinguish easily between full-body shot, medium shot, and close-up. 

Operationalization. The parameter Camera Proxemics expresses the proportion of the 

visible body accounting for the head. To obtain this measurement, the height of the head—

measured from the top of the head to the lowest point of the chin—is divided by the height of 

the visible body—measured from the top of the head to the lowest visible part of the body. 

The resulting value ranges from zero (the face is not visible) to one (only the face is visible). 

Following Bammes (1994), the head is one-seventh of the full body height and one-third of 

the height from above the waist to the top of the head. Expressed in percentages, a value of 

around 10% to 20% indicates a full-body shot, around 30% to 40% a medium shot, and greater 

than 50% a close-up. This classification may be useful for analyzing different camera shots. 

Geometrical Model. To calculate 2D positions on the screen, the same perspective 

transformations of the viewing pipeline of the 3D animation software are applied, which uses 

a frustum as geometrical model (see p. 85). In contrast to the parameter Camera Framing, not 

only are the 3D coordinates of the two head markers (see Figure 13, p. 84) transformed into 

2D screen coordinates, but the 3D coordinates of the highest and the lowest visible body part 

are also transformed in order to determine the height of the visible body. 

Math terms. After calculation of the 2D coordinates of the top marker 𝑝, the chin 

marker 𝑞, the lowest visible body part 𝑙, and the highest visible body part ℎ according to 

Equations (18) – (22) (p. 86), the parameter Camera Proxemics 𝑐𝑝% is determined by Equa-

tion (24): 

 

𝑐𝑝% =
�(𝑞𝑥′ − 𝑝𝑥′)2 + (𝑞𝑦′ − 𝑝𝑦′)2

𝑙𝑦′ − ℎ𝑦′
 ∙ 100 (24) 
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Scope and limits. If the body is not visible at all or the user specifies incorrect values 

for 𝑤 (width), ℎ (height), 𝑛 (near plane), 𝑓 (far plane), or 𝜃 (field of view), APEx will output 

missing values (i.e., no value at all). 

Implementation. The implementation of the parameter Camera Proxemics uses the 

same OpenGL statements as the implementation of the parameter Camera Framing (p. 87). 

Table 18 (p. 90) summarizes the implementation of the parameters relating to camera features. 

Video Pixel Difference. Since the visual impressions of body movements presented in 

video clips are based on images sequentially displayed on a monitor screen, the complexity of 

body movements can technically be determined by calculating the proportion of the monitor 

screen area that is involved in body movements. The more body parts participate in a complex 

movement, the greater the proportion of the monitor screen area displaying the movement is. 

Operationalization. The area involved in displaying body movements can be deter-

mined by selecting the video frames displayed at the coded time points and counting the 

number of video pixels that changed their color between the present and the last video frame. 

For example, given a frame rate of 30 fps (frames per second) and a coding resolution of two 

time points per second, every fifteenth frame would be selected and compared with the previ-

ously selected frame.  

Math terms, scope, and limits. The image data of two selected frames are compared in 

order to determine the screen area size involved in movements by counting the number of 

screen pixels that change their color (between the actual time point 𝑡 and the previous time 

point 𝑡 − 1) and by relating this number to the total number of screen pixels, as shown in 

Equation (25): 

 

∆𝑡%=
∑ ∑ 𝜀𝑡

𝑛𝑥
𝑥=1

𝑛𝑦
𝑦=1

𝑛𝑥 ∙ 𝑛𝑦
∙ 100     𝜀𝑡 = �1 if 𝑐𝑜𝑙𝑡(𝑥,𝑦) ≠ 𝑐𝑜𝑙𝑡−1(𝑥, 𝑦)

0 else
� 

∆𝑡% = video pixel difference as percentage at time point 𝑡, 𝑥 = x-coordinate, 𝑦 = y-coordinate,  
𝑛𝑥 = width of screen, 𝑛𝑦 = height of screen, 𝑐𝑜𝑙𝑡(𝑥, 𝑦) = color of pixel (𝑥, 𝑦) at time point 𝑡 

(25) 
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Implementation. APEx uses Microsoft’s AVIFile library to open video clips, select 

single frames from the video stream, and compare the color information of each video pixel in 

order to calculate the parameter Pixel Difference. Therefore, video clips are only supported 

that are based on video codecs installed and recognized by Microsoft’s Windows Multimedia 

System. These video clips usually have the extension .avi or .wmv. If APEx cannot calculate 

the parameter Pixel Difference and therefore outputs an error message, the user should install 

the appropriate video codec or use a video processing utility to recompress the video clip with 

a codec recognized by Microsoft’s Windows Multimedia System. Table 18 summarizes the 

implementation of the media-related parameters in APEx.  

 

Table 18 

Camera Parameters 

Parameter Range Description 
Camera Angle* –180°…180°   Low-angle (neg. values), high-angle (pos. values), or eye-level shot (≈0) 
Camera Framing 0…100% Percentage of head height related to frame height 
Camera Proxemics 0…100% Percentage of head height related to visible body height 
Pixel difference 0…100% Percentage of pixels changing their color between two time points 
* Only the sagittal dimension of the parameter Camera Angle is relevant for the evaluation of the type of camera angle. 
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Chapter 7: The Program APEx 

Introduction 

To transform motion capture data and 3D animation data according to the nonverbal 

parameters described in Chapter 4 and Chapter 6, the software APEx (Automatic Parameter 

Ex

 

traction of Nonverbal Parameters) has been developed. APEx is programmed with around 

14,500 lines of code resulting in an executable file of 784 KB. Essentially, APEx reads one or 

more input files containing data exported from professional 3D animation software, calculates 

nonverbal parameters according to the formulas developed in the previous chapters, writes the 

resulting nonverbal data into output files, and outputs statistical data for each input file in a 

common statistics file. To ensure the best possible ease of use, the user interface of APEx 

allows high flexibility to specify how APEx should process the input files. The following sec-

tions describe in detail how the data in the input files should be formatted, and how they can 

be obtained, which options the user interface provides and how they can be used, how the 

output files are formatted and how the data can be read by statistical software packages. 

 

Input Files 

Data format. APEx supports plain text files with delimiter-separated values (DSV) as 

input files. DSV is not a single, well-defined format, but refers generally to any file that con-

sists of data lines (records) divided into fields separated by delimiters where every data line 

has the same sequence of fields. APEx uses the following specific format. 

Format line. The input file begins with the format line labeling the data fields of the 

data lines. The data field labels can use any alphanumeric character, can have any reasonable 

length, are separated with a delimiter, and must not enclose by quotation marks. The first data 

field is the time field and the label of the time field must be specified in the dedicated input 
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box labeled ‘Time Field’ of the user interface (see tab page ‘Input Files’). The second data 

field is the frame number and can be labeled in any way. The following data field labels des-

ignate the translation and rotation values of the 3D model joints and markers. These data field 

labels consist of a data field name and a data field type separated by a colon. The data field 

name is the name of the corresponding joint or marker. The data field type can be ‘Tx’, Ty’, 

Tz’, ‘Rx’, Ry’, or ‘Rz’: T denotes translation, R indicates rotation, and the letters x, y, and z 

specify the dimension. If a sequence of consecutive data field labels belongs to the same joint 

or marker, only the first label of the sequence must have a name; the other labels can omit a 

name and comprise only the data field type. Several comment lines can be inserted before the 

format line. The data lines immediately follow the format line. 

Data lines. Each time point of a 3D animated time sequence has an own data line in 

the input file. Each data line begins with a time value and a frame number; the following data 

fields consist of the translation and rotation values of the 3D model joints and markers for a 

single time point. The first field of the data line identifies the time point of the time sequence. 

With regard to each data line in an input file, the time value should have the same distance to 

the time value of the previous data line. All data fields are separated by a delimiter. 

Delimiter. The delimiter used to separate data field labels in the format line or data 

field values in a data line can be any character. Regardless of the file extension, APEx uses 

the first character immediately following the time field of the format line as delimiter. There-

fore, most delimiter-separated value file formats, such as comma separated values (CSV) or 

tab separated values (TSV), are supported. 

Values. The input files consist of global translation and rotation values of the joints 

and markers of the hierarchical skeleton structure of a human 3D model in professional 3D 

animation software (see Figure 6, p. 36, Figure 10, p. 71, and Figure 13, p. 84). Global val-

ues means that the translation and rotation values of joints are referenced by the global scene 

origin of the 3D world. In contrast, local values of a joint are referenced to the corresponding 
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parent joint hierarchically superior to it. APEx is designed to process global values; if local 

values are used, the nonverbal data that APEx calculates and outputs will be incorrect. 

Decimal point. A dot must be used as decimal point. 

 
Figure 16. Example of an input file with comment line, format line, and data lines. 

Example. Figure 16 shows the first data fields and first data lines of an input data file. 

The first line is a comment line, which will be ignored by APEx. The second line is the format 

line beginning with the time field label ‘Time [sec]’, the frame no. label ‘Frame’, and the data 

field labels for the global values of the hips, the chest, and the head. Then follow some data 

lines, numbered from one to twelve, with a frame rate of 10 fps. 

Export from 3D animation software. Professional 3D animation software, such as 

MotionBuilder, has generally no possibility of exporting global data in a DSV format suitable 

for APEx. That 3D software uses proprietary binary data formats, which are additionally sub-

ject of changes between different versions. Because those proprietary data files cannot be 

used as input files, a script has been developed to export the 3D global data to DSV files. 

Installation of the Script ‘Export Global Data’. Appendix B (p. 110) contains a py-

thon script written for MotionBuilder 2012 and subsequent versions. If this script is placed in 

a text file with the name ‘ExportGlobalData.py’ in the subfolder ‘bin\config\PythonStartup’ 

of MotionBuilder’s installation folder, a menu item ‘Export Global Data’ will be available in 

the ‘Python Tools’ menu of MotionBuilder (from which also a free student version exists).  
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Usage of the Script ‘Export Global Data’. (1) Start MotionBuilder 2012 (or higher) 

and open a scene with animated 3D models. (2) As shown in Figure 17, select the joints and 

markers of a human 3D model. If camera parameters are of interest, mark additionally a cam-

era and a camera interest. If intending to use the static SRL system, you may mark additionally 

a chair or another object (for more details, please refer to the section entitled “About the base 

position”, on p. 32). (3) Select the menu item ‘Export Global Data’ in the ‘Python Tools’ 

menu of MotionBuilder. (4) A tools window with the title ‘Export Global Data’ and a button 

‘Start’ appear. Click on the ‘Start’ button. (5) A file dialog window appears which proposes to 

store the exported data in a file in the user’s home directory with the name of the scene and 

the extension ‘.csv’. Please ensure that the extension of the data file for one person is ‘.L.csv’ 

(left person) or ‘.A.csv’ (other cases) and for the other it is ‘.R.csv’ (right person) or ‘.B.csv’ 

(other cases). Then hit on ‘Save’. (6) Repeat Steps (1) to (5) for the other person in the dyad.  

 
Figure 17. Menu item ‘Export Global Data’ in MotionBuilder’s ‘Python Tools’ menu. 
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User Interface 

The user interface of APEx consists of three tab pages: the ‘Input Files’ tab page, the 

‘Data Fields’ tab page, and the ‘Parameters’ tab page. All tab pages allow specific options to 

be set for how APEx should process the data of the input files. This includes the option to 

modify and enhance the default set of nonverbal parameters by using a base set of freely 

combinable calculation functions. After all options are chosen and the calculation is started by 

clicking on ‘Calculate’, APEx processes all specified input files at once and, if necessary, 

writes error messages in the output files and points to them at the end of the job. 

Tab page ‘Input Files’. As shown in Figure 18, the input files are specified in the tab 

page ‘Input Files’. In the center of the window, the input file list displays the input files and 

the options chosen for them. On the right side of the input file list, a set of buttons and input 

fields allow the user to modify the input file list and to open the files with an external editor. 

 
Figure 18. The tab page ‘Input files‘ of APEx’s user interface. 

◄ Tab pages 

▼ Options 

▼ Input file list ▼ Buttons 
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Options. Input file options are available for each input file separately. They are shown 

in the input file list and can be preset before adding one or multiple data files or can be modi-

fied after selecting a data file in the input file list by changing the values in the input fields on 

the right side of the window. The following options are available for each input file. 

Time Field. This option identifies the name of the first data field in the format line of 

the input file. If the entered string does not match the first data field name of the format line, 

APEx will show an error message that it could not find the format line.  

Frames/Sec. This option shows the frame rate as ‘frames per second’ (fps) . The fps 

value is calculated from the first two data lines while an input file is being added, but can be 

modified afterwards, if desired. The fps values of the two input files of a dyad must match. 

Otherwise, APEx shows a message that the files cannot be assigned to each other. 

Use Every. This option offers the possibility to adjust the magnitude of the calculated 

nonverbal parameter values. Very small periods between two frames can reduce the calculated 

values of dynamic nonverbal parameters to virtually nothing. With this option, it is possible to 

enhance the period between two time points: ‘Use Every 2nd Frame’ will omit each 2nd

Body Height. This option specifies the height of the real actor to recalculate all dis-

tance measures (Symmetry, Expansion, Distance, Openness, Dyadic Proxemics, Translational 

Complexity, and Translational Magnitude) of the 3D model into the metric of the real person. 

Entering no value will result in unmodified distance measures. By pressing this button, all 

distance measures can be alternatively calculated as the percentage of the 3D model body 

height or its limb length ensuring comparability between differently sized models (see p. 

 frame.  

65). 

Angles and Distances. For statistical nonverbal parameters, a threshold value is used 

to filter invisible micro movements not relevant for nonverbal impression formation. This 

applies to distances as well as angles. All Complexity, Magnitude, Activation, and Time Spent 

in Motion parameters use these threshold values (see p. 43-44); only values greater than the 

threshold value are taken into account. The recommended default threshold value is 0.1. 
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Decimal Places. This option specifies the number of decimal places in the output files. 

APEx calculates internally to 15 decimal places, but for most purposes, it is sufficient to use 

between two and five decimal places for the output. 

Camera. This option lists the camera settings used for camera-related parameters (see 

Table 18, p. 90). The camera settings comprise the values for width, height, near plane, far 

plane, and field of view, which can be read from the tab page ‘Camera Settings’ of the naviga-

tor window in MotionBuilder, as shown in Figure 19. The values are entered in the input field 

‘Camera’ in the format: ‘width x height / near plan / far plane / field of view’. Regarding Fig-

ure 19, the camera settings should be entered without spaces as ‘1024x768/10/4000/40’. 

 
Figure 19. The tab page ‘Camera Settings‘ in the navigator window of MotionBuilder. 

Video Clip Analysis. The parameter Pixel Difference (p. 89) counts the number of 

changed pixels between two frames of a video file. By switching the option ‘Video Clip 

Analysis’ on, a file dialog appears to select a video file for a input file; only AVI files are 

supported. The option ‘Left Side’ is automatically assigned to input files with the extension 

‘.L.*’ or ‘.A.*’, and the option ‘Right Side’ to input files with the extension ‘.R. *’ or ‘.B. *’. 

In all other cases, the user can choose one of the options ‘Left’, ‘Right’, or ‘Both’ sides.  
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Buttons. With the buttons of the tab page ‘Input Files’ the content of the input file list 

can be modified by adding and removing input files, or assigning partner and video files. 

Holding the ‘Ctrl’ key shows the keys associated with the buttons for keyboard control. 

Add Data Files. This button opens a file dialog window to add one or more input files 

to the input file list. All selected input files are inspected for a valid format line. If two input 

file names have the same name with the extensions ‘.L.*’ and ‘.R.*’ (or ‘.A.*’ and ‘.B.*’), 

they are automatically assigned to each other as partner files. It is necessary that all input files 

have the same data field names, and that the partner files of a dyad have the same frame rate. 

Assign Partner File. This button allows the user to assign a partner file to a selected 

input file without the need to have same file names with the extensions ‘.L./.R.’ or ‘.A./.B.’. 

Assign AVI File. This button offers the same functionality as the option ‘Video Clip 

Analysis’, but allows the user to change the assignment of a video file. 

Open Data Files. This button opens a dialog enabling the user to open the input data 

file, the output data file, and/or the statistics file. APEx transfers the file names to the operat-

ing system that launches the programs associated with the extensions of the chosen files. 

Remove Data File. This button removes the selected input file. 

Clear File List. This button removes all input files from the input file list. 

Restore File List. This restores the input file list loaded automatically at program start. 

Apply to All Files. This allows the user to change the options for all files at once. 

Tab page ‘Data Fields’. The nonverbal parameters are implemented with a set of 

base functions that require particular input variables. While the names of the predefined de-

fault input variables are fixed (e.g., ‘Head’, ‘Chest’, or ‘Hips’, as listed in Table 19, p. 113), 

the data field names of the input file are exported from a human 3D model and hence are arbi-

trary and variable. With the tab page ‘Data Fields’, the variable names of the input data fields 

can be mapped to the fixed names of the input variables. Moreover, the user can specify a set 

of user-defined input variables for other 3D model joints (e.g., fingers or eyes). 
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Default input variables. As shown in Figure 20, the joints of the generic human 3D 

model are underlined; the non-underlined input variables are markers (see Figure 6, p. 36, and 

Table 19, p. 113). Every data field of the input files can be assigned to an input variable by 

the user choosing its name from the appropriate selection field. If a calculation function relies 

on the data of an input variable that has not been assigned to a data field, APEx writes error 

messages into the output files, with the exception of ‘Base’. If ‘Base’ is not specified, the 

global scene origin of the 3D world is used as ‘Base’. 

User-defined input variables. The tab page ‘Data Fields’ offers the user the possibility 

to specify up to 50 additional input variables by selecting a data field from a selection field 

within the area of user-defined input variables and uniquely naming the new input variable. 

Figure 20 shows two user-defined input variables for the ankles of a human 3D model. A us-

er-defined variable can be removed by deselecting its data field name, i.e., choosing the emp-

ty item of the selection field, and can be deleted by removing all characters in its name field. 

 
Figure 20. The tab page ‘Data fields‘ of APEx’s user interface. 

▼ User-defined input variables 

▼ Default input variables 

▼Selection field ▼Name 

◄ Tab pages 
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Buttons. The selection fields of the tab page ‘Data Fields’ collect the data field names 

of all input files ever read. Before a new project with new input files is set up, the selection 

fields should be emptied. Furthermore, all user-defined variables can be deleted at once by 

pressing the appropriate button. Holding the ‘Ctrl’ key means the keys associated with the 

buttons are displayed and thus can be used if keyboard control is desired. 

Clear Data Field Lists. Use this button to empty all selection fields. 

Delete User Variables. Use this button to delete all user-defined variables. 

 
Figure 21. The tab page ‘Parameters‘ of APEx’s user interface. 

Tab page ‘Parameters’. The calculation functions for the nonverbal parameters de-

scribed in Chapter 4 and Chapter 6 are used in the parameter list of the tab page ‘Parameters’. 

This parameter list defines how APEx processes the data of the input variables that are 

mapped to the data fields of the input files using the tab ‘Data Fields’. By default, this param-

eter list includes a set of 150 predefined parameters which can be modified and extended. 

▼ Parameter list ▼ Edit controls 
 
 

 

 

 

 

 

 

  

◄ Tab pages 
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Parameter list and edit controls. As shown in Figure 21, each line of the parameter 

list represents a nonverbal parameter definition comprising eight items, which can be modi-

fied by selecting the definition line in the parameter list and using the edit controls on the 

right side of the tab page ‘Parameters’. Any changes made with the edit controls have an im-

mediate effect on the definition of the selected nonverbal parameter. 

Parameter Name. The ‘Parameter Name’ names the data fields in the output file and 

can be used as input variable by subsequent nonverbal parameters in the parameter list. The 

parameter name must be uniquely specified not only for other nonverbal parameters, but also 

for the input variables defined on the tab page ‘Data Fields’ (see Figure 21, symbol ). 

Calculation function. This identifies the function used to calculate a nonverbal param-

eter. The calculation function outputs one or more values for each nonverbal parameter and 

uses the parameter name to name the data fields in the output files; e.g., the nonverbal param-

eter ‘Static SRL Hips’ outputs the values ‘Static SRL Hips Sagittal’, ‘Static SRL Hips Rota-

tional’, and ‘Static SRL Hips Lateral’ (see ). 

Variables and Targets. ‘Variables’ and ‘Target’ list the input variables used by calcu-

lation functions. Some calculation functions need two different sets of input variables; the 

second one can be understood as the ‘target’ of a nonverbal behavior. Input variables can be 

either data fields specified on the tab page ‘Data Fields’ or nonverbal parameters defined pre-

viously in the parameter list. If users want to change an input variable specified for a nonver-

bal parameter, they select the appropriate definition line and pick either ‘Variables’ or ‘Tar-

get’ (see ). Then they choose the desired input variable from the selection field for input 

variables (see ). If only one input variable can be specified for a calculation function, the 

selection takes immediate effect. If more than one input variable can be specified, the button 

‘Add’ below the selection field can be used to add the chosen input variable to the variable 

list, and the button ‘Remove’ removes the selected input variable from the variable list. To 

add and remove the joints of a human 3D model with a single click, check boxes for single 
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joints (see ) and buttons for the joints of extremities or body sides (see ) can be used. The 

button ‘Clear’ removes all input variables from a nonverbal parameter definition (see ). 

Reference system. This selection specifies the frame of reference needed by the calcu-

lation functions Static SRL, Local Dynamic SRL, Symmetry, Dyadic Mimicry, and Coordinate 

Transformation (see ). 

Output. This option specifies whether result values of a calculation function should be 

written to the output file (see ). On the right side, the buttons ‘All on’ and ‘All off’ can be 

used to enable or disable this option for all nonverbal parameters (see ). 

Statistics. This option specifies whether APEx should calculate statistics on the result 

values and output them to the statistics file (see ). On the right side, the buttons ‘All on’ and 

‘All off’ can be used to enable or disable this option for all nonverbal parameters (see ). 

Dynamic. This option specifies whether differences between result values of two con-

secutive time points should be calculated (see ). This option is not available for dynamic 

calculation functions and works only with the ‘Output’ or the ‘Statistics’ option, i.e., the dif-

ferences of result values will only appear in the output file if the option ‘Output’ is chosen, 

and in the statistics file if the option ‘Statistics’ is chosen. On the right side, the buttons ‘All 

on’ and ‘All off’ can be used to enable or disable this option for all parameters (see ). 

Enable/Disable All/Dyad. The button ‘Enable All’ sets the check marks of all nonver-

bal parameters and hence enables all definitions of nonverbal parameters, and the button ‘Dis-

able All’ removes the check marks of all nonverbal parameters and disables them. The button 

‘Enable Dyad’ sets the check marks of all parameters involved in dyadic interactions, and the 

button ‘Disable Dyad’ removes the check marks of all dyadic parameters (see ). 

New. The button ‘New’ allows the user to define a new nonverbal parameter. When 

this button is clicked, a new entry appears at the end of the parameter list. Before the new 

nonverbal parameter can be enabled by setting its check mark, a unique name must be given, 

a calculation function chosen and the input variables specified (see ). 
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Del. This button deletes the selected nonverbal parameter definition (see ). 

Up/Down. The order of nonverbal parameter definitions in the parameter list matters, 

because nonverbal parameters serving as input variables for other nonverbal parameters must 

be defined before them. With the buttons ‘Up’ and ‘Down’ each nonverbal parameter can be 

moved up and down in the parameter list to ensure the correct order of calculations (see ). 

Restore/Reset/Clear. The button ‘Restore’ restores the parameter list to the nonverbal 

parameter definitions loaded at program start. The button ‘Reset’ generates the default param-

eter list of APEx. The button ‘Clear’ removes all parameter definitions from the list (see ). 

Saving, restoring, resetting. Every modification to the parameter list takes immediate 

effect by overwriting the existing nonverbal parameter definitions. The following strategies 

are recommended to deal with user mistakes: (1) the user can read the meanings of all buttons 

by holding the mouse pointer above them for more than one second; (2) the user can restore 

the set of nonverbal parameters loaded at program start by clicking on 'Restore'; (3) the user 

can load the default set of nonverbal parameters by clicking on 'Reset'. Furthermore, the fol-

lowing procedures are available to save or drop modifications to the parameter list: (1) the 

user can save changes to all settings including modifications to the parameter list by leaving 

APEx and answering 'Yes' to the question about saving the settings; (2) the user can keep the 

settings loaded at program start including nonverbal parameter definitions by leaving APEx 

and answering 'No' to the question about saving the settings. Most importantly, the following 

file operations are available for handling several sets of nonverbal parameter definitions: (1) 

the user can save all settings together with their own set of nonverbal parameter definitions in 

a file by clicking on 'Save'; (2) the user can load previously saved settings together with their 

own set of nonverbal parameter definitions by clicking on 'Load'.  

Calculation functions. Table 19 and Table 20 (see Appendix C, p. 113) present de-

tailed information about the implemented set of calculation functions and their input and out-

put variables. In addition, two examples of user-defined nonverbal parameters are given.  
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Number of variables of the default set. The default set of 150 nonverbal parameters 

calculates 380 different output variables for each input line and 1,504 different statistical vari-

ables for each input file. Enabling the options ‘Output’ and ‘Statistics’ for all nonverbal pa-

rameters of the default set, APEx will compute 485 different output variables and 1,922 dif-

ferent statistical variables. Additionally, by using the option ‘Dynamics’ for all nonverbal 

parameters, APEx will calculate 830 output variables and 3,255 statistical variables. 

Dependencies between Parameters. A nonverbal parameter using another nonverbal 

parameter as input or target variable requires that the used variable should have been previ-

ously defined in the list and checked as active. The complexity and activation parameters con-

stitute special cases. They require the global as well as the local dynamic SRL parameters of 

all specified body joints. Figure 22 shows a simplified case with only the hip and chest joints. 

 
Figure 22. Dependencies between nonverbal parameters. 

Rule-checking system. A rule-checking system checks the nonverbal parameter defi-

nitions of completeness and consistency for each user action. Therefore, the rule-checking 

system ensures that APEx can calculate each nonverbal parameter. If the user tries to modify 

the parameter list in an inconsistent way, APEx displays an error message and cancels the 

modification made by the user. The rule-checking system checks only active nonverbal pa-

rameters and can be completely turned off by using the button ‘Disable All’. Using the button 

‘Enable All’ means the rule-checking system will proof every nonverbal parameter against 

rule violations. Rule violations prevent nonverbal parameter definitions from being enabled. 



 

105 

Output Files 

User Interface. The frame ‘Output Files’ is visible under the area of tab pages and al-

lows the user to specify an output folder, output file names, and output file format. In addi-

tion, it is possible to activate the processing mode ‘Split Output Files’. 

Output folder. By entering a path into the input field ‘Folder for Storing Output Files’ 

or by clicking on ‘Browse…’ to select a path, the user can specify the folder for the output 

and statistics files. If the output folder is identical to the input folder, a prefix or a suffix 

should be entered for the output file names; otherwise, an error message will be displayed 

later. 

Prefix/Suffix. Output files are named as follows: Prefix + Input file name + Suffix.  

CSV/TSV. Comma separated values (CSV) using semicolons as data delimiter or tab 

separated values (TSV) using the tab character as data delimiter are supported. For the TSV 

option, an extension can be entered. The selection of the data format applies to all output files. 

CSV output files will have the extension ‘.csv’, TSV output files the entered extension. 

Statistics file. The name of the common statistics file can be entered in this field. 

Split output files. Checking this option will activate the split output file processing 

mode. In this mode, the output file of each input file will be split into multiple output files 

with a maximum number of lines according to the number which the user entered in the input 

field ‘Lines per File’. For each output file, the means of the nonverbal parameters will be cal-

culated and written in a separate file. The output files names contain the label ‘part’ and a 

consecutive number, the mean file name the label ‘means’. According to the output files, as-

signed video files will be cut into corresponding video files. The split output file processing 

mode may be useful for finding sequences of body movements with certain characteristics. 

Output and statistical variables. The output variables in the output files and the sta-

tistical variables in the common statistics file are listed in Table 20 (p. 114) with cross refer-

ences to the sections where the variables are explained. 
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Chapter 8: Limitations and Future Directions 

The technique of high-performance 3D character animation allows a high degree of 

independence in the experimental design of stimulus rating studies presenting nonverbal 

stimuli to observers in order to rate them. In particular, the possibility of rapidly collecting 

behavioral data with optical motion capture systems allows us more than ever before to inte-

grate encoding and decoding studies in the common framework of lens modeling (Brunswik, 

1956). It also allows the researcher to draw inferences about how universals, stereotypes, and 

constructs shape the sender’s nonverbal communication, how the perceiver decodes the 

stream of nonverbal cues to infer the sender’s attitudes, preferences, mental state, and person-

ality trait, and whether perceivers can accurately interpret the relevant cues. The nonverbal 

parameters developed in this work enhance this research method by allowing the identifica-

tion of the nonverbal cues responsible for distinct impressions by means of multiple regres-

sion analysis with impression as criterion and nonverbal parameters as predictors.  

The strength of this approach averaging the stimuli ratings resulting in stronger effects 

with smaller and controlled random error is its withdraw: A chance of being detected have 

primarily the cues that dominates movement sequences, whereas the subtle cues could disap-

pear. A possible solution to this dilemma could be the method of Fourier decompositions used 

by Troje (2002, 2008)—whereas Troje decomposed Cartesian coordinates of point light spots 

into a structural part and a kinematic part describing group differences, it should now be pos-

sible to decompose body postures expressed in flexion angles into a structural and a kinematic 

part. For instance, the visualization of body posture differences between certain groups could 

provide animated video clips with body motions using different body postures corresponding 

to the well-known point light displays, but with the added improvement of displaying differ-

ent head postures and different hand gestures during specific movement sequences. This ap-

proach could be investigated in future along with other possibilities of pattern analyses and 
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recognition relying on time series of body movements measured with the SRL coding system 

and nonverbal parameters of APEx. 

The nonverbal parameters rely solely on data available for the main body joints and 

some markers. Therefore, APEx detects certain nonverbal cues such as eye contact or touch 

only by approximation. It can be assumed that touch or eye contact happens when the distance 

between two body joints falls below a certain cutoff value or the head is directed towards the 

interlocutor. Future developments could consider additional data sources: using the 3D model 

surface data would allow detection of collisions between two 3D models much more precise-

ly. Facial and hand gesture capture technology is already available (Busso et al., 2008; 

Condell & Moore, 2009) and gaze behavior could probably be tracked by optically motion 

capture systems in future.  

Nonverbal communication is multichanneled and context-dependent (Vogeley & 

Bente, 2010): the same nonverbal cue can express different meanings in relation to the context 

and nonverbal cues send on other nonverbal channels. Therefore, since research on nonverbal 

communication relies also on the ability to integrate nonverbal information provided on mul-

tiple channels, APEx could be further developed to integrate multiple data channels stemming 

from various motion, facial, and hand gestures capture systems capturing the other nonverbal 

channels such as facial expressions, hand gestures, gaze behavior, and probably also vocalics. 
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Appendix A: Technical Data 

Name of executable file: APEx.exe 

Platform: PC with Windows XP, Vista, 7, or higher 

Size: 784 KB (802,816 bytes) 

Programming language: Visual Basic 6 

Code: 14,500 program code lines (without blank lines) 

Version: 1.0.0 

Date of compilation: 04/14/2013 

Time of compilation: 14:04 AM 

Download location: www.apex-download.eu 

Name of setup file: APEx-Setup-v1.0.0.exe 

Install instructions: Download and use the setup file to install APEx. 
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Appendix B: Python Script for Exporting Global Values 

#******************************************************************************** 

# Copyright (C) 2012-2013 Dipl.-Psych. Haug Leuschner, h.leuschner@uni-koeln.de * 

#******************************************************************************** 

from pyfbsdk import * 

import pyfbsdk_additions, os, math 

from pyfbsdk_additions import * 

gExportGlobalData = "Export Global Data" 

 

gExportDirectory = os.path.expanduser('~')+"\documents" 

def ExportGlobalData(control, event): 

    global gExportGlobalData 

    global gExportDirectory 

    lSystem = FBSystem() 

    lStartTime = lSystem.SystemTime.GetSecondDouble() 

    lModelList = FBModelList() 

    lVector = FBVector3d() 

    lVectorIndex = 0 

    lJointCount = 0 

    lFrameCount = 0 

    lStep = 0.0 

    lTime = 0.0 

     

    lSuccess = True 

    ## Check prerequisites 

    if FBPlayerControl.IsPlaying == True or \  

       FBPlayerControl.IsPlotting == True or \ 

       FBPlayerControl.IsRecording == True: 

       FBMessageBox(gExportGlobalData,"While playing, plotting, or recording, \ 

                                       this script is not executable.","OK") 

    else: 

        FBGetSelectedModels(lModelList) 

        if len(lModelList) == 0: 

            FBMessageBox(gExportGlobalData,\ 

                              "Please select some joints to export their global data.","OK") 

        else: 

            ## Prompt file name 

            lApp = FBApplication() 

            lFileDialog = FBFilePopup() 

            lFileDialog.Style = FBFilePopupStyle.kFBFilePopupSave 

            lFileDialog.Caption = "Export global data to comma separated values file (CSV)" 

            lFileDialog.Path = gExportDirectory 

            lFileDialog.FileName = lApp.FBXFileName[:-4] + ' - ' + \ 

                                   lSystem.CurrentTake.Name + '.AB.csv' 

            lFileDialog.Filter = '*.csv' 

            if lFileDialog.Execute(): 

                gExportDirectory = lFileDialog.Path 

                ## Check if file exists 

                lSuccess = True 

                if os.path.exists(lFileDialog.FullFilename) == True: 
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                    if FBMessageBox(gExportGlobalData,"\nThe file " + lFileDialog.FileName + \ 

                         " already exists.\nDo yout want to overwrite it?", "Yes", "No") == 2: 

                        lSuccess = False 

                if lSuccess == True: 

                    ## Write variable names 

                    f = open(lFileDialog.FullFilename, "w") 

                    line = "Time [sec];Frame" 

                    for eachJoint in lModelList: 

                        line +=  ";" + eachJoint.Name + ":Tx;Ty;Tz;Rx;Ry;Rz" 

                        lJointCount += 1 

                    f.write(line+'\n') 

                    ## get frame count and step 

                    if hasattr(pyfbsdk, 'FBContainer'): 

                        lFrameNo = FBPlayerControl().ZoomWindowStart.GetFrame(True) 

                        lFrameStop = FBPlayerControl().ZoomWindowStop.GetFrame(True) 

                        lTranslation = FBModelTransformationMatrix.kModelTranslation 

                        lRotation    = FBModelTransformationMatrix.kModelRotation 

                    else: 

                        lFrameNo = FBPlayerControl().ZoomWindowStart.GetFrame() 

                        lFrameStop = FBPlayerControl().ZoomWindowStop.GetFrame() 

                        lTranslation = FBModelTransformationType.kModelTranslation 

                        lRotation    = FBModelTransformationType.kModelRotation 

                    lFrameCount = lFrameStop - lFrameNo + 1 

                    lStep = 1.0 / FBPlayerControl().GetTransportFpsValue() 

                    ## Write global data 

                    lSuccess = True 

                    lProgressBar = FBProgress() 

                    lProgressBar.ProgressBegin() 

                    lProgressBar.Caption = "Exporting global data of selected objects..." 

                    FBPlayerControl().GotoStart() 

                    while lSuccess == True and lFrameNo <= lFrameStop: 

                        line = str(lTime) + ";" + str(lFrameNo) 

                        for eachJoint in lModelList: 

                            eachJoint.GetVector(lVector, lTranslation, True) 

                            if len(lVector) == 3: 

                                for lVectorIndex in xrange(3): 

                                    line += ";" + str(lVector[lVectorIndex]) 

                            else: 

                                line += ";;;" 

                            eachJoint.GetVector(lVector, lRotation, True) 

                            if len(lVector) == 3: 

                                for lVectorIndex in xrange(3): 

                                    line += ";" + str(lVector[lVectorIndex]) 

                            else: 

                                line += ";;;" 

                        f.write(line+'\n') 

                        lFrameNo += 1 

                        lTime += lStep 

                        lProgressBar.Percent = int(100.0 * float(lFrameNo)/float(lFrameStop)) 

                        lSuccess = FBPlayerControl().StepForward() 

                        if (lProgressBar.UserRequestCancell()): 

                            break; 
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                    f.close() 

                    FBPlayerControl().GotoStart() 

                    lProgressBar.Caption = "Export of global data finished." 

                    FBMessageBox(gExportGlobalData,"\nData are successfully written to:\n" + \ 

                      lFileDialog.FileName + "\nNumber of objects: " + str(lJointCount) + \ 

                      ", number of frames: "+str(lFrameCount)+"\nDuration of data export: "+\ 

                      str(round(lSystem.SystemTime.GetSecondDouble() - lStartTime, 0)) + \ 

                      " seconds.","OK") 

                    lProgressBar.Percent = 0 

 

                    lProgressBar.ProgressDone() 

gDEVELOPMENT = False 

if gDEVELOPMENT: 

    FBDestroyToolByName(gExportGlobalData) 

if gExportGlobalData not in pyfbsdk_additions.FBToolList: 

    tool = pyfbsdk_additions.FBCreateUniqueTool(gExportGlobalData) 

    tool.StartSizeX = 235 

    tool.StartSizeY = 270 

    x = FBAddRegionParam(-80,FBAttachType.kFBAttachRight,"") 

    y = FBAddRegionParam(-35,FBAttachType.kFBAttachBottom,"") 

    w = FBAddRegionParam(70,FBAttachType.kFBAttachNone,"") 

    h = FBAddRegionParam(25,FBAttachType.kFBAttachNone,"") 

    tool.AddRegion("button","button", x, y, w, h)     

    lExportButton = FBButton() 

    lExportButton.Caption = "Start" 

    lExportButton.Justify = FBTextJustify.kFBTextJustifyCenter 

    tool.SetControl("button",lExportButton) 

    lExportButton.OnClick.Add(ExportGlobalData) 

    x = FBAddRegionParam(5,FBAttachType.kFBAttachLeft,"") 

    y = FBAddRegionParam(5,FBAttachType.kFBAttachNone,"") 

    w = FBAddRegionParam(220,FBAttachType.kFBAttachNone,"") 

    h = FBAddRegionParam(185,FBAttachType.kFBAttachNone,"") 

    tool.AddRegion("comment","comment", x, y, w, h) 

    lComment = FBHBoxLayout() 

    tool.SetControl("comment",lComment) 

    lLabel = FBLabel() 

    lLabel.WordWrap = True 

    lLabel.Caption= gExportGlobalData + \ 

    " (v1.3)\n(c) 2012-2013 Script by Haug Leuschner\n\nThis script exports global “ + \ 

    “translation and\nrotation data from selected objects into\ncomma-separated values “+ \ 

    “files (CSV).\n\nYou can leave this window open while\nselecting different objects “+ \ 

    “and clicking\neach time on 'Start'.\n\nFor dyads, please give one file the “+ \ 

    “ex-\ntension '.A.csv' (left) and the other one\nthe extension '.B.csv' (right)." 

    lComment.Add (lLabel, 240) 

else: 

 

    ShowToolByName(gExportGlobalData) 

Usage: If you copy a text file named ‘ExportGlobalData.py’ containing this script into 

the subfolder ‘bin\config\PythonStartup’ of MotionBuilder’s installation folder, a menu item 

‘Export Global Data’ will be available in the ‘Python Tools’ menu of MotionBuilder. 
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Appendix C: Calculation Functions and Their Variables 

Table 19 

Default Input Variable Names and Their Meanings 

 
Default Input Variable Label 

 
Default Input Variable Name 

 
Meaning 

 
Joints 
Base Base Object used as base  

(leave blank or specify object, e.g., chair) 
Hips Hips Root joint (at the bottom of the hips) 
Chest Chest Chest joint (at the bottom of the chest) 
Head Head Head joint (at the bottom of the head) 
Arm L Arm Left Left shoulder joint 
Elbow L Elbow Left Left elbow joint 
Hand L Hand Left Left hand joint 
Leg L Leg Left Left hip joint 
Knee L Knee Left Left knee joint 
Foot L Foot Left Left ankle joint 
Arm R Arm Right Right shoulder joint 
Elbow R Elbow Right Right elbow joint 
Hand R Hand Right Right hand joint 
Leg R Leg Right Right hip joint 
Knee R Knee Right Right knee joint 
Foot R Foot Right Right ankle joint 
 
Markers 
Chin Chin Marker at the bottommost point of the head 
Top Top Marker at the topmost point of the head 
Nose Nose Marker between the eyes (same height as ears) 
Ear R Ear Right Marker at the right ear 
Ear L Ear Left Marker at the left ear 
Chest L Chest Left Marker at left nipple of chest  
Chest M Chest Middle Marker at the back (same height as nipples) 
Chest R Chest Right Marker at right nipple of chest  
Hips L Hips Left Marker at left hip joint (‘Leg L’) 
Hips M Hips Middle Marker at the back (same height as hip joints) 
Hips R Hips Right Marker at right hip joint (‘Leg R’) 
Hand L O Hand Left Outside Marker at outer side of left wrist 
Hand L F Hand Left Finger Marker at the top of the left middle finger 
Hand L I Hand Left Inside Marker at inner side of left wrist 
Hand R O Hand Right Outside Marker at outer side of right wrist 
Hand R F Hand Right Finger Marker at the top of the right middle finger 
Hand R I Hand Right Inside Marker at inner side of right wrist 
Camera Camera Camera of 3D animation world 
Interest Interest Interest of camera 
 
Note. The input variable names of human 3D model joints rely more on the body parts being moved than their anatomically 
notions used with human joints, e.g. the left shoulder joint is named ‘Arm L’ and the right hip joint is named ‘Leg R’. 
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